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Thedistinctivefeaturesof engineeringarediscussed,andusedto identify how anengineering
approachto formal methodsmight bedeveloped.Thekey conceptin engineeringis suggested
to be known componentsthat arecombinedin known ways. This component-basedstyle is
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LOTOS (LanguageOf Temporal OrderingSpecification).

Keyword Codes: B.2.1;B.6.1;C.2.1;D.2.1;F.4.3

Keywords: Arithmetic andLogic Structures,DesignStyles;Logic Design,DesignStyles;
ComputerCommunicationNetworks,NetworkArchitectureandDesign;SoftwareEngineering,
Requirements/Specifications;MathematicalLogic andFormalLanguages,FormalLanguages;
CommunicationsServices;LOTOS (LanguageOf TemporalOrderingSpecification)

1 Intr oduction

Thetopicof formalmethodscoversthedevelopmentandapplicationof mathematically-based
approachesin computing.But is it ascience,anengineeringdiscipline,or both?

Thereis growing interestin formalmethodsbecausethey offer rigoroussupportof computer
systemdevelopment.Formalmethodsareparticularlydesirablein safety-criticalapplications
suchasprocesscontrol,aviation, medicalsystems,railway signallingandmany others.Other
applicationsmaynot threatenlife if they fail, but mostmaybedescribedasquality-critical. It is
difficult to findanapplicationthatwouldnotbenefitfrom therigourbroughtby formalmethods.
However, themainreasonthat formal methodsarelimited in their useis thaton a cost-benefit
analysisthey areoftennot justified. Theonly way to makethemmorewidely applicableis to
reducethecostof their use.

Engineersmakesuccessfuluseof scienceto achieve practicalresults. Thereis reasonto
believe thatacombinationof engineeringprinciplesandformalmethodscouldleadto rigorous
and cost-effective computersystemdesign. Section2 investigateswhat is distinctive about
engineeringandwhatits lessonsarefor formalmethods.A key aspectof successin engineering
is suggestedto beacomponent-basedstylein whichknowncomponentsarecombinedin known
waysto yield predictableresults.Section3 illustratestheapproachby showing how high-level
specificationsof communicationsservicescanbeproduced.Section4 illustratestheapproach
in a differentapplicationareaby showing how to producelow-level specificationsof digital
logic. In bothcases,theunderlyingformallanguageis LOTOS(LanguageOf Temporal Ordering
Specification, [2]).
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2 An EngineeringApproachto Formal Methods

Thissectionaddressesanumberof aspectsof generalengineeringpractice,andsuggestssome
implicationsfor engineeringwith formalmethods.

2.1 The Placeof Formal Methods
Mathematicsis widely usedin all aspectsof engineering.However, it is taughtin anapplied

wayandis backedupby well-definedmethods.Themathematicsis packagedin aform directly
usableby an engineer. Often the notationand the resultsratherthan the underlyingtheory
are the importantpartsof the mathematics.Formal methodsin computingshouldaspireto
thesamelevel of utility andacceptability. Fortunately, thereis goodevidencethat this canbe
achieved. Onegoodexample,which is oftenoverlooked,is the theoryof artificial languages.
Every compilerwriter usesthis in parsingandprocessinglanguages,andevery programmeris
accustomedto at leastthegrammarof a language.

So what is it thatdistinguishesengineeringfrom science?In general,scienceis concerned
with explanation. A typical dictionary definition of scienceis ‘knowledgecovering general
truthsor the operationof generallaws’ [5]. Sciencethusdealswith fundamentalideasand
theories. Scienceis often analytic,seekingto understandphenomenain termsof underlying
explanations.By wayof contrast,atypicaldictionarydefinitionof engineeringis ‘theapplication
of scienceandmathematics. . . madeusefulto people’[5]. Engineeringis thusconcernedwith
applicationor production. Engineeringputsscientificresultsto practicaluse. Engineeringis
oftensynthetic,building new solutionsfrom existingones.

Trying to polarisescienceandengineeringis artificial. Therearemany scientistswho carry
outengineeringactivities,andmany engineerswhocarryoutscientificinvestigations.Thereis a
full rangefrom puresciencewithoutany applicationsto pureengineeringwithoutany scientific
basis.But it is usefulto comparetheoppositeendsof therangein orderto seehow they differ.

Scienceandengineeringarewell-establisheddisciplines,in somecasesgoingbackmillenia.
Computinggoesbackonly 30 to 50 years,soof coursethebodyof scientificandengineering
knowledgein this areais still growing enormously. Computersciencemay be seenas the
scientificbranchof computing.Computersciencehasbeenableto draw considerablyon work
in the physicalandnumericalsciences(e.g.physics,electronicsandmathematics).Theoret-
ical computersciencefocussesespeciallyon the mathematicalunderpinningof computation.
On theengineeringsideof computing,thereis a split into hardwareengineeringandsoftware
engineering.Hardwareengineeringhasbeendevelopeddirectly on top of electronicengineer-
ing. Formal methodsin hardwareengineeringarewell-advanced(e.g.hardwaredescription
languages,designautomationsystemsandsimulationsystems).However, softwareengineering
hashadvery little to build on; the conceptof software(thoughnot algorithm)hardly existed
beforethe1950s.

So,wheredo formal methodsfit in? Part of the ‘image’ problemthey have is that they are
seenlargely asa scientificpursuit. Formalmethodsareseenasbeingrathermathematicaland
intellectuallyhardto use.They havea reputationof beingabstruseandimpractical.They have
limited usein industry, thoughtheusethatis reportedis generallyfavourable.

Figure1 relatessomeof the areasdiscussedso far. Formal methodsincludestheoretical
computerscience,formal softwareengineeringand formal hardwareengineering. Of these
three,formal softwareengineeringrequiresthemostattention. Focussingattentionon formal
softwareengineeringwill hopefullyidentify weaknessesandareaswherework is needed.
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Figure1. ThePlaceof FormalMethods

Trying to draw a fixed boundarybetweenhardwareengineeringandsoftwareengineering
is, of course,ashopelessastrying to draw a fixedboundarybetweenscienceandengineering.
Hardwaremayhave integral softwaresupport(e.g.themicroprogramof a microprogrammable
processor),andsoftwaremayhave integral hardwaresupport(e.g.bit block-level transferin a
windowing system).Nonetheless,hardwareandsoftwarediffer fundamentallyin how they are
designed,manufactured,enhancedandrepaired.By thesametoken,formalmethodsin hardware
engineeringandsoftwareengineeringhave evolvedalongdifferentlines. As it happens,formal
methodsin hardwareengineeringaremuchbetterdeveloped,sothefollowingdiscussionmainly
addressesformal softwareengineering.

2.2 An Engineering Approach
2.2.1 EngineeringPhilosophy

Engineersaim to usescientifically-basedmethodsandtools. Certainlytherearetimeswhen
aparticularengineeringproblemdoesnothaveascientificunderpinning.In themain,however,
engineeringisconcernedwith theapplicationof science.Engineersalsoaimtoproducepractical
resultsthatsolverealproblems,generallyindustrialproblemsin manufacturingor construction.
Althoughnew problemsmayrequirenew solutions,muchof engineeringis there-useof trusted
components,methodsand tools. An engineercan call on a large body of experiencethat
indicatesthecostsandbenefitsof eachpossiblesolution.

Formalsoftwareengineeringshouldsimilarly aim to applymethodsandtoolsbasedon the
resultsof theoreticalcomputerscience.Thegoalsshouldthereforebedirectlypractical,aiming
to build bettersoftwarein a predictablemanner. Like all engineers,formal softwareengineers
shouldbeactively involvedin solvingindustrialproblems.However, formalsoftwareengineers
currently lack the historicalexperienceandcasestudiesavailableto otherengineers.This is
largelydueto theimmaturityof thesubject,andsowill improve in time anyway. Nonetheless,
casestudiesandevaluationsof methodsandtoolsshouldbeactivelypursued.Externalinfluences



suchasstandardsandGovernment-promotedinitiativesareimportantincentivestoemploymore
advancedtechniques.

Engineersare expectedto follow approved practices,using appropriatecomponentsand
tools. Resultsareexpectedto bepredictableandto meetconstraintssuchascost,time,quality,
reliability andsafety. Engineershave to behave professionally, andoftenrequireto belongto a
professionalsocietyandhave charteredstatusbeforethey canpractise.

In principle, thesameexpectationscouldbeheldof formal softwareengineering.Unfortu-
nately, thestateof theartdoesnotyetallow developmentto meetthekind of criteriathatwould
beappliedin otherengineering.Softwareestimationtechniquesallow somepredictionof cost
andtime,but they arestill somewhatinexact. With physicalsystems,it is usualto predictfailure
ratesandcomponentlifetimes. Softwaredoesnot,of course,wearoutorbreakdown in thesame
way asphysicalcomponents.Work on softwarereliability will in futureallow predictionsof
problemswith software.Much moreeffort is needed,however, onpredictingreliability andon
designingto meetsafetystandards.Advancesin areaslike thesemaycausesoftwareengineers
to be held individually accountablefor their work. Perhapssoftwareengineersof the future
shouldbe charteredlike otherengineers,andrisk losing their charterif they arefound to be
professionallynegligent.

2.2.2 EngineeringProcesses
An engineeringprocesswill generallyfollow an establishedapproachto designandmanu-

facturing. Frommany similar projects,anappropriatemodelof thedevelopmentprocesswill
beselected.Standardprojectmanagementmethodswill beused,backedup by quality control
duringdesignandmanufacturing.Suitabletoolswill generallybeavailablealready.

Thesoftwareengineeringprocesshasbeendescribedin many ways. However, few of these
deal specificallywith the useof formal methodsin softwareengineering. For example,the
shapeof a developmentprocessusingformal methodsis ratherdifferent: muchof theeffort is
upfront onspecificationandverification,while ratherlessis devotedto testingandmaintenance.
Theproblemsof managingformalsoftwareengineeringderive in partfrom thelack of suitable
metrics.Managersof softwareprojectsareaccustomedto measuringnumberslike linesof code
produced,faultsfoundduringreview, or moduleswhosetestingis complete.Metricsfor formal
methodsarestill to bedefined:numberof specificationlines,assertions,or theoremsproved?
Theseamlessuseof formalmethodsthroughoutthedevelopmentprocessalsoneedsmuchmore
work. Unlike tools usedin otherforms of engineering,tools for formal softwareengineering
arelargely researchprototypesandlack industrialapplicability.

Models in engineeringhave traditionally beenscalemodelsor mock-ups. Theseareused
to predictthebehaviour of the realartifact. During evaluation,themodelis adapteduntil the
desiredbehaviour is obtained.More recently, engineershaveturnedto computersimulationsas
beingmorecost-effectivethanphysicalmodels.

Formalsoftwareengineersalsobuild modelsof systems,but mathematicalabstractionsrather
thanscalemodels. Again, theobjectis to predictthebehaviour of thereal system.However,
formal modelsarelargelyconcernedwith functionality, whereasengineeringmodelsgenerally
are largely concernedwith performanceand reliability. Perhapsthis is becauseengineering
functionsare often straightforward,whereascomputingfunctionsare rarely so. Predictions
from mathematicalmodelsin computingare thereforelargely relatedto correctbehaviour.
Formalmethodsthatcombinefunctionalandnon-functionalaspectshavealreadyappeared,but



will needmuchmoredevelopment.

2.2.3 EngineeringComponentsandtheir Combination
Monolithic or amorphoussystemsare rare,except in nature. Designis almostinvariably

decompositional(top-down)or compositional(bottom-up).Engineeringexploitsthisby aiming
to usecommoncomponentsin differentdesigns. For example,an electronicsengineeruses
off-the-shelfdiscreteor integratedcomponents.Massproductionof specialisedcomponents
enablesengineersto designnew productsquickly andeffectively. Componentsaredesigned
and manufacturedto definedinterfacesand standards,enablingthem to be assembledwith
confidenceinto moreelaboratestructures.Extensiveuseof standardisedcomponentsconstrains
designs,but at thesametime limits variationsthatmight notbecost-effective. For example,an
electronicsengineerdesigningcomputermemorywill usestandardchipsthatdictatememory
sizeandword length,ratherthantrying to designanarbitrarymemorystructure.

Anotherimportantaspectof engineeringis thatready-madesolutions(or designs)aregener-
ally available.Thesecombineknown componentsin known waysto achievepredictableresults.
Forexample,anelectronicsengineerwhowishestobuild aparalleladderis likely tousestandard
componentsconfiguredaccordingto thecircuit diagramin astandardreferencebook.

Componentre-usehasbeena major themein softwareengineeringfor many years.Object-
orientedmethodsandlanguagesseemto bethefirst practicalsteptowardsachieving this goal.
However, in formalsoftwareengineeringtherehasbeenli ttle identificationof usefulspecification
componentsandspecificationstructuresusingthese.This is a greatpity sincea majorpromise
of formalmethodsis verificationof thesystembeingspecified.Verificationis veryhardfor any
but trivial systems,soverificationof largeor complex systemsis usuallyinfeasiblein practice.
A component-basedstyleallows componentsto beverified individually. Largercombinations
(‘designs’)of trustedcomponentscanthenbeverifiedmoreeasily.

2.3 KeyAspectsof Engineering
Theprecedingdiscussionshasidentifiedanumberof suggestionsfor developinganengineer-

ing approachto formalmethods.Of these,thekey aspectseemsto beusingknown components,
in known combinations,supportedby effectivetools.

Ideallyit shouldbepossibleto developandprovecomponentsandcombinationsindividually.
In practice,this would allow componentsto be designedby third partiesor bought in. It
wouldalsoallow general-purposedesignsto beevolved,anddocumentedin standardreference
works. It mustalsobe possiblefor componentsto be combinedwithout adverselyaffecting
their individual properties.The ideal componentis generalenoughto allow re-useor simple
adaptationfor new applications.At thesametime, thecomponentmustnot besogeneralasto
makeit expensive or to makecustomisationdifficult.

In formal softwareengineering,therearetwo principal levels at which a component-based
styleof specificationis particularlyworthwhile: at a high level (closeto requirements)andat
a low level (closeto implementation).For eachapplicationareaandlevel of specification,a
library of componentsandcombinationsshouldbedeveloped.This canalsohelpto bridgethe
gapbetweenthe customeror end-user, the specifierandthe implementer. Specificationsare
usuallycouchedin aspecialisedlanguage,reflectingthefeaturesandconcernsof thatlanguage.
With acomponent-basedstyle,thereis anopportunityto imposestructureonaspecificationthat
is meaningfulto end-users.

A component-basedstyle alsoallows thespecifierto takea higher-level, architecturalview



of the specification. This makesit easierto producenew specificationsof similar problems,
ensuresgreaterconsistency in styleamongdifferentspecificationsin thesameapplicationarea,
andallowsdifferentspecificationsto becomposedmoreeasily. In thefield of communications
systems,the term ‘architecturalsemantics’is alsousedfor this approach[7]. This permitsan
architecturalview of how a languageshouldbe used,restrictingits usagebut alsomakingits
usemoreevident.

Are component-basedspecificationsdesigns?All specificationsmustexhibit structureunless
they aremonolithic,so largespecificationsshouldfollow stylistic principlesto ensurea good
structure.A component-basedstyleis simplyonewayof structuringspecifications,andsodoes
not necessarilyleadto designs. As will be seenin section3, componentsandcombinations
canbe constraintsor assertions,leadingto high-level specifications.As will alsobe seenin
section4, componentsandcombinationscanalsobedetailedandconcrete,leadingto low-level
specifications.The choiceof componentsandcombinationsdependson the applicationarea
andthepurposeof specifications.A rangeof abstractionlevelsshouldbeusedduringthedesign
trajectory, appropriateto eachstagein development.

The remainderof this paperillustratesa component-basedstyle of specificationat a high
level andat a low level. The first applicationdealswith communicationsservices,andmight
beconsideredasengineeringwith constraints.Thesecondapplicationdealswith digital logic,
andmight be consideredasengineeringwith physicalcomponents.In both applications,the
importantissueis theuseof known componentsandcombinations.Thesearebackedup by a
formal representation.LOTOS hasbeenusedin this paper, but in principleany formal notation
couldbeused.

3 EngineeringCommunicationsServices

3.1 ServiceEngineering
Theconceptof serviceengineeringis usedin telecommunications,wherethereis increasing

demandfor rapidintroductionof new services.Thetermserviceisusedwith atleasttwodifferent
meanings:asa setof functionsperformedon behalfof customers,andastheabstractionof the
functionsof a layer. Thefirst meaningis theoneusedin ODP(OpenDistributedProcessing),
the secondis the oneusedin OSI (OpenSystemsInterconnection). Serviceengineeringhas
previously beenusedof servicesin the first sense. However, this paperconcentrateson the
secondmeaningof service,largely becauseit is a muchmorestructuredandwell understood
problemdomain. Thespecificationof suchservicesmight alsobelegitimately termedservice
engineering. The goalsare to reflect userrequirementsclosely, to usewell-known patterns
of behaviour, to allow flexible definition and modificationof services,and to formaliseand
verify the resultingservices.A restrictionimposedin this paperis that servicesareprovided
betweenpairsof users.However, theapproachtakencouldbegeneralisedtodealwith multi-way
(multi-peer)services.

OSI views a serviceasa collection of servicefacilities. The exact natureof theseis left
open,but theintentionseemsto bethatservicefacilitiesshouldbeself-containedfeatures.For
example,a simpleconnection-orientedservicemight be saidto have facilities for connection
establishment,datatransferandconnectionrelease.

Much experiencehasbeengainedin writing specificationsof communicationsservicesin
LOTOS. Guidanceis availablein documentssuchas[3, 8, 10]. The usualadviceis to adopt



a constraint-orientedstyle, decomposingthe servicebehaviour into endpointconstraintsand
end-to-endconstraints.Unfortunatelythis decompositionmakesthe division into facilities a
secondaryconcern. The behaviour of facilities is thereforescatteredacrossthe specification,
makingit difficult to add,changeor removefacilities. A moreconvenientdivisionwouldmake
decompositioninto facilitiestheprimarysplit,with considerationof otherconstraintssecondary.
This is therationalebehindthecomponent-basedstylethatis explainedbelow.

3.2 ServiceComponents
3.2.1 ServicePrimitivesandFacilities

Servicefacilities are the componentsof services. Servicefacilities may be combinedinto
largerfacilities,soaserviceis effectively justthetop-level facility. Servicefacilitiescorrespond
to patternsof interactionsbetweenapairof users.Theinteractionscorrespondto theoccurrence
of serviceprimitives. Serviceprimitive occurrencesareabstractionsof interactionsbetweena
serviceuserandaserviceprovider. Serviceprimitivesarenamedaccordingto thelayerinvolved,
thefacility beinginvoked,andtheroleof theserviceprimitive in thefacility. A typical service
primitive might thusbenamedN-Connectrequest, beinga requestby a networklayeruserto
establishaconnection.In thefollowing, thelayerprefixwill beomittedasbeingimplicit. Four
rolesareidentifiedfor serviceprimitivesin a facility:

request: this initiatessomefacility (e.g.to requestaconnectionto anotheruser)

indication: thisnotifiesthecorrespondinguserthatthefacility hasbeeninvoked(e.g.to notify
a userthata connectionhasbeenrequested)

response:thisgivestheacknowledgementfromtherespondinguser(e.g.to indicateacceptance
of theconnection)

confirm: thisgivestheacknowledgementto theinitiating user(e.g.to indicatethattheconnec-
tion hasbeenaccepted).

A particularfacility mayrequireonly someof theseroles. Also, a facility might besubdivided
into two: a requestandindication,followedby a requestandindicationin acknowledgement.
For example,a datarequestandindicationmight triggeranoptionalacknowledgementrequest
andindicationratherthanadataresponseandconfirm. In suchacase,however, therearereally
two facilities: an unconfirmeddatatransferanda confirmedone,selectedaccordingto some
optionin thedatarequest.

A serviceprimitivewith namelike Connectrequestbelongswith othersof thesamefacility in
agroupwith nameConnect. Thegroupnameis alabelfor therequest,indication,responseand
confirmprimitivescollectively. If a requestandindicationratherthanresponseandconfirmare
usedin theacknowledgement,differentgroupnamesareused.Thusa confirmeddatatransfer
facility might besubdividedinto groupsDataandAcknowledge.

The parametersof serviceprimitivesin a facility arerelatedto eachother. In the simplest
case,theparametersof anindicationor aconfirmareidenticalto thoseof a requestor response
respectively. Similarly, theparametersof aresponsearedirectlyrelatedtothoseof theindication.
However, morecomplicatedpossibilitiesexist. For quality of servicenegotiation,for example,
the relevantparameterin the indicationmay be weakerthanthat in the requestif the service
provider cannotmeetthe requestin full. Theparameterin theresponsemayagainbeweaker



thanthatin theindicationif therespondingusercannotmeettherequirementsin theindication.
Theparameterin aconfirmis almostinvariablythesameasthatin aresponse,but in generalmay
vary. Thespecificationof a facility shouldthusallow for a relation(thatmaynot be identity)
betweenanindicationanda request,a responseandanindication,aconfirmanda response.

Servicefacilitiesmaybeinvokedin anisolatedfashion.Thisis thecasefor aconnection-less
service,for example, in which every data transferis unrelatedto others. Servicefacilities
mayalsohave somerelationshipto eachother. This appliesto a connection-orientedservice,
for example, in which connectionestablishmentmust precededata transferand connection
release.OSI usestheconceptsof association,connectionandconnectionendpointto indicate
that servicefacilities are related. However, this is not generalenoughsincethereare many
possibilitiesbetweenpurelyconnection-lessandconnection-oriented.

Themoregeneralnotionof aninteractiongroupis thereforeintroducedin thispaper. This is
acollectionof interactionsthatshouldbeconsideredrelated.A servicefacility is aninteraction
group,andso arecombinationsof servicefacilities. Sucha groupneedsa uniquereference,
calledaninteractiongroupidentifier(IGId). Connectionsareinteractiongroups,andconnection
endpointidentifiersareinteractiongroupidentifiers.Interactiongroupidentifiersareknownonly
locally toauser, soapairof identifiersisassociatedwith oneinteractiongroup.Strictlyspeaking,
aninvocation(instance)of a serviceuserdealswith eachinteractiongroup.However, theterm
‘user’ is usedwidely although‘serviceuserinvocation’wouldbetheaccuratedescription.

3.2.2 Patternsof ServiceFacility
A studyof typicalOSIservicesrevealsthattherearefivecommonpatternsof servicefacility.

Theseare illustrated in figure 2 accordingto the serviceconventionsof [1]. The service
conventionsdocumentdefinessimple time-sequencediagramsin which time runs down the
page,andthreecolumnsdescribethe interactionsbetweentwo usersandtheserviceprovider
asintermediary. Arrows indicateoccurrenceof a serviceprimitive, andslopinglinessuggest
thetimedelaybetweentheoccurrenceof a serviceprimitiveat oneuserandthecorresponding
occurrenceat the other. Whenthe occurrenceof two serviceprimitivesis not time-related,a
tilde (∼) is placedbetweenthem.

Thetime-orderingsamongprimitiveoccurrencesin afacility constituteatemporalconstraint.
Eachbasicpatternmay have oneof the propertiesillustratedin figure 3. The propertiesare
arrangedin ahierarchy:

single: a singleoccurrenceof the facility is permitted,e.g. to initialise a service;otherwise,
multipleoccurrencesarepermitted

consecutive:multiple occurrencesstrictly follow eachother, e.g. to ensurethat an expedited
datarequestisdealtwith beforeanotheroneisallowed;otherwise,overlappedoccurrences
arepermitted

ordered: overlappedoccurrencesrespecttherelativeorderof primitivesin differentinvocations
of afacility,e.g.toensurethatacknowledgeddatatransferisproperlypipelined;otherwise,
overlappedoccurrencesareunorderedwith respectto eachother

reliable: unorderedoccurrencesarefully completed,e.g.to ensurethatdatatransferrequests
arenot lost; otherwise,unorderedoccurrencesareunreliable
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unreliable: unorderedoccurrencesmay not be fully completed,e.g. if datarequestsmay be
lostdueto problemsin theserviceprovidersuchascongestion.

Facilities alsohave a direction, relatinga particularpair of usersandthereforeinteraction
groupidentifiers.Althoughmany servicesaresymmetrical,theremaybeasymmetriesin what
userscaninvoke. For example,someusersmaybeallowedonly to initiate connectionswhile
othersareallowedonly to respondto connections.Within a connection,only theinitiator may
beallowedto senddataoronly therespondermaybeallowedto breaktheconnection.Facilities
shouldthusbespecifiedunsymmetrically, but asymmetricalservicecansimplyallow facilities
betweenall (distinct)pairsof users.

3.2.3 ServiceFacility Specification
Servicefacilitiesandtheircombinationswill bedescribedusingthelanguageSAGE(Service

AttributeGenerator). Thelanguageisbriefly explainedin thispaper, but [9] shouldbeconsulted
for moredetails. In particular, [9] givessemanticsto the languageby meansof denotationsin
LOTOS for eachtypeof declaration.Thereis insufficient spacein thispaperto show theLOTOS

specificationsthataregeneratedfrom servicedeclarations.However, theessenceof SAGE is
architectural;its semanticscouldin principlebegivenin othertermssuchastracelogic.

Basicfacilitiesaredescribedby meansof thefollowing declaration:

facility(direction, pattern, property, group1, group2)

The direction is 12 or 21, dependingon which of the usersinitiates the facility; user1 is
conventionallytheleft-handuserin a time-sequencediagram,user2 is theright-handuser. The
patternis oneof thefivepatternsfoundin figure2, andthepropertyis oneof theleafproperties
foundin figure3.

In thecaseof a provider initiatedor unconfirmedpattern,only thefirst groupis given. In the
caseof a confirmedpatternbothgroupsaregiven. Thetwo groupsarenormally identicaland
namethe servicefacility. However, in a subdivided facility with groupnameslike Data and
Acknowledgethey maybedifferent.Thegroupsmustalsogivetheserviceprimitiveparameters.
By default,theparametersin a requestandindicationor responseandconfirmarerequiredto
bethesame,andnorelationshipholdsbetweentheparametersof anindicationanda response.
Thespecifiermustalterthegeneratedspecificationif a morecomplex relationshipholds.

Herearesomesampledeclarationsof facilities:



facility(12,provider initiated,single,Start()):asinglestartindicationwith noparametermaybe
spontaneouslygivento user2 by theserviceprovider

facility(21,unconfirmed,ordered,Expedited(Data)): anunconfirmedexpediteddatafacility with
a dataparametermaybesentby user2 to user1; a further requestmaybemadebefore
thepreviousonehasbeendealtwith, but theorderof transmissionis respected

facility(12,user confirmed,consecutive,Connect(Addr,Addr),Accept(Addr)):a user con-
firmed connectwith two addressparametersmay be sentby user1 to user2, the ac-
ceptresponsehaving oneaddress;a further requestmaynot bemadeuntil theprevious
onehasbeenhonoured.

Sincefacilities in eachdirectionbetweenusersarethesameif theserviceis symmetrical,a
facility in thereversedirectionbetweenthesameusersmaybedeclaredwith:

reverse(facility)

A rangeof basicserviceprimitive parametersortsarepre-defined,sothatthey maybeused
immediatelyin thedeclarationof facilities. Theavailabletypesare:

Title, Addr: a serviceusertitle and serviceaccesspoint address,specifiedas distinct labels
without structure

IGId, IGIdSet: interactiongroupidentifiers,specifiedasdistinctlabelswithout structure

Data: aservicedataunit, specifiedasa stringof octets

Orig: theoriginatorof a facility, specifiedasbeing‘user’, ‘provider’ or ‘other’

Reas: areasonfor invokinga facility, specifiedasdistinctlabelswithout structure

Opt: aserviceoption(afunctionalaspectsuchasexpediteddataselection,or qualitativeaspect
suchas throughput),specifiedasa generictype with comparisonof option values(for
negotiation)

Prim: aserviceprimitive,definedusingtheinformationfrom thefacility declarations

PrimQ: aqueueof serviceprimitivesbeingprocessed,specifiedasa stringof primitives

Othertypesmaybeusedfreely asserviceprimitive parameters,but their formal definitions
mustbeaddedby thespecifier. Thedefinitionsof theabove typesmayalsoneedto bemodified
or replacedby thespecifier. For example,aspecificaddressstructuremaybeneededor specific
optionsmaybedefined.



3.3 ServiceCombinations
3.3.1 ServiceCombinators

In principle,servicefacilitiescouldbecombinedin alimitlessnumberof ways.However, OSI
standardstypically usea small numberof commoncombinations.Thesearediscussedbelow
alongwith how they aredeclaredin SAGE. Thedeclarationsof combinationsgive oneor two
behavioursto becombined.Thebehavioursarethoseof basicfacilitiesor their combinations.
A facility groupis givenasparameterwhenit is necessaryto qualify thecombinedbehaviour as
applyingto aparticularfacility within it. In thefollowingdeclarations,theitalicisedbehaviours
would bedefineddirectly asfacilities or usingothercombinators.Eachdeclarationtakesthe
form:

combinator(parameter1,. . . , parameterN)

Sucha declarationstandsfor the behaviour given by its parameters,combinedin a particular
way. Combinatorsmaythereforebebuilt up into largerexpressionssuchas:

combinator1(combinator2(...),combinator 3(...))

Sometimesa single large expressionfor a servicewould be unwieldy, or would require
repetitionof sub-expressions.In suchacase,apartof theoverallbehaviour maybedefinedby:

define(behaviour,combinator(...))

wherebehaviourwould beusedasa parameterto othercombinators.Typically this is useful
for giving a nameto thebehaviour of eachservicefacility.

3.3.2 EnablingandDisabling
Thecompletionof onefacility mayallow anotherbehaviour to start.Forexample,completion

of serviceselectionmaybenecessarybeforeit canbeused:

enables(selection,usage)

Onefacility maybeableto interruptandterminateanother. For example,disconnectionmay
disabledatatransfer:

disables(disconnect,data)

Thedisablescombinatorcausespermanentdisruption.Instead,a facility maybeinterrupted
but thenresumedaftercompletionof theinterruptingrequest.For example,resetinterruptsdata
transferbut allows it to continue(with a freshstart)afterthereset:

interrupts(reset,data)

Althoughenablingis anobviousrelationshipbetweentwo facilities,it doesnotusuallyappear
in a servicein quite this form. A morenormalsituationis that the facility is enabledfor each
userseparatelyafter local completion. Consideruser-confirmedconnectionfollowedby data
transfer. After theconnectresponse,therespondingusermayimmediatelybegin datarequests
eventhoughtheconnectconfirmhasnotyet beendeliveredto theinitiating user. (Theconnect
confirm will, of course,occurbeforethe correspondingdataindications.) After the connect
confirm,the initiating usermaybegin local datarequests.This behaviour is socommonthata
specialdeclarationis availablefor it. The namecomesfrom the fact that onebehaviour may
enableanotherimmediatelyafter an acknowledgement(a responseor confirm). Connection
enablingdatatransfermight thusbedeclaredby:



enablesafter ack(connection,data)

Anothervariationof enablingoccurswhena facility is allowedto begin assoonasanother
hasbeeninitiated. In this case,it is the requestor indicationthat enablesthe facility locally.
Typically, this arisesfor disconnection.A disconnectmakesno senseuntil a connectionhas
beenattempted,butmayberequestedbeforeaconnectionhasbeenconfirmed;thisallowseither
userto abandona connectionattempt.It is thetry ratherthanacknowledgementof connection
thatallowsdisconnectionto takeplace.Connectionenablingdisconnectionis thusdeclaredby:

enablesafter try(connection,disconnection)

In all threevariationsof enabling,the first facility enablesthe secondand then ceasesto
operate. A commonrequirementis for the whole combinationto repeatafter the second
terminates.Connectionfollowed by disconnectionis a particularexample,sincecompletion
of disconnectionallows a new connectionattemptto begin. This differs from the caseof
enablingin thatcyclic (recursive)behaviour is possible.Therearethereforetwo variantsof the
interruptscombinator, usedaccordingto whetherthe secondfacility must reachthe stageof
acknowledgementor just trying:

interrupts after ack(disconnection,connection)
interrupts after try(disconnection,connection)

3.3.3 Duplexity
Two facilities may be entirely independent.For example,datatransferin eachdirection

betweena pair of usersis usuallyseparateandmaybedeclaredby:

interleaves(data12,data21)

A facility maybeusedalternatelyby eachuser. For example,datatransferin eachdirection
maybetwo-wayalternate(‘half duplex’), declaredby:

alternate(data)

Insteadof this, a facility may be usedat the sametime by both users. Thus, for two-way
simultaneous(‘full duplex’) transferof expediteddatathedeclarationwouldbe:

simultaneous(expedited)

3.3.4 Interference
Onefacility mayhavepriority overanother, suchthatits requestsmaybedealtwith first. For

example,thefollowingdeclarationsaysthatexpediteddatamayovertakenormaldata(although
this is notguaranteed):

overtakes(expedited,normal)

If the samefacility is invoked‘simultaneously’by both users,a collision of requestswill
occurinsidetheserviceprovider. For somefacilities (suchasdatatransfer),the requestswill
not interferewith eachother. For others(suchas disconnection),the requestsare mutually
supportive. In suchacase,only someof theprimitivesof thefacility occur: for anunconfirmed
facility, therearerequestsonly; for a confirmedfacility, therearerequestsandconfirmsonly.
For example,thecollisionof disconnectsmaybedeclaredwith:

colliding(disconnect)



3.3.5 GlobalAspects
The combinatorsseenso far dealwith pairs of specificusers. Thereare variousways in

whichsuchbehaviourscanbecombinedfor all of them.Thefollowing declarationsaysthatthe
behaviour appliesto all distinctpairsof users(strictly, interactiongroupidentifiers):

forall ids(behaviour)

Eachusermustusedistinctinteractiongroupidentifiers,thoughthesamevaluemightbeused
concurrentlybyseveralusers.Somefacility muststartaninteractiongroup(causingits identifier
to beallocated).Somefacility (possiblythesameone)mustendaninteractiongroup(causing
its identifierto bede-allocated).For example,to declarethatconnectionanddisconnectionplay
this role:

unique ids(connection,disconnection,behaviour)

Notethatconnectionanddisconnectionherearefacility groupsandnotbehaviours.
At a global level, the serviceprovider may temporarilywithhold the opportunityto invoke

certainkinds of facility. This might apply to connectionor datatransfer, for example,dueto
congestionwithin the service. The effect is that some(perhapsall) usersarepreventedfrom
issuingcertainrequestsfor a time. Considerbackpressureflow control,which withholdsdata
requestsuntil thedatapipelineis sufficiently clear. Thiswouldbedeclaredas:

withheld(data,behaviour)

Notethatdatahereis a facility groupandnota behaviour.
Finally, theultimatecompositebehaviour of aservicemustbedeclaredastheglobalone.At

thesametime, a namefor thekind of serviceis declared.For example,a connection-oriented
servicemightbedeclaredas:

global(co,behaviour)

3.4 Example ServiceDeclarations
A basicconnection-lessservicehasthefollowing characteristics.A datagramfacility allows

unrelateddatamessagesto be sentby oneuserto any other. Multiple datatransfersmay be
initiated by a user;thesemay be overlapped,may arrive in a differentorder, andmay not be
reliablydelivered.Datagramshaveasourceaddress,adestinationaddress,andadataparameter.
Thisserviceis representedby thefollowing declarations:

define(datagram,
facility(12,unconfirmed,unreliable,Datagram(Addr,Addr,Data)))

global(cl,forall ids(datagram))

An acknowledgedconnection-lessserviceis like a basicone,except that datagramarrival
is confirmed. Supposingthat the serviceprovider confirmeddelivery andguaranteedreliable
transfer, thedeclarationswouldbe:

define(datagram,
facility(12,provider confirmed,reliable,Datagram(Addr,Addr,Data)))

global(acl,forall ids(datagram))



It is possibleto describeunsymmetricalservices;indeedtheseareperhapsmorecomplex
andthereforea greatertestof the expressive power of SAGE. The next (somewhat extreme)
exampleusesanunsymmetricalconnection-orientedservicewith thefollowing characteristics.
A user-confirmed,reliableconnectionfacility allows connectionsto beestablishedbetweena
pair of users;the addressesof the initiating andrespondingusersareprovided asparameters
whenconnectionis tried. Theconnectionfacility maybetemporarilywithheldfromsomeusers.
Oncea connectionhasbeentried, it maybebrokenby disconnection;a connectionmay then
betried again.Oncea connectionhasbeenacknowledgedit is possibleto invokenormaldata,
expediteddataandresetfacilities. A bidirectional,provider-confirmed,unreliabledatafacility
allows normaldatato be transferredby either user;a dataparameteris provided whendata
transferis tried,andanacknowledgementis returnedon successfuldelivery. An unconfirmed,
reliableexpediteddatafacility allowsonly therespondinguserto sendpriority data;thiscarries
a dataparameter. A colliding, unconfirmed,reliable resetfacility allows datatransferto be
interruptedandresumedfrom scratch;areasonparameteris suppliedwhenresetis invoked.An
unconfirmed,reliabledisconnectfacility allowsonly therespondinguserto breakaconnection.
Thisserviceis representedby thefollowing declarations:

define(conn,facility(12,userconfirmed,reliable,Conn(Addr,Addr),Conn))
define(norm,facility(12,provider confirmed,unreliable,Data(Data),Ack))
define(exp,facility(21,unconfirmed,reliable,Exp(Data)))
define(reset,facility(12,unconfirmed,reliable,Reset(Reason)))
define(disc,facility(21,unconfirmed,consecutive,Disc))

global(co,
withheld(Conn,

unique ids(Conn,Disc,
forall ids(

interrupts after try(disc,
enablesafter ack(conn,

interrupts(colliding(reset),
interleaves(norm,

overtakes(exp,reverse(norm))))))))))

Notethatgroupnameshave beencapitalisedhere(e.g.Conn) to distinguishthemfrom facility
names(e.g.conn).

3.5 Tool Support
TheSAGElanguagehasbeenimplementedasalibrary of macroswrittenin them4language.

The macrosdefinethe languageby producingLOTOS text for eachdeclaration. The overall
shapeof the specification,datatype definitionsandprocessdefinitionsare generatedby the
macros. The library containsabout80 macrosin 1400lines of m4. Most of the macrosare
auxiliary, to supportthedeclarationsgivenin SAGE. Oncea specificationhasbeengenerated
automatically, thespecifiermaymodify it todealwith finerpointsthatarenothandledbySAGE.
For example,thespecifiermight introducespecificaddressformats,specificquality of service
parameters,andspecificconstraintsonquality of servicenegotiation. [9] givesfuller detailsof
thetranslationprocessandtheLOTOS generatedfor eachservicedeclaration.



4 EngineeringDigital Logic

4.1 Digital Logic
It hasbeenshown how communicationsservicescan be formally engineeredin termsof

their componentsandcombinations. This exampleis ratherhigh level, andusesconstraints
to expressthe operationof a service. As a contrastingexample,it will now be shown how
digital logic designscan be formally engineeredusingmodelsof hardwarecomponentsand
their combinations.

Digital logic designis much betterunderstoodthan serviceengineering;many textbooks
explain theoperationof logic gatesandhow to combinetheminto largercircuits. Furthermore,
digital logicdesignis in practiceconstrainedby theavailability of specifichardwarecomponents
that might be found in any manufacturer’s catalogue. Although many componentsmight in
principlebechosenfor buildingdigital logic,acomponent-engineeringstyleshouldbegrounded
in reality. This allows standardcomponentsandcombinationsto beused,andensuresa clear
relationshipbetweenthis approachandstandardlogic design.

Hardwarespecificationhas beenextensively investigated. Languagessuch as CIRCAL
(Circuit Calculus), HOL (Higher Order Logic), RTL (Register TransferLanguage), VHDL
(VLSIHardwareDescriptionLanguage) andmany othershavebeenusedto specifyandanalyse
hardware.A component-engineeringstyle for formal designof digital logic is thereforewell-
accepted.In commonwith all suchapproaches,the goal of the work reportedin this paper
is to allow digital logic designsto bespecified,analysedandverifiedbeforeactuallybuilding
hardware.However, theemphasishereis to identify clearlythecomponentsandtheirmeansof
combination.

As with communicationsservices,a languagecould be speciallydevisedto supportdigital
logic design. However, investigationhasshown thatLOTOS providesgoodsupportfor digital
logic design. Specificationswill thereforebe written directly in LOTOS, althougha library of
componentshasbeendevelopedto allow specificationsto bewritten moreeasily. More details
of theDILL 1 (Digital Logic in LOTOS) approacharegiven in [11]. A furthergoalof this work
wasto investigatethesuitability of LOTOS for specificationsin thisapplicationarea.

4.2 Digital Logic Components
4.2.1 ModellingDigital SignalsandGates

Logic functions(logic gates)are the basiccomponentsof digital logic. They operateon
binary-valueddigital signals. It turns out that the way in which signalsare modelledand
handledis critical to thesuccessof specifyingdigital logic in LOTOS. An inappropriatemodel
resultsin obscureor unusablespecifications.Someof thecritical issuesarediscussedbelow.

In reality, signalstakeonarangeof analoguevalues(e.g.from 0 to 5 volts)but thresholdsare
setsothatsignalsmaybetreatedaslogic 0 or 1. As asignalchangesfrom onevalueto another,
it passesthroughan indeterminatestatethat is neitherlogic 0 nor 1. It might thereforeseem
that tri-statelogic shouldbe used,with the additionof an ‘undefined’statefor signals. This,
however, would makespecificationsmuchmorecomplex. An undefinedstateshouldalways
betransientandthereforeshouldbeignored. As a workableabstraction,therefore,signalsare
regardedashaving only two statescalled0 and1.

1Theapproachwasdevelopedby theauthor, in conjunctionwith RichardO. Sinnottwho carriedout thedetailed
specificationandverificationwork.



Thereis alsoachoiceof whetherasignallevel or achangein signallevel shouldbemodelled
asa LOTOS event. Choosingto modelsignallevelsmeansthata gatemustrepeatedlyoffer its
currentoutputvaluein events.Thiscluttersthebehaviour with identicalrepeatedevents.Events
thereforecorrespondto establishmentof anew level. Thismeans,for example,thatif theinputs
to agatechangebut theoutputstaysthesame,thentherewill benonew offerof anoutputevent.

Gatesmustnot insiston outputtinga new valueafteran input changes.In circuits involving
feedback(e.g.a flip-flop), this canleadto deadlock.In practiceaswell, theremaybea short
input pulseto which a gatecannotreactquickly enough.Realgateshave a propagationdelay
betweenaninputchangeandthecorrespondingoutput;aninputpulseof rathershorterduration
may not producean output. Allowing a further input beforeoutputis thereforeboth realistic
andnecessary.

Opencircuitsarepossiblein actualhardware.For example,aninputmaybeleft floatingand
an unusedoutputmaynot be attachedto anything. Thereis alsoa switch-onproblemin that
whena gateis poweredon it needsa short time to stabilise. The solutionis to parameterise
eachgatewith the defaultvaluesof its inputs. At switch-on,and for a floating input, these
defaultsapply. Subsequentlythegatemayreceive actualvaluesat its inputswhichwill replace
thedefaults.Floatingoutputsstill producevalues,but they go nowhere.In LOTOS terms,these
arehiddeninternalevents.

LOTOS offersmorepossibilitiesfor dealingwith inputsandoutputsthanareusedin practice.
An obvioussolutionis to makeeachinput andoutputcorrespondto a LOTOS gate.This might
be termed‘physical multiplexing’, becauseeachLOTOS gatecorrespondsto a physicalport.
LOTOS alsoallows whatmight bedescribedas‘logical multiplexing’, in which therewould be
oneLOTOS gatethat is qualifiedby a port numberparameterin events. The advantageof this
style is thata LOTOS gatemaythencorrespondto arbitrarynumbersof inputsor outputs.This
doesnot faithfully reflectreallogic gates,which arealwaysbuilt with a fixednumberof inputs
andoutputs. Also it considerablycomplicateshow thewiring up of componentsis specified.
Physicalmultiplexing is thereforeused.

Althoughgateswith morethantwo inputsareperfectlypossible,four andeight inputstend
to betheonly othervarietiesfound. Unusedinputscanbewired to logic 0 or 1 asrequiredto
makethemineffective. LOTOS couldallow a parameterisednumberof inputsby makinguseof
logical multiplexing, but this wouldbetoo far removedfrom reality. A fixednumberof inputs
is thereforespecified.

Realgatesare connectedby wires from outputsto inputs. The wires (should)accurately
transmitsignals,but they canintroduceapropagationdelaythatis critical in high-speedcircuits.
The wires could be consideredas componentsas well, but to do so would makethe logic
specificationsvery unwieldy. In virtually all logic designsthewirescanbeignored,but where
their effect is significant then they can be specifiedas delays. Ignoring the wires makes
connectionof componentsveryeasyin LOTOS: eventsat therelevantoutputandinputgatesare
allowedto synchroniseby giving themthesamegatename.In effect,a gatenameis givento a
wire. Multi-way synchronisationin LOTOS alsoallowsoneoutputto besentto severalinputs2.

2Trying to synchronisetwo outputsin LOTOS could well leadto deadlock.Trying to connecttheoutputsof two
physicallogic gatescouldleadto a moreseriousform of deadlock!
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4.2.2 BasicLogicGates
The conventionalsymbolsfor the logic gatessupportedaregiven in figure 4. A one-input

gatecanperformoneof two differentlogic functions:asa repeater(or amplifieror delay)and
asan inverter. A two-inputgatecanperformoneof 16 differentlogic functions. Only some
of theseareusuallygivennamessuchasand, or (inclusive or), andxor (exclusive or). Certain
logic functionsareeasierto implementin hardware,sonandandnor arealsocommon.

Somelogic gatescouldbebuilt from simplercombinations.For example,a nandgatecould
bebuilt from anandgatefeedinginto aninverter. Thegatemightactuallybebuilt thisway, but
theavailability of nandgatesin practicemeansthatit is reasonableto specifythemdirectly. An
andgatewith oneinput invertedis not,however, a normalhardwarecomponentsoit wouldbe
specifiedasaninverterfeedinginto anandgate.

Hardwaregatesare designedto implementa fixed function; a ULA (UncommittedLogic
Array), PLA (ProgrammableLogic Array) or CLA (ConfigurableLogic Array) might becon-
sideredas an exception. LOTOS is more flexible in termsof parameterisinga gatewith its
function. Althougheachkind of gatecouldbeexplicitly specifiedwith its function,this would
leadto alot of duplicationin specificationssincethebehaviour of agateis largelyseparatefrom
its actuallogic function. Thespecificationstylethereforebreaksfrom a strict representationof
realgatesby specifyinga genericgatewith its logic functionasa parameter. BecauseLOTOS

doesnot allow operationsto begivenasparametersto processes,thenamesof theoperations
ratherthanthe operationsthemselvesare given asparameters.An Apply operationtakesan
operationnameandparameters,andcalculatesthe resultsof the logic function. The specific
operationssupportedare:

unary: same(for a repeater)andnot (for aninverter)

binary: and, nand, or, nor, xor.

Namescouldbegivento theotherbinaryoperations,but wouldrarelybeneededandwouldbe
unlikely tocorrespondtoactualgates.Ternaryandhigheroperationscouldalsobegivenspecific
names(e.g.for a four-wayand) but arespecifiedfor simplicity usingthebinaryoperations.

Sometimesit is necessaryto tie an input to logic 0 or 1. This is a nullary logic function,
specifiedby abehaviour thatoutputsits parameterasa constantvalue:

processConstant[op] (bop: Bit) : noexit :
op ! bop; stop

endproc (* Constant*)



The earlierdiscussionabouthow to modeldigital signalsandgatesleadsto a surprisingly
complex specificationof a one-input,one-outputlogic gate:

processLogic1 [ip, op] (bop: BitOp) : noexit :
let b : Bit = 0 in

op ! Apply (bop,b); Logic1A [ip, op] (bop,b)

Logic1A [ip, op] (bop,b)
where
processLogic1A [ip, op] (bop: BitOp, b : Bit) : noexit :

let bold : Bit = Apply (bop,b) in
ip ? b : Bit; Logic1B [ip, op] (bop,b, bold)

endproc (* Logic1A *)
processLogic1B [ip, op] (bop: BitOp, b, bold : Bit) : noexit :

let bnew : Bit = Apply (bop,b) in
[bnew nebold] >

op ! bnew; Logic1A [ip, op] (bop,b)

Logic1A [ip, op] (bop,b)
endproc (* Logic1B *)

endproc (* Logic1 *)

Thegateabove is parameterisedby aunarylogic function. Initially it mayoutputa resultbased
on its defaultinputvalueof 0, andthendealwith input. Alternatively, it mayinput anew value
andthenproduceanoutputif thishaschanged;thisbehaviour is repeated.As discussedin [11],
considerableinvestigationwasnecessaryin orderto comeup with this specificationof a one-
inputgate.Therearesubtletieshintedatearlierwhichmakeit hardto specifylogic components
thatassembleproperlyinto high-level designs.Spacedoesnot allow a full discussionhereof
alternativespecificationsthatareunsuitable.

As anexampleof a one-inputlogic gate,aninverterhasthespecification:

processInverter[ip, op] : noexit :
Logic1 [ip, op] (not)

endproc (* Inverter*)

A two-inputgateis specifiedmuchasa one-inputgate,andis parameterisedwith thename
of a binarylogic function:

processLogic2 [ip1, ip2, op] (bop: BitOp) : noexit :
let b1 : Bit = 0, b2 : Bit = 0 in

op ! Apply (bop,b1,b2); Logic2A [ip1, ip2, op] (bop,b1,b2)

Logic2A [ip1, ip2, op] (bop,b1,b2)
where
processLogic2A [ip1, ip2, op] (bop: BitOp, b1,b2 : Bit) : noexit :

let bold : Bit = Apply (bop,b1,b2) in
ip1 ? b1 : Bit; Logic2B [ip1, ip2, op] (bop,b1,b2,bold)
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ip2 ? b2 : Bit; Logic2B [ip1, ip2, op] (bop,b1,b2,bold)
endproc (* Logic2A *)
processLogic2B [ip1, ip2, op] (bop: BitOp, b1,b2,bold : Bit) : noexit :

let bnew : Bit = Apply (bop,b1,b2) in
[bnew nebold] >

op ! bnew; Logic2A [ip1, ip2, op] (bop,b1,b2)

Logic2A [ip1, ip2, op] (bop,b1,b2)
endproc (* Logic2B *)

endproc (* Logic2 *)

As anexampleof a two-inputgate,a nor gatehasthespecification:

processNor2 [ip1, ip2, op] : noexit :
Logic2 [ip1, ip2, op] (nor)

endproc (* Nor2 *)

4.3 Digital Logic Combinations
Logic gatecomponentsarecombinedaccordingto standardpatternsfor circuits. Thesemay

befoundin any referenceondigital designsuchas[4]. Combinationsarethereforegivento the
specifier;therequirementis to representtheseeasilyin LOTOS. Two kindsof circuit areused
below asillustration: addersandflip-flops. It shouldbe notedfrom the exampleshow easily
simplercomponentscanbecombinedinto largerones.

4.3.1 Adders
Addersperformbit-by-bit additionson binarynumbers.Thedesignof somecommonkinds

is shown in figure5. Thereareotherkindsof adderandarithmeticunit thatwill notbediscussed
here.

A half-adderproducesa sumS andcarryC from two binary inputsA andB, usinganxor
gatefor thesumandanandgatefor thecarry. ItsLOTOSspecificationdirectlymirrorsits design:



processHalfAdder[A, B, S,C] : noexit :
Xor2 [A, B, S] |[A, B]| And2 [A, B, C]

endproc (* HalfAdder*)

A full adderalsotakesacarryresultingfromtheadditionof apreviouspairof bits. It therefore
hasbothcarryin andcarryout,Cin andCout. In this andlaterexamples,hiddenLOTOS gates
areintroducedtocarryinternalsignals.Theconstructionandspecificationof afull adderrequire
two half-addersandanor gate:

processFullAdder[A, B, Cin, S,Cout] : noexit :
hide Sint,Cint0,Cint1 in

(HalfAdder[A, Sint,S,Cint0] |[Sint]| HalfAdder[B, Cin, Sint,Cint1])
|[Cint0,Cint1]|

Or2 [Cint0, Cint1,Cout]
endproc (* FullAdder*)

A ripple-throughadderaddspairsof bits in parallel,but thecarrymustripple throughfrom
earlieradditionsto lateronesbeforetheoutputis stable.Thenumberof bits to beaddedmust
befixed,soa two-bit adderhasbeenchosenfor concreteness.However, theideaworksfor an
arbitrarynumberof bits,with a full adderfor eachpair of bits. Sincethereis no initial carryto
theadder, thefirst carryinput is tied to 0.

processRippleThroughAdder2[A0, B0, A1, B1, S0,S1,Cout] : noexit :
hide Cint0,Cint1 in

(Constant[Cint0] (0) |[Cint0]| FullAdder[A0, B0, Cint0,S0,Cint1])
|[Cint1]|

FullAdder[A1, B1, Cint1,S1,Cout]
endproc (* RippleThroughAdder2*)

4.3.2 LatchesandFlip-Flops
Latchesandflip-flops arebistabledevices. Thedesignof somecommonkinds is shown in

figure6. Thereareotherkindsof latchesandflip-flops thatwill notbediscussedhere.
An RS latch is namedafter its R (Reset)andS (Set) inputs. Thereare two outputs: the

standardoutput,conventionallynamedQ, andits negation,Q. ResettingthelatchcausesQ to
become0 andQ to become1; settingdoesthe opposite. An RS latch canbe built from two
cross-couplednor gates.Its specificationin LOTOSis astraightforwardreflectionof thestandard
design:

processRSLatch[R, S,Q, Qbar]: noexit :
Nor2 [R, Qbar, Q] |[Q, Qbar]| Nor2 [S, Q, Qbar]

endproc (* RSLatch*)

TheRSlatchmaybesetatany timeby changesin its inputs.Thismaybeundesirableif there
is a risk of fluctuationsin the inputsor if synchronouslogic is required. A clockedRS latch
maythereforebebuilt outof abasicRSlatch. Thishasanadditionalclock input,C. Theclock
input mustbe1 beforeresettingor settingwill have any effect. TheLOTOS specificationof this
usestwo andgatesandanRSlatchin thestandardway:
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processCRSLatch[R, S,C, Q, Qbar]: noexit :
hide Rint, Sint in

(And2 [R, C, Rint] |[C]| And2 [S, C, Sint])
|[Rint, Sint]|

RSLatch[Rint, Sint,Q, Qbar]
endproc (* CRSLatch*)

RSlatchescansuffer from pulsingproblemsandraceconditionswhencombined.Thesecan
be addressedby cascadingtwo clockedRS latchesin a configurationcalledan MS (Master-
Slave) flip-flop. Whentheclock signalbecomes1, themastermayberesetor set. Whenthe
clocksignalbecomes0, themastercannolongerberesetor set,andits stateis transferredsafely
to theslave. Thespecificationof this flip-flop in LOTOS combinestwo clockedRSlatcheswith
aninverter:

processMSFlipFlop[R, S,C, Q, Qbar]: noexit :
hide Rint, Sint,Cint in

Inverter[C, Cint]
|[C, Cint]|

(
CRSLatch[R, S,C, Rint, Sint]

|[Sint,Rint]|
CRSLatch[Rint, Sint,Cint, Q, Qbar]

)
endproc (* MSFlipFlop*)

An MS flip-flop is still not robustenoughto be usedasa memoryelement,sinceit allows
settingandresettingat thesametime; this mayleadto anindeterminatestate.Thefinal design
to be consideredis the JK flip-flop which avoids this problemby gating the inputs with the



oppositecurrentoutput. Theinputsto this kind of flip-flop areconventionallycalledJ andK.
Thespecification,like thedesign,requirestwo andgatesin additionto anMS flip-flop:

processJKFlipFlop[K, J,C, Q, Qbar]: noexit :
hide Rint, Sint in

(And2 [K, Qbar, Rint] ||| And2 [J, Q, Sint])
|[Q, Qbar, Rint, Sint]|

MSFlipFlop[Rint, Sint,C, Q, Qbar]
endproc (* JKFlipFlop*)

4.4 Tool Support
The DILL approachis supportedby a library of macroswritten in the m4 language.The

macrosaremerelya convenientmeansof parameterisingandgeneratingLOTOS text for each
kind of componentor combination. Processdefinitionsare generatedby the macrosfor the
componentsrequiredin thedesign. The library containsabout40 macrosin 800 linesof m4.
Fuller detailsof the componentanddesignlibrary aregiven in [6, 11]. The specificationof
every individual componentin the library hasbeencheckedin considerabledetailwith tools,
althoughnotyet formally verified. Theultimateobjective is to have a fully verifiedlibrary that
canbeusedwith confidencein designsof largerlogic systems.

5 Conclusions

Theplaceof formal methodsin computinghasbeendiscussed.Scientificaspectsof formal
methodsare dealt with in theoreticalcomputerscience. Engineeringaspectsare dealt with
in formal softwareengineeringandformal hardwareengineering.Of these,formal software
engineeringis atacomparatively earlystageandrequiresmuchmoreeffort. Someof theissues
needingattentionincludecloseralignmentwith industrialneeds,morecasestudies,relevant
developmentmodelsandmetrics,professionalrecognitionandmanagementeducation.

Thekey aspectof successin engineeringhasbeensuggestedto beuseof known components,
combinedin known ways,yielding predictableresults. This philosophyis alsoapplicableto
engineeringwith formalmethods.Theideahasbeenillustratedwith two ratherdisparateappli-
cationareas:developinghigh-level specificationsof communicationsservices,anddeveloping
low-level specificationsof digital logic designs. Spacehasnot allowed the full detailsto be
explained,but they aredocumentedseparatelyfor theinterestedreader.

A component-basedstyle is believed to be generallyapplicable. The authorand his col-
leagueshavemadepreliminaryinvestigationsof theideain otherareassuchascommunications
protocols,distributedsystemsandartificial neuralnetworks.By actingasapracticalaid to for-
mal specificationanddesign,a component-basedstylehassomeclaim to beinganengineering
approachto formalmethods.
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