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Abstract 

 

 We examined the effect of dietary eicosapentaenoic acid (20:5n-3, EPA) on 

growth, survival, pigmentation and fatty acid composition of Senegal sole larvae using a 

dose-response design. From 3 to 40 days post hatch (dph), larvae were fed live food that 

had been enriched using one of four experimental emulsions containing graduated 

concentrations of EPA and constant docosahexaenoic acid (22:6n-3, DHA) and 

arachidonic acid (20:4n-6, ARA). Proportions of EPA in the enriched Artemia nauplii 

were described as “nil” (EPA-N, 0.5% total fatty acids, TFA), “low” (EPA-L, 10.7% 

TFA), “medium” (EPA-M, 20.3% TFA) or “high” (EPA-H, 29.5% TFA). Significant 

differences among dietary treatments in larval length were observed at 25, 30 and 40 

dph, and in dry weight at 30 and 40 dph, although no significant correlation could be 

found between dietary EPA content and growth. The stage of eye migration at 17 and 

25 dph was significantly affected by dietary levels of EPA. Significantly lower survival 

was observed in fish fed EPA-H enriched nauplii. A significantly lower percentage of 

fish fed EPA-N (82.7%) and EPA-L (82.9%) diets were normally pigmented compared 

to the fish fed EPA-M (98.1%) and EPA-H (99.4%) enriched nauplii. Tissue fatty acid 

concentrations reflected the corresponding dietary composition. Arachidonic and 

docosahexaenoic acid levels in all the tissues examined were inversely related to dietary 

EPA. There was an increase in the proportion of docosapentaenoic acid (22:5n-3, DPA) 

in the tissues relative to the diet, which is indicative of chain elongation of EPA. This 

work concluded that Senegal sole larvae have a very low EPA requirement during the 

live feeding period.  
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Introduction 

 

 Senegal sole (Solea senegalensis) has been identified as a candidate species for 

commercial culture in the Mediterranean and South Atlantic coasts (Dinis et al., 1999). 

However, anomalous pigmentation of cultured flatfish (Naess and Lie, 1998) and high 

mortalities during the weaning period (Padrós et al., 2003; Zarza et al., 2003), are still 

major obstacles to the successful culture of this species. Both problems have been 

associated with the highly unsaturated fatty acid (HUFA) content of the live food used 

in first feeding in most flatfish species studied to date (Bell et al., 1985; Izquierdo, et al., 

1992; Bell et al., 1995, 2003; Rodriguez, et al., 1997; McEvoy et al., 1998). Previous 

research has demonstrated associations between dietary HUFA with larval pigmentation 

and performance (Villalta et al., 2005a,b).   

 During the larval stage of teleosts, lipids play an important role as sources of 

metabolic energy, components of membrane phospholipids and as precursors of 

bioactive molecules (Sargent et al., 1999b; Tocher, 2003). In particular, the role of 

HUFA on larval development has been extensively studied (Rainuzzo et al., 1991; 

Izquierdo, 1996; Takeuchi et al., 1996; Estévez et al., 1999; Sargent et al., 1999a, 

1999b; Izquierdo et al., 2000). Determining the dietary requirements for normal growth 

and development is an important step in the successful culture of candidate species 

(Izquierdo, 1996; Takeuchi et al., 1996).  In particular, many marine larvae require n-3 

HUFA, like DHA or EPA, for normal larval development and survival (Castell et al., 

1994; Takeuchi et al., 1996; Furuita et al., 1998; McEvoy et al., 1998; Copeman et al., 

2002). Conversely, we have previously established the non-essentiality of dietary DHA 

for Senegal sole to 35 days post hatch (dph). Further, we found that larvae fed DHA 
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deficient Artemia nauplii show normal development and skin pigmentation as well as 

high survival rates (Villalta et al., 2005b). The requirement of Senegal sole larvae for 

ARA has also been determined (Villalta et al., 2005a), but the requirement for EPA still 

remains unclear. Thus, this study was designed to investigate the role of dietary EPA on 

growth, survival and pigmentation of Senegal sole larvae from 1 to 40 dph. A dose-

response design, which are commonly used in juvenile and adult fish to determine 

nutrient requirements, was also utilised in this study and had been used successfully in 

our previous studies (Villalta et al., 2005a,b). 

 

2. Material and methods 

 

2.1. Experimental emulsions 

 Commercially available DHA, ARA and EPA rich oils were obtained, 

respectively, from the heterotrophically grown algae Cryphecodinium cohnii 

(Neuromins®, Martek Bioscience, USA), fungus Mortierella alpina (Vevodar®, DSM, 

Netherlands) and fish oil triglycerides (Croda®, Incromega EPA500TG, UK). Different 

combinations of these oils were formulated in order to produce emulsions with “nil” 

(EPA-N), “low” (EPA-L), “medium” (EPA-M) or “high” (EPA-H) EPA contents. The 

components used in the formulation of each emulsion and the major fatty acid 

compositions in the enriched Artemia nauplii are shown in Table 1. The emulsions were 

made as described by Dunstan el al. (2003). 

 

2.2. Live food enrichment 

 Rotifers were enriched in 10 l containers at a density of 500 rotifers ml-1 for 6 h 

at 20ºC using 0.1 g l-1 of each emulsions. After 6 h, the rotifers were gently washed with 
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UV filtered seawater, rinsed for a further 1 min with freshwater to reduce bacterial load, 

and subsequently fed to the larvae. 

 An Argentinean strain of Artemia (Artemia persimilis) with low initial levels of 

EPA was selected; the fatty acid compositions of non enriched Artemia are shown in 

Table 1. Hatching of the cysts and enrichment of the nauplii were carried out at 18%o 

salinity and a temperature of 25ºC, following the recommendations of the supplier. Six 

hour-old Artemia nauplii were enriched in 10 l containers at 100 nauplii ml-1 for 18 h 

with 0.6 g l-1 of the emulsions. Enriched metanauplii were thoroughly washed with UV 

filtered seawater and freshwater for 15 min before feeding to the larvae. 

 Artemia was sampled at three time points during the experimental period, for 

lipid analysis. 

 

2.3. Sole larviculture 

 Senegal sole (Solea senegalensis) eggs were obtained from CIFPA “El Toruño” 

(Cádiz, Spain) from a broodstock held under natural photo and thermo periods. Newly 

hatched larvae were transported by road to Centre d’Aqüicultura-Institut de Recerca i 

Tecnologia Agroalimentàries (CA-IRTA). Once at CA-IRTA, larvae were randomly 

distributed (50 larvae l-1) into twelve 35 l, 150 µm mesh baskets distributed amongst 

four 1500 l holding tanks. Three baskets were distributed in each holding tank. The 

three baskets within one tank received the same dietary treatment. All 1500 l tanks were  

connected to a recirculation unit assuring the same conditions of light, flow rate and 

water quality, described in previous experiments (Villalta et al., 2005a,b). Larvae were 

fed on rotifers from 3 to 5 dph at a density of 10 rotifers ml-1 and Artemia nauplii from 5 

until 40 dph. Triplicate baskets of larvae were fed on each of the experimentally 

enriched live feeds. The Artemia ration was adjusted as in Villalta et al., (2005a,b) to 
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avoid unenriched leftovers (70% body weight, BW, day-1 from 5 to 15 dph, 20% BW 

from 16 to 25 dph, 15% BW from 26 to 30 dph and 7% BW from 31 to 40 dph). Live 

preys were given twice per day (9.00 and 16.00 h). Water changes (200%) in the 

holding tanks were performed daily. 

 Standard length and dry weight were measured at 1, 4, 6, 10, 12, 15, 17, 20, 25, 

30 and 40 dph. Twenty larvae were sampled, placed in beakers and euthanased using a 

lethal concentration of 3-amino benzoate methane sulphonate (1000 mg l-1, MS 222). 

Length was measured using a dissecting microscope and image analyser (AnalySIS, SIS 

Gmbh, Germany). Dry weight (DW) determination was carried out by rising larvae with 

distilled water to remove salt and then oven-dried at 60ºC for 24 h. Eye migration 

during sole metamorphosis was assessed according to the description of Fernandez-Diaz 

et al. (2001). Data are presented as the relative amount of larvae at each stage of 

development at the same age. Eye migration index (IEM) was calculated according to 

Solbakken et al. (1999) considering stage 3b and 4 of Cañavate and Fernández-Díaz 

(1999) as 4 and 5 in the calculation of the index. 

IEM = Σ(%fish in each stage*stage) / 100 

 Triplicate samples were taken at 1 dph (N = 2076) for initial biochemical 

analysis, additional larvae were sampled at 15 dph (100 larvae basket-1). For an 

assessment of final biochemical composition, 85 larvae basket-1 were sampled at 40 

dph, with the heads, guts and carcasses dissected on ice and kept separately for lipid 

analysis. The samples were placed directly into chloroform:methanol (2:1, v:v) and 

stored under nitrogen at -20ºC until analysis. 

 Survival and pigmentation success were determined at the end of the experiment 

(40 dph) by counting and assessing all the remaining larvae. Abnormally pigmented 

individuals (totally or partially malpigmented) were considered as a whole group 
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without giving any category or pigmentation index due to the difficulties of such 

classifications (Bolker and Hill, 2000).  

 

2.4. Lipid analysis 

 Total lipids from enriched live food and larval tissues were extracted in 

chloroform:methanol (2:1, v:v) using the method of Folch et al. (1957), and quantified 

gravimetrically after evaporation of the solvent under a stream of nitrogen followed by 

vacuum desiccation overnight. Total lipids were stored in chloroform:methanol (2:1, 10 

mg ml-1) at -20ºC until final analysis. 

 Acid catalysed transmethylation was carried out using the method of Christie 

(1982). Methyl esters were extracted twice as described by Ghioni et al. (1996).  Fatty 

acid methyl esters were analysed by gas-liquid chromatography on a Thermo Electron 

TraceGC (Runcorn, UK) instrument fitted with a ZB-Wax capillary column (30m x 

0.25 mm id; Phenomenex, Macclesfield, UK), using a two stage thermal gradient from 

50ºC (injection temperature) to 150ºC at 40ºC min-1 and then to 225ºC at 2ºC min-1 and 

finally holding for 5 min at 225ºC. Hydrogen was used (2.0 ml min-1 constant flow rate) 

as the carrier gas, injection was on-column and detection was by flame ionisation at 

250ºC. Individual fatty acids were identified by comparison with well characterised fish 

oil, and quantified by means of the response factor to the internal standard, 17:0 fatty 

acid, added prior to transmethylation. 

 

2.6. Statistics 

 The variance of the data is given as standard deviation (SD) of the mean of three 

replicates with differences tested for statistical significance (P≤0.05) by one-way 

ANOVA followed by a pair-wise multiple comparisons of means using Tukey’s test, 
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following testing for normaility and homogeneity of variance. Percentage data were 

square root transformed for normality. A Statgraphics package (Microsoft) was used for 

all statistical analysis. Due to a significant mortality event in one of the feeds (EPA-H), 

this treatment was not included in the statistical analysis, but the data remain for 

comparison. 

 

3. Results 

 

3.1. Lipid composition of live prey 

 Lipid and fatty acid composition of Artemia nauplii before and after enrichment 

is presented in Table 1. The composition of the rotifers is not shown due to the short 

time of rotifer feeding (only 3 days). No significant differences were found in absolute 

amounts of total lipid and total fatty acids among the nauplii. Significant differences 

were found in total saturated fatty acids (SFA) due to the differences in the relative 

content of 14:0 and 16:0, and in total monounsaturated fatty acids (MUFA) due to the 

differences in 18:1n-9 and 18:1n-7. No significant differences were found in n-6 PUFA. 

The significant differences observed in n-3 PUFA are due to the differences in EPA, 

reflecting the composition of the emulsions. The relative ratios of DHA/EPA, 

ARA/DHA and ARA/EPA in the nauplii varied significantly between EPA-N (being the 

highest) and the rest of the groups. 

 

3.2. Larval performance 

 Results obtained for growth, survival and pigmentation success are shown in 

Table 2. Survival was poorest in larvae fed EPA-H. When this was analysed it was 

found to be significantly different (P < 0.01) to all other treatments. As a reduced 
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number of larvae may have resulted in larger fish through reduced competition for food 

items and interactions between larvae, this treatment was excluded from the statistical 

analysis to eliminate the possible confounding factors. Significant differences in growth 

in length were observed between EPA-N and EPA-M and -L larvae at days 17, 25 and 

40 dph (Fig. 1a), although at the end of the experiment the largest larvae were those of 

groups –N and –H. Growth in weight for EPA-H group of larvae was higher from day 

30 onwards, whereas EPA-L and EPA-M fed larvae showed the lowest growth in 

weight along the study period (Fig. 1b). 

 Significant differences (P<0.05) in the stage of  metamorphosis were found at 17 

and 25 dph, with EPA-H fed larvae being in a more advanced stage of eye migration 

(IEM 2.22 and 4.25 at 17 and 25 dph, respectively) than the larvae fed lower levels of 

EPA (Fig. 2). The highest dietary EPA accelerated the degree of eye migration at 17 and 

25 dph. At 17 dph the most delayed eye migration stage occurred in the EPA-M 

treatment (IEM = 1.79), followed by EPA-L and EPA-N (IEM = 1.83 and 1.93, 

respectively) while larvae fed EPA-H had the most advanced (IEM = 2.22) eye migration 

stage. Similarly, at 25 dph the most delayed eye migration stage was in the EPA-L (IEM 

= 3.52), followed by EPA-N and EPA-M (IEM = 3.78 and 3.98, respectively) while 

larvae fed EPA-H had the most advanced (IEM = 4.25) eye migration. Eye migration was 

complete and normal in all the groups at the end of the experiment. 

 

3.3 Effects of diet on pigmentation rate 

 Significant differences (Table 2) were found in pigmentation rate with 

significantly higher number of malpigmented larvae found in groups fed EPA-N and 

EPA-L enriched nauplii. A significant positive regression was found between 
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pigmentation rate and EPA relative dietary content (Pigmentation = 80.45+0.77EPA, 

P<0.05, r2=0.75).  

 

3.4. Dietary effects on lipid and fatty acid composition of larval tissues 

 After 40 days of feeding, larval whole body lipid composition reflected dietary 

changes (Table 3). No significant differences were found in total lipid or total fatty acid 

content among the groups. The fatty acid composition (% total fatty acid, %TFA) of the 

whole fish reflected the composition of the diets. Significant differences were found in 

total monounsaturated fatty acids primarily due to 18:1n-9 content. Significant 

differences were also found in total n-6 PUFA content between EPA-N and the other 

groups due to the higher linoleic (18:2n-6) and ARA contents. A significant negative 

regression was found between Artemia nauplii relative EPA content and whole body 

relative ARA content (Fig. 3a). Total n-3 PUFA composition was significantly different 

among the groups, whereas linolenic (18:3n-3) and EPA contents were significantly 

higher as EPA dietary content increased. DHA was found to be higher in EPA-N fed 

larval body followed by EPA-L and EPA-M fed fish. Fish fed EPA-H nauplii had the 

lowest DHA body content. A significant positive regression was found between Artemia 

nauplii relative EPA content and whole body relative EPA content (Fig. 3b), and a 

significant negative regression between Artemia nauplii relative EPA content and whole 

body relative DHA content (Fig. 3c).   

 

4. Discussion  

 

 No dose-response relationship was recorded between dietary EPA and growth in 

Senegal sole larvae to 40 dph. This suggests Senegal sole larvae are able to grow and 
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survive on Artemia nauplii with negligible EPA content up to 40 dph. Significant 

mortality occurred in larvae fed EPA-H, the exact cause of which remains unknown. As 

a consequence of this mortality it is possible EPA-H larvae had access to larger 

quantities of food than the others and less interactions between each other. This may 

have resulted in the greater growth recorded in these larvae (7.2mg dry weight 

compared with 5mg as the next best growth). The timing of the mortality is unclear, as 

daily assessment of dead and moribund larvae is not possible in the experimental system 

used. However at 17 dph (mid metamorphosis) the EPA-H group of fish showed a more 

advanced stage of development than the other groups of fish, possibly indicating the 

mortality event had already occurred. Considering these results and in order to elucidate 

the effects of dietary EPA levels on growth, pigmentation and fatty acid composition of 

the larvae, the EPA-H group were excluded from the statistical analysis. 

 With removal of EPA-H, significant differences between growth of EPA-N and 

–L and –M larvae were recorded, with EPA-N fed larvae being approximately 60% 

larger than those fed EPA-L and EPA-M. A possible explanation for these differences is 

the availability of dietary energy. Fish obtain the energy for growth and metabolic 

activity mainly from the saturated and monounsaturated fatty acids (16:0, 18:1n-9, 

20:1n-9) that are deposited in tissue storage lipids (triglycerides) and are easily 

catabolized (Sargent et al., 2002). EPA-N enriched Artemia were particularly rich in 

18:1n-9, making this diet more energy dense than the others. Conversely, fish fed EPA 

enriched Artemia nauplii  were less abundant in monounsaturated fatty acids compared 

to  EPA-N. This may have resulted in other fatty acids, including DHA and EPA, to be 

used for energy production (Villalta et al., 2005b), which may also explain the decrease 

in the concentration of tissue DHA (table 3). However, it may also be explained by 

competitive interactions between fatty acids.  
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 In general, Senegal sole larvae fed the experimental diets had fatty acid 

compositions that reflected dietary composition, which is consistent with other studies 

carried out with other marine fish larvae (Mourente et al., 1993; Rodríguez et al., 1994; 

Harel et al., 2000; Koven et al., 2001; Bransden et al., 2004, 2005a,b,c; Villalta et al., 

2005a,b). The emulsions in the present study were formulated to ensure DHA and ARA 

remained constant among the four groups, as was reflected in the composition of 

Artemia nauplii (see Table 1). However, larval tissue composition showed a different 

trend such that the content of DHA and ARA actually decreased concomitant with 

increasing dietary EPA (see Figs. 3a, 3c). While catabolism for energy is one possible 

explanation, more likely these reductions in DHA and ARA can be explained by the 

interactions of some HUFA. Displacement of tissue EPA by ARA has been described 

by several authors (Tocher and Sargent, 1986; Bell et al., 1995; Bessonart et al., 1999; 

Willey et al., 2003), and is explained by the competitive interaction between these two 

fatty acids for the sn-2 position on membrane phospholipids. In the present study EPA 

content in the tissues increased in parallel with a clear and significant reduction in ARA 

concentration, a fact already observed by Bell et al. (1989) in salmon. There was also an 

apparent competition between EPA and DHA such that larval DHA concentrations were 

reduced, even though dietary concentrations were maintained or increased. This 

suggests that at high dietary EPA concentrations DHA was out-competed by EPA for 

acylation to phospholipids. The molecular speciation of fish phospholipids suggest that 

the sn-2 position is favoured by ARA, EPA and DHA so that if one is present in excess 

then it will dominate over the other two HUFA for acylation in membrane 

phospholipids (Bell and Dick, 1991a,b).   

 Increasing dietary EPA resulted in higher accumulation of tissue 

docosapentaenoic acid (22:5n-3, DPA). Accumulation of DPA is due to the elongation 
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of EPA and the very low rate of conversion of DPA to DHA, as has been observed in 

several marine fish species (Mourente and Tocher, 1994; Takeuchi et al., 1996; Bell et 

al., 1995; Bransden et al., 2004). However some fish, especially freshwater fish, are 

better able to convert EPA into DHA than marine species (Sargent et al., 1989, 1995). 

In this case, the first step in the elongation of EPA to DPA is by the action of elongase 

enzymes, followed by DPA conversion to DHA in a complex chain of reactions 

including elongation, Δ6 desaturation and chain shortening, making this a rate limiting 

process. The conversion of EPA to DHA may have been further compromised by the 

relatively high levels of dietary 18:3n-3 in the present study. Mammalian studies have 

shown that high levels of dietary 18:3n-3 can inhibit synthesis and incorporation of 

DHA due to the competition of 18:3n-3 and 24:5n-3 for the Δ6 desaturase enzyme 

(Cleland et al., 2005). As a consequence, the larvae are not able to elongate and 

desaturate EPA to DHA at a significant rate, and, thus, the intermediate product, DPA, 

accumulates, as has been observed in Senegal sole larvae in the present study.  Our 

previous work (Villalta et al., 2005b), however, indicated the non-essentiality of dietary 

DHA for Senegal sole during the early larval rearing stages, so it is unlikely that this 

accumulation of DPA is indicative of a DHA deficiency, with a subsequent 

physiological attempt to rectify this through EPA to DHA conversion. More probably 

the increasing tissue DPA only reflects the increased availability of substrate (i.e. EPA) 

as more EPA is provided in the diet. 

 There is a positive correlation between the dietary content of EPA, the 

accumulation of EPA in larval tissues and the final pigmentation rate of the fish. 

Previous studies have indicated that pigmentation success in flatfish is related 

negatively to dietary ARA, as well as the ratios ARA/EPA (Bell et al., 2003; Villalta et 

al., 2005) and DHA/EPA (Reitan et al., 1994). An intrinsic role of eicosanoids, of which 
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ARA and EPA are precursors, has been postulated to be involved in the pigmentation 

process (Sargent et al., 1999b), and recent studies have provided further evidence for 

this (Bransden et al., 2005b). In the present study we have found that the 

malpigmentation observed in the groups EPA-N and EPA-L was a consequence of 

dietary EPA content and the sub-optimal ratios of ARA/EPA and DHA/EPA. 

Malpigmentation in flatfish aquaculture is a serious economic problem and 

improvements to our understanding of how it is nutritionally induced can lead to better 

management in the future. 

 In the present study Senegal sole larvae grew as well on live foods with 

negligible EPA compared with those larvae fed diets with higher concentrations of this 

essential fatty acid. While the best growth was recorded in larvae fed the highest dietary 

EPA concentrations (29.5% TFA) these larvae also had the highest rate of mortality, 

which probably resulted in a greater availability of food items per larva, and 

subsequently greater growth. Tissue fatty acid profiles generally reflected the dietary 

proportions, with the exception of DHA and ARA, which was explained by the 

competitive interactions of the EFA. Along with our previous work on DHA and ARA 

requirements (Villalta et al., 2005a,b), these data provide further evidence that Senegal 

sole larvae are unusual compared to many other marine fish species in that they have a 

very low requirement for n-3 HUFA during the live feeding period. Abnormal 

pigmentation can be a serious economic problem in commercial aquaculture of flatfish 

species and this study provides further evidence for how these problems can be avoided 

through careful nutritional management during the larval stages.  
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Table 1. Formulation (mg g-1) of the experimental emulsion, the resulting enriched 
Artemia nauplii and non enriched Artemia profile of key fatty acids (% weight of total 
fatty acids (TFA), mean±SD, n=3).  

 
Totals include some minor components not shown. 
a Vevodar® oil, DSM, Delft, Netherlands. 
b Neuromins® oil, Martek Biociences, Columbia, MD, USA. 
c Croda® oil, Incromega EPA500TG, UK. 
d Olive oil, variety Cornicabra, D.O. Montes de Toledo. 
e Supplements: soy lecithin, 40.6 mg; vitamin E, 11.6 mg.   
Values in the same row assigned a different superscript letter are significantly different 
(P<0.05, F3,11). 

 EPA-N EPA-L EPA-M EPA-H 
Non 

enriched 
Artemia 

Formulation (mg g-1)      
Vevodar® oila  47 31.3 15.1 0.0  
Neuromins® oilb 114.8 76.6 38.3 0.0  
Croda® oilc 0.0 175.7 351.5 527.8  
Olive oild 366 244.2 123 0.0  
Supplementse 52.2 52.2 52.2 52.2  
      
Total lipids (mg g-1 DW) 187.4±11.7 200.3±22.2 208.4±18.0 208.1±56.7 148.2±14.1 
Total FA (mg g-1 DW) 119.9±16.4 121.6±9.2 155.4±69.2 115.0±44.1 77.9±0.3 
      
14:0 1.9±0.3c 1.2±0.3b 0.7±0.2a,b 0.4±0.1a 0.6±0.1 
16:0 12.3±0.8b 10.2±0.2a,b 9.1±0.2a,b 8.3±2.3a 14.4±0.3 
18:0 3.9±1.5 4.1±0.1 3.8±0.2 3.7±1.0 5.3±0.1 
Total saturated 19.4±1.8b 16.2±0.6a,b 14.2±0.5a,b 12.9±3.5a 21.3±0.4 
      
16:1n-7 2.2±0.3 2.2±0.2 2.3±0.1 2.4±0.6 4.5±0.0 
18:1n-9 42.6±5.2d 31.3±1.6c 21.6±0.4b 11.5±2.8a 18.2±0.1 
18:1n-7 5.0±0.7a 5.3±0.5a 5.5±0.1c 5.9±1.5b 9.1±0.1 
20:1n-9 0.5±0.1 0.3±0.3 0.4±0.3 0.4±0.3 0.3±0.5 
20:1n-7 0.1±0.1 0.1±0.1 0.1±0.0 0.1±0.0 0.2±0.0 
Total monounsaturated 50.7±4.3d 39.6±1.0c 30.4±0.3b 21.0±5.2a 33.1±0.4 
      
18:2n-6 5.8±0.5 5.7±0.2 5.1±0.2 5.2±0.8 6.3±0.1 
20:2n-6 0.2±0.0 0.2±0.0 0.2±0.0 0.2±0.0 0.3±0.0 
20:3n-6 0.3±0.1 0.3±0.0 0.3±0.0 0.2±0.0 0.2±0.0 
20:4n-6 2.1±0.3 2.2±0.1 2.1±0.1 2.0±0.6 0.0±0.0 
Total n-6 PUFA 8.9±0.9 9.0±0.4 8.3±0.3 8.3±0.1 7.5±0.1 
      
18:3n-3 12.8±3.9 14.7±2.1 15.7±1.2 16.0±3.7 30.6±0.4 
20:5n-3 0.5±0.2a 10.7±0.3a,b 20.3±0.7b,c 29.5±9.7c 0.3±0.5 
22:5n-3 0.2±0.4 0.3±0.0 0.5±0.0 0.7±0.3 0.0±0.0 
22:6n-3 4.3±0.8 4.7±0.3 4.8±0.2 4.8±1.8 0.1±0.1 
Total n-3 PUFA 20.9±5.3a 35.2±1.6b 47.1±1.0b,c 57.8±8.7c 38.1±0.1 
Total PUFA 29.8±6.1a 44.2±1.6b 55.4±0.8b,c 66.1±8.7c 45.7±0.0 
      
DHA / EPA 8.9±2.6b 0.4±0.0a 0.2±0.0a 0.2±0.0a 0.1±0.1 
ARA / DHA 0.5±0.0b 0.5±0.0a,b 0.4±0.0a 0.4±0.0a 0.0±0.0 
ARA / EPA 4.6±1.6b 0.2±0.0a 0.1±0.0a 0.1±0.0a 0.0±0.0 



 

 

23 

Table 2. Growth, survival and pigmentation success of Senegal sole larvae after 40 days 
of being fed Artemia enriched on experimental emulsions containing “nil”, “low”, 
“medium” or “high” EPA concentrations (EPA-N, -L, -M, -H). Mean ± SD (n=3).  
 

 EPA-N EPA-L EPA-M EPA-H 
Final length (mm) 12.1±2.0b 10.0±1.6a 9.8±2.0a 13.0±2.2 
Final dry weight (mg) 5.0±1.3b 3.0±0.8a 3.3±0.8a 7.2±1.8 
Survival (%) 50.6±7.1 50.3±0.1 57.7±6.8 34.1±1.8 
Pigmentation (%) 82.7±3.3a 82.9±0.3a 98.1±0.9b 99.4±0.1 

 

Values in the same row assigned a different superscript letter are significantly different 

(P<0.05). 



 

 

24 

Table 3. Fatty acid composition (%TFA) of the whole body of newly hatched (1 day 
post-hatch, dph) and 40 dph larvae of Senegal sole larvae after being fed Artemia 
enriched on experimental emulsions containing “nil”, “low”, “medium” or “high” EPA 
concentrations (EPA-N, -L, -M, -H) (mean±SD, n=3). 

 
Totals include some minor components not shown. 
Values in the same row assigned a different superscript letter are significantly different 
(P<0.05, F3,11). 
 
  

 Initial EPA-N EPA-L EPA-M EPA-H 
Total lipids (mg g-1 DW) 
Total FA (mg g-1 DW) 
 
14:0 
16:0 
18:0 
Total saturated 
 
16:1n-7 
18:1n-9 
18:1n-7 
20:1n-9 
20:1n-7 
Total monounsaturated 
 
18:2n-6 
20:2n-6 
20:3n-6 
20:4n-6 
Total n-6 PUFA 
 
18:3n-3 
20:5n-3 
22:5n-3 
22:6n-3 
Total n-3 PUFA 
Total PUFA 
 
DHA / EPA 
ARA / DHA 
ARA / EPA 

176.7±23.1 
116.1±16.6 

 
1.5±0.6 
20.6±2.0 
7.7±1.4 
30.8±2.5 

 
4.5±0.7 
10.6±1.9 
3.0±0.1 
1.1±0.4 
0.6±0.2 
21.4±3.2 

 
1.1±0.4 
0.2±0.1 
0.3±0.1 
3.0±0.1 
5.6±0.5 

 
0.4±0.1 
5.8±2.1 
4.1±1.1 
28.1±2.5 
41.1±1.7 
47.9±0.8 

 
5.2±1.3 
0.1±0.0 
0.6±0.2 

180.5±17.1 
90.5±15.7 

 
1.2±0.1b 
12.5±0.8 
5.5±0.3 
20.1±1.3 

 
2.1±0.1a 
32.7±0.5c 
6.3±0.1a 
0.9±0.1b 
0.2±0.0 

43.7±0.6b 

 
6.7±0.1c 
0.3±0.0c 
0.4±0.2 
4.0±0.2b 
12.2±0.5c 

 
11.7±0.5a 
1.2±0.3a 
1.0±0.1a 
6.5±0.4b 
24.0±1.4a 

36.2±1.8a 

 
5.7±1.5b 
0.6±0.0c 
3.5±1.0b 

198.8±46.1 
89.8±17.2 

 
0.8±0.1a 
12.2±0.9 
5.8±0.4 
19.7±1.5 

 
2.4±0.1a,b 
26.6±1.6b 
7.1±0.3a,b 
0.8±0.0a,b 
0.2±0.0 

38.0±2.2a 

 
5.3±0.3b 
0.3±0.0b 
0.4±0.0 
2.7±0.4a 
9.2±0.8b 

 
13.6±0.3b 
7.0±0.9b 
3.5±0.5b 
5.3±0.4a 

33.1±2.9b 
42.3±3.7a,b 

 
0.7±0.0a 
0.6±0.0b 
0.4±0.0a 

219.6±16.3 
92.2±5.7 

 
0.7±0.1a 
12.0±1.3 
5.7±0.7 
19.3±2.1 

 
2.6±0.2b 
23.1±1.5a 
7.2±0.5b 
0.7±0.1a 
0.2±0.0 

34.6±2.3a 

 
4.7±0.2a 
0.2±0.0a 
0.2±0.1 
2.1±0.3a 
7.8±0.5a 

 
13.4±0.6b 
12.1±1.5c 
3.8±0.6b 
4.9±0.8a 

38.3±3.9b 
46.0±4.4b 

 
0.4±0.0a 
0.4±0.0a 
0.2±0.0a 

219.0±26.8 
91.0±29.1 

 
0.5±0.1 
11.7±3.0 
6.1±1.5 
19.3±4.8 

 
2.8±0.7 
12.3±1.7 
4.9±4.1 
0.4±0.4 
0.2±0.0 
21.6±5.4 

 
5.2±0.4 
0.3±0.0 
0.3±0.0 
2.0±0.1 
8.5±0.2 

 
15.5±1.5 
19.3±1.1 
5.0±0.2 
4.8±0.8 
50.6±1.0 
59.1±1.1 

 
0.3±0.0 
0.4±0.0 
0.1±0.0 
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 Figure captions. 

  

Fig 1. Temporal changes in legth and weight of Senegal sole larvae fed Artemia 

enriched on experimental (EPA-N, -L, -M, -H) emulsions (mean±SD, n=3). Points 

assigned different letters denote a significant difference (P<0.05) among treatment at 

that age.  

 

Fig. 2. Changes in eye migration of Senegal sole larvae (stages as in Cañavate and 

Fernández-Díaz, 1999) and in the values of the eye migration index (IEM) after being fed 

Artemia enriched with experimental emulsions containing “nil”, “low”, “medium” or 

“high” EPA concentrations (EPA-N, -L, -M, -H). Vertical bars show the percentage±SD 

of fish at each stage of development. Columns assigned different letters denote 

significant differences (P<0.05) among dietary treatments at the same age. 

 

Fig. 3. a. The relationship between Artemia nauplii relative EPA content (%TFA) and 

larval whole body relative ARA content (%TFA). b. The relationship between Artemia 

nauplii relative EPA content (%TFA) and larval whole body relative EPA content 

(%TFA). c. The relationship between Artemia nauplii relative EPA content (%TFA) and 

larval whole body relative DHA content (%TFA). Each value (O) represents a replicate 

from a treatment. Polynomial regressions were fitted to the data. 
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Fig. 1.  Villalta et al. 
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Fig. 3. Villalta et al. 


