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Within a decade or so insufficient fish oil (FO) will be available to meet the requirements for 1 

aquaculture growth. Consequently, alternative sources are being investigated to reduce reliance 2 

on wild fish as a source of FO.  Vegetable oils (VO) are a feasible alternative to FO. However, 3 

it is important to establish that alternative dietary lipids are not only supplied in the correct 4 

quantities and balance for optimal growth, but can maintain immune function and prevent 5 

infection, since it is known that the nutritional state of the fish can influence their immune 6 

function and disease resistance. A way of maintaining immune function, while replacing 7 

dietary FO, is by using a blend of VOs rather than a single oil. In this study, juvenile European 8 

sea bass, Dicentrarchus labrax, were fed diets with a 60 % substitution of FO with a blend of 9 

rapeseed (RO), linseed (LO) and palm oils (PO). Two oil blends were used to achieve a fatty 10 

acid composition similar to FO, in terms of energy content and provide a similar balance of 11 

saturates, monounsaturates and polyunsaturated fatty acids. Fish were fed the diets for 64 12 

weeks, after which time growth and fatty acid compositions of liver and blood leukocytes were 13 

monitored. The impact of the dietary blends on selected innate immune responses and 14 

histopathology were also assessed, together with levels of plasma prostaglandin E2. The results 15 

suggest that potential exists for replacing FO with a VO blend farmed sea bass feeds without 16 

compromising growth, non-specific immune function or histology. 17 
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Global catches from the feed grade fisheries that provide fish oil (FO) and fish meal for 1 

aquafeed formulations have reached their sustainable limits1 and it is likely that within a 2 

decade or so there may be insufficient FO to meet the quantities required for current 3 

aquaculture growth2. Consequently, there has been considerable interest in introducing 4 

sustainable alternatives to fish meal and FO that reduce reliance on marine raw materials3,4 A 5 

number of recent studies suggest that dietary vegetable oil (VO) inclusion does not result in 6 

reduced growth performance or feed conversion in Atlantic salmon, Salmo salar5,6, rainbow 7 

trout, Oncorhynchus mykiss7 gilthead sea bream, Sparus aurata8 or European sea bass, 8 

Dicentrarchus labrax9. However, at levels above 50% VO inclusion, significant accumulation 9 

of fatty acids derived from VO, especially 18:2n-6, and reduction of eicosapentaenoic (20:5n-10 

3; EPA) and docosahexaenoic acids (22:6n-3; DHA) occurs in fish tissues5,6,8,9. 11 

The nutritional status of an organism, including fish, is known to influence immune 12 

functions10 and the overall resistance of an organism to disease is therefore dependent on their 13 

nutritional status.  The first review suggesting that fatty acids might be important in immune 14 

function was by Meade & Mertin11 and more recent reviews have confirmed the importance of 15 

the polyunsaturated fatty acids (PUFA), of both the n-6 and n-3 series, as modulators of 16 

immune function12,13. Fatty acids are incorporated into the plasma membrane from dietary 17 

lipids, so that the fatty acid composition of cellular membranes reflects the composition of 18 

dietary lipids14. In fish, dietary fatty acids and tissue fatty acid compositions are closely 19 

correlated15 and changes in the dietary n-3/n-6 ratio can influence the compositions of fish 20 

immune cells, including blood leukocytes.16,17,18 21 

Fatty acids have diverse roles in all cells. They are important as a source of energy, as 22 

structural components of cell membranes and as signalling molecules. In mammalian studies, 23 

dietary fatty acids may be able to modulate the immune system through several mechanisms 24 

including reduction of lymphocyte proliferation, cytokine synthesis and phagocytic activity 25 

and also by modification of natural killer cell activity19. The main event in the modulation of 26 

immune function may be associated with changes in the cell membrane due to dietary fatty 27 

acid manipulation. It is likely that modulation of the overall immune system occurs as a result 28 

of alterations in membrane fluidity, lipid peroxidation, eicosanoid production or regulation of 29 

gene expression20. 30 

In the present study, triplicate groups of juvenile European sea bass were fed diets that 31 

were based on 60% substitution of FO with a blend of rapeseed (RO), linseed (LO) and palm 32 

oils (PO). The level of 60% substitution was chosen as this was the maximum level of VO 33 

inclusion that could be tolerated in marine fish without loss of growth performance.8,9 The oils 34 
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were blended in two different formulations to achieve a fatty acid composition as similar to 1 

anchovy oil as possible, in terms of energy content and provide a similar balance of saturates, 2 

monounsaturates and PUFA to that found in FO, but without highly unsaturated fatty acids 3 

(HUFA). The fish were fed the diets for 64 weeks starting at an initial weight of 4 

approximately 5 g.  Growth parameters and the fatty acid compositions of liver and peripheral 5 

blood leukocytes were monitored after 64 weeks. The impact of the dietary blends on selected 6 

aspects of the innate immune response (haematological parameters, serum lysozyme activity 7 

and macrophage respiratory burst activity) and histopathology were also assessed in the 8 

experimental fish at this time, together with levels of plasma prostaglandin E2. 9 

 10 

Materials and methods 11 

Experimental fish and diets 12 

European sea bass (Dicentrarchus labrax L.), 7.9 ±0.5 cm in length and 5.2 ±1.0 g in weight 13 

were purchased from MARESA, Huelva, Spain and transported to the marine aquarium facility 14 

at the University of Cádiz, Faculty of Marine and Environmental Sciences, Puerto Real 15 

(Cádiz). On arrival the fish were placed in nine 5000 l rectangular tanks at 600 fish per tank 16 

(approx. 0.6 kg/m3), with salinity of 39‰, temperature of 20ºC and saturated with oxygen. 17 

Following 2 weeks acclimation (July 2002), triplicate groups of fish were fed to satiation, 18 

using mechanical belt automatic feeders with three iso-energetic and iso-nitrogenous 19 

experimental diets formulated to provide a constant lipid content of ~22 % (Nutreco ARC 20 

Stavanger, Norway). The diets contained ~47 % protein, primarily provided by fish meal, and 21 

21.4 %, 24.1 % and 21.5 % lipid for diets of pellet size, 2, 3 and 5 mm, respectively. Two 22 

experimental diets contained 60 % of three VOs, LO, PO and RO, blended to provide a 23 

balance of saturates, monoenes and PUFA similar to that found in FO, but without HUFA. The 24 

control diet contained anchovy oil and the added oil combinations for the three experimental 25 

diets were: Diet A: 100 % anchovy oil (control); Diet B: 40 % anchovy oil, 35 % linseed oil, 26 

15 % palm oil and 10 % rapeseed oil; Diet C: 40 % anchovy oil, 24 % linseed oil, 12 % palm 27 

oil and 24 % rapeseed oil. The formulation and proximate compositions of the experimental 28 

diets are shown in Table 1, while diet total lipid content and fatty acid compositions are shown 29 

in Table 2. 30 

 31 

Sample collection and biometric measurements 32 

After feeding the experimental diets for 64 weeks, thirty fish per tank (i.e. 90 fish per replicate) 33 

were sampled for length and live mass and condition factor K and specific growth rates 34 
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recorded. Ten fish per replicate (i.e. 30 fish per dietary treatment) were sampled and liver (live 1 

and dry mass), hepatosomatic index and flesh (live and dry mass) were recorded. Liver 2 

samples for fatty acid analyses were dissected from 4 fish per replicate (i.e. 12 fish per dietary 3 

treatment) and immediately frozen in liquid nitrogen and stored at -80ºC until analysed.  Blood 4 

for eicosanoid analysis (2 ml) was collected in heparinised syringes from 6 fish per dietary 5 

treatment, and centrifuged at 12 000 x g for 2 min. The plasma was collected and acidified by 6 

the addition of 50 µl/ml 2 M formic acid and immediately frozen in liquid nitrogen for 7 

eicosanoid analysis. Heparinised blood samples were also used for haematological analyses. 8 

Live mass of the liver was determined by blotting the tissue on filter paper before weighing, 9 

and dry mass determined after heating to 60oC for 24 h and cooling under vacuum before 10 

weighing. Hepatosomatic index (HSI) was calculated as liver live mass * 100/fish live mass. 11 

Fulton´s condition factor (K) = (W/L3)*100, where W is the fish weight (g) and L the total 12 

length (cm). Specific growth rate (SGR) was calculated as % weight gain/day21. Non-specific 13 

mortality was measured at the end of the experiment and expressed as a percentage of 14 

surviving fish. 15 

 16 

Proximate analysis of diets 17 

Moisture content was determined by thermal drying to constant weight in an oven at 110ºC for 18 

24 h. For the total protein content, the micro-Kjeldahl analysis method was followed, using a 19 

Digestion system 40–1006 Heating Unit and a KJELTEC AUTO 1030 Analyzer. To convert 20 

total nitrogen to total protein content, as a percentage of dry weight, the factor 6.25 (100/16) 21 

was used. Crude fat was determined by acid hydrolysis with a Soxtec System 1047 22 

Hydrolyzing Unit, followed by Soxhlet extraction using a Soxtec System HT6. Ash content as 23 

% of dry weight was determined by dry ashing in porcelain crucibles in a muffle furnace, at 24 

600ºC overnight22. 25 

 26 

Lipid analysis 27 

Total lipid in samples was extracted after homogenisation, using an Ultraturrax tissue 28 

disrupter, in 10 volumes of chloroform/methanol (2:1, v/v) containing 0.01 % butylated 29 

hydroxytoluene (BHT) as antioxidant, basically according to Folch et al.23 and essentially as 30 

described by Christie24. 31 

Fatty acid methyl esters (FAME) were prepared from aliquots of total lipids by acid-32 

catalysed transmethylation for 16 h at 50oC, using tricosanoic acid (23:0) as internal 33 

standard24. FAME were extracted and purified as described previously25 and were separated 34 
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using a Hewlett-Packard 5890A Series II gas chromatograph equipped with a chemically 1 

bonded (PEG) Supelcowax-10 fused silica wall coated capillary column (30 m x 0.32 mm i.d., 2 

Supelco Inc., Bellefonte, USA), using an "on column" injection system and flame ionisation 3 

detection. Hydrogen was used as the carrier gas with an oven thermal gradient from an initial 4 

50ºC to 180ºC at 25ºC/min and then to a final temperature of 235ºC at 3ºC/min, with the final 5 

temperature maintained for 10 min. Individual FAME were identified by comparison with 6 

known standards and quantified by means of a direct-linked PC and Hewlett-Packard 7 

ChemStation software. 8 

 9 

Extraction and measurement of prostaglandins E2 concentrations in plasma 10 

The frozen acidified plasma samples were thawed and centrifuged at 12000 x g for 2 min to 11 

remove any precipitate. The supernatants were extracted using octadecyl silyl (ODS, C18) 12 

“Sep-Pak” mini-columns (Millipore) as described in detail by Bell et al.26. C18 “Sep-Pak” 13 

mini columns were pre-washed with 5 ml methanol and 10 ml of distilled water, plasma 14 

samples were charged on the mini-column, washed with a further 10 ml of distilled water and 15 

the eicosanoids eluted in 5 ml of ethyl acetate. Samples were dried under nitrogen and 16 

redissolved in immunoassay buffer. Quantification of prostaglandin E was performed using 17 

enzyme immunoassay (EIA) kits, according to the manufacturers protocol (SPI-Bio, Massy, 18 

France). 19 

 20 

Measurement of cellular immune parameters 21 

Eight fish per dietary treatment were sampled after 64 weeks feeding the experimental diets. 22 

Fish were anaesthetised with a lethal dose of tricaine methanesulphonate (MS-222, Sigma, 23 

UK). Blood samples were collected in heparinised vacuum tubes (vacutainer Becton Dickinson 24 

Vacutainer System, Oxford, UK) from the caudal vein. 25 

 26 

Preparation of peripheral blood leucocytes 27 

Peripheral blood leucocytes (PBL) were isolated from blood from three fish per dietary 28 

treatment using the lymphocyte separation medium, Histopaque® (Sigma, UK) and density 29 

gradient centrifugation.  One ml of blood was diluted with 4 ml of L-15 medium and 3 ml of 30 

the diluted blood was layered onto 4 ml of Histopaque® and centrifuged at 400 x g for 45 31 

minutes.  The leucocyte band was collected using a Pasteur pipette and stored in 1 ml of 32 

chloroform:methanol (2:1 v/v) at –20oC until required for lipid extraction.  If erythrocyte 33 

contamination of PBL was considered to be excessive (> 2%) then the PBL fraction was 34 
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centrifugation again on 4 ml of fresh Histopaque®. 1 

 2 

Haematology  3 

Blood was used immediately for haematological studies. Haematocrit values were obtained 4 

using heparinised micro-haematocrit tubes and centrifuging at 12,000 x g for 4 min 5 

(Microcentrifuge MH2, Sarstedt Ltd). Total erythrocyte and total leukocyte counts (including 6 

thrombocytes) were made using phosphate buffered saline (PBS) for dilution and an improved 7 

Neubauer haemocytometer (Hawksley, UK). 8 

 9 

Serum lysozyme activity 10 

An aliquot of blood was allowed to clot at 4oC overnight. Serum was separated by 11 

centrifugation at 4000 x g for 15 min and stored at -20oC until analysis. Serum lysozyme 12 

activity was assayed by a turbidimetric assay which measures the lytic activity of the seabass 13 

serum against Microccocus lysodeikticus.27,28 A suspension of 190 µl of bacteria (Micrococcus 14 

lysodeikticus, Sigma, UK) and 10 µl of serum sample was measured spectrophotometrically at 15 

540nm in five replicate wells per serum sample after 1 and 5 min at 25oC, using a Dynatech 16 

MRX 1.2 ELISA reader (Dynatech Laboratories Limited, West Sussex, UK). The bacterial 17 

suspension (0.2 mg/ml) was prepared in sodium phosphate buffer (0.04 M, pH 5.8). The results 18 

are given as units (U)/ml/min (1U = the amount of sample causing a decrease in absorbance of 19 

0.001min-1). 20 

 21 

Macrophage respiratory burst activity 22 

The reduction of nitroblue tetrazolium salt (NBT) to formazan by oxygen radicals produced by 23 

head kidney macrophages during respiratory burst activity was measured 24 

spectrophotometrically as described by Chung & Secombes29. Isolation and culture of head 25 

kidney macrophages were performed as described by Secombes30 however instead of placing 26 

the cell suspensions on Percoll to isolate the macrophages, 200 µl of each kidney suspension 27 

was added directly to four replicate wells of a 96 well microtitre plate. Plates were sealed and 28 

incubated for 3 h before washing them gently three times to remove non-adherent cells. Two 29 

hundred µl of L-15, containing 10 % foetal bovine serum, was added to all wells and cultures 30 

were incubated at 18o C for 2 to 3 days, after which the respiratory burst activity of the 31 

macrophages was determined by incubating the cells with 100 µl of NBT (1mg/ml)/phorbol 32 

myristate acetate (PMA, 1 µg/ml).  This was added to three of the four wells and incubated at 33 

18-20oC for 40 min. The assay was developed as described by the authors using a microplate 34 
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reader as described above to read the absorbance at 620 nm. The remaining well was used to 1 

determine the numbers of macrophages attached to the plate for individual kidney samples30. 2 

The results were expressed as “macrophage activity” by calculating the mean optical density 3 

for each of the triplicate cultures and dividing the mean OD by the number of cells/well to 4 

obtain an OD per 105 cells and multiplying by 100. 5 

 6 

Histological examination of fish tissues 7 

Samples were collected at 64 weeks to identify any effects of dietary treatment on the 8 

histology of the heart, liver or intestine. Samples of proximal, mid and distal intestine were 9 

collected from 6 fish from each dietary treatment, in addition to the heart and liver, for 10 

histopathological examination. Sections were fixed in 10 % buffered formalin at the time of 11 

dissection, embedded in paraffin wax and 5 µm sections were cut and stained with 12 

haematoxylin and eosin. Processed sections were examined “blind” to eliminate bias in 13 

interpretation. Stained sections of heart were assessed for signs of endocarditis and 14 

pericarditis. Liver sections were assessed on fat content, any indication of inflammation in the 15 

tissue, the degree of peri-vascular cuffing (PVC) and finally the presence of single cell 16 

necrosis (SCN). Intestinal sections were examined on the integrity of the intestinal mucosa,  17 

the appearance of the submucosa and lamina propria and the presence of any inflammatory 18 

response.  19 

 20 

Statistical analysis 21 

Results are reported as means ± SD (n=3) unless otherwise stated. All statistical analyses were 22 

performed using the statistical computer package, Prism 4.0, GraphPad Software, Inc., San 23 

Diego, California, USA. The significance of treatment effects on biometry and growth rates, 24 

liver and leucocyte fatty acid compositions, haematology, serum lysozyme activity and 25 

macrophage respiratory burst activity were determined by one-way ANOVA followed by 26 

Tukey´s multiple comparison test where appropriate. Percentage data and data which were 27 

identified as non-homogeneous (Bartlett´s test) were subjected to either arcsine, square root or 28 

log transformation before analysis. Differences were reported as significant at p < 0.0531. 29 

Immune parameter results are reported as means ± SD (n=8).  30 

 31 

Results 32 

There were no significant differences in the total length of fish between dietary treatments, but 33 

fish fed Diet B showed significantly lower values for total live mass and liver mass than fish 34 

kdt1 ! 2/3/07 14:36
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fed Diets A (control) and C. Fish fed Diets A (control) and B presented significantly lower 1 

values for flesh dry mass (%) at the end of the 64 week feeding trial (Table 3). 2 

     The total lipid fatty acid compositions of livers from sea bass following 64 weeks of 3 

feeding the experimental diets are shown in Table 4. Total saturated fatty acids (primarily 4 

16:0) were identical in all treatments. Total monounsaturated fatty acids, primarily oleic acid 5 

(OA), were significantly higher in liver total lipids from fish fed Diet C, followed by fish fed 6 

Diets B and A (control) due to the higher inclusion of OA in the VO blends. The proportion of 7 

linoleic acid (LA; 18:2n-6) in total lipid from liver was highest in fish fed the VO diets, due to 8 

the high inclusion of LA in RO, LO and PO, and was about 50 % lower in liver of fish fed Diet 9 

A (control). However, total n-6 PUFA values were not significantly different for all treatments. 10 

In contrast, arachidonic acid (20:4n-6, ARA) was highest in liver of control fish (Diet A) and 11 

fish fed Diet B, followed by fish fed Diet C. Total n-6 HUFA, primarily ARA, was highest in 12 

liver from fish that had been fed Diet A (control) followed by fish from treatments B and C 13 

that showed identical values. The percentage of linolenic acid (LNA; 18:3n-3) in liver total 14 

lipids was highest in fish fed Diets B and C (which contained the highest proportions of LO 15 

and, in consequence, the highest level of LNA), followed by fish fed diet A (control). Liver 16 

total lipid percentages of EPA, DHA and total n-3 PUFA were highest in fish fed Diet A 17 

(control) due to the highest content of these fatty acids in FO. The level of total PUFA was not 18 

significantly different in liver total lipids from all treatments (Table 4). 19 

      Inclusion of VO in the diets of sea bass modified the fatty acid composition of their PBLs. 20 

The fatty acid compositions of PBL from VO-fed fish were different from the corresponding 21 

PBL of fish fed FO, with the latter having more monounsaturated fatty acids and higher n-6 22 

PUFA. PBLs of sea bass maintained on Diets B and C had significantly increased levels of 23 

18:0, OA, LA, 20:2n-6 and LNA, and significantly reduced amounts of n-3 PUFA, ARA, EPA, 24 

DHA and others (Table 5).  The overall ratio of n-3/n-6 was significantly reduced in sea bass 25 

fed the VO diets. 26 

      The effect of partial replacement of dietary FO with VO blends on the concentration of 27 

plasma PGE2 in European sea bass after 64 weeks of feeding the diets is shown in Fig. 1a. The 28 

highest values were found in plasma of fish fed the control (FO) and C diets, with significantly 29 

lower values seen in fish fed diet B (46 % less). The source of dietary lipid did not affect any 30 

of the haematological parameters measured. No significant differences were found in 31 

haematocrit values (Fig. 1b) or the total number of leukocytes (Fig. 1c) and erythrocytes (Fig. 32 

1d) between groups. The production of superoxide anion by head kidney macrophages, 33 

measured by the reduction of NBT, is presented in Fig. 1e. It appears that following PMA 34 



 10 

triggering, the respiratory burst activity was significantly reduced in fish fed the VO based 1 

diets. Whether or not this change affects the innate immune response of the fish needs further 2 

investigation. It could be that the respiratory burst event takes place earlier or later than seen 3 

with macrophages from fish fed the FO diet and that this activity has not been measured at the 4 

optimal time for fish fed the VO diets. No effect of dietary VO was observed on sea bass 5 

serum lysozyme activity (Fig. 1f). Fish fed the FO diet showed the highest (1452.5 U/ml/min) 6 

(but not significantly different) value of lysozyme activity in serum compared to 1351.1 7 

U/ml/min found for fish fed the Diet B and 1171.1 U/ml/min for the C diet. 8 

      Hearts examined from all three dietary groups showed no signs of pathological change. In 9 

livers, fat vacuoles were variable in size in many sections with some very large vacuoles 10 

present within some hepatocytes and relatively smaller vacuoles in other hepatocytes. Due to 11 

the level of vacuolation in some hepatocytes, there was some distortion of the cellular 12 

architecture and occasional breakdown of cells. Again, there were no differences between the 13 

three dietary groups. Small foci of inflammation were seen in some sections in all three 14 

groups, with a slightly higher incidence in sections from the Diet C group. PVC was not a 15 

feature in any of the dietary groups examined. With regard to the intestinal sections, mucus 16 

levels appeared very similar in all segments and in all dietary groups. Absorptive vacuoles 17 

were small and multiple in all sections. In the FO diet these were at relatively low levels in the 18 

proximal and mid segments and higher in the distal segments. In fish fed Diet B or Diet C, 19 

vacuolation in the proximal segments appeared to be much more pronounced, interestingly less 20 

so than in the mid sections. Some cellular infiltration was seen in the lamina propria of one 21 

fish in the FO diet (Fig. 2a) and two fish on Diet C (Fig. 2b). Sloughing of the mucosal 22 

membrane was not a feature in any of the sections examined. The major difference seen 23 

between these groups was the level of absorptive vacuolation in the proximal segment of fish 24 

fed Diet B or Diet C, compared with the FO diet. 25 

 26 

Discussion 27 

Considerable data has been accumulated on the effects of different dietary lipids on tissue fatty 28 

acid compositions of both mammals and fish, although the effects of dietary lipids on fish 29 

health and immune function are less well documented.  Changes in dietary fatty acid 30 

composition have been shown to affect both innate32,33,34,35 and adaptive immunity16,34,36,37,38, 31 

as well as the resistance to infectious diseases16,36,37,38,39. However, the role of n-3 and n-6 fatty 32 

acids in fish immune response is unclear, and reports are not conclusive and are often 33 

contradictory. 34 



 11 

The modulatory process is likely to occur at different cellular levels with the most 1 

obvious being a change in cell membrane phospholipid fatty acid composition, affecting the 2 

activity of membrane-bound enzymes, receptors and ion channels40. In addition, eicosanoids, a 3 

group of bioactive derivatives of ARA, EPA and dihomo-γ-linolenic acid (20:3n-6), which 4 

include prostaglandins (PG), thromboxanes, leukotrienes and lipoxins, act to regulate the 5 

immune response13,41. Other immune modulatory processes involving fatty acids include 6 

changes in intracellular signalling pathways42 and direct interactions between fatty acids and 7 

nuclear transcription factors in cells of the immune system, such as the peroxisome 8 

proliferators activated receptors, that act to regulate immune cell function20. 9 

Fish tissues and cell membranes, including phagocytic cells (macrophages, 10 

neutrophils), contain relatively high concentrations of n-3 PUFA, and their compositions can 11 

be altered by changes in dietary lipid18. Specific macrophage functions may also be altered by 12 

lipids, mainly due to changes in membrane fluidity. If fluidity is altered by fatty acid 13 

composition, then potentially several aspects of phagocyte function may be affected including 14 

phagocytosis and eicosanoid production. Calder et al.43 reported that unsaturated fatty acid 15 

incorporation is associated with an increase in the phagocytosis of zymosan particles. 16 

Reduction in head kidney macrophage respiratory burst activity has been observed in 17 

sea bass and gilthead sea bream fed VO9,44 Sea bass fed 60% RO, LO and olive oil had 18 

significantly reduced phagocytic capacity of head kidney macrophage to engulf yeast particles9 19 

while Montero et al.44 found reduced macrophage activity in sea bream fed 60% RO. In 20 

addition, Sheldon & Blazer32 found that channel catfish macrophage killing activity was 21 

positively correlated to the dietary content of n-3 PUFA. They found phagocytosis of live 22 

Edwardsiella ictaluri by catfish head kidney macrophages was not significantly affected by 23 

feeding soybean oil compared to fish fed menhaden oil or beef tallow. However, feeding 24 

soybean oil significantly reduced the ability of macrophages to kill engulfed bacteria compared 25 

to macrophages from those fed menhaden oil. Macrophages from the latter group also had a 26 

significantly higher killing index than macrophages from fish fed soybean oil. Waagbø et al.34 27 

showed that Atlantic salmon fed diets rich in n-3 PUFA significantly reduced the bacterial 28 

killing ability of macrophages at 12oC but not at 18oC indicating that temperature, perhaps 29 

related to membrane fluidity, also influences the activity of macrophages. In contrast, 30 

Thompson et al.16 found no differences in phagocytosis and bactericidal activities of head 31 

kidney macrophages from Atlantic salmon fed diets enriched with either n-3 or n-6 PUFA. 32 

In the present study, the concentration of circulating PGE2 in plasma of sea bass fed the 33 

60% VO blend (Diet B) was significantly lower than in fish fed FO. In addition, the fish fed 34 
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60% VO diets B and C also showed significantly reduced respiratory burst activity which 1 

coincided with a reduction in plasma PGE2 levels. Since the production of PGE2 was reduced 2 

in fish fed VO diets, it may be that the activity or expression of the cyclo-oxygenase enzymes 3 

is inhibited by dietary lipid. It is also possible that feeding VO for a long period may reduce 4 

the levels of ARA in plasma membranes and, thereby, compromise immune function. In 5 

support of the present study, a number of studies also showed a reduction in production of 6 

PGE2 and leukotriene B4 (LTB4) by stimulated head kidney macrophages from salmon fed a 7 

diet containing LO compared to those fed diets containing sunflower oil or FO17,18,45,46. 8 

However, no differences in serum lysozyme activity were found in the present study, which 9 

was also reported in other studies with fish fed VO18,44.  10 

Montero et al.44 found that seabream fed a FO diet had higher numbers of circulating 11 

erythrocytes compared to fish fed 60% LO or soybean oil diets, which may be related to a 12 

higher oxygen requirement due to higher peroxisomal β-oxidation activity induced by the VO 13 

diets37. Leray et al.47 found that the fatty acid composition of erythrocyte membrane 14 

phospholipids from trout can be profoundly altered by dietary oils. Trout fed highly saturated 15 

coconut oil showed increased n-9 fatty acids in their phospholipids, and, consequently, their 16 

erythrocytes had a more shrunken appearance than fish fed FO. Perhaps the high levels of 17 

saturates in the diets caused reduced haematocrit levels, linked to a shrunken erythrocyte 18 

morphology causing a lower packed erythrocyte volume. 19 

The lipid composition of monocytes, macrophages, lymphocytes and polymorpho 20 

nuclear cells (PMN’s) reflect the fatty acid composition of dietary lipids in mammals11,48. 21 

Studies by Waagbbø  et al.35 Farndale et al.49 and Montero et al.44 reported that dietary oil 22 

determines the fatty acid profile of macrophages and immune cells in cod, sea bass and sea 23 

bream. Montero et al.44 reported selective incorporation of certain fatty acids into head kidney 24 

macrophages of seabream. DHA was found to be preferentially incorporated and retained in 25 

this cell type. Generally, fish fed with a VO-containing diet had increased levels of oleic acid, 26 

LA, LNA and total n-6 PUFA in both their liver and their PBLs and decreased levels of EPA, 27 

DHA, total n-3 PUFA and a lower n-3/n-6 ratio than fish fed a FO diet. Fish fed a FO diet 28 

showed the highest n-3 HUFA in immune cells in the present study and in previous 29 

studies35,44,49. Evidence suggests that changing the fatty acid composition of immune cells can 30 

influence immune function by changing the physiology of the cell membrane but perhaps more 31 

importantly by influencing the production of modulatory prostaglandins and leukotrienes20. 32 

The production of eicosanoids is influenced, in part, by the availability of precursor fatty acids 33 

and, in particular, the EPA/ARA ratio. In a previous study with Atlantic salmon fed single VO 34 
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3-fold differences in the EPA/ARA ratio of immune cells were recorded18 while in the present 1 

study with VO blends the difference in the EPA/ARA ratio, between the three dietary 2 

treatments, was only 13%. Perhaps the minor changes to the EPA/ARA ratio in the present 3 

study can partly explain lack of effect observed in innate immune function.   4 

The overall histological appearance of sea bass sampled from all of the dietary 5 

treatments was normal with very few differences observed between the groups.  The only 6 

difference was in the levels of absorptive vacuoles present in the proximal intestine.  Sea bass 7 

fed the VO diets showed elevated numbers of absorptive vacuoles compared to fish fed the FO 8 

diet.  The presence of increased absorptive vacuoles tends to suggest an “active” mucosa, 9 

however with increased mucosal vacuolation this could, in turn, leave the intestinal mucosal 10 

membrane more vulnerable to sloughing and breakdown.  However, the vacuolization was 11 

minor and was still regarded as being within normal ranges for Atlantic salmon.   12 

Results of this study suggest that potential exists for replacing FO with a blend of VO 13 

in the feeds of farmed sea bass without compromising growth, non-specific immune function 14 

and overall histological appearance. It is important to establish that alternative dietary lipids to 15 

FO are not only supplied in the correct quantities and balance for optimal growth and feed 16 

conversion, but can maintain optimal immune function and not increase susceptibility to 17 

infectious pathogens. This study suggests that normal immune function can be more 18 

successfully attained if dietary FO is replaced by a blend of VO, that provides a more 19 

physiologically balanced fatty acid composition, in comparison to replacement with a single 20 

VO9,17,18,44.  21 
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List of Figures 1 

Fig. 1. Effects of feeding diets containing fish oil (FO, diet A), or two 60% vegetable oil 2 

blends (60% VO, diets B & C) on: (a) plasma PGE2 concentration; (b) % haematocrit; (c) 3 

total circulating leukocytes; (d) total circulating erythrocytes; (e) head kidney macrophage 4 

activity (NBT reduction, measured as absorbance at 620 nm/105 cells x 100); (f) serum 5 

lysozyme activity. Values are mean ± SEM, n = 9. Columns assigned a different letter are 6 

significantly different (P < 0.05). 7 

 8 

Fig. 2. Histopathology of sea bass fed (a) Fish oil, distal intestine showing slight cellular 9 

infiltration in the lamina propria and high levels of absorptive vacuoles (mag. x 175) (b) 10 

60% VO diet C, distal intestine showing cellular infiltration but no sloughing of the 11 

mucosal folds (mag. x 430). 12 



 20 

Table 1. Formulation and proximate composition of 5mm experimental diets (g/kg feed) 1 

______________________________________________________________________ 2 

Diets  A B C 3 

______________________________________________________________________ 4 

Components 5 

Fish meal a  400.0 400.0 400.0 6 

Maize gluten b  262.7 262.7 262.7 7 

Wheat c  152.3 152.3 152.3 8 

Oil  160.0 160.0 160.0 9 

Premixes d   25.0 25.0 25.0 10 

 11 

Composition (%) of added oil 12 

Anchovy oil (FO) e  100 40 40 13 

Rapeseed oil (RO) f  0 10 24 14 

Linseed oil (LO) g  0 35 24 15 

Palm oil (PO) h  0 15 12 16 

 17 

Proximate composition (%)  18 

Crude protein  47.8 46.2 47.8 19 

Crude lipid  22.2 24.3 21.2 20 

Carbohydrate  13.1 13.3 15.4 21 

Ash  6.7 6.3 6.2 22 

Moisture  10.2 10.9 9.4 23 

______________________________________________________________________ 24 
a Scandinavian LT-fish meal (Nordsildmel, Norway). 25 
b Cargill, Staley, USA 26 
c Statkorn, Oslo, Norway. 27 
d Vitamin and mineral premix added exceed NRC (1993) recommendations. 28 
e Anchovy oil (Denofa, Fredrikstad, Norway) supplemented with 200 ppm BHT. 29 
f Crude rapeseed oil (Oelmühle Hamburg, Germany) no antioxidant added. 30 
g Crude E.C.C. linseed oil (N.V. Oliefabriek Lictervelde, Belgium) supplemented with 31 

500ppm Ronoxan A (Roche, Basel, Switzerland). 32 
h Crude palm oil (Denofa, Norway).33 
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Table 2. Total lipid content (% of dry mass) and fatty acid composition (weight % of total 1 
fatty acids) of the 5 mm experimental diets. 2 
______________________________________________________________________ 3 
Dietary treatments  A B C 4 
______________________________________________________________________ 5 
Total lipid (%)  20.2 ± 3.1 21.2 ± 4.3 21.1 ± 2.8 6 

Fatty acid 7 

14:0  4.3 ± 0.1a 1.9 ± 0.2b 1.9 ± 0.2b 8 

15:0  0.5 ± 0.0 0.3 ± 0.1 0.6 ± 0.0 9 

16:0  14.0 ± 0.2a 13.3 ± 0.1b 12.5 ± 0.1c 10 

18:0  3.0 ± 0.1a 3.1 ± 0.1a 2.7 ± 0.0b 11 

Total saturated1  22.9 ± 0.1a 19.5 ± 0.2b 18.6 ± 0.3c 12 

16:1n-9/n-7  13.6 ± 0.6a 11.4 ± 1.9b 10.2 ± 0.3b 13 

18:1n-9  9.4 ± 0.2c 16.9 ± 0.4b 21.6 ± 0.4a 14 

18:1n-7  2.2 ± 0.1a 1.8 ± 0.0c 2.0 ± 0.0b 15 

20:1n-9  2.3 ± 0.0a 1.9 ± 0.0c 2.0 ± 0.0b 16 

22:1n-11  2.0 ± 0.1a 1.7 ± 0.1b 1.7 ± 0.0b 17 

Total monoenes2  30.7 ± 0.7c 34.6 ± 1.5b 38.1 ± 0.4a  18 

18:2n-6  4.9 ± 0.0c 9.0 ± 0.7b 10.4 ± 0.2a  19 

20:4n-6  0.6 ± 0.0a 0.3 ± 0.0b 0.3 ± 0.0b 20 

Total n-6  7.4 ± 0.1c 10.7 ± 0.5b   11.8 ± 0.2a 21 

18:3n-3  1.5 ± 0.0c 12.3 ± 0.7a   10.3 ± 0.3b  22 

18:4n-3  2.0 ± 0.0a 1.1 ± 0.1b 1.0 ± 0.0b 23 

20:4n-3  0.5 ± 0.0a 0.3 ± 0.0b 0.3 ± 0.0b 24 

20:5n-3  9.8 ± 0.1a 5.3 ± 0.3b 5.2 ± 0.1b 25 

22:5n-3  1.2 ± 0.0 a 0.7 ± 0.0 b 0.6 ± 0.0 b 26 

22:6n-3  11.0 ± 0.3a 6.3 ± 0.5b 6.2 ± 0.1b 27 

Total n-3  27.9 ± 0.5a 27.0 ± 1.7ab 24.5 ± 0.6b 28 

Total PUFA3                               35.4 ± 0.6                     37.8 ± 2.1                     36.3 ± 0.9 29 

n-3/n-6                                         3.8 ± 0.5a                      2.5 ± 0.5b                     2.1 ± 0.5b 30 

______________________________________________________________________ 31 

Results are means ± SD (n = 3).  An SD of 0.0 implies an SD of < 0.05. 1Includes 20:0 32 

and 22:0. 2Includes 18:1n-11, 20:1n-11, 20:1n-7 22:1n-9 and 24:1. 3Includes 16:2, 16:3, 33 

16:4, 20:2n-6, 20:3n-6 and 22:5n-6. Values bearing different superscript letter are 34 

significantly different (P<0.05). nd, not detected. 35 
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Table 3. Effect of partial replacement (60 %) of dietary fish oil (FO) with vegetable oils 1 

(rapeseed oil, RO; linseed oil, LO and palm oil, PO) on growth and performance of 2 

European sea bass (Dicentrarchus labrax, L.) fed experimental diets for 64 weeks 3 

________________________________________________________________________ 4 

Dietary treatment                 Initial                   A*                       B                         C 5 

________________________________________________________________________ 6 

64 weeks 7 

(final sampling point) 8 

 9 

Fish length (cm)                7.9 ± 0.5           24.9 ± 1.3            23.2 ± 1.4          24.1 ± 1.4 10 

Fish live mass (g)              5.2 ± 1.0         176.2 ± 32.9 a      143.2 ± 29.4 b   159.8 ± 34.2ab 11 

HSI1                                  1.4 ± 0.2              2.0 ± 0.3              1.9 ± 0.2            2.1 ± 0.3 12 

Flesh dry mass (%)                                     22.9 ± 1.7 b          21.3 ± 1.5 b       26.0 ± 1.4 a 13 

FCR (feed/gain)2                                           1.2 ± 0.3              1.6 ± 0.4           1.3 ± 0.3 14 

Condition factor (K)3                                  1.14 ± 0.2            1.15 ± 0.3         1.14 ± 0.2 15 

SGR4                                            0.8 ± 0.1              0.7 ± 0.1           0.8 ± 0.1 16 

________________________________________________________________________ 17 

 18 

Data are mean ± SD (n = 90) for fish length and weight and (n = 30) for liver mass, HSI 19 

and flesh mass. Values in the same row assigned different superscript letters are 20 

significantly different (P<0.05). 1 Hepato Somatic Index. 2 FCR = Food Conversion Ratio. 21 
3 Condition Factor, K = (W/L3)*100. 4 Specific Growth Rate (SGR) = (LnW1-LnW0) x 22 

100/t. * Control diet where W = weight (g), L = length in cm, W0  = initial weight in g, 23 

W1 = final weight in g and t = time in days. 24 

25 
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Table 4. Total lipid content (% of dry mass) and total lipid fatty acid composition (weight 1 
% of total fatty acids) of liver from European sea bass (Dicentrarchus labrax) fed the 2 
experimental diets for 64 weeks. 3 
_________________________________________________________________________ 4 
Dietary treatments  A* B C 5 
___________________________________________________________________________ 6 
Total lipid (%)                            54.8 ± 7.6 52.9 ± 0.9 54.7 ± 5.8   7 

Fatty acid (%)  8 

14:0  1.8 ± 0.3 a     1.3 ± 0.2 ab     1.0 ± 0.1 b 9 

15:0  0.2 ± 0.0 a    0.2 ± 0.0 a     0.1 ± 0.0 b 10 

16:0                                            16.6 ± 2.4                       16.1 ± 2.1                      17.3 ± 2.1 11 

18:0                                     3.1 ± 0.7   3.7 ± 0.2   3.4 ± 0.7 12 

Total saturated1                          22.4 ± 3.1 21.8 ± 2.5 22.5 ± 2.9   13 

16:1n-9/n-7  8.8 ± 1.0 a      6.0 ± 1.0 b     6.1 ± 0.2 b 14 

18:1n-9  28.8 ± 2.0 b     34.1 ± 2.2 ab   39.2 ± 2.3 a 15 

18:1n-7  3.4 ± 0.4 a      2.5 ± 0.2 b      2.7 ± 0.2 ab 16 

20:1n-9                                     2.1 ± 0.1    2.0 ± 0.2   2.1 ± 0.3 17 

22:1n-11                                     0.7 ± 0.0    0.6 ± 0.0    0.5 ± 0.1 18 

Total monoenes2                        44.7 ± 1.2 b    46.1 ± 1.5 b    51.3 ± 1.6 a 19 

18:2n-6  3.3 ± 0.3 b      6.4 ± 1.5 a      6.2 ± 1.3 a 20 

20:4n-6  0.5 ± 0.1 a       0.3 ± 0.1 ab      0.2 ± 0.0 b 21 

Total n-6                                     4.9 ± 0.5    7.6 ± 1.4    7.2 ± 1.5 22 

18:3n-3  0.8 ± 0.2 b      7.5 ± 2.8 a      5.1 ± 1.2 a 23 

18:4n-3  1.0 ± 0.1 a       0.9 ± 0.1 ab      0.7 ± 0.1 b 24 

20:4n-3  0.5 ± 0.0 a       0.3 ± 0.1 ab       0.2 ± 0.0 b 25 

20:5n-3  6.2 ± 0.7 a      3.2 ± 1.0 b       2.5 ± 0.6 b 26 

22:5n-3  1.2 ± 0.1 a      0.6 ± 0.2 b       0.4 ± 0.1 b 27 

22:6n-3  10.2 ± 1.6 a      5.4 ± 1.8 b       4.2 ± 0.9 b 28 

Total n-3  21.1 ± 2.5 a     19.3 ± 0.5 ab      13.8 ± 2.9 b 29 

Total PUFA3                               26.0 ± 2.9  27.0 ± 1.1    21.1 ± 4.4 30 

n-3/n-6                                          4.3 ± 0.8a                        2.5 ± 0.7b                       1.9 ± 0.9b 31 

___________________________________________________________________________ 32 

Results are means ± SD (n = 3). An SD of 0.0 implies an SD of < 0.05. 1Includes 20:0 and 33 

22:0. 2Includes 18:1n-11, 20:1n-11, 20:1n-7 22:1n-9 and 24:1. 3Includes 16:2, 16:3, 16:4, 34 

20:2n-6, 20:3n-6 and 22:5n-6. Values bearing different superscript letter are significantly 35 

different (P<0.05). nd, not detected. * Control diet. 36 
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Table 5. Total lipid fatty acid composition (weight % of total fatty acids) of peripheral blood 1 
leukocytes from European sea bass (Dicentrarchus labrax) fed the experimental diets for 64 2 
weeks. 3 
______________________________________________________________________ 4 
Dietary treatments/Fatty acid A* B C 5 
______________________________________________________________________ 6 
14:0  1.6 ± 0.0 a 1.0 ± 0.2 b 1.1 ± 0.1 b 7 

15:0  0.5 ± 0.1 a 0.3 ± 0.0 b 0.3 ± 0.1 b 8 

16:0                                            17.2 ± 1.4                     16.8 ± 0.6                      16.7 ± 0.8 9 

18:0  3.9 ± 0.2 a 5.6 ± 0.5 b 4.7 ± 0.3 c 10 

Total saturated1                          23.5 ± 1.8                     24.0 ± 0.7                     23.1 ± 0.7 11 

16:1n-9/n-7  3.4 ± 0.4 a 2.5 ± 0.5 b 2.6 ± 0.2 b 12 

18:1n-9  10.5 ± 1.7 a 18.8 ± 0.4 b 20.4 ± 1.8 b 13 

18:1n-7  2.0 ± 0.2  1.9 ± 0.2  1.9 ± 0.1  14 

20:1n-9  1.7 ± 0.2 1.8 ± 0.2 1.8 ± 0.3 15 

22:1n-11  0.9 ± 0.2 1.0 ± 0.3 1.0 ± 0.3 16 

Total monoenes2  20.1 ± 2.7 a 27.6 ± 1.4 b                    28.9 ± 2.6b 17 

18:2n-6  2.6 ± 0.2 a 5.8 ± 0.4 b 6.1 ± 0.7 b 18 

20:4n-6  1.2 ± 0.1 a 0.7 ± 0.1 b 0.7 ± 0.1 b 19 

Total n-6  4.9 ± 0.4 a 7.5 ± 0.5 b 7.7 ± 0.7 b 20 

18:3n-3  0.7 ± 0.2 a 5.9 ± 0.5 b 4.8 ± 0.6 c 21 

18:4n-3  0.9 ± 0.2 a 0.7 ± 0.1 ab 0.6 ± 0.1 b 22 

20:4n-3  0.3 ± 0.1 a 0.2 ± 0.2 b 0.2 ± 0.0 b 23 

20:5n-3                                     13.4 ± 0.5 a 8.9 ± 0.2 b 8.3 ± 0.4 b 24 

22:5n-3  1.2 ± 0.1 a 0.9 ± 0.2 b 0.8 ± 0.0 b 25 

22:6n-3                                       27.6 ± 2.6 a                   19.7 ± 1.0 b 20.6 ± 2.9 b 26 

Total n-3  44.1 ± 2.6 a 36.4 ± 1.5 b 35.3 ± 2.6 b 27 

Total PUFA3  49.1 ± 2.4 a 43.9 ± 1.9 b 43.1 ± 2.2 b 28 

n-3/n-6  9.0 ± 1.2 a 4.8 ± 0.2 b 4.6 ± 0.7 b 29 

______________________________________________________________________ 30 

Results are means ± SD (n = 3). An SD of 0.0 implies an SD of < 0.05. 1Includes 20:0 and 31 

22:0. 2Includes 18:1n-11, 20:1n-11, 20:1n-7 22:1n-9 and 24:1. 3Includes 16:2, 16:3, 16:4, 32 

20:2n-6, 20:3n-6 and 22:5n-6.  Values bearing different superscript letter are significantly 33 

different (P<0.05). nd, not detected. * Control diet. 34 
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