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CL, cardiolipin; EFA, essential fatty acid; EFAD, essential fatty acid deficient; FBS, fetal bovine serum; GC, 

gas chromatography; HBSS, Hank’s balanced salt solution (without Ca2+ and Mg2+ ); HPTLC, high-

performance thin-layer chromatography; PA, phosphatidic acid; PBS, Dulbecco’s modification phosphate 

buffered saline (without Ca2+ and Mg2+); PC, phosphatidylcholine; PE,phosphatidylethanolamine; PI, 

phosphatidylinositol; PS, phosphatidylserine; PUFA, polyunsaturated fatty acid; TLC, thin-layer 

chromatography; TN, total neutral lipid; TP, total polar lipid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

The desaturation of [1-14C]18:3n-3 to 20:5n-3 and 22:6n-3 is enhanced in an essential fatty acid deficient cell 
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line (EPC-EFAD) in comparison with the parent cell line (EPC) from carp.  In the present study, the effects of 

competing, unlabeled C18 polyunsaturated fatty acids (PUFA), linoleic (18:2n-6), α-linolenic (18:3n-3), γ-

linolenic (18:3n-6) and stearidonic (18:4n-3) acids, on the metabolism of [1-14C]18:3n-3 were investigated in 

EPC-EFAD cells in comparison with EPC cells. The incorporation of [1-14C]18:3n-3 in both cell lines was 

significantly reduced by competing C18 PUFA, with the rank order being 18:4n-3 > 18:3n-3 = 18:2n-6 > 18:3n-

6.  In the absence of competing PUFA, radioactivity from [1-14C]18:3n-3 in EPC cells was predominantly 

recovered in phosphatidylethanolamine followed by phosphatidylcholine.  This pattern was unaffected by 

competing n-6PUFA, but n-3PUFA reversed this pattern as did essential fatty acid deficiency in the presence of 

all competing PUFA. The altered lipid class distribution was most pronounced in cells supplementedwith 

18:4n-3. Competing C18 PUFA significantly decreased the proportions of radioactivity recovered in 22:6n-3, 

pentaene and tetraene products, with the proportions of radioactivity recovered in 18:3n-3 and 20:3n-3 

increased, in both cell lines. However, the inhibitory effect of competing C18 PUFA on the desaturation of [1-
14C]18:3n-3 was significantly greater in EPC-EFAD cells. The magnitude of the inhibitory effects of C18 PUFA 

on [1-14C]18:3n-3 desaturation was dependent upon the specific fatty acid with the rank order being 18:4n-3 

>18:3n-3 >18:2n-6, with 18:3n-6 having little inhibitory effect on the metabolism of [1-14C]18:3n-3 in EPC 

cells.  The differential effects of the C18 PUFA on [1-14C]18:3n-3 metabolism were consistent with mass 

competition in combination with increased desaturation activity in EPC-EFAD cells and the known substrate 

fatty acid specificities of desaturase enzymes.  However, the mechanism underpinning the greater efficacy with 

which the unlabeled C18 PUFA competed with [1-14C]18:3n-3 in the desaturation pathway in EPC-EFAD cells 

was unclear.  

 

 

 

 

 

Introduction 

 

The essential fatty acid (EFA) requirement for freshwater fish can be met by the C18 polyunsaturated fatty acids 
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(PUFA), α-linolenic (18:3n-3) and/or linoleic (18:2n-6) acid at levels of approximately 1-2% of the diet 

(Sargent et al. 1995).  Specifically, in common carp (Cyprinus carpio), it was determined that 1.0% each of 

18:3n-3 and 18:2n-6 were required (Takeuchi and Watanabe 1977).   However, there is no evidence to support 

either of the C18 EFA having an essential role themselves in freshwater fish in a similar way that 18:2n-6 has in 

mammals as an essential component of the lipids providing the water barrier in skin (Hansen 1986).   The fact 

that in marine fish the EFA requirement can only be met by C20 and/or C22 highly unsaturated fatty acids 

(HUFA) and that the EFA requirement in rainbow trout can be supplied by n-3HUFA alone at lower levels than 

18:3n-3 indicate that HUFA (20:5n-3, 22:6n-3 and 20:4n-6)  have the essential roles in fish and that the role of 

C18 EFAs is solely as the metabolic precursors of HUFA (Sargent et al. 1995). 

      Cultured cell lines have often been utilized in the study of lipid and fatty acid metabolism in mammals and 

lines have been developed that can grow in either serum-free medium or delipidated serum which has enabled 

the effects of EFA deficiency to be investigated in vitro (Laposata et al. 1982; Marcelo et al. 1992; Lerner et al. 

1995). We developed a fish cell line (EPC-EFAD) derived from the carp epithelial papilloma line, EPC, that 

can survive and proliferate in an essential fatty acid-deficient (EFAD) medium based on delipidated serum 

(Tocher et al. 1995).   The EPC-EFAD cells contain only very low levels of n-3 and n-6PUFA and HUFA and 

displayed a slower growth rate than EPC cells which was not stimulated by supplementing the culture medium 

with C18 PUFA, although it was stimulated by supplementation with C20 and C22 HUFA (Tocher et al. 1996).  

Recently, we studied the metabolism of 14C-labelled C18 and C20 PUFA in EPC-EFAD cells in comparison with 

EPC cells (Tocher and Dick 1999).  Both cell lines desaturated[1-14C]18:3n-3 and [1-14C]20:5n-3 to a greater 

extent than [1-14C]18:2n-6 and [1-14C]20:4n-6 but the desaturation of all the 14C-labeled PUFA was 

significantly greater in EPC-EFAD cells compared to EPC cells (Tocher and Dick 1999). The results suggested 

that all the steps in the desaturation/elongation pathway were enhanced in EPC-EFAD cells although the 

metabolism of [1-14C]18:3n-3 was primarily increased in EPC-EFAD cells at the level of Δ5 desaturase and 

subsequent steps in the pathway.  However, the results could not fully explain the inability of C18 PUFA, 

compared to C20/22 HUFA, to stimulate growth in EPC-EFAD cells.  

    In the present study, the effects of competing C18 PUFA on the metabolism of [1-14C]18:3n-3 were 

investigated in EPC and EPC-EFAD cells.  Specifically both cell lines were incubated with [1-14C]18:3n-3 in 

the absence or presence of unlabeled linoleic (18:2n-6), α-linolenic (18:3n-3), γ-linolenic (18:3n-6) and 
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stearidonic (18:4n-3) acids and the effects on incorporation, lipid class distribution, desaturation and elongation 

determined.   

 

Materials and methods 

 

Cells and media 

 

The carp (Cyprinus carpio) epithelioma papillosum cell (EPC) line, which retains epithelial morphology, was 

routinely maintained in Leibovitz L-15 medium and supplemented with 2 mM glutamine, antibiotics (50 I.U. 

ml-1 penicillin and 50 mg.ml-1 streptomycin) and 10% fetal bovine serum (FBS).  EPC-EFAD cells were 

derived from EPC cells by subculture in Leibovitz L-15 medium with exactly the same supplements except that 

the FBS was delipidated prior to use, essentially as described by Capriotti and Laposata (1986).  The 

delipidated FBS contained approximately 10 µg of fatty acids per g of serum (0.001% by weight) with less than 

2 µg/g of C18 PUFA, predominantly 18:2(n-6) (Tocher et al. 1995,1996).  The EPC-EFAD cells used in the 

experiments had been maintained continuously in delipidated medium for 3 over years and were at passage 

number 54-58.  

 

 

Incubation conditions 

 

The EPC and EPC-EFAD cells were cultured at 22 oC in sealed plastic tissue culture flasks.   EPC cells were 

cultured in standard tissue culture flasks (Corning Costar, High Wycombe, U.K.), whereas the EPC-EFAD line 

was cultured in surface-modified “Primaria” flasks (Falcon, Becton Dickinson UK Ltd., Oxford).   Both EPC 

and EPC-EFAD lines were cultured in 75 cm2 (routine culture for provision of experimental material) or 25 cm2 

(14C- metabolism) flasks and were subcultured within 24 h of reaching confluence at seeding densities of 1 x, 

and 2 x 105 cells.cm-2, respectively, to account for the slower proliferation rate of the EPC-EFAD cells in 

delipidated FBS (Tocher et al. 1995,1996).   For each experimental sample, 3 x 25 cm2 flasks were seeded and 

this experiment was repeated three times to obtain the replicates. 
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Incubation of cultures with  [1- 14C]18:3n-3 with or without supplementary unlabeled polyunsaturated fatty 

acids  

 

The medium was aspirated, cultures washed with Dulbecco’s phosphate-buffered saline (PBS) and fresh 

Leibovitz L-15 medium, as above but without serum or delipidated serum, was added.  The [1-14C]18:3n-3 (0.2 

µCi per flask; concentration, 0.8 µM) was added to the cell cultures bound to fatty acid-free bovine serum 

albumin (BSA) in PBS (Ghioni et al. 1997) and incubation continued for 6 days at 22 oC.  For experiments 

performed in the presence of unlabeled PUFA, the supplementary PUFA were also added as fatty acid-free 

BSA complexes.  Flasks received 20 µM unlabeled PUFA, 24 h before the addition of [1-14C]18:3n-3 and 

incubation continued at 22 oC for a further 6 days.  Flasks incubated without supplementary unlabelled PUFA 

received an equal volume of fatty acid-free BSA-PBS.  

 

 

 

Lipid extraction and incorporation of radioactivity into total lipid 

 

The medium was aspirated and cultures washed twice with 20 ml of ice-cold Hanks’ balanced salt solution 

without calcium and magnesium (HBSS).  Cells were harvested by trypsinization with 0.05 % trypsin/0.5 mM 

ethylenediamine tetraacetic acid (EDTA), washed first with 5 ml ice-cold HBSS and then with 5 ml HBSS 

containing 1% fatty acid-free BSA. Total lipid was extracted from the cell pellets with 5 ml ice-cold 

chloroform/methanol (2:1, v/v) containing 0.01% butylated hydroxytoluene (BHT) as antioxidant, essentially 

according to Folch et  al. (1957) as described in detail previously (Tocher et al. 1988). Lipid content was 

determined gravimetrically after 1 h vacuum desiccation and the lipid resuspended in chloroform/methanol 

(2:1, v/v) containing BHT, at a lipid concentration of 10 mg.ml-1, and samples stored at  -20 oC before analyses.   

The radioactive content of total lipid was determined in 3 aliquots of 5 µl in mini-vials containing 2.5 ml 

scintillation fluid (Ecoscint A; National Diagnostics, Atlanta, U.S.A.) using a TRI-CARB 2000CA liquid 

scintillation spectrophotometer (United Technologies Packard).  Results were corrected for counting efficiency 
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and quenching using an appropriate calibration curve.   All solvents contained 0.01% BHT as antioxidant. 

 

Incorporation of radioactivity into glycerophospholipid classes 

 

Samples of total lipid (100 µg) were applied as 1 cm streaks to high-performance thin-layer chromatography 

(HPTLC) plates, and the polar lipid classes separated using methyl acetate/propan-2-ol/ chloroform/ 

methanol/0.25% aqueous KCl (25:25:25:10:9, by vol.) as developing solvent (Vitiello and Zanetta, 1978).   

After desiccation, the lipid classes were visualized by brief exposure to iodine vapour  and areas corresponding 

to phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol 

(PI), phosphatidic acid/cardiolipin  (PA/CL) and total neutral lipid (TN) were scraped into scintillation  vials 

containing 2.5 ml scintillation fluid and radioactivity determined as above. 

 

Incorporation of radioactivity into polyunsaturated fatty acids 

 

Total lipid extracts were transmethylated overnight at 50 oC in methanolic sulfuric acid (Christie 1982).   Fatty 

acid methyl esters (FAME) were extracted, after addition of 2 ml 2% KHCO3, with  hexane/diethyl ether (1:1, 

v/v) containing 0.01% BHT.  Solvent was evaporated, samples resuspended in 100 µl hexane containing BHT, 

loaded as 1 cm streaks on HPTLC plates and  developed with hexane/diethyl ether/acetic acid (90:10:1,  by 

vol.). FAME were detected under UV light by comparison with known standards after spraying with 2’, 7'-

dichlorofluorescein. FAME were eluted from the silica with hexane/diethyl ether (1:1, v/v), solvent evaporated 

and the purified samples resuspended in hexane/BHT.   Thin layer chromatography (TLC) plates were 

impregnated  by spraying with 2 g silver nitrate in 20 ml acetonitrile and activated at 110 oC for 30 min. FAME 

were applied as 2.5 cm streaks and plates developed with toluene/acetonitrile (95:5, v/v) to separate PUFA 

(Wilson  and Sargent 1992).   Autoradiography was performed using Kodak MR2 film for 6 days at room 

temperature. Silica corresponding to different FAME was scraped into scintillation vials containing 2.5 ml 

scintillation fluid and radioactivity determined as described above. 

 

Materials 
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[1-14C]18:3n-3 (50 mCi.mmol-1 and 99% pure) was obtained from NEN Life Science Products (Hounslow, 

U.K.).   Unlabeled PUFA ( all approx. 99% pure except for 18:4n-3, 90%), Leibovitz L-15 medium, HBSS, 

PBS, glutamine, penicillin, streptomycin, FBS,  trypsin/EDTA , fatty acid-free BSA and BHT were obtained 

from Sigma Chemical Co. Ltd. (Poole, UK). TLC plates (20 cm x 20 cm x 0.25 mm) and HPTLC plates (10 cm 

x 10 cm x 0.15 mm), pre-coated with silica gel 60 were obtained from Merck, (Darmstadt, Germany).  All 

solvents were of HPLC grade and were obtained from Rathburn Chemicals (Walkerburn, Peebleshire,  

Scotland).     

 

Statistical analysis 

 

 All results are means + SD of three experiments. Where indicated, data were subjected to two-way analysis of 

variance (ANOVA) to determine the significance of effects due to cell line and fatty acid supplement, and 

where appropriate the significance of differences were determined by Tukey’s post-test.  Percentage data were 

subjected to arc-sin transformation prior to further statistical analysis.  When appropriate, the significance of 

differences between some means were determined by the Student t-test.  Differences are reported as significant 

when p < 0.05 (Zar 1984). 

 

Results  

 

Net “incorporation” is based on the recovery of radioactivity and will be dependent on the initial uptake of fatty 

acid less the amount of fatty acid oxidized or lost through other metabolic pathways.  As all concentrations used 

were the same, the amount taken up and oxidized will only be  dependent on acid and cell line, not on 

concentration.  Two-way analysis of variance (ANOVA) showed that the incorporation of [1-14C]18:3n-3 was 

significantly greater in EPC-EFAD cells irrespective of the presence of unlabeled C18 PUFA (Table 1).  

Irrespective of cell line, i.e. EPC or EPC-EFAD, the incorporation of [1-14C]18:3n-3 was significantly greater in 

the absence of unlabeled PUFA.  The rank order for inhibition of the incorporation of [1-14C]18:3n-3 being 

18:4n-3 > 18:3n-3 = 18:2n-6 > 18:3n-6 (Table 1). 
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      The distribution of radioactivity from [1-14C]18:3n-3 recovered in EPC and EPC-EFAD cell lipids is shown 

in Table 2.  Two-way ANOVA showed that there were significant differences in this distribution between the 

two cell lines, and that inclusion of unlabeled C18 PUFA also significantly affected the distribution of 

radioactivity recovered in the cell lipids (Table 3).  In the absence of unlabeled PUFA, radioactivity from [1-
14C]18:3n-3 in EPC cells was predominantly recovered in PE followed by PC (Table 2).  This pattern was 

unaffected by the inclusion of unlabeled n-6 PUFA but inclusion of unlabeled n-3 PUFA reversed this pattern 

(recovery in PC > PE) as did EFA deficiency in the presence of all unlabeled PUFA. Overall, the proportion of 

radioactivity recovered in PE, PS, PA/CL and total polar lipids was significantly lower in EPC-EFAD cells 

compared to EPC cells, whereas the proportion of radioactivity recovered in PC and total neutral lipid was 

greater in EPC-EFAD cells (Tables 2 & 3).  The altered distribution was most pronounced in cells 

supplementedwith 18:4n-3 as evidenced by the fact that it was generally at the opposite end of the rank order to 

unsupplemented cells (none) in Table 3. 

      The metabolism of [1-14C]18:3n-3 by desaturation and elongation in EPC and EPC-EFAD cells is shown in 

Table 4.  The statistically correct analysis for the whole data set in Table 4 is two-way ANOVA where the 

effects of both factors, EFA deficiency and the presence of unlabeled PUFA, and their interaction can be 

determined.  This showed that the recovery of radioactivity in all elongated and desaturated products of 18:3n-3 

was significantly decreased, and the proportion of radioactivity recovered as 18:3n-3 significantly increased, in 

EPC-EFAD cells compared to EPC cells (Table 5). Similarly, the presence of unlabeled PUFA significantly 

decreased the proportions of radioactivity recovered in 22:6n-3 and almost all tetraene, pentaene products in 

both cell lines with the proportions of radioactivity recovered in 18:3n-3 and its immediate elongation product, 

20:3n-3, increased (Tables 4 & 5).  The magnitude of the above effects were dependent upon the specific 

unlabeled fatty acid used with the rank order for the decreased recovery of radioactivity in all desaturated 

metabolites of [1-14C]18:3n-3 generally being 18:4n-3 >18:3n-3 >18:2n-6 > 18:3n-6. 

       However, it obvious from the data in Table 4 that the effect of EFA deficiency is different in the presence 

or absence of added unlabeled PUFA and, similarly, the effect of added unlabeled 18:3n-6 is different in EPC 

cells compared to EPC-EFAD cells.   Individual differences such as these can be masked by the nature of two-

way ANOVA where data are combined before comparison.  Therefore, the fact that EFA deficiency clearly 

increased the desaturation and elongation of [1-14C]18:3n-3 in EPC cells in the absence of competing PUFA, 
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with the proportions of radioactivity recovered in 20:5n-3, 22:5n-3 and 22:6n-3 all significantly greater and the 

proportions recovered in trienes and tetraenes significantly reduced, in EPC-EFAD cells compared to EPC 

cells, was not obvious from the two-way ANOVA analysis (Table 4).  The presence of unlabeled C18 PUFA 

completely reversed this effect of EFA deficiency, with the desaturation and elongation of [1-14C]18:3n-3 being 

greatly reduced in EPC-EFAD cells in the presence of unlabeled C18 PUFA, an effect that dominated the 

ANOVA analysis (Tables 4 and 5).  This effect of EFA deficiency also dominated the ANOVA analysis of the 

effects of added unlabeled PUFA.  Therefore, it is noteworthy that in the absence of EFA deficiency, the effects 

of unlabeled C18 PUFA were dependent on the specific PUFA with 18:3n-3, 18:4n-3 and 18:2n-6 all greatly 

inhibiting desaturation and elongation of [1-14C]18:3n-3 whereas 18:3n-6 significantly increased the production 

of 22:5n-3 and 22:6n-3 in EPC cells (Table 4). 

 

Discussion 

 

There were two very interesting effects observed in this study.  The first is that the different C18 PUFA had 

differential effects on the metabolism of [1-14C]18:3n-3, with 18:2n-6, 18:3n-3 and 18:4n-3 all inhibiting 

desaturation whereas 18:3n-6 increased desaturation of [1-14C]18:3n-3 in EPC cells.  The second is that EFA 

deficiency had opposite effects in cells in the absence of C18 PUFA compared to cells in the presence of C18 

PUFA.  That is, in the absence of supplemental C18 PUFA, EFA deficiency increased the desaturation of [1-
14C]18:3n-3 to 20:5n-3, 22:5n-3 and 22:6n-3 as evidenced by the increased proportions of radioactivity 

recovered in those fatty acid fractions in EPC-EFAD cells.  In contrast, in the presence of supplemental C18 

PUFA, EFA deficiency considerably reduced desaturation of [1-14C]18:3n-3. 

      In order to interpret the data correctly, it is important to note that the results are not simply reflecting 

dilution of the isotope with cold fatty acids, lowering the specific activity so that the counts recovered in each 

fraction are decreased.  For instance, EPC and EPC-EFAD both have very little 18:3n-3 in their lipids (Tocher 

et al. 1995), and so the increased flux in the fatty acid desaturation/elongation pathway in EPC-EFAD cells is 

not due to less dilution of the isotope in EPC-EFAD compared to EPC cells.   When cold 18:3n-3, 18:4n-3 and 

18:2n-6 are added there is decreased recovery of radioactivity in the products of [1-14C]18:3n-3 metabolism in 

both EPC and EPC-EFAD cells.  Dilution of the isotope and competitive effects will contribute to this.  
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However, the recovery of radioactivity in the products of [1-14C]18:3n-3 metabolism in EPC cells was increased 

in the presence of 18:3n-6, and this cannot be explained by dilution or competitive effects. Isotope dilution 

would be identical in both cell lines as the same concentration of isotope was used and the same concentration 

of C18 PUFA added to both EPC and EPC-EFAD cells and so simple dilution would have identical effects in 

both EPC and EPC-EFAD cells.  The results expected in that case would be that EPC-EFAD cells would show 

a reduced flux in the pathway but that it would still be greater than in EPC cells.  These are not the results 

obtained in the present study, in which the increased flux through the pathway observed in EPC-EFAD cells 

compared to EPC cells in the absence of added PUFA was completely reversed such that the metabolism of [1-
14C]18:3n-3 in EPC-EFAD cells was very significantly lower than in EPC cells.   Therefore, other factors are 

involved in the reduced metabolism of 14C-18:3n-3 in EPC-EFAD cells in the presence of unlabeled C18 PUFA. 

      The precise mechanism for the decreased desaturation of [1-14C]18:3n-3 in the presence of unlabeled C18 

PUFA being greater in EPC-EFAD cells compared to EPC cells is unclear.  The incorporation data suggest that 

in EPC-EFAD cells there may be greater uptake of the C18 PUFA and, therefore, more available in the cell to 

compete.  However, there would similarly be more [1-14C]18:3n-3 present in EPC-EFAD cells negating this 

effect,  i.e. both EPC and EPC-EFAD would have a similar relative proportion of [1-14C]18:3n-3 and unlabeled 

competing PUFA.  Therefore, although differences in the amount of competing unlabeled PUFA may play a 

role it is unlikely to be responsible for such a large difference between EPC and EPC-EFAD cells.  In addition, 

the flux in the pathway for the desaturation of [1-14C]18:3n-3 is greater in EPC-EFAD cells and this may also 

apply to other substrates resulting in the unlabeled C18 PUFA competing more effectively.  However, an earlier 

study showed that [1-14C]18:3n-3 was a much better substrate for the pathway than [1-14C]18:2n-6 in both EPC 

or EPC-EFAD cells and so there is little evidence for higher activity of the pathway in EPC-EFAD playing a 

role in the greater efficacy of inhibition (Tocher and Dick 1999).  The completely opposite effect of 18:3n-6 in 

EPC and EPC-EFAD cells also suggests that the effects of EFA deficiency go beyond simple differences in 

metabolic substrate concentrations. 

       A relative reduction in the proportion of [1-14C]18:3n-3 desaturated must concomitantly result in either 

increased proportions of radioactivity recovered unmetabolized (as [1-14C]18:3n-3) or elongated to the so-called 

“dead-end” product 20:3n-3.  Therefore, it was noteworthy that the reduction in desaturation of [1-14C]18:3n-3 

by 18:2n-6, 18:3n-3 and 18:4n-3 in EPC cells was accompanied specifically by increased elongation to 20:3n-3. 
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In contrast, the reduced desaturation of [1-14C]18:3n-3 in EPC-EFAD cells supplemented with C18 PUFA, 

compared to EPC cells supplemented with C18 PUFA, was accompanied by very increased proportions of [1-
14C]18:3n-3 recovered unmetabolized.  Again this illustrates the wide ranging effects of EFA deficiency in the 

cells.  

      A consistent effect of EFA deficiency was that [1-14C]18:3n-3 was acylated into PC rather than PE and this 

effect was primarily observed in cells supplemented with C18 PUFA.  However, this cannot play a major role in 

the greater inhibition of [1-14C]18:3n-3 metabolism by C18 PUFA in EPC-EFAD cells as supplementation with 

unlabeled 18:3n-3 and 18:4n-3 also altered the distribution of [1-14C]18:3n-3 from PE to PC in EPC cells and it 

was with 18:3n-3 and 18:4n-3 supplementation that the greatest difference between EPC and EPC-EFAD cells 

was observed with respect to [1-14C]18:3n-3 desaturation. 

      A very interesting result from the present study is that, in complete contrast to the other C18 PUFA,  γ-

linolenic acid (18:3n-6) did not inhibit desaturation of [1-14C]18:3n-3 in EPC cells and rather increased the 

recovery of radioactivity in 22:6n-3 and 22:5n-3.  Previously, we had shown that the desaturation of both [1-
14C]18:3n-3 and [1-14C]18:2n-6 in Atlantic salmon hepatocytes was stimulated by feeding borage oil, containing 

18:3n-6, compared to diets containing fish oil (Tocher et al. 1997).  This effect was not due to reduced dietary 

C20 and C22 PUFA in the borage oil diet as other vegetable oil diets containing sunflower or olive oils failed to 

stimulate desaturation.  The effects of dietary 18:3n-6 in rats has given conflicting results with no effect (Hoy et 

al. 1983), depressed (Blond et al. 1986; Choi and Sugano 1988; Ullman et al. 1991) and increased (Ullman et 

al. 1991) desaturase activities all reported.  The different fatty acid compositions of the oils used  (evening 

primrose and borage oils) and the dffering ages of the animals used in these mammalian trials have contributed 

to the conflicting data obtained.  However, rat liver Δ6-desaturase activity decreases with age (Brenner 1981) 

and dietary supplementation with 18:3n-6 in the form of evening primrose oil could reverse this effect (Biagi et 

al. 1991).    

      The present study also demonstrated the potential value of a cell line containing little in the way of 

endogenous PUFA/HUFA.  In particular, the way in which specific C18 PUFA competed with [1-14C]18:3n-3 in 

the desaturation/elongation pathway were clearer in the EPC-EFAD cells.  Thus, 18:4n-3 was very effective in 

inhibiting the conversion of 18:3n-3 to 20:3n-3, carried out by the C18-20 elongase for which 18:4n-3 is a direct 

substrate.  A qualitatively similar effect was observed with 18:3n-6. On the other hand, supplemental 18:2n-6 
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and 18:3n-3 inhibited the first destauration step (Δ6 desaturase) rather than the elongation to 20:3n-3.  The 

effects of 18:2n-6 and 18:3n-3 on inhibiting desaturation rather than elongation were also observed in EPC cells 

but the effects of 18:3n-6 and 18:4n-3 were not so clear in EPC cells where the endogenous complement of 

PUFA and HUFA combined with the exogenously added C18 PUFA in exerting effects. 

       In conclusion, the differences in fatty acid metabolism observed in EPC-EFAD cells cannot be explained 

simply by differences in PUFA composition affecting their roles as substrates and intermediates in metabolic 

pathways.  Indeed, perhaps as expected, the results suggested that the metabolic effects of EFA deficiency are 

more wide ranging and probably highly dependent upon physicochemical parameters and effects on membrane 

fatty acid composition which can directly affect the activities of membrane-bound enzymes, receptors and other 

proteins. 
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Table 1.   Effect of essential fatty acid deficiency on the incorporation  
of [1-14C]18:3n-3 into EPC cells and the effects of supplementation  
with unlabeled C18 PUFA. 
 
_________________________________________________________ 
 
                                                             Incorporation 
                                                        (pmol / million cells) 
                                            ___________________________________ 
                                                                                 
Unlabeled PUFA                       EPC                EPC-EFAD       Sign.          
_________________________________________________________       
 
none                                     0.54 ± 0.05         0.64 ± 0.04          a 
 
18:2n-6                                0.17 ± 0.03         0.33 ± 0.08          bc 
 
18:3n-6                                0.20 ± 0.03         0.43 ± 0.05          b 
 
18:3n-3                                0.15 ± 0.01         0.31 ± 0.04          bc 
 
18:4n-3                                0.11 ± 0.02         0.17 ± 0.02          c 
 
_________________________________________________________ 
Results are means ± SD ( n = 3).  The significance of differences between  
cell types (EPC and EPC-EFAD) and treatments (unlabelled fatty acids) were  
analysed by two-way analysis of variance (ANOVA) and Tukey’s multiple  
comparison test.  Incorporation of radioactive PUFA was significantly greater 
in EPC-EFAD cells (p < 0.05).  Differences between treatments are indicated  
by letters.   
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Table 2.   Effect of C18 polyunsaturated fatty acids (PUFA) on the incorporation of [1-14C] 18:3n-3 into  
phospholipid classes in EPC and EPC-EFAD cells. 
_________________________________________________________________________________________ 
 
                                                      none                                      18:2n-6                                        18:3n-6 
                                   ______________________     ______________________      ______________________ 
 
Lipid class                    EPC            EPC-EFAD           EPC            EPC-EFAD             EPC              EPC-EFAD 
_________________________________________________________________________________________ 
 
PC                           33.2 ± 1.0        34.1 ± 0.4         37.2 ± 1.0      37.6 ± 0.9          36.3 ± 0.5         51.0 ± 5.0            
PE                           45.1 ± 0.9        39.1 ± 0.6         44.2 ± 1.4      23.4 ± 0.8          44.1 ± 0.6         25.0 ± 1.1       
PS                             7.5 ± 0.2          9.8 ± 0.2           8.2 ± 0.7        5.9 ± 0.4            6.6 ± 0.2           4.0 ± 0.2       
PI                              2.5 ± 0.0          3.0 ± 0.2           2.7 ± 0.3        2.0 ± 0.2            2.2 ± 0.1           2.3 ± 0.5       
PA/CL                      9.1 ± 0.2        11.6 ± 0.2            4.1 ± 0.3        5.1 ± 0.5            7.6 ± 0.3           9.5 ± 1.1       
 
TP                          97.4 ± 0.1        97.6 ± 0.2          96.4 ± 0.3      74.0 ± 2.5          96.8 ± 0.1         91.8 ± 2.4       
TN                           2.6 ± 0.1          2.4 ± 0.2            3.6 ± 0.3      26.0 ± 2.5            3.2 ± 0.1           8.2 ± 2.4       
_________________________________________________________________________________________ 
 
                                                              18:3n-3                                                                   18:4n-3 
                                   ________________________________                   ______________________________ 
Lipid class                            EPC                     EPC-EFAD                                EPC                       EPC-EFAD 
_________________________________________________________________________________________ 
 
PC                                  46.4 ± 0.9                 46.8 ± 0.5                             43.1 ± 1.1                   57.0 ± 1.5       
PE                                  36.2 ± 0.6                 27.9 ± 0.5                             29.3 ± 1.2                   17.3 ± 1.0       
PS                                    5.9 ± 0.4                   5.8 ± 0.2                               4.3 ± 0.2                     2.7 ± 0.3       
PI                                     2.6 ± 0.2                   1.9 ± 0.2                               2.6 ± 0.2                     3.3 ± 0.2       
PA/CL                              6.1 ± 0.1                   5.0 ± 0.3                             15.7 ± 0.3                     3.6 ± 0.3       
 
TP                                  96.2 ± 0.1                 87.4 ± 0.9                             95.0 ± 0.2                   83.9 ± 1.0       
TN                                   3.8 ± 0.1                 12.6 ± 0.9                               5.0 ± 0.2                   16.1 ± 1.0       
_________________________________________________________________________________________ 

Results are expressed as percentages of total radioactivity recovered and are means ± SD (n = 3). 

CL, cardiolipin; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine;  

PI, phosphatidylinositol; PS, phosphatidylserine; TN, total neutral lipids; TP, total polar lipids. 
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Table 2.   Effect of C18 polyunsaturated fatty acids (PUFA) on the incorporation of [1-14C] 18:3n-3 into  
phospholipid classes in EPC and EPC-EFAD cells. 
_________________________________________________________________________________________ 
 
                                                      none                                      18:2n-6                                        18:3n-6 
                                   ______________________     ______________________      ______________________ 
 
Lipid class                    EPC            EPC-EFAD           EPC            EPC-EFAD             EPC              EPC-EFAD 
_________________________________________________________________________________________ 
 
PC                           33.2 ± 1.0        34.1 ± 0.4         37.2 ± 1.0      37.6 ± 0.9          36.3 ± 0.5         51.0 ± 5.0            
PE                           45.1 ± 0.9        39.1 ± 0.6         44.2 ± 1.4      23.4 ± 0.8          44.1 ± 0.6         25.0 ± 1.1       
PS                             7.5 ± 0.2          9.8 ± 0.2           8.2 ± 0.7        5.9 ± 0.4            6.6 ± 0.2           4.0 ± 0.2       
PI                              2.5 ± 0.0          3.0 ± 0.2           2.7 ± 0.3        2.0 ± 0.2            2.2 ± 0.1           2.3 ± 0.5       
PA/CL                      9.1 ± 0.2        11.6 ± 0.2            4.1 ± 0.3        5.1 ± 0.5            7.6 ± 0.3           9.5 ± 1.1       
 
TP                          97.4 ± 0.1        97.6 ± 0.2          96.4 ± 0.3      74.0 ± 2.5          96.8 ± 0.1         91.8 ± 2.4       
TN                           2.6 ± 0.1          2.4 ± 0.2            3.6 ± 0.3      26.0 ± 2.5            3.2 ± 0.1           8.2 ± 2.4       
_________________________________________________________________________________________ 
 
                                                              18:3n-3                                                                   18:4n-3 
                                   ________________________________                   ______________________________ 
 
Lipid class                            EPC                     EPC-EFAD                                EPC                       EPC-EFAD 
_________________________________________________________________________________________ 
 
PC                                  46.4 ± 0.9                 46.8 ± 0.5                             43.1 ± 1.1                   57.0 ± 1.5       
PE                                  36.2 ± 0.6                 27.9 ± 0.5                             29.3 ± 1.2                   17.3 ± 1.0       
PS                                    5.9 ± 0.4                   5.8 ± 0.2                               4.3 ± 0.2                     2.7 ± 0.3       
PI                                     2.6 ± 0.2                   1.9 ± 0.2                               2.6 ± 0.2                     3.3 ± 0.2       
PA/CL                              6.1 ± 0.1                   5.0 ± 0.3                             15.7 ± 0.3                     3.6 ± 0.3       
 
TP                                  96.2 ± 0.1                 87.4 ± 0.9                             95.0 ± 0.2                   83.9 ± 1.0       
TN                                   3.8 ± 0.1                 12.6 ± 0.9                               5.0 ± 0.2                   16.1 ± 1.0       
_________________________________________________________________________________________ 

Results are expressed as percentages of total radioactivity recovered and are means ± SD (n = 3). 

CL, cardiolipin; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine;  

PI, phosphatidylinositol; PS, phosphatidylserine; TN, total neutral lipids; TP, total polar lipids. 
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Table 4.   Effect of C18 polyunsaturated fatty acids (PUFA) on the metabolism of [1-14C] 18:3n-3 by  
desaturation and elongation in EPC and EPC-EFAD cells. 
 
_________________________________________________________________________________________ 
 
                                                      none                                      18:2n-6                                        18:3n-6 
                                   ______________________     ______________________      ______________________ 
 
Fatty acid                      EPC            EPC-EFAD           EPC            EPC-EFAD             EPC              EPC-EFAD 
_________________________________________________________________________________________ 
 
18:3n-3                   21.1 ± 0.3         17.6 ± 0.5*      15.7 ± 1.3       48.5 ± 1.0           16.7 ± 0.4*      62.0 ± 3.2            
20:3n-3                   17.6 ± 0.8         13.5 ± 0.6*      43.1 ± 1.1       42.8 ± 0.7           15.6 ± 0.5        21.2 ± 4.7      
18:4n-3                     7.0 ± 0.1           8.2 ± 0.4*        5.8 ± 0.6         0.4 ± 0.1           10.6 ± 0.3*        2.4 ± 0.2 
20:4n-3                   28.4 ± 1.0         18.2 ± 0.7*      18.1 ± 0.3         5.7 ± 0.7           23.8 ± 0.5*        9.5 ± 2.0     
22:4n-3                     4.1 ± 0.5           1.9 ± 0.2*        7.8 ± 0.1         1.8 ± 0.1             5.9 ± 0.1*        2.2 ± 0.3   
20:5n-3                     8.1 ± 0.3         13.7 ± 0.4*        1.9 ± 0.2         0.3 ± 0.0             8.4 ± 0.5          1.0 ± 0.1       
22:5n-3                   11.0 ± 0.6         15.0 ± 0.1*        6.7 ± 0.8         0.3 ± 0.1           14.7 ± 0.8*        1.0 ± 0.2     
22:6n-3                     2.7 ± 0.2         11.9 ± 0.2*        0.9 ± 0.2         0.2 ± 0.0             4.3 ± 0.2*        0.7 ± 0.4     
_________________________________________________________________________________________ 
 
                                                              18:3n-3                                                                   18:4n-3 
                                   ________________________________                   ______________________________ 
 
Fatty acid                              EPC                     EPC-EFAD                                EPC                       EPC-EFAD 
_________________________________________________________________________________________ 
18:3n-3                           24.6 ± 1.9                 46.1 ± 2.2                            30.7 ± 1.9                   77.8 ± 3.2            
20:3n-3                           54.7 ± 1.5                 51.5 ± 2.4                            57.2 ± 0.9                   18.1 ± 3.1    
18:4n-3                             1.9 ± 0.3                   0.1 ± 0.1                              1.1 ± 0.3                     0.3 ± 0.1       
20:4n-3                           11.7 ± 0.7                   1.8 ± 0.2                              6.7 ± 0.7                     2.8 ± 0.3   
22:4n-3                             4.1 ± 0.4                   0.4 ± 0.1                              2.0 ± 0.2                     0.7 ± 0.1   
20:5n-3                             1.0 ± 0.1                                                                0.8 ± 0.2                     
22:5n-3                             1.4 ± 0.3                   0.1 ± 0.1                              0.9 ± 0.2                     0.3 ± 0.2          
22:6n-3                             0.6 ± 0.3                                                                0.6 ± 0.2                  
_________________________________________________________________________________________ 
 
Results are expressed as percentages of total radioactivity recovered and are means ± SD (n = 3).  Two sets of 

students t-tests were performed, EPC (none) versus EPC-EFAD (none) and EPC (none) versus EPC (+18:3n-6). 

Significant differences (p < 0.05) between the values for EPC-EFAD (none) and EPC (+18:3n-6) and the values 

for EPC (none) were marked (*). 
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Table 5.    Results of two-way analysis of variance (ANOVA) for data in Table 4 for the effect of unlabeled C18 

PUFA on the desaturation and elongation of [1-14C]18:3n-3. 

_________________________________________________________________________________________ 
 
                        Effect of       Effects of     Interaction  _____                        Multiple range tests________                                
Fatty acid         cell line        fatty acids                                  cell line                                    fatty acids 
_________________________________________________________________________________________ 
 
18:3                       *                   *                   *           EPC < EPC-EFAD  18:4 > 18:3n-6 > 18:3n-3 = 18:2 
>none   
 
20:3                       *                   *                   *           EPC > EPC-EFAD  18:3n-3 > 18:2 > 18:4 > 18:3n-6 
>none   
 
18:4                       *                   *                   *           EPC > EPC-EFAD  none >18:3n-6 > 18:2 > 18:3n-3 = 
18:4   
 
20:4                       *                   *                   *           EPC > EPC-EFAD  none >18:3n-6 > 18:2 > 18:3n-3 > 
18:4   
 
22:4                       *                   *                   *           EPC > EPC-EFAD   18:2 >18:3n-6 = none >18:3n-3 > 
18:4   
 
20:5                       *                   *                   *           EPC > EPC-EFAD   none >18:3n-6 > 18:2 >18:3n-3 = 
18:4   
 
22:5                       *                   *                   *           EPC > EPC-EFAD   none >18:3n-6 > 18:2 >18:3n-3 > 
18:4 
 
22:6                       *                   *                   *           EPC > EPC-EFAD   none >18:3n-6 > 18:2 = 18:3n-3 
=18:4    
_________________________________________________________________________________________ 
 
*, significant at p < 0.05. 
 


