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Abstract 

Arachidonic acid (AA; 20:4n-6) is the precursor of a range of highly biologically active derivatives, 

collectively termed eicosanoids, including prostaglandins, thromboxanes, leukotrienes and lipoxins,  

that act as autocrine hormones regulating many physiological processes including haemostasis, 

reproduction, immune and inflammatory responses. Eicosapentaenoic (EPA; 20:5n-3) and dihomo-

γ-linolenic (20:3n-6) acids modulate eicosanoid metabolism by both inhibiting the conversion of 

AA to eicosanoids whilst simultaneously being converted to eicosanoids with different, often 

attenuated, properties compared to their AA homologues.  Eicosatetraenoic acid (20:4n-3) is a 

naturally occurring C20 polyunsaturated fatty acid (PUFA), present in fish oil at levels of around 1-

2%, that has been suggested to be the active metabolite responsible for the anti-inflammatory 

effects of plant oils containing stearidonic acid (18:4n-3). However, the biochemical properties of 

20:4n-3 in terms of cellular biology have rarely been investigated, partly due to difficulties in 

obtaining the fatty acid in high purity.   In this paper, we describe methods for the medium scale 

laboratory preparation of high purity 20:4n-3, and investigate its metabolism in fish cell culture 

systems which normally contain significant amounts of n-3 PUFA. Thus the incorporation and 

metabolism of 18:4n-3 and 20:4n-3, and their distribution in phospholipid classes was studied in an 

established cell line from Atlantic salmon (Salmo salar) (AS), and the effects of 20:4n-3 on 

eicosanoid production studied in freshly isolated macrophages from rainbow trout (Oncorhynchus 

mykiss). Both 18:4n-3 and 20:4n-3 were preferentially esterified into phosphatidylcholine, 

phosphatidylethanolamine and phosphatidylserine in contrast with the accumulation of AA in 

phosphatidylinositol.  Incorporated 18:4n-3 was readily converted to 20:4n-3, and both fatty acids 

were further desaturated and elongated to EPA and 22:5n-3 but not 22:6n-3. Supplementation with 

20:4n-3 decreased the conversion of AA into prostaglandins, as demonstrated by the decreased 

levels of PGF2α produced in trout macrophages supplemented with 20:4n-3 and AA compared to 

cells supplemented with AA alone.  In addition, 20:4n-3 was converted into eicosanoids in fish cells 

as indicated by the presence of Δ17,18 12-HETE, Δ17,18 PGE1 and Δ17,18 PGF1α  in extracts from 

rainbow trout macrophages incubated with 20:4n-3.  
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Introduction 

Eicosanoids are produced by virtually all tissues and are, by definition, derivatives of C20 

polyunsaturated fatty acids (PUFA) that include prostaglandins, thromboxanes, prostacyclins, 

leukotrienes, and lipoxins, and serve as autocrine hormones controlling and regulating many 

physiological processes including haemostasis (blood clotting), reproduction, immune and 

inflammatory responses (Johnson et al. 1983; Lands 1993).  The enzymic pathway producing 

eicosanoids is often called the “arachidonic acid cascade” since arachidonic acid (AA; 20:4n-6) is 

the principal precursor in mammals (Horrobin 1983). However, other C20 PUFA such as dihomo-γ-

linolenic acid (20:3n-6) and eicosapentaenoic acid (EPA; 20:5n-3) are known to modulate 

eicosanoid metabolism by both inhibiting the conversion of AA to eicosanoids whilst 

simultaneously being converted to eicosanoids with different, often attenuated, properties compared 

to their AA homologues (Willis 1981; Crawford 1983; Horrobin 1983; Weber 1990).  

Eicosatetraenoic acid (20:4n-3) is another naturally occurring C20 PUFA capable of forming 

eicosanoids, and has been termed  ”ω3 arachidonic acid”,  although this is perhaps confusing as it is 

actually the n-3 series equivalent of 20:3n-6.  However, despite the well known interactions 

between 20:3n-6, EPA and AA in eicosanoid metabolism, research on 20:4n-3 is sparse, notable 

exceptions being the early studies of Sprecher and coworkers (Oliw et al. 1986a,b; Careaga and 

Sprecher 1987) and the more recent study of  Croset et al. (1999), all  establishing that 20:4n-3 can 

modulate eicosanoid production in mammalian cell systems. The relative neglect of 20:4n-3 is 

partly due to its rarity in natural oils making it difficult to obtain and expensive.  Marine fish oils 

can contain minor quantities (around 1-2%) of 20:4n-3 and also larger quantities (up to 4-5%) of 

stearidonic acid (18:4n-3), the immediate biosynthetic precursor of 20:4n-3 (Ackman 1980).  

However, 18:4n-3 is also found in the seed oils of some plants, particularly of the Boraginaceae 

species (Moine et al. 1992), with some containing very high levels, with up to 21% being reported 

in Echium asperrimum  (Guil-Guerrero et al. 2001).  Echium oil is thus similar to borage oil except 

that the levels of 18:4n-3 can exceed those of its n-6 series equivalent,18:3n-6 (γ-linolenic acid), 

and thus may be expected to have somewhat similar therapeutic activity in humans (Guichardant et 

al. 1993). 

            Fish do not appear to be fundamentally different to mammals with respect to eicosanoid 

production, with virtually all tissues between them producing the same wide range of eicosanoids in 

a large range of freshwater and marine fish (Tocher 1995; 2003). Thus, although both AA and EPA 

serve as eicosanoid precursors in fish tissues, AA is the preferred substrate despite the 

preponderance of EPA in fish phospholipids.  It has also been established in fish cell cultures that 
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EPA and 20:3n-6 competitively depress the production of eicosanoids from AA (Bell et al. 1994).  

The effect of 20:4n-3 on eicosanoid metabolism is unstudied in fish.  

            Currently there is considerable interest in the metabolism of PUFA in fish, particularly 

major aquacultured species such as salmonids, including Atlantic salmon (Salmo salar) and 

rainbow trout (Oncorhynchus mykiss).  This is because much aquaculture, including salmonid 

culture, is dependent upon wild capture fisheries for the provision of fish meals and oils that have 

traditionally been the basis of pelleted feeds (Sargent and Tacon 1999). However, stagnation in 

industrial fisheries, along with the increased demand for fish oils, has dictated that alternatives to 

fish oil must be found if aquaculture is to continue to expand and supply more of the global demand 

for fish (Barlow 2000). The only sustainable alternative to fish oils are plant oils which are rich in 

C18 PUFA, but few of these are rich in n-3 PUFA, a notable exception being linseed oil, rich in 

18:3n-3 (Padley et al. 1986).  The lack of oils rich in n-3 PUFA indicates that oils such as echium, 

rich in 18:4n-3, may be particularly useful.   

     The present study aims to test two primary hypotheses.  Firstly, that 20:4n-3 will have a 

modulatory effect on eicosanoid metabolism in fish through both inhibiting eicosanoid production 

from the predominant precursor fatty acid, AA, and also by being converted to its own eicosanoid 

derivatives.  Secondly, that 18:4n-3 (and thus 18:4n-3-rich plant oils) will potentially have similar 

modulatory effects by being converted to, and thus increasing the cellular content of, 20:4n-3. 

Lastly, as high purity 20:4n-3 is extremely expensive and it’s supply erratic, indeed it was 

unavailable commercially at the time of this study, methods were investigated for the laboratory 

production of medium scale amounts of 20:4n-3. 

 

Material and methods 

Preparation of high purity 20:4n-3 

a) Medium scale chromatography. Fatty acid ethyl esters, prepared by acid catalysed 

transesterification in ethanol of a conventional marine fish oil containing  ~1% of 20:4n-3 (wt % of 

total fatty acids present) were used as starting material. Three grams of ethyl esters in acetonitrile 

were applied to a Biotage 40 Flash Cartridge  System (Biotage UK Ltd), comprised of  a column 

Flash 40M (135 grams KP-C18 HS TM, 35-70  mm, 60 Å, 500-550  m2/g, 18% carbon load), end 

capped column, diameter 40 mm, length 15 cm, packing weight  90 g  and  100 ml volume. The 

column was eluted with acetonitrile under nitrogen at a pressure of 0.6 bar at 28oC, the first 360 ml 

of eluate discarded and the subsequent eluate collected in 20 ml fractions and analysed by GC.  The 

20:4n-3-ethyl ester enriched fraction (120 mg) contained 20:4n-3 at 12% (wt % of the total fatty 

acids present) along with other fatty acids including 20:4n-6 (13.3%), 20:5n-3 (1.2%),  22:5n-3 
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(18.1%) and 22:6n-3 (3.8%).  The ethyl ester fraction was further purified by semi-preparative 

HPLC (Aveldano et al. 1983) using a Beckman Ultrasphere ODSA column (C18, 25x1cm, 5m 

particle size) and a Waters 501 HPLC pump, with acetonitrile/water (85:15, v/v)  as eluant at a flow 

rate of 7 ml/min at 20oC giving a pressure of approximately 1400 psi., and UV detection at 215 nm.  

Three mg batches of the total ethyl ester mixture in a acetonitrile (50mg/ml) were applied to the 

column using a 100 ml injection loop. Fractions were collected according to increase in UV 

absorbance (peak elution) and the ethyl ester of 20:4n-3 was collected at a retention time of  25.2 

min   

b) Partial Synthesis. Partially synthesis of 20:4n-3 was achieved by two successive C-1 extensions 

of 18:4n-3 through conversion to fatty alcohols, then mesylates, chain elongated nitriles and finally 

methyl esters. The process is very briefly described below.  The starting material was an oil 

consisting of 18:4n-3 and 20:5n-3 in approximately equal amounts, produced by fractional 

distillation of a conventional marine fish oil (Croda Universal Ltd., Hull, England).  

      The fatty acid mixture in dry diethyl ether was refluxed for 1 h with lithium aluminium hydride 

under argon. After cooling, saturated ammonium chloride solution was added and the ether phase 

separated, the aqueous phase extracted twice with ether. The combined ether fractions were dried 

over MgSO4, filtered and evaporated on a rotary evaporator to yield the mixed fatty alcohols.  This 

product was dissolved in dry dichloromethane and methanesulphonyl chloride and dry pyridine 

added and the mixture stirred overnight in the dark under argon. The solvent was removed on a 

rotary evaporator and diethylether and 2M HCl  added, and the mixture shaken and separated. The 

extracted ether phase was dried over MgSO4, filtered, evaporated, and the crude product purified by 

flash column chromatography using an iso-hexane/diethylether gradient to yield a homogeneous 

mixture of the mesylates. The purified mesylates were stirred at 90oC overnight with potassium 

cyanide in dry dimethylformamide, under argon. The cooled reaction mixture was poured on to 

water and the resultant mixture extracted six times with ether. The combined ether extracts were 

dried over MgSO4, filtered, evaporated, and the crude product purified by flash column 

chromatography to yield a homogeneous mixture of the C-1 chain extended nitriles.  The purified 

nitriles (C19 and C21) were stirred at room temperature with dry HCl in methanol under argon in the 

dark. The methanol was removed by rotary evaporation, water and iso-hexane added to the residue, 

and the resultant mixture stirred at room temperature under argon for 2 hours.  The iso-hexane 

phase was separated, the aqueous phase extracted with iso-hexane, and the combined hexane 

fractions dried over MgSO4, filtered and evaporated. The crude product was purified by flash 

column chromatography to yield a homogeneous mixture of the C-1 chain extended methyl esters . 

     The reaction sequence described above was repeated to give the C-2 chain extended 
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methyl esters. The esters were chromatographically homogeneous on thin-layer chromatography 

(TLC) but were readily separated by HPLC, as described above for ethyl esters other than the 

retention time was 19.1 min for 20:4n-3 methyl ester.  The mass ions, fragmentation patterns and 

chromatographic properties (retention times) of the purified esters were determined  by GC/MS (CI- 

and EI+) as described previously  (Ghioni et al. 1999) and compared with known standards. Proton 

NMR spectra recorded in deuterated chloroform at 600 MHz: methyl (Z)8,(Z)11,(Z)14,(Z)17-

eicosatetraenoate showed the following NMR signals: d 0.96(3H, t, J=7.5Hz), 1.26-1.37(6H, om*), 

1.59-1.64(2H, qn*), 2.03-2.09(4H, om*), 2.29(2H,t, J=7.6Hz), 2.79-2.84(6H,om*), 3.65(3H,s) and 

5.27-5.43(8H, om*) (where *om = overlapping multiplets, i.e. couplings not measurable due to high 

overlap and/or second order spectrum). 

 

Cell culture systems 

The Atlantic salmon (Salmo salar) cell line (AS) as described previously (Nicholson and Byrne 

1973), was maintained at 22°C in Leibovitz L-15 medium supplemented with 10 mM HEPES 

buffer, 2 mM glutamine, antibiotics (50 IU/ml penicillin and 50 mg/ml streptomycin) and 10% fetal 

bovine serum (FBS). 

Rainbow trout (Oncorhynchus mykiss) macrophages were obtained as follows. The head 

kidney was freshly isolated from fish (approx. 50 g each) anaesthetised with benzocaine, bled from 

the caudal vein and sacrificed according to protocols approved by the British Home Office. The 

tissue, in 10 ml L-15 as above and containing 10 units heparin, was gently mashed through a gauze 

(100 µm  mesh), the resultant cell suspension layered on 50 ml 51-34 Percoll gradients in 

Dulbecco’s modified Eagle medium (DMEM), and centrifuged at 400g for 25 min. The macrophage 

layer at the interface was collected and centrifuged at 2000 rpm for 7 min. The pellet (approx. 4 x 

107 cells) was resuspended in serum-free L-15 medium and seeded into two 25 cm2 tissue culture 

flasks, the macrophages left to adhere for 3 hours at 22oC, the excess cells removed by washing 3 

times with phosphate buffered saline (PBS), and the culture finally incubated in 5 ml L-15 

containing 5% FBS.   Lipopolysaccharide (LPS)-stimulated cells were incubated with 25 mg/ml 

LPS (E.coli Serotype 026:B6) and the medium collected after 24 hours for prostaglandin analysis. 

 

Supplementation of cells with PUFA 

Polyunsaturated fatty acids were added to actively growing AS cells or fresh preparations of trout 

macrophages, in L-15 media supplemented with reduced FCS (2%), either as complexes with fatty 

acid free-bovine serum albumin (FAF-BSA) or as methyl esters, to give a final concentration of 25 

µM.  Earlier studies had shown no difference between supplementations with methyl esters or BSA-
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bound free acids (Ghioni et al. 1999).  Cultures were incubated with fatty acids for 4 days at 22oC.  

Fatty acid/BSA complexes were prepared by stirring 10 mg of fatty acid for 10 min in 100 µl 0.1 M 

KOH and for further 45 min after the addition of 5 ml of 50 mg/ml FAF-BSA in PBS at 20°C. The 

fatty acid/BSA complexes were filtered (0.22 µm Millex GV) into sterile vials. 

 

Lipid extraction 

Medium was removed by aspiration, cells washed with 5 ml PBS and then dissociated with 0.05% 

trypsin/ 0.02% EDTA solution. Cells were harvested in 3 ml Hanks’ balanced salt solution (HBSS), 

centrifuged at 300g for 5 min at 4°C, and washed with 5 ml HBSS containing 1% FAF-BSA 

resuspended in 5 ml HBSS. After centrifuging, the washed cell pellet was extracted with 5 ml ice-

cold chloroform/methanol (2:1, v/v) containing 0.01% butylated hydroxytoluene (BHT) as 

antioxidant, according to Folch et al. (1957). Lipid was determined gravimetrically and resuspended 

in chloroform/methanol (as above) at a concentration of 10 or 100 mg/ml and stored at -20°C under 

argon. 

 

Lipid analysis 

Separation and quantification of lipid classes was performed by high-performance thin-layer 

chromatography (HPTLC), followed by calibrated scanning densitometry (Henderson and Tocher 

1992).   Approximately 10 µg (1 µl) of lipid extract was loaded as a 2 mm streak and the plate 

developed to two-thirds distance with methyl acetate/isopropanol/chloroform/methanol/0.25% 

aqueous KCl (25:25:25:10:9, by vol.) (Vitiello and Zanetta 1978). After desiccation, the plate was 

fully developed with hexane/diethyl ether/acetic acid (80:20:2, by vol.). Plates were charred at 

160°C for 15 min after spraying with 3% aqueous cupric acetate containing 8% phosphoric acid. 

Densitometric analysis was performed on a Shimadzu CS-9000 dual wavelength scanner and DR-13 

recorder. 

To determine fatty acid composition of total lipids, approximately 1 mg of lipid extract was 

transmethylated overnight in 2 ml of 1% sulphuric acid in methanol and 1 ml of toluene at 50°C and 

under nitrogen (Christie 1982). Fatty acid methyl esters (FAME) were extracted and purified as 

described previously (Tocher and Harvie 1988).  Purified FAME were dissolved in hexane 

containing 0.05% BHT to a final concentration of 2 mg.ml-1.   Phospholipid classes were separated 

as described by Tocher et al. (1995).  Total lipid extract were applied as streaks (1 mg per cm) on 

TLC plates and the plate fully developed with methyl acetate/isopropanol/chloroform/ 

methanol/0.25% aqueous KCl (25:25:25:10:9, by vol.). Phospholipids were visualized with 0.1% 



 8 

2',7'-dichlorofluorescein (DCF) in 97% methanol containing 0.05% BHT and the corresponding 

silica scraped. FAME of individual phospholipid classes were prepared by transmethylation in 

methanolic sulphuric acid as above, directly on the silica without prior elution of the lipids as 

described by Christie (1982).   Analysis of FAME was performed by gas chromatography in a 

Fisons GC8000 gas chromatograph (Crawley, UK) equipped with a fused-silica capillary column 

(30m x 0.32 mm i.d., CP Wax 52 CB, Chrompack, UK) using hydrogen as carrier gas. Temperature 

programming was from 50 to 150°C at 35°C/min and to 225°C at 2.5°C/min. Individual FAME 

were identified by comparison with known standards and published data (Ackman 1980; Tocher 

and Harvie 1988). 

 

Eicosanoid extraction and analysis 

Supernatants from macrophage or AS cultures were obtained after 4 days of culture and stored at -

20°C prior to analysis. The samples, acidified to pH 3.0 with a 20% v/v solution of acetic acid in 

water, were applied to Sep-Pak Vac 3 cc (200 mg) tC18 Cartridges (Waters Ltd., Elstree, U.K.), 

preconditioned with methanol and acid water (pH 3.0). The  cartridges were washed with acid water 

and heptane before eicosanoids were eluted using heptane/ethyl acetate/methanol (40:50:10 by 

vol.). Separation and analysis of eicosanoids was by gas chromatography-mass spectrometry (GC-

MS) using a Fisons GC8000 gas chromatograph coupled to an MD800 mass spectrometer (Fisons 

Instruments, Crawley, U.K.) with helium as carrier gas (50 KPa) and equipped with a DB1701 

capillary column (J&W 22-0732, 30 m, 0.25 mm i.d., J. & W. Scientific, Folsom, CA, U.S.A.), with 

temperature programming of 216°C for 1 min, then to 260°C at 9°C/min, and to 300°C at 2°C/min 

with the final temperature held for 6 min. 

       Eicosanoids were analyzed using chemical ionization (CI-) with ammonia as reagent gas and 

electron ionization (EI+) at 70 eV.  Samples for GC-MS (EI+) analysis, obtained from pooled 

preparations (1.8 x 108 cells), were MOX derivatised (50µl acetonitrile and 300µl 3% 

methoxyamine HCl solution, at room temperature for 1 hour), treated with 0.5ml diazomethane for 

30 min and with 200 µl BSTFA overnight.  For CI- analysis, deuterated prostaglandin standards (1 

ng dPGF2α and 1 ng dPGE2) were added to the acidified samples (each obtained from approx. 2-3 x 

107 cells) before extraction. Each sample was sequentially derivatised as follows: MOX (as above); 

PFB (20 µl  10% DIPEA  and 40 µl 10% pentafluorobenzxylbromide in acetonitrile at room 

temperature for 30 min) and TMS (10 µl anhydrous dimethylformamide and 20 µl BSTFA 

contaning 1% TMCS, at room temperature for 30 min). Dried residual were transferred to 

autosampler vials in 20 µl dodecane for GC/MS analysis.  
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Quantitation of mass ions in CI- mode (SIM, selected ion mode) was performed using the 

following parameters: interface 300°C, source 200°C, emission current 350 mA, methane electron 

energy 70 eV, electron multiplier 750 V.  

 

Materials 

Arachidonic acid (20:4n-6) and eicosapentaenoic acid (20:5n-3), both 99% pure, stearidonic acid 

(18:4n-3) > 98% pure, Leibovitz L-15 Medium, DMEM, HBSS, PBS, glutamine, antibiotics, 

HEPES buffer, FAF-BSA, and trypsin/EDTA were obtained from Sigma Chemical Co. Ltd. (Poole, 

UK). TLC plates (20 cm x 20 cm x 0.25 mm)  and HPTLC plates (10 cm x 10 cm x 0.15 mm), pre-

coated with silica gel 60 were obtained from Merck (Darmstadt, Germany). All solvents were of 

HPLC grade (Fisher Scientific UK, Loughborough, England).  

 

Statistical analysis 

Results are reported as means ± SD (n = 3) unless otherwise stated. All statistical analyses were 

performed using a statistical computer package (Prism 3.0). Differences between mean values were 

determined by one-way ANOVA followed where appropriarte by Tukey’s multiple comparison test.  

Variance homogeneity was checked with Bartlett’s test and non-homogeneous data were arcsin 

transformed prior to further statistical analysis. Differences were reported as significant if  p<0.05 

(Zar 1984). 

 

Results 

 

Effect of 18:3n-3 and 20:4n-3 on lipid class composition of AS cells 

 

Supplementation of  AS cells with 18:4n-3 and 20:4n-3 had generally similar effects on lipid class 

compositions in that both resulted in increased proportions of triacylglycerol (TAG)  and decreased 

proportions of cholesterol (Table 1). The increased TAG was quantitatively greater and 

accompanied by increased steryl esters in cells supplemented with 18:4n-3 resulting in increased 

total neutral lipids with decreased proportions of all polar lipids other than phosphatidylcholine 

(PC).  The proportion of PC was increased in cells supplemented with 20:4n-3 resulting in a higher 

proportion of total polar lipids (Table 1). 

 

Effect of 18:3n-3 and 20:4n-3 on fatty acid composition of total lipid of AS cells  
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Supplementation of AS cells with both 25 µM 18:4n-3 and 20:4n-3 resulted in increased 

proportions of total n-3 PUFA, 18:4n-3, 20:4n-3, 20:5n-3, 22:4n-3 and 22:5n-3 but not 22:6n-3 

(Table 2).  The relative proportions of n-6 PUFA were slightly decreased but there was no 

significant effect on the level of AA in total lipid by supplementation with either 18:4n-3 or 20:4n-

3.  In both cases, the increased n-3 PUFA was balanced by decreased proportions of monoenoic 

acids, predominantly 18:1n-9, whereas the levels of saturated fatty acids were relatively less 

affected.  

 

Distribution of 18:4n-3 and 20:4n-3 in phospholipid classes 

 

There was virtually no 20:4n-3 and only very small amounts of 18:4n-3 present in phospholipid 

classes of unsupplemented (control) AS cells (Tables 3 & 4).  Supplementation of AS cells with 

either 18:4n-3 or 204n-3 increased the proportions of total n-3 PUFA in all phospholipid classes and 

the increase was consistently greater in cells supplemented with 20:4n-3 compared to 18:4n-3.   The 

increase in total n-3 PUFA was lowest in phosphatidylinositol (PI), the class in which AA was 

concentrated and, indeed, the relative proportion of AA was increased in PI but decreased in the 

other phospholipid classes in response to supplementation with 18:4n-3 and 20:4n-3 (Tables 3 & 4). 

As with total lipid, supplementation of AS cells with both 18:4n-3 and 20:4n-3 resulted in increased 

proportions of 18:4n-3, 20:4n-3, 20:5n-3, 22:4n-3 and 22:5n-3 in all phospholipid classes.  The 

increased levels of 18:4n-3 and 20:4n-3 were greatest in PC, whereas the increased levels of 20:5n-

3 and 22:5n-3 were greatest in phosphatidylethanolamine (PE) and phosphatidylserine (PS), 

respectively.  Although the relative amount of 22:6n-3 was not increased in total lipid, it was 

increased in PS and PE, at least in cells supplemented with 18:4n-3.  As with total lipid, the 

increased n-3 PUFA was balanced primarily by decreased proportions of monoenes, predominantly 

18:1n-9, although n-9 PUFA also decreased as did n-6 PUFA in all phospholipid classes other than 

PI.   Most interestingly, the proportion of AA decreased in all phospholipid classes, particularly in 

cells supplemented with 20:4n-3, except PI where the percentage of AA was significantly increased 

in cells supplemenmted with either 18:4n-3 or 20:4n-3.  In contrast to total lipid, the relative 

proportions of saturated fatty acids increased in AS cells supplemented with 18:4n-3 and 20:4n-3 in 

all phospholipid classes except PC. 

 

Eicosanoid production after supplementation with 20:4n-3 

 

It was outwith the scope of this project to fully characterise the range of eicosanoids produced 
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by the fish cell culture systems used in the study.  Rather the focus was to determine if specific 

eicosanoid products of 20:4n-3 could be identified in the cell culture systems after supplementation 

with 20:4n-3.  Previously, it had been shown that the predominant eicosanoid produced by rainbow 

trout head kidney macrophages was 12-hydroxyeicosatetraenoic acid (12-HETE), the product of 12-

lipoxygenase activity on AA (Pettitt et al., 1989, 1991). Furthermore, the characteristic ions for 12-

HETE in EI+ GC-MS analysis are known (m/z 406, 391, 375, 316, 295 and 73 with 295 as the base 

peak) which enabled the characteristic ions for the 12-lipoxygenase product of 20:4n-3 to be 

calculated.  Therefore, we decided to look for the 12-lipoxygenase products in trout macrophages 

and AS cells incubated with 25 µM 20:4n-3.  Total ion chromatograms (TIC) from electron 

ionisation (EI+) GC-MS analysis of eicosanoid extracts from rainbow trout macrophages (and AS 

cells) incubated with 20:4n-3 showed a peak (peak X in Fig.1A) with ions at m/z 406, 391, 375, 

354, 316, 297 and 73 with the base peak at 297 (Fig.2) indicating that this peak was Δ17,18 dehydro-

12-HETE.   The EI+ GC-MS analysis of eicosanoid extracts from cells incubated with 20:4n-3 gave 

no peak corresponding to 12-HETE, that is, with characteristic ions at m/z 406, 391, 375, 316 and a 

base peak at 295, although it was the predominant hydroxy fatty acid in cells supplemented with 

AA.  The EPA derivative, 12-hydroxypentaenoic acid (12-HEPE) (m/z 404, 389, 314, 295) was 

found in eicosanoid extracts from cells supplemented with 20:5n-3 (data not shown).  However, EI+ 

GC-MS enables specific masses, characteristic of eicosanoids, to be scanned for.  Thus, 

confirmation of the presence of Δ17,18 dehydro-12-HETE was obtained by scanning eicosanoid 

extracts of cells supplemented with 20:4n-3 for mass 297, with a clear peak corresponding to Δ17,18 

dehydro-12-HETE being observed (Fig. 1C).  Similarly, scanning for mass 295 did not give any 

peaks with the characteristic spectra of 12-HETE. Analysis of extracts from macrophages 

supplemented with 20:4n-3 by negative ion electrospray MS showed traces of m/z 319 

(characteristic of HETE), m/z 317 (HEPE), 335 (dihydroxyeicosatetraenoic acid; DHETE) and 333 

(dihydroxyeicosapentaenoic acid; DHEPE).  These may represent products of, say, 5-lipoxygenase 

(HETE and HEPE) and 5-and 12-lipoxygenase combined (DHETE and DHEPE).  However, the 

amount of material in these peaks was too low to give diagnostic spectra.  However, for 

comparison, macrophages supplemented with AA showed the same m/z characteristic of the three 

classes of hydroxy fatty acids, while macrophages supplemented with 20:5n-3 only showed m/z 317 

(HEPE) and 333 (DHEPE) in negative ion electrospray MS. These results demonstrated that the in 

vitro cell systems showed 12-lipoxygenase activity and generated 12-hydroxy fatty acids for all 

three fatty acids, 20:4n-6, 20:5n-3 and 20:4n-3 along with other hydroxy and dihydroxy fatty acids. 

The TIC from EI+ GC-MS analyses of trout macrophages supplemented with 20:4n-3 also 
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showed traces of another eicosanoid (peak Y, Fig.1A) eluting with a similar retention time to that 

for the main isomer in an authentic PGE2 standard (Fig.1B) and with a similar spectrum (m/z 524, 

508, 449, 418, 366, 295, 225, 73).   A mass scan for 508 in EI+ GC-MS clearly showed that the 

PGE2-like eicosanoid in macrophages supplemented with 20:4n-3 actually eluted just before the 

authentic PGE2 standard isomer (Fig.1B and D).  The PGE2-like eicosanoid could be another PGE2 

isomer, but its elution profile strongly suggests that it represents the  Δ17,18–dehydro-PGE1 product 

of 20:4n-3, as described by Oliw et al. (1986a).  No samples from either of the cell systems showed 

traces of clearly identifiable PGE or PGF in EI+, including cells incubated with AA or EPA. If 

present, their concentration must have been below the detection limit of this technique and/or the 

strong ionisation used destroyed their characteristic ions. 

Gas-chromatographic conditions were optimised as described in the methods to obtain a clear 

chromatographic separation of the three PGF standards commercially available, in order to use 

chemical ionisation (CI-) GC-MS to monitor their molecular ions at specific retention times. A 

mixture of PGF1α, PGF2α and PGF3α was resolved in CI- GC-MS giving three peaks at 21.09 min, 

21.43 min and 21.96 min (Fig.3A). The mass ions for these peaks identified them as PGF2α, (m/z 

569.4) (Fig.4A), PGF3α, (m/z 567.4) and PGF1α, (m/z 571.4), respectively. Under the same 

conditions, samples extracted from cells incubated with 25 µM 20:4n-3 gave a peak at 22.3 min, 

just after where PGF1α would elute (Fig.3B). The m/z signal of 569.4 for the molecular ion for the 

peak at 22.3 min was identical to that for PGF2α indicating that it was the PGF2α isomer from 20:4n-

3, Δ17,18 –dehydro-PGF1α (Fig.4B). Unfortunately there is no standard commercially available for 

this compound, but the elution properties of the additional signal at 22.3 min, compared to the other 

three isomers, would be in accordance with its molecular structure.  The presence of a double peak 

for each PGE isomer (syn and anti isomers produced by reaction with MOX) made CI- MS as 

described above for PGF less reliable for measuring PGEs as total chromatographic separation 

could not be achieved. 

Given the good chromatographic separation of PGF isomers and the ability to positively 

resolve PGF2α from the other PGF isomers, we compared levels of PGF2α in activated macrophages 

supplemented with 20:4n-3 in relation to controls (unsupplemented), to macrophages supplemented 

with AA alone and in experiments in which both 20:4n-3 and AA were administered together. 

Figure 5 summarises the results of two typical experiments. Although there is some variability 

between experiments, the results indicated that a considerable increase in the production of PGF2α 

occurred in cells supplemented with AA alone. A reduction of PGF2α was observed when 20:4n-3 

was supplemented to cells in conjunction with AA. The levels of PGF1α and PGE3 were too low to 



 13 

be detected even in CI+ SIM.  

 

Discussion 

 

With respect to our specified aims, both of the primary hypotheses which we set out to test were 

proved correct. Thus, the present study has shown that 20:4n-3 does have effects on eicosanoid 

metabolism in fish cells, through both inhibiting eicosanoid production from AA and being 

converted to eicosanoids itself, and that 18:4n-3 can serve as a precursor for 20:4n-3 in salmonids.  

Specifically, we have shown that incubation of Atlantic salmon cells or trout macrophages with 

either 18:4n-3 or 20:4n-3 both increased the cellular content of 20:4n-3 and that PGF2α  production 

in macrophages incubated with 20:4n-3 and AA was reduced compared to macrophages 

supplemented with AA alone.  Furthermore, 20:4n-3 was converted by cyclooxygenases to Δ17,18-

PGE1 and Δ17,18-PGF1α in trout macrophages and by 12-lipoxygenase to Δ17,18-12-HETE in both 

macrophages and Atlantic salmon cells.    

              In comparison to mammals, there is not a great deal of data on eicosanoids in fish, but what 

is known suggests that the metabolism and roles of eicosanoids in fish and mammals is generally 

similar. Certainly, the above data are consistent with previous studies in mammals.  Early work had 

shown that 20:4n-3 was a poor substrate for platelet cyclooxygenase (Needleman et al. 1981), but 

exogenously added 20:4n-3 was converted by the 12-lipoxygenase in human platelets to the 12-

hydroxy derivative, but no lipoxygenase products were formed from 18:4n-3 (Careaga and Sprecher 

1987).   However, ram seminal vesicle microsomes converted exogenous 20:4n-3 to Δ17-PGE1 and 

Δ17-PGF1α but, no eicosanoid products were produced from 18:4n-3 (Oliw et al. 1986a).  

Subsequently, the same authors showed that ram seminal fluid contained Δ17-PGE1 produced from 

endogenous 20:4n-3, presumably present as a result of desaturation and elongation of the copious 

18:3n-3 in the natural diet of sheep (Oliw et al. 1986b). Samel et al. (1987) confirmed the presence 

of a cyclooxygenase derivative of 20:4n-3 in ram seminal fluid and the ability of homogenates to 

convert exogenous 20:4n-3 to 5,6-dihydro-PGE3 (identical to Δ17,18PGE1). Thus, the same 

eicosanoid products of 20:4n-3 were identified in the salmonid cells incubated with 20:4n-3 as had 

been observed in mammalian systems.   In addition, monkey seminal vesicles have also been shown 

to convert 20:4n-3, EPA and 18:3n-3 to their corresponding ω4,ω3-diols (Oliw and Sprecher 1991). 

 There are few data on the inhibition of eicosanoid synthesis from AA by 20:4n-3 in 

mammalian systems. However, one study has reported that 20:4n-3 inhibited PGH synthetase 

activity and reduced the production of 2-series prostaglandins from AA in human platelets and 
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endothelial cells (Croset et al. 1999). In the present study, we did not examine the direct effect of 

18:4n-3 supplementation on eicosanoid synthesis, but the results strongly suggested that 18:4n-3 

would have modulatory effects through conversion to 20:4n-3 and this has been shown in 

mammalian systems. The 5-lipoxygenase was inhibited, and leukotriene synthesis decreased, in 

human leukocytes incubated with 18:4n-3, with the inhibition being comparable to that observed 

with EPA (Guichardant et al. 1993).  Incubation of MC/9 mouse mast cells with 18:4n-3 suppressed 

the production of leukotriene B4 (LTB4), LTC4 and 5-HETE (Ishihara et al. 1998). Similarly, the 

level of PGE2 in splenocytes was reduced in mice by feeding diets containing 10% 18:4n-3 or EPA 

or 18:3n-3 compared to mice fed an 18:2n-6-rich safflower oil diet (Ishihara et al. 2002).  The 

authors also reported that the levels of 20:4n-3, EPA and DHA in plasma and splenocytes were 

increased in mice fed the diet containing 18:4n-3 (Ishihara et al. 2002). 

The above study showed that dietary 18:4n-3 was converted to 20:4n-3 and EPA in mice. In 

rats fed diets containing 1% 18:4n-3 ethyl ester, the levels of liver and plasma 18:4n-3 were very 

low, but 20:4n-3 was found in phospholipids and the level of EPA was twice as high compared to 

rats fed 1% 18:3n-3 (Yamazaki et al. 1992).  Similarly, when rats were fed blackcurrant oil 

containing 2.6% 18:4n-3 (and 12.9% 18:3n-3), the levels of EPA and 22:5n-3, but not DHA, were 

increased in liver plasma membranes, but the levels of 18:4n-3 and 20:4n-3 were not reported and 

presumably not detected (Barzanti et al. 1995).  

The above results from in vivo studies were also reflected in in vitro mammalian cell studies. 

Exogenously added 18:4n-3 was incorporated into NIH-3T3 cells and elongated to 20:4n-3, and 

desaturated to EPA and 22:5n-3, but not DHA (Cantrill et al. 1993). Similarly, the level of EPA, but 

not 22:5n-3 or DHA, was increased in human endothelial cells incubated with 20:4n-3 (Croset et al. 

1999).  Equivalent results were obtained in the present study, where incorporated 18:4n-3 was 

readily converted to 20:4n-3, and both 18:4n-3 and 20:4n-3 were further desaturated and elongated 

to EPA and 22:5n-3, but not 22:6n-3.   In an earlier study, we had shown that supplementation of 

AS cells with 18:4n-3 increased the levels of 18:4n-3, 20:4n-3 and EPA, but not 22:5n-3 or DHA, in 

total lipid (Tocher and Dick 1990a).  More recently a radioisotope study showed that in AS cells 

incubated with [U-14C]18:4n-3, radioactivity was recovered predominantly in EPA followed by 

20:4n-3 and 22:5n-3 with only a small amount recovered in DHA (Ghioni et al. 1999). Similarly, 

[U-14C]20:4n-3 was predominantly converted to EPA with small amounts of radioactivity recovered 

in 22:4n-3 and 22:5n-3, with only very little radioactivity recovered as DHA (Ghioni et al. 1999).   

Therefore it is clear that, whether fed in the diet in in vivo studies or supplemented to cells in 

vitro, both 18:4n-3 and 20:4n-3 are readily converted to EPA.  As a result, although our postulated 

hypotheses were proved, the mechanism whereby 20:4n-3 could exert a modulatory effect on 
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eicosanoid metabolism is not fully clear.  Inhibition of eicosanoid production from AA could be due 

to competitive inhibition by either 20:4n-3 itself or by EPA produced by desaturation of 

incorporated 20:4n-3.  However, it is also clear that 20:4n-3 serves as a fatty acid substrate for 

cyclooxygenase and lipoxygenase enzymes and it has been demonstrated that the 20:4n-3-derived 

eicosanoids have unique biological activities. For example, the 20:4n-3-derived prostaglandin 5,6-

dihydro-PGE3 (or Δ17,18-dehydro-PGE1) had 14 times less activity as a uterine stimulant than PGE1 

while retaining 75% of the anti-aggregatory potency of PGE1 (Samel et al. 1987). 

The phospholipid source of precursor PUFA is an intriguing aspect of eicosanoid metabolism 

in fish as the vast majority of species have membrane phosphoglycerides containing a large excess 

of EPA relative to AA (Tocher 1995). Despite this, AA is still the primary precursor of eicosanoids 

in fish where it is concentrated in PI, and thus it has often been speculated that PI may be the source 

of AA for eicosanoid production in fish (Tocher 1995).  Hence our interest in the phosphoglyceride 

distribution of incorporated 18:4n-3 and 20:4n-3 in the present study.  Again PI appeared to be 

unique among the phospholipid classes, as the proportion of AA increased in PI along with 

increased levels of n-3 PUFA in response to supplementation with 18:4n-3 and 20:4n-3.  This was 

in contrast to the other phospholipid classes in which the levels of AA and total n-6 PUFA 

decreased upon supplementation with n-3 PUFA.  As the level of AA in total lipid was unchanged 

by supplementation with the n-3PUFA, it appeared that AA was, in effect, redistributed among the 

phospholipid classes.  

Although the increased levels of 18:4n-3 and 20:4n-3 were greatest in PC, and increased 

levels of 20:5n-3 and 22:5n-3 were greatest in PE and PS, respectively, all the n-3 PUFA were 

distributed among PC, PE and PS with the most striking feature being their relative exclusion from 

PI. Slightly different results were obtained in an earlier study where the incorporation of 18:4n-3 

into AS cells was determined after a longer incubation period of 7 days (Tocher and Dick 1990b).  

However, in that earlier study, although the greatest proportion of 18:4n-3 was found in PC and 

phosphatidic acid (PA), and the highest level of 20:4n-3, derived from the 18:4n-3, in PA, the levels 

of 18:4n-3 and 20:4n-3 were low in PI as observed in the present study (Tocher and Dick 1990b).  

The results from other studies are also consistent with the present data.  Exogenously added 20:4n-3 

was primarily incorporated into PC, PI and PE in human endothelial cells, but did not affect AA 

levels in short-term incubations of 24h (Croset et al. 1999). Both [U-14C]18:4n-3 and [U-14C]20:4n-

3 were predominantly incorporated into PC in sea bream cells (Tocher and Ghioni 1999). 

Exogenously added 18:4n-3 was incorporated into NIH-3T3 cells at the expense of 

monounsaturated fatty acids, especially 18:1n-9, rather than n-6 PUFA (Cantrill et al. 1993).  In the 

present study, incorporation of both 18:4n-3 and 20:4n-3 into total lipid of AS cells was also mainly 
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at the expense of monoenes, predominantly 18:1n-9.  

Thus, the results from the present study are generally consistent with previous data and, in 

particular, suggest a potentially important role for PI in eicosanoid metabolism in fish cells.  

However, this is circumstantial, and there is no direct evidence from the present study, or any 

previous study, to support a unique role for PI in eicosanoid metabolism in fish, and it appears that 

no single phosphoglyceride class is the sole supplier of eicosanoid precursor in fish (Tocher 1995).   

Therefore, whether the specificity for AA as a precursor for eicosanoid production in fish is the 

result of an AA-specific phospholipase A2 or from the specificity of the cyclooxygenase and 

lipoxygenase enzymes, and whether phospholipid class distribution plays any part, is unresolved.  

The above results and discussion clearly suggest that 20:4n-3 could have significant 

modulatory effects on eicosanoid metabolism, and thus inflammatory responses, in fish and that 

consumption of diets including plant oils containing high levels of 18:4n-3, as in echium oil, could 

have beneficial effects.  However, further studies of the effects of 20:4n-3 in vivo are required.  Oils 

containing high levels of 20:4n-3 are not available at the moment but could be in the future in the 

form of single cell oil from Mortierella alpina mutants defective in Δ5 desaturase activity 

(Kawashima et al. 1997).   In the present study, we required to produce high purity 20:4n-3 

ourselves due to the lack of commercially available product, and although 20:4n-3 is now available 

the cost is prohibitive for in vivo trials.  The methods we describe here to prepare 20:4n-3 could be 

scaled up to produce gram amounts of material particularly if a lower grade of purity was required 

as in dietary trials.  

 Marine fish oil was used as starting material for both the chromatographic and partial 

synthetic production of 20:4n-3 as it contains 1-2% of 20:4n-3. Fractionation of 3 g quantities of 

ethyl esters of total fatty acids from a conventional marine fish oil by preparative reverse phase 

liquid chromatography readily yielded a fraction substantially enriched in 20:4n-3, and also in 

20:4n-6 and 22:5n-3, these two fatty acids also being minor constituents of fish oil. The large scale 

fraction of ethyl esters enriched in 20:4n-3, 20:4n-6 and 22:5n-3 greatly facilitated the subsequent 

isolation of the pure ethyl ester of 20:4n-3 by semi-preparative HPLC, albeit in mg amounts only, 

due to the close retention times of 20:4n-3 and 20:4n-6 causing peak overlap at higher column 

loadings. The semi-preparative HPLC also yielded pure 22:5n-3.  

 For the partial synthesis of 20:4n-3, a readily available commercial fraction of marine fish 

oil containing essentially only 18:4n-3 and 20:5n-3, in equal quantities, was used as starting 

material. This fatty acid mixture was chosen rather than pure 18:4n-3 (which is readily available) on 

cost grounds as the mixture is far cheaper and available in bulk which would facilitate the 

production of larger amounts of 20:4n-3. The mixture did not affect final purity, as the mixed 
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elongated products could be easily separated by preparative HPLC to yield pure products. Thus, 

18:4n-3 and 20:5n-3 were simultaneously converted to 20:4n-3 and 22:5n-3, with the option of 

further conversion of these to 22:4n-3 and 24:5n-3, respectively, thus generating a range of 

potentially useful fatty acids and intermediates, radiolabelled if need be, for metabolic studies. 
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Legends to Figures 

 

Fig.1. Eicosanoid analyses by negative ion (EI+) GC-MS.  (A) Total ion chromatogram (TIC) of an 

eicosanoid extract from rainbow trout macrophages incubated for 4 days with 25 µM 20:4n-3.  

(B) TIC of an authentic PGE2 standard (note more than one isomer present). (C) Mass scan 

for m/z 297, the base peak for Δ17,18 dehydro-12-HETE, the 12-lipoxygenase metabolite of 

20:4n-3. (D) Mass scan for m/z 508, the base peak for PGE2 showing a peak running slightly 

behind the main authentic PGE2 isomer, probably representing the PG product of 20:4n-3, 

Δ17,18–dehydro-PGE1, a PGE2 isomer.  

 

 Fig.2. Negative ion (EI+) GC-MS spectrum of peak Y (Fig.1A), showing the ions characteristic for 

Δ17,18 dehydro-12-HETE.  

 

Fig.3. Gas-chromatography of PGF isomers. The figure shows the portion of the GC trace where 

PGF isomers elute.  The GC conditions were optimised as described in the methods to obtain 

a clear chromatographic separation of the different isomers, in order to use CI- MS to monitor 

their molecular ions at specific retention times. (A) Separation of a mixture of commercially 

available PGF1α, PGF2α and PGF3α standards. The three peaks at 21.09 min, 21.43 min and 

21.96 min were identified as PGF2α, (m/z 569.4), PGF3α, (m/z 567.4) and PGF1α, (m/z 571.4), 

respectively. (B) Chromatography, under the same conditions as above, of an eicosanoid 

extract from rainbow trout head kidney macrophages incubated with 25µM 20:4n-3 as 

described in the Methods section.  This gave a major peak at 22.3 min, just after where PGF1α 

would elute. 

 

Fig.4. CI- MS spectra of standard PGF2α (A) and the major peak at 22.3 in the eicosanoid extract 

from rainbow trout head kidney macrophages incubated with 20:4n-3 (B).  The m/z signal of 

569.4 for the molecular ion for the peak at 22.3 min was identical to that for the standard 

PGF2α indicating that it was the PGF2α isomer from 20:4n-3, Δ17,18 –dehydro-PGF1α.  

 

Fig.5. Effect of 20:4n-3 on the production of prostaglandin F2α (PGF2α) by rainbow trout kidney 

head macrophages. Using the chromatographic conditions as in Fig.2. for separation and 

quantification, levels of PGF2α were compared in activated macrophages with no 

supplemented fatty acids (control), with macrophages supplemented with either 20:4n-3 or 
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20:4n-6 alone and in experiments in which both 20:4n-3 and 20:4n-6 were administered 

together. 
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Table 1. Effect of supplementation with 18:4n-3 and 20:4n-3 on the lipid 
class composition of Atlantic salmon cells.

Lipid class Control 18:4n-3

Phosphatidylcholine 26.8 ± 0.8 b 27.3 ± 0.9 b 30.4 ± 1.2 a

Phosphatidylethanolamine 19.8 ± 0.8 a 17.6 ± 0.5 b 19.9 ± 0.9 a

Phosphatidylserine 6.3 ± 0.2 a 5.3 ± 0.1 b 6.4 ± 0.2 a

Phosphatidylinositol 7.8 ± 0.2 a 7.0 ± 0.3 b 7.7 ± 0.3 a

PG/PA/CL 3.0 ± 0.1 b 3.1 ± 0.1 b 3.8 ± 0.2 a

Sphingomyelin 2.8 ± 0.5 2.1 ± 0.5 2.8 ± 0.5

Total polar lipids 66.6 ± 0.2 b 62.4 ± 1.3 c 70.9 ± 2.0 a

Total neutral lipids 33.4 ± 0.2 b 37.6 ± 1.3 a 29.1 ± 2.0 c

Cholesterol 26.3 ± 0.8 a 19.1 ± 0.4 b 19.5 ± 1.1 b

Triacylglycerol 6.5 ± 0.5 c 15.1 ± 1.3 a 9.2 ± 1.0 b

Steryl esters 0.6 ± 0.4 b 3.4 ± 1.3 a 0.3 ± 0.1 b

Results are means ± SD (n=3).  Mean values with different superscript

letters within a row are significantly different (P < 0.05) as determined by 

one-way ANOVA followed where appropriate by Tukey's multiple 

comparison test.  CL, cardiolipin; PA, phosphatidic acid; 

PG, phosphatidylglycerol.

20:4n-3
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Table 2. Effect of supplementation with 18:4n-3 and 20:4n-3 on the 
fatty acid composition of total lipid from Atlantic salmon cells.

Control 18:4n-3 20:4n-3

14:0 0.8 ± 0.1 0.6 ± 0.1 0.7 ± 0.1
16:0 9.4 ± 0.4 a 8.0 ± 0.2 b 9.4 ± 0.7 a

18:0 5.8 ± 0.2 c 10.2 ± 0.4 a 7.6 ± 0.8 b

Total saturates1 16.1 ± 0.6 b 19.2 ± 0.6 a 17.8 ± 1.5 ab

16:1n-9 3.3 ± 0.2 a 2.1 ± 0.2 b 2.2 ± 0.2 b

16:1n-7 2.0 ± 0.1 a 1.1 ± 0.0 b 1.2 ± 0.1 b

18:1n-9 39.9 ± 1.0 a 22.6 ± 1.0 b 20.4 ± 1.8 b

18:1n-7 4.5 ± 0.1 a 3.2 ± 0.1 b 2.9 ± 0.3 b

20:1n-9 0.6 ± 0.1 ab 0.9 ± 0.2 a 0.4 ± 0.1 b

Total monoenes2 51.6 ± 1.2 a 30.9 ± 1.1 b 27.9 ± 2.6 b

18:2n-9 1.3 ± 0.2 a 0.6 ± 0.0 b 0.7 ± 0.2 b

20:2n-9 0.5 ± 0.1 a 0.0 ± 0.0 b 0.0 ± 0.0 b

20:3n-9 0.7 ± 0.1 0.5 ± 0.1 0.5 ± 0.1
Total n-9 PUFA 2.5 ± 0.2 a 1.1 ± 0.4 b 1.2 ± 0.4 b

18:2n-6 1.2 ± 0.0 1.1 ± 0.1 1.0 ± 0.1
20:3n-6 1.2 ± 0.1 a 1.1 ± 0.2 a 0.3 ± 0.4 b

20:4n-6 2.9 ± 0.1 2.9 ± 0.1 2.6 ± 0.3
22:4n-6 0.4 ± 0.0 0.4 ± 0.0 0.2 ± 0.2
Total n-6 PUFA3 6.2 ± 0.5 b 5.5 ± 0.1 b 4.1 ± 0.4 a

18:4n-3 0.0 ± 0.0 c 11.5 ± 0.8 a 2.2 ± 0.3 b

20:4n-3 0.0 ± 0.0 c 4.8 ± 0.5 b 12.0 ± 0.7 a

20:5n-3 0.8 ± 0.1 c 4.6 ± 0.4 b 7.1 ± 1.2 a

22:4n-3 0.1 ± 0.2 c 0.5 ± 0.1 b 1.4 ± 0.1 a

22:5n-3 1.6 ± 0.0 b 2.0 ± 0.2 b 2.9 ± 0.4 a

22:6n-3 3.8 ± 0.4 3.2 ± 0.2 3.1 ± 0.5
Total n-3 PUFA4 6.3 ± 0.5 b 27.1 ± 0.8 a 28.6 ± 2.6 a

Total PUFA 16.3 ± 0.5 b 36.3 ± 1.1 a 36.1 ± 3.2 a

Total DMA 5.1 ± 0.5 4.3 ± 0.5 4.5 ± 0.7

Results are means ± SD (n=3).  Mean values with different superscript

letters within a row are significantly different (P < 0.05) as determined

by one-way ANOVA followed where appropriate by Tukey's multiple 

comparison test. DMA, dimethylacetals; PUFA, polyunsaturated fatty 

acids. 1, Totals include 15:0, 17:0 and 20:0 and 22:0; 2, Totals include 
17:1, and 24:1; 3, Totals include 18:3n-6, 20:2n-6, 22:2n-6 and 22:5n-6;
4, Totals include 18:3n-3 and 20:3n-3.
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Table 3. Effect of supplementation with 18:4n-3 and 20:4n-3 on the fatty acid composition of phosphatidylcholine
 and phosphatidylethanolamine in Atlantic salmon (AS) cells.

14:0 1.6 ± 0.1 a 1.1 ± 0.1 b 1.6 ± 0.1 a 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.0
16:0 16.7 ± 0.3 14.6 ± 0.1 15.9 ± 3.5 3.2 ± 0.8 2.5 ± 0.1 3.4 ± 0.2
18:0 4.9 ± 0.2 b 8.5 ± 0.2 a 5.2 ± 0.3 b 3.6 ± 0.8 c 9.2 ± 0.1 a 6.9 ± 0.5 b

Total saturates1 23.5 ± 0.5 24.6 ± 0.3 23.3 ± 3.5 7.2 ± 1.7 b 12.1 ± 0.2 a 10.7 ± 0.7 a

16:1n-9 4.7 ± 0.2 a 2.7 ± 0.1 b 4.1 ± 0.8 a 3.6 ± 0.7 a 2.3 ± 0.5 b 1.9 ± 0.1 b

16:1n-7 3.0 ± 0.1 1.7 ± 0.1 2.7 ± 0.9 1.4 ± 0.4 1.1 ± 0.9 0.6 ± 0.0
18:1n-9 53.4 ± 0.4 a 33.4 ± 0.8 b 30.3 ± 0.8 c 37.1 ± 5.7 a 18.4 ± 1.9 b 17.7 ± 0.8 b

18:1n-7 4.8 ± 0.1 a 4.0 ± 0.3 b 3.7 ± 0.1 b 5.4 ± 1.8 4.0 ± 0.4 3.7 ± 0.0
20:1n-9 0.4 ± 0.1 a 0.0 ± 0.1 b 0.0 ± 0.0 b 0.7 ± 0.1 a 0.0 ± 0.0 c 0.2 ± 0.0 b

Total monoenes2 67.5 ± 0.2 a 43.0 ± 1.0 b 41.9 ± 2.2 b 49.8 ± 8.7 a 26.9 ± 2.9 b 25.1 ± 0.4 b

18:2n-6 1.2 ± 0.1 a 0.9 ± 0.0 b 0.8 ± 0.0 b 1.0 ± 0.2 1.2 ± 0.1 0.9 ± 0.1
18:3n-6 0.2 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.2 0.3 ± 0.0 0.2 ± 0.0
20:2n-6 0.2 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 0.3 ± 0.3 0.3 ± 0.2 0.3 ± 0.2
20:3n-6 0.8 ± 0.0 a 0.5 ± 0.0 b 0.4 ± 0.0 b 0.6 ± 0.0 0.6 ± 0.0 0.5 ± 0.0
20:4n-6 0.9 ± 0.1 a 0.8 ± 0.0 ab 0.7 ± 0.0 b 4.9 ± 0.4 a 3.4 ± 0.2 b 2.6 ± 0.2 c

22:2n-6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.1 a 0.1 ± 0.1 b 0.1 ± 0.1 b

22:4n-6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
22:5n-6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.3 0.2 ± 0.1 0.2 ± 0.1
Total n-6 PUFA 3.2 ± 0.1 a 2.3 ± 0.1 b 2.1 ± 0.1 b 8.0 ± 0.7 a 6.3 ± 0.3 b 5.1 ± 0.3 c

18:3n-3 0.2 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0
18:4n-3 0.1 ± 0.0 c 14.7 ± 1.1 a 3.1 ± 0.3 b 0.2 ± 0.2 c 5.6 ± 0.7 a 0.7 ± 0.0 b

20:4n-3 0.0 ± 0.0 c 5.0 ± 0.5 b 13.0 ± 0.8 a 0.0 ± 0.0 c 6.0 ± 0.6 b 12.9 ± 0.5 a

20:5n-3 0.7 ± 0.1 c 4.8 ± 0.3 b 9.7 ± 0.9 a 1.7 ± 0.2 b 9.4 ± 0.2 a 10.0 ± 0.7 a

22:4n-3 0.0 ± 0.0 c 0.3 ± 0.0 b 0.8 ± 0.1 a 0.0 ± 0.0 c 0.4 ± 0.1 b 1.6 ± 0.2 a

22:5n-3 0.5 ± 0.0 c 0.7 ± 0.0 b 1.3 ± 0.0 a 2.5 ± 0.1 c 3.6 ± 0.2 b 4.9 ± 0.2 a

22:6n-3 0.7 ± 0.1 0.6 ± 0.3 0.5 ± 0.1 4.5 ± 0.2 b 5.7 ± 0.2 a 4.5 ± 0.0 b

Total n-3 PUFA3 2.1 ± 0.2 c 26.1 ± 0.8 b 28.6 ± 0.7 a 9.0 ± 0.4 c 30.6 ± 1.1 b 34.6 ± 0.5 a

Total n-9 PUFA 1.6 ± 0.2 a 0.7 ± 0.1 b 0.7 ± 0.1 b 3.2 ± 0.5 a 1.1 ± 0.3 b 1.2 ± 0.5 b

Total PUFA 6.9 ± 0.6 c 29.1 ± 1.1 b 31.4 ± 0.6 a 20.2 ± 1.9 c 38.0 ± 1.5 b 40.9 ± 2.4 a

Total DMA 0.4 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 17.5 ± 10.9 15.5 ± 1.2 16.6 ± 2.0

Results are means ± SD (n=3).  Mean values with different superscript letters within a row for each lipid class are 

significantly different (P < 0.05) as determined by one-way ANOVA followed where appropriate by Tukey's multiple 

comparison test. DMA, dimethylacetals; PUFA, polyunsaturated fatty acids. 1, Totals include 15:0, 17:0, 20:0 and 22:0;
2, Totals include 17:1, and 24:1; 3, Totals include 20:3n-3.

18:4n-3 20:4n-3

Phosphatidylcholine Phosphatidylethanolamine

Control 18:4n-3 20:4n-3 Control
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14:0 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
16:0 7.3 ± 0.3 a 4.7 ± 1.1 b 5.8 ± 0.7 ab 4.0 ± 0.4 a 2.5 ± 0.4 b 3.4 ± 0.2 a

18:0 22.0 ± 1.5 b 34.5 ± 1.3 a 32.4 ± 1.0 a 15.0 ± 1.0 c 31.2 ± 1.2 a 27.7 ± 0.9 b

Total saturates1 30.2 ± 1.0 b 40.0 ± 0.2 a 39.0 ± 0.4 a 19.3 ± 1.3 c 34.1 ± 0.8 a 31.4 ± 0.5 b

16:1n-9 1.4 ± 0.0 a 0.4 ± 0.1 b 0.5 ± 0.1 b 1.8 ± 0.1 a 0.6 ± 0.1 b 0.8 ± 0.1 b

16:1n-7 0.4 ± 0.3 0.1 ± 0.1 0.1 ± 0.1 0.7 ± 0.1 a 0.2 ± 0.0 b 0.3 ± 0.0 b

18:1n-9 32.5 ± 0.9 a 15.8 ± 2.2 b 13.0 ± 0.3 b 34.5 ± 0.8 a 14.0 ± 1.5 b 14.8 ± 0.5 b

18:1n-7 3.9 ± 0.7 a 2.4 ± 0.1 b 2.7 ± 0.2 b 4.9 ± 0.3 a 3.3 ± 0.4 b 2.8 ± 0.2 b

20:1n-9 0.8 ± 0.2 a 0.3 ± 0.2 b 0.4 ± 0.1 b 0.8 ± 0.1 a 0.1 ± 0.1 b 0.2 ± 0.1 b

Total monoenes2 39.8 ± 1.7 a 19.4 ± 2.4 b 16.9 ± 0.5 b 43.5 ± 1.0 a 18.5 ± 1.5 b 19.4 ± 0.6 b

18:2n-6 1.2 ± 0.2 a 0.8 ± 0.1 ab 0.5 ± 0.3 b 0.7 ± 0.1 0.7 ± 0.1 0.6 ± 0.1
20:2n-6 1.2 ± 1.0 a 0.1 ± 0.2 b 0.1 ± 0.2 b 0.4 ± 0.7 0.2 ± 0.0 0.1 ± 0.1
20:3n-6 2.2 ± 0.0 2.3 ± 0.1 2.0 ± 0.1 3.2 ± 0.0 b 4.1 ± 0.2 a 3.2 ± 0.2 b

20:4n-6 1.3 ± 0.2 a 1.1 ± 0.1 ab 0.8 ± 0.0 b 13.6 ± 0.2 b 19.7 ± 1.4 a 18.8 ± 0.7 a

22:2n-6 1.6 ± 1.1 a 0.5 ± 0.3 b 0.5 ± 0.4 b 0.8 ± 0.3 a 0.3 ± 0.2 b 0.3 ± 0.3 b

22:4n-6 0.5 ± 0.2 0.6 ± 0.1 0.5 ± 0.0 0.4 ± 0.0 0.3 ± 0.0 0.3 ± 0.0
22:5n-6 0.2 ± 0.1 0.0 ± 0.0 0.3 ± 0.2 0.6 ± 0.3 0.3 ± 0.1 0.2 ± 0.1
Total n-6 PUFA3 8.2 ± 0.6 a 5.4 ± 0.3 b 4.6 ± 0.2 b 19.8 ± 0.8 b 25.7 ± 1.4 a 23.5 ± 0.8 a

18:3n-3 0.1 ± 0.1 0.1 ± 0.2 0.0 ± 0.0 0.2 ± 0.1 0.3 ± 0.2 0.1 ± 0.1
18:4n-3 0.2 ± 0.1 b 2.2 ± 0.3 a 0.2 ± 0.2 b 0.2 ± 0.1 b 1.2 ± 0.2 a 0.3 ± 0.0 b

20:4n-3 0.0 ± 0.1 c 4.9 ± 0.7 b 11.7 ± 0.2 a 0.1 ± 0.1 c 3.1 ± 0.3 b 5.7 ± 0.5 a

20:5n-3 0.5 ± 0.1 b 2.6 ± 0.3 a 2.5 ± 0.2 a 0.4 ± 0.1 c 2.4 ± 0.1 b 4.2 ± 0.3 a

22:4n-3 0.2 ± 0.3 b 0.1 ± 0.1 b 1.0 ± 0.1 a 0.1 ± 0.2 b 0.3 ± 0.1 b 0.7 ± 0.1 a

22:5n-3 5.2 ± 0.4 b 8.7 ± 0.9 a 9.8 ± 0.6 a 3.8 ± 0.4 b 4.4 ± 0.3 b 5.6 ± 0.5 a

22:6n-3 6.9 ± 0.7 b 10.1 ± 1.1 a 8.5 ± 0.2 ab 4.3 ± 0.7 4.7 ± 0.3 4.0 ± 0.1
Total n-3 PUFA4 13.2 ± 1.0 c 28.6 ± 3.1 b 33.7 ± 1.2 a 9.5 ± 1.1 c 16.8 ± 0.7 b 20.6 ± 1.0 a

Total n-9 PUFA 3.3 ± 0.7 a 1.1 ± 0.2 b 1.1 ± 0.3 b 3.6 ± 0.3 a 1.5 ± 0.4 b 1.3 ± 0.4 b

Total PUFA 24.7 ± 0.6 b 35.1 ± 3.1 a 39.4 ± 1.2 a 32.9 ± 1.6 b 44.0 ± 2.7 a 45.4 ± 1.9 a

Results are means ± SD (n=3).  Mean values with different superscript letters within a row for each lipid class are 

significantly different (P < 0.05) as determined by one-way ANOVA followed where appropriate by Tukey's 

multiple  comparison test. PUFA, polyunsaturated fatty acids. 1, Totals include 15:0, 17:0 and 20:0 and 22:0; 
2, Totals include 17:1, and 24:1; 3, Totals include 18:3n-6; 4, Totals include 20:3n-3.

Table 4. Effect of supplementation with 18:4n-3 and 20:4n-3 on the fatty acid composition of phosphatidylserine

Phosphatidylserine Phosphatidylinositol

and phosphatidylinositol in Atlantic salmon (AS) cells.

18:4n-3 20:4n-3Control 18:4n-3 20:4n-3 Control
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