Settling velocity and total ammonia nitrogen leaching from commercial feed and faecal
 pellets of gilthead seabream (*Sparus aurata* L. 1758) and seabass (*Dicentrarchus labrax* L. 1758).

4 María Asunción Piedecausa¹, Felipe Aguado-Giménez¹*, Benjamín García-García¹,
5 Gabriel Ballester¹, Trevor Telfer².

¹ Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA). PO box
65. 30740. San Pedro del Pinatar. Murcia (Spain).

² Institute of Aquaculture, University of Stirling, Scotland, UK FK9 4LA.

9 *Corresponding author. Tel.: 34-968-184518; Fax: 34-968-184518; E-mail:
10 <u>felipe.aguado@carm.es</u>

11 Abstract

12 The physico-chemical characteristics of particulate wastes of Sparus aurata and 13 Dicentrarchus labrax were investigted. Changes in dimensions, settling velocity and total 14 ammonia nitrogen (TAN) leached from commercial feed pellets was investigated after 15 soaking. Also, the settling velocity and TAN leached from faecal pellets of these fish were 16 assessed at 15 and 25°C. The settling velocity of feed pellets was influenced positively by 17 pellet weight and negatively by immersion length as a result of changes in pellet dimensions 18 after soaking. The settling velocity of faecal pellets was determined by pellet weight. The 19 experimental design did not allow identifying any consistent effect of water temperature on 20 settling velocity. TAN leaching over time from feed and faecal pellets was successfully 21 explained by means of a first order kinetic equation. For feed pellets, water temperature significantly affected the speed of the process and the time at which the maximum TAN leached was reached, but did not influence the maximum TAN leached. Leaching was related to feed pellet size, so the smaller the pellet, the higher the leaching. TAN leaching from faecal pellets was greater per unit weight than in feed pellets. However neither water temperature nor fish species influenced on TAN leaching from faeces.

27 Keywords: aquaculture; particulate wastes; settling velocity; leaching; *Sparus aurata*;
28 *Dicentrarchus labrax*.

30 1. Introduction

31 Marine aquaculture has experienced a rapid development in the Mediterranean since 1970, 32 with gilthead seabream (Sparus aurata L. 1758) and seabass (Dicentrarchus labrax L. 1758) 33 now intensively cultured in most coastal countries. This expansion has been accompanied by 34 an increasing social sensitivity with respect to the potential short and long term impacts on the 35 marine environment. Fish rearing produces a substantial quantity of particulate organic 36 wastes, mainly faecal pellets and uneaten food that settle in the vicinity of the farms. Several 37 studies have examined the geochemical and biological consequences of this supply of organic 38 matter on the benthos (Aguado-Giménez and García-García, 2004; La Rosa et al., 2004; 39 Hellou et al., 2005). Uneaten food is the main contributor among the particulate wastes loaded 40 by fish farms (Beveridge et al., 1991; Chen et al., 1999b). Most of the information regarding 41 particulate wastes loading refers to Atlantic salmon. In the 1980's, it was estimated that the food loss rate during salmonid ongrowing was as high as 200-300 g kg⁻¹ of the supplied food 42 43 (Gowen and Bradbury, 1987). New diet formulations, and improvements in diet production 44 processes and husbandry operations have lowered the conversion factor and also the wastes loaded, 50-150 g kg⁻¹ now being the food loss rate most often reported (Findlay and Watling, 45 46 1994; Beveridge et al., 1997; Cho and Bureau, 1997) although Cromey et al. (2002) mentions 30 g kg⁻¹. As regards seabream and seabass culture, there is no information available in the 47 48 scientific literature about uneaten food looses. Producers consulted estimated it around to be 49 50-100 g kg⁻¹ on average in offshore conditions but, in agreement with Reid et al. (2009), this 50 quantity is varies widely from operation to operation and even from day to day.

51 Several studies under laboratory conditions reported that 250-300 g kg⁻¹ of ingested food is 52 voided as faeces (Butz and Vens-Cappell, 1982). Just as with food losses, a continuous improvement in diet elaboration has led to a gradual reduction of faecal discharges to about
100-250 g kg⁻¹ of ingested food (Cho et al., 1994; Talbot and Hole, 1994). In Mediterranean
fish farming, 300-400 g of faeces are released into the environment per kilogram of fish
produced (Dosdat, 2001).

57 Both uneaten food and faecal pellets have particular features and undergo a series of physico-58 chemical changes while dispersing and settling that could influence the spatial range of 59 dispersion of particulate wastes and the net organic load reaching the seabed. According to 60 Gowen and Bradbury (1987), particle settling velocity together with current speed and depth, 61 determine the horizontal distance of particles reaching the bottom, and this obviously depends 62 on particle size (Sutherland et al., 2006). In addition, these wastes release nutrients (leaching) 63 while dispersing and settling. There are several studies that have looked at the settling 64 velocity of feed and faecal pellets and nutrient leaching from faeces in salmonids (Findlay and 65 Watling, 1994; Elberizon and Kelly, 1998; Chen et al., 1999a,b; Chen et al., 2003), but such 66 information is scant for Mediterranean cultured fishes (Vasallo et al., 2006; Magill et al., 67 2006). Physical changes which relate to the removal or re-distribution of waste have received 68 less attention and only a few studies concerned with salmonids, have investigated leaching 69 from feeds during sinking (Phillips et al., 1993) and the removal of salmonid waste by wild 70 fish (Felsing et al, 2002) and in the Mediterranean for wild fish around seacages (Fernández-71 Jover et al., 2007) are available. However, increased knowledge of the dynamic of particulate 72 wastes before settling on the seabed could be useful for analysing any environmental impact 73 and for improving the accuracy of waste dispersion models.

This study aims to determine under defined laboratory conditions some physico-chemical
characteristics of gilthead seabream and seabass solid wastes as they disperse through

sedimentation including settling velocity, size and weight changes and total ammonia nitrogen
(TAN) leaching of a variety of feed pellets, and settling velocity and TAN leaching of faecal
pellets.

79 **2. Materials and methods**

80 2.1. Feed pellets assays

81 The feed pellets used in these assays are part of a range of extruded commercial feedstuffs 82 used for gilthead seabream and seabass ongrowing. Hereafter, we refer to the different feed 83 types according to the nominal diameter of the cylindrical feed pellets: 2mm (FP2), 4mm 84 (FP4a and FP4b), 6mm (FP6) and 8mm (FP8). The proximate composition of the different 85 feed pellets was determined. Dietary moisture was determined by drying samples at 110 °C 86 for 24 h. Crude protein was estimated by Kjeldahl method, with 6.25 as conversion factor. 87 Crude fat was obtained by diethyl ether extraction (SOXTEC System-HTC). Nitrogen free 88 extracted material (NFE) was calculated as [100 - (% protein + % fat + % ash)]. Total ash 89 was obtained by heating at 550 °C for 18 h. Gross energy was estimated following the Miglavs and Jobling (1989) coefficients: 23.6 kJ g⁻¹ for protein, 38.9 kJ g⁻¹ for fat and 16.7 kJ 90 g⁻¹ for carbohydrate. Protein / Energy ratio was also calculated. Three samples of each pellet 91 type were analyzed. Values of crude protein, crude fat, ash and NFE are expressed as g kg⁻¹ 92 93 dry weight.

Diameter, length, weight and density were determined in 15 pellets of each pellet type submerged for 0, 1, 5, 10, 15, 30 and 60 minutes at two different water temperatures representatives of winter and summer conditions in the Mediterranean (15 and 25 °C). After immersion, the pellets were placed on absorbent paper for 60 s to eliminate excess water. The 98 diameter and length were determined using a digital gauge (precision ± 0.01 mm) and the 99 pellets were weighed using an analytical balance (precision ± 0.1 mg). Changes in size or 100 weight were expressed as % of initial size or weight.

101 Settling velocity of dry and immersed (for 1, 5, 10, 15, 30 and 60 minutes) feed pellets was 102 determined using a 1 m long, 0.25 m diameter methacrylate sedimentation column. Feed 103 pellets were carefully placed with forceps just below the water surface, in the centre of the 104 surface avoiding bubbles. The column was marked at 0.05, 0.40 and 0.75 m from the top. The 105 first 0.05m and the final 0.25m of the column length were not considered in order to provide 106 enough reaction time to start the timer manually, and to avoid any bottom shear effect 107 imposed by sedimentation column bottom on pellet velocity (Chen et al., 1999a). Settling 108 velocity was determined in 30 pellets of each type by timing the descent between two marks 109 0.35m along its length, at 15 and 25°C.

110 For TAN leaching determination, feed samples of each type were weighted and assigned at 111 random to one of six leaching periods (1, 5, 10, 15, 30 and 60 minutes). This wide range of 112 immersion lengths was chosen in order to assure that settling velocity and TAN leaching 113 estimations and the dynamic of the processes could be revealed for long settling periods that 114 even exceeded the time needed for deposition. Feed pellets were individually dropped in 115 different 50 ml beakers filled with filtered seawater (glass microfibre filter GF/C 0.45µm), at 116 15 and 25°C. To simulate turbulence while settling, samples were gently shaken with an 117 automatic shaker approximately at their previously determined settling velocity. Each 118 incubation time was replicated five times. Immediately after incubation, the samples were 119 fixed with 0.1ml of 0.5N HCl to displace the ionic balance to the soluble form NH_4^+ . TAN 120 was measured with an ion-selective electrode (ORION 9512 BN) as described in APHA

121 (1995). The accuracy of this method has been favourably compared with the autoanalyzer 122 (indophenol blue method), which is the most widely used technique for ammonia 123 determination in seawater, no significant differences being observed between them (Arango-124 Pulgarín and Pérez-Navarro, 2005, and references therein). Before measuring, 1ml of Ionic 125 Strength Adjustor solution (ISA: 5M NaOH, 0.5M disodium EDTA and 10% methanol with 126 blue colour indicator) was added to displace the ionic balance to the gaseous form NH₃, at which the electrode membrane is permeable. TAN leaching is expressed as μg^{-1} dry weight 127 128 of TAN released from the samples.

129 2.2. Faecal pellets assays

130 Gilthead seabream (0.528 \pm 0.122 g) and seabass (0.636 \pm 0.218 g) were stocked in circular 2000L tanks supplied with running seawater (salinity 37 g L⁻¹). The tanks were part of 131 132 recirculating system fitted with biological filtration and ultraviolet lamp; and the fish were 133 allowed to acclimate to the test diet for at least 10 days. Fish were fed to satiation twice per 134 day at 9:00 and 12:00 a.m. with FP 6 feedstuff. Fish were killed by immersion in iced 135 seawater, and fresh faeces were collected by dissection of the distal 4 cm of the gut according 136 to Chen et al. (1999a) just before the assays. The proximate composition of faecal pellets was 137 determined as described in the previous section.

138 Once obtained, faecal pellets were partially dried on blotting paper for 10 seconds (Chen et 139 al., 2003) and weighed prior to assays. The settling velocity and TAN leaching from faecal 140 pellets was determined as explained in the previous section, at 15 and 25°C. The mean faecal 141 (\pm s.e.m.) pellets weight for TAN leaching assays was 0.15 \pm 0.01g.

142 2.3. Statistical treatment of data

143 The proximate compositions of feed and faecal pellets were tested by one-way ANOVA, and 144 differences between pellet types or fish species by means of the post hoc Student-Newman-145 Keuls (SNK) test. Multiple regression analyses (MRA) were performed: i) for the settling 146 velocity of feed pellets as dependent variable, and pellet size and density, water temperature 147 and immersion time as independent variables; ii) for weight and volume increase of feed 148 pellets after immersion as dependent variables, pellet size, water temperature and time of 149 immersion as independent variables; iii) for pellet density as dependent variable, water 150 temperature and time of immersion as independent variables; iv) for settling velocity of faecal 151 pellets as dependent variable, faecal pellet weight, water temperature and fish specie were 152 tested as independent variables. The significance of the coefficients of the independent 153 variables and their correlation indicated the influence on dependent variables.

154 TAN leaching from feed and faecal pellets was fitted by non-linear regression to the first155 order kinetic equation (Fernández-Jover et al., 2007):

$$156 y = a \cdot \left(1 - e^{-k \cdot t}\right)$$

157 where *y* is the TAN leaching ($\mu g g^{-1} d.w.$), *a* and *k* are fit parameters that represent the 158 maximum leached TAN ($\mu g g^{-1} d.w.$) and the velocity of the process (min⁻¹) respectively and *t* 159 is the immersion length (min).

160 To test the influence of feed pellet size and water temperature on the leaching process, MRA 161 were performed for *a*, *k* and t_a (immersion time at which *a* is reached: estimated from the 162 equations) as dependent variables.

163 Differences in TAN leaching of faecal pellets between fish species and water temperature
164 were tested using the Chow test (Fernández-Jover et al., 2007):

165
$$F = \frac{\left[\sum S_{pool}^2 - \left(\sum S_A^2 + \sum S_B^2\right)\right]/K}{\left(\sum S_A^2 + \sum S_B^2\right)/(n_A + n_B - 2K)}$$

166 where $\sum S_{pool}^2$ is the residual sum of squares of the pooled samples $\sum S_A^2$ and $\sum S_B^2$ that 167 represent the residual sums of squares for the samples A and B, respectively. K is the number 168 of regression parameters (here K =2, slope and intercept), while n_A and n_B are the sample 169 sizes of A and B. If the F-value exceeds the tabulated value for the F-distribution for P=0.05, 170 K degrees of freedom for the numerator, and n_{A+} n_B – 2K degrees of freedom for the 171 denominator, the regressions lines are significantly different.

173 **3. Results**

174 3.1. Proximate composition of feed and faecal pellets

175 The results of the proximate composition analyses of feed and faecal pellets are shown in 176 Tables 1 and 2 respectively. Feed pellet densities were very similar, with no statistical 177 differences between them (SNK P > 0.05), although smaller pellets showed a slightly higher 178 density. Differences between feed types with respect to macronutrient composition were not very outstanding. FP8 showed the lowest protein content (435.28 g kg⁻¹) and FP2 the highest 179 180 content (506.84 g kg⁻¹) (SNK P < 0.05). The feedstuff with the lowest lipid content (187.71 g 181 kg⁻¹) was FP2 which also showed the lowest moisture content (55.74 g kg⁻¹) (SNK P < 0.05). FP8 showed the highest NFE values (285.29 g kg⁻¹) and FP4b the lowest (198.62 g kg⁻¹) 182 183 (SNK P < 0.05). Gross energy was very similar for all the feedstuffs. The P/E ratio in FP8 was also the lowest (18.56g MJ⁻¹) (SNK P < 0.05). Faecal pellet density was significantly 184 185 lower than for feed pellets, but there were no differences between fish species, and only minor 186 differences were observed with regard to the ash and crude protein content (SNK P < 0.05).

187 3.2. Physical changes after soaking of feed pellets and settling velocities of feed and faecal188 pellets

MRAs for feed pellets (Table 3) showed that water temperature and pellet density had no influence on changes in the physical characteristics of the pellets or the settling velocity (P >0.05). Pellet size had a positive influence on settling velocity (P < 0.001), while immersion time had a negative influence (P < 0.001). Thus, the larger the pellets the faster the settling, and the longer the submergence time for any pellet type, the slower the settling velocity (Figure 1A). Immersion time caused significant increases in weight and volume (mainly diameter) (P < 0.001) and a decreases in density of feed pellets (P < 0.001). Smaller feed pellets, with larger surface/volume ratios, had greater weight and volume increases after soaking (P < 0.001), which became greater with soaking time (Figures 1B and 1C). Smaller pellets underwent a weight and volume increase of 8.18% and 9.02%, respectively after 1 minute of immersion, and 64.21% and 59.92% after 60 minutes respectively, while larger pellets underwent a weight and volume increase of 5.19% and 3.46%, respectively, after 1 minute of immersion, and 27.63% and 23.90% after 60 minutes.

The settling velocity of faecal pellets (Figure 2) was not influenced by water temperature (P > 0.05), and was statistically similar for gilthead seabream and seabass (P > 0.05). Faecal pellet weight showed a positive correlation with the settling velocity (P < 0.001) (Table 4), being fastest in the largest faecal pellets. The settling velocities of faecal pellets were approximately

206 60% slower than of feed pellets for all pellet sizes and species assessed.

207 3.3. TAN leaching from feed and faecal pellets

208 TAN leaching from feed pellets were successfully described by mean of first order kinetic 209 equations (Table 5, Figure 3A-E). Table 6 shows the results of MRAs for the parameters of 210 the fitting equations and water temperature and pellet size. The constant a was not 211 significantly influenced by water temperature (P > 0.05) but it was by pellet size (P < 0.01), 212 so the smaller the pellets, the higher the maximum TAN leached (a). Respect total nitrogen in 213 samples, % of TAN leached from larger feed pellets was 2-3 times lower than from smaller 214 pellets, and % TAN leached from faecal pellets was 10-20 times greater than from feed pellets 215 (Table 5). Constant k was significantly higher at 25 °C (P < 0.05) and in smaller feed pellets 216 (P < 0.05), while t_a was significantly larger at 15 °C (P < 0.05) but also for smaller pellets (P < 0.05)217 < 0.05) (Table 6), so that the largest pellets at low temperature reached a later. On average, a

218 was reached after 60 and 45 minutes at 15 and 25 °C respectively.

219 TAN leaching from gilthead seabream and seabass faecal pellets was also described by means 220 of first order kinetic equations (Table 6 Figure 4A-B). A Chow F-test comparison of the 221 regression parameters (Table 7) showed that there were no significant differences in leaching 222 for gilthead seabream and seabass faecal pellets (P > 0.05). Water temperature only had a 223 significant effect on leaching from seabass faeces at 15 versus 25 °C (P < 0.05) as shown by 224 the pairwise comparision. The maximum leached TAN (a) from faecal pellets was around 3-225 fold higher per unit weight than from feed pellets. Also, leaching velocity (k) and time to 226 reach a level (t_a) were faster for faecal pellets per unit weight than for feed pellets.

228 **4. Discussion**

4.1. Physical changes after soaking of feed pellets and settling velocities of feed and faecalpellets

The settling velocity of feed pellets was between 0.068 and 0.136m s⁻¹ for the diameters of 2-231 232 8 mm in our assays. These values are largely similar to the range of settling velocities of 0.087-0.144 m s⁻¹reported by Vassallo et al. (2006) for 3-5 mm seabream and seabass feed 233 234 pellets, although in this case the pellets were larger non-extruded pellets, which have a greater 235 propensity to sink that the extruded pellets used during this study. There is considerably more 236 information on settling velocity available for salmonid feedstuffs, which are normally 237 extruded pellets. In any case, settling velocity of salmon feed pellets is similar to that found in 238 this study. Findlay and Watling (1994) reported settling velocities ranging from 0.055 - 0.155m s⁻¹ for 3–10 mm pellets; Elberizon and Kelly (1998) indicated settling velocities of 0.05– 239 0.12 m s⁻¹ for 2 and 8mm pellets; and Chen et al. (1999b) recorded settling velocities of 240 0.058–0.109 m s⁻¹ for 2-8 mm pellets. The settling velocity of an object depends on many 241 242 factors relating to the object itself and to the medium in which it is settling, such as pellet 243 weight, shape, floating or porosity, and temperature, salinity, density, viscosity or pressure in 244 the case of seawater, although Elberizon and Kelly (1998) and Chen et al. (1999b) suggested 245 that this influence does not comply with the Stokes' Law. Vasallo et al. (2006) revealed that 246 pellet size and its floating time prior to sinking were key factors to explain settling velocity. 247 The influence of pellet weight was also identified by other authors (Elberizon and Kelly, 248 1998; Chen et al. 1999b, Sutherland et al., 2006). In this study, we not only found that initial 249 pellet size determined settling velocity but also, unlike Chen et al. (1999b), that velocity 250 changed as the pellets sank due to physical transformations that the pellets underwent. As

251 immersion time increases, pellet weight also increased, but contrary to expectations, settling 252 velocity did not increase. Pellet volume, especially diameter, and density also increased with 253 time of immersion. It was therefore hypothesized that pellet weight increase was due to 254 hydration and this caused a volume increase and shape change, causing a greater influence on 255 settling velocity than weight because of greater friction produced, and a higher resistance to 256 fall. Weight increment after soaking was higher in smaller pellets, as Chen et al. (1999b) and 257 Vasallo et al. (2006) noticed, but these authors did not observe the dimension and shape 258 changes that we saw, probably because their immersion periods were shorter or because they 259 simply did not measure the pellets after soaking (a diameter increase of 10% in a 6mm 260 diameter pellet is negligible to the naked eye). Elberizon and Kelly (1998) also mentioned the 261 increased density of trout feed pellets after immersion in fresh water, but they did not provide 262 data on weight and dimension increases nor on the settling velocity after immersion. In the 263 present study, floating time was not considered (unlike Vasallo et al., 2006) because 264 observations show that under industrial rearing conditions, water motion is dynamic, feed is 265 not supplied slowly and methodically, while large number of fish moving and eating 266 voraciously, the result being that pellets tend to sink immediately. Seawater density depends 267 on both temperature and salinity. No clear effect of seawater temperature or salinity was 268 found on the settling velocity of feed pellets in our experiment. Nor was it in the recent 269 literature (Elberizon and Kelly, 1998; Vasallo et al. 2006), probably because, as the above 270 authors state, the range of parameters studied was not so critical to the settling velocity. 271 Despite this, we observed greater but non significant settling velocities at low temperature, as 272 Chen et al. (1999b) noted. These authors suggested that this could be due to the influence of 273 temperature on pellet density, although in our experiments we found that seawater 274 temperature did not affect pellet density.

275 Regardless of pellet weight and in agreement with Chen et al. (2003), the settling velocities of 276 faecal pellets were much lower than that observed for of feed pellets, due to the lower density 277 of the faecal pellets. Water temperature (with the exception of seabass for 15 and 25 °C) 278 showed no effect on settling velocity, as in the case of feed pellets. In this study, the settling velocity of faecal pellets ranged from 0.022 to 0.075 m s⁻¹ in faeces of 0.02–0.74 g wet 279 280 weight, there being no differences between gilthead seabream and seabass in this respect. For 281 salmon faeces, Chen et al. (1999a, 2003) showed a great variability in settling velocity: $0.053-0.066 \text{ m s}^{-1}$ in faeces of 0.04-0.09 g wet weight, and $0.051-0.064 \text{ m s}^{-1}$ in faeces of 282 283 0.13-0.22 g wet weight. These authors suggested that faecal pellet mass is not a good 284 predictor of settling velocity. Our results (Figure 2) also showed noticeable variability, but 285 they were significantly influenced by faeces wet weight, so the heavier the faecal pellet, the 286 faster the settling. Magill et al. (2006) reported much slower settling velocities for a wide weight range of gilthead seabream and seabass faecal pellets (average 0.005 and 0.007 m s⁻¹ 287 288 respectively), but they studied almost the total fractionating particles (macro and micro-289 particles at maximum pixel resolution) by means of computer image analysis. Fish faecal 290 pellets have high water content so their nature in seawater is very close to liquid (Vita et al., 291 2004). Their shape is very variable and not correlated with fish size (Magill et al., 2006). 292 While feed pellets are stable in seawater for long time, faecal pellets tend to fractionate into 293 smaller particles and even become disaggregated pieces which positive buoyancy (Chen et al., 294 1999a; Magill et al., 2006). Such disaggregating can be caused by the turbulence created by 295 fish swimming under high density rearing conditions. In short, establishing predictions for the 296 settling velocity of faecal pellet is complicated since these friable particles can settle as fast as 297 some medium-size feeding pellets (this study), while micro-particles may show a very slow 298 settling rate or even remain suspended. This erratic behaviour has been successfully integrated

299 into a deposition model by Magill et al. (2006), the most accurate model available at the 300 moment. If large intact or semi-intact faecal pellets and feed pellets are able to reach the 301 seabed, then the settling velocities measured in this study and the study mentioned above, 302 along with the influence of variables such as feed and faecal pellet weight and changes in 303 dimensions of feed pellets while sinking, should be taken into account for waste dispersal 304 modelling purposes. These settling velocities and models using them suggest that uneaten 305 food is dispersed and settles closer to the farms, while faecal particles are more widely 306 dispersed (Doglioli et al., 2004). Fractionated particles from feed pellets and feed pellet dust 307 have still not been studied in terms of buoyancy, flocculation, settling velocity and dispersion, 308 but should be included in deposition models.

309 4.2. TAN leaching from feed and faecal pellets

310 TAN leaching from feed and faecal pellets were successfully explained by fitting data to a 311 first order kinetic equation, which permitted us to derive the dynamic of the TAN leaching 312 process. Maximum leached TAN (a) proved to be independent of water temperature, for feed 313 and faecal pellets. Smaller feed pellets leached more TAN than expected since their 314 surface/volume relationship, and hence their contact with seawater, is greater than larger 315 pellets. However, in feed pellets the speed of the process (k) and time in which a value was 316 reached (t_a) were significantly influenced by temperature the higher the temperature, the faster 317 the process and the shorter the t_a . That is to say, water temperature affected the speed of TAN 318 leaching and the immersion length until reaching the maximum was reached, but did not 319 influence the maximum level reached, demostring the influence of temperature in accelerating 320 some biochemical processes. In every feed and faecal pellet type, TAN leaching was very fast 321 during the first few minutes, and the smaller the feed pellets, the faster the process. The only reference found in the literature about leaching from feed pellets is that of Fernández-Jover et al. (2007), who also showed that leaching was faster during the initial stages, but who obtained lower *a* and higher *k* values than ours in feed pellets of non-specified size. They also found that water temperature significantly and positively influenced both *a* and *k*, but this comparison is not entirely valid since both methods for measuring TAN and the degree of replication differed between the respective studies.

328 In agreement with Chen et al. (2003) who postulated that leaching from faeces is a rapid 329 process, we found that TAN leaching from faeces was three times faster/greater per unit 330 weight than feed pellets. These results agree with Fernández-Jover et al. (2006). For modeling 331 purposes Chen et al. (2003) proposed that leaching values over ten minutes are sufficient for 332 faeces produced from extruded salmon feeds. Fernández-Jover et al. (2006) suggested that ten 333 to twenty minutes is more suitable for seabream and seabass faeces and their feeds. According 334 to our results, maximum leached TAN from gilthead seabream or seabass faecal pellets is not 335 reached until fifteen to thirty minutes, while forty five to sixty minutes is necessary for feed 336 pellets. In any case, it is expected that feed and faecal pellets settled on the seafloor before the 337 maximum leachable TAN (a) is reached, although this, obviously depends on water depth and 338 current velocity. Fernández-Jover et al. (2006) ascertained that leaching from faeces was a 339 temperature and species-dependent variable, showing that leaching was faster at low 340 temperatures. Our experimental design did not allow us to demonstrate that TAN leaching 341 from faeces was temperature-dependent, although, in our case, t_a was always reached more 342 quickly at 25°C. The fact that fish faeces were so labile (Tlusty et al., 2000; Vita et al., 2004) 343 and leach so fast may have obscured the effect of temperature. As regards to species-344 dependence, the faecal pellets from gilthead seabream and seabass were qualitatively similar

- 345 and, as both species ate the same food, it is not to be unexpected that TAN leaching from their
- 346 faeces was similar.

348 Acknowledgements

This research was funded by the Spanish Ministry of Education and Science (project AGL 2004-08350-C02-02) and the Department of Agriculture and Water of Murcia (Spain) Autonomic Government (Regional Programme co-funded by FEDER, project POI-0701). The study was also partially sponsored by the IMIDA grant programme. Authors wish to thanks to María Martí Gálvez for her assistance in the laboratory, to Emilia Abellán and Alicia García Alcázar for their kind cooperation, and to Pilar Aguado-Giménez for her help in the English version of the manuscript.

357 References

- 358 Aguado-Giménez, F., García-García, B. 2004. Assessment of some chemical parameters in
- 359 marine sediments exposed to offshore cage fish farming influence: a pilot study. Aquaculture
- 360 242: 283-295.
- APHA (American Public Health Association), 1995. Standard Methods for the examination of
 water and wastewater. American Public Health Association, Washington, DC.
- 363 Arango Pulgarín, G., Pérez Naranjo, J.C. 2005. Determinación de nitratos y amonio en
- muestras de suelo mediante el uso de electrodos selectivos. Rev. Fac. Nal. Agr. Medellín 58
 (1): 2733-2740.
- 366 Beveridge M.C.M., Phillips, M.J., Clarke, R.M. 1991. A quantitive and qualitative assessment
- of wastes from aquatic animal production. In: Advances in World Aquaculture Volume 3,
 D.E. Brune and J.R. Tomasso (eds), pp 506-533. World Aquaculture Society, Baton-Rouge,
 USA.
- Beveridge M.C.M., Phillips, M.J., Macintosh, D.C. 1997. Aquaculture and the environment:
 the supply and demand for environmental goods and services by Asian aquaculture and the
 implications for sustainability. Aquac. Res. 28: 101-111.
- 373 Butz, I., Vens-Cappell, B. 1982. Organic load from the metabolic products of rainbow trout
- fed with dry food. In: Chen, Y.S., Beveridge, M.C.M., Telfer, T.C., 1999a. Settling rate
- 375 characteristics and nutrient content of the faeces of Atlantic salmon, Salmo salar L., and the
- implications for modeling of solid waste dispersion. Aquac. Res. 30: 395-398.
- 377 Cerezo, J., García García, B. 2004. The effects of oxygen levels on oxygen consumption,
- 378 survival and ventilatory frequency of sharpsnout seabream (*Diplodus puntazzo* Gmelin, 1789)

- al different conditions of temperature and fish weight. J. Appl. Ichtyol 20, 488-492.
- 380 Chen, Y.S., Beveridge, M.C.M., Telfer, T.C. 1999a. Settling rate characteristics and nutrient
- 381 content of the faeces of Atlantic salmon, Salmo salar L., and the implications for modeling of
- 382 solid waste dispersion. Aquac. Res. 30: 395-398.
- 383 Chen Y.S., Beveridge, M.C.M., Telfer, T.C. 1999b. Physical characteristics of commercial
- 384 pelleted Atlantic salmon feeds and consideration of implications for modeling of waste
- dispersion through sedimentation. Aquac. Int. 7: 89-100.
- 386 Chen Y.S., Beveridge, M.C.M. Telfer, T.C., Roy W.J. 2003. Nutrient leaching and settling
- 387 rate characteristics of the faeces of Atlantic salmon (Salmo salar L.) and the implications for
- 388 modeling of solid waste dispersion. J. Appl. Ichtyol. 19: 114-117.
- Cho, C.Y., Bureau, D.P. 1997. Reduction of waste output from salmonid aquaculture through
 feeds and feeding. Prog. Fish-Cult. 59: 155-160.
- 391 Cho, C.Y., Hynes, J.D., Wood, K.R., Yoshida, H.K. 1994. Development of high-nutrient,
- 392 low-pollution diets and prediction of aquaculture wastes using biological approaches.393 Aquaculture 124: 293-305.
- 394 Cromey, C.J., Nickell, T.D. and Black, K.D. 2002a. DEPOMOD- modelling the deposition
- and biological effects of waste solids from marine cage farms. Aquaculture 214: 211-239.
- 396 Doglioli, A.M., Magaldi, M.G., Vezzulli, L., Tucci, S. 2004. Development of a numerical
- 397 model to study the dispersion of wastes coming from a marine fish farm in the Lugurian Sea
- 398 (Western Mediterranean). Aquaculture 213: 215-235.
- 399 Dosdat, A. 2001. Environmental impact of aquaculture in the Mediterranean: nutritional and
- 400 feeding aspects. Cah. Options Méditerr. 55: 23-26.

- 401 Elberizon, I.R. and Kelly L.A. 1998. Empirical measurements of parameters critical to 402 modeling benthic impacts of freshwater salmonid cage aquaculture. Aquac. Res. 29: 183-195.
- 403 Fernández-Jover, D., Sánchez-Jérez, P., Bayle-Sempere, J., Carratala, A., León, V.M. 2007.
- 404 Addition of disolved nitrogen and disolved organic carbon from wild fish faeces and food
- 405 around Mediterranean fish farms: Implications for waste-dipersal models. J. Exp. Mar. Biol.
- 406 Ecol. 340: 160-168.
- 407 Findlay, R.H., Watling, L. 1994. Towards a process level model to predict the effects of
- 408 salmon net-pen aquaculture on the benthos. In: Modelling Benthic Impacts of Organic
- 409 Enrichment from Marine Aquaculture, B.T. Hargrave, (ed.), Canadian Technical Report of
- 410 Fisheries and Aquatic Society 1949: 47-77.
- Hellou, J., Hava, K., Steller, S., Burridge, L. 2005. Presence and distribution of PAHs, PCBs
 and DDE in feed and sediments under salmon aquaculture cages in the Bay of Fundy, New
 Brunswick, Canada. Aquat. Conserv. Mar. Fresh. Ecosys. 15: 349-365.
- Henderson, A., Gamito, S., Karakassis, I., Pederson, P., Smaal, A. 2001. Use of
 hydrodynamic and benthic models for managing environmental impacts of marine
 aquaculture. J. Appl. Ichtyol. 17: 163-172.
- 417 La Rosa, T., Mirto, S., Mazzola, A., Danovaro, R. 2004. Benthic microbial indicators of fish
- 418 farm impact in a costal area of the Tyrrhenian Sea. Aquaculture 230: 153-167.
- 419 Magill, S., Thetmeyer, H., Cromey, C. 2006. Settling velocity of faecal pellets of gilthead sea
- 420 bream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.) and sensitivity analysis
- 421 using measured data in a deposition model. Aquaculture 251: 295-305.
- 422 Miglavs, I; Jobling, M; 1989. The effects of feeding regime on proximate body composition

- 423 and patterns of energy deposition in juvenile Artic charr, *Salvelinus alpinus*. J. Fish Biol. 35:
 424 1-11.
- 425 Phillips, M.J., Clarke, R. and Mowat, A. 1993. Phosphorous leaching from Atlantic salmon
- 426 diets. Aquac. Eng. 12: 47-54.
- 427 Reid, G.K., Liutkus, M., Robinson, S.M.C., Chopin, T.R., Blair, T., Lander, T., Mullen, J.,
- 428 Page, F. and Moccia, R.D. 2009. A review of the biophysical properties of salmonid faeces:
- 429 implications for aquaculture waste dispersal models and integrated multi-trophic aquaculture.
- 430 Aquac. Res. 40: 257-273.
- 431 Sutherland, T.F., Amos, C.L., Ridley, C., Droppo, I.G. and Petersen, S.A. 2006. The settling
- 432 behaviour and benthic transport of fish feed pellets under steady flows. Estuaries and coasts433 29: 810-819.
- Talbot, C. and Hole, R. 1994. Fish diets and the control of eutrophication resulting fromaquaculture. J. App. Ichtyol. 10: 258-270.
- 436 Tlusty, M.F., Snook, K., Pepper, V.A., Anderson, M.R. 2000. The potential for soluble and
- 437 transport loss of particulate aquaculture wastes. Aquac. Res. 31: 745-755.
- 438 Vassallo, P., Doglioli, A.M., Rinaldi, F., Beiso, M. 2006. Determination of physical
 439 behaviour of feed pellets in Mediterranean water. Aquac. Res. 37: 119-126.
- 440 Vita, R., Marín, A., Madrid, J.A., Jiménez-Brinquis, B., Cesar, A., Marín-Guirao, L. 2004.
- 441 Effects of wild fishes on waste exportation from a Medieterranean fish farm. Mar. Ecol. Prog.
- 442 Ser. 277: 253-261.
- 443

- Table 1: Physical characteristics and proximate composition of the feed pellets used in the experiments (mean \pm s.e.m.). Different superscript in the same row indicates statistical differences between pellet types (SNK, P < 446 0.05). Macronutrients and energetic indices are referred as dry weight. NFE: nitrogen-free extracted material.
- 447 P/E: crude protein / gross energy ratio.

Pellet types	FP 2	FP 4a	FP 4b	FP 6	FP 8
Diameter (mm)	2.50 ± 0.11	4.22 ± 0.09	4.07 ± 0.46	5.42 ± 0.17	8.07 ± 0.02
Length (mm)	2.43 ± 0.05	4.59 ± 0.09	4.21 ± 0.16	7.07 ± 0.16	8.19 ± 0.11
Weight (mg)	14.10 ± 0.50	72.10 ± 1.90	68.20 ± 1.90	187.30 ± 5.60	360.10 ± 7.60
Density (kg m ⁻³)	1071.85 ± 29.65^{a}	1119.42 ± 15.06^{a}	1125.36 ± 16.49^{a}	1069.85 ± 25.36^{a}	1069.77 ± 15.06^{a}
Ash (g kg ⁻¹)	66.03 ± 0.77^{a}	78.29 ± 0.30^{b}	$85.17\pm0.81^{\rm c}$	$78.74{\pm}0.36^{b}$	58.35 ± 0.34^{d}
Moisture (g kg ⁻¹)	55.74 ± 0.66^{a}	69.75 ± 0.39^{b}	63.40 ± 0.81^{c}	$73.55\pm0.72^{\text{d}}$	75.11 ± 0.47^{d}
Crude protein (g kg ⁻¹)	506.84 ± 2.65^{a}	489.98 ± 0.91^a	494.87 ± 2.52^a	485.75 ± 2.36^a	435.28 ± 17.75^{b}
Crude fat (g kg ⁻¹)	187.71 ± 6.25^{a}	218.04 ± 3.18^{b}	215.57 ± 0.24^{b}	214.82 ± 1.19^{b}	216.33 ± 0.74^b
NFE (g kg ⁻¹)	235.51 ± 3.16^a	207.80 ± 2.06^{ab}	198.62 ± 1.91^{b}	214.43 ± 3.15^{ab}	$285.29 \pm 17.01^{\rm c}$
Gross energy (MJ kg ⁻¹)	23.19 ± 0.13^{a}	23.51 ± 0.07^a	23.38 ± 0.03^{a}	23.40 ± 0.05^a	23.45 ± 0.11^a
P / E (g protein MJ^{-1})	21.85 ± 0.13^{a}	20.84 ± 0.04^a	21.16 ± 0.14^{a}	20.76 ± 0.14^{a}	18.56 ± 0.94^{b}

448Table 2: Physical characteristics and proximate composition of faecal pellets used in the449experiments (mean \pm s.e.m.). Different superscript in the same row indicates statistical450differences between species (SNK, P < 0.05). Percentages are referred as dry weight. NFE:</td>451nitrogen free extracted material.

Faecal pellets	Sparus aurata	Dicentrarchus labrax
Diameter range (mm)	3.01 - 7.50	3.19 - 7.92
Length range (mm)	3.20 - 14.50	3.60 - 14.90
Weight range (mg)	23.10 - 648.00	29.12 - 740.00
Density (kg m ⁻³)	1021.43 ± 12.28^{a}	1018.29 ± 12.97^{a}
Ash (g kg ⁻¹)	24.10 ± 1.06^a	$36.85 \pm 1.38 \ ^{b}$
Moisture (g kg ⁻¹)	892.91 ± 0.98^a	$892.25\pm1.46^{\mathrm{a}}$
Crude protein (g kg ⁻¹)	215.91 ± 1.01^a	207.10 ± 1.44 ^b
Crude fat (g kg ⁻¹)	43.47 ± 5.88^a	43.97 ± 3.99^a
NFE $(g kg^{-1})$	714.61 ± 5.76^{a}	709.16 ± 6.92^{a}

Table 3: Results of the multiple regression analyses for settling velocity, weight and volume increase and density changes of feed

pellets after immersion.

	Settling Velocity (m s ⁻¹)	Weight Increase (%)	Density (%)	Volume Increase (%)	
Independent Variables	Coefficients S.E.	Coefficients S.E.	Coefficients S.E.	Coefficients S.E	
Intercept: a	5.749** 1.749	22.616*** 2.019	1.085^{*} 0.019	24.632*** 2.878	
Immersion time (<i>It</i>): <i>b</i>	-0.035*** 0.004	0.514*** 0.034	-0.001*** 0.000	0.653*** 0.063	
Temperature (T) : c	-0.135 ^{n.s.} 0.154	0.164 ^{n.s.} 1.381	0.010 ^{n.s.} 0.013	1.727 ^{n.s.} 1.969	
Pellet size (Ps): d	0.906**** 0.039	-2.722*** 0.338	0.008*** 0.003	-3.420**** 0.483	
Density (D): e	0.866 ^{n.s.} 1.598				
R	0.95	0.91	0.54	0.90	
R ² adj	0.91	0.83	0.25	0.79	
F-ANOVA	226.61***	95.73***	7.65***	75.90***	
n	70	60	60	60	
	Fitting equatio *P < 0.05; **P	n: $y = a + b \cdot (It) + c \cdot (T) + c $	$d \cdot (Ps) + e \cdot (D)$ non-significant.		

- 460 Table 4: Results of multiple regression analysis for settling velocity of faecal pellets as a function of fish species, water temperature and
- 461 faecal pellet wet weight.

Dependent Variable <i>y</i> : Settling Velocity (m s ⁻¹)					
Independent Variables	Coefficients S.E.				
Intercept: b	3.439*** 0.211				
Species (S): c	0.037 ^{n.s.} 0.159				
Temperature (T): d	-0.245 ^{n.s.} 0.184				
Faecal pellet weight (Fp): e	4.642*** 0.656				
R	0.67				
R^2	0.44				
F-ANOVA	31.03***				
n	116				
Fitting equation: $y = b + c \cdot (S) + d \cdot (T) + e \cdot (Fp)$ *P < 0.05; **P < 0.01; ***P < 0.001; n.s. non-significant.					

			15 °C					25 °C		
	<i>a</i> (μσ σ ⁻¹)	$k (\min^{-1})$	R^2 ESS	t (min)	a respect total nitrogen in	<i>α</i> (μσ σ ⁻¹)	$k (\min^{-1})$	R ² ESS	<i>t</i> (min)	a respect total nitrogen
Feed pellet	u (µ5 5)	<i>k</i> (IIIII)	F-ANOVA	$\iota_a(\min)$	the pellets (%)	α (με ε)	<i>k</i> (IIIII)	F-ANOVA		in the pellets (%)
FP 2	296.31**	0.0437*	0.95 22.72 74.43 ^{****}	52.69	0.365	278.06***	0.0917**	0.96 24.38 86.61 ^{***}	25.11	0.343
FP 4a	249.34***	0.0394***	0.99 7.41 581.23 ^{****}	58.44	0.318	234.33 [*]	0.0664*	0.83 33.86 19.65 [*]	34.68	0.299
FP 4b	292.28**	0.0315*	$0.97 \\ 16.45 \\ 124.80^{***}$	73.10	0.369	114.93***	0.0526**	0.97 7.09 135.35 ^{****}	43.77	0.145
FP 6	78.13**	0.0399^{*}	0.94 6.24 68.32 ^{**}	57.71	0.101	135.75**	0.0455*	$0.91 \\ 14.40 \\ 38.33^{**}$	50.81	0.175
FP 8	72.15**	0.0361*	0.93 6.02 55.39 ^{**}	63.78	0.104	139.86*	0.0304*	0.92 12.43 45.27 ^{**}	75.74	0.201
Faecal pellets										
Sparus aurata	921.15***	0.1063*.	$0.92 \\ 142.14 \\ 21.78^{**}$	23.26	2.666	834.36***	0.1463*	0.90 99.56 36.95 ^{**}	15.53	2.415
Dicentrarchus labrax	791.09**	0.0758^{*}	0.84 125.92 20.93 ^{**}	28.57	2.387	888.42***	0.1452*	$0.85 \\ 140.33 \\ 22.47^{**}$	15.87	2.681
	Fi	ting equation	on: $y = a \cdot (1 + a)$	$-e^{-k\cdot t} ight)$	*P < 0.05; **P < 0.0	1; ***P < 0.	001; n.s. no	on-significa	nt	

469 of immersion length (*t*). t_a is estimated from the equation as the immersion time at which *a* was reached.

472 Table 6: .Results of multiple regression analyses for the maximum TAN leached (*a*), speed of 473 the leaching process (*k*) and time in which *a* is reached (t_a) as a function of water temperature 474 and feed pellet size. t_a is estimated from the equation as the immersion time at which a was 475 reached.

	Dependent Variables y				
	$a (\mu g g^{-1})$	$k (\min^{-1})$	t_a (min)		
Independent Variables	Coefficients S.E.	Coefficients S.E.	Coefficients S.E.		
Intercept: b	357.547*** 52.503	0.063 [*] 0.011	2.639**** 0.239		
Temperature (T): c	-17.056 ^{n.s.} 38.245	0.019 [*] 0.008	-0.501* 0.200		
Pellet size (Ps): d	-33.314** 9.375	-0.005* 0.002	0.432* 0.148		
R	0.80	0.80	0.82		
R^2 adj	0.55	0.54	0.59		
F-ANOVA	*	*	*		
n	10	10	10		
Fitting equation: $y = b + c \cdot (T) + d \cdot (Ps)$ *P<0.05; **P<0.01; ***P<0.001; n.s. non-significance.					

476

Pairwise combinations	Tabulated F $_{(2, 56)} = 3.15$			
S ₁₅ - S ₂₅	0.317 ^{n.s.}			
S ₁₅ - D ₂₅	0.635 ^{n.s.}			
S ₁₅ - D ₁₅	2.426 ^{n.s.}			
S ₂₅ - D ₂₅	0.204 ^{n.s.}			
S ₂₅ - D ₁₅	1.378 ^{n.s.}			
D ₁₅ - D ₂₅	3.848*			
*P < 0.05; **P < 0.01; ***P < 0.001; n.s. non-significant				

Table 7: Chow test F-values for the pairwise comparisons of TAN leaching from faecal pellets of *Sparus aurata* (S) and *Dicentrarchus labrax* (D) at 15 and 25 °C.

Figure captions

Figure 1(A-C): (A) Settling velocities of the different feed pellets after increasing immersion length; (B) mean weight increase (%) and (C) volume increase of feed pellets after immersion at 15 and 25°C. Mean \pm s.e.m.

Figure 2: Settling velocities of faecal pellets of different weight from *Sparus aurata* and *Dicentrarchus labrax* at 15 and 25°C, and predicted values from the equation $y = b + c \cdot (S) + d \cdot (T) + e \cdot (Fp)$.

Figure 3(A-E): TAN leaching (mean ± s.e.m.) from the different food pellets types after immersion at 15 and 25°C, and predicted values from the equation $y = a \cdot (1 - e^{-k \cdot t})$. (A): FP 2; (B): FP 4a; (C) FP 4b; (D) FP 6; (E): FP 8.

Figure 4(A-B): TAN leaching (mean ± s.e.m.) from the faeces of (A) *Sparus aurata* and (B) *Dicentrarchus labrax* after immersion at 15 and 25°C, and predicted values from the equation $y = a \cdot (1 - e^{-k \cdot t})$.

Fig 2

