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Summary 26 

The free-living nematode Panagrellus redivivus can be mass produced in monoxenic solid 27 

culture on Saccharomyces cerevisiae and therefore could be useful as a live food for marine 28 

fish or crustacean larvae in the rapidly expanding aquaculture industry.  However, this will 29 

depend on their lipid and fatty acid composition and so this was investigated in mass 30 

produced P. redivivus grown on S. cerevisiae in three different media.  Live nematodes were 31 

also incubated with [1-14C]-labelled fatty acids and their desaturation and elongation 32 

determined. The combined results from the growth trials on different media and the 33 

metabolic studies with labelled fatty acids indicated the presence of Δ9, Δ12, Δ6 and Δ5 fatty 34 

acid desaturase activities, and elongase activities active towards C18, C16 and shorter chain 35 

fatty acids. The presence of Δ15, and therefore the ability to produce n-3 polyunsaturated 36 

fatty acids, was suggested by the compositional data, but could not be conclusively 37 

established from metabolic studies.  38 
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During their early stages of development, many fish and crustacean species important for 41 

marine aquaculture rely on live food organisms (Sargent et al., 1995). The most commonly 42 

used live food is the brine shrimp Artemia salina, a small branchipod crustacean representing 43 

approximately 40% of the total aquaculture demand for live feeds for early stages (Lavens 44 

and Sorgeloos, 2000). Following one of the worst harvests of recent times from the premier 45 

source of Artemia cysts, the Great Salt Lakes in the United States, cyst production was barely 46 

sufficient to satisfy the increasing demand of the rapidly growing aquaculture industry 47 

(Sorgeloos et al., 2001). The lack of potential alternatives to Artemia may become an 48 

obstacle to a further increase of aquaculture production especially in developing countries. It 49 

has been shown that the free-living nematode Panagrellus redivivus is a suitable food for fish 50 

(Kahan and Appel, 1975; Kahan et al., 1980) and crustacean larvae (Biedenbach et al., 1989; 51 

Kumlu and Fletcher, 1997; Kumlu et al., 1998; Wilkenfeld et al., 1984). Although nematodes 52 

have been proven to be an excellent food source, their use has not become widespread due to 53 

problems involved in mass production. However, a low-cost technology for the mass 54 

production of P. redivivus on solid medium was recently described by Ricci et al. (2003).  55 

The nutritional value of nematodes can be influenced by the culture medium. For instance, 56 

lipid content and fatty acid composition of nematodes can be modified by adding lipid 57 

components to the culture medium (Rouse et al., 1992; Kumlu et al., 1998; Schlechtriem et 58 

al., 2004a,b). P. redivivus cultured on simple oat-based medium were found to feed mainly 59 

upon the yeast growing on the medium and possibly on the breakdown products of oats. 60 

Lipids extracted from such nematodes contained highly unsaturated fatty acids (HUFA, fatty 61 

acids having carbon chain lengths of ≥C20 and with ≥3 double bonds; n-x signifying the 62 

position of the double bond from the methyl end of the molecule) like arachidonic (20:4 n-6) 63 

and eicosapentaenoic acid (20:5 n-3) although no C20 HUFA were found either in oats or in 64 

the yeast (Sivapalan and Jenkins, 1966; Schlechtriem et al., 2004b). Similar results were 65 

obtained by Lower et al. (1970) who cultured P. redivivus axenically (bacteria-free) on an 66 



 

 

aqueous medium composed of heated liver extract and soy-peptone yeast. Therefore, P. 67 

redivivus appear to possess fatty acid desaturase and elongase activities necessary to 68 

synthesize several HUFAs from shorter chain fatty acid precursors, as previously described 69 

for the free-living nematodes Caenorhabditis elegans (Hutzell and Krusberg, 1982; Watts 70 

and Browse, 2002) and Turbatrix aceti (Rothstein and Götz, 1968; Fletcher and Krusberg, 71 

1973). Thus, the fatty acid pattern of the nematodes is influenced by the fatty acid 72 

composition of the culture medium and the nematodes’ capability to synthesize HUFAs. In 73 

this way, both factors also influence the nutritive value of P. redivivus as live food for first 74 

feeding fish larvae. For instance, arachidonic acid and eicosapentaenoic acid are important as 75 

structural components of membrane glycerolipids and as precursors of families of signalling 76 

molecules including prostaglandins, thromboxanes, and leukotrienes in fish (Sargent et al., 77 

2002; Tocher, 2003). To assess the effect of endogenous HUFA biosynthesis on the fatty 78 

acid composition of P. redivivus, the pathway of HUFA synthesis and the complement of 79 

fatty acid desaturase/elongase enzymes must be elucidated. In addition, it was not clear from 80 

the studies above whether P. redivivus was able to directly synthesise polyunsaturated fatty 81 

acids (PUFA, fatty acids with two or more double bonds) de novo, that is, produce 18:2 n-6 82 

from 18:1 n-9. 83 

In the present study, the effect of different culture media on the lipid content, lipid class 84 

composition and fatty acid composition of mass produced P. redivivus was examined. The 85 

nematodes were grown on yeast, Saccharomyces cerevisiae, in three different media. One 86 

medium represented a low lipid medium with little added lipid. The other two media 87 

contained, respectively, very high 18:2 n-6 (66.8% of total fatty acids in sunflower oil), to 88 

investigate PUFA metabolism, and high medium chain saturates (10:0, 42.1% of total fatty 89 

acids in MCT oil) to investigate effects on C16 and C18 metabolism. Differences in the fatty 90 

acid composition of total polar and neutral lipids were analysed. To further investigate the 91 

pathway of PUFA and HUFA biosynthesis in P. redivivus, live nematodes were incubated 92 



 

 

with different [1-14C]-labelled fatty acids and their further metabolism by desaturation and 93 

elongation determined. 94 

 95 

Materials and Methods 96 

 97 

Experimental Animals and Culture 98 

The free-living nematode Panagrellus redivivus was provided by Dr. Manuele Ricci 99 

(BioTecnologie B.T. S.r.l., Pantalla di Todi, 06050, PG, Italy). Nematodes were mass 100 

produced in monoxenic solid culture (single microorganism: Saccharomyces cerevisiae) 101 

according to Ricci et al. (2003). Three different culture media were used: 1) Low lipid 102 

medium (LLM) containing 86.8% saline solution (0.8% sea salt; Tetra Marin), 1.3 peptone 103 

from soybean meal (Fluka, 70178), 0.8% yeast extract (Fluka, 70161), 10.8% wheat starch 104 

(Sigma, S-5127) and 0.2% Glucose (Riedel de Haen 16301). 2) Lipid-enriched oat-based 105 

medium (LOM; Schlechtriem et al. 2004b) consisting of 82.4% saline solution, 16.4% oat 106 

flour (Kölln), and 1.2% sunflower oil (Thomy, Germany). 3) Low lipid medium enriched 107 

with medium-chain triglycerides (MTM) consisting of 85.4% saline solution, 1.3% peptone 108 

from soybean meal, 0.8% yeast extract, 10.7% wheat starch, 0.2% glucose and 1.6% 109 

medium-chain triglycerides (Heess Stuttgart, 4605). Three batches of nematodes were 110 

produced per medium. After twelve days of incubation at 25°C nematodes were separated 111 

from the medium by filtering them through a coarse sieve, covered with cotton discs for 112 

manual milk filtration, which was placed in a petri-dish filled with water. Clean nematodes 113 

were obtained by passing the residue through a 105 µm plankton net to remove the yeast cells 114 

and remaining particles of the medium.  115 

 116 



 

 

Lipid extraction and lipid class composition 117 

Total lipid contents of nematodes and growth medium samples were determined 118 

gravimetrically after extraction by homogenization in chloroform/methanol (2:1, v/v) 119 

containing 0.01% butylated hydroxytoluene as antioxidant, basically according to Folch et al. 120 

(1957). Separation of lipid classes was performed by high-performance thin-layer 121 

chromatography. Approximately 10 µg of lipid extract was loaded as a 2 mm streak and the 122 

plate developed to two-thirds distance with methyl acetate/isopropanol/ 123 

chloroform/methanol/0.25% aqueous KCl (25:25:25:10:9, by vol.). After drying, the plate 124 

was fully developed with isohexane/diethyl ether/acetic acid (85:15:1, by vol.). The classes 125 

were quantified by charring at 160oC for 15 min after spraying with 3% (w/v) aqueous cupric 126 

acetate containing 8% (v/v) phosphoric acid, followed by calibrated densitometry using a 127 

Shimadzu CS-9000 dual-wavelength flying spot scanner and a DR-13 recorder (Henderson 128 

and Tocher 1992).  129 

 130 

Fatty acid analysis 131 

Samples of total lipid (2 mg) were applied as 2 cm streaks to thin-layer chromatography 132 

plates, and polar lipids separated from neutral lipids using hexane/diethyl ether/acetic acid 133 

(90:10:1, by vol.) as developing solvent. The origin area corresponding to total polar lipids 134 

and the lane above the origin corresponding to total neutral lipids were scraped into 135 

stoppered glass test tubes for transmethylation directly on the silica (Christie, 1982). Fatty 136 

acid methyl esters of total lipid, total polar lipids, and total neutral lipids, purified as above, 137 

were prepared by acid-catalyzed transesterification using 2 ml of 1% H2SO4 in methanol plus 138 

1 ml toluene as described by Christie (1982) and methyl esters extracted and purified as 139 

described previously (Tocher and Harvie, 1988). Fatty acid methyl esters were separated and 140 

quantified by gas-liquid chromatography (Fisons GC8600, Fisons Ltd., Crawley, U.K.) using 141 

a 30m x 0.32 mm capillary column (CP wax 52CB; Chrompak Ltd., London, U.K). 142 



 

 

Hydrogen was used as carrier gas and temperature programming was from 50oC to 180oC at 143 

40oC/min and then to 225oC at 2oC/min. Individual methyl esters were identified by 144 

comparison to known standards and by reference to published data (Ackman, 1980). 145 

 146 

Incubation of nematodes with [1-14C]-labelled fatty acids 147 

Live nematodes, containing juveniles (J1-4 stages) and adults, grown on S. cerevisiae in 148 

LLM, were resuspended in Medium 199 and dispensed in 4ml aliquots into 25cm2 tissue 149 

culture flasks. Flasks were supplemented with 0.5 µCi (approximately 100µl) of a particular 150 

[1-14C]-labelled fatty acid added as a complex with fatty acid-free bovine serum albumin 151 

(FAF-BSA) prepared in medium 199 as described previously (Ghioni et al., 1997). The 152 

specific fatty acids used were [1-14C]18:0, [1-14C]18:1 n-9, [1-14C]18:2 n-6, [1-14C]18:3 n-3, 153 

[1-14C]20:3 n-6, [1-14C]20:4 n-6 and [1-14C]20:5 n-3. The suspensions were mixed carefully 154 

and incubated at 20°C for 24h. After incubation the flasks were gently rocked and the 155 

suspension of live nematodes transferred to glass conical test tubes. Each flask was washed 156 

with 1 ml of ice-cold 1% FAF-BSA in Hanks’ balanced salt solution added afterwards to the 157 

test tubes. The suspensions were centrifuged (400 x g for 2 min.; ~1200rpm), the 158 

supernatants decanted and the nematodes washed again with 5 ml 1% ice-cold Hanks’ 159 

balanced salt solution containing FAF-BSA. After centrifugation the pellets were used for 160 

analyses of radiolabelled fatty acids. 161 

 162 

Assay of fatty acyl desaturation/elongation activities 163 

Lipids were extracted from labelled nematode pellets using ice-cold chloroform/methanol 164 

(2:1, v/v) containing 0.01% (w/v) butylated hydroxytoluene essentially as described by Folch 165 

et al. (1957) and as described in detail previously (Tocher et al., 1988). Total lipid was 166 

transmethylated and fatty acid methyl esters prepared as described above. The methyl esters 167 

were redissolved in 100 µl isohexane containing 0.01% butylated hydroxytoluene and 168 



 

 

applied as 2.5 cm streaks to thin-layer chromatography plates impregnated by spraying with 169 

2 g silver nitrate in 20 ml acetonitrile and pre-activated at 110 oC for 30 min. Plates were 170 

fully developed in toluene/acetonitrile (95:5, v/v) (Wilson and Sargent, 1992). 171 

Autoradiography was performed with Kodak MR2 film for 6 days at room temperature. 172 

Areas of silica containing individual PUFA were scraped into scintillation mini-vials 173 

containing 2.5 ml of scintillation fluid (Ecoscint A, National Diagnostics, Atlanta, Georgia) 174 

and radioactivity determined in a TRI-CARB 2000CA scintillation counter (United 175 

Technologies Packard, U.K.). Results were corrected for counting efficiency and quenching 176 

of 14C under exactly these conditions.  177 

 178 

Protein determination  179 

Protein concentration in nematode suspensions was determined according to the method of 180 

Lowry et al. (1951) after incubation with 0.4 ml of 0.25% (w/v) SDS/1M NaOH for 45 min 181 

at 60oC. 182 

 183 

Materials 184 

[1-14C]18:0, [1-14C]18:1 n-9 [1-14C]18:2 n-6, [1-14C]18:3 n-3, [1-14C]20:3 n-6, [1-14C]20:4 185 

n-6 and [1-14C]20:5 n-3, all (50-55 mCi/mmol) were obtained from NEN (DuPont (U.K.) 186 

Ltd., Stevenage, U.K.). Hanks’ balanced salt solution, HEPES buffer, FAF-BSA, butylated 187 

hydroxytoluene, and silver nitrate were obtained from Sigma Chemical Co. (Poole, U.K.). 188 

Thin-layer chromatography (20 cm x 20 cm x 0.25 mm) and high-performance thin-layer 189 

chromatography plates (10 cm x 10 cm x 0.15 mm), precoated with silica gel 60 (without 190 

fluorescent indicator) were obtained from Merck (Darmstadt, Germany). All solvents were 191 

HPLC grade and were obtained from Fisher Scientific U.K., Loughborough, England. 192 

 193 



 

 

Statistical analysis 194 

Data recorded as percentages were arcsine-transformed to ensure a normal distribution and 195 

subjected to analysis of variance (ANOVA). Duncan’s Multiple Range Test (DMRT) was 196 

used to identify differences among treatment means (P<0.05) (STATISTICA 5.1 software). 197 

 198 

Results 199 

 200 

Fatty acid compositions of growth media components  201 

All nematodes were produced by culture on the yeast, Saccharomyces cerevisiae, but in three 202 

different media. The fatty acid composition of the basic yeast contained over 50% 203 

monounsaturated fatty acids, predominantly 18:1 n-9 and 16:1 n-7, nearly 18% saturated 204 

fatty acids, predominantly 16:0, and 32% PUFA composed of over 30% 18:2 n-6, and only 205 

1% 18:3 n-3 and virtually no HUFA (Table 1).  The LLM medium contained a small amount 206 

of yeast extract which contained a similar level of monounsaturated fatty acids including 207 

13% 24:1 n-9, but a higher level of saturates and lower PUFA, than the yeast.  The main 208 

PUFA in the yeast extract was 18:2 n-6 but there was 3.6% 20:3 n-6 and a small amount of 209 

20:5 n-3. The LOM medium contained oat flour (OAT) and sunflower oil (SFO), both of 210 

which were rich in 18:2 n-6, 40% and 67%, respectively, with the remaining fatty acids being 211 

18:1 n-9 and saturates, with virtually no n-3 PUFA (Table 1). The MTM medium was 212 

enriched with medium-chain triglycerides (MCT) which had over 42% 10:0 in a total of 54% 213 

saturates along with 30% 18:2 n-6 and 14% 18:1 n-9 (Table 1). 214 

 215 

Effects of growth media on lipid content and lipid class composition of P. redivivus  216 

The lipid content of P. redivivus grown in media supplemented with lipid was significantly 217 

increased in comparison to nematodes grown in the low lipid medium with the order being 218 



 

 

MTM > LOM > LLM (Table 2). The increased lipid content was accompanied by increased 219 

proportions of triacylglycerol and total neutral lipid although the percentage of 220 

triacylglycerol in nematodes grown in MTM was lower than that of nematodes grown in 221 

LOM despite having a higher lipid content suggesting an increase in the absolute amount of 222 

polar lipids in P. redivivus grown in MTM (Table 2).  223 

 224 

Effects of growth medium on fatty acid compositions of total lipid 225 

Saturated fatty acids constituted 14.7% of the fatty acid content of P. redivivus grown on 226 

yeast in the low lipid medium, with 18:0 exceeding 16:0, and around 24% monounsaturated 227 

fatty acids, mainly 18:1 n-7 (12.4%) and 18:1 n-9 (7.6%) (Table 3). However, around 44% of 228 

all fatty acids were n-6PUFA, specifically 13.8% 18:2 n-6, 13.4% 20:3 n-6 and 15.8% 20:4 229 

n-6, with 8% n-3PUFA, mainly 20:5 n-3, giving an n-6/n-3 ratio of 5.5. The remaining fatty 230 

chains (9%) were dimethyl acetals (DMA) produced as a result of transmethylation of the 231 

ether-linked chains in the sn-1 position plasmalogen phospholipids. Growth in LOM resulted 232 

in significantly increased proportions of 18:2 n-6 and 18:1 n-9 with concomitantly decreased 233 

proportions of 18:1 n-7, 20:3 n-6, 20:4 n-6, n-3PUFA and dimethylacetals (Table 3). 234 

The proportion of saturated fatty acids in total fatty acids was slightly lower in nematodes 235 

grown on LOM, whereas it was significantly increased in nematodes grown in MTM, 236 

compared to growth in LLM (Table 3). Growth in both lipid-supplemented media resulted in 237 

the level of 16:0 exceeding that of 18:0 compared to nematodes grown in LLM. Saturated 238 

fatty acids after growth in MTM also resulted in higher proportions of shorter chain fatty 239 

acids in total fatty acids, including 14:0, 12:0 and 10:0, but also 18:1 n-7, 18:1 n-9 and 16:1 240 

n-7 with decreased proportions of 18:0, 20:3 n-6, 20:4 n-6 and DMA. The proportion of 18:2 241 

n-6 and n-3PUFA in total fatty acids were not greatly affected by growth in MTM compared 242 

to growth in LLM (Table 3). 243 

 244 



 

 

Effects of growth medium on fatty acid compositions of polar and neutral lipids 245 

The polar lipid of P. redivivus grown in LLM contained higher proportions of n-6PUFA and 246 

n-3PUFA and lower proportions of saturated and monounsaturated fatty acids compared to 247 

neutral lipids (Table 4). Growth in LOM increased the proportion of 18:2 n-6 in both polar 248 

and neutral lipids whereas the increased 18:1 n-9 was only observed in neutral lipids. The 249 

proportions of 20:3 n-6, 20:4 n-6 and 20:5 n-3 and total n-3PUFA were reduced in both polar 250 

and neutral lipids in nematodes grown in LOM compared to growth in LLM (Table 4). In 251 

contrast, the fatty acid composition of polar lipids of nematodes grown in MTM were 252 

relatively unaffected by growth in MTM compared to growth in LLM (Table 4). However, 253 

the proportions of saturated and monounsaturated fatty acids were increased, and those of n-6 254 

and n-3PUFA decreased, in P. redivivus grown in MTM compared to growth in LLM 255 

(Table 4). 256 

Consistent features observed, irrespective of growth medium, were that 18:0 exceeded 16:0 257 

in polar lipids, whereas the opposite was the case in neutral lipids, and similarly 18:1 n-7 258 

always exceeded 18:1 n-9 in polar lipids whereas this ratio was affected by medium 259 

composition (diet) in neutral lipids (Table 4). DMA were only found in polar lipids, 260 

reflecting their origin from ether-linked phospholipid classes and their levels were relatively 261 

unaffected by growth medium. 262 

 263 

Metabolism of 14C-labelled fatty acids in P. redivivus 264 

Total lipid was extracted from P. redivivus after incubation with radiolabelled fatty acids. 265 

Approximately 25% of the radioactivity from [1-14C]18:0 was recovered in other fatty acid 266 

fractions with approximately 15% recovered as monounsaturated fatty acids (16:1, 18:1 and 267 

20:1) and 10% recovered as polyunsaturated fatty acids, predominantly 18:2 n-6 (Table 5). 268 

The primary fate of radioactivity from [1-14C]18:1 n-9 was as 18:2 n-6 although 269 

radioactivity was recovered in other PUFA as well as the elongation product 20:1 and 270 



 

 

saturated (18:0/16:0) and shorter chain fatty acids (16:1 n-7). After incubation of P. 271 

redivivus with [1-14C]18:2 n-6 or [1-14C]18:3 n-3, the recovery of radioactivity was 272 

primarily in saturated and monounsaturated, including shorter chain, fatty acids, totaling 273 

around 27% and 47%, respectively (Table 5).  274 

However, approximately 5% of the radioactivity from each of [1-14C]18:2 n-6 or [1-14C]18:3 275 

n-3 was recovered in further desaturated fatty acid products.  Incubation of P. redivivus with 276 

the radiolabelled HUFA resulted in 21%, 28% and 46% of the readioactivity from [1-277 

14C]20:3 n-6, [1-14C]20:4 n-6 and [1-14C]20:5 n-3 , respectively, being recovered as 278 

saturated, monounsaturated and shorter chain fatty acids (Table 5). Approximately, 6.5%, 279 

7.2% and 2.5% of the radioactivity from 1-14C]20:3 n-6, [1-14C]20:4 n-6 and [1-14C]20:5 n-3, 280 

respectively, was recovered in further desaturated products.  281 

 282 

Discussion 283 

 284 

The fatty acid composition of total lipid of P.redivivus grown on S. cerevisiae in LLM 285 

(Table 3) shows some interesting features such as 18:0 > 16:0 and 18:1 n-7 > 18:1 n-9, the 286 

opposite to the situation in higher animals, and in the yeast on which it was grown in which 287 

16:0 and 18:1 n-9 both greatly exceeded 18:0 and 18:1 n-7, respectively. The composition of 288 

all the other media components were the same as the yeast in this respect (Table 1) which 289 

was most interesting, as 18:0 > 16:0 and 18:1 n-7 > 18:1 n-9 was consistently observed in the 290 

polar lipid fraction of P. redivivus, representative of the membrane lipids, irrespective of 291 

medium or diet. In contrast, the fatty acid composition of the neutral lipids did not show the 292 

same characteristic pattern in the saturated fatty acids (as 16:0 > 18:0) but 18:1 n-7 did 293 

exceed 18:1 n-9, although this could be changed by diet as shown with the LOM medium 294 

(oatmeal and sunflower oil) which was rich in 18:1 n-9. Therefore, the pattern of 18:0 > 16:0 295 

and 18:1 n-7 > 18:1 n-9 are inherent features of P. redivivus. This appears to extend to 296 



 

 

related nematodes such as Caenorhabditis elegans, which also shows this pattern (Hutzell 297 

and Krusberg, 1982; Tanaka et al., 1996). In the former study, C. elegans were grown on a 298 

liver extract/yeast extract/soy peptone medium that was devoid of 18:1 n-7, although 18:0 299 

exceeded 16:0, whereas in the latter study, C. elegans were grown on E.coli in which 18:1 n-300 

7 was the predominant monoene, but 16:0 and not 18:0 was the main saturated fatty acid, but 301 

in both cases C. elegans maintained the 18:0 > 16:0 and 18:1 n-7 > 18:1 n-9 pattern despite 302 

the “dietary” influence.  303 

The data obtained from the experiments with radioactively labelled fatty acids clearly show 304 

that a major fate of each of the fatty acids was β-oxidation. This is the explanation for the 305 

radioactivity that was recovered in fatty acids with shorter chain lengths, or more saturated, 306 

than the labelled substrate fatty acid as one round of β-oxidation would remove the labelled 307 

carbon from the fatty acid in [1-14C]-labelled fatty acids. Thus, with [1-14C]18:0, over 4% of 308 

radioactivity was recovered in 16:1 n-7 indicating that 18:0 was also metabolised by 309 

β-oxidation to produce 14C-labelled acetyl–CoA which was recycled by fatty acid synthase 310 

(FAS), or an elongase, producing labelled 16:0 (although this could not be resolved from 311 

18:0 by the chromatographic procedure) which was subsequently desaturated to 16:1 n-7. It 312 

was noteworthy that within a chain length (C18 or C20) the amount of radioactivity recovered 313 

as recycled fatty acid products increased with increasing unsaturation of the labelled 314 

substrate fatty acid suggesting that P. redivivus may prefer to β-oxidise PUFA compared to 315 

saturated and monounsaturated fatty acids. However, it could be that lower amounts of 316 

labelled acetyl-CoA were recycled with 18:0 or 18:1 n-9 than with PUFA as the data are 317 

expressed as percentages of recovered fatty acids. Although differences in recycling cannot 318 

be discounted, recoveries were generally comparable between the different fatty acids 319 

suggesting that it cannot be a full explanation. 320 

The data clearly suggest that P. redivivus express a wide range of desaturation and elongation 321 

activities. In interpreting the data in the present study, it is necessary to be familiar with the 322 



 

 

pathways for synthesis of HUFA and the range of desaturases that are commonly found in 323 

either plants or animals (see Fig.1; note that this figure is not representative of any one 324 

species). Production of labelled 18:1 n-9 from [1-14C]18:0 and of 16:1 n-7, presumably 325 

arising by desaturation of 16:0, labelled as a result of recycling (see above) indicates Δ9 326 

desaturase activity. Production of 18:2 n-6 from [1-14C]18:1 n-9 indicates significant Δ12 327 

desaturase activity. The presence of a Δ15 (or n-3) desaturase activity (responsible for the 328 

production of 18:3 n-3 from 18:2 n-6 in plants) is more difficult to establish as it is not 329 

possible to distinguish between 18:3 n-3 (Δ15 product) and 18:3 n-6 (a Δ6 desaturase 330 

product) and the same applies to all similar pairs such as 20:3 n-6/20:3 n-3 or 20:4 n-6/20:4 331 

n-3. The fatty acid composition data obtained from the growth media studies suggested that 332 

P. redivivus may express Δ15 desaturase activity as significant amounts of n-3fatty acids, 333 

especially 20:5 n-3, were present despite these being very low in the growth media. 334 

However, growth in LOM, containing very high 18:2 n-6, did not result in increased levels of 335 

18:3 n-3 or n-3PUFA, with the proportion of 20:5 n-3 significantly decreasing in all lipid 336 

classes. In contrast, the presence of Δ6 desaturase activity is strongly suggested by the 337 

recovery of radioactivity as 18:4 n-3 when P. redivivus was incubated with [1-14C]18:3 n-3 338 

suggesting that at least some of the radioactivity recovered in 18:3 when P. redivivus was 339 

incubated with [1-14C]18:2 n-6 will be 18:3 n-6, the Δ6 product.  340 

The data obtained from P.redivivus incubated with [1-14C]18:3 n-3 were also consistent with 341 

the presence of a Δ5 desaturase activity. This is because there is no known pathway for 342 

conversion of 18:3 n-3 into n-6 fatty acids such as 20:4 n-6 or 22:5 n-6 and it is unlikely for 343 

the amounts of radioactivity recovered in these fractions to have arisen solely from recycling. 344 

Thus, the radioactivity recovered from [1-14C]18:3 n-3 is almost certain to be as 20:4 n-3 and 345 

20:5 n-3 indicating the presence of Δ5 desaturase (20:4 n-3 to 20:5 n-3). However, the best 346 

evidence for significant Δ5 activity is the high level of 20:4 n-6 in P. redivivus grown on 347 

S. cerevisiae in LLM as neither the yeast nor the yeast extract contained any significant 348 



 

 

amount of 20:4 n-6 suggesting its presence in the nematode was the result of Δ5 action on 349 

20:3 n-6 either supplied directly or as a result of Δ6 desaturation and elongation of 18:2 n-6. 350 

In comparison to Δ5 activity, where supporting evidence for significant activity can be 351 

demonstrated, support for Δ6* activity is lacking. The presence of 22:6 n-3 was not observed 352 

in P. redivivus under any conditions suggesting that the recovery of traces of radioactivity in 353 

the position corresponding to 22:6 n-3 was due to an unknown component or artifactual. The 354 

predominant n-3 fatty acid and, indeed, the most abundant fatty acid in C. elegans 355 

phospholipids grown on E. coli was 20:5 n-3, and no 22:6 n-3 was reported (Tanaka et al., 356 

1996). Similarly, 20:5 n-3 was the most abundant C20 HUFA in Steinernema carpocapsae 357 

when grown on artificial diet supplemented with lard or linseed oil, and no 22:6 n-3 was 358 

found (Fodor et al., 1994). 359 

The presence of a Δ12 activity in an animal like P. redivivus is not without precedent. In an 360 

earlier study, a Caenorhabditis elegans cDNA encoding a Δ12 fatty acid desaturase was 361 

identified and characterized (Peyou-Ndi et al., 2000). 362 

Although we found no unequivocal evidence for a Δ15 (n-3) desaturase activity in P. 363 

redivivus, genes for all the fatty acid desaturases required to produce 20:5 n-3 and 20:4 n-6, 364 

including Δ9, Δ12, Δ15/n-3, Δ6 and Δ5, have been identified in the genome of C. elegans 365 

(Napier and Michaelson, 2001). The cDNAs for some of these C.elegans genes including the 366 

n-3 (Δ15) (Spychalla et al., 1997), Δ6 (Napier et al., 1998) and Δ5 desaturases (Michaelson 367 

et al., 1998; Watts and Browse, 1999) have been cloned and functionally characterized. 368 

Interestingly, the C. elegans Δ15 desaturase was actually revealed to be an ω3 desaturase as 369 

it desaturated both C18 and C20 n-6 substrates to the corresponding n-3 fatty acids (Spychalla 370 

et al., 1997).  371 

Increased levels of 14:0 and 16:0 in P. redivivus cultured in MTM is evidence for elongation 372 

of 10:0 through to 16:0. The presence of C18-20 elongase activity was also clearly 373 

demonstrated by the recovery of significant amounts of radioactivity as 20:1 when P. 374 



 

 

redivivus was incubated with [1-14C]18:0 or [1-14C]18:1 n-9. However, the elongase activity 375 

towards C20 fatty acids would not appear to be as high as towards shorter chain substrates. 376 

This is confirmed by the fatty acid composition data that showed very little evidence for C22 377 

fatty acids in P. redivivus under any conditions. An enzyme catalyzing the elongation of fatty 378 

acids, ELO-1, has been cloned and functional characterised from the nematode C. elegans, 379 

and heterologous expression in yeast showed it was predominantly active on C18 PUFA with 380 

virtually no activity towards C20 PUFA (Beaudoin et al., 2000, Watts and Browse, 2002). 381 

ELO-1 functions together with ELO-2 a predicted C. elegans enzyme with fatty acid 382 

elongation activity apparently towards C16:0 (Kniazeva et al. 2003). 383 

The data from the metabolic studies using radiolabelled fatty acids can perhaps help to 384 

explain the characteristic “normal” fatty acid composition of P. redivivus with 18:0 > 16:0 385 

and 18:1n7 > 18:1 n-9 as discussed above. A possible explanation is that the desaturase and 386 

elongase enzymes are more efficient with C16 compared to C18 fatty acids, and therefore, 387 

16:0, produced by fatty acid synthetase, is readily desaturated to 16:1 n-7 and elongated to 388 

18:0 and that subsequent elongation of 16:1 n-7 to 18:1 n-7 is more efficient than 389 

desaturation of 18:0 to 18:1 n-9. The result of these differential activities being that 18:0 and 390 

18:1 n-7 tend to accumulate more than 16:0 and 18:1 n-9. Growth in medium such as LOM, 391 

with very high 18:1 n-9 from oatmeal and sunflower oil, increases triacylglycerol rich in 18:1 392 

n-9, thus reversing the ratio of 18:1 n-9 to 18:1 n-7 in neutral lipid. In contrast, MTM is 393 

characterized by high saturated fatty acids, particularly 10:0 which is presumably efficiently 394 

elongated to 16:0 in P. redivivus, greatly increasing 16:0 and reversing the 18:0 to 16:0 ratio, 395 

but also increasing production of 18:1 n-7 through conversion of 16:0 to 16:1 n-7 to 18:1 n-7 396 

and so 18:1 n-7 still exceeds in both polar and neutral lipid in P. redivivus grown in MTM.  397 

In summary the results have indicated the presence in P. redivivus of Δ9, Δ12, Δ6 and Δ5 398 

fatty acid desaturase activities, and elongase activities active towards C18, C16 and shorter 399 

chain fatty acids. The data suggested that elongation and Δ9 desaturation were more active 400 



 

 

towards C16 than C18 fatty acids, as the predominant saturated and monounsaturated fatty 401 

acids in P. redivivus were 18:0 and 18:1 n-7, rather than 16:0 and 18:1 n-9 normally found in 402 

higher animals. The fatty acid compositional data suggested that P. redivivus may have the 403 

ability to produce n-3PUFA de novo, indicating the presence of a Δ15 fatty acid desaturase, 404 

but this could not be conclusively established from the metabolic studies. Previous studies 405 

suggested that P. redivivus could be a useful live food for aquaculture, as it can be mass 406 

produced with fatty acid compositions specifically tailored to the particular aquaculture 407 

organism (Schlechtriem et al., 2004a, b). However, the de novo production of n-3PUFA 408 

requires to be further investigated in order to determine whether tailoring can be achieved 409 

with purely plant-based products. 410 
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Table 1. Fatty acid composition (percentage of total fatty acid by weight) of lipid-containing 539 

ingredients of media for culture of the nematode Panagrellus redivivus. 540 

 541 

      
Fatty acid/treatment Yeast YE SFO OAT MCT 
      
      
8:0 nd nd nd nd 0.9 
10:0 nd nd nd nd 42.1 
12:0 nd nd nd nd 2.8 
14:0 0.6 1.9 0.1 0.2 0.2 
15:0 0.2 1.3 tr nd 0.3 
16:0 13.8 19.1 6.0 16.3 5.6 
18:0 3.0 5.4 4.3 1.5 1.9 
20:0 nd 0.5 0.2 0.1 nd 
Total saturated 17.7 28.2 10.7 18.1 53.7 
      
16:1 n-9 nd 1.9 nd nd nd 
16:1 n-7 13.4 5.4 0.1 0.2 0.2 
18:1 n-9 33.9 24.0 21.4 38.8 14.4 
18:1 n-7 1.4 1.5 nd nd 0.4 
20:1 n-11 nd nd 0.1 nd nd 
20:1 n-9 0.6 1.9 0.1 0.8 0.2 
20:1 n-7 nd 0.2 nd nd nd 
22:1 0.3 2.2 0.7 0.1 nd 
24:1 n-9 0.6 13.1 0.1 0.2 0.6 
Total monounsaturated 50.3 50.3 22.4 40.1 15.8 
      
18:2 n-6 30.4 14.6 66.8 40.4 29.9 
18:3 n-6 nd 0.7 nd nd nd 
20:2 n-6 nd 0.4 nd nd nd 
20:3 n-6 0.3 3.6 nd nd 0.4 
20:4 n-6 nd 0.3 nd nd nd 
Total n-6 PUFA 30.7 19.6 66.8 40.4 30.3 
      
18:3 n-3 1.2 0.8 0.1 1.3 0.2 
18:4 n-3 nd 0.3 nd nd nd 
20:4 n-3 nd 0.2 nd 0.0 nd 
20:5 n-3 0.1 0.5 tr 0.1 nd 
22:6 n-3 nd nd nd nd nd 
Total n-3 PUFA 1.3 1.9 0.1 1.4 0.2 
      
Total PUFA 32.0 21.5 66.9 41.8 30.5 
n-6/n-3 23.6 10.3 668.0 28.9 151.5 

 542 

Results are means of duplicate analyses. Yeast, Saccharomyces cerevisiae; YE, yeast extract; 543 

SFO, sunflower oil; OAT, oat flour; MCT, medium-chain tryglyerides; nd, not detected; 544 

PUFA, polyunsaturated fatty acids. 545 

546 



 

 

Table 2. Lipid content (mg lipid/ g dry mass) and lipid class compositions (percentage of total 546 

lipid) of Panagrellus redivivus grown on different culture media 547 

 548 

             
 LLM  LOM  MTM  
             
             
Lipid content 13.3 ± 0.8 c 23.0 ± 0.4 b 29.0 ± 1.0 a 

             
Lipid class             

             
Choline phosphoglycerides 19.7 ± 0.0 a 8.3 ± 0.1 c 15.8 ± 0.8 b 

Ethanolamine phosphoglycerides 20.9 ± 0.6 a 12.4 ± 0.2 c 15.4 ± 0.6 b 

Serine phosphoglycerides 6.6 ± 0.2 a 3.1 ± 0.1 c 4.5 ± 0.1 b 

Inositol phosphoglycerides 4.6 ± 0.1 a 3.1 ± 0.1 c 3.9 ± 0.1 b 

PG/CL/PA 6.0 ± 0.3 a 0.1 ± 0.1 c 4.8 ± 0.4 b 

Sphingomyelin 3.3 ± 0.1 a 1.6 ± 0.1 c 2.3 ± 0.0 b 

             

Total polar 61.0 ± 0.3 a 28.6 ± 0.4 c 46.7 ± 1.5 b 

Total neutral 39.0 ± 0.3 c 71.4 ± 0.4 a 53.3 ± 1.5 b 

             

Sterol 12.7 ± 0.6 a 10.3 ± 0.4 b 3.3 ± 0.2 c 

Triacylglycerol 22.7 ± 0.5 c 56.4 ± 1.0 a 45.4 ± 1.3 b 

Free fatty acids 1.2 ± 0.6 a 1.0 ± 0.2 a 0.9 ± 0.8 a 

Sterol esters 2.4 ± 0.1 b 3.7 ± 0.3 a 3.6 ± 0.4 a 

             
             

 549 
 550 

Results are means ± S.D. (n=3). Significance of differences between means were determined 551 

by one-way ANOVA followed, where appropriate, by Tukey´s multiple comparison test as 552 

described in the Materials and Methods. Values within a row with a different superscript letter 553 

are significantly different (P<0.05). LLM, low lipid medium; LOM, lipid enriched oat based 554 

medium; MTM, medium chain triglyceride medium; PG, phosphatidylglycerol; CL, 555 

cardiolipin; PA, phosphatidic acid;. 556 

557 



 

 

Table 3. Fatty acid composition (percentage of total fatty acids) of Panagrellus redivivus 557 

grown on different culture media. 558 

 559 

Fatty acid LLM  LOM  MTM  

         

10:0 ndb  ndb  0.3 ± 0.1 a 

12:0 ndb  ndb  0.9 ± 0.1 a 

14:0 0.9 ± 0.0 b 0.4 ± 0.0 c 3.6 ± 0.2 a 

15:0 0.1 ± 0.0 a 0.1 ± 0.0 a 0.1 ± 0.1 a 

16:0 6.1 ± 0.2 b 6.2 ± 0.1 b 8.5 ± 0.5 a 

18:0 7.0 ± 0.1 a 4.6 ± 0.1 b 4.7 ± 0.3 b 

20:0 0.3 ± 0.0 a 0.2 ± 0.0 b 0.1 ± 0.0 b 

24:0 0.3 ± 0.0 a 0.1 ± 0.0 b 0.3 ± 0.1 a 

Total saturated 14.7 ± 0.2 b 11.6 ± 0.2 c 18.6 ± 1.2 a 

             

16:1 n-7 2.0 ± 0.1 b 2.0 ± 0.0 b 4.6 ± 0.1 a 

18:1 n-9 7.6 ± 0.3 c 15.3 ± 0.2 a 10.5 ± 0.8 b 

18:1 n-7 12.4 ± 0.3 b 4.7 ± 0.1 c 20.1 ± 0.6 a 

20:1 n-9 0.4 ± 0.1 a 0.4 ± 0.0 a 0.2 ± 0.0 b 

20:1 n-7 0.4 ± 0.0 b 0.1 ± 0.0 c 0.5 ± 0.0 a 

22:1 0.7 ± 0.0 a 0.4 ± 0.0 b 0.1 ± 0.0 c 

24:1 n-9 0.3 ± 0.3 a 0.1 ± 0.0 a 0.1 ± 0.1 a 

Total monoenes 23.9 ± 0.2 b 23.0 ± 0.2 b 36.2 ± 1.1 a 

             

18:2 n-6 13.8 ± 0.1 b 45.4 ± 0.1 a 13.1 ± 0.3 c 

18:3 n-6 0.7 ± 0.0 c 1.1 ± 0.0 a 1.0 ± 0.1 b 

20:2 n-6 0.8 ± 0.0 b 2.6 ± 0.0 a 0.4 ± 0.0 c 

20:3 n-6 13.4 ± 0.1 a 4.4 ± 0.1 c 9.0 ± 0.3 b 

20:4 n-6 15.8 ± 0.1 a 5.6 ± 0.1 c 10.3 ± 0.4 b 

Total n-6PUFA 44.4 ± 0.2 b 59.1 ± 0.3 a 33.7 ± 0.9 c 

             

18:3 n-3 0.3 ± 0.0 b 1.1 ± 0.0 a 0.2 ± 0.0 c 

18:4 n-3 0.1 ± 0.0 a 0.1 ± 0.0 a 0.1 ± 0.0 b 

20:4 n-3 0.3 ± 0.0 a 0.1 ± 0.0 c 0.2 ± 0.0 b 

20:5 n-3 7.2 ± 0.2 a 1.9 ± 0.1 c 6.1 ± 0.1 b 

22:6 n-3 nd  nd  nd  

Total n-3PUFA 8.0 ± 0.2 a 3.2 ± 0.1 c 6.6 ± 0.1 b 

             

16:0DMA 0.4 ± 0.0 a 0.1 ± 0.0 c 0.3 ± 0.0 b 

18:0DMA 8.4 ± 0.4 a 3.0 ± 0.1 b 4.6 ± 1.7 b 

18:1DMA 0.2 ± 0.0 a ndc  0.1 ± 0.0 b 

Total DMA 9.0 ± 0.4 a 3.1 ± 0.1 b 5.0 ± 1.7 b 

             
Total PUFA 52.5 ± 0.3 b 62.3 ± 0.4 a 40.3 ± 1.0 c 

n-6/n-3 5.5 ± 0.2 b 18.4 ± 0.5 a 5.1 ± 0.1 b 

 560 
Results are means ± S.D. (n=3). Significance of differences between means were determined 561 

by one-way ANOVA followed, where appropriate, by Tukey's multiple comparison test as 562 



 

 

described in the Materials and Methods. Values within a row with a different superscript letter 563 

are significantly different (P < 0.05). nd, not detected; LLM, lipid-free medium; LOM, lipid 564 

enriched oat based medium; MTM, medium-chain triglyceride medium; nd, not detected; 565 

PUFA, polyunsaturated fatty acids; DMA, dimethylacetals. 566 

567 



 

 

Table 4. Fatty acid compositions (percentage of total fatty acids) of total polar and total 567 

neutral lipids from Panagrellus redivivus grown on different culture media. 568 

 569 
                          
 Polar lipids  Neutral lipids 
                           LLM  LOM  MTM   LLM  LOM  MTM  
                           
10:0 nd  nd  nd   nd  nd  0.3 ± 0.1 a 

12:0 nd  nd  nd   nd  nd  1.6 ± 0.1 a 

14:0 0.3 ± 0.0 b 0.3 ± 0.0 b 0.8 ± 0.0 a  2.7 ± 0.1 b 0.5 ± 0.0 c 6.6 ± 0.2 a 

15:0 0.1 ± 0.0 a 0.0 ± 0.0 b 0.1 ± 0.0 ab  0.3 ± 0.0 a 0.1 ± 0.0 c 0.2 ± 0.0 b 

16:0 4.1 ± 0.0 b 4.3 ± 0.1 b 4.6 ± 0.2 a  10.4 ± 0.3 b 6.5 ± 0.1 c 13.2 ± 0.4 a 

18:0 8.4 ± 0.4 b 10.4 ± 0.1 a 7.9 ± 0.2 b  3.8 ± 0.4 a 2.7 ± 0.0 b 2.5 ± 0.1 b 

20:0 0.3 ± 0.0 a 0.3 ± 0.0 ab 0.3 ± 0.0 b  0.1 ± 0.0 a 0.1 ± 0.0 a 0.1 ± 0.1 a 

22:0 0.6 ± 0.0 a 0.7 ± 0.2 a 0.5 ± 0.1 a  0.2 ± 0.1 a 0.2 ± 0.0 a 0.1 ± 0.1 b 

Total saturated 13.8 ± 0.5 b 16.0 ± 0.3 a 14.1 ± 0.4 b  17.6 ± 0.6 b 10.2 ± 0.1 c 24.4 ± 0.9 a 

                           
16:1 n-9 0.1 ± 0.0 a 0.1 ± 0.0 b 0.1 ± 0.0 c  0.4 ± 0.0 a 0.4 ± 0.0 a 0.4 ± 0.1 a 

16:1 n-7 1.2 ± 0.0 a 0.6 ± 0.0 c 1.0 ± 0.1 b  4.3 ± 0.1 b 2.5 ± 0.0 c 8.2 ± 0.0 a 

18:1 n-9 5.2 ± 0.1 a 4.8 ± 0.1 ab 4.5 ± 0.4 b  16.8 ± 0.4 b 18.6 ± 0.1 a 16.8 ± 0.6 b 

18:1 n-7 10.9 ± 0.5 b 5.2 ± 0.1 c 14.2 ± 0.0 a  20.9 ± 0.4 b 4.8 ± 0.0 c 28.0 ± 0.1 a 

20:1 n-9 0.3 ± 0.0 a 0.3 ± 0.0 a 0.2 ± 0.1 a  0.7 ± 0.0 a 0.5 ± 0.0 b 0.3 ± 0.0 c 

20:1 n-7 0.4 ± 0.0 a 0.2 ± 0.0 b 0.4 ± 0.0 a  0.7 ± 0.0 b 0.1 ± 0.0 c 0.8 ± 0.0 a 

22:1 0.2 ± 0.1 a 0.1 ± 0.2 a 0.1 ± 0.1 a  0.5 ± 0.1 a 0.1 ± 0.0 b 0.1 ± 0.1 b 

24:1 n-9 0.2 ± 0.1 a 0.2 ± 0.1 a 0.1 ± 0.1 a  nd  nd  nd  
Total monoenes 18.5 ± 0.7 b 11.5 ± 0.3 c 20.7 ± 0.5 a  44.3 ± 0.9 b 26.9 ± 0.2 c 54.5 ± 0.8 a 

                          
18:2 n-6 13.7 ± 0.3 c 25.8 ± 0.2 a 14.7 ± 0.1 b  16.8 ± 0.4 b 52.0 ± 0.1 a 10.9 ± 0.5 c 

18:3 n-6 0.6 ± 0.0 b 0.6 ± 0.0 b 0.9 ± 0.0 a  1.1 ± 0.1 a 1.2 ± 0.0 a 0.8 ± 0.1 b 

20:2 n-6 0.7 ± 0.0 b 2.7 ± 0.0 a 0.5 ± 0.0 b  0.9 ± 0.0 b 2.4 ± 0.0 a 0.4 ± 0.0 c 

20:3 n-6 15.7 ± 0.1 a 11.4 ± 0.2 c 14.7 ± 0.0 b  5.0 ± 0.3 a 1.8 ± 0.0 c 2.5 ± 0.2 b 

20:4 n-6 17.0 ± 0.3 a 12.6 ± 0.2 c 15.1 ± 0.3 b  8.1 ± 0.5 a 2.9 ± 0.0 c 3.6 ± 0.3 b 

22:4 n-6 0.2 ± 0.1 a 0.1 ± 0.1 a 0.1 ± 0.1 a  0.0 ± 0.1 a nda  nda  

Total n-6 PUFA 48.0 ± 0.3 b 53.2 ± 0.4 a 46.0 ± 0.4 c  32.0 ± 1.1 b 60.2 ± 0.2 a 18.3 ± 1.1 c 

                          
18:3 n-3 0.3 ± 0.0 b 0.5 ± 0.0 a 0.2 ± 0.0 c  0.8 ± 0.4 b 1.4 ± 0.1 a 0.5 ± 0.1 b 

18:4 n-3 0.2 ± 0.0 b 0.2 ± 0.0 a 0.1 ± 0.0 c  0.0 ± 0.1 a 0.1 ± 0.0 a 0.1 ± 0.1 a 

20:3 n-3 nd  nd  nd   0.4 ± 0.1 a 0.1 ± 0.0 b ndc  
20:4 n-3 0.4 ± 0.0 a 0.3 ± 0.0 b 0.5 ± 0.1 a  0.2 ± 0.0 a 0.1 ± 0.0 a 0.1 ± 0.1 a 

20:5 n-3 6.8 ± 0.3 b 3.9 ± 0.0 c 7.9 ± 0.2 a  4.0 ± 0.3 a 1.1 ± 0.0 c 2.1 ± 0.3 b 

22:6 n-3 nd  nd  nd   nd  nd  nd  
Total n-3 PUFA 7.8 ± 0.3 b 4.9 ± 0.1 c 8.7 ± 0.3 a  5.3 ± 0.5 a 2.8 ± 0.1 b 2.8 ± 0.2 b 

                          

16:0DMA 0.3 ± 0.0 b 0.1 ± 0.0 c 0.4 ± 0.0 a  nd  nd  nd  
18:0DMA 11.5 ± 1.0 b 14.2 ± 0.4 a 9.9 ± 0.3 c  0.8 ± 0.5 a ndb  ndb  
18:1DMA 0.2 ± 0.0 a 0.0 ± 0.1 b 0.2 ± 0.0 a  nd  nd  nd  
Total DMA 12.0 ± 1.0 b 14.4 ± 0.5 a 10.5 ± 0.3 c  0.8 ± 0.5 a ndb  ndb  
                          
Total PUFA 55.8 ± 0.4 b 58.1 ± 0.5 a 54.7 ± 0.7 b  37.4 ± 1.2 b 68.0 ± 0.3 a 21.1 ± 1.3 c 

n-3/n-6 6.2 ± 0.2 b 10.8 ± 0.2 a 5.3 ± 0.2 c  6.0 ± 0.6 b 21.8 ± 0.8 a 6.5 ± 0.2 b 

                          
 570 

Results are means ± S.D. (n=3). Significance of differences between meanswere determined 571 

by one-way ANOVA followed, where appropriate, by Tukey´s multiple comparison test as 572 



 

 

described in the Materials and Methods. Values within a row with a different superscript letter 573 

are significantly different (P<0.05). LLM, low lipid medium; LOM, lipid enriched oat based 574 

medium; MTM, medium chain triglyceride medium; DMA, dimethyl acetals; nd, not detected; 575 

PUFA, polyunsaturated fatty acids. 576 

577 



 

 

Table 5. Metabolism of 14C-labelled fatty acids by Panagrellus redivivus 577 

 578 

                
Fatty acid [1-14C]18:0  [1-14C]18:1 n-9 [1-14C]18:2 n-6 [1-14C]18:3 n-3 
                
18:0 (16:0) 74.9 ± 2.8  6.7 ± 1.0  11.9 ± 0.5  18.5 ± 0.7 
16:1 n-7 4.2 ± 1.1  2.0 ± 1.6  7.0 ± 0.4  11.3 ± 0.3 
18:1 n-9 6.0 ± 0.4  67.4 ± 2.0  8.5 ± 0.1  12.7 ± 0.2 
20:1 5.4 ± 2.1  3.9 ± 0.9  2.1 ± 0.2  2.0 ± 0.4 
18:2 n-6 4.7 ± 0.1  14.4 ± 1.1  62.5 ± 1.2  1.4 ± 0.3 
20:2 n-6 0.9 ± 0.2  1.8 ± 1.1  2.6 ± 0.3  0.7 ± 0.1 
18:3(n-6/n-3) 0.6 ± 0.1  1.2 ± 0.1  1.2 ± 0.9  46.6 ± 1.4 
18:4 n-3 0.2 ± 0.0  0.1 ± 0.0  0.5 ± 0.3  1.7 ± 0.1 
20:3(n-6/n-3) 1.9 ± 0.3  1.3 ± 0.3  2.1 ± 0.3  2.0 ± 0.3 
20:4 (n-6/n-3) 0.5 ± 0.1  0.7 ± 0.1  0.8 ± 0.3  1.6 ± 0.2 
20-5 n-3/22:5(n-3/n-6) 0.2 ± 0.0  0.3 ± 0.1  0.4 ± 0.4  0.6 ± 0.0 
22:6 n-3 ? 0.4 ± 0.1  0.3 ± 0.0  0.2 ± 0.1  0.8 ± 0.1 
                
   [1-14C]20:3 n-6 [1-14C]20:4 n-6 [1-14C]20:5 n-3  
                
Saturated fatty acids   9.1 ± 1.4  10.2 ± 0.3  18.7 ± 1.2   
16:1   6.4 ± 1.1  8.6 ± 1.3  12.3 ± 0.3   
18:1   4.4 ± 1.4  6.7 ± 1.2  11.5 ± 1.0   
18:2 n-6   1.1 ± 0.2  1.0 ± 0.4  1.2 ± 0.2   
20:3(n-6/n-3)   72.5 ± 3.4  1.9 ± 0.2  0.9 ± 0.3   
20:4(n-6/n-3)   4.0 ± 0.5  64.4 ± 1.1  2.1 ± 0.8   
20:5 n-3/22:5(n-6/n-3)  1.1 ± 0.1  4.3 ± 0.5  50.8 ± 0.0   
22:6 n-3 ?   1.4 ± 0.7  2.9 ± 0.6  2.5 ± 1.4   
                

 579 
 580 

The data represent the amount of radioactivity recovered in each of the fatty acid fractions 581 

indicated in column one after incubation of Panagrellus redivivus for 24 hr with the [1-14C]-582 

labelled fatty acids as indicated. Results are reported as a percentage of the total 583 

radioactivity recovered and are means ± S.D. of three separate experiments. The percentage 584 

of radioactivity recovered unmetabolised (i.e. as the supplemented fatty acid) is highlighted 585 

in bold in each column. 586 

587 



 

 

Figure legends 587 

 588 

Figure 1. Pathways of biosynthesis of C20 and C22 HUFA from n-3, n-6 and n-9 C18 precursors 589 

as determined in rat liver (Sprecher et al., 1995) and rainbow trout hepatocytes (Buzzi et al., 590 

1996, 1997). Δ5, Δ6, Δ6*, Δ9, Δ12, Δ15, Fatty acyl desaturases; Elong, Fatty acyl elongases; 591 

Short, chain shortening. Δ9 desaturase is found in all animals and plants whereas Δ12 and Δ15 592 

desaturases are generally only found in plants and some lower animals and so 18:2 n-6 and 593 

18:3 n-3 are “essential” fatty acids (EFA) for higher animals including mammals and fish. 594 

The Δ6* enzyme acting on C24 fatty acids may or may not be the same enzyme (Δ6) that acts 595 

on C18 fatty acids. 596 

 597 
598 
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