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Multi-element soil analysis is now an established technique in archaeology. It has been 

used to locate archaeological sites and define the extent of human activity beyond the 

structural remains, and to aid interpretation of space use in and around archaeological 

remains. This study aimed to evaluate the consistency of these soil element signatures 

between sites and hence their potential usefulness in archaeological studies. Known 

contexts on abandoned farms across the UK were sampled to test the relationships 

between element concentrations and known functional area and to assess inter-site 

variability. The results clearly show that there are significant differences in the soil 

chemistry of contrasting functional areas, particularly for Ba, Ca, P, Zn, Cu, Sr and Pb. 

Despite significant site specific effects, which appear to reflect individual anthropogenic 

practices rather than geological influences, there is sufficient similarity in the pattern of 

element enhancement to allow reliable interpretation of former function using 

discriminant models. Relating these enhancements to precise soil inputs, however, is 
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more problematic because many important soil inputs do not contain distinct element 

fingerprints and because there is mixing of materials within the soil. There is also a 

suggestion that charcoal and bone play an important role in both the loading and post-

depositional retention of Ca, Sr, P, Zn, and Cu and thus may be significant in the 

formation of soil element concentration patterns.  
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Introduction 

Multi-element analytical techniques such as ICP-AES, ICP-MS and XRF have made 

quick and relatively cheap soil analysis available to archaeological investigations (for 

example Middleton and Price, 1996; Entwistle et al. 1998, 2000; Marwick, 2005). As a 

result, multi-element soil analysis has been used as a means of site prospection (Bintliff 

et al. 1992; Aston et al. 1998; Schlezinger and Howes, 2000; Eckel, et al. 2002) and to 

aid interpretation of former space use and activity within and around archaeological 

structures (Griffith, 1981; Middleton and Price, 1996; Parnell et al. 2002; Knudson et al. 

2004; Sullivan and Kealhofer, 2004; Terry et al. 2004; Wells, 2004; Cook et al. 2005). 

These studies have shown that patterns of element concentration often reflect the known 

archaeology. At Piedras Negras in Guatemala (Parnell et al. 2002) elevated levels of 

barium (Ba) phosphorus (P), and manganese (Mn) were found to be associated with areas 

of organic waste disposal whilst mercury (Hg) and lead (Pb) concentrations were 

associated with craft production areas. Entwistle et al. (1998, 2000) identified elevated 



concentrations of strontium (Sr) and calcium (Ca) associated with field areas whilst 

concentrations of potassium (K), rubidium (Rb) and thorium (Th) were reliable indicators 

of settlement on former crofts (small farms) in the Isle of Skye.  

 

Interpretation of element concentration patterns in archaeological soils is problematic 

because of the complexity of site use history and the effects of post-depositional soil 

processes. Many human activities, including food preparation, hearths, middening and 

manuring, craft working and industrial processes, can add element loadings to cultivated 

soils, occupation deposits and floor layers. However, a host of natural and anthropogenic 

processes may affect total soil concentrations. Background variation linked to differences 

in geology, soils, and hydrology can result in patterns of element concentration 

unconnected to the archaeology. Post-depositional soil forming processes such as 

podzolisation, leaching and gleying may influence the retention and redistribution of 

anthropogenic element loadings in the soil. For example, Ottaway and Matthews (1988) 

noted a distortion in results due to leaching of Ca and Mg at a tell site in Yugoslavia, and 

Pierce et al. (1998) identified possible post-depositional alteration of fuel ash signatures. 

Materials brought on to a site often become mixed and following site abandonment, the 

re-use of structures, decay of buildings, and later anthropogenic additions (e.g. lime, 

fertilisers and atmospheric deposition) can add their particular element loadings. There is 

also potential for development of secondary elemental patterning linked to previous site 

activity, but not directly reflecting the geochemistry of the inputs to the soil. Such 

patterns can develop when former human activity has altered physical, biological and 



chemical soil properties, affecting the retention and distribution of natural and 

anthropogenic element loadings. 

 

Despite the complex nature of soil geochemical loadings, there have been few studies to 

validate the use of multi-element soil analysis in archaeological contexts. Recent 

ethnographic studies have provided much needed data and confirmed that soils and floor 

layers from different functional areas often have different chemical signatures (e.g. 

Middleton and Price, 1996; Pierce et al. 1998; Fernández et al. 2002; Knudson et al. 

2004; Terry et al. 2004; Wilson et al. 2005). Some of these studies have compared 

modern with ancient soil signatures (e.g. Terry et al. 2004) and have identified both 

similarities and discrepancies in geochemical patterning.  

 

This study aims to evaluate through the use of context-known material the extent to 

which soil element concentration reflects past human activities. The hypotheses are 1) 

that different functional areas have characteristic geochemical signatures and these 

signatures are broadly consistent between sites. 2) Input materials have characteristic 

geochemical signatures and these are broadly consistent between sites. 3) The 

geochemistry of soils and floor layers can be related to the geochemistry of known 

former inputs to these soils. This anthropogenic study of known Post-Medieval farm sites 

is designed to evaluate the extent to which soil element concentrations reflect former 

occupation processes and hence how reliable they may be in aiding interpretation of 

archaeological activity areas. 

 



Methodology 

Study sites and sampling 

Six small farms (ca. 5 hectares cultivated land) abandoned between the late 1800s and 

1940 were chosen to represent a range of broadly comparable, known study sites spread 

throughout Scotland, England and Wales. These sites are: Olligarth, Papa Stour, 

Shetland; Grumby, Sutherland; Balnreich, Perthshire; Auchindrain, Argyll; Far House, 

North Yorkshire; Cwm Eunant, Powys. A summary of site characteristics including 

geology, construction, fuel materials, and agricultural practice is presented in Table 1. 

 

The study sites represent a range of contrasting geology, however care was taken to make 

the study sites as comparable as possible in all other respects though inevitably there are 

differences in the age of abandonment, construction and land management of the six 

sites. The townships of Auchindrain and Balnreich are the earliest abandonments (late 

19th C) and have the simplest construction with clay mortar, rather than lime. Both sites 

are dominated by spodosols and histosols formed in schist derived tills. The sites of 

Grumby in Sutherland and Olligarth, Papa Stour, Shetland were both abandoned in 1940. 

The stone walls of both farm houses were originally dry clay mortared, however lime has 

been used to patch the walls in the house (particularly the hearth) at Grumby and the 

internal and external walls of the house at Olligarth were finished with a shell rich 

plaster. Both were originally thatched, though at Olligarth this had been replaced on the 

house and byre by tarred roofing felt. The geology is rhyolite at Olligarth, and gneiss and 

granite at Grumby. The remaining two sites - Far House, North Yorkshire, and Cwm 



Eunant, Powys - were small tenant farms with lime mortar contstruction, abandoned in 

1938 and 1918 respectively.  

 

At each farm samples were taken from the hearth, house (kitchen), byre, midden, garden, 

arable fields, grazed out-fields and off-site reference soils where present. Auger samples 

were taken from the top soils (upper 0-20 cm or less) in the buildings and fields across 1 

m grids. Test pits 0.7 m x 0.7 m in each context allowed profile description following the 

Soil Survey of England and Wales (Hodgson, 1976) and sampling at a 20 cm depth 

interval. In the buildings, the test pits were taken down to the final floor layers, which 

were also sampled. Where stone or cobble floors were present samples were taken from 

the gaps between the stones, and from the hearths samples were taken from the surface of 

the hearth stone. At least five replicate samples were taken from each profile depth. 

Reference materials representing the range of potential inputs to the site were collected 

locally from around each site. At least 3 examples of each material were collected at each 

site where they were represented. These include animal dung, peat, wood, coal, bracken, 

bone, plaster, and mortar. The range of reference materials was biased by availability; 

this favoured organic materials still available locally, and construction materials such as 

plaster or mortar that were present on standing walls. Due to differences in local 

conditions and site history there is, in some cases, only limited overlap between reference 

materials for the six sites. Dung materials were collected from grass fed, organically 

reared animals. In total 832 soil samples and 145 reference material samples were 

collected and analysed. 

 



Soil analysis 

Soils were oven-dried and sieved through stainless steel sieves to <2 mm. Air-dried 

reference materials were ground in a steel mill and sieved. Five grams of soil / reference 

material were digested in concentrated Nitric Acid (Aristar) at 120oC for one hour then 

filtered through Whatman No 2 papers. The filtrate was made to 100 ml volume using 

deionised water (<18 Ω purity). Diluted samples (5% HNO3 matrix) were analysed using 

a Perkin Elmer 3300RL ICP-AES and a sub-set of samples were analysed using a Surrey 

Research Instrument ICP-MS (2% HNO3 matrix). Correlation between the results of 

these two methods was good with R square values of between .999 (Cu) and .901 (Eu), 

hence ICP-AES was used in subsequent analysis. Loss-on ignition (405oC) was 

determined for all soil and reference material samples, and soil pH (1:5 soil: water) for all 

soil samples. A strong acid digest was used rather than the mild acid digest often 

recommended (e.g. Middleton, 2004) based on the findings of sequential extractions 

published in Wilson et al. (2006a) that a significant proportion of the anthropogenic 

signal is held within the more resistant soil fractions. 

 

Microanalysis 

Undisturbed Kubiena samples were collected from the hearth, byre, garden, arable fields, 

and grazed fields at Olligarth. The samples were air dried, impregnated with epoxy resin 

and the cured blocks were cut, bonded to glass slides and lapped to produce thin sections 

with a nominal thickness of 30 µm. This procedure followed standard methods used at 

Stirling University (http://www.thin.stir.ac.uk/methods.html). Thin sections were 

described using an Olympus BX-50 petrological microscope following the terminology 



of Bullock et al. (1985). Carbon-coated samples were analysed using a Cameca SX-100 

SEM-WDX system. Relative element distributions were mapped across areas of interest 

sized 1 cm x 1 cm (resolution 20 µm) or  1.5 mm x 1.5 mm (resolution of 3 µm) using 15 

kV accelerating voltage and 200 nA beam current.  

 

Data analysis 

Element concentration data were transformed using a natural log transform to 

approximate a normal distribution. The data set was inspected for extreme outliers 

(Quartiles +/- 3 x interquartile range) and where necessary these were removed. Analysis 

of the data showed that despite strong correlation between the geochemistry of the 

topsoils and associated floor layers, the best results were obtained from the analysis of 

floor sample data from the buildings and topsoil data from the fields; this data was used 

in the subsequent analyses. Each site was analysed separately to ascertain patterns of 

element concentration and significant differences between functional areas. GLM 

ANOVA with Tamhane’s T2 post-hoc tests were used to do this in SPSS ver. 13.0 for 

Windows.  For each site a step-wise discriminant model for function based on soil 

element concentrations was developed using functional area as the discriminator. To 

check for multivariate normality histograms of frequency distribution were plotted. Four 

sites (Balnreich and Auchindrain lacked a midden or hearth and were omitted to avoid 

bias) were analysed together in a combined model to assess between site similarities in 

patterns of element soil concentrations. Because of differences in background soil 

element concentrations and in the level of enhancement between sites, z scores were used 



to standardise data and the analysis was repeated. However, this approach was found to 

hide significant between site differences and resulted in little improvement to the models.  

 

Results 

Site differences 

Significant differences (p< 0.05) in all element concentrations were identified between 

the off-site reference soils at the six farm sites (Table 2). Background concentrations of 

Co, for example, varied between 0.29 mg kg-1 at Olligarth and 16 mg kg-1 at Cwm 

Eunant. Significant site differences were also identified in the on-site (house, hearth and 

byre areas) element concentrations for each element analysed. However, the only element 

for which high background (reference soil) concentrations are reflected on-site is Pb with 

high concentrations in both the reference and on-site soils at Cwm Eunant and Far House 

(Table 3).  

 

Functional area differences 

The results reveal differences in element concentrations between the functional areas at 

all six sites (Table 3). Compared to the reference and unamended outfield soils, those in 

and around the buildings showed levels of enhancement of up to 120 x for Ca, 37 x for 

Pb, and 43 x for Zn. The nature and significance of this variation is described by the 

application of GLM ANOVA (Table 4). This shows how concentrations of Ti, Ni and Fe 

are strongly influenced by site, whilst Ca, Zn, and P show weaker site effects and are 

more strongly influenced by functional area. Site x functional area effects are also 

significant for each element, hence the pattern of element enhancement between different 



functional areas may also have a strong site specific effect. However, generalised patterns 

of element enhancement did emerge (Figure 1) and can be summarised as follows. 

 

The highest concentrations of Ca tend to occur in the hearth closely followed by the 

house. Overall there tends to be little enhancement of Ca in the arable fields and garden 

relative to the out-fields and reference soils The highest concentrations of P tend to occur 

in the byres, though concentrations in the hearth and house, and midden are also 

significantly higher than in outfield and reference soils. A similar pattern is seen for Ba 

and Sr. The highest concentrations of Pb occur in the hearth and house, elevated 

concentrations of Pb are also associated with the midden, byre, and garden. However, 

there is no significant enhancement of Pb in the arable fields. With the exception of 

Grumby (high Zn in the house), the highest Zn concentrations are also found in the 

hearth; the house, byre and midden also contain significantly enhanced concentrations of 

Zn, as to a lesser extent do the gardens. The lowest concentrations are in the reference 

soils and there is evidence of moderate Zn enhancement in the arable fields as well.   

 

Results from the stepwise discriminant analysis clearly differentiate between functional 

areas irrespective of site. A model was produced using two-thirds data from each 

functional area; this model was tested using data not used in the creation of the model. 

The success rate for context prediction was 75.4% out of a total of eight functional areas. 

The first three discriminant functions account for 92.5% of the variance, and correlate 

strongly with the suite of routinely enhanced elements (Table 5). Function 1 accounts for 

61% of the chemical variation and is positively correlated with concentrations of Ca, Sr 



and Zn; this function tends to separate the domestic contexts (hearth, house, byre and 

midden) from the fields (infield and outfield) and reference samples. Function 2 accounts 

for 23% of the total variation and correlates positively with Na and negatively with 

concentrations of P, Mn and Ba. This function may be linked to the effects of manure as 

the unmanured reference samples, outfields, house and hearth have higher discriminant 

scores than the manured byre, midden, kailyard and infield samples (Table 6).  

 

Reference materials 

Table 7 shows the results of ANOVA for the reference input materials and reveals that 

bracken, dung and turf chemistry is significantly influenced by site effects for more 

elements than lime mortar and peat. However, as would be expected from the disparate 

materials analysed, the between site differences are small compared to the between 

material differences (Table 8). Figure 2 illustrates the mean elemental composition of 

some of the most common reference materials. This shows charcoal that was manually 

extracted from the soils as an important source of Ca, Ba, Cu, Sr, Zn, P, and Pb. 

However, a sample of fresh charcoal from Cwm Eunant contained much lower 

concentrations of Ba (578 mg/kg), Zn (113 mg/kg) and Pb (5.77 mg/kg). The bone 

samples were all taken from the soil surface and contain high concentrations of Ca and P, 

moderate amounts of Ba and Sr, and only low concentrations of Cu (2.31 mg kg-1), Zn 

(101 mg kg-1) and Pb (below detection limits). Lime mortar is a major source of Ca, and 

also contains moderate amounts of Sr and Pb. Peat, turf and wood contain moderate 

amounts of Pb, whilst peat is also associated with moderate amounts of Cu, Sr, and Ba. 

 



Microprobe analysis (SEM-WDX) of the soils at Olligarth revealed the relative 

distribution of elements within the soils, as summarised in Table 9. High concentrations 

of Zn and Cu are associated with mineral grains and bone fragments, Fe concentrations 

are associated with mineral grains and certain carbonised particles, and P and Ca are 

associated with bone and certain carbonised particles (Figure 3). The identification of 

carbonised particles was confirmed using C:O ratios following Davidson et al. (2006). 

Whilst some carbonised particles contained enhanced levels of Fe, Ca and P others 

contained no detectable (detection limits typically ca. 100 mg kg-1) traces of these 

elements. The reason for this is unclear as no consistent link was found with black 

particle morphology or C:O ratio. 

 

Discussion 

The results clearly demonstrate that multi-element analysis has the potential to 

discriminate between areas of different function on abandoned farm sites. On any one site 

any of the 29 analysed elements may show a pattern of enhancement that reflects the 

known patterns of use on the site. However, interpretation of these signatures requires 

consistency between sites and discernable links between the element chemistry of inputs 

to the soils and the geochemistry of the soils themselves. 

 

The farm sites were chosen to represent areas of contrasting geology, as a result the 

background element concentrations (as shown by the reference soils) differ markedly. 

Significant site differences were also identified from soils in and around the abandoned 

farms for all elements. However, with the exception of Pb, there is no correlation 



between background concentrations and within building concentrations at the different 

sites, suggesting that anthropogenic factors rather than background geology are 

responsible for the pattern of enhancement.  

 

Despite site differences, functional area effects are also highly significant especially 

regarding concentrations of Ca, P, Ba, Pb, Cu, Sr, and Zn. This is particularly interesting 

as many previous archaeological multi-element studies have also found significant 

patterning in these elements coincident with archaeological structures (Table 10). Site 

effects appear to be dominant for elements such as Ti, Ni, and Fe hence these elements 

are less useful for functional area interpretation on abandoned farm sites.  

 

The generalised pattern of enhancement on the farm sites is high concentrations of a large 

suite of elements, with the exception of P, to be associated with the hearth. A similar 

suite of enhanced elements is associated with house soils, although at slightly lower 

levels, and the byres tend to contain slightly lower levels again though P is often found in 

the highest concentration in the byre. Discriminant analysis shows that these functional 

area differences are sufficient to provide accurate predictions irrespective of site. 

Independently tested data from four study sites was successfully assigned to one of eight 

functional areas in 75% of cases using a combined model. Again, concentrations of Ca, P, 

Zn, Sr, Ba, and also Mn were found to be significant in differentiating between functional 

areas. However, models that exclude one site are little better at predicting functional area 

in the excluded site than by chance alone. These results suggest that where known 

analogues exist it may be possible to provide interpretations of space use based on soil 



multi-element concentrations. Discriminant analysis also provides some evidence of two 

anthropogenic geochemical systems affecting these sites, the first linked to domestic 

structures and inputs, and the second to the effects of manuring. Correlation between 

floor layer and overburden chemistry supports the use of multi-element analysis as a 

prospection tool and topsoils may also have some value for interpretation of space use in 

buried sites. 

 

As expected of a disparate group of reference input materials there are clear differences 

in their elemental compositions. Charcoal appears to be linked with a large suite of our 

key elements, however, this only applies to old charcoal extracted from the soil, fresh 

charcoal from the surface at Cwm Eunant does not show contain high concentrations of 

Ba, Zn, and Pb suggesting post-depositional uptake and concentration. The importance of 

charcoal for Ca, P, and Fe is highlighted by microprobe data, and a post-depositional role 

for bone in the retention of Zn and Cu is also suggested. Similar, post-depositional 

enrichment of bone with Zn and Cu has also been identified in the soils of the formerly 

inhabited Scottish island of St. Kilda (Davidson et al. 2007). 

 

Although reference material chemistry is dominated by material type rather than site it is 

difficult to relate any one input to the geochemistry of the soils in the different functional 

areas. The correlation between input geochemistry and soil geochemistry tends to be 

generalised, for example, high P concentrations in the byre and midden, could be linked 

to high phosphorus concentrations in dung. High concentrations of all elements in the 

hearth could reflect the wide range of elements in fuel sources (turf, peat and coal) 



concentrated by combustion processes and possibly aided by the retention of elements 

liked to higher cation exchange capacities and the presence of charcoal. Other element 

patterns can be linked to known anthropogenic activities at specific sites. For example, 

high Ca and Sr concentrations at Cwm Eunant, Far House and to a lesser extent Grumby 

and Olligarth appear to be associated with local lime-based construction methods. 

However, finer detail of inputs and mixing of materials in the soil can be hard to 

interpret. The geochemistry of the site inputs are distinct, therefore, the multitude of 

sources, the widespread mixing and distribution of loadings across the sites and possible 

post-depostional alteration may all be partly responsible for these difficulties. Some 

success in identifying inputs and modelling the movement of material has been achieved 

using Pb isotope ratios and mixing equations (Wilson et al. 2006b). Isotope analysis 

highlighted the importance of fuel materials as a source of Pb at the abandoned croft of 

Olligarth, and the high multi-element concentrations in the hearths of all six farm sites in 

this study support the hypothesis that ash is an important loading. Occasional trace 

elements may be better at identifying inputs, for example, the concentrations of mercury 

(Hg) and Pb associated with craftworking at Piedras Negras (Parnell et al. 2002) and gold 

and rare earth elements at Cancuén (Cook et al. 2006), rather than the suite of generally 

enhanced elements identified here (Ba, Ca, Cu, P, Pb, Sr and Zn) that are better at 

differentiating functional areas. 

 

Results from microprobe analysis have demonstrated the importance of charcoal and 

bone to the enhanced concentrations of Ca, P, Sr, Zn, and Cu. In part this is directly due 

to the composition of these materials but there is also the suggestion that bone and 



charcoal are important in the retention of these elements and that there may even be some 

post-depositional uptake. This has important implications for the interpretation of multi-

element data, particularly on older archaeological sites that will have been affected by 

post-depositional soil forming processes such as leaching, gleying, calcification, and 

podzolisation for hundreds or thousands of years. Wilson et al. (2006a) used sequential 

extraction to examine the partitioning of Ca, Zn and Pb in the soils from Grumby. This 

study suggested that although a high proportion of calcium is held within the 

exchangeable fraction, a significant proportion of Ca, Zn, and Pb is associated within the 

more recalcitrant soil fractions. This suggests that these anthropogenic element signatures 

are relatively resistant and may persist in soil for relatively long periods of time. More 

research is needed to understand post-depositional cycling of anthropogenic element 

loadings in archaeological soils.   

 

Conclusions 

Concentrations of elements, particularly Ca, Ba, Sr, Zn, P and Pb, do reflect patterns of 

former human activity on abandoned farm sites. This suite of elements is not only 

enhanced on abandoned farm sites, but has also been linked to functional areas in 

archaeological sites across the globe. In only the most general sense can their 

concentrations be linked to particular inputs. Microprobe analysis has raised the 

possibility that their retention in the soil is linked to charcoal and bone concentrations and 

that the patterns of enhancement seen in this study could in part be a secondary post-

depositional effect. The implications of this ethnographic study of known functional 

contexts for the application of multi-element analysis more widely to archaeological sites 



are that soil element concentrations can correlate strongly with patterns of archaeological 

activity. Despite site by site differences related more closely to individual anthropogenic 

practices than geological background, there are broad similarities in the pattern of 

element enhancement across areas of similar function. This suggests that multi-element 

analysis can help interpret former function on archaeological sites, providing that data is 

available from relevant functional analogues. However, more work is required to 

understand the effects of post-depositional pedogenic cycling of anthropogenic element 

loadings.  
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Table 1: Summary of site characteristics and history. 

 Auchindrain Balnreich Cwm Eunant Far House Grumby Olligarth 
 Argyll Perthshire Powys N. Yorkshire Sutherland Shetland 
Geology Schist mica schist 

and gabbro 
Shale and slate Oolite and 

sands 
Gneiss Rhyolite 

Soils peaty gley, 
podzol, humic 
iron podzol 

peaty gley, 
podzol, 
humic iron 
podzol 

peat, iron 
stagno-podzol 

peat, pelo-
stagnogley, 
humic iron 
podzol 

peat, humic 
iron podzol 

brown forest 
soil, skeletal 
humic soil 

Date last 
inhabited 

Late 19th 
century 

Late 19th 
century 

1917 1938 1940 1940 

Settlement 
type 

Township Township Tenanted 
Farm 

Tenanted 
Farm 

Croft Croft 

Layout Byre house? Byre house Courtyard Courtyard Linear Linear 
Construction  Clay mortar Clay mortar Lime mortar 

and plaster in 
house. 

Lime mortar 
in hose and 
byre, plaster 
in house. 

Clay mortar, 
fireplace and 
walls 
patched with 
lime. 

Clay mortar 
internal shell 
based 
plaster. 

Main fuels Peat and coal Peat and 
coal 

Peat  and 
wood 

Peat, wood 
and coal 

Peat Turf and 
coal 

Agriculture Mixed; oats, 
bere, cattle, 
sheep, poultry 
and communal 
pig, potatoes, 
kale and 
turnips.  

Mixed; 
bere, oats, 
potatoes, 
turnips, 
peas, lint, 
cattle, sheep, 
pigs and 
poultry.  

Mixed; wheat, 
barley and 
oats, potatoes 
and neeps, 
Molinia and 
bracken cut as 
fodder; sheep, 
cattle, pigs, 
and poultry 

Mixed; 
wheat, 
barley, oats, 
potatoes and 
turnips, 
cattle, sheep, 
pigs and 
poultry. 

Mixed, oats 
and bear, 
potatoes and 
turnips, 
cattle and 
sheep, also 
pigs and 
poultry. 

Mixed, bere, 
oats, kale 
and potatoes, 
few turnips, 
cows, sheep, 
poultry and 
pigs, spade 
cultivation 

Manure Byre and 
domestic 
waste, 
commercial 
fertiliser and 
lime. 

Byre waste, 
domestic 
waste, turf 
and lime 

Byre waste 
particularly 
bracken 
bedding, and 
lime. 

Byre waste 
and lime 

Byre and 
domestic 
waste, and 
commercial 
fertiliser 

Byre waste, 
domestic 
waste, turf, 
seaweed, 
fish waste. 

Modern use Museum, 
fields 
cultivated. 

Grazing, 
organic for 
last 5 years 

Grazing, 
possibly 
limited liming 

Grazing no 
fertiliser or 
reseeding in 
last 10 years. 

Rough 
grazing, no 
intervention 

Grazing, no 
intervention. 



Table 3: Mean element concentrations, pH and % loss on ignition in the functional areas of the six farm sites 

 HR HS BY MD GD RF OF REF HR HS BY MD GD RF OF REF 
Ba (mg kg-1) Sr (mg kg-1) 
Auchindrain  52.6 31.0 255 31.9 51.7 91.4 40.3  13.4 14.9 28.3 5.72 10.5 22.3 8.78 
Balnreich 129 54.2 41.0  35.7 22.0 24.8 12.2 24.3 8.57 6.24  6.93 5.42 5.73 4.52 
Cwm Eunant 320 338 68.3 51.4 45.7 28.5 22.1 26.5 97.9 72.1 24.3 13.6 3.84 4.07 2.68 4.46 
Far House 28.0 194 97.2 71.5 18.2 23.0 26.4 52.1 159 85.0 62.6 24.1 1.17 2.27 5.02 4.09 
Grumby 204 91.7 147 135 146 92.5 24.7 24.7 138 50.2 50.9 21.0 28.1 19.9 14.0 14.0 
Olligarth 91.7 253 194 157 142 109 19.3 63.9 192 92.8 45.4 36.9 43.6 25.9 14.5 27.0 
Ca (g kg-1)  Zn (mg kg-1) 
Auchindrain  1.94 3.11 5.08 1.19 2.33 3.16 1.31  86.9 377 600 36.7 50.5 44.3 28.2 
Balnreich 4.08 1.89 1.26  1.77 2.20 1.24 1.53 92.2 41.5 30.2  52.7 24.6 53.8 24.2 
Cwm Eunant 84.3 57.9 8.33 4.01 0.980 1.04 0.909 0.703 441 272 320 209 80.8 80.1 59.7 23.6 
Far House 76.2 64.2 30.6 3.32 0.342 1.16 2.14 0.631 1020 136 225 83.0 30.2 33.4 51.0 35.4 
Grumby 73.2 9.04 7.99 2.54 2.58 2.00 0.866 0.866 102 446 101 115 67.1 49.2 14.0 14.0 
Olligarth 23.0 7.23 1.96 1.29 1.74 0.938 0.769 1.39 1210 854 236 219 71.2 34.2 15.3 28.1 
P (g kg-1) Pb (mg kg-1) 
Auchindrain  1.54 2.82 2.19 1.87 0.791 0.799 0.951  136 61.6 235 60.1 26.7 18.6 32.4 
Balnreich 1.06 1.54 2.05  1.16 0.634 0.674 0.323 69.1 73.1 41.8  17.6 12.7 18.0 20.3 
Cwm Eunant 1.63 1.39 1.21 1.43 1.74 1.34 1.08 0.557 1490 3150 86.5 182 118 55.2 56.2 84.4 
Far House 2.50 0.820 6.15 2.55 0.583 0.404 1.06 1.28 1690 246 69.3 117 52.1 59.4 157 117 
Grumby 1.25 1.30 2.57 1.66 1.50 1.09 0.990 0.990 367 115 29.9 29.7 35.6 28.8 24.8 24.8 
Olligarth 5.83 4.87 3.10 2.73 1.98 1.32 0.455 0.473 

 

179 203 99.9 232 71.3 58.5 25.4 60.8 
pH  % loss on ignition (w/w)  
Auchindrain  4.3 6.0 5.1 4.1 5.1 5.3 4.8   17 4 14 14 14 12 31 
Balnreich 5.3 4.4 4.1  5.0 5.6 5.1 4.8  18 22 13  9 9 8 17 
Cwm Eunant 7.4 7.5 5.8 5.5 4.3 4.8 4.0 4.4  16 17 20 15 11 10 13 23 
Far House 7.2 7.5 7.1 5.6 4.3 5.2 4.0 3.5  21 10 29 15 7 6 50 28 
Grumby 7.5 4.5 5.8 5.0 4.7 4.7 4.0 4.0  15 48 13 12 17 13 40 40 
Olligarth 6.3 6.5 4.8 4.2 5.1 5.1 3.8 3.9  39 14 19 24 16 13 44 50 
HR Hearth; HS House; BY Byre; MD Midden; GD Garden; RF Arable; OF Outfield; REF Reference 

 



Table 2: Mean element concentrations (mg kg-1) in the reference soils at each farm. 

 

 Table 4: Analysis of Variance F values for site and functional area effects (all significant 

at p < .05) 

 DF P Ca Zn Cu Pb Mn Fe Ni V Ti 
Site 3 25.5 78.2 53.7 103 228 206 422 329 43.4 635 
Functional area 8 129 705 256 74.5 153 112 100 158 63.7 18.7 
Site*Functional 
area 

19 53.1 57.3 24.5 26.3 23.1 18.5 30.1 40.6 58.6 8.29 

 

Table 5: Within-group correlations between discriminating variables (log of element soil 

concentrations) and discriminant functions. 

 Function 
 1 2 3 4 
% of variance 61 23 7.5 4.6 
Al 0.01 -0.17 0.00 0.34 
Ba 0.19 -0.26 0.20 -0.09 
Ca 0.60 -0.08 -0.13 0.14 
Cr 0.08 -0.20 -0.22 0.25 
Cu 0.19 -0.15 0.01 0.07 
Li -0.01 -0.12 -0.07 0.24 
Mg 0.06 -0.20 -0.23 0.18 
Mn 0.15 -0.29 -0.04 0.28 
Na 0.12 0.23 0.00 0.13 
P  0.19 -0.28 -0.27 0.13 
Pb 0.23 0.11 0.33 0.18 
Sr 0.35 -0.09 0.01 0.10 
V 0.08 -0.10 -0.07 0.37 
Y 0.10 -0.09 0.23 0.06 
Zn 0.45 -0.23 -0.00 0.09 
Modelled cases correctly classified 83.2% 
Independent cases correctly classified 75.4% 

 

 Auchindrain Balnreich Cwm 
Eunant 

Far House Grumby Olligarth 

Ca 1310 1530 703 631 866 1390 
Co 4.41 1.75 15.6 2.28 .969 .285 
Cu 6.97 7.64 6.94 19.9 2.34 7.78 
Mn 207 68.6 1340 24.8 53.8 20.5 
P 951 323 557 1290 990 473 
Pb 32.4 20.3 84.4 117 24.8 60.8 
Ti 572 315 12.0 27.7 154 80.8 



Table 6: Canonical discriminant functions at functional area group means 

Function  
1 2 3 4 

Hearth 7.12 3.13 0.41 2.36 
House 5.25 -0.04 0.94 -1.07 
Byre 2.47 -1.65 -1.59 -0.44 
Midden -0.05 -1.72 0.14 -0.49 
Kailyard -2.09 -1.49 0.66 0.56 
In-field -2.24 -0.87 0.24 0.71 
Out-field -2.18 2.70 -1.71 -0.18 
Reference soils -2.73 3.19 1.75 -1.07 

 

Table 7: Univariate ANOVA p-values of reference materials for between site differences 

 P Ca Zn Cu Pb Mn Fe Ni V Ti 
Bracken <.000 .001 .857 .138 .822 <.000 .002 <.000 .075 .014 
Dung .001 .003 <.000 <.000 .452 .018 .425 .001 .504 .272 
Lime 
mortar 

.022 .083 .632 .134 .273 .450 .051 .103 .046 .069 

Peat .194 .172 .481 .330 .233 .266 .432 .474 .134 .244 
Turf .045 .044 .025 .296 .064 .009 .074 .147 .116 .875 
Bold type indicates significant p-value at 0.05 level. 

 

Table 8: Multivariate ANOVA F values for between site and between material 

differences. 

 DF P Ca Zn Cu Pb Mn Fe Ni V Ti 
Site 5 3.59 10.4 .531 .635 1.16 1.75 .615 .956 2.78 .907 
Material 6 901 281 1.33 4.92 4.45 41.7 3.11 1.76 9.68 1.96 
Site*Material 19 2.64 7.9 1.07 1.35 1.61 .930 1.18 1.83 1.35 1.57 
Bold type indicates significant p-value at 0.05 level. 

 

 

 

 



Table 9: Summary of relative element distributions in soil thin sections as mapped using SEM-WDX. 

Context Fe Ca P Zn Sr Cu 
Hearth High – Carbonised 

fragments. 
Low – Mineral grains 
and rock fragments and 
charcoal. 

High -Carbonised 
particles and 
occasional mineral 
grains 
 

High –  General 
carbonised 
trampled layer 
Lower below 
trampled layer 

High - Single mineral 
grains 
Moderate – Igneous rock 
fragments 
Low- Organic matrix 

High – Mineral and 
rock fragments 
Low – Carbonised 
material 

High - Single mineral 
grains 
Moderate – Igneous rock 
fragments 
Low- Organic matrix 

Byre High - Mineral 
Moderate – bone 
Low – Charcoal and coal 

High – Bone 
Moderate – Soil 
matrix 
Low coal and 
charcoal 

High – Bone 
fragments 
Low – Charcoal 
and coal 

High – Bone fragments 
and mineral 
Moderate – Igneous rock 
fragments 
Low – Charcoal and coal 

High – Bone 
fragments and 
Igneous rock 
fragments 
Low – Charcoal 
and coal 

High – Bone fragments 
and mineral 
Moderate – Igneous rock 
fragments 
Low – Charcoal and coal 

Kailyard High -  Carbonised 
particles and mineral 
grains 
Moderate – Matrix and 
carbonised grains 
Low – Mineral grains 
and carbonised particles 

High – Carbonised 
particles  
Moderate – organic 
matrix 
Low – Quartz 
grains 

High – Mineral 
grains  
Moderate – Organic 
matrix and 
carbonised particles 
Low- Quartz grains 
and carbonised 
particles 

No data No data No data 

Arable/rig No data High – Carbonised 
particles 
Moderate – Matrix 
and carbonised 
particles 
Low- Rock 
fragments 

High – Carbonised 
particles 
Low- Mineral 
grains and 
carbonised particles 

No data No data No data 

Grazing/outfield No data High – Mineral 
grains 
Low – Quartz 
grains 

Moderate – Organic 
matrix 
Low – Mineral and 
rock fragments 

No data No data No data 



Table 10: Summary findings of archaeologically correlated element patterns from previous multi-element soil analyses. 

Reference Age Type Location P Pb Zn Cu Cd Mg Mn Ca Ti Rb Sr K Ba Interpretation  
Aston et al. 
1998 
 

Roman Settlement Somerset              Mn associated with burning 
and waterlogging. 

Bintliff et al. 
1992 

Various Various Greece   *    *       Cu and Pb correlate with 
archaeology. 

Konrad et al. 
1983 

Palaeo-
indian 

Settlement Maine, US              Mg associated with hearth, 
P and Mg habitation. 

Dunnell,  
1993 

Palaeo- 
Indian 

Various US              P, K, and Ca in soil affect 
vegetation.  

Da Costa & 
Kern, 1999 

Palaeo- 
Indian 

Black earths Brazil  *   *         P and Mg meat; Mn, Cu and 
Zn vegetable. 

Kristiansen, 
2001 

BA/IA Cultivation Denmark      *  *    *  Leaching of imported 
elements. 

Linderholm 
& Lundberg 
1994 

BA Settlement 
Cultivation 

Sweden  *            Mn, Cu, Zn, Ca associated 
with features. 

Wells et al. 
2000 

Mayan Settlement Guatemala              Paint, craft wastes, and 
kitchen wates. 

Middleton & 
Price, 1996 

Modern 
Ancient 

House floors Mexico 
Canada 

     * *      * Functional areas very 
different.  

James, 1999 
 

Roman Tile spread Greece      * *       High Pb, Cu, Zn, K, Mn, Ca, 
in artefact spreads. 

Lewis et al. 
1993 

Roman Villa Rome 
 

             Pb, and Zn high in and near 
buildings. 

Griffith, 
1981 

Palaeo- 
Indian 

Settlement Canada        *    *  Mg most useful at showing 
settlement. 

Entwistle et 
al. 2000 

Post-
Med. 

Settlement Skye  * * *  *        Sr, Ca – field; K, Th, Rb, Cs, 
habitation. 

Pierce et al. 
1998 

Modern 
Ancient 

Fuel Ash Colorado  *             

 elements with significant spatial patterning  * elements studied but not informative



Figure 1: Tamhanes post-hoc pairwise comparisons of site and functional area 

differences, graphs show 95% confidence intervals normalised against the Cwm Eunant 

byre samples. 

 

Figure 2: Mean element concentrations for selected reference materials. 

 

Figure 3: Microprobe maps showing the effect of bone and charcoal on element 

distributions. 
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