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Abstract  

The aim of this study was to compare the efficiency of new candidate lighting-

technologies (50W ‘blue’ light-emitting-diode (B, λmax = 465 nm); 232 W ‘green’ hot 

cathode, (G, λmax = 546 nm); 400 W ‘red’ tungsten-halogen, (R, λmax = 667 to 740 nm)) 

against a standard 400 W ‘white’ metal-halide used as control technology (C, broad 

spectrum) at suppressing sexual maturation of 1+ Atlantic salmon (Salmo salar) in sea-

cages. A total of seven experimental set-ups were tested on a commercial-scale in three 

trials using a standardised photoperiod regime in the form of continuous artificial-light 

(LL) applied from winter to summer solstice during the second year at sea. The 

experimental stocks were raised under an ambient thermal regime that was similar 

across all trials. 

Technical performances (spectral output, light-attenuation and irradiance distance) of 

the individual light-units were measured and light-perception was assessed by 

quantifying plasma melatonin levels. Body-size parameters (BW, FL, K) were measured 

at the switch-on and turn-off of the photoperiod regimes. Maturation rates were 

estimated at the end of the light-treatments and at harvest. The B-unit provided the 

shortest effective irradiance distance (distance from the light-bulb to the minimum 

irradiance suppressing plasma melatonin to basal day-time level = 0.016 W m-2) but the 

longest relative to its energy consumption; while the G- and R-units did not offer a 

comparative advantage over the C-unit in that regard (B>C>G>R). Nocturnal plasma-

melatonin and maturation rate decreased proportionally to the light-intensity provided 

using a range of technologies emitting distinct spectral profiles. Light-intensity rather 

than light-spectral composition appeared to be the prime parameter negatively affecting 

sexual maturation. Maximal suppression of maturation was observed in treatments 

depressing nocturnal plasma melatonin to a 1.2-fold but not to a 1.7-fold increase 
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compared to daytime levels, confirming that a threshold level of light-irradiance is 

necessary to obtain the desired effect. Results suggest that this can be achieved under 

standard commercial practices by applying, over the photoperiod regime presently used, 

continuous artificial-illumination with an (electrical) energy consumption of 0.28 Wh 

m-3 generating a mean-irradiance of 0.012 W m-2 and providing a minimum volume of 

effective irradiance equivalent to 12% of the rearing-environment. Such a low volume 

of biologically effective irradiance was likely sufficient due to the strong photic 

attraction already reported in Atlantic salmon. Maximal suppression of pre-harvest 

sexual maturation can be achieved in the Atlantic salmon on-growing industry using 

alternative light-technologies. Present data provides methods and threshold values 

favouring the implementation of photoperiod-manipulation to suppress pre-harvest 

maturation at the most advantageous scale and cost. 

 

1. Introduction 

In Atlantic salmon (Salmo salar) sexual maturation is concomitant with an 

altered feeding pattern (Kadri et al., 1996, 1997, Leclercq et al., 2010a), an increased 

pathogen susceptibility (St-Hilaire et al., 1998; Currie and Woo, 2007) and a 

deterioration of flesh and skin colour quality (Aksnes et al., 1986, Leclercq et al., 

2010b). These detrimental effects can compromise the performance of the cohabiting 

immature cohort and reduce the volume of commercially valuable biomass. The control 

of pre-harvest maturation is therefore a priority in the on-growing salmon industry. This 

is successfully achieved on a commercial-scale by applying continuous artificial-light 

(LL) from the winter to the summer solstice during the second year at sea. The onset of 

LL in January has been shown to be the most effective at inhibiting gonadal 

development in fish below pre-determined developmental thresholds (Thorpe, 1994; 
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Taranger et al., 1998, 1999; Endal et al., 2000; Bromage et al., 2001; Leclercq et al., 

2010c). This 6-month LL-window is routinely applied by the industry using powerful, 

wide-spectrum lighting-systems (metal-halide) which have a high-running-cost and 

potential welfare impacts (Migaud et al., 2007a). The industry would therefore greatly 

benefit from the implementation of optimized lighting-strategies that reduce operational 

costs and maximise the targeted biological effects, i.e. reduce maturation rate but also 

increase growth rates. 

The annual photoperiod is widely acknowledged as the key environmental 

“zeitgeber” synchronizing the endogenous reproductive cycle of salmonids to the 

annual calendar-time (Bromage et al., 2001; Migaud et al., 2010; Taranger et al., 2010). 

In comparison, temperature has a minor role in the proximate control of salmonid 

reproductive cycles and acts as an ultimate cue synchronising, in particular, final 

gamete maturation and spawning (Bromage et al., 2001; Taranger et al., 2010; 

Pankhurst and King, 2010). The intensity (quantity) and spectral composition (quality) 

of incident light are key properties affecting the physiological response of teleosts with, 

among others, effects on growth, reproduction, behaviour and stress documented 

(Oppedal et al., 1997, 1999; Boeuf and Le Bail, 1999; Marchesan et al., 2005; 

Karakatsouli et al., 2007; Migaud et al., 2010). The effects of light-intensity have been 

well studied over recent years and findings clearly suggest that exposure to threshold 

intensity levels is required to manipulate physiological functions in various teleosts 

(Oppedal et al., 1997; Porter et al., 1999; Taylor et al., 2005, 2006; Migaud et al., 2006, 

2010). In Atlantic salmon, exposure to LL-regimes was shown to inhibit sexual 

maturation and enhance growth compared to natural photoperiod (NP) and at increased 

rates with higher light intensities (Wallace et al., 1988; Stefansson et al., 1993; Oppedal 

et al., 1997; 1999). However, recent findings showed that excessively high light 
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intensities could induce an acute transient stress response (Wallace et al., 1988; Migaud 

et al., 2007a) and even retinal damage (Vera et al., 2009).  

Various endocrine studies both in-vitro and in-vivo have demonstrated that 

synthesis of the hormone melatonin, released by the light-sensitive pineal gland, 

accurately reflects the prevalent photoperiod in teleosts (reviewed by Falcón et al., 

2010). As such melatonin is regarded as the key time-keeping hormone that can be used 

as a reliable indicator of light perception as its production varies inversely with the level 

of light-irradiance on the pineal organ (Randall et al., 1995; Yáñez and Meissl, 1996; 

Falcón et al., 2010; Migaud et al., 2010). More specifically, there appear to be species-

specific light-irradiance thresholds above which the circadian melatonin rhythm is 

suppressed to basal levels such that nocturnal artificial-light is perceived as daylight 

(Migaud et al., 2006). This threshold would be in the region of 0.016 W m-2 in Atlantic 

salmon (Migaud et al., 2006; Vera et al., 2010).  

If many studies have focused on the effects of light-intensity, only a few have 

looked at the effects of light spectral composition on fish physiology. The teleost pineal 

gland also exhibits a spectral sensitivity to the incident light which appears to be 

adapted to the species natural habitat (Karakatsouli et al., 2007; Vera et al., 2010). In 

European sea bass (Dicentrarchus labrax), shorter wavelengths (blue light λ 450 nm) 

were found to be the most effective at suppressing circulating melatonin levels although 

longer wavelengths (red light λ 700 nm) were also potent if applied above intensity 

thresholds (Bayarri et al., 2002; Vera et al., 2010). Similarly, in Atlantic salmon, in-

vitro studies showed that red light (λ 650 nm) was less efficient at suppressing 

melatonin than blue (λ 450 nm) and green (λ 550 nm) light although data on spectral 

sensitivity remain scarce in this species (Migaud et al., 2010; Vera et al., 2010). In 

rainbow trout (Oncorhynchus mykiss) and gilthead seabream (Sparus aurata), blue and 
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red wavelengths appeared to decrease growth performance and increase stress factors in 

comparison to full visible spectrum from white fluorescent lamps (Karakatsouli et al., 

2007; 2008). 

To date, present knowledge on spectral-sensitivity and threshold light-intensity 

have not been applied to Atlantic salmon reared in commercial sea-cages. Narrow band-

width lighting-systems offer the potential for tailoring the spectral output to the 

sensitivity of the species thereby optimizing the use of energy into generating the most 

suitable wavelengths (Loew and McFarland, 1990; Migaud et al., 2006). In addition to 

energy-savings, the biological potency of an increased range of lighting-technologies 

would allow selection of the most appropriate based on a variety of technical, practical 

and health and safety considerations. The aim of this study was to compare the 

efficiency of alternative lighting-technologies and assess their biological impact on 1+ 

Atlantic salmon sexual maturation in comparison to an industry standard lighting-

system. Comparisons are made at the methodological, technical and economical levels 

with the view to assist selection of new candidate lighting-systems for use in the 

Atlantic salmon industry. 

 

2. Materials and Methods  

Four submerged lighting-technologies generating distinct spectral outputs and 

intensities were assessed in a serie of trials. Each trial used mixed-sex 1+ post-smolt 

Atlantic salmon of the same strain (AquaGen AS, Trondheim, Norway) stocked in 

commercial sea-cages (Marine Harvest Ltd., UK) between February and April and 

exposed to an LL-regime from January to June during their second year at sea. The 

square-cages were set-up in rows of two (1.5 m to 2 m distance between cages) with, at 
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most, one cage-side adjacent to another experimental cage-side in order to prevent 

possible light pollution between cages. 

 

2.1. Fish stock and rearing conditions 

Trial 1 

The first trial was conducted at a commercial salmon farm (56.41oN, 5.10oW, Loch 

Leven; Marine Harvest Ltd., UK) using 1+ Atlantic salmon stocked at sea in March 

2004. All fish were held under ambient conditions prior to the commencement of the 

trial. On the 15th January 2005, one sea winter (1-SW) fish with a mean live body-

weight (BW) of 1850 ± 260 g were distributed in six seawater cages (4000 m3; 20 x 20 

x 10 m; n = 15,500-17,500 fish/pen). Duplicate unlit cages, separated from the other 

experimental cages by unlit (non-experimental) cages to prevent artificial-light 

pollution, were maintained under ambient light-conditions as natural photoperiod 

controls (NP; sunlight has a continuous spectrum of all visible wavelengths) and four 

others were subjected to continuous artificial-light (LL) from the 22nd January 2005. In 

those, two different light-technologies were tested: wide-spectrum ‘white’ metal-halide 

lamp as control light-technology (C, 400 W unit-1, 3700°K, Pisces 400, BGB 

Engineering, Grantham, UK; same technology as used in trial 2 and 3) and a narrow 

bandwidth ‘blue’ light-emitting-diode (LED) system (B, 50 W unit-1, Akvasmart UK 

Ltd., Inverness, UK). For each technology, two and six units per cage were installed 

providing a total of four LL-treatments (Metal-halide: 2C, 6C; ‘Blue’ LED: 2B and 6B). 

No replicated design could be performed in this trial except for control natural 

photoperiod pens (NP). Positioning of the light-units was standardised between 

technologies and selected in an attempt to maximize light distribution within the rearing 

volume: units were submerged at 4.5 m depth in cages receiving two lamps (2C and 2B; 
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Fig. 1a) while, in cages equipped with six units (6C and 6B), they were submerged at 3 

m and 6 m depth in two inverted triangular formations (Fig. 1a). All pens were returned 

to NP on 5th June 2005 which was immediately followed by a three-way size grading 

after which treatments could not be kept discrete due to commercial requirements. 

Ambient water temperature ranged from 7.5oC to 13oC during the period of light-

manipulation and fish were fed a commercial diet (MHS Atlantic, Skretting, UK) 

according to standard commercial feeding protocols. 

Trial 2 

The second trial was conducted at a nearby commercial salmon farm (56.41oN, 

5.42oW, 35 km from trial 1 sea-site, Loch Sunart; Marine Harvest Ltd., UK) using 1+ 

fish stocked at sea in March-April 2007. All fish were held under ambient conditions 

prior to the commencement of the trial. On the 3rd January 2008, four 6912 m3 cages (24 

x 24 x 12 m) holding 1-SW fish (n = 23,000 to 26,500 fish/pen; BW = 1631 ± 27 g) 

were exposed to LL using 2 different lighting-technologies in duplicate design. Two 

cages received 4 metal-halide units as control light-technology (4Ca; 400 W unit-1; 

same technology as used in trial 1 and 3) and the other two 4 narrow bandwidth ‘green’ 

hot cathode lamps (4G, 232 W unit-1, Intravision Aqua AS, Snarøya, Norway). In all 

treatments, light-units were positioned in a 12 x 12 m square formation and submerged 

to depths of 4 and 8 m (2 units/depth; Fig. 1b). The submersion depth of the G units, 

which were 1.80m long, refers to the middle point of the bulb. All pens were returned to 

NP on 18th June 2008 and experimental groups were kept discrete until harvest in 

October 2008. Ambient water temperature ranged from 7.1oC to 12.1oC during the 

period of light-manipulation and fish were fed a commercial diet (Biomar, 

Grangemouth, UK) according to standard commercial feeding protocols. 
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Trial 3 

The third trial was conducted at the same site as trial 1 using 1+ fish stocked at 

sea in February 2008. All fish were held under ambient conditions prior to the 

commencement of the trial. On the 19th January 2009, four 6912 m3 cages (24 x 24 x 12 

m) holding 1-SW fish (n = 29,000 to 35,000 fish/pen) with a BW of 2293 ± 95 g were 

exposed to LL using 2 different lighting-technologies in duplicate design. Two cages 

received 4 metal-halide units as control light-technology (4Cb; 400 W unit-1; same 

technology as used in trial 1 and 2) and the other two cages received 4 ‘red’ tungsten-

halogen lamps (4R, 400 W unit-1, Atlantis-light, Inishowen Engineering, Shandrum, 

Ireland). All units were submerged to depths of 4 and 8 m as in trial 2. All pens were 

returned to NP on 5th June 2009 and experimental groups were kept discrete until 

Figure 1. Schematic plan view of the 
experimental pens in (a.) trial 1 (pen-size: 
20 x 20 x 10 m) and (b.) trial 2 and 3 (pen-
size: 24 x 24 x 12 m) showing light-unit 
positioning. Italic values are distances (m) 
between cage sides (plain line) and light-
unit axis (dashed lines). Not at scale, see 
Table 1 and 2 for treatment description. 
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harvest in September 2009. Ambient water temperature ranged from 6.6°C to 13.9°C 

over the period of light-manipulation and fish were fed a commercial diet (Biomar, 

Grangemouth, UK) according to standard commercial feeding protocols. 

 

2.2 Light-output and light-perception 

Characteristics of the light emitted by the different technologies (B, G, R, C) were 

measured on the same night and sea-site (May 2010; Loch Leven) on individual light-

units submerged at 3 m depth. The spectral composition (over the visible spectrum: λ 

400-740 nm) was determined using a portable spectroradiometer (StellarNet Inc. 

EPP2000c; Tampa, FL, USA; calibrated to National Physics Laboratory UK standards; 

Migaud et al., 2007b) directly pointing at the light-source and positioned 0.5 m from 

each unit. Horizontal profiles of light-attenuation were determined by measuring light-

irradiance over the visible spectrum (λ 400-740 nm; W m-2) using a single channel light-

energy sensor pointing directly at the light-source and connected to a hand-held digital 

meter (Skye Instruments Ltd., Powys, UK). Measurements were made from the light-

source (0 m) and then at 0.5 m horizontal increments until the detection limit of the 

light-energy sensor was reached (<0.0001 W m-2). The equation of the regression curve 

was used to calculate the attenuation coefficients at 1m intervals within 1 to 10 m of the 

light-source (values were then averaged). This equation was also applied to determine 

the greatest distance from the light-source to an irradiance effective at suppressing 

plasma melatonin to day-time levels in salmonids (≥0.016 W m-2; previously 

determined by Migaud et al., 2006). This distance was then used as the radius of a 

“theoretical sphere” to calculate the volume of effective irradiance emitted by point-

source bulbs (B, R, C) while for light-unit G, the volume of a cylinder holding the same 

radius and the height of the bulb-length (1.80 m) was added. The effective irradiance 
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volume of individual lamps was finally used to calculate the percentage of the rearing 

volume theoretically subjected to an effective irradiance which assumes optimal 

positioning of the light-units. Using the same apparatus but with the light-energy sensor 

pointing upwards, vertical down-welling light-irradiance was measured in half of each 

treatment cage in May 2005, May 2008 and May 2009 in trial 1, 2 and 3 respectively. 

To do so, light-irradiance was measured in a grid format (starting in a cage corner) at 2 

m horizontal increments in both horizontal directions and at 2 m (trial 1) or 1 m (trial 2 

and 3) depth increments then averaged at each depth. Light-properties within the 

treatment pens were not measured during day-time in this study. The vertical intensity 

profile of artificial-illumination using C light-units in cages was previously quantified 

and found to be approximately 99.8% lower than natural day-light (under light-cloud 

conditions) (Leclercq et al., unpublished). This suggests that natural sunlight would 

prevail over the continuous artificial-illumination such that day-time light-conditions 

were consistent across all treatments. In addition, variations in ambient day-light 

conditions (e.g. from cloud-cover and surface-reflection) are unlikely to alter the 

perception of daylight as the natural photophase. 

Light perception was assessed in trial 1 during both day- and night-time by 

measuring plasma melatonin levels at mid-day and mid-night (n = 20 fish/pen) on the 

date of light-irradiance assessment (May 2005). Blood was withdrawn (under dim red 

light at night) from the caudal vein of culled fish (MS-222 bath, 150 ppm for 2 to 3 min; 

Alpharma, Fordingbridge, England; followed by cranial percussion), centrifuged (1200 

g; 15 min; 4°C) and plasma stored at -70oC until analysis using a commercially 

available ELISA kit (IBL, Hamburg, Germany) previously validated in salmon (Migaud 

et al., 2007a, 2007b). The minimum sensitivity of the kits was 3.0 pg.ml-1 and the inter- 

and intra-assay coefficients of variation 3.8 % and 10.7 % respectively. 
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2.3 Body-size and maturational status 

Body size parameters were assessed in each trial at both the onset and 

termination of LL-treatments in January and late May-June respectively. Fish were 

randomly sampled, anaesthetized (MS-222 bath, 30 ppm for 2 to 3 min) and 

individually measured for BW (± 5g) and fork length (FL, ± 1mm) (trial 1: 225 fish/pen 

on the 31st January and 25th May 2005, replicated photoperiod control only; trial 2: 60 

fish/pen on the 10th January and 20th June 2008, replicated treatments; trial 3: 120 

fish/pen on the 20th January by batch sample-weight and 20 fish/pen on the 11th June 

2009, replicated treatments). Fulton condition factor (K) was calculated as K = (BW x 

100) / FL3. The relative weight gain (RWG; %) over the period was calculated as RWG 

= [(BWf / BWi) x 100]; where BWf and BWi are the mean final and initial BW 

respectively. The specific growth rate (SGR; % day-1) was calculated using 

SGR = [exp(g) - 1] × 100; where g = (LnBWf - LnBWi) / (tf – ti), BWf and BWi
 are the 

same parameters as for RWG calculation and (tf – ti) is expressed in days.  

Sexual maturation was assessed on the day of body-size assessment in late May-

June when recruitment into sexual maturation is determined in Atlantic salmon 

populations of the Northern hemisphere (Taranger et al., 1999; Leclercq et al., 2010a). 

Fish were sacrificed, sexed and gonad-weight measured (GW; ± 0.001g) to calculate the 

gonadosomatic index (GSI) as GSI = (GW / BW) x 100 (n = 25, 30 and 20 fish/pen in 

trial 1, 2 and 3 respectively). Ovary samples were preserved in 10% buffered formalin 

for histological analysis and classified according to their leading oocyte stage using the 

primary yolk stage (the first stage of exogenous vitellogenesis) as an indicator of 

commitment toward maturation (Taranger et al., 1999). Males were classified as 

immature or sexually recruited based on the bimodal GSI frequency distribution in the 



Eric Leclercq                                                          Light-Technologies - CHAPTER 5, PAPER VI 

population with a threshold value of GSI = 0.2% (Kadri et al., 1997; Taranger et al., 

1998; Leclercq et al., 2010a). In addition, blood was withdrawn from randomly selected 

fish, centrifuged (1200 g; 15 min; 4°C) and plasma stored at -70oC for analysis of 

testosterone (T) level. Plasma T was analysed using an indirect competitive 

radioimmunoassay method (modified from Duston and Bromage, 1987) with levels 

above 3 ng ml-1 indicating recruitment into maturation (Taranger et al., 1998). 

Minimum sensitivity was 1.9 pgml-1, with an intra-assay coefficient of variation of 4.4% 

and inter-assay coefficient of variation of 9.8% (n=15). In trial 1, plasma was sampled 

during a three-way body-size grading performed in June four days after gonad sampling 

(n = 50, 25 and 25 fish/grade/pen in the large, medium and small grade respectively) to 

assess the efficacy of top-crop harvest at selectively harvesting a high proportion of 

maturing fish. In trial 2 and 3, plasma was sampled on the day of gonad sampling (n = 

60 or 20 fish/pen respectively) and maturation rate was further estimated at harvest 

using nuptial skin colouration as a reliable indicator (n > 1000 observations/pen in 

October 2008 and September 2009 respectively; Leclercq et al., 2010a and b). 

 

2.4 Statistical analysis 

Linear regressions were performed using GraphPad Instat between the energy 

consumption of the experimental set-ups and the mean light-irradiance in the sea-cage, 

between both those parameters and the maturation rate observed and between the cost of 

electricity and the value of the biomass sexually inhibited. Linear regressions always 

conformed to a linear model with slopes significantly different to 0. Analyses of 

variance in body-size and maturation parameters were performed using Minitab v.15 

statistical software package.  Data sets were tested for normality (Kolmogorov-Smirnov 

test) and homogeneity of variance (Bartlett’s test, examination of residual plots), log or 

square-root transformed when required and proportions arc-sin transformed. Replicate 
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data (NP photoperiod control in trial 1; all treatments in trial 2 and 3) were pooled when 

no significant differences occurred. Differences in BW, FL, K, GSI and plasma-T 

between treatments within each trial were determined by one-way analysis of variance 

(ANOVA). In trial 3, two-way analysis of variance was used to test the effect of size-

grade and light-treatment on plasma-T levels. Analysis of plasma-T variance 

systematically included BW as covariate (ANCOVA) which always had a significant 

effect except in trial 3 (p = 0.083). Where statistical differences were found, post-hoc 

multiple comparisons were applied (Tukey’s test; Zar, 1999). A statistical significance 

of p < 0.05 was applied to all statistical tests. All data are presented as mean ± S.E.M. 

 

3. Results 

3.1. Light-output  

Light emitted by the four submerged technologies tested in the marine 

environment displayed distinct spectral profiles over the visible spectrum (Fig. 2).  

The 50 W ‘blue’ LED unit (B) generated a single peak at λ 465 nm, corresponding to 

the visible blue wavelengths, and the 232 W ‘green’ hot cathode (G) a main peak at λ 

546 nm within the green wavelengths. Both B and G light-units can be considered as 

narrow bandwidth lighting-systems. In comparison, the spectral composition of the 400 

W ‘red’ tungsten-halogen lamp (R) progressively increased from the blue to the red end 

of the visible spectrum: Normalized intensity level reached 50% at λ 586 nm (orange) 

and 80% at λ 667 nm within the visible red. Finally, the 400 W ‘white’ metal-halide 

control technology (C) generated a number of peaks over 30% of normalized intensity: 

at λ 475 nm (blue/cyan; 31%), λ 511 nm (green; 51%) and λ 571 nm (visible yellow; 

54%) while the main peak was at λ 593 nm (yellow/orange; 100%). 
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Figure 2. Spectral composition of the light emitted by the different lighting-
technologies. 

N
or

m
al

iz
ed

 in
te

ns
ity

 

0.0

0.2

0.4

0.6

0.8

1.0

50 W 'blue' light-emitting diode (B)

400 450 500 550 600 650 700

N
or

m
al

iz
ed

 in
te

ns
ity

 

0.0

0.2

0.4

0.6

0.8

1.0

400 W 'white' metal-halide (C)

N
or

m
al

iz
ed

 in
te

ns
ity

 

0.0

0.2

0.4

0.6

0.8

1.0

232 W 'green' hot cathode (G)

N
or

m
al

iz
ed

 in
te

ns
ity

 

0.0

0.2

0.4

0.6

0.8

1.0

400 W 'red' tungsten-halogen (R)

Violet Blue Green Yellow Orange Red

Wavelength (nm)

400 475 510 570 590 650

a.

b.

c.

d.



Eric Leclercq                                                          Light-Technologies - CHAPTER 5, PAPER VI 

 

Horizontal profiles of visible light-attenuation were also different between 

lighting-technologies (Fig. 3). Irradiance (W m-2) measured at 0.5 m from the source 

was lowest for G, followed by B, R and highest for C. The mean light-attenuation 

coefficient, directly related to the power of the regression curve, was higher for B 

(52.2±4.5% m-1) and lowest for G (40.9±4.3 m-1; Table 1). The distance from the light-

source to an irradiance of 0.016 W m-2, previously determined as the minimum light-

intensity threshold suppressing plasma melatonin to day-time level (effective irradiance 

distance; Migaud et al., 2006) was longest for the C-unit (6.3 m; 100%) and 

comparatively reduced for all alternative technologies tested: R (4.6 m; 72.6%), G (3.3 

m; 52.5%) and B (2.4 m, 37.8%; Table 1). The different systems also showed variation 

in their efficiency at converting energy-input into light-output. This is highlighted by 

the ratio of effective distance relative to the lamp energy use (m Wh-1; B > C > G > R; 

data not shown) which was highest for B despite the higher attenuation of B-light in the 

aquatic environment. The volumes of effective irradiance emitted by the alternative 

light-units were always below 40% that of the C-unit (C: 1065 m3, 100% > R: 407 m3, 

38.2% > G: 216 m3, 20.3% > B: 58 m3, 5.4%; Table 1). Adjusted to the number of 

lamps deployed in the experimental sea-cages, the theoretical volumes of effective 

irradiance varied between treatments (Table 2). In trial 1, it covered 100% and 53% of 

the rearing volume in 6C and 2C respectively but less than 10% in both B-treatments. 
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Figure 3. Horizontal profile of light-attenuation as generated by the different lighting-
technologies assessed in the same environment over a single nocturnal sampling (See 
Table 1 for light-unit description). Equations of the respective light-attenuation curves 
were calculated by least-square regression (B: y = 0.34x-3.50, r2 = 0.980; G: y = 0.28x-

2.39, r2 = 0.927; R: y = 2.18x-3.22, r2 = 0.973; C: y = 7.14x-3.31, r2 = 0.965 where x = 
distance from the light-source (m) and y = light-irradiance (W m-2). 

 

 

Table 1: Parameters of light-irradiance generated by the different lighting-technologies 
(B: 50 W ‘blue’ light-emitting diode; G: 232 W ‘green’ hot cathode; R: 400 W ‘red’ 
tungsten halogen; C: 400 W ‘white’ metal-halide).  
 

Light1 
Mean attenuation 

coefficient2 

 (% m-1) 

 Greatest distance (m) from 
the source to an irradiance2:  

 Volume  (m3) of 
irradiance5: 

 Effective3  Detectable4   Effective  Detectable 
B (58 Wh) 52.2±4.5  2.40 8.0  58 2145 

G (232 Wh) 40.9±4.3  3.32 11.5  216 7118 

R (398 Wh) 49.7±4.5  4.60 12.5  407 8181 

C (460 Wh) 50.5±4.5  6.34 14  1065 11494 
 

1 Electrical energy consumption of light-units (Wh) provided by ligh-manufacturers. 2 The regression 
curves (Fig. 3) were used to calculate the mean attenuation coefficients within 1 to 10 m of the light-
source and 3 determine the greatest distance from the light-source to a theoretical irradiance threshold 
shown to suppress plasma melatonin to basal day-time levels (Effective irradiance ≥ 0.016 W m-2; 
Migaud et al., 2006). 4 The minimum irradiance instrumentally detectable was 0.0001 W m-2. 5 Those 
distances were used to determine the corresponding volumes of irradiance. 
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Table 2: Theoretical volume and proportion of the experimental cages subjected to a 
biologically effective irradiance level (≥ 0.016 W m-2). Fish were reared under natural 
photoperiod and under 2 or 6 B or C light-units (trial 1: NP, 2B, 6B, 2C and 6C 
respectively) or under 4 G and 4 C light-units (trial 2: 4G and 4Ca) or under 4 R and 4 
C light-units (trial 3: 4R and 4Cb). See Table 1 for description of light-units. 
 

 

 

 

 

 

 

1 The volume of effective irradiance in the rearing-volume was calculated by multiplying the volume of 
effective irradiance achieved by individual light-units (Table 1) by the number of units installed in the 
cage which does not take into account overlapping of light.   

 

Variations between treatments also occurred but to a lesser extent in trial 2 and 3 

with a volume of effective irradiance covering 62% of the rearing volume in 4Ca and 

4Cb compared to 23.6% and 12.5% for 4R and 4G respectively. Measured on-site, 

vertical profiles of nocturnal down-welling light-irradiance were also lowest for 2B and 

6B (Fig. 4a). Their maximum mean irradiance was 0.0004 W m-2 and 0.0008 W m-2 at 6 

m and 8 m depth respectively compared to 0.0528 W m-2 and 0.0933 W m-2 at 6 m and 4 

m depth for 2C and 6C respectively (trial 1). In trial 2 and 3, experimental set-ups using 

alternative light-units showed higher vertical irradiance profiles (Fig. 4b). Maximum 

mean irradiance was 0.0168 W m-2 at 8 m depth for 4G and 0.0063 W m-2 at 5 m depth 

for 4R as compared to 0.0284 W m-2 at 9 m depth for 4Ca. 

 

 

 

Treatment 
Effective irradiance in the rearing-volume 

Volume1 (m3)  Proportion (%) 
• Trial 1 (Cages volume = 4000 m3) 
NP 0  0 
2B 115  2.9 
6B 346  8.7 
2C 2130  53.3 
6C 6390  100 
• Trials 2 and 3 (Cages volume = 6912 m3) 
4G 865  12.5 
4R 1630  23.6 

4Ca, b 4260  61.6 
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Figure 4. Vertical profile of nocturnal down-welling light-irradiance (W m-2; mean ± 
SEM) within the experimental cages in (a.) trial 1 and (b.) trial 2 and 3 (See Table 1 and 
2 for treatment description). The dashed line represents the minimum irradiance 
suppressing circulating plasma melatonin to basal day-time levels (0.016 W m-2; 
Migaud et al., 2006). 
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3.2. Light perception: plasma melatonin levels  

 Day-time plasma melatonin level did not differ between treatments (data not 

shown) and were pooled for comparison with night-time levels (Fig. 5). At night, fish 

reared under LL always displayed significantly lower plasma melatonin levels than the 

unlit NP group which had the highest level. However, nocturnal plasma melatonin 

levels remained significantly higher than during the day in both B-treatments. 

Treatment 2B was the least effective at reducing plasma melatonin level followed by the 

significantly more potent 6B. Nocturnal illumination was most effective under 2C and 

6C, both of which suppressed plasma melatonin to day-time levels. No such analysis 

could be performed in trial 2 and 3 due to the impossibility of crowding the stock within 

the 24 x 24 x 12m pen-systems at night. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Nocturnal plasma melatonin levels (pg ml-1) in fish exposed to different 
artificial-light treatments as compared to day-time levels (trial 1). Values are given as 
mean±SE with n = 20 fish/pen, NP in duplicate).  Diurnal levels were not significantly 
different between treatments and therefore pooled. Different letters represent statistical 
differences (ANOVA, p < 0.05; see Table 1 and 2 for treatment description). 
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3.3 Body-growth  

Before light application in January, there was no significant difference in body-

size parameters between treatments within trial 2 and 3. However within trial 1, BW, FL 

and K were significantly higher in NP and lower in 6B (Table 3) and body-size 

parameters also varied between trials. The present experiment does not allow an 

accurate comparative assessment of the effect of light treatments on growth but data are 

briefly presented. Overall, body-growth parameters (RWG and SGR) appeared reduced 

when using alternative technologies (2B, 6B, 4G and 4R) compared to the experimental 

set-ups using the C-technology. Body-growth was lowest under the 2B treatment 

showing a RWG and SGR reduced by 38% and 32% respectively compared to C-

treatments (trial 1). Both parameters were also lower in 4G compared to 4Ca (trial 2: 

RWG= - 4.0%; SGR = - 3.9%) and in 4R compared to 4Cb (trial 3:  RWG = - 12.0%; 

SGR = - 9.5%). 



 

 
 
 
 
 
Table 3: Body-size parameters between the onset (January) and the offset (June) of photoperiod manipulation using different lighting-
technologies (See Table 1 and 2 for treatment description). Values are given as mean ± SEM with n = 250 fish/pen in trial 1 (NP in 
duplicate), n = 60 fish/pen in trial 2 (duplicate treatments) and n = 20 fish/pen in trial 3 (duplicate treatments). Different superscripts 
indicate significant differences between treatments within each trial and time point (ANOVA, p < 0.05). Differences between replicates are 
shown by italic values (as measured only for K in 4Cb treatment). 

BW: live body-weight; FL: fork-length and K: Fulton condition-factor; RWG: relative weight-gain; SGR: Specific growth-rate. 

 

 

  
 

  TRIAL 1  TRIAL 2  TRIAL 3 
 NP 2B 6B 2C 6C  4G 4Ca  4R 4Cb 

• January     
BW  (g) 2233±25a 1966±38b 1560±29d 1726±32c 1759±22c  1647±41 1616±43  2249±147 2350±92 
FL  (mm) 559±2a 544±3b 510±3d 526±3c 524±2c  517±3 510±4    
K  1.25±0.01a 1.18±0.01b 1.14±0.01c 1.15±0.01c 1.19±0.00b  1.19±0.01 1.22±0.01    

• June     
BW (g) 3630±58a 2828±62b 2541±54c 2938±54b 3006±55b  3364±73 3373±71  3710±157b 4086±91a 
FL (mm) 680±3a 630±4c 619±4c 644±3b 647±3b  650±4 642±4  687±7b 714±5a 

K  1.11±0.01a 1.09±0.01ab 1.04±0.01c 1.07±0.01bc 1.09±0.01ab  1.21±0.01b 1.26±0.01a  1.13±0.04ab 1.19±0.03a 
1.05±0.03b 

• Body-growth during the  window of light manipulation    
RWG (%) 62.6 43.8 62.9 70.2 70.9  104.3 108.7  65.0 73.9 
SGR (% day-1) 0.43 0.32 0.43 0.47 0.47  0.51 0.53  0.38 0.42 
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3.4 Sexual maturation  

Following LL-application and for both genders, no significant differences in mean-GSI 

between treatments were observed (Table 4 with number of fish sampled). Based on the 

bimodal-GSI distribution in males (GSI > 0.2%), the occurrence of exogenous 

vitellogenesis in females and plasma-T levels in both genders (> 3 ng ml-1), no 

randomly sampled fish were deemed to be maturing in June in trial 2 and 3. This was 

confirmed at harvest (September-October) by observation of skin colouration in a large 

random sample of the population (n > 1000). Maturation rates were estimated below 2% 

in all treatments except in one replicate of treatment 4Cb (trial 3) where it reached 

8.8%. In comparison, all indicators of sexual maturation showed a large variability 

between treatments in trial 1. None of the males displayed a GSI above 0.2% in the 2C 

and 6C treatments (trial 1) while around 12% were found in 2B, 6B and NP treatments. 

Similarly, none of the females sampled were undergoing exogenous vitellogenesis in 6C 

(trial 1), as observed in all treatments tested in trial 2 and 3, while it reached 12.5%, 

30% and 40% in 2C, 6B-NP and 2B respectively (Table 4; Fig. 6). Although the low 

number of fish sampled for gonad analysis is acknowledged, plasma-T analysis overall 

confirmed the effect of light treatment determined from histological analysis and, in 

particular, the low maturation rates in trial 2 and 3 and in 2C and 6C treatments from 

trial 1 (Table 4). This parameter further highlighted the effect of body-size grading in 

June on segregating the maturing cohort within the leading body-weight cohort. As 

shown by the statistical differences in mean plasma-T, maturing fish (plasma-T > 3 ng 

ml-1) were mainly present in the large-grade where they accounted for 45% of the fish 

sampled in NP compared to 30% and 26% in respectively 2B and 6B treatments. In 

comparison, maturation rate were always low in the medium and small size-grades 

(<4%). 



 

 
 
 
 
 
Table 4: Indicators of sexual development at the offset of photoperiod manipulation (June) in the different experimental groups (See Table 
1 and 2 for treatment description; Trial 1: duplicate photoperiod control (NP) only, Trial 2 and 3: duplicate treatments). Values are given as 
mean ± SEM with number of fish assessed given in the table. Different superscripts indicate significant differences between treatments. 
Different letters represent significant differences between body-size grades within experimental groups (ANOVA for GSI; ANCOVA for 
plasma-T using BW as covariate; p < 0.05). Italic values correspond to maturation rates determined at harvest based on nuptial skin 
colouration (Rep1: replicate 1 and Rep2: replicate 2; measured in October for trial 2 and September for trial 3; n > 1000 observations/pen).  
 

 TRIAL 1  TRIAL 2  TRIAL 3 
 NP 2B 6B 2C 6C  4G 4Ca  4R 4Cb 

• Male mean GSI (%) and, in brackets, number of males assessed/treatment and proportion of males with a GSI above 0.2%  
 0.105±0.015 0.093±0.037 0.075±0.021 0.057±0.007 0.077±0.014  0.059±0.004 0.058±0.003  0.082±0.004 0.093±0.004 

 (23; 13.0%) (11; 12.5%) (12; 11.1%) (14; 0.0%) (13; 0.0%)  (33; 0.0%) (31; 0.0%)  (19; 0.0%) (22; 0.0%) 
• Female mean GSI (%) and, in brackets, number of females assessed/treatment and proportion of ovaries undergoing exogenous vitellogenesis  

 0.274±0.031 0.297±0.042 0.247±0.035 0.296±0.062 0.200±0.019  0.216±0.011 0.197±0.008  0.223±0.007 0.244±0.010 
 (27; 30.8%) (14; 40.0%) (13; 30.0%) (11; 12.5%) (12; 0.0%)  (27; 0.0%) (29; 0.0%)  (21; 0.0%) (18; 0.0%) 

• Mean plasma T level (ng ml-1) and, in brackets, number of fish assessed/treatment/grade and proportion of fish with plasma-T levels above 3 ng ml-1  
 Graded population   Ungraded population    
Large 3.24±0.29ax 

(100; 44.6%) 
2.56±0.38ax 
(50; 30.0%) 

1.86±0.23a 
(50; 26.0%) 

0.76±0.16bxy 
(50; 4.0%) 

1.68±0.17ax 
(50; 4.0%)       

Med. 
0.90±0.06ay 
(50; 0.0%) 

0.27±0.04ay 
(25; 0.0%) 

1.40±0.13b 
(25; 4.0%) 

0.24±0.08ax 
(25; 0.0%) 

0.58±0.19ay 
(25; 4.0%)  

0.64±0.02b 
(120; 0.0%) 

0.60±0.01a 
(120; 0.0%) 

 0.70±0.01 
(40; 0.0%) 

0.77±0.02 
(40; 0.0%) 

Rep 1: 0.62% 
Rep 2: 1.52% 

0.38% 
0.91% 

1.79% 
0.00% 

1.61% 
8.82% 

Small 1.10±0.09bcy 
(50; 2.0%) 

0.26±0.04aby 
(25; 0.0%) 

0.97±0.10c 
(25; 0.0%) 

1.01±0.23bcy 
(25; 4.0%) 

0.14±0.08ay 
(25; 0.0%)       

GSI: Gonadosomatic index; T: Testosterone; Med.: Medium
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Figure 6. Proportion of females at the different oocyte leading stages in late June 
corresponding to the offset of continuous artificial-light (classified according to 
Taranger et al., 1999; see Table 1 and 2 for treatment description). 
 

 

3.5. Cost-benefit analysis 

Energy consumption, light-irradiance and inhibition of sexual maturation are presented 

jointly in Table 5. Experimental cages equipped with alternative lighting-systems 

always used less electrical energy relative to the rearing volume (Wh m-3) than the C-

treatments. In trial 1, electrical consumption of 2B, 6B and 2C were 4.2%, 12.6% and 

33.3% respectively of the 6C set-up. In trial 2 and 3, energy consumption of 4G and 4R 

were 50.4% and 86.5% of 4Ca and 4Cb respectively. 



 

 
Table 5: (a.) Energy consumption, mean irradiance and maturation rate observed in the different experimental groups. (b.) Inhibition of 
maturation by light manipulation. c. Running cost-benefit analysis of the different lighting-systems tested (See Table 1 and 2 for treatment 
description). 
 

 
1Provided by light manufacturers. 2Standardized to a constant value and density approximating experimental data for validity of the comparison. 3Trial 1: Based on the 
proportions of male with a GSI above 0.2% and of female undergoing exogenous vitellogenesis (Table 4) that were averaged (a strictly balanced [1:1] sex-ratio was 
used); trial 2 and 3: using the proportion of fish exhibiting nuptial display at harvest (Table 4). 4Estimated mean live-body weight at harvest: 4.5 kg. 5Cost of electricity 
= £0.15 k Wh-1 with usage of artificial-light standardized to 5 months (3600 h) in all treatments. 6Gutted salmon market price = £3.5 kg-1 with a whole:gutted salmon 
ratio of 0.85. 7Calculated as: value of inhibited biomass - cost of electricity. 8 Calculated as : value of inhibited biomass / cost of electricity. 7,8 Value of mature fish 
(“rebate”) not considered. 
 

TRIAL 1 TRIAL 2 TRIAL 3 
NP 2B 6B 2C 6C 4G 4Ca 4R 4Cb 

a. Lighting-systems and maturation rate observed (Cage volume = 4000 m3 in trial 1and 6913 m3 in trial 2 and 3) 
Electrical consumption1 (Wh light-unit-1) 58 58 460 460 232 460 398 460 

(Wh pen-1) 0 116 348 920 2760 928 1840 1592 1840 
(Wh m-3) 0 0.029 0.087 0.230 0.690 0.134 0.266 0.230 0.266 

Mean irradiance  (W m-2) 0 0.0002 0.0004 0.010 0.022 0.007 0.011 0.003 0.011 
Total population2 (n) 14500 14500 14500 14500 14500 25000 25000 25000 25000 
Maturation rate 3 (%) 21.9 26.25 20.55 6.25 0 1.07 0.65 0.9 5.2 

b. Inhibition of sexual maturation by light manipulation (as compared to NP) 
Population sexually inhibited (n) 0 -631 196 2269 3176 5208 5313 5250 4170 
Biomass sexually inhibited4 (kg) 0 -2838 881 10212 14290 23434 23906 23625 18765 

(kg m-3) 0 -0.71 0.22 2.55 3.57 3.39 3.46 3.42 2.71 
(kg kWh-1 m-3) 0 -97.9 10.1 44.4 20.7 174.6 89.8 102.6 70.5 

c. Running cost-benefit analysis
Total cost of electricity5 (£) 0 63 188 497 1490 501 994 860 994 

(£ m-3) 0 0.02 0.05 0.12 0.37 0.07 0.14 0.12 0.14 
Value of biomass inhibited6 (£) 0 -8444 2621 30380 42512 69715 71121 70284 55826 

(£ m-3) 0 -2.11 0.66 7.59 10.63 10.08 10.29 10.17 8.08 
Net saving (on electrical cost)7 (£) 0 -8507 2433 29883 41022 69214 70127 69425 54832 

(£ m-3) 0 -2.13 0.61 7.47 10.26 10.01 10.14 10.04 7.93 
Economic return8  0 -134.8 13.9 61.2 28.5 139.1 71.6 81.8 56.2 
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Among all experimental groups, there was a significant positive linear 

correlation between the (electrical) energy consumption relative to the rearing volume 

(Wh m-3) and the mean-irradiance achieved in the sea-cage (W m-2; Fig. 7a). Of note, 

4R generated the lowest mean light-irradiance relative to its energy use. Significant and 

negative linear correlations were measured between both the relative energy 

consumption or the mean-irradiance and the pen maturation rate (Fig. 7b, 7c). The 6C 

set-up had the highest energy use and mean-irradiance while inducing a total inhibition 

of maturation. The illumination provided by 6C was arguably far above the level 

required for maximum biological efficiency. This treatment was therefore not included 

in the analyses of regression between technical and biological parameters (Fig. 7b, 7c, 

7d) in order to maintain the relevance of the relationships. Both regressions show that 

compared to 4G and 4R, all C treatments were less efficient at inhibiting sexual 

maturation relative to their energy use and irradiance achieved. Treatment 4G was the 

most effective at inhibiting sexual maturation relative to its energy use (Fig. 7b) while 

4R had the lowest maturation rate relative to the irradiance emitted in the sea-cage (Fig. 

7c). With virtually no effect on maturation rate, both B treatments had the highest 

maturation rate and lowest electrical consumption (Fig. 7b, 7c). The quantity of sexually 

inhibited biomass per unit of energy used and rearing volume (kg kWh-1 m-3; Table 5b) 

further highlighted the relative efficiency of the different systems. It ranged from a gain 

of 175 kg kWh-1 m-3 and 103 kg kWh-1 m-3 in 4G and 4R respectively to 10 kg kWh-1 m-

3 in 6B to a loss of 98 kg kWh-1 m-3 in 2B. Based on our dataset, a threshold of 0.28 Wh 

m-3 generating a mean irradiance of 0.0114 W m-2 is required to achieve a complete 

inhibition of sexual maturation (Fig. 7b, 7c). Electrical consumption and inhibition of 

sexual maturation were further translated into economic terms using standardized 

population size (and density) and duration of light exposure (Table 5c). Readily 
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apparent was the low electrical-cost relative to the value of the biomass sexually 

inhibited by photoperiod-manipulation. Among all LL-treatments, the average 

electrical-cost was £0.13 ± 0.04 m-3 against a value of inhibited biomass of £5.92 ± 1.27 

m-3 such that the average net saving on the electrical-cost was £5.79 ± 1.25 m-3. 

Lighting-strategies 4G and 4R had the highest economic return (value of biomass 

inhibited per unit of electrical running-cost; 4G: 139.1 > 4R > 4Ca > 2C > 4Cb > 6C > 

6B, 13.9 > 2B, 0; Table 5c). 
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Figure 7. Linear relationship between (a.) maturation rate and relative consumption of 
electrical energy, (b.) maturation rate and mean light-irradiance in the rearing volume, 
(c.) mean light-irradiance in the rearing volume and relative consumption of electrical 
energy and (d.) relative value of biomass sexually inhibited and running cost of 
electricity related to light-manipulation (See Table 1 and 2 for treatment description and 
table 5 for data calculations). Dashed lines are the linear regression given with their 
respective equation and regression coefficient. All regression conformed to a linear 
model (a: r2 = 0.895; p < 0.001; b: r2 = 0.778; p < 0.005; c: r2 = 0.605; p < 0.05 and d: r2 
= 0.778; p < 0.005). Note: Treatment 6C was not included in the regression analysis of 
datasets a. b. and c. as the light-power installed (W) and energy used (Wh) was 
excessively high. 
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4. Discussion 

4.1. Comparison of light-outputs between technologies and set-ups  

It is established knowledge that the red-end of the visible spectrum is the most 

attenuated in seawater followed by violet-blue light, which is further absorbed by fine 

particles such as silt, while blue-green light travels the greatest distance (Lobban and 

Harrison, 1994; Denny, 2008). In this study, the attenuation coefficient (% m-1) of the 

narrow bandwidth green-spectrum (λ 546 nm) G-unit was nearly 30% lower than that of 

the wide-spectrum C-unit. This might however also reflect a more diffuse illumination 

due to the length of the G-unit bulb (1.80 m long). This is further supported by the fact 

that light-attenuation was similar for the R-and C-units and highest for the B-unit.  

The level of irradiance emitted will also vary with the energetic consumption of 

the unit and its efficiency at converting energy-input into light-output. Strong linear 

correlations were measured between the electrical consumption and the biologically 

effective irradiance distance of individual lamps (r2 = 0.873, data not shown) or the 

mean-irradiance measured in the rearing-volume (r2 = 0.890, Fig. 7a.). Energy 

consumption of the lighting-system can therefore be considered as a key factor affecting 

irradiance level. However, light-output relative to energy consumption also varied 

between technologies and was higher for the B-unit suggesting that LED technology 

could ultimately achieve the same effective distance that the C-unit with a lower energy 

input. In contrast, the G- and R-unit did not offer a comparative advantage over the C-

unit in terms of effective irradiance distance per unit of energy used.  

Light-unit energy consumption and effective irradiance distance are simple and 

practical indicators of the illumination that can be achieved. The latter can be further 

converted into a theoretical volume of effective irradiance which is more relevant to the 

three-dimensional aquatic environment. In this study, the B-, G- and R-units achieved 
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5.4%, 20.3% and 38.2% of the C-unit effective irradiance volume respectively such that 

18.4 B-, 4.9 G- and 2.6 R- units would be theoretically needed to equal 1 C-unit. Slight-

variations in the effective irradiance distance are responsible for substantial variations in 

the corresponding volume as the volume of a sphere is proportional to the cube of its 

radius. This underpins the technical advantage of increasing the power, hence effective 

distance of a unit instead of multiplying their number.  

Discrepancies in theoretical volume of effective irradiance also occurred within 

the experimental set-ups and this was reflected in the vertical profiles of nocturnal 

down-welling irradiance. Irradiance profiles measured in the rearing pen are dependent 

on light-unit positioning and hence represent the true illumination perceived by the 

stock. This is particularly true as they are based on down-welling light-irradiance which 

was shown, as opposed to up-welling irradiance, to suppress circulating plasma 

melatonin in seabass (Bayarri et al., 2002). This is expected to remain true in most 

teleost species due to the anatomic localization of the pineal gland on the dorsal surface 

of the teleost brain. Of note, these profiles show an apparent poorer performance of the 

4R compared to the 4G set-up despite the longer effective distance of the former light-

unit. This is likely to be due to the design of this early prototype incorporating a 

detrimental bottom cap acting as a barrier to down-welling light passage. Conversely, 

the length of the G-unit bulb favoured a more homogenous light distribution as evident 

from the more consistent irradiance between different depths. 

 

4.2. Lighting-systems and suppression of maturation  

In In Atlantic salmon, a significant GSI rise occurs at an advanced stage of 

gonadogenesis from July onward but recruitment into maturation for completion in the 

fall is already determined in spring/summer (Aksnes et al., 1986; Leclercq et al., 

2010b). This study used three recognized indicators of maturation in June: plasma-T 
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levels above 3 ng ml-1 (Taranger et al., 1998; Oppedal et al., 1999), the upper GSI mode 

in the male cohort (Kadri et al., 1997; Leclercq et al., 2010a) and the occurrence of 

exogenous vitellogenesis in female gonads (Taranger et al., 1998), further confirmed 

using nuptial colouration in autumn (Leclercq et al., 2010b). All LL-treatments in trial 2 

and 3 (4G, 4R, 4Ca,b) and 6C treatment (trial 1) were highly effective at suppressing 

sexual maturation. This concurs with previous studies, performed under varying 

conditions and latitudes using different fish stocks, demonstrating the potency of the 

photoperiod regime used in these trials at reducing Atlantic salmon pre-harvest sexual 

maturation (Hansen et al., 1992; Porter et al., 1999; Taranger et al., 1998, 1999; Endal 

et al., 2000; Leclercq et al., 2010c). In particular, similarly low maturation rates as those 

shown in trials 2 and 3 were previously reported (Oppedal et al., 1997, 2006). One 

exception is the 8.8% maturation rate observed in one 4Cb replicate (trial 3) despite 

being the established technology (metal-halide) used in the salmon farming industry. 

This replicate also exhibited a significantly higher K in June which, at this calendar-

time, can be viewed as a consequence of the anabolic effect of sexual maturation (Kadri 

et al., 1996, 1997, Leclercq et al., 2010a). 

 

4.3. Light-intensity threshold and suppression of maturation 

The hormone melatonin, released by the light sensitive pineal-gland, accurately 

reflects the prevalent photoperiod and is a reliable indicator of light perception in 

teleosts (Falcón et al., 2010). Of note, plasma melatonin levels hence light-perception 

were not significantly different between treatments during day-time (trial 1). This 

confirms the idea that day-time natural illumination (sunlight) prevails and conceals the 

artificial-illumination regardless of variations in the lighting-technologies and in 

environmental conditions. During night-time, all LL-treatments in trial 1 caused a 
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reduction in plasma-melatonin levels below that measured under NP treatment (natural 

darkness). The suppression of nocturnal plasma melatonin further increased with mean-

irradiance measured in the sea-cage (6C>2C>6B>2B>NP). This concurs with previous 

in-vitro and tank-based studies in Atlantic salmon and European sea bass (Yáñez and 

Meissl, 1996; Porter et al., 2001; Bayarri et al., 2002; Migaud et al., 2006) and was not 

previously reported in commercial sea-cages using different lighting-technologies, 

spectra and set-ups. It is acknowledged that, in the present study, discrimination 

between the effect of light-quantity and quality was not possible as the lighting-

strategies tested emitted different intensities and spectra. However, and in line with our 

findings on melatonin, a significant negative linear correlation was found between 

mean-irradiance in the rearing volume (achieved from different spectra) and maturation 

rate. Our data suggest that light-intensity is the main light-property affecting biological 

potency and that the different light-spectrum tested can achieve the desired effects at 

similar intensities. Artificial-light must therefore be provided at sufficient intensity in 

order to mask the circadian amplitude of light-intensity to a threshold value below 

which it is perceived as continuous and affects reproductive events (Oppedal et al., 

1997, 1999; Porter et al., 1999; Kissil, et al., 2001). In mammals it is similarly assumed 

that a 2-fold increase in basal day-time plasma melatonin induces a physiological 

response (Reiter, 1988). In this study, the increase in nocturnal plasma melatonin was 

2.9-fold and 1.7-fold daytime levels in 2B and 6B respectively where maturation rates 

were virtually unaltered compared to NP. The levels of irradiance measured in those 

treatments may have therefore been too low to influence the circannual entrainment of 

reproduction. In contrast, 2C-treatment suppressed the nocturnal rise of plasma 

melatonin to a non significant 1.2-fold increase above day-time levels and maturation 

rate was indeed significantly inhibited. Present data show that the threshold ratio of 
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nocturnal:diurnal plasma melatonin levels effectively suppressing sexual maturation in 

1+ Atlantic salmon was below 1.65 (2B) and around 1.22 (2C), as compared to a 7.7-

fold rise under natural darkness. This confirms that light-intensity per se plays an 

important role in altering the physiological response related to sexual maturation and 

that plasma melatonin is a reliable indicator of light perception at the population level in 

a commercial sea-cage environment. However, further in vivo studies using 

experimental tank-based systems are required to distinguish the effects of light-intensity 

and spectrum on salmonid performance. 

Another important factor affecting light perception and the potency of LL-

regime is the strong photic attraction of Atlantic salmon which position themselves at 

the depth of the submerged light-units during night-time (Juell et al., 2003; Juell and 

Fosseidengen, 2004). Although not assessed in this study, this is likely to explain the 

statistically similar plasma melatonin levels and the low maturation rates observed in 

2C and 6C groups which highlight their similar potency despite variations in energy use 

and irradiance levels (effective volume and down-welling profiles). Across all trials, all 

treatments except 2B and 6B were also similarly effective at suppressing sexual 

maturation. From the present dataset, the threshold volume of effective irradiance to 

provide would be around 12% (4G) of the sea-cage. The deployment of 0.28 Wh m-3 of 

light-energy consumption generating a mean-irradiance of 0.012 W m-2 in the rearing 

volume (Fig. 7b, c) can further be considered as a safe threshold to suppress sexual 

maturation of 1+ Atlantic salmon to basal levels. Although not directly comparable, it is 

interesting to note the proximity of this mean-irradiance threshold determined under 

commercial conditions with the minimum level of irradiance effectively suppressing 

plasma melatonin to day-time level previously determined under laboratory conditions 

(0.016 W m-2; Migaud et al., 2006). 
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4.4. Lighting-system and growth 

The present data do not allow accurate characterisation of the effect of light-

intensity and light-spectrum on Atlantic salmon growth. A growth enhancement (SGR 

and RWG) was nonetheless apparent in populations exposed to greater irradiance levels 

(trial 1: 6C>2C>6B>2B; trial 2: 4Ca>4G, trial 3: 4Cb>4R). This supports previous 

reports in salmonids where growth and appetite were shown to be stimulated 

proportionally to the intensity of LL provided (Oppedal et al., 1997, 2003, 2006; Endal 

et al., 2000; Taylor et al., 2005, 2006). However, this was not the case in trial 2 where 

similar growth parameters were measured in 4Ca and 4G groups despite a reduced 

irradiance from the latter treatment. Not withstanding that present growth data should be 

interpreted with caution, this suggests a spectrum-specific stimulation of growth or a 

higher sensitivity of Atlantic salmon to blue-green wavelengths. Such spectral 

sensitivity was previously reported (Vera et al., 2010) and discussed as adaptative to the 

previously experienced photic environment (Lythgoe, 1980; Shand et al., 2008). The 

present findings, showing that different light-technologies effectively suppress sexual 

maturation, warrant further testing of the effect of light-property on Atlantic salmon 

growth. Together, this would allow identifying the most appropriate light-technologies 

to be used by the Atlantic salmon industry. 

 

4.5. Cost-benefit analysis  

Our preliminary cost-benefit analysis primarily highlighted the strong benefit of 

photoperiod manipulation inherent to the low running-cost of electricity in comparison 

to value of the biomass that would otherwise sexually mature. For example, the 

running-cost of electricity in treatment 4Ca and 4Cb (trial 2 and 3) were equal to the 
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value of 0.3% of the stocked biomass and the net savings on electrical cost (based on a 

21.9% maturation rate observed in NP treatment) were always over £55,000  in trial 2 

and 3. Although this analysis did not include other costs (capital, bulb and maintenance 

cost), this demonstrates that a complete suppression of maturation must be achieved 

through photoperiod manipulation to optimize the sustainability of the industry. With 

regards to the financial assessment, this also means that minor variations in maturation 

rate had a strong effect on the net saving on electrical cost. The economic return on 

light-manipulation (the value of biomass inhibited per unit of energy expenditure) is 

less sensitive hence more appropriate when comparing different treatments. In trial 2 

and 3, this indicator was higher for 4G and 4R as these treatments achieved a similarly 

high inhibition of maturation with a lower energy use in comparison to 4Ca and 4Cb. 

Light-manipulation strategies 4G and 4R were the most cost-effective by providing the 

optimal level of light-intensity with biologically potent spectrums, despite the lower 

technical performances of units G and R (i.e. effective irradiance distance per unit of 

energy used). In contrast, both B-treatments showed poor economical performance due 

to a low suppression of sexual maturation which is likely to be due to the undersized 

light-power installed and irradiance achieved. However, B-units had the highest 

effective irradiance distance relative to energy use suggesting that they could offer the 

highest financial return if applied at higher intensities (e.g. >50W). Conversely, the 6C 

treatment successfully suppressed sexual maturation but was oversized hence its poorer 

economic performances.  

This study demonstrated that pre-harvest sexual maturation can be efficiently 

suppressed using alternative lighting-technologies and with the best financial return by 

providing a properly scaled level of light-intensity. The optimal light-intensity is also 

likely to vary, to some extent, with the light-spectrum provided which requires further 
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experimental assessment. The possibility to choose from a wider range of lighting-

technologies is of considerable advantage in itself as selecting an aquacultural lighting-

technology is a trade-off between technical (e.g. consistency of output and reliability), 

practical (e.g. handling and maintenance), health and safety (e.g. voltage) and economic 

(e.g. capital and bulb cost, life-span) parameters. Extrapolation of the present results to 

other commercial environment must however proceed with caution due to variations in 

the genetic origins of the fish, environmental and husbandry conditions. The present 

study warrants further testing of the effect of light-property on Atlantic salmon growth 

and is also expected to facilitate the assessment and deployment of effective lighting-

strategies in other aquacultural systems and species. 
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