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1 Intr oduction

Thetopicof formalmethodsoversthedevelopmentindapplicationof mathematically-based
approaches computing.But is it ascienceanengineeringliscipline,or both?

Thereis growing interestin formal methodsbecausehey offer rigoroussupportof computer
systemdevelopment. Formal methodsare particularly desirablein safety-criticalapplications
suchasprocessontrol, aviation, medicalsystemsrailway signallingandmary others. Other
applicationgnaynotthreaterife if they fail, but mostmaybedescribedasquality-critical. It is
difficult to find anapplicationthatwould not benefitfrom therigourbroughtby formalmethods.
However, the mainreasorthatformal methodsarelimited in their useis that on a cost-benefit
analysisthey areoftennotjustified. The only way to makethemmorewidely applicableis to
reducethe costof their use.

Engineeramake successfuliseof scienceto achieve practicalresults. Thereis reasonto
believe thata combinationof engineeringrinciplesandformal methodscouldleadto rigorous
and cost-efective computersystemdesign. Section2 investigatesvhat is distinctive about
engineerin@ndwhatits lessonsarefor formalmethods A key aspecbf succes# engineering
is suggestetb beacomponent-basestylein whichknown componentarecombinedn known
waysto yield predictableresults.Section3 illustratesthe approachy shaving how high-level
specification®f communicationservicessanbe produced.Section4 illustratesthe approach
in a differentapplicationareaby shaving how to producelow-level specificationf digital
logic. In bothcasestheunderlyingformallanguages Lotos (LanguageOf Tempoal Ordering
Specification[2]).
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2 An Engineering Approachto Formal Methods

Thissectionaddresseanumberof aspect®f generakngineeringractice andsuggestsome
implicationsfor engineeringvith formal methods.

2.1 The Placeof Formal Methods

Mathematicss widely usedin all aspect®of engineeringHowever, it is taughtin anapplied
way andis backedup by well-definedmethods.The mathematicss packagedn aform directly
usableby an engineer Often the notationandthe resultsratherthan the underlyingtheory
are the importantpartsof the mathematics. Formal methodsin computingshould aspireto
the samelevel of utility andacceptability Fortunately thereis goodevidencethatthis canbe
achieved. Onegoodexample,which is often overlooked,is the theory of artificial languages.
Every compilerwriter usesthisin parsingandprocessindanguagesandevery programmeis
accustomedo atleastthegrammarof alanguage.

Sowhatis it thatdistinguishesengineeringrom science?In general,sciences concerned
with explanation. A typical dictionary definition of scienceis ‘knowledgecovering general
truths or the operationof generallaws’ [5]. Sciencethus dealswith fundamentaideasand
theories. Scienceis often analytic, seekingto understangphenomenan termsof underlying
explanations By wayof contrastatypicaldictionarydefinitionof engineerings ‘the application
of scienceandmathematics. . madeusefulto people’[5]. Engineerings thusconcernedvith
applicationor production. Engineeringputs scientificresultsto practicaluse. Engineerings
oftensynthetic building new solutionsfrom existing ones.

Trying to polarisescienceandengineerings artificial. Therearemary scientistsvho carry
outengineerin@ctvities,andmary engineersvho carryoutscientificinvestigationsThereis a
full rangefrom puresciencewithoutary applicationgo pureengineeringvithoutary scientific
basis.Butit is usefulto comparehe oppositeendsof therangein orderto seehow they differ.

Scienceandengineeringarewell-establishedlisciplines,in somecasegoingbackmillenia.
Computinggoesbackonly 30 to 50 years,so of coursethe body of scientificandengineering
knowledgein this areais still growing enormously Computersciencemay be seenasthe
scientificbranchof computing. Computersciencehasbeenableto drav considerablyon work
in the physicaland numericalsciencede.g. physics,electronicsand mathematics).Theoret-
ical computersciencefocussesspeciallyon the mathematicalinderpinningof computation.
Onthe engineeringsideof computing,thereis a split into hardwareengineeringand software
engineering Hardwareengineeringhasbeendevelopeddirectly on top of electronicengineer
ing. Formal methodsin hardwareengineeringare well-advanced(e.g. hardwaredescription
languagesjesignautomatiorsystemsandsimulationsystems) However, softwareengineering
hashadvery little to build on; the conceptof software(thoughnot algorithm)hardly existed
beforethe 1950s.

So,wheredo formal methoddit in? Part of the ‘image’ problemthey have is thatthey are
seenlargely asa scientificpursuit. Formalmethodsareseenasbeingrathermathematicabnd
intellectuallyhardto use. They have areputationof beingabstruseandimpractical. They have
limited usein industry thoughthe usethatis reporteds generallyfavourable.

Figure 1 relatessomeof the areasdiscussedso far. Formal methodsincludestheoretical
computerscience,formal softwareengineeringand formal hardwareengineering. Of these
three,formal softwareengineeringequiresthe mostattention. Focussingattentionon formal
softwareengineeringvill hopefullyidentify weaknesseandareasvherework is needed.
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Trying to draw a fixed boundarybetweenhardwareengineeringand softwareengineering
is, of course ashopelessastrying to draw afixedboundarybetweerscienceandengineering.
Hardwaremay have integral softwaresupport(e.g.the microprogranof a microprogrammable
processor)andsoftwaremay have integral hardwaresupport(e.g.bit block-level transferin a
windowing system).Nonethelesshardwareandsoftwarediffer fundamentallyin how they are
designedmanufacturedgnhancedndrepaired.By thesameoken,formalmethodsn hardware
engineeringandsoftwareengineerindiave evolvedalongdifferentlines. As it happensformal
methodsn hardwareengineeringaremuchbetterdeveloped sothefollowing discussiommainly
addresseformal softwareengineering.

2.2 An Engineering Approach
2.2.1 EngineeringPhilosophy

Engineersaim to usescientifically-baseanethodsandtools. Certainlytherearetimeswhen
aparticularengineeringroblemdoesnot have a scientificunderpinning.In themain, however,
engineerings concernedvith theapplicationof science Engineerslsoaimto producepractical
resultsthatsolve realproblemsgenerallyindustrialproblemsn manufacturingpr construction.
Althoughnew problemamayrequirenew solutionsmuchof engineerings there-useof trusted
componentsmethodsand tools. An engineercan call on a large body of experiencethat
indicatesthe costsandbenefitsof eachpossiblesolution.

Formal softwareengineeringshouldsimilarly aim to apply methodsandtools basedon the
resultsof theoreticakomputerscience.Thegoalsshouldthereforebedirectly practical,aiming
to build bettersoftwarein a predictablemanner Like all engineersformal softwareengineers
shouldbeactiely involvedin solvingindustrialproblems.However, formal softwareengineers
currentlylack the historicalexperienceand casestudiesavailableto otherengineers.This is
largely dueto theimmaturity of the subjectandsowill improve in time anyway. Nonetheless,
cassstudiesandevaluationf methodsndtoolsshouldbeactively pursued Externalinfluences



suchasstandardandGovernment-promotethitiativesareimportantincentvesto employmore
adwancedechniques.

Engineersare expectedto follow approsed practices,using appropriatecomponentsand
tools. Resultsareexpectedo bepredictableandto meetconstraintsuchascost,time, quality,
reliability andsafety Engineerdhave to behae professionallyandoftenrequireto belongto a
professionakocietyandhave charteredstatusbeforethey canpractise.

In principle, the sameexpectationscould be held of formal softwareengineering.Unfortu-
nately the stateof theartdoesnotyetallow developmento meetthekind of criteriathatwould
beappliedin otherengineering.Softwareestimationtechniquesllow somepredictionof cost
andtime, but they arestill somavhatinexact. With physicalsystemsit is usualto predictfailure
ratesandcomponenlifetimes. Softwaredoesnot, of coursewearoutor breakdownin thesame
way asphysicalcomponents.Work on softwarereliability will in future allow predictionsof
problemswith software.Much moreeffort is neededhowever, on predictingreliability andon
designingo meetsafetystandardsAdvancesn areadike thesemay causesoftwareengineers
to be held individually accountabldor their work. Perhapsoftwareengineersof the future
shouldbe charteredike otherengineersandrisk losing their charterif they arefoundto be
professionallynggligent.

2.2.2 EngineeringProcesses

An engineeringproceswill generallyfollow an establishegpproacho designandmanu-
facturing. From mary similar projects,an appropriatemodelof the developmentprocesswill
be selected.Standardprojectmanagementethodswill be usedbackedup by quality control
duringdesignandmanufacturing Suitabletoolswill generallybe availablealready

The softwareengineeringproceshasbeendescribedn mary ways. However, few of these
deal specificallywith the useof formal methodsin softwareengineering. For example,the
shapeof a developmentprocesausingformal methodss ratherdifferent: muchof the effort is
upfrontonspecificatiorandverification,while ratheressis devotedto testingandmaintenance.
The problemsof managingormal softwareengineeringlerive in partfrom thelack of suitable
metrics.Managerof softwareprojectsareaccustometb measuringiumberdike linesof code
producedfaultsfoundduringreview, or modulesvhosetestingis complete . Metricsfor formal
methodsarestill to be defined: numberof specificationlines, assertionspr theoremgroved?
Theseamlessseof formalmethodghroughouthedevelopmenprocesslsoneedsnmuchmore
work. Unlike tools usedin otherforms of engineeringfools for formal softwareengineering
arelargely researctprototypesandlack industrialapplicability.

Modelsin engineeringhave traditionally beenscalemodelsor mock-ups. Theseare used
to predictthe behaiour of the real artifact. During evaluation,the modelis adapteduntil the
desiredbehaiour is obtained.More recently engineerdiave turnedto computersimulationsas
beingmorecost-efective thanphysicalmodels.

Formalsoftwareengineerslsobuild modelsof systemsbut mathematicahbstractionsather
thanscalemodels. Again, the objectis to predictthe behaiour of thereal system. However,
formal modelsarelargely concernedvith functionality, whereasengineeringnodelsgenerally
are largely concernedwith performanceandreliability. Perhapghis is becauseengineering
functionsare often straightforward whereascomputingfunctionsare rarely so. Predictions
from mathematicaimodelsin computingare thereforelargely relatedto correctbehaiour.
Formalmethodghatcombinefunctionalandnon-functionabspecthave alreadyappearedhut



will needmuchmoredevelopment.

2.2.3 EngineeringComponentsndtheir Combination

Monolithic or amorphoussystemsare rare, exceptin nature. Designis almostinvariably
decompositionaltop-donvn) or compositiona(bottom-up).Engineeringxploitsthisby aiming
to usecommoncomponentsn differentdesigns. For example,an electronicsengineeruses
off-the-shelfdiscreteor integratedcomponents.Mass productionof specialiseccomponents
enablesengineergo designnew productsquickly and effectively. Componentsre designed
and manufacturedo definedinterfacesand standardsgnablingthemto be assembledvith
confidencento moreelaboratestructures Extensve useof standardisedomponentgsonstrains
designshut at the sametime limits variationsthatmight not be cost-efective. For example,an
electronicsengineeresigningcomputermemorywill usestandardchipsthatdictatememory
sizeandword length,ratherthantrying to designanarbitrarymemorystructure.

Anotherimportantaspecbf engineerings thatready-madesolutions(or designsjaregener
ally available. Thesecombineknown component& known waysto achieve predictableesults.
Forexample anelectronicengineewhowishego build aparalleladdetis likely to usestandard
componentgonfiguredaccordingto the circuit diagramin a standardeferencebook.

Componente-usehasbeena majorthemein softwareengineeringor mary years.Object-
orientedmethodsandlanguageseemto bethefirst practicalsteptowardsachieving this goal.
However, in formalsoftwareengineeing there hasbeenlittle idenificationof usefulspecification
componentandspecificatiorstructuresusingthese.This is a greatpity sincea major promise
of formal methodss verificationof the systenmbeingspecified.Verificationis very hardfor ary
but trivial systemsso verificationof large or complex systemss usuallyinfeasiblein practice.
A component-basestyle allows componentgo be verifiedindividually. Larger combinations
(‘designs’)of trustedcomponentganthenbe verified moreeasily

2.3 KeyAspectsof Engineering

Theprecedingliscussion$asidentifiedanumberof suggestionfor developinganengineer
ing approachio formalmethods.Of thesethekey aspecseemso beusingknown components,
in known combinationssupportedy effectivetools.

Ideallyit shouldbepossibleto developandprove componentandcombinationsndividually.
In practice, this would allow componentgo be designedby third partiesor boughtin. It
would alsoallow general-purposdesigngo beevolved,anddocumentedn standardeference
works. It mustalsobe possiblefor componentso be combinedwithout adwerselyaffecting
their individual properties. The ideal componenis generalenoughto allow re-useor simple
adaptatiorfor new applications.At the sametime, the componentnustnot be sogeneralasto
makeit expensve or to makecustomisatiordifficult.

In formal softwareengineeringtherearetwo principal levels at which a component-based
style of specificationis particularlyworthwhile: at a high level (closeto requirementsandat
alow level (closeto implementation).For eachapplicationareaandlevel of specificationa
library of component&indcombinationshouldbe developed.This canalsohelpto bridgethe
gap betweenthe customeror end-userthe specifierandthe implementer Specificationsare
usuallycouchedn aspecialisedanguagereflectingthefeaturesandconcernf thatlanguage.
With acomponent-basestyle,thereis anopportunityto imposestructureon aspecificatiorthat
is meaningfulto end-users.

A component-basestyle alsoallows the specifierto take a higherlevel, architecturaview



of the specification. This makesit easierto producenew specificationf similar problems,
ensuregreaterconsisteng in styleamongdifferentspecificationsn the sameapplicationarea,
andallows differentspecificationso be composednoreeasily In thefield of communications
systemsthe term ‘architecturalsemanticsis alsousedfor this approact7]. This permitsan
architecturalview of how a languageshouldbe used,restrictingits usagebut also makingits
usemoreevident.

Are component-basespecificationslesigns?All specificationsnustexhibit structureunless
they aremonolithic, so large specificationshouldfollow stylistic principlesto ensurea good
structure.A component-basestyleis simply oneway of structuringspecificationsandsodoes
not necessariljfeadto designs. As will be seenin section3, componentand combinations
canbe constraintsor assertionsleadingto high-level specifications.As will alsobe seenin
sectiond, componentgndcombinationsanalsobedetailedandconcrete|eadingto low-level
specifications.The choiceof componentsand combinationsdependson the applicationarea
andthepurposeof specificationsA rangeof abstractiorlevelsshouldbeusedduringthedesign
trajectory appropriatdo eachstagein development.

The remainderof this paperillustratesa component-basesityle of specificationat a high
level andat a low level. Thefirst applicationdealswith communicationservicesandmight
be consideredisengineeringvith constraints.The secondapplicationdealswith digital logic,
and might be consideredas engineeringwith physicalcomponents.In both applications the
importantissueis the useof known component&ndcombinations.Thesearebackedup by a
formal representationLoTos hasbeenusedin this paper but in principle ary formal notation
couldbeused.

3 Engineering Communications Setvices

3.1 ServiceEngineering

Theconcepif serviceengineerings usedin telecommunicationsyherethereis increasing
demandor rapidintroductionof new services.Thetermservicdas usedwith atleastwo different
meanings:asa setof functionsperformedon behalfof customersandasthe abstractiorof the
functionsof alayer Thefirst meanings theoneusedin ODP (OpenDistributed Processing
the secondis the oneusedin OSI (OpenSystemgdnterconnectiof). Serviceengineeringhas
previously beenusedof servicesin the first sense. However, this paperconcentratesn the
secondmeaningof service,largely becauset is a muchmorestructuredandwell understood
problemdomain. The specificationof suchservicesmight alsobe legitimately termedservice
engineering. The goalsare to reflectuserrequirementslosely to usewell-known patterns
of behaiour, to allow flexible definition and modificationof services,andto formaliseand
verify the resultingservices.A restrictionimposedin this paperis that servicesare provided
betweerpairsof users.However, theapproachakencouldbegeneralisedo dealwith multi-way
(multi-peer)services.

OSl views a serviceasa collection of servicefacilities. The exact natureof theseis left
open,but theintentionseemgo bethatservicefacilities shouldbe self-containedeatures.For
example,a simple connection-orientedervicemight be saidto have facilities for connection
establishmentlatatransferandconnectiorrelease.

Much experiencehasbeengainedin writing specificationsof communicationservicesin
Lotos. Guidances availablein documentsuchas|[3, 8, 10]. The usualadviceis to adopt



a constraint-orientedtyle, decomposinghe servicebehaiour into endpointconstraintsand
end-to-endconstraints. Unfortunatelythis decompositiomrmakesthe division into facilities a
secondaryconcern. The behaiour of facilities is thereforescatteredacrossthe specification,
makingit difficult to add,changeor remove facilities. A moreconvenientdivisionwould make
decompositiornto facilitiestheprimarysplit, with consideratiomf otherconstraintsecondary
Thisis therationalebehindthe component-basestyle thatis explainedbelow.

3.2 ServiceComponents
3.2.1 ServicePrimitivesandFacilities

Servicefacilities are the componentf services. Servicefacilities may be combinedinto
largerfacilities, soaservices effectively justthetop-level facility. Servicefacilitiescorrespond
to patternof interactiondetweerapairof users.Theinteractionsorrespondo theoccurrence
of serviceprimitives. Serviceprimitive occurrencesreabstraction®f interactiondetweera
serviceuserandaserviceprovider. Serviceprimitivesarenamedaccordingo thelayerinvolved,
thefacility beinginvoked,andtherole of the serviceprimitivein thefacility. A typical service
primitive might thusbe namedN-Connectrequestbeinga requestby a networklayer userto
establishaconnection.In thefollowing, thelayerprefixwill beomittedasbeingimplicit. Four
rolesareidentifiedfor serviceprimitivesin afacility:

request: thisinitiatessomefacility (e.g.to request connectiorto anotheruser)

indication: this notifiesthecorrespondingiserthatthefacility hasbeeninvoked(e.g.to notify
auserthata connectiorhasbeenrequested)

response:thisgivestheacknavledgemenfromtherespondingiser(e.g.to indicateacceptance
of theconnection)

confirm: thisgivestheacknavledgemento theinitiating user(e.g.to indicatethattheconnec-
tion hasbeenaccepted).

A particularfacility mayrequireonly someof theseroles. Also, a facility might be subdvided
into two: arequestandindication,followedby a requestndindicationin acknavledgement.
For example,a datarequestndindicationmight triggeran optionalacknavledgementequest
andindicationratherthanadatarespons@ndconfirm. In suchacase however, therearereally
two facilities: anunconfirmeddatatransferanda confirmedone, selectedaccordingto some
optionin thedatarequest.

A serviceprimitivewith namelike Connectrequesbelongswith othersof thesamefacility in
agroupwith nameConnect Thegroupnameis alabelfor therequestjndication,responseand
confirmprimitivescollectively. If arequesandindicationratherthanresponseandconfirmare
usedin the acknavledgementdifferentgroupnamesareused. Thusa confirmeddatatransfer
facility mightbesubdvidedinto groupsData and Acknowledge

The parameter®f serviceprimitivesin a facility arerelatedto eachother In the simplest
casetheparametersf anindicationor a confirmareidenticalto thoseof arequesbr response
respectrely. Similarly, theparametersf aresponsaredirectlyrelatedothoseof theindication.
However, morecomplicatedpossibilitiesexist. For quality of servicenegotiation,for example,
the relevantparametein the indicationmay be weakerthanthatin the requestf the service
provider cannotmeetthe requesin full. The parametein the responseanay againbe weaker



thanthatin theindicationif therespondingisercannotmeettherequirement# theindication.
Theparametem aconfirmis almostinvariablythesameasthatin aresponsejut in generamay
vary. The specificationof a facility shouldthusallow for arelation(that may not be identity)
betweeranindicationandarequestaresponsandanindication,aconfirmandaresponse.
Servicefacilities maybeinvokedin anisolatedfashion. Thisis thecaseor aconnection-less
service,for example,in which every datatransferis unrelatedto others. Servicefacilities
may alsohave somerelationshipto eachother This appliesto a connection-orientedervice,
for example,in which connectionestablishmentnust precededatatransferand connection
release.OSl usesthe conceptf associationconnectionandconnectiorendpointto indicate
that servicefacilities arerelated. However, this is not generalenoughsincethereare mary
possibilitiesbetweemurely connection-lesandconnection-oriented.
Themoregenerahotionof aninteractiongroupis thereforeintroducedn thispaper Thisis
acollectionof interactionghatshouldbe consideredelated.A servicefacility is aninteraction
group,andso are combinationsof servicefacilities. Sucha groupneedsa uniquereference,
calledaninteractiongroupidentifier(IGld). Connectionsreinteractiongroupsandconnection
endpoinidentifiersareinteractiongroupidentifiers.Interactiongroupidentifiersareknown only
locallytoauser soapairof identifiersisassociatewith oneinteractiongroup. Strictly speaking,
aninvocation(instancepf a serviceuserdealswith eachinteractiongroup. However, theterm
‘user’ is usedwidely although'serviceuserinvocation’ would be theaccuratedescription.

3.2.2 Patternsof ServiceFacility

A studyof typical OSl servicegevealsthattherearefive commonpatternof servicefacility.
Theseare illustratedin figure 2 accordingto the servicecornventionsof [1]. The service
cornventionsdocumentdefinessimple time-sequence&iagramsin which time runs down the
page,andthreecolumnsdescribethe interactionsbetweentwo usersandthe serviceprovider
asintermediary Arrows indicateoccurrenceof a serviceprimitive, andslopinglines suggest
thetime delaybetweerthe occurrencef a serviceprimitive at oneuserandthe corresponding
occurrenceat the other Whenthe occurrenceof two serviceprimitivesis not time-relateda
tilde ( D14 placedbetweerthem.

Thetime-ordering@mongprimitiveoccurrences afacility constituteatemporalconstraint.
Eachbasicpatternmay have one of the propertiesillustratedin figure 3. The propertiesare
arrangedn ahierarchy:

single: a single occurrenceof the facility is permitted,e.g.to initialise a service;otherwise,
multiple occurrencearepermitted

consecutive: multiple occurrencestrictly follow eachother, e.g.to ensurethat an expedited
datarequests dealtwith beforeanotheoneis allowed;otherwisepverlappedccurrences
arepermitted

ordered: overlappedccurrencesespectherelative orderof primitivesin differentinvocations
of afacility, e.g.to ensureghatacknavledgeddatatransfeiis properlypipelined;otherwise,
overlappedccurrenceareunorderedvith respecto eachother

reliable: unorderedccurrencesirefully completedge.g.to ensurethatdatatransferrequests
arenotlost; otherwiseunorderedccurrenceareunreliable
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unreliable: unorderedoccurrencesnay not be fully completed.e.g.if datarequestanay be
lostdueto problemsn theserviceprovider suchascongestion.

Facilities also have a direction, relating a particularpair of usersandthereforeinteraction
groupidentifiers. Althoughmary servicesaresymmetrical theremay be asymmetriesn what
userscaninvoke. For example,someusersmay be allowed only to initiate connectionsvhile
othersareallowedonly to respondo connectionsWithin a connectionpnly theinitiator may
beallowedto senddataor only therespondemaybeallowedto breaktheconnection Facilities
shouldthusbe specifiedunsymmetricallybut a symmetricalservicecansimply allow facilities
betweenall (distinct) pairsof users.

3.2.3 ServiceFacility Specification

Servicefacilitiesandtheir combinationswvill bedescribedisingthelanguageSAGE (Service
AttributeGeneator). Thelanguages briefly explainedin this paperbut[9] shouldbeconsulted
for moredetails. In particular [9] givessemanticgo the languageby meansof denotationsn
Loros for eachtype of declaration.Thereis insufficient spacen this paperto shav the Lotos
specificationghat are generatedrom servicedeclarations.However, the essencef SAGE is
architecturaljts semanticeouldin principle begivenin othertermssuchastracelogic.

Basicfacilities aredescribedy meansf thefollowing declaration:

facility(direction pattern property, groupl, group2

The directionis 12 or 21, dependingon which of the usersinitiates the facility; userl is
cornventionallytheleft-handuserin atime-sequencdiagram,user2 is theright-handuser The
patternis oneof thefive patterndoundin figure 2, andthe propertyis oneof theleaf properties
foundin figure 3.

In the caseof a provider initiated or unconfirmedoattern,only thefirst groupis given. In the
caseof a confirmedpatternboth groupsaregiven. The two groupsarenormallyidenticaland
namethe servicefacility. However, in a subdvided facility with groupnamesdike Data and
Adknowledgehey maybedifferent. Thegroupsmustalsogive theserviceprimitive parameters.
By default,the parameteren arequestndindicationor responseandconfirmarerequiredto
bethesameandno relationshipholdsbetweernthe parametersf anindicationandaresponse.
Thespecifiermustalterthe generatedpecificationif a morecomple relationshipholds.

Herearesomesampledeclaration®f facilities:



facility(12,provider-initiated,single,Start())a singlestartindicationwith no parametemaybe
spontaneouslgivento user2 by theserviceprovider

facility(21,unconfirmed,ordered,Expedited(Dataghunconfirmedxpediteddatafacility with
a dataparametemay be sentby user2 to userl; a furtherrequesimay be madebefore
the previousonehasbeendealtwith, but the orderof transmissions respected

facility(12,user confirmed,consecwe,Connect(AddAddr),Accept(Addr)):a user con-
firmed connectwith two addressparametersnay be sentby user1 to user2, the ac-
ceptresponsdiaving oneaddressa further requesimay not be madeuntil the previous
onehasbeenhonoured.

Sincefacilities in eachdirectionbetweenusersarethe sameif the serviceis symmetricala
facility in thereversedirectionbetweerthe sameusersmaybe declaredwith:

reversefacility)

A rangeof basicserviceprimitive parametesortsarepre-definedsothatthey maybeused
immediatelyin the declaratiorof facilities. The availabletypesare:

Title, Addr: a serviceusertitle and serviceaccesspoint addressspecifiedas distinct labels
without structure

IGId, IGIdSet: interactiongroupidentifiers,specifiedasdistinctlabelswithout structure
Data: aservicedataunit, specifiedasa stringof octets

Orig: theoriginatorof afacility, specifiedasbeing‘user’, ‘provider’ or ‘other’

Reas: areasorfor invoking a facility, specifiedasdistinctlabelswithout structure

Opt: aserviceoption(afunctionalaspecsuchasexpediteddataselectionpr qualitatve aspect
suchasthroughput),specifiedas a generictype with comparisonof option values(for
negotiation)

Prim: aserviceprimitive,definedusingtheinformationfrom thefacility declarations

PrimQ: aqueueof serviceprimitivesbeingprocessedspecifiedasa stringof primitives

Othertypesmay be usedfreely asserviceprimitive parametershut their formal definitions
mustbeaddedby thespecifier Thedefinitionsof theabove typesmayalsoneedto be modified
or replacedy thespecifier For example,aspecificaddresstructuremaybeneededr specific
optionsmaybe defined.



3.3 ServiceCombinations
3.3.1 ServiceCombinators

In principle,servicefacilitiescouldbecombinedn alimitlessnumberof ways. However, OSI
standardsypically usea small numberof commoncombinations.Thesearediscussedelov
alongwith how they aredeclaredn SAGE. The declaration®f combinationgive oneor two
behaioursto be combined.The behaioursarethoseof basicfacilities or their combinations.
A facility groupis givenasparametewhenit is necessaryo qualify thecombinedehaiour as
applyingto aparticularfacility within it. In thefollowing declarationstheitalicisedbehaiours
would be defineddirectly asfacilities or using othercombinators.Eachdeclarationtakesthe
form:

combinato(parameterl,.. ., parameterN)

Sucha declarationstandsfor the behaiour given by its parameterscombinedin a particular
way. Combinatorsnaythereforebebuilt up into largerexpressionsuchas:

combinatorl(combinator2(...),combinator 3(...))

Sometimesa single large expressionfor a servicewould be unwieldy, or would require
repetitionof sub-epressionsin suchacasea partof theoverallbehaiour maybedefinedby:

definepehavioujcombinatof...))

wherebehaviourwould be usedasa parameteto othercombinators.Typically this is useful
for giving a nameto the behaiour of eachservicefacility.

3.3.2 EnablingandDisabling
Thecompletionof onefacility mayallow anothetbehaiour to start. For example,completion
of serviceselectionmaybenecessarpeforeit canbeused:

enablesgelection,usage

Onefacility maybeableto interruptandterminateanother For example,disconnectiormay
disabledatatransfer:

disablesdisconnect,data

Thedisablescombinatorcausepermanendisruption. Insteada facility maybeinterrupted
but thenresumedhftercompletionof theinterruptingrequest.For example resetinterruptsdata
transferbut allows it to continue(with afreshstart)afterthereset:

interruptsfeset,data

Althoughenablings anobviousrelationshigetweertwo facilities, it doesnotusuallyappear
in a servicein quitethis form. A morenormalsituationis thatthe facility is enabledor each
userseparatehafterlocal completion. Consideruserconfirmedconnectionfollowed by data
transfer After the connectresponsetherespondingisermayimmediatelybegin datarequests
eventhoughthe connectconfirmhasnotyet beendeliveredto theinitiating user (The connect
confirmwill, of course,occurbeforethe correspondinglataindications.) After the connect
confirm,the initiating usermay begin local datarequests.This behaiour is socommonthata
specialdeclarations availablefor it. The namecomesfrom the fact that onebehaiour may
enableanotherimmediatelyafter an acknavledgementa responseor confirm). Connection
enablingdatatransfermight thusbe declaredoy:



enablesafter.ack(connection,dath

Anothervariationof enablingoccurswhena facility is allowedto begin assoonasanother
hasbeeninitiated. In this case,|it is the requestor indicationthat enableghe facility locally.
Typically, this arisesfor disconnection.A disconnectmakesno senseuntil a connectionhas
beenattemptedbut mayberequestetheforea connectiorhasbeenconfirmedihisallowseither
userto abandora connectiorattempt.lt is the try ratherthanacknavledgementf connection
thatallows disconnectioro takeplace.Connectiorenablingdisconnections thusdeclaredoy:

enablesafter_try(connection,disconnectipn

In all threevariationsof enabling,the first facility enablesthe secondandthen ceasedo
operate. A commonrequirements for the whole combinationto repeatafter the second
terminates. Connectionfollowed by disconnectioris a particularexample,since completion
of disconnectionallows a new connectionattemptto begin. This differs from the caseof
enablingin thatcyclic (recursve) behaiour is possible.Therearethereforetwo variantsof the
interrupts combinatoy usedaccordingto whetherthe secondfacility mustreachthe stageof
acknavledgemenbr justtrying:

interrupts after.ack@disconnection,connectipn
interrupts after_try(disconnection,connectipn

3.3.3 Duplexity
Two facilities may be entirely independent. For example, datatransferin eachdirection
betweera pair of userss usuallyseparatendmaybedeclaredoy:

interleaves@atal2,data2)l

A facility may beusedalternatelyby eachuser For example,datatransferin eachdirection
may be two-wayalternatg(*half duplex’), declaredoy:

alternatedata)

Insteadof this, a facility may be usedat the sametime by both users. Thus, for two-way
simultaneoug'full duplex’) transferof expediteddatathe declaratiorwould be:

simultaneouspedited

3.3.4 Interference

Onefacility mayhave priority over anothersuchthatits requestsnaybedealtwith first. For
example thefollowing declaratiorsaysthatexpediteddatamayovertakenormaldata(although
thisis notguaranteed):

overtakes¢xpedited,normal

If the samefacility is invoked‘simultaneously’by both users,a collision of requestswill
occurinsidethe serviceprovider. For somefacilities (suchasdatatransfer),the requestswill
not interferewith eachother For others(suchas disconnection)the requestsare mutually
supportve. In suchacasepnly someof the primitivesof thefacility occur: for anunconfirmed
facility, therearerequestonly; for a confirmedfacility, therearerequestsand confirmsonly.
For example,thecollision of disconnectsnaybe declaredwith:

colliding(disconnect



3.3.5 Global Aspects

The combinatorsseenso far deal with pairs of specificusers. Thereare variouswaysin
which suchbehaiourscanbecombinedor all of them. Thefollowing declaratiorsaysthatthe
behaiour appliesto all distinctpairsof userg(strictly, interactiongroupidentifiers):

forall_ids(behaviou)

Eachusemustusedistinctinteractiongroupidentifiers thoughthesamevaluemightbeused
concurrenthby severalusers.Somefacility muststartaninteractiongroup(causingts identifier
to beallocated).Somefacility (possiblythe sameone)mustendaninteractiongroup(causing
its identifierto bede-allocated) For example,to declarethatconnectioranddisconnectiomplay
thisrole:

unique ids(connection,disconnection,behavipur

Notethatconnectioranddisconnectiornerearefacility groupsandnotbehaiours.

At a globallevel, the serviceprovider may temporarilywithhold the opportunityto invoke
certainkinds of facility. This might apply to connectionor datatransfer for example,dueto
congestionwithin the service. The effect is that some(perhapsall) usersare preventedfrom
issuingcertainrequestdor atime. Considerbackpressuréow control, which withholdsdata
requestantil thedatapipelineis sufficiently clear Thiswouldbedeclaredas:

withheld(data,behaviouy

Notethatdatahereis afacility groupandnotabehaiour.

Finally, the ultimatecompositebehaiour of aservicemustbedeclaredastheglobalone. At
the sametime, a namefor thekind of serviceis declared.For example,a connection-oriented
servicemightbedeclaredas:

global(co,behaviouy

3.4 Example ServiceDeclarations

A basicconnection-lesservicehasthefollowing characteristicsA datagranfacility allows
unrelateddatamessage$o be sentby one userto ary other Multiple datatransfersmay be
initiated by a user;thesemay be overlappedmay arrive in a differentorder, and may not be
reliablydelivered.Datagram$iave asourceaddressadestinatioraddressandadataparameter
This serviceis representedly thefollowing declarations:

define(datagram,
facility(12,unconfirmed,unreliable,Datagram(@wyAddr,Data))

global(cl,forall ids(datagram))

An acknavledgedconnection-lesserviceis like a basicone, exceptthat datagramarrival
is confirmed. Supposinghatthe serviceprovider confirmeddelivery andguaranteedeliable
transferthedeclarationsvould be:

define(datagram,
facility(12,provider_confirmed,reliable,Datagram(Adéddr,Data)))

global(acl,forallids(datagram))



It is possibleto describeunsymmetricakervices;indeedtheseare perhapsmore comple
andthereforea greatertestof the expressve power of SAGE. The next (somevhat extreme)
exampleusesanunsymmetricatonnection-orientedervicewith thefollowing characteristics.
A userconfirmed,reliable connectionfacility allows connectiongo be establishedetweena
pair of users;the addressesf the initiating andrespondingusersare provided as parameters
whenconnections tried. Theconnectiorfacility maybetemporarilywithheldfrom someusers.
Oncea connectionhasbeentried, it may be brokenby disconnectiona connectionmay then
betried again. Oncea connectiorhasbeenacknavledgedit is possibleto invoke normaldata,
expediteddataandresetfacilities. A bidirectional,provider-confirmed,unreliabledatafacility
allows normal datato be transferredby either user; a dataparameteiis provided when data
transferis tried, andanacknavledgements returnedon successfutlelivery. An unconfirmed,
reliableexpediteddatafacility allowsonly therespondingiserto sendpriority data;this carries
a dataparameter A colliding, unconfirmed reliable resetfacility allows datatransferto be
interruptedandresumedrom scratchareasorparameteis suppliedwhenresets invoked. An
unconfirmedreliabledisconnectacility allowsonly therespondingiserto breaka connection.
This serviceis representetly thefollowing declarations:

define(conn,facility(12,useconfirmed,reliable,Conn(Adgkddr),Conn))
define(norm,facility(12,praider_confirmed,unreliable,Data(Data),Ack))
define(ap,facility(21,unconfirmed,reliable,Exp(Data)))
define(reset,facility(12,unconfirmed,reliable,Reset(Reason)
define(disc,facility(21,unconfirmed,consegatDisc))

global(co,
withheld(Conn,
unique ids(Conn,Disc,

forall_ids(

interrupts after_try(disc,
enablesafter ack(conn,
interrupts(colliding(reset),
interleaves(norm,
overtakes(ep,reverse(norm))))))))

Notethatgroupnameshave beencapitalisechere(e.g.Conn to distinguishthemfrom facility
namege.g.conn.

3.5 Tool Support

The SAGE languagéiasbeenimplementedsalibrary of macroswrittenin them4language.
The macrosdefinethe languageby producingLoTos text for eachdeclaration. The overall
shapeof the specification,datatype definitionsand processdefinitionsare generatedy the
macros. The library containsabout80 macrosin 1400lines of m4. Most of the macrosare
auxiliary, to supportthe declarationgjivenin SAGE. Oncea specificatiorhasbeengenerated
automaticallythespecifiermaymodify it to dealwith finer pointsthatarenothandledoy SAGE.
For example,the specifiermight introducespecificaddresgormats,specificquality of service
parametersandspecificconstraintoon quality of servicengyotiation. [9] givesfuller detailsof
thetranslationprocessaandthe Lotos generatedor eachservicedeclaration.



4 Engineering Digital Logic

4.1 Digital Logic

It hasbeenshovn how communicationsservicescan be formally engineeredn terms of
their componentsand combinations. This exampleis ratherhigh level, and usesconstraints
to expressthe operationof a service. As a contrastingexample,it will now be shavn how
digital logic designscan be formally engineeredising modelsof hardwarecomponentsand
their combinations.

Digital logic designis much better understoodhan serviceengineering;mary textbooks
explaintheoperatiornof logic gatesandhow to combinetheminto largercircuits. Furthermore,
digital logic designis in practiceconstrainedby theavailability of specifichardwareeomponents
that might be found in ary manufactures catalogue. Although mary componentsnight in
principlebechoserfor building digitallogic,acomponent-engineerirgyleshouldbegrounded
in reality. This allows standarccomponentandcombinationgo be used,andensuresa clear
relationshipbetweerthis approacrandstandardogic design.

Hardwarespecificationhas been extensvely investigated. Languagessuch as CIRCAL
(Circuit Calculug, HOL (Higher Order Logic), RTL (Register Transfer Languagé, VHDL
(VLSIHardware DescriptionLanguagée andmary othershave beenusedto specifyandanalyse
hardware.A component-engineeringtyle for formal designof digital logic is thereforewell-
accepted.In commonwith all suchapproachesthe goal of the work reportedin this paper
is to allow digital logic designgto be specified,analysedandverified beforeactually building
hardware However, theemphasi$ereis to identify clearlythe componentandtheir meansof
combination.

As with communicationservicesa languagecould be speciallydevisedto supportdigital
logic design. However, investigationhasshowvn that Lotos providesgood supportfor digital
logic design. Specificationswill thereforebe written directly in Lotos, althougha library of
componentfiasbeendevelopedto allow specificationgo be written moreeasily More details
of the DILL ! (Digital Logic in Lotos) approacharegivenin [11]. A furthergoal of this work
wasto investigatethe suitability of LoTos for specificationsn this applicationarea.

4.2 Digital Logic Components
4.2.1 ModellingDigital SignalsandGates

Logic functions(logic gates)are the basiccomponentf digital logic. They operateon
binary-valueddigital signals. It turns out that the way in which signalsare modelledand
handleds critical to the succes®f specifyingdigital logic in LOTOS. An inappropriatanodel
resultsin obscureor unusablespecificationsSomeof thecritical issuesarediscussedbelow.

In reality, signalstakeon arangeof analoguevalues(e.g.from 0 to 5 volts) but thresholdsare
setsothatsignalsmaybetreatedaslogic O or 1. As asignalchange$rom onevalueto anothey
it passeghroughanindeterminatestatethatis neitherlogic O nor 1. It might thereforeseem
thattri-statelogic shouldbe used,with the additionof an ‘undefined’ statefor signals. This,
however, would makespecificationgmuchmore complex. An undefinedstateshouldalways
be transientandthereforeshouldbe ignored. As a workableabstractiontherefore signalsare
regardedashaving only two statescalledO and1.

1The approachwasdevelopedby the author in conjunctionwith RichardO. Sinnottwho carriedout the detailed
specificatiorandverificationwork.



Thereis alsoachoiceof whetherasignallevel or achangen signallevel shouldbemodelled
asalLortos event. Choosingto modelsignallevels meanghata gatemustrepeatedlyoffer its
currentoutputvaluein events. Thiscluttersthebehaiour with identicalrepeate@vents. Events
thereforecorrespondo establishmentf anew level. Thismeansfor example thatif theinputs
to agatechangebut theoutputstaysthesamethentherewill benonew offer of anoutputevent.

Gatesmustnotinsiston outputtinga new valueafteraninput changesin circuitsinvolving
feedback(e.g.a flip-flop), this canleadto deadlock.In practiceaswell, theremay be a short
input pulseto which a gatecannotreactquickly enough.Realgateshave a propagatiordelay
betweeraninputchangeandthecorrespondin@utput;aninput pulseof rathershorterduration
may not producean output. Allowing a further input beforeoutputis thereforeboth realistic
andnecessary

Opencircuitsarepossiblein actualhardware For example,aninputmaybeleft floatingand
an unusedoutputmay not be attachedo arything. Thereis alsoa switch-onproblemin that
whena gateis poweredon it needsa shorttime to stabilise. The solutionis to parameterise
eachgatewith the defaultvaluesof its inputs. At switch-on,andfor a floating input, these
defaultsapply. Subsequentlyhe gatemayreceve actualvaluesatits inputswhichwill replace
the defaults.Floatingoutputsstill producevalues but they go nowhere.In Lotos terms,these
arehiddeninternalevents.

Lotos offersmorepossibilitiesfor dealingwith inputsandoutputsthanareusedin practice.
An obvious solutionis to makeeachinput andoutputcorrespondo a Lotos gate. This might
be termed‘physical multiplexing’, becauseeachLoTos gatecorrespondso a physicalport.
Loros alsoallows whatmight be describedas‘logical multiplexing’, in which therewould be
onelLoTtos gatethatis qualified by a port numberparametein events. The advantageof this
styleis thata Lotos gatemaythencorrespondo arbitrarynumbersof inputsor outputs. This
doesnotfaithfully reflectreallogic gateswhich arealwaysbuilt with a fixednumberof inputs
andoutputs. Also it considerablycomplicateshow the wiring up of componentss specified.
Physicalmultiplexing is thereforeused.

Although gateswith morethantwo inputsare perfectlypossible four andeightinputstend
to be the only othervarietiesfound. Unusedinputscanbewired to logic O or 1 asrequiredto
makethemineffective. LoTos couldallow a parameterisedumberof inputsby makinguseof
logical multiplexing, but this would be too far removed from reality. A fixed numberof inputs
is thereforespecified.

Real gatesare connectedby wires from outputsto inputs. The wires (should)accurately
transmitsignals butthey canintroducea propagatiordelaythatis critical in high-speedatircuits.
The wires could be consideredas componentsas well, but to do so would makethe logic
specificationwvery unwieldy: In virtually all logic designghe wirescanbeignored,but where
their effect is significantthen they can be specifiedas delays. Ignoring the wires makes
connectiorof componentsery easyin LOTOS eventsattherelevantoutputandinputgatesare
allowedto synchroniséy giving themthe samegatename.In effect, a gatenameis givento a
wire. Multi-way synchronisatiorin LoTos alsoallows oneoutputto be sentto severalinputs’.

2Trying to synchronis@wo outputsin LoTos could well leadto deadlock. Trying to connectthe outputsof two
physicallogic gatescouldleadto a moreseriousform of deadlock!
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4.2.2 BasicLogic Gates

The corventionalsymbolsfor the logic gatessupportedaregivenin figure4. A one-input
gatecanperformoneof two differentlogic functions: asa repeateor amplifier or delay)and
asaninverter A two-inputgatecanperformoneof 16 differentlogic functions. Only some
of theseareusuallygivennamessuchasand, or (inclusive or), andxor (exclusive or). Certain
logic functionsareeasierto implementin hardwaresonandandnor arealsocommon.

Somelogic gatescould be built from simplercombinations For example,a nandgatecould
bebuilt from anand gatefeedinginto aninverter The gatemightactuallybe built this way, but
theavailability of nandgatesan practicemeanghatit is reasonabléo specifythemdirectly. An
and gatewith oneinputinvertedis not, however, anormalhardwarecomponensoit would be
specifiedasaninverterfeedinginto anandgate.

Hardwaregatesare designedto implementa fixed function; a ULA (UncommittedLogic
Array), PLA (Programmablelogic Array) or CLA (Configuable Logic Array) might be con-
sideredas an exception. LoTtos is more flexible in termsof parameterisinga gatewith its
function. Althougheachkind of gatecould be explicitly specifiedwith its function, this would
leadto alot of duplicationin specificationsincethebehaiour of agateis largely separatérom
its actuallogic function. The specificatiorstyle thereforebreaksfrom a strictrepresentatioof
real gatesby specifyinga genericgatewith its logic function asa parameter Becausd.oTtos
doesnot allow operationdo be givenasparameter$o processeshe namesof the operations
ratherthanthe operationghemseles are given as parameters.An Apply operationtakesan
operationnameand parametersand calculateghe resultsof the logic function. The specific
operationsupportedare:

unary: same(for arepeaterpndnot (for aninverter)
binary: and, nand or, nor, xor.

Namescouldbe givento the otherbinary operationsput would rarely be neededcandwould be
unlikely to correspondo actualgates.Ternaryandhigheroperationgouldalsobegivenspecific
namege.g.for afour-wayand) but arespecifiedfor simplicity usingthe binary operations.
Sometimest is necessaryo tie aninputto logic 0 or 1. This is a nullary logic function,

specifiedby a behaiour thatoutputsits parameteasa constanwalue:

processConstanfop] (bop: Bit) : noexit :=

op! bop; stop
endproc (* Constant)



The earlierdiscussiomabouthow to modeldigital signalsandgatesleadsto a surprisingly
comple specificatiorof a one-input,one-outputogic gate:

procesd.ogicl|ip, op] (bop: BitOp) : noexit :=
letb: Bit=0in
op! Apply (bop,b); LogiclAlip, op] (bop,b)
I
LogiclA [ip, op] (bop,b)
where
procesd.ogiclA [ip, op] (bop: BitOp, b : Bit) : noexit :=
let bold: Bit = Apply (bop,b) in
ip ? b: Bit; LogiclB][ip, op] (bop,b, bold)
endproc (* LogiclA*)
procesd.ogiclB[ip, op] (bop: BitOp, b, bold: Bit) : noexit :=
let bnew : Bit = Apply (bop,b) in
[bnew nebold] =
op! bnewn; LogiclA/ip, op](bop,b)
1
LogiclA ip, op] (bop,b)
endproc (* LogiclB*)
endproc (* Logicl¥*)

Thegateabove is parameterisetly aunarylogic function. Initially it mayoutputaresultbased
onits defaultinputvalueof 0, andthendealwith input. Alternatively, it mayinputanew value
andthenproduceanoutputif thishaschangedthisbehaiour is repeatedAs discusseadh [11],
considerablenvestigationwasnecessaryn orderto comeup with this specificationof a one-
inputgate. Therearesubtletieshintedat earlierwhich makeit hardto specifylogic components
thatassemblgroperlyinto high-level designs.Spacedoesnot allow a full discussiorhereof
alternatve specificationghatareunsuitable.
As anexampleof a one-inputlogic gate aninverterhasthe specification:

procesdnverter[ip, op] : noexit :=
Logicl[ip, op] (not)
endproc (* Inverter*)

A two-inputgateis specifiedmuchasa one-inputgate,andis parameterisedith the name
of abinarylogic function:

procesd.ogic2[ipl, ip2, op] (bop: BitOp) : noexit :=
letbl: Bit=0,b2: Bit=0in
op! Apply (bop,bl,b2); Logic2Al[ipl,ip2,op](bop,bl,b2)
I
Logic2A [ipl, ip2, op] (bop,bl,b2)
where
procesd.ogic2A [ipl, ip2, op] (bop: BitOp, bl,b2: Bit) : noexit ;=
let bold : Bit = Apply (bop,b1,b2)in
ipl? bl: Bit; Logic2B|[ipl, ip2,op] (bop,bl,b2,bold)
1
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ip2? b2: Bit; Logic2B[ipl, ip2, op] (bop,bl,b2,bold)
endproc (* Logic2A *)
procesd.ogic2B [ipl, ip2, op] (bop: BitOp, bl,b2,bold: Bit) : noexit :=
let bnew : Bit = Apply (bop,b1,b2)in
[bnew nebold] =
op! bnewn; Logic2A[ipl,ip2,op] (bop,bl,b2)
1
Logic2A[ipl, ip2, op] (bop,bl,b2)
endproc (* Logic2B*)
endproc (* Logic2*)

As anexampleof atwo-inputgate,a nor gatehasthe specification:

procesNor2[ipl, ip2,0p] : noexit =
Logic2[ipl, ip2,op] (nor)
endproc (* Nor2*)

4.3 Digital Logic Combinations

Logic gatecomponentsrecombinedaccordingto standargatterndor circuits. Thesemay
befoundin ary referenceondigital designsuchas[4]. Combinationsarethereforegivento the
specifier;therequirements to representheseeasilyin Lotos. Two kinds of circuit areused
below asillustration: addersandflip-flops. It shouldbe notedfrom the exampleshow easily
simplercomponentganbe combinednto largerones.

4.3.1 Adders

Addersperformbit-by-bit additionson binary numbers.The designof somecommonkinds
isshovnin figure5. Thereareotherkindsof adderandarithmeticunit thatwill notbediscussed
here.

A half-addemproducesa sumS andcarry C from two binaryinputs A andB, usingan xor
gatefor thesumandanandgatefor thecarry. Its LoTos specificatiordirectly mirrorsits design:



processHalfAdder[A, B, S, C] : noexit :=
Xor2[A, B, S] |[A, B]] And2]A, B, C]
endproc (* HalfAdder¥*)

A full adderalsotakesacarryresultingfrom theadditionof apreviouspairof bits. It therefore
hasbothcarryin andcarryout, Cin andCout. In this andlaterexampleshiddenLoTOS gates
areintroducedo carryinternalsignals.Theconstructiorandspecificatiorof afull adderequire
two half-addersaandanor gate:

procesg~ullAdder[A, B, Cin, S, Cout]: noexit :=
hide Sint, Cint0, Cintlin
(HalfAdder[A, Sint, S, Cint0] |[Sint]| HalfAdder[B, Cin, Sint, Cint1])
|[CintO, Cint1]|
Or2[Cint0, Cint1, Cout]
endproc (* FullAdder¥*)

A ripple-throughadderaddspairsof bitsin parallel,but the carry mustripple throughfrom
earlieradditionsto later onesbeforethe outputis stable. The numberof bits to be addedmust
be fixed, so a two-bit adderhasbeenchoserfor concretenessHowever, theideaworksfor an
arbitrarynumberof bits, with a full adderfor eachpair of bits. Sincethereis noinitial carryto
theadderthefirst carryinputis tied to O.

processRippleThroughAdder2A0, BO, Al, B1, S0,S1,Cout]: noexit :=
hide Cint0, Cintlin
(Constan{Cint0] (0) [[CintQ]] FullAdder[AO, BO, Cint0, SO,Cint1])
[[Cint]]]|
FullAdder[Al, B1, Cint1,S1,Cout]
endproc (* RippleThroughAdder2)

4.3.2 LatchesandFlip-Flops

Latchesandflip-flops arebistabledevices. The designof somecommonkindsis shawvn in
figure 6. Thereareotherkindsof latchesandflip-flops thatwill notbediscussedhere.

An RS latch is namedafterits R (Reset)andS (Set)inputs. Thereare two outputs: the
standardbutput,cornventionallynamedQ, andits negation,Q. ResettinghelatchcausexQ to
become0 andQ to becomel; settingdoesthe opposite. An RS latch canbe built from two
cross-coupledor gates.Its specificationn LoTosis astraightforwardeflectionof thestandard
design:

processRSLatch[R, S, Q, Qbar]: noexit :=
Nor2[R, Qbar Q] |[Q,Qbai| Nor2[S, Q, Qbar]
endproc (* RSLatch*)

TheRSlatchmaybesetatary time by changesn its inputs. Thismaybeundesirabléf there
is arisk of fluctuationsin theinputsor if synchronousogic is required. A clockedRS latch
maythereforebe built outof abasicRSlatch. This hasanadditionalclockinput,C. Theclock
inputmustbe 1 beforeresettingor settingwill have ary effect. The LoTtos specificatiorof this
usestwo andgatesandanRSlatchin thestandardvay:
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Figure6. Examplesof LatchesandFlip-Flops

processCRSLatchR, S,C, Q, Qbar]: noexit :=
hide Rint, Sintin
(And2[R, C,Rint] |[C]] And2[S,C, Sint])
[[Rint, Sint]|
RSLatch[Rint, Sint,Q, Qbar]
endproc (* CRSLatch)

RSlatchescansuffer from pulsingproblemsandraceconditionswhencombined.Thesecan
be addressedby cascadingwo clockedRS latchesin a configurationcalledan MS (Master
Slave flip-flop. Whenthe clock signalbecomesdl, the mastermay be resetor set. Whenthe
clocksignalbecome®, themastercannolongerberesetor set,andits stateis transferregafely
to the slave. The specificatiorof this flip-flop in Lotos combinegwo clockedRS latcheswith

aninverter:

procesaMSFlipFlop[R, S, C, Q, Qbar]: noexit :=
hide Rint, Sint, Cintin
Inverter[C, Cint]
I[C, Cint]|
(
CRSLatchR, S, C, Rint, Sint]
|[Sint, Rint]|
CRSLatcHRint, Sint, Cint, Q, Qbar]
)
endproc (* MSFlipFlop*)
An MS flip-flop is still not robustenoughto be usedasa memoryelement,sinceit allows
settingandresettingat the sametime; this mayleadto anindeterminatestate. Thefinal design
to be considereds the JK flip-flop which avoids this problemby gatingthe inputs with the



oppositecurrentoutput. Theinputsto this kind of flip-flop arecorventionallycalledJ andK.
The specificationlike the design requireswo and gatesn additionto anMS flip-flop:

processJKFlipFlop[K, J,C, Q, Qbar]: noexit :=
hide Rint, Sintin
(And2[K, Qbar Rint] ||| And2[J, Q, Sint])
|[Q, Qbar Rint, Sin{]|
MSFlipFlop[Rint, Sint, C, Q, Qbar]
endproc (* JKFlipFlop*)

4.4 Tool Support

The DILL approachs supportedoy a library of macroswritten in the m4 language. The
macrosare merely a corvenientmeansof parameterisingind generating_oTos text for each
kind of componentor combination. Procesdlefinitionsare generatedy the macrosfor the
componentsequiredin the design. The library containsabout40 macrosin 800 lines of m4.
Fuller detailsof the componentanddesignlibrary aregivenin [6, 11]. The specificationof
every individual componenin the library hasbeencheckedn considerablaletail with tools,
althoughnotyet formally verified. The ultimateobjectiveis to have afully verifiedlibrary that
canbeusedwith confidencen designsof largerlogic systems.

5 Conclusions

The placeof formal methodsn computinghasbeendiscussed Scientificaspectof formal
methodsare dealtwith in theoreticalcomputerscience. Engineeringaspectsare dealt with
in formal softwareengineeringand formal hardwareengineering. Of these,formal software
engineerings atacomparatrely early stageandrequiresnuchmoreeffort. Someof theissues
needingattentioninclude closeralignmentwith industrialneeds,more casestudies,relevant
developmentmodelsandmetrics,professionatecognitionandmanagemeng¢ducation.

Thekey aspecbf succesin engineeringhasbeensuggestetb beuseof known components,
combinedin known ways, yielding predictableresults. This philosophyis also applicableto
engineeringvith formal methods.Theideahasbeenillustratedwith two ratherdisparateappli-
cationareas:developinghigh-level specification®f communicationservicesanddeveloping
low-level specificationf digital logic designs. Spacehasnot allowed the full detailsto be
explained,but they aredocumentedeparatelyor theinterestedeader

A component-basesityle is believed to be generallyapplicable. The authorand his col-
leaguedrave madepreliminaryinvestigation®f theideain otherareassuchascommunications
protocols distributedsystemsandartificial neuralnetworks.By actingasa practicalaid to for-
mal specificatioranddesign,a component-basestyle hassomeclaim to beinganengineering
approactto formal methods.
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