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ABSTRACT 

 

Aquaculture is providing an ever-increasing proportion of fish in the human food basket 

prompting a search for new species to expand the range available to consumers. Large 

tunids/scombrids have long-since been a very valuable resource providing not only high 

quality protein, but also a rich source of the highly beneficial omega-3 (or n-3) long-chain 

polyunsaturated fatty acids including eicosapentaenoic and, especially docosahexaenoic acids 

in the human diet. Consequently, there is considerable interest worldwide in developing the 

culture of large tunids, including Atlantic northern bluefin tuna (Thunnus thynnus), Pacific 

bluefin tuna (Thunnus orientalis), southern bluefin tuna (Thunnus maccoyii) and yellowfin 

tuna (Thunnus albacares). Nutrition is vital to this development, playing key roles in 

reproductive success, including the establishment of successful broodstock producing high 

quality eggs and larvae, and ultimately the cost-effective production of nutritious seafood. 

This review summarises the rather fragmentary data that compromise the current state-of-the-

art in relation to tuna nutrition and the development of artificial, formulated feeds for these 

species. In highlighting the various considerable challenges that feed development will pose, 

we discuss the future perspectives for tuna culture in terms of both fish and human nutrition 

and welfare, against the background of diminishing global marine resources. 

 

 

 

 



 3 

1. INTRODUCTION 

 

There have been several attempts at the domestication of large tunids and scombrids, but in 

these studies, and in the several capture base-farming schemes currently in operation around 

the globe, nutritional studies have been few (Glencross et al., 2002). In consequence, little is 

known about the quantitative or, indeed, qualitative, nutritional requirements for these 

species. However, nutritional factors will be crucial in a variety of key areas in any 

domestication programme. Correct and balanced nutrition is a vitally important factor in the 

establishment of successful broodstock with high fecundity and fertility producing large 

numbers of high quality eggs. Indeed, reproductive control is itself affected by nutritional 

factors including dietary energy content, protein/energy ratios and lipid/fat levels, which can 

influence sexual maturation in other fish species (Izquierdo et al., 2001; Watanabe and 

Vassallo-Agius, 2003). Successful larval rearing of marine fish is highly dependent upon 

suitable diets, whether live prey species or artificial, and their precise composition particularly 

in relation to long-chain polyunsaturated fatty acids (lc-PUFA) is an area that continues to 

demand much research for all marine species. Given the paucity of experimental evidence, 

clues to the nutritional requirements may be obtained by investigating the natural food of the 

animal, in this instance, the natural prey species of tunids and also by determining the 

composition of wild caught animals, both prey and predator. In this review, we have used this 

approach along with the existing knowledge of other marine species, and the few data 

emerging from experimental trials with tunids, to develop an overall view of the likely 

requirements of large tunids for both macro- and micronutrients. We will also briefly review 

the literature on nutrition at key periods in ontogeny such as in broodstock and larvae, and 

recent advances in the development of artificial feeds and feeding practices. Glencross et al. 

(2007) recently highlighted that “a feed is only as good as its ingredients” and, consequently, 
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a fish can only be as good as its feed. Therefore, most importantly, we attempt to place the 

very significant problems associated with the successful development of large-scale culture of 

large tunids, and their feeding and nutrition, in a global perspective of diminishing marine 

resources.  

 

2. COMPOSITION OF TUNIDS AND THEIR PREY SPECIES 

 

2.1 Body composition of wild tuna  

 

The body composition of wild tuna may give some indication of possible dietary 

requirements, at least in respect of lipid content and fatty acid composition. Clearly, there can 

be great variation in carcass fat levels reflecting condition factors that are almost certainly 

related to season. In contrast, the protein composition was observed to be less variable. The 

very strong inverse relationship between body fat and water in Atlantic northern bluefin tuna 

(NBT, Thunnus thynnus) indicated that the fish obtain energy for their migrations from 

muscle lipid reserves (Clay, 1988). The fact that flesh lipid levels can vary so widely has 

important consequences for farming. The level of fat in the flesh will be partly dependent 

upon dietary fat levels, but seasonal factors affecting the metabolism of lipids in the fish may 

also be important. The potential benefits of high fat diets such as rapid growth may have to be 

balanced with potential deleterious effects such as reduced product quality and consumer 

acceptance. 

The polyunsaturated fatty acid (PUFA) compositions of most marine fish are 

dominated by the n-3 lc-PUFA, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic 

(DHA; 22:6n-3) acids (Sargent et al., 2002). However, the fatty acid compositions of tuna 

species appear unique in that they are characterised by relatively high levels of DHA and, 
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especially, a very high DHA:EPA ratio (Sawada et al., 1993). This ratio seldom exceeds 2 in 

the lipids of northern hemisphere marine fish but, in the southern hemisphere, the lipids of 

marine fish generally show higher EPA levels and consequently even lower DHA:EPA ratios 

(Ackman, 1980). In contrast, Pacific bluefin tuna (PBT, Thunnus orientalis) showed flesh 

DHA levels of between 25% and 36% with DHA:EPA ratios of up to 6, whereas the stomach 

contents showed a DHA:EPA ratio of just over 3 (Ishihara and Saito, 1996), and NBT 

displayed DHA:EPA ratios in muscle phospholipids of over 7 (Medina et al., 1995). Murase 

and Saito (1996) studied the lipid and fatty acid content in different organs (dorsal muscle, 

ventral muscle, dark muscle, liver, heart, pyloric caeca, orbital oil and stomach content) of 

albacore (Thunnus alalunga) and found DHA:EPA ratios ranging from 3.0 in liver to 6.6 in 

heart, and DHA levels were in all cases above 25% of total fatty acids in weight percentage. 

Therefore, the relatively high DHA and the high DHA:EPA ratio appears to be a 

characteristic of tuna species that may have to be reproduced in farmed fish to preserve the 

qualities that the consumer would expect. 

 

2.2 Prey species  

 

Tunas are considered as mid-water meso-carnivorous pursuers or large predatory fishes that 

feed on smaller fishes, squids and other nektonic prey in mid-water. However, the food 

spectrum for tuna changes during ontogeny with larvae feeding primarily on small 

zooplankton, mainly copepods and copepoda nauplii (Uotani et al., 1990). Specifically, PBT 

larvae in the northern Pacific were shown to feed on zooplankton, including copepod nauplii, 

calanoids, cyclopods, cladocerans and corycaeids (Uotani et al., 1981, 1990; Young and 

Davis, 1990), whereas juveniles and adults are opportunistic feeders. Thus, juvenile PBT feed 

on crustaceans, fish and cephalopods, while adults feed predominantly on fish (herring 
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Clupea harengus, sand lance Ammodytes spp,, bluefish Pomatomus saltatrix, mackerel 

Scomber scombrus and various anchovy, sardine and sprat species). Changes in diet and 

trophic levels in relation to size have also been found in Mediterranean NBT. The 

contribution to the diet of different prey was highlighted for each class, and NBT from small 

juveniles to large adults showed a shift in feeding preferences due to different use of habitats 

and food items as a function of the life stage, and the trophic level of tuna belonging to each 

size class was closely correlated to weight (Sara and Sara, 2007). Therefore, as with PBT, the 

diet of juvenile NBT comprised zooplankton, small pelagic fish and some coastal fish 

whereas sub-adults relied on medium pelagic fish, shrimps and cephalopods, and adults 

consumed mainly cephalopods and larger fish (Sara and Sara, 2007). In an earlier study, 

immature NBT in the Bay of Biscay consumed fish (anchovy) > crustaceans (euphausids) > 

cephalopods by frequency of occurrence, and crustaceans > fish > cephalopods by numerical 

frequency, with anchovy as the most important prey species (Ortiz de Zarate and Coll, 1986). 

The diet of juvenile (young of the year) NBT caught off the coast of Sicily, deduced from the 

frequency of the items found in their stomachs, was primarily fish (found in stomachs of 85% 

of sampled NBT), followed by crustaceans (55%) and cephalopods (51%) (Sinopoli et al., 

2004). 

There are many reports on the prey species of adult NBT based on the examination of 

gut contents (Dragovich, 1970; Holliday, 1978; Eggleston and Bochenek, 1990; Young et al., 

1997; Chase, 2002). The stomach contents of NBT in the Mediterranean (Ligurian Sea) were 

dominated by anchovies, although mesopelagic fish, crustaceans and ommastrephid 

cephalopods were also present (Orsi-Relini et al., 1995). Spatial variation in prey has been 

found to be the primary influence on NBT distribution during seasonal feeding migrations on 

the New England continental shelf, where sand lance, Atlantic herring, Atlantic mackerel, 
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squid (Cephalopoda), and bluefish were the top prey in terms of frequency of occurrence and 

percent prey weight (Chase, 2002). 

 

3. DEFINITION OF BASIC NUTRITIONAL REQUIREMENTS OF TUNIDS 

 

The costs of research with the large bluefin tuna species are extremely high, associated with 

having to maintain operations of numerous sea cages, boats, crews and related infrastructure. 

Moreover, the difficulties associated with conducting structured and properly replicated trials 

with these species has prevented the determination of nutritional requirements by means of 

standard dose-response techniques (Glencross et al., 1999a, b). As a consequence, relative 

requirements have to be estimated on the modelling of performance of bluefin tunas fed 

various practical diet formulations. This approach can provide useful insights that can be 

applied in the development of artificial feeds (Glencross et al., 2002). 

 

3.1 Energy  

 

Although not a nutrient itself, energy is present and “stored” in the chemical bonds that hold 

the molecules in the nutrients together. The amount of energy in the various nutrients that 

make up a feed is of great importance as well as the capacity of different species to utilize the 

energy contained in the different nutrients. Fish, like most animals, eat to satisfy energy 

needs. Dietary nutrients should be balanced so that the fish will have enough of the essential 

nutrients for optimum growth when energy needs are satisfied. Energy acquired through the 

ingestion of food is used in metabolic processes, deposited as new body tissues (growth or 

energy gain, maturation) or lost as waste in faeces or excretion. Bioenergetics is concerned 

with the study of rates of energy intake and transformation within the organism, providing the 
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physiological framework for the study of the relationships between feeding rates and growth 

rates, or maturation of fish subjected to different environmental conditions. It is generally 

believed that fish, like other animals, control their feed intake in order to meet their energy 

intakes in tune with their growth rates. Moreover, energy requirements can be affected by 

water temperature as well as by the growth stage and/or state of the fish, and these 

requirements can only be met by the digestible energy content of the diet. Furthermore, the 

digestible energy of each ingredient in the diet is crucial to promote adequate feeding and 

growth rates. 

Tunas are pelagic fish with rather particular physiological features. They may or may 

not have a swim bladder to control buoyancy and hydrostatic equilibrium, but they do not 

possess a respiratory pump (lacking a functional operculum to move the water through the 

oral cavity and gill chamber), and so are ram ventilators and never stop swimming. 

Furthermore, they retain metabolic heat through the red muscle rete mirabilis (heat 

exchanger) and high respiratory rate, possibly independent of ambient water temperature and 

allometric growth. Therefore, thunniform swimming, the capacity to conserve metabolic heat 

in red muscle and other body regions (regional endothermy), an elevated metabolic rate and 

other physiological rate functions, and a frequency-modulated cardiac output, distinguish 

tunas from most other fishes. These specializations support continuous, relatively fast 

swimming by tunas and minimize thermal barriers to habitat exploitation, permitting niche 

expansion into high latitudes and to ocean depths previously regarded as beyond their range 

(Graham and Dickson, 2004). 

The energetic requirements of tunas for maintenance, growth and maturation, and their 

capacity to utilize the energy contained in the food must be considered. The dietary energy 

requirement is highly related to their physiological requirement to thermoregulate, as the 

processes required to generate metabolic heat in an environment with a constant thermal 
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gradient will place an enormous energetic demand on the fish (Carey et al., 1984). Little is 

known about the bioenergetics of NBT, but there have been some studies on skipjack 

(Katsuwonus pelamis), yellowfin tuna (YFT, Thunnus albacares) (Kitchell et al., 1978) and 

southern bluefin tuna (SBT, Thunnus maccoyii) (Davis, 1997). The results obtained by 

Kitchell et al. (1978) with 1 kg fish (K. pelamis) demonstrated that net energy budget and 

assimilation efficiencies are almost constant, irrespective of the ration given, although growth 

and production efficiencies decrease greatly as ration increases (Lucas, 1996). Based on non-

parametric analysis from several moist and baitfish diets fed under various feeding regimes in 

trials with SBT, a response surface model was developed, suggesting that both protein and 

energy were key factors in the diet of SBT, but that dietary energy had a greater influence 

than dietary protein (Glencross et al., 1999a, b). Modelling of the nutritional value of feed 

with respect to the effects of dietary energy on feed conversion suggested that dietary fat 

levels were a key factor in influencing the energetic value of the diets for SBT (Glencross et 

al., 2002). 

 In fattening operations with caged SBT, the decline in diet intake throughout a 

production season and the slowing of growth may be a key indicator to estimate the levels of 

dietary intake required for maintenance. Under conditions where ambient water temperatures 

were less than 15ºC, and when growth had virtually ceased, an average of about 0.15 MJ  of 

gross energy (GE) was consumed per kg body weight per day. Based on these data for 

maintenance, the energetic requirement for 1 kg of gain (at 16ºC) was estimated to be around 

56 MJ of GE (Glencross et al., 2002). This value is about twice that estimated for cultured 

Atlantic salmon, Salmo salar (NRC, 1993). In studies examining growth rates of SBT as a 

function of average protein intake, GE intakes as a function of growth have also been 

evaluated (Glencross et al., 2002). GE intakes were consistent with protein intake 

assessments, and a levelling off of growth was observed with a daily energy intake of about 
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0.3 MJ  per kilogram body weight per day (no compensation for variation in ambient water 

temperature was taken into account). 

 The energy needs of YFT broodstock were predicted based on oxygen and caloric 

requirements as functions of tuna size and water temperature, with fish increasing caloric 

intake with increasing size, resulting in caloric consumptions ranging from 9 to 104 kcal kg-1 

day-1 and from 125 to 1439 kcal fish-1 day-1 (0.04 - 0.43 MJ kg-1 day-1 and from 0.52 - 6.02 MJ 

kg-1 day-1) (Wexler et al., 2003).. Recent studies at the University of Kinki in Japan with 

juvenile PBT have shown that starving fish of 0.85 g over 4 days induced severe damage and 

mortalities of over 90% (Takii et al., 2005). The same study also showed that the daily 

maintenance energy, protein and fat requirements of juveniles were 0.14 MJ  GE kg-1 body 

weight, 5.46 g kg-1 body weight and 0.44 g kg-1 body weight, respectively. These results 

indicated that the low fasting tolerance of the juvenile tuna was related to their high energy 

and protein demands in comparison to other aquacultured fish.  

 Analysis of the standard metabolic rate (SMR) for tuna species showed there was a 

strong allometric relationship with body mass (423 M0.86, R2=0.97), demonstrating that the 

inter-specific SMR scale with respect to body mass for tuna was similar to that of other active 

teleosts, but was around 4-fold higher (Fitzgibbon et al., 2008). However, routine metabolic 

rate (RMR), rather than SMR, is more appropriate in ram-ventilating species that are 

physiologically unable to achieve complete rest. Thus, respiration was measured in a large 

mesocosm respirometer deployed within a marine-farm sea cage for 29 days. Fasted fish were 

maintained within the respirometer up to 42 h while dissolved oxygen dropped by 0.056 mg 

l−1 h−1. Mean mass-specific RMR in fasting SBT was measured at 460 mg kg−1 h−1 at a mean 

water temperature of 19 °C. (Fitzgibbon et al., 2008). Fish rely upon lipids and proteins, 

primarily, as respiratory substrates and the appropriate oxycalorific coefficient for use in 

estimating energy metabolism in fish species has been suggested to be close to 13.59 kJ per 
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gram of oxygen consumed (Jobling, 1994; Lucas, 1996). In this context, RMR in fasting SBT 

can be estimated as 0.15 MJ per kg body mass per day. The effect of feeding on the rate of 

oxygen consumption (MO2) was also determined in SBT (Fitzgibbon et al., 2007). Both MO2 

and swimming velocity were elevated post feeding. The increased MO2 was probably due to 

specific dynamic action (SDA), and the increased swimming velocity may be required to 

increase ventilation volume as a response to the enhanced metabolic demand associated with 

SDA. Peak post-prandial MO2 increased linearly with ration size to a maximum 1290·mg·kg–

1·h–1(0.42 MJ kg-1 day-1), corresponding to 2.8 times the RMR. When converted to energy 

equivalents, the total magnitude of SDA was linearly correlated with ration size to a 

maximum of 192·kJ·kg–1·h–1 (4.61 MJ kg-1 day-1) and, as a proportion of GE ingested (SDA 

coefficient), it averaged 35%. Therefore, although the factorial increase of SDA in SBT was 

similar to that of other fish species, the absolute energetic cost of SDA was much higher. The 

ration that SBT require to equal the combined metabolic costs of SDA and RMR was 

estimated to be 3.5% Mb of Australian sardines per day (Fitzgibbon et al., 2007). 

 A recent study has measured the oxygen consumption and metabolic rates of juvenile 

PBT and YFT swimming in a swim-tunnel respirometer at 20ºC (Blank et al., 2007). MO2 

ranged from 235 to 498 mg kg-1 h-1 (0.08 – 0.16 MJ kg-1day -1) for PBT and from 164 to 405 

mg kg-1 h-1 (0.053 – 0.132 MJ kg-1day -1) for YFT, depending upon swimming speed. PBT 

had higher metabolic rates than YFT at all swimming speeds tested and, at a given speed, 

PBT swam with higher tail beat frequencies and shorter stride lengths than YFT. The higher 

Mo2 recorded in PBT was consistent with the elevated cardiac performance and enhanced 

capacity for excitation-contraction coupling in cardiac myocytes of these fish. Compared to 

tropical tuna, NBT and PBT are endothermic and have higher temperatures, heart rates, and 

cardiac outputs. The increased cardiovascular capacity to deliver oxygen in bluefin may be 

associated with the evolution of higher metabolic rates. These physiological traits may 
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underlie thermal-niche expansion of BFT and PBT relative to tropical tuna species (Blank et 

al., 2007). The results and conclusions of this study may appear contradictory with those for 

energy requirement of YFT broodstock (Wexler et al. 2003) when data are recalculated in 

homologous units (MJ kg-1 day-1), and less clear differences in terms of energetic 

requirements can be distinguished between “tropical tunas” and “endothermic tunas”, or tuna 

species not habiting tropical and sub-tropical waters. Both groups share a common pelagic 

lifestyle but, while tropical tunas have several annual reproductive cycles, non tropical tunas 

have only one reproductive migration and spawning season per year and site fidelity 

spawning grounds, denoting different life cycle strategies and, in consequence, different 

energetic demands and energy allocations within the yearly or seasonal cycle. 

 

3.2 Protein and amino acids  

 

Dietary protein serves two main purposes in fish; firstly, as a source of amino acids required 

for the synthesis of new proteins for growth, reproduction and replacement of existing protein 

in the process of turnover; and secondly, protein excess to the above requirements will be 

utilized for energy. The dietary protein to energy balance, the amino acid composition and 

digestibility of the dietary protein(s), and the amount of non-protein energy sources in the diet 

all influence the optimal dietary protein level for fish. Dietary protein requirements can be 

broken down into three main categories, gross protein requirements and qualitative and 

quantitative amino acid requirements, and some general assumptions can be made based upon 

existing knowledge of other species. The estimated gross protein requirements of fish vary 

from around 30% to about 55% of the diet. The lower protein requirements are usually 

associated with warm freshwater species that can also utilize carbohydrate to a greater extent 

than most other fish. As marine fish and also top predators, the large tuna species are likely to 
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be towards the high end of this range and it is probable that their gross protein requirement 

will not be below 40%. Stage of development and size of fish are likely to affect the gross 

protein requirement as, generally, it decreases with both age and size (Wilson, 2002). Water 

temperature is another factor that could affect the protein requirement.  

 Determining the qualitative requirements for amino acids is a tedious and time-

consuming process, but it has been carried out for many species. The same 10 amino acids 

(namely arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, 

tryptophan and valine) that have been shown to be essential for most animals have also been 

found to be required by all the finfish studied to date (Wilson, 2002). Therefore, it is most 

likely that the same amino acids will also be required by tunas. The quantitative requirements 

for all these amino acids have been determined in several species and so can be estimated for 

tunas using the values obtained for other carnivorous marine fish such as gilthead sea bream 

(Sparus aurata), Atlantic salmon or yellowtail (Seriola quiqueradiata). However, with diets 

utilizing fishmeal and/or squid meal as the sole protein source these requirements should be 

fully met, but particular attention to the essential amino acids will be required if diets utilizing 

other sources of proteins are used (see section 6.2). 

 No specific studies on protein utilization by tunas have been conducted to date, but 

several alternative and/or indirect methods of measuring protein utilization and amino acid 

requirements have been examined in SBT. Studies with SBT have examined growth rates as a 

function of protein intake, taking into consideration the effect of water temperature and 

dietary energy, and results obtained suggest that optimal daily protein intake for growth is 

about 10 g protein kg-1 day-1 (Glencross et al., 1999a, b, 2002), while Takii et al. (2005) 

determined the daily protein requirement for maintenance in PBT to be 5.46 g per kg body 

weight. An indicator of protein metabolism is the measurement of the capacity for protein 

synthesis, and a value of 8 mg RNA g protein-1 was estimated for maintenance in SBT (Carter 
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et al., 1998). This value is about four times higher than that estimated for other fish of 

equivalent weight, culture temperature and feed intake (Houlihan et al., 1995; Glencross et al., 

2002), and similar to that of an unfed mammal (Glencross et al., 2002). As a consequence, the 

significantly higher energy demand associated with protein turnover, even at zero growth, 

may suggest a closer relationship between protein metabolism and energy requirements in 

SBT than in other fish (Glencross et al., 2002). The requirements for essential amino acids in 

SBT have been estimated based on the amino acid composition of both red and white muscle, 

and an ideal dietary amino acid balance has been proposed (van Barneveld et al., 1997). As 

with other fish species, lysine has been estimated as the key limiting amino acid and, in 

consequence, diets have been generally formulated to account for this limitation (Glencross et 

al., 2002). 

 

3.3 Lipids and fatty acids  

 

In fish, an excess of energy, whether derived from protein, carbohydrate or lipid, is stored as 

triacylglycerol (TAG) within the adipose tissue (cells) of the body. Adipose cells in fish are 

found beneath the skin, between muscle myotomes and around the abdominal (visceral) 

organs and the membranes that support the organs. However, liver also acts as a fat storage 

organ in some fish, generally non-migrating species that have poorly developed red muscle. 

In contrast, migrating and pelagic lifestyle fish species develop an important mass of richly 

vascularised red muscle and preferentially store lipids under the skin, and in the muscle and 

abdominal cavity. They also have a higher average fat content and greater variation in fat 

content than those which do not migrate, indicating that fat is a major energy source during 

migration. Dietary lipids are likely to play a particularly important role in the nutrition of 

tunas because of their high energy requirement described above. The large percentage of body 
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weight that is muscle tissue allows a large amount of energy to be stored in tuna if depot fats 

are laid down in both red and white muscle. Fat deposition in tuna muscle types is unevenly 

distributed, with dorsal muscle (akami) leaner than ventral muscles that are fattier (otoro, 

wakaremi). This is a significant source of energy that may be used for movements between 

areas of food abundance in a habitat where such areas can be widely separated. 

Dietary lipids perform four main functions in the body: (i) provide energy, (ii) provide 

essential fatty acids (EFA), (iii) serve as structural components and, (iv) serve in regulatory 

functions (eicosanoids, second messengers, etc.). As with protein, lipid requirements can be 

broken down into three main categories, gross lipid requirement, and qualitative and 

quantitative EFA requirements. Virtually nothing is known about any of these requirements 

for tunas, but again some general assumptions can be made based on existing knowledge of 

other species.  

Certainly a major consideration in the diet of tunas will be the gross lipid level of the 

diet. Research will be required to identify the ideal lipid levels at different life stages of the 

fish, particularly in relation to season and final grow out to ensure optimal growth without 

compromising quality. Therefore, the dietary protein sparing effect of lipids, which allows 

protein to be used optimally for growth without depositing excess lipid in the flesh, has to be 

examined in tunas. It has been concluded that, in general, fish diets containing between 10 to 

20% lipid gave optimal protein utilization and growth rates while minimising undesirable 

alterations in carcass composition (Cowey and Sargent, 1979). Considering the feed fish used 

in previous grow out trials with NBT and SBT (see below) generally have lipid contents in 

this range, this appears a good starting point for tunas. It has been observed that there is a 

direct relationship between the dietary lipid content and the food conversion ratio (FCR) on a 

dry matter basis in SBT (Glencross et al., 1999a). In consequence, the nutritional performance 

of the feed can be improved by increasing the dietary lipid content (Glencross et al., 1999b). 
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The farmed tuna market will undoubtedly include export to Japan for the very high value 

products, sushi and sashimi, where flesh quality is paramount and highly prized, with high 

quality fish realising four times the price of lower quality fish. Fat (lipid) content of the flesh 

is a key factor determining flesh quality in tuna, and so lipid content of the diet and feeding 

regimes will be an area of nutrition requiring close attention. 

Another vital area in lipid nutrition is the provision of sufficient amounts of the correct 

EFA. The EFA requirement of fish varies both in qualitative and quantitative terms. In 

freshwater fish, including salmonids such as rainbow trout (Oncorhynchus mykiss) and 

Atlantic salmon, the EFA requirements can be met by the shorter chain PUFA, α-linolenic 

(LNA; 18:3n-3) and/or linoleic (LOA; 18:2n-6) acids (Sargent et al., 2002). LNA and LOA 

are converted to lc-PUFA through a series of alternating desaturations and chain elongations 

mediated by microsomal fatty acid desaturation and elongation systems (Tocher, 2003). 

Freshwater fish, including salmonids, possess the Δ6 and Δ5 fatty acyl desaturases and PUFA 

elongases required for the production of EPA and DHA from LNA, and arachidonic acid 

(ARA; 20:4n-6) from LOA (Tocher, 2003). In contrast, all marine fish studied to date have 

only very limited ability to produce the biologically active lc-PUFA from LNA and LOA and 

so have an absolute dietary requirement for the preformed lc-PUFA (Tocher, 2003). As 

described earlier, the fatty acid profile of lipids from flesh of wild-caught tunas show high 

levels of DHA, possibly suggesting that tunas may have a high requirement for this fatty acid 

(Nichols et al., 1998). The relatively high level of DHA in tuna and the high DHA:EPA ratio 

may have consequences regarding the formulation of artificial diets as the DHA:EPA ratio 

seldom exceeds 2 in most commercially available fish oils used in feed formulations 

(Ackman, 1980). Furthermore, marine fish may also have a limited capacity for the 

conversion of EPA to DHA (Sargent et al., 1993, 1995). Although the lipid biochemistry 

underpinning the high level of DHA and the high DHA:EPA ratio in tuna is unclear, it has 
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been generally assumed that tuna must selectively accumulate and retain DHA in their tissues 

(Ishihara and Saito, 1996; Saito et al., 1996). Biochemical and molecular studies focussing on 

the lc-PUFA biosynthetic pathway in addition to nutritional trials are required to fully 

elucidate this area. In the first instance, it appears that it would be advisable that the oil used 

in experimental formulated diets is a high quality marine fish oil, containing high total n-3 lc-

PUFA and with as high a DHA:EPA ratio as possible. 

 

3.4 Carbohydrate  

 

The capacity of most fish to effectively utilize dietary carbohydrate for energy is limited, 

particularly in the case of marine fish (Cowey, 1988). Marine, carnivorous fish are unable to 

use dietary carbohydrates to the same extent that omnivorous fish do, related to the lower 

expression/activities of amylases, carbohydrate metabolism enzymes and poorer insulin 

response. The digestive physiology of tunas suggests that dietary carbohydrate may not be 

well utilized, as carbohydrate metabolising enzymes in the gut may be absent or very low. For 

instance, the study and characterization of digestive enzyme capabilities of SBT identified 

residual α-amylase activity, though not enough to be considered as viable for large-scale 

carbohydrate digestion (Van Barneveld et al., 1997). However, higher levels of α-amylase 

activity were reported in intestinal tissues from PBT (Matus de la Parra et al., 2007). 

Therefore, it is not clear whether carbohydrate will feature in the diets of tunas in a nutritional 

capacity, although starch has been used as a filler/binder in some experimental diets for SBT 

(Glencross et al., 2002). 

 

3.5 Vitamins and minerals  
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Tunas will likely require the same range of water-soluble and fat-soluble vitamins that have 

been identified as being required in the diets of all fish studied to date (van Barneveld et al., 

1997; Halver, 2002). The quantitative requirements for each vitamin varies between species 

and so theoretically will have to be determined in tunas. Moreover, vitamin deficiency signs 

in tunas may be similar to those reported for other fish species but the onset of deficiency 

might be induced more rapidly by the fast metabolic rate and fast-growing nature of tunids. 

However, a generalised vitamin premix for marine fish is an appropriate starting point for 

initial trials and may be sufficient to satisfy tuna requirements and prevent any vitamin 

deficiency symptoms. One possible aspect of a putative experimental diet that may have 

consequences regarding vitamin requirements for tunas is the high level of n-3 lc-PUFA and 

the high DHA:EPA ratio that may be required. Particular care should therefore be taken with 

the level of the vitamins that possess antioxidant functions, especially vitamins E (tocopherol) 

and C (ascorbate). Furthermore, high doses of these two vitamins may also improve disease 

resistance in tunas, as has been demonstrated in yellowtail (Masumoto, 2002). Vitamin A, a 

morphogenetic nutrient, includes vitamers that possess biological activity playing key roles in 

morphogenesis, cellular differentiation and proliferation processes. Thus, since fish are 

incapable of vitamin A synthesis, deficiency or dietary excess of this lipid soluble nutrient 

might result in abnormal growth and development (Fernandez et al., 2008). The possibility 

that intact phospholipids, particularly phosphatidylcholine and phosphatidylinositol, in 

addition to the vitamins choline and inositol, may also have a growth promoting effect in diets 

for larval tuna as they have in other marine fish species is an aspect that will require study at 

some point. A mixed vitamin formulation supplied at a level of 0.5 - 1.5 % of the weight of 

the feed plus 500 mg vitamin C fish-1 day-1 were used to feed YFT broodstock in captivity 

(Wexler et al., 2003). Moreover, practical evidence with SBT suggests that enriching and/or 

fortifying with a vitamin premix is particularly important when using a poorer quality whole 



 19 

fish feed (not fresh and/or rancid) and/or when the fish are in poor condition. Use of vitamin 

premixes increases the levels of α-tocopherol in fish tissues, mainly in flesh (Glencross et al., 

2002). 

Particular attention should also be paid to the mineral mix in the diets for tunas, since 

deficiency signs could also appear quickly, for the same reasons as above, in response to a 

lack or low levels of particular minerals. Although tunas can absorb many minerals by 

drinking sea water, essential critical minerals that may require to be supplemented to the diet 

in adequate amounts include iron, phosphorus, calcium and magnesium, as shown for another 

pelagic carnivorous fish, the yellowtail (Masumoto, 2002).  

 

3.6 Characterization of the digestive enzymes and digestibility 

 

Digestion is a complex process involving enzyme and fluid secretions and motility, 

which results in absorption and evacuation. As alluded to above, examination of digestive 

enzyme capacities of tuna may give clues relevant to nutrition. For instance, it may facilitate 

the development of artificial gastrointestinal models (such as everted intestine) where food or 

feed can be digested with the tuna’s own enzymes, providing data useful for the formulation 

of novel diets. SBT digesta enzymes have provided useful data in in vitro digestibility assays 

of key feed ingredients (Houlihan et al., 1995). Moreover, in vitro assessment techniques and 

surrogate methodologies have also been developed for the study of digestibility of key feed 

ingredients by SBT digesta enzymes (Carter et al., 1998; Carter et al., 1999; Brandsen et al., 

1999; Glencross et al., 2002). Therefore, considering that elements such as nitrogen (by 

product of protein metabolism), and particularly phosphorus, make up the organic wastes 

capable of causing environmental impact in tuna farming operations, the digestibility of total 

nitrogen and total phosphorus was determined in vivo in NBT during cage intensive fattening 
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(Aguado et al., 2004). Tunas were fed ad libitum once a day with a mixture of mackerel, 

herring, pilchard and gilt-sardine. Body weight of sampled tuna ranged between 150 and 350 

kg. Faeces were collected by dissection of the distal intestine after slaughtering, and directly 

with a manual sieve by scuba divers in the sea cages. Endogenous inert marker was acid 

insoluble ash. Apparent digestibility coefficient (ADC) for total nitrogen was lower when 

faeces were collected by dissection of the intestine (DI: 658.2 g kg-1) than when by direct 

collection (DC: 937.4 g kg-1). Total phosphorous ADC was lower when faeces were directly 

collected (DC: 481.4 g kg-1) than when collected by intestine dissection (DI: 661.9 g kg-1). 

The nitrogen digestibility in tuna was as high as in other carnivorous fish, while low 

phosphorous digestibility, as in many fishes, could be related to excess phosphorous in the 

diet. The results for directly collected faeces appeared to be more consistent and appropriate 

for waste output estimation. Results demonstrated the need for a more accurate nutritional 

evaluation, and development of formulated artificial diets (Aguado et al., 2004). 

The digestive enzyme activities in extracts of stomach, caecal mass, and proximal, 

middle and distal intestine of PBT have been evaluated for specific activity and characterized 

for pH and temperature optima (Matus de la Parra et al., 2008). Most proteolytic and lipolytic 

activities were maximal in the alkaline range, peaking at pH 9.0, and at temperatures between 

35 and 60ºC. However, pepsin showed maximal activity in the acid range (pH 3.0). Three 

pepsinogens and the corresponding pepsins from the gastric mucosa of PBT were purified and 

characterized and the complete amino acid sequence determined (Tanji et al., 1988; 1996; 

2009). A higher level of alkaline proteolytic activity was detected in the caecal mass than in 

the proximal intestine. Lipolysis appeared to be due to a non-bile salt dependent lipase, as 

activity was significantly reduced in the presence of bile salts (Matus de la Parra et al., 2008). 

Although not involved in intestinal digestion, phospholipase A1 activity of crude enzyme 

extracts from ovaries of several scombrid fish was studied and characterized (Hiratsuka et al., 
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2008). The optimum pH and temperature for the phospholipase A1 activity of the crude 

enzyme from ovaries were in the range of pH 6–7 and 20–30°C, respectively, and calcium 

ions were not required. As a substrate, phosphatidylcholine was more easily hydrolyzed than 

phosphatidylethanolamine by this enzyme as were diacyl phospholipids compared to 

plasmalogen phospholipids (Hiratsuka et al., 2008). 

 Little is known about hormonal regulation of the gastrointestinal tract in tunas, but the 

few data available for other teleosts suggest that the regulatory pathways and molecules are 

relatively conserved among vertebrates, although some specific responses in fish may differ 

from mammals (Buddington and Krogdahl, 2004). Gastrointestinal hormones such as, ghrelin, 

peptide YY and cholesystokinin (CCK), not only regulate digestion, but may also act as 

appetite/satiety modulating signals in the brain (Volkoff et al., 2005; Rønnestad et al., 2007). 

 

3.7 Gustatory response 

 

Certain chemical components of feeds are known to act as gustatory stimulants or palatability 

enhancers. The most common chemicals identified as feeding stimulants are amino acids, 

betaine, quaternary ammonium bases, and nucleotides (e.g. IMP, inosine monophosphate) 

(Rust, 2002). Neural gustatory responses of PBT to compounds extracted from prey 

organisms were studied by electrophysiological recording from the facial nerve supplying the 

anterior palate (Kohbara et al., 2006). Of the 17 amino acids tested, L-proline was the most 

potent, followed by L-leucine, L-methionine, L-alanine, L-valine and L-isoleucine. Among 

the 7 nucleotide-related substances tested, uridine-5´-monophosphate (UMP), inosine-

5´monophosphate (IMP) and adenosine-5´-monophosphate (ADP) were highly stimulatory. 

Betaine was highly stimulatory, but trimethylamine oxide and ammonium chloride were 
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ineffective, and lactic and pyruvic acids were only effective at higher concentrations 

(Kohbara et al., 2006). 

 

4. NUTRITION AT CRITICAL STAGES OF ONTOGENY 

 

4.1 Broodstock nutrition  

 

Feed and feeding preferences in tunas are related to physiological condition, including 

maturation (Fushimi et al., 1996). In Japan, the broodstock diet for PBT has been based on 

species of local baitfish and included 51 % mackerel (Scomber spp.), 30 % jack mackerel 

(Trachurus japonicus), 10 % squids (Decapterus tabl, Todarodes pacificus) and 3 % sardines 

(Sardinops melanosticus) (Sawada et al., 2005). Similarly in Panama, YFT broodstock are fed 

on local baitfish and squids including Pacific anchoveta (Cetengraulis mysticetus), bigscale 

anchovy (Anchovia macrolepidota), market squid (Loligo opalescens), and Argentine shortfin 

squid (Illex argentinus) (Wexler et al., 2003). The daily rations for YFT broodstock ranged 

from 1 % to 10 % body weight day-1 and showed FCRs that varied from 10.9 to 34.6 on a wet 

weight basis, with an average of 18.2. These values were comparable to FCRs obtained with 

similar sized SBT fed pilchards (Smart, 1996). 

There are a number of aspects of fish reproduction that may be affected by nutritional 

status: the time to first maturity, the number of eggs produced (fecundity), egg size and egg 

quality as measured by chemical composition, hatchability and larval survival. Energy is 

partitioned by fish between the various physiological processes involved in maintenance, 

growth and reproduction. Thus, maintenance requirements are met first and then excess 

energy divided between growth and reproduction, with the relative partitioning between the 

latter two varying between species and strains of individual species. There are few studies 
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investigating reproductive effort and nutrient requirements of fish for gonad development and 

reproductive success, but those that have been undertaken indicate great species variability 

(Izquierdo et al., 2001; Watanabe and Vasallo-Agius, 2003). Most work has focussed on EFA 

and fat-soluble vitamin and pigment requirements, and it has been generally assumed that the 

amino acid requirements of broodstock are similar to those for optimal growth (Izquierdo et 

al., 2001; Watanabe and Vasallo-Agius, 2003). We are still far from developing adequate 

artificial diets for tunas and even further for tuna broodstock. However, an appropriate tuna 

broodstock diet must satisfy all the requirements for high fecundity as well as egg and sperm 

quality for optimum spawning performance and fertilization. There must be an optimal 

protein level for reproductive success in tunas, and so dietary protein will also have to be 

carefully evaluated for effects on reproduction in fish used as broodstock. It is likely that high 

quality protein sources such as fishmeal and/or squid meal would be desirable ingredients as 

well as high quality fish oils possibly including tuna orbital oil and/or leicithin from bonito oil 

in order to supply adequate amounts of essential amino acids, EFAs and phosphoglycerides in 

suitable proportions. All these ingredients have been shown to improve egg quality in several 

marine species. The n-3 lc-PUFA are essential for egg quality together with lipid soluble 

compounds such as carotenoid pigments (astaxanthin, capsanthin and capsorbin) and 

tocopherols. The inclusion of carotenoids and vitamin E in broodstock diets for pelagic 

marine carnivorous fish, such as yellowtail and striped jack (Pseudocaranx dentex) has 

resulted in superior gonadal development and spawning performance, apparently due to the 

radical quenching abilities of these compounds (Watanabe and Vasallo-Agius, 2003). In 

general, there is an urgent need for further research in this area for fast-growing marine 

pelagic fish, but particularly for tunas. 

 

4.2 Larval nutrition  
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Like many other pelagic marine fish, the early life stages of tuna are visual predators feeding 

during daylight hours (Uotani et al., 1990; Young and Davis, 1990), with larvae consuming 

primarily small zooplankton, mainly copepods and copepoda nauplii (Uotani et al., 1990). At 

a very early developmental stage, tuna larvae acquire predatory piscivorous habits and 

consume daily rations between 25 and 50% of total body mass (Young and Davis, 1990; 

Tanabe, 2001). Cannibalism is usually found in the larvae and juveniles of tuna in nature, 

mainly in reproductive areas (Tanabe, 2001). There are few studies of wild larval tuna. 

However, in order to assess the nutritional status of field-caught larval PBT, starvation 

experiments of hatchery-reared larvae were conducted and changes in the RNA/DNA ratio of 

fed and starved larvae analyzed (Tanaka et al., 2008). The poor survival rate of PBT larvae 

and immediate growth retardation suggested that PBT larvae have a very low tolerance to 

starvation. The RNA/DNA ratios of fed larvae were approximately 2 – 4, whereas it was 1 – 3 

in starved larvae. The nutritional status of field-caught tuna larvae collected in the north 

western Pacific Ocean was negatively correlated to the ambient prey densities. This study 

suggested that the nutritional condition of larval PBT was influenced by the ambient prey 

density, and starvation itself and starvation-induced predation could contribute to mortality 

during the larval period of PBT (Tanaka et al., 2008). 

 

4.2.1. First feeding technology 

 

As with all marine fish, first feeds for larval tuna will, for the time being, be largely 

dependent upon live feeds (Lee, 2003). Larvae rearing technologies for PBT and YFT have 

been mainly developed in Japan and Panama, respectively. Larval rearing tanks for PBT are 

supplied with filtered and UV-irradiated sea water at 25 ºC; the rearing water is not changed 
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until day 2 after hatch and then the water exchange is increased gradually up to 3-5 exchanges 

per day. The newly hatched larvae, stocked in 5000 l tanks at a density of about 6 larvae l-1, 

commenced feeding on day 3 with DHA-enriched rotifers Brachionus rotundiformis and B. 

plicatilis to 25 days after hatching (DAH) (Sawada et al., 2005; Masuma et al., 2008). 

Artemia nauplii were fed from 10 to about 25 DAH, and fish larvae of species such as Pagrus 

major, Lethrinus nebulosus, Plectropomus leopardus or Oplegnathus fasciatus were 

introduced from 12 to 30 DAH. Minced fish was fed from 15-30 DAH onwards when fish 

were about 30 mm in total body length (Fushimi et al., 1996; Lee, 2003). YFT larvae were 

cultured in 1000 l tanks supplied with filtered and UV-sterilised seawater at an average 

temperature of 26 ºC from 0 to 30 DAH at an initial stocking density of 40 larvae l-1 (Kaji, 

2002). The microalgae Nannochloropsis oculata was added to the rearing tanks from 4 to 31 

DAH. Larvae were fed on rotifers from 4 to 30 DAH, Artemia nauplii and fish larvae 

(Lethrinus nebulosus and L. miniatus) from 15 to 30 DAH, and then frozen fish and minced 

fish meat as development and growth continued (Kaji, 2002). 

The use of mixed live feeds as above may lead to complex prey–predator interactions 

among planktonic organisms in larval tanks. This was studied in tanks of larval PBT and two 

different carbon pathways were revealed by carbon flow models constructed from the results 

of feeding experiments (Nakagawa et al., 2007). One pathway was from autotrophic nano-

plankton to rotifers to fish larvae (artificial food chain) and the other was from bacteria to 

heterotrophic nano-plankton to heterotrophic micro-plankton (a microbial loop). PBT 

selectively consumed heterotrophic micro-plankton, especially dinoflagellates, throughout the 

experiment, and the microbial loop was linked to the artificial food chain. Therefore, this 

study suggested that a microbial loop, established naturally, contributes energy and nutrient 

gain to PBT larvae reared in an artificially controlled environment (Nakagawa et al., 2007). 
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4.2.2. Embryogenesis and yolk sac stage larvae 

 

The analysis of the variations of energy and nutrient contents during embryogenesis and yolk-

sac larvae period can give useful information of the nutritional requirements during early 

larval stages (Sargent et al., 2002). The types of nutrients used for energy and embryonic 

development are species-specific and closely correlated to nutrient requirements during the 

postlarval and juvenile stages (Rønnestad and Fyhn, 1993). However, there are few studies on 

nutrient utilisation during embryonic development in tunas (Takii et al., 1997). Fertilized PBT 

eggs were incubated until hatching at 27 ºC and changes in egg moisture, total nitrogen and 

total phospholipids were determined (Takii et al., 1997). Egg protein gradually increased, and 

free amino acid decreased, with development. TAG, a main egg constituent (42% of egg dry 

matter), and gross energy both decreased from early cleavage to just before hatching (Takii et 

al., 1997). The rapid TAG decrease during embryonic development may suggest a high lipid 

requirement for PBT at post-larval and juvenile stages to support rapid growth. 

 

4.2.3. Early digestive capabilities 

 

Activities of aspartate aminotransferase, alanine aminotransferase, creatine kinase and lactate 

dehydrogenase in developing PBT fell between the stages of early cleavage and Kupffer´s 

vesicle and rose thereafter. Alkaline phosphatase remained high until embryo formation and 

fell rapidly thereafter (Takii et al., 1997). These increasing enzyme activities, with the 

exception of alkaline phosphatase, denote organ differentiation and formation immediately 

before or after Kupffer´s vesicle in PBT eggs (Takii et al., 1997). Most marine fish larvae 

have poorly developed digestive systems at first feeding (Sargent et al., 2002), although the 

larval type-gut has a considerable processing capacity that can support high growth rates, and 
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the adult-type of digestive system (including a functional acid-producing stomach) only 

develops at metamorphosis, weeks to months after first feeding. However, several studies 

have revealed that in scombrid larvae such as Spanish mackerel (Scomberomerus niphonius), 

chub mackerel (Scomber japonicus) and striped bonito (Sarda orientalis), and also NBT and 

YFT, the adult-type digestive system is established at the mid phase of the larval period or 

around the first feeding stage, during scombriform-type metamorphosis (Kaji et al., 1996; 

Miyashita et al., 1998; Kaji et al., 1999; Kaji, 2002; Kaji et al., 2002). Moreover, and in 

contrast to straight gut teleost fish larvae, bluefin tuna present a rotated gut, which permits 

retention of ingested food for some time in the anterior midgut, and retrograde peristalsis as a 

mechanism for filling the pyloric caeca (Rønnestad et al., 2007). This precocious timing of 

digestive system differentiation in scombrids may suggest an adaptation allowing the early 

appearance of piscivorous habits and high growth rates during the early life stages. Changing 

the feeding schedule from invertebrate zooplankton to fish larvae (see section 4.2.1) is 

therefore associated with the functional development of the digestive system and seems to be 

reasonably effective in the rearing of Thunnus larvae (Kaji et al., 1999). These studies on the 

development of digestive capacity of larval and juvenile tunas have shown that, after 

commencing feeding, trypsin-like and amylase-like activities increased as larvae grew, and 

pepsin-like activity increased and stomach and pyloric caeca functions developed from the 

post-flexion phase to juvenile transition (Miyashita et al., 1998; Kaji, 2002). The development 

of the tuna digestive system up to pre-flexion phase is mainly qualitative, but from the flexion 

and post-flexion phases development is both qualitative and quantitative. Thus, proteolytic 

capability subsequently increased during the postflexion phase, enabling a shift in food habits 

to piscivory (Kaji, 2002). This pattern of digestive system development might contribute to 

the rapid growth in the juvenile stage (Miyashita et al., 1998; Kaji, 2002). 
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 As indicated above, some morpho-histological studies describing the development of 

the digestive organs and the expression and activity of digestive enzymes has been undertaken 

regarding tuna larvae, but very little is known about the control systems of larval digestive 

physiology. CCK is an important hormone in higher vertebrates and plays a key role in the 

stimulation of pancreatic enzyme secretion, gallbladder contraction, intestinal peristalsis, 

delaying of gastric emptying and control of food intake. CCK producing cells release CCK 

into the blood vessels following chemical stimulation from ingested food. The location and 

timing of the appearance of CCK-producing cells in the gut of bluefin tuna larvae was 

examined and compared to other marine teleost larvae species. Entero-endocrine CCK-

producing cells in rotated gut of bluefin tuna larvae were detected in the anterior part of the 

midgut (adjacent to pyloric caeca) in later stages, whereas in marine straight gut larvae, the 

cells appeared from hatching and were widely distributed all over the midgut (Rønnestad et 

al., 2007). Moreover, in very early stages neural CCK is quantitatively the dominant form and 

is progressively substituted by gut produced CCK as development proceeds (Rønnestad et al., 

2007). 

Aspects such as the environmental effects, feeding behaviour, digestive capacity 

during ontogeny, consumption and assimilation rates, and nutritional requirements from first 

feeding larvae to metamorphosis require to be investigated to provide a better basis for the 

formulation of larval specific diets and reliable larviculture of tunas. 

 

4.2.4. Live feeds and enrichment treatments  

 

The most commonly used live feeds for marine fish larvae, such as rotifers and Artemia 

nauplii, are primarily chosen for their ease of culture and use, rather than for any nutritional 

advantage (Sargent et al., 2002). Indeed, Artemia and rotifers are nutritionally unsuitable for 
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marine fish larvae as they normally lack sufficient EFA contents, specifically the lc-PUFA, 

EPA and DHA (Sargent et al., 2002). Hence, the necessity for live feeds to be enriched in 

these nutrients prior to feeding to marine fish larvae. Larval nutrition of marine fish, 

specifically live feeds and their enrichment in EFA, has been an area of considerable research 

over the last few years and is not without technical difficulties (Conceição et al., 2007).  

A primary focus has been determining the correct amounts and ratios of EPA, DHA 

and ARA, and these can vary greatly with species (Sargent et al., 2002; Tocher, 2003; 

Izquierdo, 2005). As described above, tuna species have generally higher levels of DHA and 

DHA:EPA ratios than in most other fish species and so it will be important to determine if 

this is reflected in a higher DHA requirement, particularly during larval development when 

there is considerable demand for lc-PUFA for neural tissue development (Sargent et al., 2002; 

Tocher, 2003; Mourente, 2003). The importance of DHA for the proper development of 

neural tissues has been demonstrated in larval Atlantic herring (Mourente and Tocher, 1992a; 

Bell et al., 1995; Mourente, 2003), European sea bass (Dicentrarchus labrax) (Navarro et al., 

1997), gilthead sea bream (Mourente and Tocher, 1993; Mourente, 2003), and turbot (Psetta 

maximus) (Mourente et al., 1991; Mourente and Tocher 1992b; Mourente, 2003). Dietary 

deficiency of DHA resulted in larval herring having an impaired ability to capture prey at 

natural light intensities (Bell et al., 1995), delayed response to visual stimuli in larval sea 

bream (Benitez-Santana et al., 2007), and impaired schooling behaviour in yellowtail 

(Masuda et al., 1998; Ishizaki et al., 2001) and Pacific threadfin (Polydactylus sexfilis) 

(Masuda et al., 2001). A previously reported problem associated with NBT culture is 

mortality caused by trauma as a result of collision with the tank or net walls (Miyashita et al., 

2000). The precise cause of these collisions is not known, but it is interesting to speculate that 

it could be related to neural development and larval nutrition. These studies imply a critical 

role for DHA in the functioning of neural tissue (brain and eye) in fish and also demonstrate 
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the importance of dietary DHA in marine fish. Therefore, the delivery of sufficient DHA to 

developing marine fish larvae is of major importance and is not without problems (Sargent et 

al., 2002). 

Very recently, the availability of larvae has enabled some studies comparing live feed 

enrichments to be carried out in PBT. The suitability of Artemia enriched with DHA and 

choline on the growth and survival rate of larvae was investigated (Biswas et al., 2006). 

Enrichment significantly increased the DHA levels in the Artemia, but the levels were still 

significantly lower than the reference diet, larvae of striped knifejaw (Oplegnathus fasciatus). 

Similarly, although growth and survival rates were significantly improved by both DHA 

enrichment and choline, the improvement was negligible compared with the higher growth 

and survival rate of the PBT fed the fish larvae (Biswas et al., 2006). As the growth failure 

was, at least partly, attributed to dietary DHA deficiency, further studies investigated the 

effect of graded DHA content in Artemia on the growth of PBT larvae (Seoka et al., 2007). 

The DHA contents in Artemia enriched with graded levels of DHA ethyl ester increased from 

0 mg·g-1 dry weight basis to 25 mg·g-1, while the content in the reference diet, yolk-sac larvae 

of O. fasciatus, was 21 mg·g-1. Although enriched Artemia significantly improved the growth 

of PBT larvae, it was negligible compared with the growth of the PBT larvae fed the O. 

fasciatus larvae (Seoka et al., 2007). This showed that the absolute level of DHA was not the 

only factor in growth promotion and that lc-PUFA ratios and/or the lipid source of the DHA is 

also important. Thus, the presentation of dietary DHA incorporated in phospholipids, as in the 

O. fasciatus larvae, may be desirable for the normal growth of PBT larvae, as suggested 

previously (Sargent et al., 2002; Tocher, 2003). To test this hypothesis two experiments were 

conducted to evaluate the effect of dietary phospholipid rich in DHA on growth and survival 

of PBT larvae and juveniles (Seoka et al., 2008). Diets were prepared from polar 

(phospholipid-rich) and neutral lipid fractions of salmon (Oncorhynchus gorbuscha) roe lipid 
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and compared with enriched Artemia and fish (O. fasciatus) larvae. The growth and survival 

of PBT larvae and juveniles fed the high polar lipid fraction were significantly improved 

when compared with larvae fed neutral lipids or Artemia although for larvae the best growth 

and survival were obtained with the diet of O. fasciatus larvae (Seoka et al., 2008). Fish fed 

polar lipids or O. fasciatus larvae had higher total lipid contents, TAG levels, n-3 lc-PUFA 

and DHA levels, when compared with fish fed neutral lipids or Artemia. Interestingly, in 

juveniles, over 90 % of deaths were caused by collisions with the tank walls and the 

significant difference in mortality between treatments implied that diet also affected 

behaviour (Seoka et al., 2008). 

Particular attention should also be paid to enrichment of live preys, during early 

feeding, with antioxidant vitamins (E and C) and lipid soluble morphogenetic vitamin A. 

Most skeletal deformities appear during the larval stages in various marine fish, when many 

biological processes take place for organogenesis and morphogenesis. In particular, the 

dietary supply of vitamin A at first feeding can be critical for normal skeletogenesis, growth 

and development, although the precise dose is species specific and should be determined 

(Fernandez et al., 2008). Recent data on the biochemical composition of copepod species 

(total lipid, lipid class composition, total lipid fatty acid composition, total protein, free amino 

acids, protein-bound amino acids, pigments and vitamins) may prove an important base for 

the improvement of live feed enrichment emulsions or formulated feeds to be used during 

larval and early juvenile stages of tunids and/or other marine fish species culture (van der 

Meeren et al., 2008). 

 

5. CURRENT FEEDS  

 

5.1 Whole fish  
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There is limited information about feeding strategies, feed conversion ratios (FCR) and feed 

technology, and most data are related to fattening operations based on captured tuna. The 

fattening period varies between 3 and 10 months and tuna are usually fed baitfish on a basis 

of six days a week, twice a day. FCRs vary with the fattening season and temperature, 10:1 

with high temperatures and 17:1 with low temperatures, and size of the fish, with smaller size 

tuna presenting lower FCRs than larger fish (O´Sullivan, 1993). Although there have been a 

number of attempts at NBT and PBT culture including both complete aquaculture and grow 

out/fattening programmes, there are few nutritional data pertaining to those studies 

(Buchanan, 1977; Vincent, 1981; Aitken, 1984; Okamoto et al., 1984; Belle, 1994; 

Doumenge, 1996). Wild-caught juvenile PBT were initially fed sand lance Ammodytes 

personatus, followed by anchovy Engraulis japonicus, sardine Sardinops melanosticus, jack 

mackerel Trachurus japonicus, mackerel scad Decapterus tabl, chub mackerel, spotted chub 

mackerel S. australasicus and Japanese common squid Todarodes pacificus (Sawada et al., 

2005). Adult PBT were fed six days a week with a mixture of mackerel, jack mackerel, 

sardine and squid at a rate of 2 - 3% of body weight. SBT have also been the subject of grow 

out/fattening trials in South Australia over a number years (Jeffriess, 1993; Lee, 1998; Carter 

et al., 1998). In one of the earliest trials at Kinki University in Japan, wild-caught PBT 

showed very good growth rates, averaging 20 kg year-1, on a diet consisting of fish including 

mackerel, anchovy and sand eel (Harada et al., 1971). Subsequent trials elsewhere have used 

ground trash fish (Vincent, 1981) and a mixed diet of local mackerel, herring and butterfish 

for PBT, and locally caught and frozen pilchards/sardines for SBT (Fitz-Gerald, 1998). 

 Farming of small (~ 10 kg) BFT in the Adriatic Sea used raw defrosted and/or fresh 

small pelagic fish such as sardines, herring, small mackerel and sprats. Fish were fed to 

satiation, six days per week and demonstrated relatively high growth rates (Tičina et al., 
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2007). In the Mediterranean, capture-based aquaculture or fattening operations of large NBT 

use some local fish production, although a large percentage of the feed fish is imported frozen 

from outside the region. The feed fish used includes small pelagic species such as anchovy 

(Engraulis encrasicolus), sardine (Sardina pilchardus), round sardinella (Sardinella aurita), 

herring, mackerels (Scomber spp.), horse mackerel (Trachurus spp.), capelin (Mallotus 

villosus), shad (Alosa alosa) and short-fin squid (Illex spp.). This practice can be considered 

as an environmental threat to local fish populations and ecosystems because of the systematic 

dumping in the Mediterranean marine ecosystems of thousands of tonnes of non-local exotic 

whole fish, which constitutes a significant risk of spreading new diseases to native fish 

populations, as has already occurred in Australian waters in relation to SBT fattening 

operations (Ward et al., 2001; Gaughan, 2002; Ottolenghi et al., 2004; Ottolenghi, 2008). In 

summary, in tuna fattening operations FCR are generally high for large fish and (15-20:1) and 

not so high for smaller fish (10-15:1), but as consequence heterothermy and constant 

swimming only a small fraction (5%) of the energy input is used for body growth (Korsmeyer 

and Dewars, 2001; Ottolenghi, 2008). 

 

5.2 Artificial feeds 

 

Early experiments at Kinki University included some comparative dietary trials where 

juvenile PBT were fed four test diets comprising three single species fish diets (sand eel, 

anchovy and mackerel) and a mixed diet of minced mackerel with a dry commercial diet for 

yellowtail (Harada et al., 1983). The PBT on both the mackerel diet and the mixture diet 

showed high survival and had body compositions similar to wild fish. However, whereas the 

fish on the mackerel diet had the best growth rate, the mixture diet had a relatively poor 

growth rate. Perhaps surprisingly, the fish on the anchovy diet had the lowest survival, growth 
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rate and fat content (Harada et al., 1983). In general, baitfish of various species have proved 

to be relatively good feed for either PBT and/or SBT, but with many risks associated (Clarke 

et al., 1997; Ottolenghi et al., 2004; Ottolenghi, 2008). 

The current need to use a wide variety of baitfish in fattening/farming operations, 

which have a correspondingly wide range in quality, pointed to the necessity of developing 

artificial manufactured feeds to replace the use of baitfish (Montague, 2003). It is not the 

quantity of baitfish supplied to the tuna, but the content and quality of its nutrients that 

influences production. If baitfish is low in protein and fat, tuna FCR will be high and growth 

rate low, and higher quantities of baitfish will be required to maintain the same production 

level. The characteristics and gross composition of the baitfish are quite variable, and large 

variations have been observed in the contents of crude protein (49.4%-75.3% dry mass), crude 

fat (1.9%-36.5% dry mass), free fatty acids (2.9%-53.4% dry mass) and peroxide value 

(0.1meg/kg – 598.0 meg/kg dry mass) (www.sardi.sa.gov.au; Ottolenghi et al., 2004; 

Ottolenghi, 2008). Moreover, raw fish diets give disadvantages such as high FCRs, risks of 

pollution and disease, plus a high fishery pressure because of the demand. In spite of all the 

above, the necessity to formulate and manufacture artificial diets has generally been avoided 

due to various reasons including a desire to use fish derived from local or other commercially 

available fisheries including trash fisheries, high feed production costs, and a non enthusiastic 

Japanese market for tuna reared on pelleted food (Ottolenghi et al., 2004; Ottolenghi, 2008). 

Dry and moist pellets have been trialled in studies with SBT in South Australia 

(Smart, 1995, 1996, 1998). The fish did not accept dry pellets, but pellets (sausage) 

containing 40 % moisture and based on fishmeal and fish oil were readily accepted. The 

pellets were 40 % protein with lipid levels varying between 7.5 % and 12.5 %. Growth on the 

pellets (in combination with bait fish) was similar to that on baitfish (sardines) alone with 

feed conversions slightly better for pellets (Smart, 1995, 1996, 1998). Therefore, under 
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research conditions, growth performance of SBT fed moist diets was similar to that of fish fed 

baitfish (Glencross et al., 1999a, 2002). Although weaning on to moist diets has been 

particularly successful at the initial phases of the production cycle when the fish feed 

extremely vigorously, the development of a dry manufactured diet has been limited due to 

problems encountered in weaning juvenile SBT on to dry artificial diets (Glencross et al., 

2002). Most practical diet formulations for tuna have been based on muscle and/or natural 

prey species compositions (Smart et al., 2003), resulting in a high protein, high energy, low 

carbohydrate diet as befits a carnivore and opportunistic predator. In a new effort to develop 

an artificial diet for juvenile PBT, recent studies have shown the utility of diets formulated 

with enzyme-treated fish meal (to improve protein digestibility) and fortified bonito oil (10 % 

DHA-enriched oil) versus trash fish (sand lance) (Ji et al., 2008). However, although similar 

growth rates were obtained, the artificial diet led to a higher carcass lipid content, but lower 

accumulation of n-3 lc-PUFA. 

In conclusion, considerably more studies and effort are required to develop new 

artificial diets and feeding technologies for tuna, which permit better SGRs and FCRs, flesh 

quality,  reduced production costs and mitigate the problems and risks associated with the use 

of baitfish (Ottolenghi, 2008). 

 

5.3 Feeding practices 

 

Tuna feeding practices have been primarily developed to simultaneously accommodate the 

tuna´s huge appetite, while minimizing the labour effort required (Glencross et al., 2002). 

However, feeding practices vary and depend on the type of food offered to fish. In any case, 

feeding activity is usually regulated by visual assessment (divers, underwater surveillance 

cameras) determining the feeding performance and estimating feed losses on the floor of the 
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sea cages. Research regarding feeding frequency has shown that feeding tuna 7 days a week 

does not result in significantly higher growth rates or better condition factors than a feeding 

strategy in which the fish are fed 5 or 6 days a week. Thus, most farmers feed 5 - 6 days a 

week during the summer growing season and less during the winter. 

When feeding with baitfish, SBT have generally shown a preference for clupeoids 

while other species of fish have been used with varying degree of success. Baitfish is fed to 

tunas after thawing or in frozen blocks by hand, shovelling or pumps. Feed intakes of tuna fed 

baitfish vary seasonally (Glencross et al., 2002). During periods of high water temperatures 

(above 20 ºC), daily feed intake is commonly around 10 – 12 % of total body weight, but 

intakes as high as 15 % have been reported. However, at lower water temperatures, feed 

intake is reduced to as low as 2 % of body weight (Glencross et al., 2002). When feeding with 

pellet diets, rations are offered twice daily during the growing/fattening season and once daily 

during the later stages in response to lower feeding activities. Total intake of pelleted food is 

always less than that of baitfish, although it is greater on a dry-matter basis (Glencross et al., 

1999b; 2002). Growth of PBT in captivity was higher than in the wild (Lee, 2003). Higher 

water temperature at the more in-shore grow-out sites can make a difference in weight gain 

since temperature strongly affects feeding activity, although there seems to be no difference 

over about 23 ºC (Masuma et al., 2008). 

 

6. FUTURE PERSPECTIVES AND GLOBAL CONSIDERATIONS 

 

The primary goals of research into the nutrition of large tunids such as BFT, PBT and SBT 

will be to define their precise nutritional requirements, and the development of ideal 

formulated artificial diets. This is required to remove the dependence of any prospective tuna 

aquaculture industry on whole fish feeds based on local and imported trash fish or individual 
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species fisheries, such as anchovies or pilchards, which can be subject to great seasonal and 

environmental variations (Thorpe et al., 1997). However, it is very important to note that the 

current intense activities focussed on closing tuna life cycles and developing a large tunid 

aquaculture industry, growing fish from egg to market size, are taking place at a time when 

the aquaculture nutrition industry is currently going through great changes. These changes to 

feed formulations are considerable and are being forced upon the industry simply through the 

increasing expansion of aquaculture activities throughout the world that are rapidly 

outstripping global supplies of the principal dietary protein and oil sources, fish meal and oil. 

Based on our current knowledge of marine fish nutrition, and of the market that cultured tuna 

will be competing in, any formulated feed, whether it be a pellet and/or sausage diet, will 

have to be dependent, to some extent upon global supplies of fish meal and fish oil. The 

consequences of dietary formulations using more sustainable alternatives to fish meal and oil 

will likely be effects on flesh quality in tuna that have greater market impact than in any other 

fish species. 

 

6.1 Aquaculture and wild capture fisheries  

 

The exploitation and, many would argue, over-exploitation of wild fisheries has meant that an 

increasing proportion of fish for human consumption is now provided by aquaculture, which 

has been expanding at around 10 % per year over the last 15 years (Tidwell and Allan, 2002). 

Indeed, aquaculture has been the world’s fastest growing food production sector over this 

period and it is projected to more than double over the next decade or so (Naylor et al., 2000). 

It is a supreme paradox that the diets traditionally used in aquaculture have been based on fish 

meals and oils, themselves derived from wild fisheries, specifically the feed-grade or 

“reduction” fisheries, as the predominant protein and lipid sources (Sargent and Tacon, 1999; 
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Pike, 2005). This has been particularly the case in Europe, where intensive fish farming is 

based on carnivorous species, particularly salmonid and marine species. These species feed 

high up in the food web and the large tunids represent the apex in this chain. However, the 

wild capture fisheries, whether for food- or feed-grade fish, are finite resources that, although 

potentially renewable, are highly vulnerable so that their sustainability is in question (Worm 

et al., 2006). Global capture fisheries have shown little growth over the last 20 years and 

currently yield less than 100 million tonnes per annum (FAO, 2006). Over exploitation 

(fishing) of individual fish species, whether for direct human consumption or reduction to 

fishmeal and fish oil, has caused the collapse or near collapse of some valuable fisheries 

(Worm et al., 2006). Environmental pressure groups are relentless in their aim to further 

reduce fishing effort and catches by introducing tighter regulatory measures. The increasing 

realisation that global warming and natural climatic events such as “El Niño” can profoundly 

affect major fisheries, especially the southern Pacific anchovy fishery, highlights the inherent 

vulnerability of global fisheries. 

Stagnation of global fisheries along with all the other negative factors predicted that 

future demand for marine raw materials would exceed global supply leading to price increases 

and market instability. For example, the last major “El Niño” event resulted in the cost of fish 

oil increasing substantially from 1997 to 1998 to exceed that of soybean oil and, more 

recently, the cost of fish oil virtually doubled between October 2006 and the end of 2007. 

However, the rapidly increasing demand for marine raw products will have an even more 

profound consequence than price increases and instability, as current estimates indicate that 

the supply requirements for aquaculture feeds will exceed global supplies of fish oil and 

fishmeal within the next two to eight years, respectively (FAO, 2006). It has therefore been 

clear to the European aquaculture industry over the last few years that, for aquaculture to 

continue to expand and supply more of the global demand for fish, alternatives to fish oil and 
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meal had to be found (Barlow, 2000; Tacon, 2004). The only obvious, and sustainable, 

alternatives to the marine raw materials are plant-derived products, specifically plant meals 

and vegetable oils (Sargent et al., 2002). The subject of fish oil and meal replacement in diets 

for salmonids and marine fish was the subject of a recent European Union (EU) Framework 

Programme 5 Network of Excellence, Fish Oil and Meal Replacement (FORM; Q5TN-2002-

00628) (www.FORMNetwork.net), and is currently being researched in a large EU 

Framework Programme 6 Integrated Project, Sustainable Aquafeeds to Maximise the Health 

Benefits of Farmed Fish for Consumers (AQUAMAX; 016249) (www.aquamaxip.eu). 

 

6.2 Fish meal  

 

Declining and erratic global fisheries and rapidly increasing aquaculture as described above 

have to be considered against the background that fishmeal and fish oil are currently the 

major feedstocks for cultured marine fish. The protein component of aquaculture diets, is the 

single most important and expensive dietary component, especially for marine fish that tend 

to have higher dietary protein requirements than freshwater fish or salmonids (Wilson, 2002). 

At present, fishmeal remains the major dietary protein source, comprising between 20 % and 

60 % of fish diets in general (Watanabe, 2002). The dietary requirement of farmed marine 

fish for high quality protein, rich in essential amino acids, can possibly be met by sources 

other than fishmeal. However, whereas fishmeal provides adequate supplies of all essential 

amino acids, some, such as lysine and methionine, are generally deficient in plant sources 

(Naylor et al., 2000). Among the various protein sources available for fish feeds, defatted 

soybean meal is generally accepted, both qualitatively and quantitatively. As well as having a 

favourable amino acid profile compared with other plant protein sources, soybean meal is 

consistently available, cost-effective and reported to be palatable to most fish species 
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(Watanabe, 2002). Other common plant protein products include wheat and corn glutens, and 

pulses such as peas and beans. Soybeans, and other plant products can contain a number of 

anti-nutritional factors though, including trypsin inhibitors and phytic acid, that must be taken 

into account when plant proteins are utilized in feeds (Hardy and Barrows, 2002). However, 

considering the relatively wide range of plant protein alternatives available, blending various 

plant protein sources is usually a viable option, as is the use of protein concentrates and amino 

acid supplements. The replacement of fishmeal with plant proteins in diets for rainbow trout 

and the marine fish, gilthead sea bream, was recently the subject of a major EU Framework 

Programme 5 RTD research project, Perspectives of Plant Protein Use in Aquaculture 

(PEPPA; Q5RS-2000-30068) (www.st-pee.inra.fr/ici/stpee/nut/peppa/peppa). 

There are few, if any, specific studies on fishmeal replacement in diets for tunids. 

However, the digestibility of alternative proteins has been investigated using a soft dry 

pelleted diet in the yellowtail, a marine pelagic species, obtaining digestibility values of 86 % 

in diets containing from 30 % to 50 % soybean meal as protein source (Watanabe et al., 1992; 

Watanabe, 2002). Furthermore, and as explained above (section 3.2), in vitro studies of 

digestibility of key feed ingredients (fish meal, squid meal, casein, wheat gluten, soybean 

meal, wheat flour and pilchards) by SBT digesta enzymes has resulted in the refinement of 

moist diet development for this species and the results, in a practical approach, could be 

extrapolated to other tunids (Carter et al., 1998, 1999; Brandsen et al., 1999; Glencross et al., 

2002). 

 

6.3 Fish oil 

 

Lipid (oil or fat) is included in dietary formulations not only as a very effective energy source, 

but also as a source of EFA. Thus, a major role of marine fish oils in aquaculture diets is as a 
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source of the lc-PUFA, ARA, EPA and DHA, which together can satisfy the EFA 

requirements of all fish species (Tocher, 2003). Stagnation in feed-grade fish catches has also 

resulted in a shortage of fish oil (FAO, 2006). Indeed it is the limited global supply of fish oil 

rather than fishmeal that is the more serious problem, for at least two reasons. Firstly, it is far 

more imminent and shortages are already causing problems in the aquaculture feed industry, 

whereas fishmeal will not be limiting for a few more years (FAO, 2006). Secondly, as 

indicated above, there are a number of alternative protein sources and strategies for the 

replacement of fishmeals, whereas there are no ideal substitutes for marine fish oils. 

Currently, vegetable oils are the only sustainable, cost effective alternative lipid source for 

aquaculture diets and a number have been used as partial and complete replacements for fish 

oil (Bell et al., 2005). The replacement of fish oil with vegetable oils in diets for the 

salmonids, Atlantic salmon and rainbow trout, and the marine species, gilthead sea bream and 

European sea bass was recently the subject of a major EU Framework Programme 5 RTD 

research project, Researching Alternatives to Fish Oil in Aquaculture (RAFOA; Q5RS-2000-

30058) (www.rafoa.stir.ac.uk). 

Vegetable oils, rich in LOA and LNA are able to substitute for lc-PUFA in feeds for 

freshwater and salmonid fish without compromising growth performance or feed efficiency 

but, as described above, marine fish have an absolute dietary requirement for the preformed 

lc-PUFA for optimal growth and development and so, currently, there is no feasible 

alternative source to fish oil for these nutrients in marine fish feeds. Therefore, the use of 

vegetable oils in feeds for marine fish must be in combination with marine oils in sufficient 

amounts to satisfy the EFA requirement (Bell et al., 2005; Bell and Waagbø, 2008). Again, as 

previously indicated, the EFA requirements of tunids at all developmental stages remain 

unknown. However, even with freshwater and salmonid species, the use of vegetable oil is not 

without consequences. As vegetable oils are devoid of n-3 lc-PUFA, they can have a major 
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impact on the fatty acid composition of the flesh if added at high inclusion levels (Bell and 

Waagbø, 2008). Decreased levels of the n-3 lc-PUFA, EPA and DHA, and increased levels of 

LOA and LNA can compromise the nutritional quality of the flesh (Bell et al., 2005). For that 

reason, some studies have investigated the use of “finishing diets” containing fish oil to 

restore levels of n-3 lc-PUFA in the flesh (Bell et al., 2003a,b; Bell et al., 2004; Robin et al., 

2003; Caballero et al., 2004; Izquierdo et al., 2005; Mourente et al., 2005, 2006; Torstensen et 

al., 2005). The large tunid market demands very high flesh quality standards suggesting that 

major changes in flesh fatty acid composition in farmed tuna may not be acceptable. It is 

debatable that a finishing diet strategy could be successful with fish with a very large market 

size. At lower inclusion levels, dietary vegetable oils have correspondingly less impact on 

flesh fatty acid compositions (Robin et al., 2003). Therefore, an alternative to finishing diets 

could be the use of lower levels of fish oil substitution, particularly if the vegetable oil and 

fish oil blends used are carefully chosen to limit lc-PUFA reduction in the flesh (Torstensen et 

al., 2004). For instance, South American fish oils contain higher levels of n-3 lc-PUFA and so 

can deliver similar levels of n-3 lc-PUFA at lower inclusion levels than the North Atlantic 

fish oils most commonly used in diets (Sargent et al., 2002). However, tunids are 

characterised by high DHA:EPA ratios whereas the South American fish oils are 

characterised by rather low DHA:EPA ratios and so this strategy may also have negative 

impacts. As with fishmeal replacement, fish oil substitution is virtually unstudied in tunid-like 

species. In studies with yellowtail in Japan, it was shown that 50 - 60 % of fish oil could be 

replaced by palm oil in soft dry pellet and extruded dry diets (Watanabe, 2002). 

In conclusion, the effects of partial substitution of dietary fish oil with vegetable oils 

in diets for large tunids could have consequences for growth and health of the fish, as well as 

being potentially undesirable in terms of both consumer acceptance and human nutrition 

because of dilution of the health promoting effects of fish oil-derived EPA and DHA. This is 
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a problem that can be projected to have potentially major consequences for tuna farming in 

the future and it would be advisable that plans for prospective tuna farming industries should 

address this problem at an early stage. 

 

7. REFERENCES  

 

Ackman, R. G. Fish Lipids, Part 1, pp. 86-103. In: Advances in Fish Science and Technology, 

(Connell, J. J., Ed.), Fishing News Books, Surrey, UK (1980).  

Aguado, F., F. J. Martinez, and B. Garcia-Garcia. In vivo total nitrogen and total phosphorous 

digestibility in Atlantic bluefin tuna (Thunnus thynnus thynnus Linnaeus, 1758) under 

industrially intensive fattening conditions in Southeast Spain Mediterranean coastal 

waters. Aquacult. Nutr., 10: 413-419 (2004). 

Aitken, D. E. Aquaculture in Atlantic Canada, pp. 6-15. In: Proc. Natl. Aquacult. Conf. 

Strategies for Aquacult. Develop. Canada. DFO Sci. Inf. Publ. Br., no. 75, DFO, 

Ottawa, Canada, (1984). 

Barlow, S. Fishmeal and fish oil: sustainable ingredients for aquafeeds. Glob. Aquacult. 

Advocate, 4: 85-88 (2000). 

Bell, M. V., R. S. Batty, J. R. Dick, K. Fretwell, J. C. Navarro, and J. R. Sargent. Dietary 

deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile 

herring (Clupea harengus L.). Lipids, 30: 443-449 (1995). 

Bell, J. G., R. J. Henderson, D. R. Tocher, and J. R. Sargent. Replacement of dietary fish oil 

with increasing levels of linseed oil: Modification of flesh fatty acid compositions in 

Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids, 39: 223-232 (2004). 

Bell, J.G., F. McGhee, P. J. Campbell, and J. R. Sargent Rapeseed oil as an alternative to 

marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh 



 44 

fatty acid composition and effectiveness of subsequent fish oil “wash out”. Aquaculture, 

218: 515-528 (2003a). 

Bell, J.G., D. R. Tocher, R. J. Henderson, J. R. Dick, and V. O. Crampton. Altered Fatty Acid 

Compositions in Atlantic Salmon (Salmo salar) Fed Diets Containing Linseed and 

Rapeseed Oils Can Be Partially Restored by a Subsequent Fish Oil Finishing Diet. J. 

Nutr., 133: 2793-2801 (2003b). 

Bell, G., B. Torstensen, and J. R. Sargent. Replacement of marine fish oils with vegetable oils 

in feeds for farmed salmon. Lipid Technol., 17: 7-11 (2005). 

Bell, J. G., and R. Waagbø. Safe and Nutritious Aquaculture Produce: Benefits and Risks of 

Alternative Sustainable Aquafeeds, pp. 185-225. In: Aquaculture in the Ecosystem, 

(Holmer M., K. D. Black, C. M. Duarte, N. Marba, and I. Karakassis, Eds.), Springer 

Verlag BV, (2008). 

Belle, S. Work advances in bluefin tuna aquaculture. Fish Farm. News, 2: 1-9 (1994). 

Benitez-Santana, T., R. Masuda, E. J. Carrillo, E. Ganuza, A. Valencia, C. M. Hernandez-

Cruz, and M. S. Izquierdo. Dietary n-3 HUFA deficiency induces a reduced visual 

response in gilthead seabrem Sparus aurata larvae. Aquaculture, 264: 408-417 (2007). 

Biswas, A. K., J. Nozaki, M. Kurata, K. Takii, H. Kumai, and M. Seoka. Effect of Artemia 

enrichment on the growth and survival of Pacific bluefin tuna Thunnus orientalis 

(Temminck et Schlegel) larvae. Aquacult. Res., 37: 1662-1670 (2006). 

Blank, J. M., C. J. Farwell, J. M. Morrissette, R. J. Schallert, and B. A. Block. Influence of 

Swimming Speed on Metabolic Rates of Juvenile Pacific Bluefin Tuna and Yellowfin 

Tuna. Physiol. Biochem. Zool., 80: 167-177 (2007). 

Brandsen, M. P., C. G. Carter, and B. F. Nowak. Atlantic salmon (Salmo salar) as a surrogate 

species for the development of an artificial diet for the southern bluefin tuna (Thunnus 



 45 

maccoyii), pp. 99. In: Proceedings of the World Aquacult. Soc., World Aquaculture 

Society, Sidney, Australia, (1999). 

Buchanan, L. Ranching Atlantic bluefin. Sea Front., 23: 172-180 (1977). 

Buddington, R. K., and A. Krogdahl. Hormonal regulation of the fish gastrointestinal tract. 

Comp. Biochem. Physiol., A, 139: 261-271 (2004). 

Caballero, M.J., M. S. Izquierdo, E. Kjorsvik, A. J. Fernandez, and G. Rosenlund. Histological 

alterations in the liver of sea bream, Sparus aurata L., caused by short- or long-term 

feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the 

sole lipid source. J. Fish Dis., 27: 531-541 (2004). 

Carey, F.G., J. W. Kanwisher, and E. D. Stevens. Bluefin tuna warm their viscera during 

digestion. J. Exp. Biol., 109: 1-20 (1984). 

Carter, C.G., G.S. Seeto, A. Smart, S. Clarke, and R.J. van-Barneveld. Correlates of growth in 

farmed juvenile southern bluefin tuna Thunnus maccoyii (Castelnau). Aquaculture, 161: 

107-119 (1998). 

Carter, C. G., M. P. Brandsen, R. J. van Barneveld, and S. M. Clarke. Alternative methods for 

nutrition research on the southern bluefin tuna, Thunnus maccoyii (Castenau): in vitro 

digestibility. Aquaculture, 179: 57-70 (1999). 

Chase, B. C. Differences in diet of Atlantic bluefin tuna (Thunnus thynnus) at five seasonal 

feeding grounds on the New England continental shelf  Fish. Bull., 100: 168-180 

(2002). 

Clarke, S., A. Smart, R. van Barneveld, and C. Carter. The development and optimisation of 

manufactured feeds for farmed southern bluefin tuna. Austasia Aquaculture, 11: 59-62 

(1997). 

Clay, D. Fat, water, protein and ash of bluefin tuna collected in the Gulf of St. Lawrence. 

ICCAT Coll. Vol. Sci. Pap., 28: 196-202 (1988). 



 46 

Conceição, L.E.C., S. Morais, and I. Rønnestad. Tracers in fish larvae nutrition: A review of 

methods and applications. Aquaculture, 267: 62-75 (2007). 

Cowey, C. B. The nutrition of fish: The developing scene. Nutr. Res. Rev., 1: 255-280 (1988). 

Cowey, C. B., and J. R. Sargent. Nutrition, pp. 1-69. In: Fish Physiology Vol. VIII, (Hoar, W. 

S., D. J. Randall, and J. R. Brett, Eds.), Academic Press, New York, (1979).  

Davis, B. J. Assessment of protein and digestibility in caged southern bluefin tuna (SBT) fed 

manufactured diets. B. App. Sc. (Agriculture) (Hons) Thesis, The University of 

Adelaide, Australia (1997). 

Doumenge, F. Aquaculture of bluefin tuna. Biol. Mar. Mediterr., 3: 258-288 (1996). 

Dragovich, A. The Food of Bluefin Tuna (Thunnus thynnus) in the Western North Atlantic 

Ocean. Trans. Am. Fish. Soc., 99: 726–731 (1970). 

Eggleston, D. B., and E. Bochenek. Stomach contents and parasite infestation of school 

bluefin tuna Thunnus thynnus collected from the Middle Atlantic Bight, Virginia Fish. 

Bull., 88: 389-395 (1990).  

FAO (Food and Agricultural Organisation). FAO Fisheries Technical paper No. 500., 134 pp. 

FAO, Rome (2006). 

Fernandez, I., F. Hontoria, J. B. Ortiz-Delgado, Y. Kotzamanis, A. Estevez, J. L. Zambonino-

Infante, and E. Gisbert. Larval peformance and skeletal deformities in farmed gilthead 

sea bream (Sparus aurata) fed with graded levels of vitamin A enriched rotifers 

(Brachionus plicatilis).. Aquaculture, 283, 102-115 (2008). 

Fitz-Gerald, C. H., and H. A. Bremner. The oxidative stability of chilled and frozen pilchards 

used as feed for captive southern bluefin tuna. J. Aquat. Food Prod. Technol., 7: 27-44 

(1998). 



 47 

Fitzgibbon, Q.P., R. V. Baudinette, R. J. Musgrove, and R. S. Seymour. Routine metabolic 

rate of southern bluefin tuna (Thunnus maccoyii). Comp. Biochem. Physiol. A, 150: 231-

238 (2008). 

Fitzgibbon, Q.P., R. S. Seymour, D. Ellis, and J. Buchanan. The energetic consequence of 

specific dynamic action in southern bluefin tuna Thunnus maccoyii. J. Exp. Biol., 210: 

290-298 (2007). 

Fushimi, H., K. Kani, H. Nhhala, S. Nakamura, A. Abrouch, K. Chebaki, and A. Berraho. 

Attempt on resources enhancement of Atlantic bluefin tuna, present status and future 

perspectiveof Japanese-Moroccan cooperative project for aquaculture of Atlantic bluefin 

tuna. In: Symposium ICCAT (PATR Contribution nº 8); 10-18 June, Ponta Delgada, 

Azores, Portugal (1996). 

Gaughan, D.J. Disease translocation across geographic boundaries must be recognized as a 

risk even in the absence of disease identification: The case with Australian Sardinops. 

Rev. Fish Biol. Fisheries, 11: 113-123 (2002). 

Glencross, B. D., R. J. van Barneveld, C. G. Carter, and S. M. Clarke. On the path to a 

munufactered feed for farmed bluefin tuna. World Aquaculture Magazine, 30(3): 42-46 

(1999a). 

Glencross, B. D., R. J. van Barneveld, C. G. Carter, and S. M.Clarke. Factors influencing feed 

intake and feed conversion in farmed southern bluefin tuna (Thunnus maccoyii), pp. 

287. In: Proc. World Aquacult. Soc., NSW Fisheries, Sydney, Australia, (1999b). 

Glencross, B. D., C. G. Carter, J. Gunn, R. J. van Barneveld, K. Rough, and S. M. Clarke. 

Southern bluefin tuna, Thunnus maccoyii, pp. 159-171. In: Nutrient Requirements and 

Feeding of Finfish for Aquaculture, (Webster, C. D. And C. Lim, Eds.) CABI 

Publishing, New York, USA (2002). 



 48 

Glencross, B. D., M. Booth, and G. L. Allan. A feed is only as good as its ingredients – a 

review of ingredient evaluation strategies for aquaculture feeds. Aquaculture Nutr., 13: 

17-34 (2007). 

Graham, J. B., and K. A. Dickson. Tuna comparative physiology. The Journal of 

Experimental Biology, 207: 4015-4024 (2004). 

Halver, J.E. The Vitamins, pp. 61-141. In: Fish Nutrition 3rd Edition. (Halver J. E. and R.W. 

Hardy, Eds.), Academic Press, San Diego, (2002). 

Harada, T., H. Kumai, K. Mizuno, and O. Murate. On the rearing of young bluefin tuna. Mem. 

Fac. Agr. Kinki Univ., 4: 153-157 (1971). 

Harada, T., O. Murate, and T. Norita. The effects resulting from certain diets in young bluefin 

tuna, Thunnus thynnus. Mem. Fac. Agr. Kinki Univ., 16: 59-65 (1983). 

Hardy, R. W. and F. T. Barrows. Diet formulation and manufacture, pp. 505-600. In: Fish 

Nutrition 3rd Edition. (Halver J. E. and R. W. Hardy, Eds.), Academic Press, San Diego, 

(2002). 

Hiratsuka, S., T. Kitagawa, K. Yamagishi, and S. Wada. Phospholipase A1 activity of crude 

enzyme extracted from the ovaries of skipjack tuna. Fish. Sci., 74: 146-152 (2008). 

Holliday, M. Food of Atlantic Bluefin Tuna, Thunnus thynnus (L.), from the Coastal Waters 

of North Carolina to Massachusetts. M.Sc. thesis. Long Island Univ., Long Island, NY, 

(1978). 

Houlihan, D.F., I. D. McCarthy, C. G. Carter, and P. Martin. Protein turnover and amino acid 

flux in fish larvae, pp 87-99. In: Proceedings ICES Marine Science Symposium 201, 

(1995). 

Ishihara, K., and H. Saito. The docosahexaenoic acid content in the lipid of juvenile bluefin 

tuna Thunnus thynnus caught in the sea of the Japanese coast. Fish. Sci., 62: 840-841 

(1996). 



 49 

Ishizaki, Y., R. Masuda, K. Uematsu, K. Shimizu, M. Arimoto, and T. Takeuchi. The effect of 

dietary docosahexaenoic acid on schooling behaviour and brain development in larval 

yellowtail. J. Fish Biol., 58: 1691-1703 (2001). 

Izquierdo, M.S. Essential fatty acid requirements in Mediterranean fish species. Cah. Options 

Mediterr., 63: 91-102 (2005). 

Izquierdo, M.S., H. Fernandez-Palacios, and A. G. J. Tacon. Effect of broodstock nutrition on 

reproductive performance of fish. Aquaculture, 197: 25-42 (2001). 

Izquierdo, M.S., D. Montero, L. Robaina, M. J. Caballero, G. Rosenlund, and R. Ginés. 

Alterations in fillet fatty acid profiles and flesh quality in gilthead seabream (Sparus 

aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish 

oil feeding. Aquaculture, 250: 431-444 (2005). 

Jeffriess, B. Developments in farming southern bluefin tuna, pp. 124-127. In: Infofish Tuna 

Trade Conference, Bangkok, Thailand, (de Saram H., and N. Krishnasamy, Eds.), 

Infofish, Kuala Lumpur, (1993). 

Ji, S., O. Takaoka, A. Biswas, M. Seoka, K. Ozaki, J. Kohbara, M. Ukawa, S. Shimeno, H. 

Hosokawa, and K. Takii. Dietary utility of enzyme-treated fish meal for juvenile Pacific 

bluefin tuna Thunnus orientalis. Fish. Sci., 74: 54-61 (2008). 

Jobling, M. Fish Bioenergetics. Fish and Fisheries Series 13, 309 pp. Chapman and Hall, 

London (1994). 

Kaji, T. Studies on the early development of bluefin and yellowfin tuna. Ph D Thesis, Kyoto 

University, Japan (2002). 

Kaji, T., M. Kodama, H. Arai, M. Tawaka, and M. Tanaka. Precocious development of the 

digestive system in relation to early appearance of piscivory in striped bonito Sarda 

orientalis larvae. Fish. Sci., 68: 1212-1218 (2002). 



 50 

Kaji, T., M. Tanaka, Y. Takahashi, M. Oka, and N. Ishibashi. Preliminary observations on 

development of Pacific bluefin tuna Thunnus thynnus (Scombridae) larvae reared in the 

laboratory, with special reference to the digestive system. Mar. Freshwater Res., 47: 

261-269 (1996). 

Kaji, T., M. Tanaka, M. Oka, H. Takeuchi, S. Oshumi, K. Teruya, and J. Hirokawa. Growth 

and morphological development of laboratory-reared yellowfin tuna Thunnus albacares 

larvae and early juveniles, with special emphasis on the digestive system. Fisheries Sci., 

65: 700-707 (1999). 

Kitchell, J. F., W. H. Neill, A. E. Dizon, J. J. Magnusson. Bioenergetic spectra of skipjack 

and yellowfin tunas, pp. 357-368, In: The Physiologycal Ecology of Tunas. (Sharp G. D. 

and A. E. Dizon, Eds.), Academic Press, New York, (1978). 

Kohbara, J., T. Miyazaki, K. Takii, H. Hosokawa, M. Ukawa, and H. Kumai. Gustatory 

responses in Pacific bluefin tuna Thunnus orientalis (Temmink and Schlegel). Aquacult. 

Res., 37: 847-854 (2006). 

Korsmeyer, K. E. and H. Dewars. Tuna metabolism and energetic. Fish Physiology Series 

Vol. 19, pp 3-78. In: Tuna: Physiology, Ecology and Evolution. (Block B. A. and E. D. 

Stevens, Eds.). Academic Press, San Diego, CA, USA. (2001). 

Lee, C.-S. Biotechnological advances in finfish hatchery production: a review. Aquaculture, 

227: 439-458 (2003). 

Lee, D. C. A study on the feasibility of the aquaculture of the southern bluefin tuna Thunnus 

maccoyii. Report for Department of Agriculture Fisheries and Forestry Australia 

(AFFA), Fisheries, Government of Western Australia, Broome, Australia, 91 pp., 

(1998). 

Lucas, A. Bioenergetics of Aquatic Animals. Taylor and Francis, London, 169 pp. (1996)  



 51 

Masuda, R., T. Takeuchi, T. Tsukamoto, Y. Ishizaki, M. Kanematsu, and K. Imaizumi. 

Critical involvement of dietary docosahexaenoic acid in the ontogeny of schooling 

behaviour in the yellowtail. J. Fish Biol., 53: 471-484 (1998). 

Masuda, R., D. A. Ziemann, and A. C. Ostrowski. Patchiness Formation and Development of 

Schooling Behavior in Pacific Threadfin Polydactylus sexfilis Reared with Different 

Dietary Highly Unsaturated Fatty Acid Contents. J. World Aquacult. Soc., 32: 309-316 

(2001).  

Masuma, S., S. Miyashita, H. Yamamoto, and H. Kumai. Status of Bluefin Tuna Farming, 

Broodstock Management, Breeding and Fingerling Production in Japan. Rev. Fisheries 

Sci., 16: 385-390 (2008). 

Masumoto, T. Yellowtail, Seriola quinqueradiata, pp. 131-146. In: Nutrient Requirements 

and Feeding of Finfish for Aquaculture, (Webster, C. D. and C. Lim, Eds.) CABI 

Publishing, New York, USA (2002). 

Matus de la Parra, A., A. Rosas, J. P. Lazo, and M. T. Viana. Partial characterization of the 

digestive enzymes of Pacific bluefin tuna Thunnus orientalis under cultura conditions. 

Fish Physiol. Biochem., 33: 223-231 (2007). 

Medina, I., S. P. Aubourg, and R. P. Martin. Composition of phospholipids of white muscle of 

six tuna species. Lipids, 30: 1127-1135 (1995). 

Miyashita, S., K. Kato, Y. Sawada, O. Murata, Y. Ishitani, K. Shimizu, S. Yamamoto, and H. 

Kumai. Development of digestive system and digestive enzyme activities of larval and 

juvenile bluefin tuna, Thunnus thynnus, reared in the laboratory. Suisanzoshoku, 46(1): 

111-120 (1998). 

Miyashita, S., Y. Sawada, N. Hattori, H. Nakatsukasa, T. Okada, O. Murata, and H. Kumai. 

Mortality of northern bluefi n tuna (Thunnus thynnus) due to trauma caused by 

collision during growout culture. J. World Aquacult. Soc., 31: 632- 642 (2000). 



 52 

Montague, P. Australian southern bluefin tuna farming and research activity - national report. 

Cahiers Options Méditerranéennes, 60: 139-141 (2003). 

Mourente, G. Accumulation of DHA (docosahexaenoic acid; 22:6n-3) in larval and juvenile 

fish brain, pp. 239-248. In: The Big Fish Bang., ( Browman H., and A. B. Skiftesvik, 

Eds.) Published by the Institute of Marine Research, Postboks 1870 Nordes, N-5817, 

Bergen, Norway,( 2003). 

Mourente, G., and J. G. Bell. Partial replacement of dietary fish oil with blends of vegetable 

oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus 

labrax, L.) over a long term growth study: effects on flesh and liver fatty acid 

composition and effectiveness of a fish oil finishing diet. Comp. Biochem. Physiol. B, 

145: 389-399 (2006). 

Mourente, G., J. E. Good, and J. G. Bell. Partial substitution of fish oil with rapeseed oil, 

linseed oil and olive oil in diets for European sea bass (Dicentrarchus labrax L.): effects 

on flesh fatty acid composition, plasma prostaglandins E2 and F2∀, immune function and 

effectiveness of a fish oil finishing diet. Aquacult. Nutr., 11: 25-40 (2005). 

Mourente, G., and D. R. Tocher. Lipid class and fatty acid composition of brain lipids from 

Atlantic herring (Clupea harengus, L.) at different stages of development. Mar. Biol., 

112: 553-558 (1992a). 

Mourente, G., and D. R. Tocher. Effects of weaning onto a pelleted diet on docosahexaenoic 

acid (22:6n-3) levels in brain of developing turbot (Scophthalmus maximus, L.). 

Aquaculture, 105: 363-377 (1992b). 

Mourente, G. and D. R. Tocher. Effect of weaning on to a dry pellet diet on brain lipid and 

fatty acid compositions in postlarvae of gilthead sea bream (Sparus aurata, L.). Comp. 

Biochem. Physiol. A., 104(3): 605-611 (1993). 



 53 

Mourente, G., D. R. Tocher, and J. R. Sargent. Specific accumulation of docosahexaenoic 

acid (22:6n-3) in brain lipids during development of juvenile turbot Scophthalmus 

maximus L. Lipids, 26(11): 871-877 (1991). 

Murase, T., and H. Saito. The docosahexaenoic acid content in the lipid of albacore Thunnus 

alalunga caught in two separate localities. Fish. Sci., 62(4): 634-638 (1996). 

Nakagawa, Y., M. Eguchi, and S. Miyashita. Pacific bluefin tuna, Thunnus orientalis, larvae 

utilize energy and nutrients of microbial loop. Aquaculture, 267: 83-93 (2007). 

Navarro, J.C., L. A. McEvoy, M. V. Bell, F. Amat, F. Hontoria, and J. R. Sargent. Effect of 

different dietary levels of docosahexaenoic acid (DHA, 22:6n-3) on the DHA 

composition of lipid classes in sea bass larvae eyes. Aquacult. Int., 5: 509-516 (1997). 

Naylor, R.L., R. J. Goldburg, J. H. Primavera, N. Kautsky, M. C. M. Beveridge, J. Clay, C. 

Folke, J. Lubchenco, H. Mooney, and M. Troell. Effect of aquaculture on world fish 

supplies. Nature, 405: 1017-1024 (2000). 

Nichols, P.D., P. Virtue, B. D. Money, N. G. Elliot, and G. K. Yearsley. Seafood the Good 

Food: The Oil (Fat) Content and Composition of Australian Commercial Fishes, 

Shellfishes and Crustaceans. CSIRO Marine Reseach, Hobart, Australia. (1998). 

NRC (National Research Council). Nutrient Requirements of Fish, 114 pp. National Academy 

Press, Washington DC, (1993). 

Okamoto, R., H. Matsunaga, K. Funae, and M. Hisaoka. Study on the rearing of young 

bluefin tuna Thunnus thynnus orientalis (Temminck et Schlegel) in Seto Inland Sea. 

Bull. Nansei Reg. Fish. Res. Lab. Nanseisuikenho, 17: 207-218 (1984). 

O’ Sullivan, D. Farming the southern bluefin tuna. INFOFISH International, 6:39-46 (1993). 

Ortiz de Zarate, V., and J. L. Cort. Stomach content study of immature bluefin tuna in the Bay 

of Biscay (Region 3 of EEC). ICES Report, 10 pp., ICES, Copenhagen Denmark (1986). 



 54 

Orsi-Relini, L., F. Garibaldi, C. Cima, and G. Palandri. Feeding of the swordfish, the bluefin 

and other pelagic nekton in the western Ligurian Sea. ICCAT Coll. Vol. Sci. Pap., 44: 

283-286 (1995). 

Ottolenghi, F. Capture-based aquaculture of bluefin tuna. pp. 169-182  In: Capture-based 

Aquaculture. Global Overview, FAO Fisheries Technical Paper Nº 508. (Lovatelli, A. 

and P. P. Holtthus, Eds.).  FAO, Rome (2008). 

Ottolenghi, F., C. Silvestri, P. Giordano, A. Lovatelli, and M. B. New. Tunas, pp. 105-148. 

In: Capture-based aquaculture: The fattening of eels, groupers, tunas and yellowtails. 

FAO Publication, Rome, 308 p., (2004). 

Pike, I. Eco-efficiency in aquaculture: global catch of wild fish used in aquaculture. 

International Aquafeed, 8: 38-40 (2005). 

Robin, J., C. Regost, J. Arzel, and S. Kaushik. Fatty acid profile of fish following a change in 

dietary fatty acid source: model of fatty acid composition with a dilution hypothesis. 

Aquaculture, 225: 283-293 (2003). 

Rønnestad, I., and H. J. Fyhn. Metabolic aspects of free amino acids in developing marine 

fish eggs and larvae. Rev. Fish. Sci., 1: 239-259 (1993).  

Rønnestad, I., Y. Kamisaka, L. E. C. Conceição, S. Morais, and S. K. Tonheim. Digestive 

physiology of marine fish larvae: Hormonal control and processing capacity for 

proteins, peptides and amino acids. Aquaculture, 268: 82-97 (2007). 

Rust, M.B. Nutritional Physiology, pp. 367-452. In: Fish Nutrition 3rd Edition. (Halver J. E. 

and R.W. Hardy, Eds.), Academic Press, San Diego, (2002). 

Sara, G., and R. Sara. Feeding habits and trophic levels of bluefin tuna Thunnus thynnus of 

different size classes in the Mediterranean sea. J. Appl. Ichthyol., 23: 122-127 (2007). 



 55 

Saito, H., K. Ishihara, and T. Murase. Effect of prey lipids on the docosahexaenoic acid 

content of total fatty acids in the lipids of Thunnus albacares yellowfin tuna. Biosci. 

Biotechnol. Biochem., 60: 962-965 (1996). 

Sargent, J.R., J. G. Bell, M. V. Bell, R. J. Henderson, and D. R. Tocher. The metabolism of 

phospholipids and polyunsaturated fatty acids in fish, pp. 103-124. In: Aquaculture: 

Fundamental and Applied Research. (Lahlou, B. and P. Vitiello, Eds.), Coastal and 

Estuarine Studies, 43, American Geophysical Union, Washington, D.C, (1993). 

Sargent, J. R., J. G. Bell, R. J. Henderson, and D. R. Tocher. Requirement criteria for 

essential fatty acids. J. Appl. Ichthyol., 11: 183-198 (1995). 

Sargent, J.R., and A. Tacon. Development of farmed fish: a nutritionally necessary alternative 

to meat. Proc. Nutr. Soc., 58: 377-383 (1999). 

Sargent, J. R., D. R. Tocher, and J. G. Bell. The Lipids, pp. 181-257. In: Fish Nutrition 3rd 

Edition. (Halver J. E. and R.W. Hardy, Eds.), Academic Press, San Diego, (2002). 

Sawada, T., T. Okada, S. Miyashita, O. Murata, and H. Kumai. Completion of the Pacific 

bluefin tuna Thunnus orientalis (Temminck et Schlegel) life cycle. Aquacult. Res., 36: 

413-421 (2005). 

Sawada, T., K. Takahashi, and M. Hatano. Triglyceride composition of tuna and bonito 

orbital fats. Nippon Suisan Gakkaishi, 59: 285-290 (1993). 

Seoka, M., M. Kurata, and H. Kumai. Effect of docosahexaenoic acid enrichment in Artemia 

on growth of Pacific bluefin tuna Thunnus orientalis larvae Aquaculture, 270, 193-199 

(2007). 

Seoka, M., M. Kurata, R. Tamagawa, A. K. Biswas, B. K. Biswas, A. S. K. Yong, Y. Kim, S. 

Ji, K. Takii, and H. Kumai. Dietary supplementation of salmon roe phospholipid 

enhances the growth and survival of Pacific bluefin tuna Thunnus orientalis larvae and 

juveniles. Aquaculture, 275:, 225-234 (2008). 



 56 

Sinopoli, M., C. Pipitone, S. Campagnuolo, D. Campo, L. Castriota, E. Mostarda, and F. 

Andaloro. Diet of young-of-the-year bluefin tuna, Thunnus thynnus (Linnaeus, 1758), in 

the southern Tyrrenian (Mediterranean) Sea. J. Appl. Ichthyol., 20: 310-313 (2004). 

Smart, A. Feed intake and growth of sea caged southern bluefin tuna Thunnus maccoyii 

(Castlenau). Tuna Farming Research Office, South Australian Research and 

Development Institute and Tuna Boat Owners Association of Australia (1995). 

Smart, A. Feed intake and growth of sea-caged, southern bluefin tuna Thunnus 

maccoyii_Castelnau., fed manufactured diets. Master of Applied Science dissertation, 

University of Tasmania, Launceston (National Key Centre for Aquaculture) 23 pp. 

(1996). 

Smart, A. Bluefin tuna aquaculture: Nutritional developments. International Aquafeed, 2: 27-

30 (1998). 

Smart, A., P. C. Sylvia, and S. Belle. Nutritional management and development of 

manufactured feeds for tuna aquaculture. Cahiers Options Méditerranéennes, 60: 187-

190 (2003). 

Tacon, A. G. J. Use of fish meal and fish oil in aquaculture: a global perspective. Aquatic 

Resources, Culture and Development, 1: 3-14 (2004). 

Takii, K., S. Miyashita, M. Seoka, Y. Tanaka, Y. Kubo, and H. Kumai. Changes in chemical 

contents and enzyme activities during embryonic development of bluefin tuna. Fish. 

Sci., 63, 1014-1018 (1997). 

Takii, K., H. Hosokawa, S. Shimeno, M. Ukawa, A. Kotani, and Y. Yamada. Anesthesia, 

fasting tolerance, and nutrient requierement of juvenile northern bluefin tuna. Fish. Sci., 

71: 499-503 (2005). 

Tanabe, T. Feeding habits of skipjack tuna Katsuwonus pelamis and other Thunnus spp. 

juveniles in the tropical western Pacific. Fisheries Sci., 67: 563-570 (2001). 



 57 

Tanaka, Y., K. Satoh, H. Yamada, T. Takebe, H. Nikaido, and S. Shiozawa. Assessment of 

the nutritional status of field-caught larval Pacific bluefin tuna by RNA/DNA ratio 

based on a starvation experiment of hatchery-reared fish. J. Exp. Mar. Biol. Ecol., 354: 

56-64 (2008). 

Tanji, M. Kageyama, T. and K. Takahashi. Tuna pepsinogens and pepsins, purification, 

characterization and amino terminal sequences. Eur. J. Biochem., 177: 251-259 (1988). 

Tanji, M., Yakabe, E., Kageyama, T. and K. Takahashi. The primary structure of the major 

pepsinogens from the gastric mucosa of tuna stomach. J. Biochem., 120: 647-656 

(1996). 

Tanji, M., Yakabe, E., Kubota, K., Kageyama, T., Ichinose, M., Miki, K., Ito, H. and K. 

Takahashi. Structural and phylogenetic comparison of three pepsinogens from Pacific 

bluefin tuna: molecular evolution of fish pepsinogens. Comp. Biochem. Physiol. B, 152: 

9-19 (2009). 

Thorpe, S., K. van Landeghem, L. Hogan, and P. Holland. Economic effects on Australian -

southern bluefin tuna farming of a quarantine ban on imported pilchards. ABARE 

Report to the Fisheries Resource Research Fund, Canberra, Australia (1997). 

Tičina, V., I. Katavić, and L. Grubišić. Growth indices of small northern bluefin tuna 

(Thunnus thynnus, L.) in growth-out rearing cages. Aquaculture, 269: 538-543 (2007). 

Tidwell, J.H., and G. L. Allan. Fish as food: aquaculture’s contribution. Ecological and 

economic impacts and contributions of fish farming and capture fisheries. World 

Aquaculture, 33: 44-48 (2002). 

Tocher, D. R. Metabolism and function of lipids and fatty acids in teleost fish. Review Fish. 

Sci., 11: 107-184 (2003). 

Torstensen, B.E., J. G. Bell, G. Rosenlund, R. J. Henderson, I. E. Graff, D. R. Tocher, Ø Lie, 

and J. R. Sargent. Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid 



 58 

composition and sensory quality by replacing fish oil with a vegetable oil blend. J. 

Agric. Fd. Chem., 53: 10166-10178 (2005). 

Torstensen, B. E., L. Frøyland, R. Ørnsrud, and Ø. Lie. Tailoring of a cardioprotective muscle 

fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils. Fd. Chem., 

87: 567-580 (2004). 

Uotani, I., K. Matsuzaki, Y. Makino, K. Noka, O. Inamura, and M. Horikawa.Food habits of 

larvae of tunas and their related species in the area northwest of Australia. Bull. Jap. 

Soc. Sci. Fish., 47: 1165-1172 (1981). 

Uotani, I., T. Saito, K. Hiranuma, and Y. Nishikawa. Feeding habit of bluefin tuna Thunnus 

thynnus larvae in the western North Pacific Ocean. Nippon Suisan Gakkaishi, 56: 713-

717 (1990). 

van Barneveld, R. J., A. Smart, S. M. Clarke, C. G. Carter, B. J. Davis, D. R. Tivey, and J. D. 

Brooker. Nutritional management of sea-caged southern bluefin tuna (Thunnus 

maccoyii). In: Recent Advances in Animal Nutrition in Australia ´97, pp. 88-97. 

(Corbett J. L., M. Choct, J. V. Nolan, and J. B. Rowe, Eds.), Department of Animal 

Science, University of New England, Armidale, Australia, (1997).  

van der Meeren, T., R. E. Olsen, K. Hamre, and H. J. Fyhn. Biochemical composition of 

copepods for evaluation of fedd quality in production of juvenile marine fish. 

Aquaculture, 274: 375-397 (2008). 

Vincent, P. L´élevage du thon rouge. Publ. CNEXO France Rapp. Sci. Tech., no. 47 : 71 

(1981). 

Volkoff, H., L. F. Canosa, S. Unniappan, J. M. Cerdá-Reverter, N. J. Bernier, S. P. Kelly, and 

R. E. Peter. Neuropeptides and the control of food intake in fish. Gen. Comp. 

Endocrinol., 142: 3-19 (2005). 



 59 

Ward, T.M., F. Hoetd, L. McLeay, W.F. Dimmlich, M. Kinloch, G. Jackson, R. McGarvey, 

P.J. Rogers, and K. Jones. Effects of the 1995 and 1998 mass mortality events on the 

spawning biomass of sardine, Sardinops sagax, in South Australian waters. ICES J. 

Mar. Sci., 58: 865-875 (2001). 

Watanabe, T. Strategies for further development for aquatic feeds. Fisheries Sci., 68: 

242-252 (2002). 

Watanabe, T., and R. Vassallo-Agius. Broodstock nutrition research on marine finfish 

in Japan. Aquaculture, 227: 35-61 (2003). 

Watanabe, T., V. Viyakarn, H. Kimura, K. Ogawa, N. Okamoto, and N. Iso. 

Utilization of soybean meal as a protein source in a newly developed soft-dry 

pellet for yellowtail. Nippon Suisan Gakkaishi, 58: 1761-1773 (1992). 

Wexler, J. B., V. P. Scholey, R. J. Olson, D. Margulies, A. Nakazawa, and J. M. Suter. Tank 

culture of yellowfin tuna, Thunnus albacares: developing a spawning population for 

research purposes. Aquaculture, 220: 327-353 (2003). 

Wilson, R. P. Amino Acids and Proteins, pp. 143-179. In: Fish Nutrition 3rd Edition. (Halver 

J. E. and R.W. Hardy, Eds.), Academic Press, San Diego, (2002). 

Worm, B., E. B. Barbier, N. Beaumont, J. E. Duffy, C. Folke, B. S. Halpern, J. B. C. 

Jackson, H. K. Lotze, F. Micheli, S. R. Palumbi, E. Sala, K. A. Selkoe, J. J. 

Stachowicz, and R. Watson. Impacts of Biodiversity Loss on Ocean Ecosystem 

Services. Science, 314: 787-790 (2006). 

Young, J.W., and T. L. O. Davis. Feeding ecology of larvae of southern bluefin, albacore, and 

skipjack tunas (Pisces: Scombridae) in the eastern Indian Ocean. Mar. Ecol. Prog. Ser., 

61: 17-29 (1990). 

Young, J. W., T. D. Lamb, D. L. Russel, R. W. Bradford, and A. W. Whitelaw. 

Feeding ecology and interannual variation in diet of southern bluefin tuna, 



 60 

Thunnus maccoyii, in relation to coastal and oceanic waters off eastern 

Tasmania, Australia. Environ. Biol. Fish., 50: 275-291 (1997). 

 


