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Abstract. We consider a linear size-structured population model with diffu-

sion in the size-space. Individuals are recruited into the population at arbi-
trary sizes. We equip the model with generalized Wentzell-Robin (or dynamic)

boundary conditions. This approach allows the modelling of populations in

which individuals may have distinguished physiological states. We establish
existence and positivity of solutions by showing that solutions are governed

by a positive quasicontractive semigroup of linear operators on the biologically

relevant state space. These results are obtained by establishing dissipativity of
a suitably perturbed semigroup generator. We also show that solutions of the

model exhibit balanced exponential growth, that is, our model admits a finite-
dimensional global attractor. In case of strictly positive fertility we are able to

establish that solutions in fact exhibit asynchronous exponential growth.

1. Introduction. A significant amount of interest has been devoted to the analysis
of mathematical models arising in structured population dynamics (see e.g. [21, 27]
for references). Such models often assume spatial homogeneity of the population
in a given habitat and only focus on the dynamics of the population arising from
differences between individuals with respect to some physiological structure. In this
context, reproduction, death and growth characterize individual behavior which
may be affected by competition, for example for available resources.

In a recent paper, Hadeler [18] introduced size-structured population models
with diffusion in the size-space. The biological motivation is that diffusion allows
for “stochastic noise” to be incorporated in the model equations in a deterministic
fashion. The main question addressed in [18] is what type of boundary conditions
are necessary for a biologically plausible and mathematically sound model. In this
context some special cases of a general Robin boundary condition were consid-
ered. Diffusion terms have been introduced into structured population models by
Waldstätter et al. [26], Milner and Patton [22] and Langlais and Milner [20] in the
context of host-parasite models, where the parasite load is the continuous structure
variable. For example, when the structuring variable represents a parasite load as

2000 Mathematics Subject Classification. 92D25, 47N60, 47D06, 35B35.
Key words and phrases. Structured populations, diffusion, Wentzell-Robin boundary condition,

semigroups of linear operators, spectral methods, stability.

503

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9048824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.3934/mbe.2011.8.503
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in [26], at least one special compartment of individuals arises, namely the class of
the uninfected ones. In a model where the structuring variable is continuous this
state corresponds to a set of measure zero, hence it does not carry mass. The true
meaning and advantage of employing Wentzell boundary conditions is that it allows
this special state to carry mass.

In this paper we introduce the following linear size-structured population model

ut(s, t) + (γ(s)u(s, t))s

= (d(s)us(s, t))s − µ(s)u(s, t) +

∫ m

0

β(s, y)u(y, t) dy, s ∈ (0,m), (1)

[(d(s)us(s, t))s]s=0
− b0us(0, t) + c0u(0, t) = 0, (2)

[(d(s)us(s, t))s]s=m
+ bmus(m, t) + cmu(m, t) = 0, (3)

with a suitable initial condition. The function u = u(s, t) denotes the density of
individuals of size, or other developmental stage, s at time t. Note that, we use
0 as the minimal value of the variable of s only for mathematical convenience. It
may well be replaced by an arbitrary value smin. The non-local integral term in
(1) represents the recruitment of individuals into the population. Individuals may
have different sizes at birth and β(s, y) denotes the rate at which individuals of
size y “produce” individuals of size s. Further biologically relevant assumptions
may be made on the fertility, such as β(s, y) = 0 for s ≥ y, i.e. parents cannot
have larger offspring. We also note that from this general model a single state at
birth model may be deduced by formally replacing the fertility function β with an
appropriate delta function, see e.g. [21]; Chapter I Section 4. µ denotes the size-
specific mortality rate while γ denotes the growth rate. d stands for the size-specific
diffusion coefficient, which we assume to be strictly positive. b0 and bm are positive
numbers, while c0 and cm are non-negative. We will discuss special values for these
constants in Equation (5) below.

Equation (1) describes the evolution of a “proper” size-structured population, in
contrast to the one where it is assumed that all newborns enter the population at
a minimal size. In that case, assuming that the growth rate is positive, i.e. individ-
uals do not shrink, the linear model can be rewritten as an age-structured model,
see e.g. [21]. We also refer the interested reader to [3, 7, 10] where size-structured
models with distributed recruitment processes were investigated. We also note
that although we refer to the structuring variable s as size, it could well represent
any other physiological characteristic of individuals such as accumulated energy or
biomass, volume etc. The boundary conditions (2)-(3) are the so called general-
ized Wentzell-Robin or dynamic boundary conditions. These “unusual” boundary
conditions were investigated recently for models describing physical processes such
as diffusion and wave propagation, see e.g. [11, 12, 16]. Briefly, they are used to
model processes where particles reaching the boundary of a domain can be either
reflected from the boundary or they can be absorbed. Hence the boundary points
can carry mass. Our goal here is to introduce this rather general type of boundary
condition in the context of models describing the evolution of biological populations,
with particular focus on positivity and asymptotic behavior of solutions. Potential
applications include cell populations with resting states at s = 0 and s = m, or
models for populations structured by an infection level or parasite load [26].

The first works introducing boundary conditions that involve second order deriva-
tives for parabolic or elliptic differential operators go back to the 1950s, see the
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papers by Feller [13, 14] and Wentzell [24, 25]. These first studies were purely mo-
tivated from the mathematical point of view. The original question was to identify
the set of all possible boundary conditions that give rise for a parabolic differential
operator to generate a contraction semigroup on an appropriate state space. The
abstract mathematical analysis gave a clue where physical intuition failed previ-
ously.

The boundary conditions (2)-(3) are in general form, and we shall now specify
the constants b0, bm and c0, cm to give a biological explanation for the boundary
conditions. Integration of Equation (1) from 0 to m yields for U(t) =

∫m

0
u(s, t) ds

d

dt
U(t) = γ(0)u(0, t)− γ(m)u(m, t) + d(m)us(m, t)− d(0)us(0, t)

+

∫ m

0

∫ m

0

β(s, y)u(y, t) dy ds−
∫ m

0

µ(s)u(s, t) ds

=: B(t)−D(t) + γ(0)u(0, t)− γ(m)u(m, t) + d(m)us(m, t)− d(0)us(0, t),

where B and D denote the combined birth and death processes, respectively. We
note that formally, by replacing the diffusion term by its counterpart from Equation
(1), the boundary conditions (2)-(3) can be cast in the dynamic form

ut(0, t) =u(0, t)(−γ′(0)− µ(0)− c0) + us(0, t)(b0 − γ(0)) +

∫ m

0

β(0, y)u(y, t) dy,

ut(m, t) =u(m, t)(−γ′(m)− µ(m)− cm) + us(m, t) (−bm − γ(m))

+

∫ m

0

β(m, y)u(y, t) dy.

(4)
These are the governing equations for individuals of minimum and maximum sizes,
respectively. It is natural to assume that in the absence of mortality and recruit-
ment, i.e. when B(·) ≡ D(·) ≡ 0, the total population size U(t) + u(0, t) + u(m, t)
remains constant at every time t. Mathematically, this amounts to the condition

0 =
d

dt
U(t) + ut(0, t) + ut(m, t)

=u(0, t) (γ(0)− γ′(0)− c0) + u(m, t) (−γ(m)− cm − γ′(m))

+ us(0, t) (b0 − d(0)− γ(0)) + us(m, t) (d(m)− γ(m)− bm) .

In order to guarantee conservation of total population in the absence of birth and
death processes, we make the following assumptions

c0 = γ(0)− γ′(0), cm = −γ(m)− γ′(m), b0 = d(0) + γ(0), bm = d(m)− γ(m). (5)

We note that condition (5) together with the assumption that b is positive and c is
non-negative impose a restriction on the growth rate γ.

The dynamic boundary conditions (4) can now be written as

ut(0, t) = (−µ(0)− γ(0))u(0, t) + d(0)us(0, t) +

∫ m

0

β(0, y)u(y, t) dy,

ut(m, t) = (γ(m)− µ(m))u(m, t)− d(m)us(m, t) +

∫ m

0

β(m, y)u(y, t) dy.

(6)

Hence the dynamics of individuals in the two special states s = 0 and s = m are
governed by equations (6). The meaning of the governing equations (6) is intuitively
clear. For example, at s = 0, individuals are leaving this compartment due to growth
and mortality and are recruited according to the integral term, while the diffusion
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accounts for the flux through this state (this also yields a loss term, since the outer
normal derivative is −us).

We impose the following assumptions on the model ingredients

µ ∈ C([0,m]), β ∈ C([0,m]× [0,m]), β, µ ≥ 0, γ, d ∈ C1([0,m]), d > 0.

In this note first we establish existence and positivity of solutions of model (1)-
(3). This existence proof follows similar arguments developed in [11, 12]. The
significant difference is that solutions to our model are not necessarily governed
by a contraction semigroup, hence as in [8, 9] we need to rescale the semigroup to
obtain the dissipativity estimate. As a result of the dissipativity calculation, we
show that the resolvent operator of the semigroup generator is positive. This was
not established in [12].

In Section 3 we investigate the asymptotic behavior of solutions. First we es-
tablish that solutions of the model equations exhibit balanced exponential growth,
in general. This is an interesting phenomenon, often observed for linear structured
population models, see e.g. [8, 10]. In some sense, it is a stability result and char-
acterizes the global asymptotic behavior of solutions to the model. Then, assuming
that fertility is strictly positive, we are able to show that after a rescaling by and
exponential factor solutions actually tend to a fixed size-distribution. This is shown
via establishing irreducibility of the governing semigroup.

2. Existence and positivity of solutions. In this section we are going to es-
tablish the existence of a positive quasicontractive semigroup of operators which
governs the evolution of solutions of (1)-(3). For basic definitions and results used
throughout this paper we refer the reader to [1, 2, 4, 6]. Let

X =
(
L1(0,m)⊕ R2, || · ||X

)
,

where for (x, x0, xm) ∈ X the norm is given by

||(x, x0, xm)||X = ||x||L1 + c1|x0|+ c2|xm|, (7)

for some positive constants c1 and c2 that we will specify later. Then X is a
Banach lattice. We identify a function u ∈ C[0,m] with its restriction triple
(u|(0,m), u(0), u(m)) ∈ X . With this identification, the set C2[0,m] is dense in
X with respect to the || · ||X -norm. Let

D(A) =
{
u ∈ C2[0,m] : Ψu ∈ L1(0,m), (d(s)u′(s))′

∣∣
s=0
− b0u′(0) + c0u(0) = 0,

(d(s)u′(s))′
∣∣
s=m

+ bmu
′(m) + cmu(m) = 0

}
,

where

Ψu(s) = (d(s)u′(s))′ − (γ(s)u(s))′ − µ(s)u(s) +

∫ m

0

β(s, y)u(y) dy.

The operator A with domain D(A) is then defined by

Au =

 Ψu

(b0 − γ(0)) d
dsu

∣∣
s=0

+
∫m

0
β(0, y)u(y) dy − ρ0u(0)

(−bm − γ(m)) d
dsu

∣∣
s=m

+
∫m

0
β(m, y)u(y) dy − ρmu(m)


where we have set

ρ0 = µ(0) + c0 + γ′(0), ρm = µ(m) + cm + γ′(m),
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for short. We use [6, Theorem 3.15] (see also [2, Section A-II, Theorem 2.11]) which
characterizes generators of contractive semigroups via dissipativity. We establish
the existence of a quasicontractive semigroup for the general boundary condition (2)-
(3). Recall that a strongly continuous semigroup {T (t)}t≥0 is called quasicontractive

if ||T (t)|| ≤ eωt for some ω ∈ R and it is called contractive if the choice ω ≤ 0 is
possible. A linear operator A with domain D(A) is dissipative, if for all x ∈ D(A)
and λ > 0 one has ||(λI −A)x|| ≥ λ||x||.

Theorem 2.1. Assume that

c1 =
d(0)

b0 − γ(0)
> 0, and c2 =

d(m)

γ(m) + bm
> 0. (8)

Then the closure of the operator A is the infinitesimal generator of a positive qua-
sicontractive semigroup of bounded linear operators on the state space X (where the
weights in equation (7) are chosen accordingly).

Proof. We introduce the modified operator Ã with β = 0 in the definition of A. For

λ > 0 and h ∈ X , u ∈ D(Ã) we consider the equation

u− λ
(
Ã− ωI

)
u = h, on [0,m]. (9)

That is

h(s) = u(s)− λ
(

(d(s)u′(s))
′ − (γ(s)u(s))

′ − µ(s)u(s)− ωu(s)
)
, s ∈ (0,m),

(10)

λ−1h(0) = u′(0)(γ(0)− b0) + u(0)
(
λ−1 + γ′(0) + µ(0) + c0 + ω

)
, (11)

λ−1h(m) = u′(m)(γ(m) + bm) + u(m)
(
λ−1 + γ′(m) + µ(m) + cm + ω

)
. (12)

Next we multiply Equation (10) by χu+(s), where χu+ denotes the characteristic
function of u+, and integrate from 0 to m. The boundary ∂[u > 0] consists of two

parts, Γ1 = ∂[u > 0] ∩ (0,m) and Γ2 = [u > 0] ∩ {0,m}. The term d(s)u′(s) gives
negative contributions on Γ1 since the outer normal derivative of u is negative. The
term γ(s)u(s) gives no contributions on Γ1 since u = 0 there. Hence we obtain

||u+||1 ≤λ
(
sgn(u+(m))d(m)u′(m)− sgn(u+(0))d(0)u′(0)

)
− λ

(
sgn(u+(m))γ(m)u(m)− sgn(u+(0))γ(0)u(0)

)
− λ

∫ m

0

χu+(s)µ(s)u(s) ds− λω||u+||1 +

∫ m

0

χu+(s)h(s) ds.

This, combined with equations (11)-(12), yields

||u+||1 + sgn(u+(m))u(m)

(
d(m)

γ(m) + bm
(1 + λ (γ′(m) + µ(m) + cm + ω)) + λγ(m)

)
+ sgn(u+(0))u(0)

(
d(0)

b0 − γ(0)
(1 + λ (γ′(0) + µ(0) + c0 + ω))− λγ(0)

)
≤ −λ

∫ m

0

χu+(s)µ(s)u(s) ds− λω||u+||1 +

∫ m

0

χu+(s)h(s) ds

+ sgn(u+(m))h(m)
d(m)

γ(m) + bm
+ sgn(u+(0))h(0)

d(0)

b0 − γ(0)
.

(13)
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Similarly, multiplying Equation (10) by −χu−(s) and integrating from 0 to m, we
obtain

||u−||1 − sgn(u−(m))u(m)

(
d(m)

γ(m) + bm
(1 + λ (γ′(m) + µ(m) + cm + ω)) + λγ(m)

)
− sgn(u−(0))u(0)

(
d(0)

b0 − γ(0)
(1 + λ (γ′(0) + µ(0) + c0 + ω))− λγ(0)

)
≤ λ

∫ m

0

χu−(s)µ(s)u(s) ds− λω||u−||1 −
∫ m

0

χu−(s)h(s) ds

− sgn(u−(m))h(m)
d(m)

γ(m) + bm
− sgn(u−(0))h(0)

d(0)

b0 − γ(0)
.

(14)
Adding (13) and (14) yields

||u||1 + |u(0)|
(

d(0)

b0 − γ(0)
(1 + λ (γ′(0) + µ(0) + c0 + ω))− λγ(0)

)
+ |u(m)|

(
d(m)

γ(m) + bm
(1 + λ (γ′(m) + µ(m) + cm + ω)) + λγ(m)

)
≤
∫ m

0

(χu+(s)− χu−(s))h(s) ds+ h(0)
d(0)

b0 − γ(0)

(
sgn(u+(0))− sgn(u−(0))

)
− λω||u||1 + h(m)

d(m)

γ(m) + bm

(
sgn(u+(m))− sgn(u−(m))

)
− λ

∫ m

0

(χu+(s)− χu−(s))µ(s)u(s) ds.

(15)

Assuming that condition (8) holds true the left hand side of inequality (15) can be
estimated below, for ω ∈ R large enough, by

||u||1 + |u(0)| d(0)

b0 − γ(0)
+ |u(m)| d(m)

γ(m) + bm
.

Similarly, the right hand side of inequality (15) can be estimated above by

||h||1 + |h(0)| d(0)

b0 − γ(0)
+ |h(m)| d(m)

γ(m) + bm
.

Hence, if condition (8) is satisfied we have the dissipativity estimate

||u||X ≤ ||h||X =
∣∣∣∣∣∣u− λ(Ã− ωI)u∣∣∣∣∣∣

X

for the operator Ã− ωI.
For the range condition we need to show that whenever h is in a dense subset of

X then the solution u of Equation (9) belongs to the domain of A. Since we assumed
that d > 0, i.e. we have true Wentzell boundary conditions at both endpoints of the
domain, the required regularity of the solution u ∈ C2[0,m] and hence the range

condition follows from [15, Theorem 6.31]. Thus the closure of Ã−ωI is a generator
of a contractive semigroup by [6, Theorem 3.15].

Next we observe that for h ∈ X+ every term on the right hand side of Equation
(14) is non-positive, while every term on the left hand side of Equation (14) is non-
negative. The inequality can only hold for h ∈ X+ if ||u−||1 = u(0) = u(m) = 0.

This proves that the resolvent operator R(λ, Ã−ωI) = (λI−(Ã−ωI))−1 is positive

for λ large enough, hence the closure of Ã− ωI generates a positive semigroup. A
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simple perturbation result yields that the closure of Ã is a generator of a positive
quasicontractive semigroup.

Finally we note that, the operator A− Ã is positive, bounded and linear, hence
it generates a positive semigroup {S(t)}t≥0 which satisfies

||S(t)|| ≤ etB , where B = ||β||∞.

The proof of the Theorem is now completed on the grounds of the Trotter product
formula, see e.g. [6, Corollary 5.8 Ch. 3]. �

Remark 1. Conditions (8) are clearly satisfied if only the denominators are posi-
tive. However, the notation in (8) gives immediately the norm on the state space.

Remark 2. We note that the biologically natural assumptions in (5) that guaran-
tee conservation of the total population in the absence of mortality and recruitment
imply that c1 = c2 = 1. Hence the mathematical calculations coincide with the bio-
logical intuition. It can be shown that in the absence of mortality and recruitment
the operator A generates a contraction semigroup on the state space (X , || · ||X ), in
fact ||T (t)||X = 1 for all t ≥ 0.

3. Asymptotic behavior. In this section we investigate in the framework of semi-
group theory the asymptotic behavior of solutions of model (1)-(3). Since our model
is a linear one, we may expect that solutions either grow or decay exponentially,
unless they are at a steady state. For simple structured population models in fact it
is often observed (see e.g. [5, 8, 10, 17]), that solutions grow exponentially and tend
to a finite-dimensional (resp. one-dimensional) global attractor. This phenomenon
is called balanced (resp. asynchronous) exponential growth. The rate of exponen-
tial growth is called the Malthusian parameter or intrinsic growth rate. In other
words, asynchronous exponential growth means that solutions tend to a fixed size
distribution (often called the stable size profile) after a suitable rescaling of the
semigroup.

In this section we show that solutions of our model exhibit the same asymptotic
behavior. This question can be addressed effectively in the framework of semigroup
theory (see [2, 4, 6]). Briefly, to establish balanced exponential growth, one needs to
show that the growth bound of the semigroup is governed by a leading eigenvalue
of finite (algebraic) multiplicity of its generator, and there exists a spectral gap,
i.e. the leading eigenvalue is isolated in the spectrum. Our first result will assure
this latter condition. Moreover, if it is also possible to establish that the semigroup
is irreducible then one has that the algebraic multiplicity of the spectral bound
equals one (with a corresponding positive eigenvector) and the semigroup exhibits
asynchronous exponential growth.

Lemma 3.1. The spectrum of A can contain only isolated eigenvalues of finite
algebraic multiplicity.

Proof. We show that the resolvent operator R(λ,A) is compact. Since Ã is a

bounded perturbation of A it is enough to show that R(λ, Ã) is compact. This
follows however, from the regularity of the solution of the resolvent Equation (9) and
noting that C2[0,m] ⊂W 1,1(0,m)⊕R2 which is compactly embedded in L1(0,m)⊕
R2 by the Rellich-Kondrachov Theorem [1, Theorem 6.3, Part I]. The claim follows
on the ground of [6, Proposition II.4.25]. �
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Next we recall some necessary basic notions from linear semigroup theory, see
e.g. [2, 4, 6]. A strongly continuous semigroup {S(t)}t≥0 on a Banach space Y with
generator O and spectral bound

s (O) = sup {Re(λ) : λ ∈ σ (O) }
is said to exhibit balanced exponential growth if there exists a projection Π on Y
such that

lim
t→∞

‖e−s(O)t S(t)−Π‖ = 0.

If the projection P is of rank one then the semigroup has asynchronous exponential
growth. Moreover, the growth bound ω0 is the infimum of all real numbers ω such
that there exists a constant M ≥ 1 with ||S(t)|| ≤Meωt. We also recall (see e.g. [2,
C-III Definition 3.1]) that a positive semigroup {S(t)}t≥0 on a Banach lattice Y is

called irreducible if there is no S(t) invariant closed ideal of Y except the trivial
ones, {0} and Y.

Theorem 3.2. Model (1)-(3) admits a finite dimensional global attractor.

Proof. We have shown in Theorem 2.1 that solutions of our model are governed
by a positive semigroup. Derndinger’s Theorem (see e.g. [6, Theorem VI.1.15])
implies that the spectral bound of the generator equals to the growth bound of the
semigroup, i.e. s(A) = ω0. Lemma 3.1 implies that the spectral bound s(A) is an
eigenvalue of finite algebraic (hence geometric) multiplicity unless the spectrum is
empty. If the spectrum of A is empty we have by definition ω0 = −∞ and every
solution tends to zero. Otherwise we have for the semigroup {T (t)}t≥0 generated
by the closure of A

lim
t→∞

∣∣∣∣∣∣e−s(A)tT (t)−Π
∣∣∣∣∣∣ = 0, (16)

where Π is the projection onto the finite dimensional eigenspace corresponding to
the eigenvalue s(A). �

Recall that a subspace I ⊂ Z of a Banach lattice Z is an ideal iff f ∈ I and
|g| ≤ |f | implies that g ∈ I. The following useful result is from [2, C-III, Proposition
3.3].

Proposition 3.3. Let B be the generator of a positive semigroup U(t) on the Ba-
nach lattice Z and K a bounded positive operator. Let V(t) be the semigroup gen-
erated by B +K. For a closed ideal I ⊂ Z the following assertions are equivalent:
(i) I is V-invariant,
(ii) I is invariant under both U and K.

We introduce the recruitment operator K = A− Ã.

Theorem 3.4. Assume that (8) holds true and β > 0. Then the semigroup gener-
ated by the closure of A exhibits asynchronous exponential growth.

Proof. Our goal is to apply Proposition 3.3 for the operator Ã, whose closure is the
generator of a positive semigroup as shown in Theorem 2.1 and to K, which is clearly
positive and bounded. Every closed ideal I of X can be written as I1⊕I2⊕I3, where
I1 is a closed ideal in the Banach lattice L1(0,m) and I2, I3 are closed ideals in R.
Note that, R admits only two ideals, i.e. {0} or R itself. Next we observe that non-
trivial closed ideals in L1(0,m) can be characterized via closed subsets G of positive
measure of (0,m). That is, the subspace J is a closed ideal of L1(0,m) if it contains
the functions f ∈ L1(0,m) vanishing on G. Next we show that no non-trivial closed
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ideal I = I1⊕I2⊕I3 is invariant under K or under the semigroup generated by Ã. If
I1 6= {0} then the condition β > 0 guarantees that Ku(s) =

∫m

0
β(s, y)u(y) dy > 0,

for every s ∈ (0,m) for any u ∈ I1, i.e. the image Ku does not vanish anywhere,
hence by the previous characterization we must have I1 = L1(0,m). Moreover, in
this case β > 0 implies that we must have I2 = I3 = R, since

∫m

0
β(0, y)u(y) dy > 0

and
∫m

0
β(m, y)u(y) dy > 0 for any u 6≡ 0. On the other hand, if I1 = {0} then we

have D(Ã) ∩ I = {0}, hence the restriction of Ã to R ⊕ R (or even to R) does not
generate a semigroup. This means that I cannot be invariant under the semigroup

generated by Ã. That is we have by Proposition 3.3 that the semigroup generated by
A has no non-trivial closed invariant ideal. Therefore it is irreducible, and solutions
exhibit asynchronous exponential growth, see e.g. [4]. �

The previous result completely characterizes the asymptotic behavior of solutions
to the population model. That is, solutions behave asymptotically as ertu∗(s) in-
dependently of the initial condition, where r is the so called Malthusian parameter,
and u∗ is often referred to as the final size distribution.

4. Concluding remarks. In this note we introduced a linear structured popula-
tion model with diffusion in the size space. Introduction of a diffusion is natural in
the biological context [18], since unlike in age-structured models, individuals that
have the same size initially, may disperse as time progresses. In other words, dif-
fusion amounts to adding noise in a deterministic fashion. We equipped our model
with generalized Wentzell-Robin boundary conditions. We showed that the model is
governed by a positive quasicontractive semigroup on the biologically relevant state
space. Furthermore we have characterized the asymptotic behavior of solutions
via balanced exponential growth of the governing semigroup. We also established
that solutions exhibit asynchronous exponential growth if the function β is strictly
positive. An important biological consequence of asynchronous exponential growth
is population stabilization in the sense that the proportion of the population in
any subset of the structure space converges to a limiting value as time evolves,
independently of the initial state of the population. The question of irreducibility
of the semigroup generated by the Laplace operator with mixed Robin boundary
conditions on a Lp-space (for 1 < p < ∞) was addressed in the recent work by
Haller-Dintelmann et al. [19]. It is expected that a similar result holds if general-
ized Wentzell-Robin boundary conditions are imposed. This is a topic of ongoing
research.

In our model we have taken the view that individuals may be recruited into the
population at different sizes. This appears to be the natural choice in the context of
general physiologically structured population models, as opposed to age-structured
models, where every individual is born at the same age zero. It is interesting to
investigate whether a mathematically sound “limiting relationship” exists between
models with infinite states at birth and one state at birth. This will be addressed
in future work.

The power of generalized Wentzell boundary conditions in the context of pop-
ulation models is to allow the boundary states to carry mass. This is especially
interesting in the Lp context as the boundary is a set of measure zero and therefore
seems to play no role in an integral term. Interestingly, sinks on the boundary
can cause ill-posedness in space dimensions ≥ 2 as Vazquez and Vitillaro [23] have
shown.
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In the future we will extend our model to incorporate interaction variables, to
allow competition. Then model (1)-(3) becomes a nonlinear one, and the math-
ematical analysis will become more difficult. To our knowledge, positivity results
are rather rare in the literature for nonlinear models. In [11] it was shown that the
nonlinear semigroup generator satisfies the positive minimum principle, hence the
semigroup is positive. This however, does not apply to population models, as the
positive cone of the natural state space L1 has empty interior, hence the positive
minimum principle does not apply. It will be also interesting to consider more gen-
eral models with a finite number of structuring variables, such as age-size structured
models. Then the domain will be a cube [0, 1]n and the prescription of appropriate
boundary conditions will be much more involved.
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