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Abstract 1 

Rhododendron ponticum is a serious invasive alien plant in the British Isles and is of 2 

significant conservation and economic concern. Here, we integrate information on both the 3 

life-history and spatial dynamics of this species within an individual-based, spatially-explicit 4 

model and investigate the effectiveness of different control strategies. Importantly, we 5 

simulate seed movement and dispersal using a mechanistic seed dispersal model. We 6 

investigate the effectiveness of initiating control at the edge versus the core of the infestation, 7 

with and without returning each year to remove seedlings. We compare these results to an 8 

age-dependent strategy whereby the oldest plants are removed each year. Age-dependent 9 

control, in which the oldest plants were removed first, was the most effective strategy 10 

investigated, both in terms of the probability of successful eradication and the number of 11 

years taken to control. We demonstrate that this is because the older (and taller) plants 12 

towards the core produce more seeds that, on average, travel further. Indeed, our results 13 

suggest that the expansion of the invading front is actually driven as much by seeds that 14 

disperse long distances from these larger plants as by the seed rain from recently matured 15 

plants located much closer to the front. Finally, we investigate the potential use of „quarantine 16 

lines‟ - corridors of unsuitable habitat that are sufficiently wide to contain an infestation, 17 

preventing spread to vulnerable areas. This study has provided generic insights into best 18 

practice for management based on the current understanding of the biology and ecology of 19 

this pernicious, invasive plant. 20 

 21 

Keywords: control strategies; invasive alien plant; eradication; individual-based model; seed 22 

dispersal. 23 

24 
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Introduction 1 

Invasive alien plant species are increasingly being recognised as important drivers of 2 

ecological change, with consequences for ecosystem processes, biological diversity, 3 

economics and human health (Earth Summit, Rio Convention, 1992 http://www.cbd.int/; 4 

Vitousek et al., 1996; IUCN Council, 2000; Le Maitre et al., 2000). Vast sums are spent on 5 

control programs. For example, up to 6 million dollars is spent annually on controlling the 6 

tree Melaleuca quenquenervia in the United States, and 100 million dollars on controlling 7 

invasive aquatic weeds (Pimentel et al., 2000 and refs within). Given that evidence suggests 8 

that impacts of invasive plants are likely to be exacerbated by future increases in large-scale 9 

habitat modification and by climate change (e.g. Mooney and Hobbs, 2000) the demand for 10 

more efficient and effective control strategies is likely to grow. 11 

 12 

Despite often very considerable expenditure, examples of successful eradication of invasive 13 

plants are relatively few. If control is implemented very early in an invasion process and all 14 

individuals are detected and removed before they set seed then complete extirpation can be 15 

achieved (Mack and Lonsdale, 2002). However, if an infestation is given the chance to 16 

become established then eradication, and even containment, becomes increasingly difficult. 17 

Invasions are inherently spatial, and while we may often know how best to remove individual 18 

plants we lack an understanding of how we should optimally target our control efforts to 19 

achieve local eradication or containment at the landscape scale. An important management 20 

question, therefore, is how a finite resource for control should be used to achieve management 21 

objectives over a particular time horizon. Spatially explicit models of invasion dynamics offer 22 

a powerful framework for exploring this question. 23 

 24 

http://www.cbd.int/
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A range of different types of spatial model have been used to describe invasion processes. 1 

Reaction diffusion equations (e.g. Skellam, 1951; Okubo and Levin, 2001), integrodifference 2 

equations (e.g. Kot and Schaffer, 1986; Neubert et al., 1995; Shigesada and Kawasaki, 2002) 3 

and spatially-explicit simulations all continue to be used (e.g. Higgins, 2000; Wadsworth, 4 

2000). There are clear benefits of the more mathematical methods in that they permit a rapid 5 

exploration of parameter space and, in many cases, provide exact solutions. However, while 6 

these models can now incorporate considerable ecological realism such as age/stage structure 7 

(e.g. Caswell et al., 2003; Neubert and Caswell, 2000), Allee effects (Veit and Lewis, 1996) 8 

and long-lasting transients (Hastings and Higgins, 1994), questions still remain as to whether 9 

they capture the dynamics adequately when demographic stochasticity is important (eg. 10 

Snyder, 2003; Clark et al., 2001; Kot et al., 2004). Individual-based spatially explicit models 11 

are relatively straightforward to implement and computing power now imposes far less of a 12 

constraint than it used to; simulations are now feasible even when they involve many millions 13 

of individuals. The simulation approach allows stochasticity to be introduced and also offers 14 

the potential to explore a wide-range of control scenarios. Additionally, both the specification 15 

of a rule-based model and the graphical results that emerge from it are quite readily 16 

interpreted by non-modellers within a community of stakeholders. Clearly, both mathematical 17 

and simulation based approaches can play an important role in the development of more 18 

effective control strategies and here we seek to develop an individual-based model for the 19 

spatial spread of a plant species.   20 

 21 

Many models that consider optimal control strategies for invasive plants are spatially implicit 22 

(e.g. Parker, 2000; Buckley et al., 2003b; Taylor and Hastings, 2004; Hall & Hastings, 2007), 23 

and, of these, many are deterministic. However, a number of studies using spatially explicit 24 

simulation models have now clearly demonstrated that where control effort is initially 25 
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targeted can have a considerable bearing on the likelihood of success (Moody & Mack, 1988; 1 

Higgins et al., 2000; Wadsworth et al., 2000; Hulme, 2003). In many cases the optimal 2 

control strategy is very dependent on the assumptions of the authors as to which individuals 3 

are responsible for the majority of seed production and long distance dispersal events. For 4 

example, Wadsworth et al. (2000) suggest that control of satellite populations could be a 5 

useful strategy where the spread of a species was dominated by relatively short range 6 

dispersal events, but not for species with long distance dispersal, and particularly those whose 7 

seeds disperse along waterways. More recently, the results of invasion models incorporating 8 

metapopulation dynamics have led to a strategy of first controlling larger core populations. 9 

This approach rapidly reduces the propagule supply that contributes most to long-distance 10 

dispersal and therefore the generation of satellite populations (Hulme, 2003).  11 

 12 

Whether it is best to start control at the expanding front, or at the core, has been of interest not 13 

only to theoreticians, and there are numerous examples where one or the other strategy has 14 

been adopted in programs aimed at eradicating different invasive plants.  The campaign 15 

against witchweed, Striga asiatica, originally introduced to the United States in 1956 pursued 16 

a removal strategy starting at the periphery of infestation and working towards the centre 17 

(Eplee, 1979). By 1999, this approach had eradicated 97% of the maximum known infested 18 

area, although this species is still recorded as a weed in the Carolinas (Eplee, 1992; 19 

Westbrooks and Eplee, 1999). This strategy of removing outlying small populations and 20 

systematically reducing the size of the main infestation from the edge inwards has become the 21 

rule of thumb for many agricultural weeds and other invasive plants including leafy spurge, 22 

Euphorbia esula, in the U.S. (Watson, 1985), the woody shrubs Hakea sericea and H. gibbosa 23 

in South Africa and Mimosa pigra in Australia (Fugler, 1982; Cook et al., 1996), and the trees 24 

Casuarina sp. and Melaleuca quinquenervia in the Florida Everglades (Doren and Jones, 25 
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1997). There have, however, also been some promising results using the opposite approach: 1 

control of several alien plant species on Raoul island off the north coast of New Zealand 2 

initially focused on mature individuals in dense infestations before searching for seedlings 3 

(West, 2002).   4 

 5 

In this study we develop a spatially-explicit, individual-based model to investigate the 6 

effectiveness of a range of control strategies for containment or eradication of Rhododendron 7 

ponticum, one of the most problematic invasive weed species in Britain and Ireland (Cross, 8 

1982, Colak et al., 1998, Rotherham, 2001). R. ponticum was introduced into Britain in 1763 9 

(Elton, 1958) and has since become well-established throughout the British Isles (Cross, 10 

1981, 1982; Gritten, 1995; Rotherham, 1986; Thomson et al., 1993). It thrives in moist, 11 

temperate climates and acidic soils and has established itself in natural and semi-natural oak 12 

and mixed woodlands, heaths, upland acid Nardus grassland and occasionally dune heaths 13 

and bogs (Cross, 1975, 1982). It is an evergreen shrub, the shape and size of which varies 14 

with habitat but it is usually found between 2-8m tall (Cross, 1975).  It flowers each summer, 15 

and seeds are released and dispersed, primarily by wind, during February and March the 16 

following year (Cross, 1975).  Large numbers of seeds are produced each year and 17 

germination occurs during spring and summer.  There is little evidence for a seed bank and it 18 

is believed that only the current source of seed in a given year is important in terms of annual 19 

recruitment (Cross, 1975; Shaw, 1984).  Within woodland, R. ponticum has a number of 20 

competitive advantages over other understorey species (Cross, 1973) and the dense shade it 21 

casts and its allelopathic effect
 
may prevent successful germination and establishment of 22 

native tree seedlings so that as canopy trees die there is no regeneration (Cross, 1982; 23 

Rotherham and Read, 1988). The reduction in native species in a woodland leads to a 24 

reduction in the fauna that rely upon native plants for resources such as food or breeding 25 
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habitat (Cross, 1982; Colak et al., 1998). Therefore, R. ponticum invasion of a habitat can 1 

result in reduced overall biodiversity (eg. Colak et al., 1998). 2 

 3 

R. ponticum can also present considerable logistical and economic challenges to forestry 4 

operations as infestations under woodland canopies can become extremely dense, interfering 5 

with stand development, and limiting the capacity of a woodland to regenerate naturally 6 

(Edwards et al., 2000). Controlling R. ponticum can cost between £150 and £10,000 per 7 

hectare depending on bush size and density, habitat and site accessibility (Dehnen-Schmutz et 8 

al., 2004), although restoration costs may also have to be considered. Control can be 9 

successful if recommended removal and herbicide regimes are employed (eg Barron, 2000; 10 

Edwards et al., 2000; Edwards, 2006; Eşen and Zedaker, 2004). The main problem with 11 

widespread control of this species is expense, and lack of funds can be a major factor limiting 12 

R. ponticum control efforts and allowing re-invasion from uncleared areas. Thus, it is 13 

important that, where eradication requires sustained effort over a prolonged period of time, 14 

work is targeted so that the control strategy is as efficient and cost-effective as possible. 15 

 16 

The model presented in this study examines the relative success of different spatial and age-17 

structured control strategies in achieving complete eradication from an infested area, and the 18 

efficacy of quarantine lines as a containment, rather than eradication, strategy. Buckley et al. 19 

(2001; 2003a, b) have emphasised that the ecology and biology of invasive plant species will 20 

influence the effectiveness of different control strategies. Although there are still gaps in our 21 

knowledge about this species for which we have to make assumptions, we are fortunate that 22 

we now have a comparatively detailed knowledge of this species‟ life-history through both 23 

empirical and modelling studies (eg. Stephenson et al., 2006; Stephenson et al., 2007; data 24 
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presented in this paper), and by building this information into a stochastic simulation model 1 

we aim to provide some sound generic management recommendations for control.  2 

 3 

Methods 4 

Field Study 5 

A range of empirical data was collected from three different field sites in the region of Argyll, 6 

in Scotland (UK) where R. ponticum was established; an open landscape located near 7 

Kinlochleven, (56
o
43‟23‟‟N, 4

o
57‟55‟‟W), a mixed woodland near Lochgilphead 8 

(56
o
01‟37‟‟N, 5

o
24‟31‟‟W) and a mixed woodland near Achnamara (55

o
59‟35”N, 9 

5
o
36‟43”W).  The smallest field site was at Achnamara (130m x 200m) where a complete 10 

census of all plants was conducted.  Kinlochleven and Lochgilphead were larger field sites, 11 

with plants at Kinlochleven being sampled along a 1260m transect and at Lochgilphead plants 12 

were randomly sampled within a 1000m x 1000m area.  13 

 14 

At each site, height (m) and age measurements were collected for a range of plants (n=251). 15 

At Kinlochleven and Lochgilphead we also counted the number of flower buds on all plants 16 

with buds present (n=75).  Age was measured by counting rings from a cross section removed 17 

from the lowest point of the trunk possible.  As the rings at the centre of each core were too 18 

dense to be counted easily for all of the cores we had to derive a correction factor. 19 

Specifically, thin stem sections were taken from 10 randomly chosen cores and the smallest 20 

rings on each were counted under a microscope at 12x magnification. From this we obtained 21 

an approximate correction factor of seven years, which we added to each plant where at least 22 

one ring could be counted by eye. For small cores where no distinct rings were visible it was 23 

assumed that the plant was less than seven years old. Therefore, each plant was assigned an 24 

age of either less than seven years old or the number of rings counted plus seven years.  For 25 
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the purposes of this model we only included data from plants in locations with less than 20% 1 

canopy cover to remove any effects of shading on growth rates and fecundity.  The resulting 2 

dataset had 106 plants with measured height and age (70% of plants from the open field site, 3 

and 30% from the woodland field sites), and 35 plants with flower bud counts (15% of plants 4 

from the open field site, and 85% from the woodland field sites).  The effect of age and age
2
 5 

on height and fecundity was tested in a generalised linear model framework to provide 6 

regression equations for the simulation model (described below).  7 

 8 

Model parameterisation 9 

A stochastic, individual-based, spatially- and temporally-explicit framework was used to 10 

model the spread of R. ponticum through a homogeneous landscape, and to investigate the 11 

efficacy of a range of control strategies. The model set up consists of a single plant being 12 

introduced to a random position within the central square (300 by 300 metres) of a landscape 13 

600 by 600 metres in size.  Over the timescales being investigated and, given the control 14 

strategies being implemented, this landscape size was large enough not to have to consider 15 

boundary conditions and edge effects. Each year the following events happen to each 16 

individual in turn (the order in which individuals are updated is random). First the age of each 17 

plant is incremented. Then, if the plant is reproductively mature, it produces seeds that are 18 

dispersed according to the WINDDISPER model (Nathan et al., 2001; Stephenson et al., 19 

2007), parameterised with a distribution of mean daily windspeeds (mean = 9±6msec
-1

), and a 20 

distribution of release heights and seed numbers appropriate for the age of a given plant (see 21 

field study results).  Figure 1 shows example dispersal kernels for plants 1m, 2m and 4m tall 22 

given the afore-mentioned parameterisation. The windspeed distribution was derived from 23 

mean daily windspeed measurements recorded over 6 weeks from a permanent weather 24 

station in southeast Scotland (see Stephenson et al., 2007 for further details of wind data).   25 
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 1 

In brief, WINDDISPER is a simple mechanistic model for seed dispersal and is essentially a 2 

„ballistic‟ model (Katul et al., 2005). A key feature of WINDDISPER is that it takes a 3 

Lagrangian approach, in that it focuses on the movement of individual seeds each of which 4 

have slightly different characteristics (e.g. height of release, terminal velocity). Nathan et al. 5 

(2001) set the model up such that it „calculates the postdispersal deposition of individual 6 

seeds by randomly selecting the values of all operative parameters from their empirical 7 

distributions‟.  Full details of the WINDDISPER model and its derivation are provided in 8 

Nathan et al. (2001), and a discussion of its relevance and application to the dispersal of R. 9 

ponticum seeds can be found in Stephenson et al. (2007). Our approach is identical and thus 10 

each seed dispersed within the simulation is randomly allocated a windspeed from the 11 

distribution described above. Similarly each seed is randomly allocated a terminal velocity 12 

from a distribution derived from empirical data and described in Stephenson et al. (2007).  13 

We have, for simplicity, assumed there to be no vertical (either upwards or downwards) wind 14 

speed in our implementation of WINDDISPER, but this can be readily incorporated if data for 15 

paramaterisation were available (see Nathan et al., 2001). Similarly, wind direction was not 16 

included in the parameterisation so the dispersal probability was the same in all directions.  17 

 18 

Following collection of data from the field studies, the minimum age of maturity for R. 19 

ponticum was set at 13 years. The regression equations (see results section) used to predict the 20 

fecundity and height of plants were only applied to plants up to 50 years old (the maximum 21 

age plant sampled) to prevent extrapolation beyond the empirical data. Although plants were 22 

allowed to continue increasing in age, the height and fecundity were capped at the 50 year old 23 

level.  There is a lack of empirical data relating to survival probabilities of R. ponticum seeds 24 

from dispersal to germination and through to establishment. Rather than disperse very large 25 
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numbers of seeds from each plant and apply arbitrary germination and establishment 1 

probabilities, which, computationally, would have been very intensive, we chose to disperse 2 

only one seed per flower bud (which contain approximately 4500 seeds (unpublished data)).  3 

This implicitly accounts for mortality at the germination and early seedling establishment 4 

stages.  Additionally, as there is some evidence of allelopathy in R. ponticum (Rotherham and 5 

Read, 1988), each dispersed seed was subjected to a density-dependent establishment 6 

probability whereby successful seedling establishment only occurs if the location at which a 7 

seed lands is more than two metres from an already established plant. We assume limited 8 

vegetative spread occurs in temperate zones (Cross, 1975; Cross, 1982; Mejias et al., 2002) 9 

and so reproduction in this model is solely by seed. Once established, no annual probability of 10 

natural mortality was applied to each plant until it was 100 years old at which point it was 11 

killed and removed from the landscape.  We used the model framework to investigate a 12 

number of different control strategies through simulation.  13 

 14 

Edge versus core with and without return 15 

We compare two fundamentally different control options, one that focuses initial efforts on 16 

the expanding front and one that concentrates initially on the individuals close to the point of 17 

introduction, potentially the oldest individuals. For each we look at two subtly different 18 

options; one in which areas previously cleared are revisited each year to control any new 19 

colonisation by seedlings, and one in which any reinvasion is ignored until the whole of the 20 

initially infested area has been cleared. The invasion was allowed to spread for 20, 40, 60 or 21 

80 years before control was initiated. Within these starting conditions, a range of effort levels 22 

(see Figure 2 axes) was investigated by varying the number of individual plants removed each 23 

year of control.  We did not incorporate any variation in the effort required to remove adults 24 

versus removing seedlings because we assume that, to a reasonable first approximation, the 25 

additional search effort required to find seedlings offsets the increased time and cost of 26 
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removing larger plants.  One major assumption of these simulations is that when a plant is 1 

targeted for control, the control strategy adopted is always 100% successful for that given 2 

plant. We also assume that the act of control does not affect the probability or rate of re-3 

invasion of the cleared area, or affect the growth of neighbouring plants (e.g. through release 4 

from density-dependent effects). The four different control strategies are referred to in the rest 5 

of the paper as (1) core with return, (2) edge with return, (3) core without return, and (4) edge 6 

without return. For each scenario, 50 replicates of the simulation were run.  Of the 50 7 

replicates, the proportion of control attempts (replicates) that were successful within 50 years 8 

of control being initiated and the mean number of years to successful control were calculated 9 

for each scenario, which varied in the year control was initiated and the number of plants 10 

removed each year.  Successful control is defined as complete eradication of all plants in the 11 

simulation landscape. 12 

 13 

Age-dependent control 14 

The current recommendation from Forest Research, the agency for the UK Government‟s 15 

Forestry Commission, for controlling R. ponticum is to target mature reproductive plants first 16 

due to the large numbers of seeds they produce (Edwards, 2006). Therefore, we devised an 17 

additional control strategy in which all individual plants were ranked by age and the oldest 18 

plants removed each year.  We investigated the same levels of effort, in terms of numbers of 19 

plants removed each year, as described above (see also Figure 2 axes).  Again, the proportion 20 

of control attempts (replicates) that were successful and the mean number of years to 21 

successful control were calculated for each level of effort, and for each simulation, 50 22 

replicates were run.   23 

 24 

Invasion containment 25 
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In many situations it is not possible to completely eradicate R. ponticum from an invaded 1 

area. This can be for one of a number of reasons ranging from funding limitations to the 2 

refusal of particular landowners to take part in a control program. An alternative in such 3 

situations might be containment of the invasion within a specified area, where effort is 4 

focussed on preventing spread into neighbouring areas. We introduced corridors of unsuitable 5 

habitat of varying widths (50, 100 and 150m) to investigate the potential for such corridors to 6 

contain the spread of R. ponticum with no active control effort. These corridors of unsuitable 7 

habitat will be referred to as quarantine lines from here on in. The effectiveness of quarantine 8 

lines of different widths is likely to be dependent on the windspeeds experienced at a site, and 9 

hence the dispersal potential of the plants. For each quarantine line width we investigated the 10 

probability of containment under two windspeed distributions (from the same permanent 11 

weather station described above), one with a mean windspeed of 9±6msec
-1

 (mean daily 12 

windspeed) and the other with a mean windspeed of 15±7msec
-1

 (maximum daily windspeed). 13 

The number of years it took for the first plant to escape the containment area was calculated 14 

from the time when the infestation reached within 10m of the edge of the containment area 15 

(rather than the year of invasion introduction). This represents the length of time the 16 

quarantine line was effective as a barrier to spread, and was used as the measure of success. 17 

As 50 replicates were run of each simulation, we also expressed this output as the cumulative 18 

proportion of replicates each year in which at least one seedling had escaped and established 19 

outside of the containment area.  In addition, the number of seedlings established outside of 20 

the containment area was recorded each year in each simulation.  The simulation was allowed 21 

to run for 130 years from the point of the first introduction.   22 

 23 

Origin of seedlings at the invasion front 24 
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To assist in the interpretation of the results from the different control and containment 1 

strategies and determine which plants are responsible for the seedlings at the invasion front, 2 

we ran the model without any control and collected data on the distance travelled by seeds 3 

dispersing from plants at different distances from the central point of the invasion. Data were 4 

captured 60 years, 80 years, 100 years and 120 years after the start of the invasion. 5 

 6 

All simulations were written and run in C++ Borland Builder 6. Throughout, all errors are 7 

reported as standard deviations.   8 

 9 

Results 10 

Field study 11 

There was a highly significant positive relationship between height (m) and age (height = -12 

1.1968+7.368(age); P <0.0001, R-sq = 0.64), which provided the model with a maximum 13 

seed release height for a plant of a given age. There was also a positive relationship between 14 

age and the number of flower buds (number of flower buds = -100.84 +8.144(age); P 15 

<0.0001, R-sq = 0.61), which provided the model with an estimate of the number of flower 16 

buds on each plant in the invasion given its age.  17 

 18 

Edge versus core with and without return 19 

When control was started 20 years after R. ponticum introduction it was possible to achieve 20 

complete eradication under all four control strategies with little effort. Only when the level of 21 

effort was reduced to 5 plant removals per year was the effectiveness of all, except starting at 22 

the core without return, reduced.   The edge strategy without return for seedlings took the 23 

longest time to eradication under very low levels of effort (Fig. 2e).  24 

 25 



 15 

Unsurprisingly, the level of effort required increased the longer the invasion was allowed to 1 

establish unchecked (Fig. 2). When control was initiated after 40 years, the strategy that 2 

required the least amount of effort to achieve eradication in all replicates was either to start at 3 

the core or edge without returning for seedlings (Fig. 2b). Starting at the core and returning 4 

for seedlings, however, only required the removal of 40 more plants per year to achieve 5 

similar results. Starting at the edge and returning for seedlings was the least successful of 6 

these strategies.  7 

 8 

The results observed when control was started at 60 or 80 years were very similar to those 9 

seen above when control was initiated at 40 years for the strategies with no return for 10 

seedlings. The biggest difference when compared to control starting at 40 years relates to the 11 

widening gap between the strategies with and without return. After 60 years, the core strategy 12 

with return required the removal of 425 plants per year for successful eradication compared to 13 

approximately half the effort (225 plants per year) for the core strategy without return. After 14 

80 years the core strategy with return was only successful with the removal of 1100 or more 15 

plants per year, whereas the core and edge strategies without return were successful with the 16 

removal of only 500 plants per year. After an invasion was established for 60 years or more 17 

starting at the edge and returning for seedlings was never successful.  18 

 19 

Age-dependent control 20 

Regardless of the year that control was initiated, removing the oldest plants each year proved 21 

to be a much more efficient strategy than any of the four spatially-defined strategies discussed 22 

above, both in terms of the number of plants required to be removed each year to achieve 23 

successful eradication and in the number of years taken to completely eradicate the invasion 24 

(Fig. 2). For example, when control was initiated after 60 years of invasion and 250 plants 25 



 16 

were removed each year, both the core and edge strategies without return required more than 1 

15 years to achieve eradication whereas age-dependent removal only required 7 years given 2 

that level of effort (Fig. 2g). Eradication could also be achieved by removing as few as 150 3 

plants per year under the age-dependent strategy compared to a minimum of 225 plants for 4 

the two non return strategies (Fig. 2c) 5 

 6 

Invasion containment 7 

With a 50m quarantine line and a mean windspeed of 9msec
-1

, the first plant established 8 

outside the containment area 10 years after the invasion reached within 10m of the edge of the 9 

containment area (Fig. 3). After 40 years a mean of 10.9±30.2 plants had escaped and 10 

established outside of the containment area. When the mean windspeed was higher (15msec
-1

; 11 

Fig. 3), the first plants established outside the containment area after 10 years, with a mean of 12 

111.5±93.4 plants having established after 40 years. 13 

 14 

With a 100m quarantine line and a mean windspeed of 9msec
-1

, the first plant established 15 

outside of the containment area 50 years after the invasion reached within 10m of the edge of 16 

the containment area with less than 1 plant (± 0.88) on average having escaped by year 60, 17 

whereas with a mean windspeed of 15msec
-1

, the first plants established outside the 18 

containment area by year 25 (Fig. 3), with a mean of 72.3±58.4 plants after 60 years. 19 

 20 

With a 150m quarantine line no plants escaped and established outside of the containment 21 

zone under the mean windspeed of 9 msec
-1 

within the 40 to 80 years that data was collected 22 

following the invasion reaching the edge of the containment area.  With the mean windspeed 23 

of 15msec
-1  

 the first plants established outside the containment area by year 54 (Fig. 3), with 24 

a mean of 1.8±2.8 plants having escaped after 70 years. 25 



 17 

 1 

Origin of seedlings at the invasion front 2 

Range expansion is driven by seeds dispersed from larger plants well behind the front (Fig. 3 

4). In all years the majority of seeds fell near the core of the invasion and originated from the 4 

oldest plants close by. However the oldest plants near the core were also responsible for a 5 

large number of the seeds landing at the edge of the invasion front, and in year 60 and 80 the 6 

tallest plants near the core dispersed seeds further than any of the recently mature plants near 7 

the edge of the invasion front (Fig. 4). By year 100 and 120, the main seed source had spread 8 

outwards from the core and the plants right at the centre of the invasion were no longer the 9 

main drivers of the range expansion.   10 

 11 

Discussion 12 

We developed a spatially-explicit individual-based model to investigate a range of control 13 

strategies for the invasive R. ponticum, based on time-scales of invasion that are realistic 14 

within the UK context (20-80 years). The availability of life-history, demography and 15 

dispersal parameters has allowed us to make management recommendations specific to this 16 

problematic shrub species, and the recommendations made here can be compared with those 17 

made for other invasive species with different life-histories and dispersal ability (Moody and 18 

Mack, 1988; Higgins et al., 2000 Wadsworth et al., 2000).  19 

 20 

Assumptions had to be made in the model due to a lack of data on some aspects of R. 21 

ponticum biology.  The most notable is the dispersal and establishment of one seed per flower 22 

bud in place of explicitly dispersing all seeds and then applying germination and 23 

establishment probabilities to each individual seed.  It is hard to assess whether this 24 

assumption is conservative or not because germination and establishment rates appear to vary 25 
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widely between habitat types and therefore may represent an over-estimate of seedling 1 

recruitment in some landscapes but an under-estimate in others.  However, increasing or 2 

decreasing the number of dispersing and surviving seeds in the model is only going to have an 3 

effect on absolute levels of effort in terms of numbers of plants to control and number of 4 

years required for control, not on the relative efficacy of each control strategy.  As a result, 5 

absolute levels of effort reported in this study should be interpreted with caution.   6 

 7 

Another assumption of note is that the underlying landscapes included in the model were 8 

simple, and were either suitable (100% of germinating seeds successfully establish in the 9 

absence of an already established plant) or unsuitable (0% establishment). This is a gross 10 

over-simplification of the real relationship between habitat and establishment but has allowed 11 

general rules for management to be investigated without involving complexity that would 12 

render recommendations specific to particular sites or landscapes. The generic 13 

recommendations for control resulting from the model are likely to be conservative as it is 14 

unlikely that any landscape will be 100% suitable and so the levels of effort required are 15 

probably over-estimates and, as mentioned above, should not be taken as absolute values. 16 

However, as theory has already demonstrated that even simple patterns of spatial 17 

heterogeneity can alter the optimal control strategy for invasive species (Travis and Park, 18 

2004), a priority for future work is to develop further the existing model by making it not 19 

simply spatially explicit, but spatially realistic through the incorporation of spatial 20 

heterogeneities in windspeed and the species‟ growth rates and reproductive capacity with 21 

respect to habitat. 22 

   23 

The simulations revealed that the control strategy adopted only begins to matter when an area 24 

has been invaded for more than 20 years. However, age-dependent control is the most 25 
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efficient strategy even at this early stage of invasion. In longer established invasions (60-80 1 

years), the most important management recommendation is not to expend effort in returning 2 

for seedlings from recently cleared areas. There was little difference between starting at the 3 

core or edge of the invasion when there was no effort put into returning to remove seedlings 4 

because under both strategies there is removal of adult seed-producing individuals relatively 5 

early on in the control effort. The continual removal of seedlings each year makes little sense 6 

for R. ponticum given that we know from our empirical data that age of maturity is 7 

approximately 13 years. This means that seedlings can be left to grow for a number of years 8 

before they start to reproduce and play an active role in the invasion. This was apparent when 9 

control was initiated after 60 years and the core strategy that returned for seedlings required 10 

almost twice the level of effort to achieve eradication when compared to the core strategy 11 

with no return. It should be noted that it is important to return for seedlings once the original 12 

infested area has been cleared, or if it has been more than 5 or 6 years since an area was 13 

cleared.  By this time seedlings are more easily identifiable (plants of less than five years can 14 

be very small), making clearance of seedlings at this later stage more successful (see 15 

Groundwork Ireland 2000 for information on a long term management and monitoring 16 

programme: http://www.groundwork.ie/; Edwards, 2006).   17 

 18 

Because there appeared to be little difference between the two non-return strategies (edge and 19 

core), we investigated the origin of the seedlings that land at the expanding front of the 20 

invasion. This demonstrated that, for R. ponticum, the plants at the core of the invasion are a 21 

significant source of the seeds that land at the expanding edge of the invasion. This is a result 22 

of the increasing height and fecundity of plants with age, which means that the oldest and 23 

largest plants at the core of the invasion produce more seeds that can travel further (see Fig.1 24 

for differences in dispersal distance distribution with increasing plant height). The movement 25 
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of this band of seed contributors outwards from the core (Fig. 4) may be a result of both 1 

height and fecundity being capped at 50 years old in the simulation meaning that the distance 2 

that seeds can disperse does not continue to increase and therefore the oldest plants at the core 3 

are superseded by plants nearer the edge reaching 50 years old. Because of these 4 

characteristics, we advise that plants at the core of infestations are removed before those at the 5 

invading edges to ensure the removal of plants with the greatest seed dispersal potential. This 6 

contrasts with the rule of thumb that has developed for many species, ie. that control 7 

strategies should focus on the invasion edge (e.g. Fugler, 1982; Watson, 1985; Moody and 8 

Mack, 1988;  Doren and Jones, 1997; Higgins et al., 2000). There are two main reasons for 9 

this difference – firstly, the location of the source of propagules at the expanding front, and 10 

secondly, whether the aim of the control strategy is eradication or containment.  In the system 11 

modelled by Moody & Mack (1988), plants at the edge were the main source of propagules at 12 

the expanding front. Whilst this is likely to be true for some species, particularly annual 13 

weeds, these results suggest that it is not so for long-lived species with characteristics similar 14 

to R. ponticum, where individuals at the core of the invasion are responsible for much of the 15 

seed production and long distance dispersal events, and there is little evidence of a seed bank 16 

(Cross, 1981; Edwards, 2006).  This suggests, therefore, that optimal spatial control strategies 17 

may differ according to a plant‟s life history and demographic characteristics, as these will 18 

influence the location and densities of seed producing plants. 19 

 20 

The difference in control efficiency between the core strategy without return and the age-21 

dependent removal strategy was greater than expected given the results from the seed origin 22 

simulations. The main difference in practical terms between the two strategies is that there is 23 

return each year for the oldest plants under the age-dependent removal strategy regardless of 24 

the locations of the plants. This means that there is constant removal of seed-producing plants 25 
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which results in faster eradication with less overall effort in terms of the numbers of plants 1 

removed each year. From a practitioner‟s perspective it may be that returning each year to 2 

locate and treat the oldest plants is more time-consuming, and therefore costly, than starting 3 

control where it finished the previous year. It would be straightforward, however, to convert 4 

the age classes used here into size classes and thus may make it easier for practitioners to 5 

identify the oldest plants. However, the differential in effort would have to be quite 6 

substantial for age-dependent control to no longer be the most efficient strategy. It is 7 

reassuring that these results coincide with the current management recommendations by the 8 

UK‟s research agency Forest Research (Edwards, 2006).  9 

 10 

The “best” control strategy may vary depending on whether it is felt that containment is 11 

preferable to a failed eradication that spreads widely (Myers et al., 2000). The core or age-12 

dependent strategy may be best when it is possible to remove relatively high numbers of 13 

plants over many years, but if this level of effort cannot be sustained, it may be more 14 

pragmatic to choose an edge strategy in an effort to contain the spread, prevent establishment 15 

of more mature satellite foci and reduce the chance that the invasion will reach areas of high 16 

biodiversity/vulnerable areas (e.g. Doren and Jones, 1997). If medium- to long-term funding 17 

is not available to allow complete eradication of an infestation then it may be preferable to opt 18 

for containment at the outset rather than expending effort for a few years on a control strategy 19 

that is unlikely to be successful. The use of corridors of unsuitable habitat between infested 20 

areas and uninfested areas may be a feasible containment strategy as we have some 21 

understanding of the suitability of different kinds of habitat for establishment. R. ponticum is 22 

unlikely to establish in open, grassy habitats due to the lack of suitable germination and 23 

establishment conditions in dense grass (Cross, 1981; Stephenson et al., 2006), so wide 24 

corridors of undisturbed grassland between infested and uninfested areas may be sufficient to 25 
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prevent or slow down spread between the areas. Before employing this strategy it is important 1 

to have an understanding of the prevailing wind direction and range of windspeeds in the area 2 

of interest as it was evident from the simulations that mean windspeed was an important 3 

factor in determining the success of quarantine lines of different widths.  4 

 5 

All of the quarantine line widths investigated here slowed the spread of R. ponticum to 6 

uninfested areas but it is recommended that quarantine lines be at least 150m, and wider if 7 

possible. Rare long distance dispersal events are likely to be important in determining the 8 

spread of R. ponticum so it is crucial that control strategies employing quarantine lines are 9 

combined with a program of monitoring the uninfested area. It should also be noted that the 10 

only dispersal mechanism that has been quantified for R. ponticum, and therefore included in 11 

this model is wind dispersal (Stephenson et al., 2007). It is unknown to what extent R. 12 

ponticum seeds are carried by animals and humans but it is likely that if animals and humans 13 

are allowed to move freely across a quarantine line then there is a higher probability of spread 14 

across into uninfested areas than if movement is restricted.  15 

 16 

The control strategies investigated here provide some insight to best practice in R. ponticum 17 

control based on the current knowledge of the biology and ecology of R. ponticum. The model 18 

assumes that the removal of a plant is 100% effective, regardless of age and that the combined 19 

cost of searching for, and removing plants, of different ages is equal. However, we know that 20 

in reality control is not 100% effective and is highly dependent on recommended methods 21 

being applied (Edwards, 2006).  Even when recommended methods are followed, the first 22 

treatment is rarely 100% effective and there is often foliar regrowth, which can begin 23 

flowering 3 years after treatment (Edwards, 2006).  It is therefore imperative that follow-up 24 

surveys are conducted of the controlled area to assess whether further treatments are required.  25 



 23 

In addition, disturbance associated with the clearance of an area may actually increase the 1 

probability of re-invasion, often at rates higher than observed in undisturbed areas, through 2 

the growth of bryophyte mats (Stephenson et al., 2006). Therefore, for the benefit of 3 

practitioners it is important that the next step is taken, whereby we investigate age, stage or 4 

density-dependent ecological life history characteristics and control options, and incorporate 5 

the effectiveness, consequences and monetary costs associated with control into the model 6 

(eg. Higgins et al., 2000; Taylor and Hastings, 2004). Linking individual-based models, such 7 

as the one presented in this study, with a Geographical Information System would also allow 8 

comparison of alternative control options within spatially realistic landscapes. 9 

 10 
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Figure legends 

Fig. 1. The predicted dispersal kernels from the WINDDISPER model for plants of 

height 1m (a), 2m (b) and 4m (c) dispersed on a windspeed of 9±6msec
-1

.  These 

heights represent plants of approximately 15, 28 and 55 years old respectively.  

Each kernel represents 1000 dispersed seeds.
  
Note: Y-axes differ between the three 

plots.  

 

Fig. 2: The proportion of control attempts successful (n=50) (a-d) and the mean 

number of years taken to achieve control (e-h) for each strategy against varying 

levels of removal effort. Results for invasions allowed to establish for 20 years are 

represented by panels a and e; 40 years by b and f, 60 years by c and g, 80 years by 

d and h. Note that the number of plants removed (x axis) increases between these 

sets of panels as infestations become more established.  Key: core with return for 

seedlings (●), edge with return for seedlings (●), core without return for seedlings 

(▼), edge without return for seedlings (▲), and age-dependent control (■).  95% 

confidence intervals have not been displayed because of scale, eg. when control 

was initiated after 60 years and 350 plants were removed each year under the edge 

without return strategy, the mean number of years taken to control was 10.6 years 

(95% C.I. = 0.011 years). 

 

Fig. 3: The cumulative proportion of replicates (n=50) in which one or more seedlings 

established outside the containment area over time under two windspeed 

distributions: low (mean of 9±6 ms
-1

) and high (mean of 15±7ms
-1

). Results are 

shown for a low windspeed with a 50m quarantine line (○) and a 100m quarantine 

line (□ ),  a high mean windspeed with a  50m quarantine line (●), a 100m 
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quarantine line (■)  and a 100m quarantine line (▼). The remaining scenario 

investigated (low windspeed with a 150m quarantine line) resulted in no plants 

escaping the containment area. Grey dashed lines indicate 95% confidence 

intervals. 

 

Fig. 4: The spread of the invasion in one dimension from the point of the first 

established plant (top left corner of each plot). A colour scale indicates the log 

number of seeds landing at locations relative to the core (y-axis) that were 

dispersed from parent plants at different locations relative to the core (x-axis). For 

example, the blue point marked (a) on the figure at 60 years depicts a small number 

of seeds that have dispersed approximately 250-300m from the core originating 

from adult plants located approximately 20m the core, while (b) shows a small 

number of seeds that have dispersed 20-50m from the core originating from plants 

located approximately 100m from the core. The density of seed rain from any 

given x co-ordinate represents the dispersal kernel for seeds produced by adult 

plants at that location. For example, the short line highlighted by (c) depicts the 

dispersal kernel of a recently matured plant very close to the range front. Note that 

as this plant is short and produces few seeds its dispersal kernel has much more 

limited extent than those of adults closer to the core, and its seeds are not 

responsible for the range expansion.  The dashed line on each plot represents the 

location of the adult plant furthest from the core (ie the centre of the dispersal 

kernel on the far right of each plot), any seeds that land beyond this line represent 

expansion of the invasion front.    
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