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Abstract 

    The aim of the present study was to determine the effects of conjugated linoleic acid (CLA) and 

tetradecylthioacetic acid (TTA) on growth performance, and lipid and fatty acid metabolism in Atlantic 

cod. The overall objective being to test the hypotheses that CLA and TTA have beneficial effects in 

cod culture including decreased liver size and proportion through decreased lipid content, and increased 

nutritional quality through effects on fatty acid compositions including accumulation of bioactive fatty 

acids, CLA and TTA, in flesh.  Juvenile cod were fed for three months on fish meal and fish oil diets of 

basically commercial formulation, but containing either 0.5% or 1% CLA, or 0.5% TTA.   The effects 

of the functional fatty acids on growth, feed efficiency, body proximate composition, liver weight and 

lipid composition, fatty acid compositions of flesh and liver, and key enzymes of fatty acid oxidation 

were determined. Dietary CLA and TTA had no effect on growth parameters in cod juveniles, but 

viscero- and hepato-somatic indices were increased in fish fed 0.5% CLA and TTA, respectively. 

Proximate composition of whole fish was not affected by CLA or TTA, and there were no major effects 

of either functional fatty acid on lipid contents and compositions of liver and flesh. Dietary CLA and 

TTA were both incorporated into tissue lipids, with CLA deposited to a greater extent in liver, whereas 

TTA was deposited to a greater extent in flesh.  In liver, acyl CoA oxidase (ACO) activity, but not 

carnitine palmitoyltransferase-I (CPT-I), was increased by CLA, whereas dietary TTA increased both 

ACO and CPT-I activities.   In contrast, ACO activity was reduced by both CLA and TTA in red and 

white muscle, whereas CPT-I activity was generally not affected by CLA and TTA in either muscle 

tissue. Therefore, the results only partially supported the hypotheses tested, as CLA and TTA had few 

beneficial effects in Atlantic cod and did not enhance growth parameters, or improve feed conversion 

or potential yield through decreased adiposity or liver lipid deposition.  However, nutritional quality 

could be enhanced, and cod fed CLA and/or TTA could be beneficial in the human diet, through 

provision of bioactive fatty acids with no detrimental effects on n-3 PUFA levels.  
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1. Introduction 

 

    Aquaculture is the fastest growing animal-based agricultural food production sector, expanding at 

more than 9% per year, and currently contributes over one third of all the fish in the human food basket 

(Tacon, 2003).   Farming of finfish in seawater is dominated by Atlantic salmon (Salmo salar L.), but 

other marine species are becoming increasingly important, including warmer water species such as 

gilthead sea bream (Sparus aurata), European sea bass (Dicentrarchus labrax) and turbot (Psetta 

maximus) and, in colder waters, halibut (Hippoglossus hippoglossus).  Recently, declining catches and 

high market prices have seen Atlantic cod (Gadus morhua L.) emerge as the most promising species 

for culture in the northern Atlantic area (Brown and Puvanendran, 2002; Brown et al., 2003) with 

production expanding in Norway and Scotland.  A major factor influencing the commercial success of 

cod culture will be the development of diets and feeding strategies to maximise growth and feed 

conversion efficiencies (Morais et al., 2001; Lall and Nanton 2002; Hemre et al., 2003, 2004; 

Rosenlund et al., 2004).  One major issue pertaining to this is that cod store lipid in the liver and, in 

early studies, farmed fish were reported to have enlarged livers and display a hepato-somatic index 

(HSI) of over 12% compared to values of 2-6% in wild fish (Jobling, 1988).  In early feeding trials with 

captive cod, the HSI increased from 9.5% to an average of 13%, and liver fat increased from around 

55% to 67-70% in cod fed various dietary oils (Lie et al., 1986). Further studies have consistently 

shown that farmed cod have high liver lipid levels that can exceed 70% of wet weight, and have higher 

HSI and condition factor (K) than their wild counterparts (Dos Santos et al., 1993; Shahidi and 

Dunajski, 1994; Grant et al., 1998; Gildberg, 2004).   Dietary formulations in aquaculture have tended 

to exhibit an upward trend in dietary lipid as this has successfully increased weight gains, but several 

studies have shown that a potential detrimental side-effect of high fat diets is the deposition of excess 

lipid in tissues (Sargent et al., 2002; Tocher, 2003).  This may exacerbate the enlarged fatty liver 
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problem in farmed cod and so it is important to gain a clearer understanding of the mechanisms 

determining lipid and fatty acid homeostasis and deposition. 

        Conjugated linoleic acid (CLA) describes a group of geometric and positional conjugated isomers 

of linoleic acid (18:2n-6) that are found in dairy products and meat, with the two main naturally 

occurring isomers being cis-9,trans-11 and trans-10,cis-12 (Pariza et al., 2001).  There is increasing 

evidence that dietary CLA decreases body fat and increases lean body mass (Thiel-Cooper et al., 2001; 

Tischendorf et al., 2002; Yamasaki et al., 2003), and thus attenuates obesity in several animal models 

(Delany and West, 2000; Wang and Jones, 2004). Proposed anti-obesity mechanisms of CLA include 

decreased energy/food intake and increased energy expenditure (Ohnuki et al., 2001; Terpstra et al., 

2002), decreased preadipocyte differentiation and proliferation (Evans et al., 2000), decreased 

lipogenesis (Brown et al., 2001; Oku et al., 2003), and increased lipolysis and fatty acid oxidation 

(Evans et al., 2002). Thus, dietary CLA could be beneficial to cod culture if these effects on body 

composition and lipid metabolism could be reproduced in farmed fish. 

     Other bioactive fatty acids include the sulfur-substituted analogs such as the 3-thia fatty acid 

tetradecylthioacetic acid [CH3-(CH2)13-S-CH2-CO2H; TTA] (Berge et al., 1989).   TTA cannot be β-

oxidized due to the position of the sulfur in the carbon chain and thus it is metabolized in mammals via 

ω-hydroxylation in the endoplasmic reticulum followed by peroxisomal oxidation from the ω-end 

producing short chain sulfoxy dicarboxylic acids (Skrede et al., 1997). In mammals, TTA increases 

both liver and muscle mitochondrial and peroxisomal fatty acid oxidation, decreases plasma lipids and 

adipose tissue mass, and increases free fatty acid transport from peripheral tissues to liver (Berge et al., 

2002). Therefore, TTA is another fatty acid analog that could have effects on lipid and fatty acid 

metabolism in Atlantic cod that may be beneficial in a farming context.  

          The aims of the present study were to determine the effects of CLA and TTA on growth 

performance, lipid content, composition and metabolism in Atlantic cod. The overall objective being to 
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test the hypotheses that CLA and TTA have beneficial effects in cod culture including decreased liver 

size and proportion through decreased lipid content, and increased nutritional quality through effects on 

fatty acid compositions including accumulation of bioactive fatty acids, CLA and TTA, in flesh.  

Juvenile cod were fed for three months on fish meal and fish oil diets of basically commercial 

formulation, but containing either 0.5% or 1% CLA, or 0.5% TTA.   The effects of the functional fatty 

acids on growth, feed efficiency, body proximate composition, liver weight and lipid composition, fatty 

acid compositions of flesh and liver, and key enzymes of fatty acid oxidation were determined.   

 

2. Materials and methods 

 

2.1. Diets and Animals 

   The dietary trial was performed at Viking Fish Farms, Ardtoe Marine Laboratory, Ardnamurchan, 

Scotland, between October 2005 and January 2006.  Hatchery reared Atlantic cod of the 2004 year 

class were randomly distributed between twelve indoor, round tanks of 1.5m3 volume (1.72m 

diameter). The initial stocking density was 50 fish of average fish weight 127 ± 15g per tank (5.8 

kg/m3), with 25 fish per tank individually PIT tagged (Passive Induced Transponder, Fish Eagle, 

Gloucestershire, England) prior to stocking.  Water temperature was maintained at 12 oC (±1 oC) 

throughout the trial, with a light regime of 12L:12D.  Four experimental diets were fed to triplicate 

tanks for three months, with feed supplied to appetite manually in one morning feed over a period of 

one hour. Waste feed pellets were collected and counted one hour later. The experimental diets were 

formulated to satisfy the nutritional requirements of marine fish (National Research Council 1993), and 

were formulated and manufactured by BioMar A/S, Brande, Denmark (Table 1).  Isonitrogenous diets 

were based on fish meal and standard Northern hemisphere fish oil with CLA and TTA replacing some 

of the fish oil to produced diets containing 0, 0.5 and 1% CLA, and 0.5% TTA (as percentage of total 
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diet). Diets were identical in formulation other than fatty acid composition with CLA (LUTA-CLATM 

60, containing 60% CLA methyl esters as a 50:50 mixture of c9, t11 and t10, c12 isomers; BASF AG, 

Ludwigshafen, Germany) and TTA (supplied by Dr Rolf Berge, Thia Medica A.S., Bergen, Norway) 

balanced by fish oil (capelin oil, Norsemeal Ltd., London, UK). The fatty acid compositions of the 

diets are presented in Table 2. 

 

2.2. Sampling protocols  

 

   At the initiation and termination of the trial, all the fish in each tank were anaesthetized with 

Metomidate (50 mg/L), identified by PIT tag if present, and individually weighed and fork length 

recorded.  At the end of the trial, 9 fish per tank (27 per dietary treatment) were killed by percussion 

stunning then sampled for compositional analyses, with 3 whole fish/tank frozen immediately at -20 oC 

for whole body compositional (proximate) analyses. The remaining sample fish were eviscerated and 

used for biometric determinations (hepato-, and viscero-somatic indices) and for tissue lipid analyses.  

White (fast) and red (slow) muscle samples were excised from the epaxial myotomes anterior to the 

first dorsal fin ray (Flesh Quality Cut) and livers were taken from six fish, pooled in two samples of 3 

fish each, and frozen immediately in liquid nitrogen (livers) or dry ice (flesh).  All samples were 

subsequently stored at –80 oC prior to analyses.   

 

2.3. Proximate analyses 

 

   Moisture content of whole fish was determined after drying in an oven at 80 0C for a minimum of 72 

h.  The dried fish samples were then rigorously blended into a homogeneous crumble/meal and used for 

determination of whole body lipid, protein and ash contents.  Lipid content in 1 g samples of dried fish 
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crumb was determined using the Soxhlet method with extraction in petroleum ether at 120 oC (Avanti 

Soxtec 2050 Auto Extraction apparatus; Foss, Warrington, UK).  Protein content (N x 6.25) was 

determined in the fish crumble using the automated Kjeldahl method (Tecator Kjeltec Auto 1030 

Analyser; Foss, Warrington, UK). Ash contents were determined after heating portions of the fish 

crumble at 160 oC for 48 h. 

 

2.4. Lipid analyses  

 

     Liver and skinned and deboned flesh samples, each consisting of three fish, were homogenized into 

pooled “pates”. Total lipid was extracted from diets or 1g portions of tissue pates by homogenizing in 

20 volumes of chloroform/methanol (2:1, v/v) in an Ultra-Turrax tissue disrupter (Fisher Scientific, 

Loughborough, U.K.). Total lipid was prepared according to the method of Folch et al. (1957) and lipid 

content determined gravimetrically as described previously (Kennedy et al., 2005).  Tissue lipid class 

compositions were determined by single-dimension double-development high-performance thin-layer 

chromatography (HPTLC) and densitometry using a Camag 3 TLC Scanner (Camag, Muttenz, 

Switzerland) and winCATS software as described in Kennedy et al. (2005). Fatty acid methyl esters 

(FAME) from diets and tissue total lipid were prepared by acid-catalyzed transesterification of total 

lipid similar to the method of Christie (1982) except that the reaction was performed at 80 oC for 3 h. 

Extraction and purification of FAME was performed as described by Tocher and Harvie (1988). FAME 

were separated and quantified by gas-liquid chromatography (Carlo Erba Vega 8160, Milan, Italy) 

using a 30m x 0.32 mm i.d. capillary column (CP Wax 52CB, Chrompak, London, U.K.) and on-

column injection. Hydrogen was used as carrier gas and temperature programming was from 50oC to 

150oC at 40oC min-1 and then to 230oC at 2.0oC min-1.  Methyl esters were identified and quantified as 

described previously (Kennedy et al., 2005). 
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 2.5. Assay of carnitine palmitoyl acyltransferase I (CPT-I) and  acylCoA oxidase (ACO) 

 

   Liver, red and white muscle were weighed, diced and homogenized to 20% (w/v) in 0.25 M sucrose 

in 10 mM N-2-hydroxyethylpiperazine-N´-2-ethanesulfonic acid (HEPES) buffer and 1 mM EDTA, pH 

7.4. The homogenates were centrifuged at 1880 x g for 10 min at 4˚C, the floating fat layer aspirated 

and the post-nuclear fractions collected, 100 µl taken for protein determination according to Lowry et 

al. (1957) after incubation with 0.45 ml of 0.25% (w/v) SDS/1M NaOH for 45 min at 60oC, and 

portions used immediately for determination of enzyme activities. CPT-I activity was estimated by 

determining the production of palmitoyl[3H]carnitine from palmitoyl CoA and [3H]carnitine essentially 

as described by Saggerson and Carpenter (1986).  ACO activity was measured by a spectrophotometric 

assay based on the determination of hydrogen peroxide production coupled to the oxidation of leuco-

dichlorofluorescein (DCF) in a reaction catalysed by exogenous peroxidase (Small et al., 1985).  

2.6. Materials 

 

    [Methyl-3H] L-carnitine hydrochloride (60-86 Ci/mmol) was obtained from GE Healthcare Bio-

Sciences (Little Chalfont, Bucks, U.K.). Aminotriazole, BHT, carnitine, dichlorofluorescein diacetate, 

dimethylformamide, dithiothreitol, EDTA, FAF-BSA, horseradish peroxidase, leuco-DCF, N-

acetylcysteine, NADP, palmitoyl-CoA and triton X-100 were obtained from Sigma Chemical Co. 

(Poole, U.K.). TLC (20 cm x 20 cm x 0.25 mm) and HPTLC (10 cm x 10 cm x 0.15 mm) plates, 

precoated with silica gel 60 (without fluorescent indicator) were obtained from Merck (Darmstadt, 

Germany).  All solvents were HPLC grade and were obtained from Fisher Scientific UK, 

Loughborough, England. 
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2.7. Statistical analysis 

 

         All data are presented as means ± SD (n value as stated). Percentage data and data which were 

identified as non-homogeneous (Bartlett’s test) were subjected to arcsine transformation before 

analysis.  The effects of dietary CLA and TTA were determined by one-way analysis of variance 

(ANOVA) with Tukey’s post-tests to determine significance of differences due to functional fatty 

acids. Differences were regarded as significant when P < 0.05 (Zar, 1984). 

 

3. Results  

 

3.1. Diet compositions 

 

   The control fish oil diet contained 41% total polyunsaturated fatty acids (PUFA), including 14% 

eicosapentaenoic acid (20:5n-3; EPA), 13% docosahexaenoic acid (22:6n-3; DHA) and almost 6% 

18:2n-6, 32% total saturates, mainly 16:0, and 27% total monoenes, mainly 18:1n-9 and 16:1n-7 (Table 

2).  Inclusion of CLA in the diets resulted in levels of total CLA of 3.5% and 6.3% of total fatty acids 

at the 0.5 and 1% inclusion levels, respectively.  CLA inclusion resulted in lower levels of 14:0, 16:0, 

EPA and DHA, but 18:1n-9 and 18:2n-6 (the other main components of the CLA mixture) increased 

(Table 2).  Inclusion of 0.5% TTA resulted in TTA at a level of 2.8% of total fatty acids in the diet, and 

lower levels of 14:0 and 18:0.  

 

3.2. Growth, biometry and whole body proximate compositions 
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Growth of the cod was unaffected by either CLA or TTA with neither having any significant effect on 

final weight, SGR or thermal growth coefficient (TGC) (Table 3). Viscero-somatic index (VSI) was 

lower in fish fed 0.5% CLA, and HSI was lower in fish fed TTA with condition factor slightly lower in 

fish fed these diets compared to fish fed fish oil.  There were slight effects on feed efficiency (FCR) 

and gutted weight that were unlikely to be commercially important. Neither dietary CLA nor TTA had 

any effect on the proximate compositions of whole fish (Table 4).  

 

3.3. Lipid contents and class compositions of liver and flesh 

 

     The lipid content of the livers, which varied between 50 and 55% of the wet weight, was not 

strongly affected by dietary CLA or TTA (Table 5). Neutral lipids accounted for around 97% of liver 

total lipid with triacylglycerol (TAG) accounting for between 91 and 93%, and these components were 

slightly lower in fish fed the diet containing 1% CLA.  TTA had no significant effect on liver neutral 

lipid or TAG levels.  Dietary CLA and TTA had no effect on flesh lipid contents, which were constant 

at 0.8% of wet weight (Table 5).  Polar lipids, mainly phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE), predominated in flesh accounting for 57 to 61% of total lipid, with 

neutral lipids, mainly cholesterol and free fatty acid (FFA), accounting for 39 to 43%.  FFA and steryl 

esters were highest in fish fed 0.5% CLA, whereas flesh TAG was slightly, but significantly, higher in 

fish fed TTA (Table 5). 

 

3.4. Fatty acid compositions of liver and flesh 

 

    Dietary CLA and TTA were both incorporated into tissue lipids, but it was noteworthy that CLA was 

deposited to a greater extent in liver lipids (Table 6), whereas TTA was deposited to a greater extent in 
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flesh (Table 7). Thus, CLA accounted for 1.5 and 2.9% of total fatty acids in livers of fish fed 0.5 and 

1% CLA, respectively, whereas TTA accounted for 0.6% of liver fatty acids in fish fed 0.5% TTA 

(Table 6).  In contrast, TTA accounted for 1.6% of flesh fatty acids in TTA-fed fish, compared to 0.8 

and 1.9% CLA in fish fed the lower and higher CLA, respectively (Table 7).  Dietary CLA had no 

significant effect on the proportions n-3 or n-6 PUFA in either liver or flesh, but in fish fed TTA there 

were decreased percentages of monoenes, n-6 PUFA and EPA, but an increased proportion of DHA in 

the flesh (Tables 6 and 7).  Dietary CLA resulted in increased percentages of 18:0 and decreased 

percentages of 18:1n-9 and total monoenes in both tissues, but especially liver. 

 

3.5. Carnitine palmitoyltransferase I (CPT-I) and acylCoA oxidase (ACO) activities in liver, red and 

white muscle  

 

   There was a trend for CPT-I activity in liver to be increased by dietary CLA and TTA, although it 

was only significant in the case of TTA (Fig.1).  In red muscle, a dietary level of 1% CLA resulted in 

increased CPT-1 activity, but 0.5% dietary CLA or TTA had no effect.  In contrast, CPT-1 activity in 

white muscle was not affected by any dietary treatment.  ACO activity in liver was significantly 

increased by both dietary CLA and TTA (Fig.2).  Conversely, ACO activity in both red and white 

muscle was decreased by CLA and TTA, with the effects being significant for CLA in red muscle and 

TTA in white muscle.  

 

4. Discussion 

 

    Feeding CLA reduced liver TAG levels in rats (Rahman et al., 2002), and so the primary hypothesis 

we aimed to test in the present trial was that dietary CLA or TTA could have beneficial effects on lipid 
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metabolism in Atlantic cod, specifically that they could lower liver lipid levels, and liver size.  The 

results show clearly that the hypothesis was not proved and that neither of these bioactive fatty acids 

had a major effect on liver lipid content or relative liver size as determined by HSI in cod.  TTA did 

induce a statistically significant decrease in HSI compared to control fish fed FO alone or fish fed 

CLA, but the index was still over 10%, and there was no difference in liver lipid content.   In contrast, 

TTA fed to Atlantic salmon smolts at 0.6% of the diet resulted in a slight, but significant, increase in 

HSI and higher liver lipid content, although the latter was not significant (Moya-Falcon et al., 2004). In 

the present trial, CLA at 0.5% inclusion resulted in a higher HSI in the cod, and increased HSI in 

response to feeding CLA had been previously reported in hybrid striped bass (Morone saxatilis x M. 

chrysops) (Twibell et al., 2000), yellow perch (Perca flavescens) (Twibell et al., 2001) and tilapia 

(Oreochromis niloticus) (Yasmin et al., 2004).  Perhaps surprisingly, liver lipid content was reduced by 

CLA in striped bass and yellow perch despite the increased HSI (Twibell et al., 2000, 2001). In 

Atlantic salmon smolts there were trends of increasing HSI and liver lipid in fish fed CLA at 1 and 2% 

of the diet, although the data were not statistically significant (Kennedy et al., 2005).  In contrast, CLA 

at up to 1% had no effect on HSI or liver lipid content in juvenile channel catfish (Ictalurus punctatus) 

(Twibell et al., 2003), and HSI was unaffected by dietary CLA at up to 2% in rainbow trout juveniles 

(Figueirdo-Silva et al., 2005).  

       Dietary CLA can have beneficial effects on body composition in mammals, with decreased body 

fat and increased lean body mass being reported in mice, rats and pigs (Wang and Jones, 2004).   

However, in the present trial with cod, neither CLA nor TTA had any effect on proximate composition 

of whole fish.   Whole body proximate composition was also unaffected by dietary CLA in salmon fry 

and smolts (Berge et al., 2004; Kennedy et al., 2005), and rainbow trout juveniles (Figueirdo-Silva et 

al., 2005). Similarly, dietary CLA had no effect on carcass lipid or intraperitoneal fat in catfish 

(Twibell and Wilson, 2003), or on tissue lipid contents in tilapia (Yasmin et al., 2004). Furthermore, 
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VSI was unaffected by dietary CLA up to 2% in both Atlantic salmon smolts (Kennedy et al., 2005) 

and rainbow trout (Figueirdo-Silva et al., 2005). However, intraperitoneal fat was decreased by dietary 

CLA in hybrid striped bass (Twibell et al., 2000) and, in the present trial, visceral fat may have been 

reduced in cod fed 0.5% CLA as VSI was lower in this group along with higher HSI, which may 

suggest some redistribution of fat. However, fat redistribution has not been apparent in other trials with 

fish. 

       Studies have suggested that CLA increased fatty acid oxidation in mouse liver  (Degrace et al., 

2004) and a variety of tissues in rats (Rahman et al., 2001) via an increase in CPT-I activity.  The 

present study showed that CPT-I activity in cod liver was not increased by dietary CLA, suggesting 

that mitochondrial β-oxidation would not be increased.  Measuring this parameter would require fresh 

tissue but, unfortunately, assays using radioactive isotopes were not possible at the commercial farm 

site. In contrast, ACO in liver was significantly increased by dietary CLA in cod, suggesting that 

dietary CLA may have a greater effect on peroxisomal rather than mitochondrial fatty acid oxidation in 

cod liver.  Interestingly, fatty acid β-oxidation activity was recently measured in a related gadoid, 

haddock Melanogrammus aeglefinus L., and it was shown that peroxisomal β-oxidation predominates 

over mitochondrial β-oxidation in liver (Nanton et al., 2003).  Similarly, fatty acid oxidation in Atlantic 

salmon liver is principally due to peroxisomal, rather than mitochondrial, β-oxidation (Frøyland et al., 

2000). In contrast, both CPT-I and ACO were significantly increased by dietary TTA in liver, which 

suggests that TTA could increase fatty acid oxidation in cod liver. Previously, TTA was shown to 

increase β-oxidation capacity in both homogenates and the mitochondrial fraction of liver in salmon 

(Vegusdal et al., 2005).  In contrast to liver, ACO activity was generally decreased by both CLA and 

TTA in the muscle tissues. Although this could indicate lower peroxisomal fatty acid oxidation, it is 

unlikely to have a physiologically significant effect as fatty acid oxidation activity in both red and 

white muscle of gadoids is predominantly mitochondrial rather than peroxisomal (Nanton et al., 2003).  
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However, it does not appear that dietary CLA or TTA have any significant effect on mitochondrial 

fatty acid oxidation in cod muscle tissues as, other than slightly increased CPT-I activity in red muscle 

of fish fed 1% CLA, CPT-I activity was not affected by dietary TTA or the lower level of CLA. In 

Atlantic salmon, fatty acid oxidation capacity was not affected by dietary CLA in either red or white 

muscle (Kennedy et al., 2006).  

     A further aim of the present trial was to determine if dietary CLA or TTA had beneficial effects on 

fatty acid compositions in Atlantic cod. This part of the study revealed a very interesting result with 

TTA accumulating in flesh to a greater extent than the equivalent dietary level of CLA and also to a 

greater extent than in liver.  In contrast, CLA was incorporated to a greater extent in liver lipids 

compared to flesh. TAG predominates in liver of cod whereas polar lipids predominate in flesh, and so 

these data suggest that TTA may be deposited to a greater extent in polar lipids (phospholipids) and 

CLA to a greater extent in TAG.  In Atlantic salmon fed TTA, flesh fatty acid compositions were not 

reported but, of the tissues investigated, the highest incorporation was found in gills with 

approximately equal percentages, 0.8% and 0.7% of total fatty acids in phospholipids and TAG, 

respectively, in fish fed TTA at 0.6% of total diet (Moya-Falcon et al., 2004). Furthermore, TTA in 

both heart and liver was only recovered in phospholipids and not TAG.  Thus it appears that bioactive 

fatty acids similar to, and including, TTA could be efficiently accumulated in ‘lean” fish such as cod 

with low flesh oil contents.  It remains to be established whether fatty acid analogues such as TTA are 

feasible or, indeed, appropriate as supplements for the human diet (Berge et al., 2002).  However, CLA 

may be better delivered to humans via oily fish with the level accumulating in salmon and trout fed 

CLA at 2% of diet reaching 7% in flesh (dietary lipid 16-17%), (Kennedy et al., 2005; Bandarra et al., 

2006), or 4% in flesh of salmon smolts (dietary lipid 34%) (Kennedy et al., 2005), and 7% in whole 

salmon fry fed 2% CLA (24% dietary lipid) (Berge et al., 2004).  Similarly, striped bass with high flesh 

lipid (>15%) accumulated CLA to over 7% of total fatty acids in fish fed CLA at 1% of diet, whereas 

the levels of CLA accumulated in yellow perch with only 3% lipid in the flesh were much lower 
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(Twibbell et al., 2000, 2001). Consistent with the above, the incorporation of CLA into neutral lipids 

was around 10-fold higher than incorporation into polar lipids in both muscle and liver in tilapia 

(Yasmin et al., 2004).  

      In mammals, CLA decreased the activity and gene expression of stearoyl coenzyme A desaturase 

(SCD) (Choi et al., 2001, 2002), and dietary CLA increased saturated fatty acids and decreased 18:1 

and monoenes in pig muscle and fat (Ramsay et al., 2001). In the present study, increased proportions 

of 18:0 and decreased 18:1n-9 were observed in flesh and, especially, liver of cod fed CLA suggesting 

inhibition of Δ9 desaturation. Increased 18:0 and decreased 18:1n-9 was previously reported in fatty 

acids of Atlantic salmon fry, and liver and flesh of smolts fed CLA suggesting that SCD activity was 

reduced (Berge et al., 2004: Kennedy et al., 2005).  Similarly, increasing levels of dietary CLA 

increased the proportions of 18:0 and decreased percentages of 18:1 in liver, muscle and viscera of 

rainbow trout juveniles (Bandarra et al., 2006), and in liver and muscle of striped bass and yellow perch 

(Twibell et al., 2000, 2001). 

       There is also evidence that CLA suppresses PUFA desaturases and elongase in cell systems 

(Chuang et al., 2001a,b; Eder et al., 2002), and CLA decreased C18 PUFA in pig muscle and fat 

(Ramsay et al., 2001), and DHA in chicken tissues (Yang et al., 2003).  Decreased tissue PUFA levels 

after feeding CLA has been reported in yellow perch and tilapia (Twibell et al., 2001; Yasmin et al., 

2004). In striped bass, CLA increased PUFA levels in liver but decreased PUFA in muscle (Twibell et 

al., 2000).  Dietary CLA increased total n-3PUFA, especially DHA, in salmon fry (Berge et al., 2004), 

but had no effect on PUFA levels in liver, and appeared to be deposited in flesh at the expense of EPA 

and DHA, in salmon smolts (Kennedy et al., 2005).   In the present study, CLA had no effect on PUFA 

levels in either liver or flesh of cod. This was perhaps not unexpected as the activity of the PUFA 

desaturation/elongation pathway is very low in cod (Bell et al., 2006).  In contrast, however, dietary 

TTA significantly increased the percentage of DHA, and decreased the proportions of EPA and total n-

6PUFA in flesh of cod.  This could be a result of increased conversion of EPA to DHA, but there is no 
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evidence from previous studies to support TTA having an effect on fatty acid desaturation or 

elongation (Berge et al., 2002).  Therefore, it may be more likely due to specificity of β-oxidation, with 

DHA being more resistant to oxidation than EPA (Tocher, 2003).   

      Although not consistently observed, some studies had suggested that CLA might enhance growth 

and feed efficiency in young rodents (Pariza et al., 2001).  Thus, a further aim of the present trial was to 

determine if dietary CLA or TTA had beneficial effects on growth parameters in Atlantic cod.   

However, neither CLA nor TTA had any effect on growth (SGR, TGC) or feed efficiency (FCR) in the 

present trial.  In recent studies on salmonids, no effects of dietary CLA on growth rates or FCR were 

observed in Atlantic salmon fry (Berge et al., 2004), or smolts (Kennedy et al., 2005), or in juvenile 

rainbow trout (Figuierdo-Silva et al., 2005) fed diets containing up to 2% CLA.  Similarly, no effects 

on weight gain or feed efficiency were noted in juvenile yellow perch or catfish fed diets containing up 

to 1% CLA (Twibell et al., 2001; Twibell and Wilson, 2003), or in juvenile tilapia fed CLA at up to 5% 

of diet (Yasmin et al., 2004).   However, growth of tilapia was inhibited by 10% CLA, as was growth 

of carp (Cyprinus carpio) and rockfish (Sebastes schlegeli) at both 5 and 10% CLA (Choi et al., 1999).  

Therefore, the data are consistent in suggesting that dietary CLA does not have any beneficial effects 

on growth performance in a variety of fish species, and can inhibit growth at high inclusion levels.  In 

contrast, in the only other study of dietary TTA in fish, growth was inhibited in salmon smolts as 

evidenced by decreased final weights, SGRs and TGCs, although FCR was unaffected (Moya-Falcon et 

al., 2004).   

 

5. Conclusion 

 

   The results of the present study only partially supported the hypotheses that were tested.  CLA and 

TTA at the levels used had few beneficial effects in Atlantic cod and did not enhance growth 

parameters, or improve feed conversion or potential yield through decreased adiposity or liver lipid 
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deposition.  However, nutritional quality could be enhanced, and cod fed CLA and/or TTA could be 

beneficial in the human diet, through provision of bioactive fatty acids with no detrimental effects on n-

3 PUFA levels. 
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Legends to Figures 

 

Fig. 1. Effects of conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) on carnitine 

palmitoyltransferase-I activities in tissue homogenates of liver, red and white muscle of cod. Results 

are presented relative to the activity in fish fed fish oil for each tissue and are means ± SD (n = 6).  

Different letters denote significant differences between dietary treatments within each tissue. CLA1 

and CLA2, fish fed 0.5% and 1% CLA, respectively; FO, fish fed fish oil alone; TTA, fish fed 0.5% 

TTA. 

 

Fig. 2. Effects of conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) on acylCoA 

oxidase activities in tissue homogenates of liver, red and white muscle of cod. Results are presented 

relative to the activity in fish fed fish oil for each tissue and are means ± SD (n = 6). Different letters 

denote significant differences between dietary treatments within each tissue. CLA1 and CLA2, fish fed 

0.5% and 1% CLA, respectively; FO, fish fed fish oil alone; TTA, fish fed 0.5% TTA. 
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Table 1  

Formulations (percentage of dry ingredients) and proximate

compositions (percentage of total diet) of the experimental diets

Fishmeal

Sunflower meal

Wheat gluten

Legume seeds

Micronutrients

Fish oil

CLA

TTA

Moisture 7.5 ± 0.1
ab

7.3 ± 0.3 b 8.0 ± 0.2 a 8.0 ± 0.2 a

Lipid 14.8 ± 0.3 15.4 ± 0.8 15.4 ± 0.7 15.4 ± 0.5

Protein 49.9 ± 0.4 50.2 ± 0.1 49.7 ± 0.4 49.5 ± 0.5

Ash 10.6 ± 0.0 ab 10.7 ± 0.1 a 10.5 ± 0.0 b 10.5 ± 0.0 b

Results for proximate compositions are means ± S.D. (n=3). Micronutrients, 

includes essential amino acids (methionine and lysine), vitamins and minerals, 

Biomar A/S, Brande, Denmark.

FO, control diet containing fish oil alone; CLA1 and CLA2, diets supplemented 

with 0.5 and 1% CLA; TTA, diet supplemented with 0.5% TTA. 
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Fatty acid compositions (percentage of weight) of experimental diets

containing conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA)

14:0 7.2 ± 0.1 a 6.8 ± 0.2 b 6.2 ± 0.1 c 6.2 ± 0.0 c

15:0 0.6 ± 0.0 0.5 ± 0.0 b 0.5 ± 0.0 b 0.5 ± 0.0 b

16:0 19.7 ± 0.2 a 18.9 ± 0.1 b 18.2 ± 0.0 c 18.7 ± 0.1 b

18:0 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0 3.9 ± 0.0

Total saturated1 31.8 ± 0.3 a 30.5 ± 0.3 b 29.1 ± 0.1 c 29.3 ± 0.1 c

16:1n-7 7.8 ± 0.1 a 7.4 ± 0.1 b 7.0 ± 0.2 c 7.4 ± 0.0 b

18:1n-9 9.9 ± 0.1 c 10.8 ± 0.0 b 11.8 ± 0.2 a 9.8 ± 0.1 c

18:1n-7 3.2 ± 0.0 a 3.1 ± 0.1 a 2.8 ± 0.0 b 3.1 ± 0.0 a

20:1n-9 2.3 ± 0.0 2.2 ± 0.0 2.3 ± 0.2 2.3 ± 0.0

22:1n-11 3.2 ± 0.0 a 3.1 ± 0.0 ab 3.0 ± 0.0 b 3.1 ± 0.0 a

24:1n-9 0.6 ± 0.0 0.5 ± 0.1 0.5 ± 0.0 0.5 ± 0.0

Total monoenes2 27.3 ± 0.2 a 27.4 ± 0.2 a 27.6 ± 0.1 a 26.5 ± 0.0 b

CLA (9c,11t) 0.0 ± 0.0 c 1.8 ± 0.1 b 3.2 ± 0.2 a 0.0 ± 0.0 c

CLA (10t,12c) 0.0 ± 0.0 c 1.7 ± 0.1 b 3.1 ± 0.2 a 0.0 ± 0.0 c

TTA 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0 b 2.8 ± 0.2 a

18:2n-6 5.7 ± 0.1 b 5.6 ± 0.0 b 5.9 ± 0.0 a 5.6 ± 0.1 b

20:4n-6 1.1 ± 0.0 a 1.0 ± 0.0 b 0.9 ± 0.0 b 1.1 ± 0.0 a

Total n-6 PUFA3 7.8 ± 0.0 a 7.6 ± 0.1 b 7.7 ± 0.1 ab 7.6 ± 0.1 b

18:3n-3 1.0 ± 0.0 a 1.0 ± 0.0 a 0.9 ± 0.0 b 1.1 ± 0.0 a

18:4n-3 2.5 ± 0.0 a 2.4 ± 0.0 b 2.2 ± 0.0 c 2.5 ± 0.0 a

20:4n-3 0.7 ± 0.0 0.7 ± 0.0 0.6 ± 0.0 0.7 ± 0.0

20:5n-3 14.0 ± 0.0 a 13.2 ± 0.2 b 12.3 ± 0.1 c 14.2 ± 0.1 a

22:5n-3 1.9 ± 0.5 1.5 ± 0.0 1.4 ± 0.0 1.7 ± 0.0

22:6n-3 12.8 ± 0.0 b 12.3 ± 0.1 c 11.9 ± 0.1 d 13.4 ± 0.1 a

Total n-3 PUFA4 33.1 ± 0.5 b 31.1 ± 0.3 c 29.3 ± 0.2 d 33.9 ± 0.2 a

Total PUFA 40.9 ± 0.4 a 38.7 ± 0.3 b 37.0 ± 0.3 c 41.5 ± 0.3 a

n-3/n-6 4.2 ± 0.1 b 4.1 ± 0.0 b 3.8 ± 0.0 c 4.5 ± 0.0 a

Values are means ± SD (n = 3). Superscript letters denote significant differences 

between diets as determined by ANOVA as described in the Materials and Methods.

1, includes 20:0, present in some samples at up to 0.3%; 

2, includes 120:1n-7 present in some samples at up to 0.3%;

3, includes 18:3n-6, 20:2n-6, 20:3n-6, 22:4n-6 and 22:5n-6 present at up 0.4%;

4, includes 20:3n-3 present at up to 0.1%; PUFA, polyunsaturated fatty acids. 

Table 2  

FO CLA1 CLA2 TTA
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Table 3

Growth and biometric parameters  for Atlantic cod (Gadus morhua) fed diets containing

conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) for three months

Initial weight (g)1 125 ± 14 b 130 ± 15 a 125 ± 15 b 127 ± 15 ab

Final weight (g)1 307 ± 50 305 ± 47 309 ± 57 303 ± 44

FCR2 0.80 ± 0.01 b 0.84 ± 0.02 a 0.80 ± 0.02 b 0.83 ± 0.00 ab

SGR2 1.03 ± 0.04 0.98 ± 0.05 1.04 ± 0.02 1.00 ± 0.02

TGC2 1.93 ± 0.08 1.84 ± 0.10 1.95 ± 0.04 1.87 ± 0.04

Gutted weight (%)3 81.5 ± 0.2 c 81.7 ± 0.3 bc 82.2 ± 0.4 a 81.8 ± 0.2 b

Condition factor (K)3 1.14 ± 0.04 a 1.12 ± 0.01 b 1.14 ± 0.03 a 1.12 ± 0.01 b

HSI3 11.0 ± 0.5 b 11.3 ± 0.1 a 10.9 ± 0.3 b 10.6 ± 0.1 c

VSI3 9.3 ± 1.2 a 8.0 ± 0.7 b 8.9 ± 0.2 a 8.8 ± 0.2 a

Mortality (n)

Data are presented as means ± SD, 1n = 146-150,  2n = 3,  3n = 27; 

Condition factor (K) = (wet weight in g) x 100)/(length in mm3) x 1000;

FCR, feed conversion ratio = feed consumed (kg )/ weight gain (kg); 

TGC, thermal growth coefficient = 100 x (final weight1/3 - initial weight1/3) / sum day-degrees;

HSI, Hepato-somatic index =100 x liver weight x body weight -1; 

SGR, specific growth rate (%/day) = 100 x [(Final Weight / Initial Weight)/Days -1]; 

VSI, Viscero-somatic index = 100 x viscera weight x body weight -1;  

Superscript letters denote significant effects of dietary treatment as determined by ANOVA 

as described in the Materials and Methods.

1 2 1 4

FO CLA1 CLA2 TTA
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Table  4 

Proximate composition of whole Atlantic cod (Gadus morhua)

Diet

Moisture 73.6 ± 0.6 73.3 ± 0.6 73.8 ± 0.6 73.9 ± 0.7

Protein 60.4 ± 1.4 59.7 ± 1.7 59.1 ± 1.7 60.6 ± 1.4

Lipid 26.2 ± 1.9 28.4 ± 2.2 27.9 ± 2.1 26.7 ± 1.8

Ash 9.6 ± 0.7 9.3 ± 0.5 9.5 ± 0.6 9.9 ± 0.4

Values are means ± SD of 9 fish. There were no significant differences

between dietary treatment as determined one-way ANOVA .

CLA, conjugated linoleic acid; TTA, tetrathioacetic acid.
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Table 5

Lipid content (percentage of wet weight) and class composition (percentage of

total lipid) of liver and flesh  of Atlantic cod (Gadus morhua) fed conjugated 

linoleic acid (CLA) and tetradecylthioacetic acid (TTA)

Lipid class

Liver

Lipid content 53.8 ± 2.6 ab 50.0 ± 2.1 b 55.2 ± 2.0 a 55.2 ± 2.0 a

PC 1.5 ± 0.2 b 1.8 ± 0.1 ab 2.0 ± 0.4 a 1.5 ± 0.1 b

PE 1.3 ± 0.1 b 1.3 ± 0.2 b 1.7 ± 0.3 a 0.9 ± 0.3 c

Total polar 2.8 ± 0.3 b 3.1 ± 0.3 ab 3.7 ± 0.7 a 2.4 ± 0.3 b

Total neutral 97.2 ± 0.3 a 96.9 ± 0.3 ab 96.3 ± 0.7 b 97.6 ± 0.3 a

Cholesterol 4.4 ± 0.6 ab 4.9 ± 1.4 ab 5.4 ± 0.3 a 3.9 ± 0.6 b

Triacylglycerol 92.7 ± 0.8 a 92.0 ± 1.6 ab 90.9 ± 0.8 b 93.6 ± 0.8 a

Free fatty acid

Steryl ester

Flesh

Lipid content 0.8 ± 0.0 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.0

PC 30.7 ± 1.8 a 27.9 ± 1.6 b 30.8 ± 1.5 a 28.7 ± 1.2 ab

PE 17.9 ± 1.2 a 15.6 ± 0.7 b 17.1 ± 0.6 a 17.6 ± 0.5 a

PS 2.5 ± 0.6 2.8 ± 0.4 2.7 ± 0.4 3.2 ± 0.5

PI 3.8 ± 0.6 4.1 ± 0.6 3.8 ± 0.7 4.3 ± 0.5

PG/CL 2.9 ± 0.7 b 2.8 ± 0.3 b 2.8 ± 0.4 b 3.7 ± 0.2 a

Sphingomyelin 1.5 ± 0.4 1.7 ± 0.3 1.6 ± 0.2 1.6 ± 0.6

Lyso-PC 1.8 ± 0.3 bc 2.2 ± 0.2 a 2.0 ± 0.2 ab 1.5 ± 0.2 c

Total polar 61.2 ± 2.1 a 57.2 ± 1.6 b 60.8 ± 1.2 a 60.5 ± 2.1 a

Total neutral 38.8 ± 2.1 b 42.8 ± 1.6 a 39.2 ± 1.3 b 39.5 ± 2.1 b

Cholesterol 16.1 ± 0.9 15.6 ± 0.3 15.2 ± 1.8 15.7 ± 0.4

Triacylglycerol 6.9 ± 1.2 b 6.3 ± 1.6 b 5.7 ± 1.1 b 9.2 ± 0.8 a

Free fatty acid 11.9 ± 1.2 b 15.1 ± 1.6 a 13.0 ± 1.7 ab 11.5 ± 1.4 b

Steryl ester 3.9 ± 0.4 b 5.9 ± 0.9 a 5.4 ± 0.4 a 3.2 ± 0.6 b

Values are means ± SD of 6 samples each of tissue pooled from 3 fish.  

tr tr tr tr

PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; 

PI, phosphatidylinositol; PS, phosphatidylserine; trace, < 0.5%. 

tr tr tr tr

Superscript letters denote significant differences between dietary treatments as  

determined by ANOVA  as described in the Materials and Methods. CL, cardiolipin; 

FO CLA2 TTACLA 1
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Fatty acid composition (percentage of weight) of total lipid from liver of

Atlantic cod (Gadus morhua) fed conjugated linoleic acid (CLA) and 

tetradecylthioacetic acid (TTA)

14:0 2.9 ± 0.3 b 3.4 ± 0.1 a 3.3 ± 0.2 a 2.8 ± 0.1 b

16:0 15.7 ± 0.5 a 15.6 ± 0.2 a 15.0 ± 0.7 ab 14.7 ± 0.6 b

18:0 5.6 ± 0.2 b 8.3 ± 0.5 a 8.7 ± 0.4 a 4.9 ± 0.2 c

Total saturated1 24.5 ± 0.7 b 27.7 ± 0.6 a 27.3 ± 1.0 22.6 ± 0.9 c

16:1n-7 6.6 ± 0.2 a 6.2 ± 0.1 b 5.9 ± 0.2 c 6.7 ± 0.2 a

18:1n-9 18.8 ± 0.6 a 15.7 ± 0.3 b 15.6 ± 0.3 b 19.6 ± 0.7 a

18:1n-7 5.3 ± 0.2 a 4.8 ± 0.2 b 4.8 ± 0.1 b 5.7 ± 0.4 a

20:1n-9 5.2 ± 0.1 5.1 ± 0.2 5.1 ± 0.3 5.1 ± 0.2

22:1n-11 3.3 ± 0.2 a 3.2 ± 0.1 ab 2.9 ± 0.3 b 3.3 ± 0.3 a

24:1n-9 0.3 ± 0.1 0.3 ± 0.0 0.3 ± 0.0 0.4 ± 0.1

Total monoenes2 40.0 ± 1.1 a 35.6 ± 0.6 b 34.9 ± 0.5 b 41.0 ± 1.1 a

CLA (9c,11t) 0.0 ± 0.0 c 0.9 ± 0.2 b 1.6 ± 0.5 a 0.0 ± 0.0 c

CLA (10t,12c) 0.0 ± 0.0 c 0.6 ± 0.1 b 1.3 ± 0.4 a 0.0 ± 0.0 c

TTA 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0 b 0.6 ± 0.1 a

18:2n-6 5.4 ± 0.1 5.5 ± 0.1 5.5 ± 0.0 5.5 ± 0.2

20:4n-6 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0

Total n-6 PUFA3 7.2 ± 0.2 7.2 ± 0.1 7.2 ± 0.0 7.0 ± 0.3

18:3n-3 1.0 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 1.0 ± 0.0

18:4n-3 2.0 ± 0.1 2.0 ± 0.1 1.9 ± 0.0 2.0 ± 0.1

20:4n-3 0.7 ± 0.0 0.7 ± 0.0 0.6 ± 0.0 0.7 ± 0.0

20:5n-3 11.5 ± 0.6 11.2 ± 0.2 11.2 ± 0.3 11.7 ± 0.5

22:5n-3 1.5 ± 0.1 1.5 ± 0.0 1.5 ± 0.0 1.5 ± 0.1

22:6n-3 11.5 ± 0.8 11.6 ± 0.3 11.5 ± 0.4 11.8 ± 0.7

Total n-3 PUFA4 28.3 ± 1.6 28.0 ± 0.6 27.6 ± 0.8 28.8 ± 1.4

Total PUFA 35.5 ± 1.7 35.2 ± 0.6 34.8 ± 0.8 35.9 ± 1.6

n-3/n-6 3.9 ± 0.2 3.9 ± 0.1 3.8 ± 0.1 4.1 ± 0.1

1, includes 15:0, present in some samples at up to 0.3%; 

2, includes 20:1n-7 present in some samples at up to 0.3%;

3, includes 18:3n-6, 20:2n-6, 20:3n-6, 22:4n-6 and 22:5n-6 present at up 0.3%;

4, includes 20:3n-3 present at up to 0.1%; PUFA, polyunsaturated fatty acids. 

Values are means ± SD of 6 samples each of tissue pooled from 3 fish. 

Superscript letters denote significant differences between dietary treatments as 

determined by ANOVA  as described in the Materials and Methods. 

Table 6
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Fatty acid composition (percentage of weight) of total lipid from flesh of

Atlantic cod (Gadus morhua) fed conjugated linoleic acid (CLA) and 

tetradecylthioacetic acid (TTA)

14:0 1.6 ± 0.2 a 1.3 ± 0.1 b 1.3 ± 0.1 b 1.0 ± 0.0 c

16:0 19.3 ± 0.8 ab 19.2 ± 0.8 ab 18.6 ± 0.5 b 20.1 ± 0.4 a

18:0 3.2 ± 0.1 b 4.0 ± 0.1 a 3.9 ± 0.2 a 3.4 ± 0.1 b

Total saturated1 24.4 ± 0.9 24.8 ± 0.8 24.2 ± 0.3 24.8 ± 0.5

16:1n-7 2.9 ± 0.3 a 2.6 ± 0.1 ab 2.4 ± 0.2 b 2.3 ± 0.2 b

18:1n-9 9.2 ± 0.1 a 8.8 ± 0.2 ab 8.5 ± 0.5 b 8.7 ± 0.4 ab

18:1n-7 2.9 ± 0.0 a 2.8 ± 0.1 ab 2.7 ± 0.1 b 2.7 ± 0.1 b

20:1n-9 1.0 ± 0.1 1.1 ± 0.2 1.0 ± 0.1 1.0 ± 0.2

22:1n-11 0.3 ± 0.0 0.3 ± 0.1 0.3 ± 0.0 0.3 ± 0.0

24:1n-9 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.1 0.4 ± 0.1

Total monoenes2 16.7 ± 0.4 a 15.9 ± 0.3 ab 15.2 ± 0.8 b 15.4 ± 0.6 b

CLA (9c,11t) 0.0 ± 0.0 c 0.3 ± 0.1 b 0.7 ± 0.0 a 0.0 ± 0.0 c

CLA (10t,12c) 0.0 ± 0.0 c 0.5 ± 0.1 b 1.2 ± 0.1 a 0.0 ± 0.0 c

TTA 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0 b 1.6 ± 0.3 a

18:2n-6 4.1 ± 0.1 4.0 ± 0.4 4.1 ± 0.3 3.9 ± 0.1

20:4n-6 1.9 ± 0.0 a 1.9 ± 0.1 a 1.9 ± 0.0 a 1.8 ± 0.0 b

22:5n-6 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0

Total n-6 PUFA3 7.1 ± 0.2 a 7.2 ± 0.3 a 7.0 ± 0.2 a 6.5 ± 0.1 b

18:3n-3 0.6 ± 0.0 a 0.6 ± 0.1 a 0.6 ± 0.0 a 0.5 ± 0.0 b

18:4n-3 0.9 ± 0.0 a 0.8 ± 0.1 ab 0.8 ± 0.1 ab 0.7 ± 0.0 b

20:4n-3 0.7 ± 0.0 0.7 ± 0.0 0.6 ± 0.0 0.7 ± 0.0

20:5n-3 18.6 ± 0.3 a 18.0 ± 0.9 a 18.2 ± 0.5 a 16.4 ± 0.2 b

22:5n-3 2.2 ± 0.0 a 2.2 ± 0.1 a 2.2 ± 0.0 a 2.1 ± 0.0 b

22:6n-3 28.6 ± 0.6 b 28.9 ± 0.8 b 29.4 ± 1.3 b 31.0 ± 0.7 a

Total n-3 PUFA4 51.7 ± 0.9 51.3 ± 0.5 51.7 ± 0.7 51.4 ± 0.8

Total PUFA 58.9 ± 0.9 58.5 ± 0.8 58.7 ± 0.5 58.3 ± 0.6

n-3/n-6 7.2 ± 0.2 b 7.1 ± 0.2 b 7.4 ± 0.3 b 7.8 ± 0.2 a

1, includes 15:0 and 20:0, present in some samples at up to 0.3%; 

2, includes 16:1n-9 and 20:1n-11 present in some samples at up to 0.1%;

3, includes 18:3n-6, 20:2n-6, 20:3n-6 and 22:4n-6 present in some samples at up 0.3%;

4, includes 20:3n-3 present at up to 0.1%; PUFA, polyunsaturated fatty acids. 

Values are means ± SD of 6 samples each of tissue pooled from 3 fish.

Superscript letters denote significant differences between dietary treatments as

determined by ANOVA  as described in the Materials and Methods.

Table 7 
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Fig.1
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Fig.2 

 

 

 

 

 

 


