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Traditionally, experiments on social learning (both in humans and nonhumans) 

involve dyads, with an experimenter or experimenter-trained conspecific serving as 

the demonstrator and the participant as the observer. But social learning in nature 

often involves multiple potential models, and the models themselves were once 

learners. We discuss our studies of social learning in adult humans in interactive 

group settings in the absence of formal demonstrations by experimenters, which 

track transmission over multiple learner generations. In these experiments we find 

evidence for cumulative learning over generations. This has allowed us to 

manipulate learning conditions in order to test hypotheses regarding the necessary 

conditions for cumulative culture. We also report results from a further experiment 

using similar methods, which compares conditions of varying cohort size. 

Participants were given the task to build a paper airplane to fly as far as possible. 

Contrary to expectations, there was no advantage for larger cohort sizes, in terms of 

the cumulative effects observed. 

 

 

Introduction 

Capturing Social Learning in Natural Contexts. In much of the experimental 

literature on social learning, the ecological validity of the social context is often 

sacrificed in the interests of greater control over the material to which the participants 

are exposed. It is by no means a criticism to draw attention to the tight control 

involved in these designs, and indeed such approaches have proven to be highly 

successful in recent years, resulting in important advances in both the nonhuman and 

human social learning literature.  

For example, using such methods, Horner and Whiten (2005) were able to 

show intriguing differences between chimpanzees (Pan troglodytes) and human 

children in terms of the elements of a demonstration which were copied. Following a 

demonstration by an adult human experimenter, the chimpanzees omitted actions that 

appeared not to be causally related to the goal (of extracting a reward from the 

experimental apparatus). In contrast, young children aged three and four years old 

copied all elements of the demonstration, irrespective of how relevant to the goal they 

appeared to be. Whiten, Horner, Litchfield and Marshall-Pescini (2004) review 

numerous studies of social learning in nonhuman primates using similar methods. 

Children’s language learning has also been studied using similar dyadic experimenter-

subject designs. Experiments show that young children can readily incorporate novel 

nonsense words into their vocabulary, and use these appropriately, after hearing such 

words spoken by an adult experimenter (for a review see Tomasello, 2000). The 

effects of social influences on adult humans have also been studied in a similar 

fashion, with manipulations achieved through the actions of experimental 

confederates. Experiments by Sherif (1936) and Asch (1955) show that participants 

asked to make a simple perceptual judgment would alter their responses if these were 
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not consistent with responses given by actors posing as fellow participants in the same 

experiment. In a more recent study following the same basic logic, Eriksson and 

Coultas (2009) found that participants’ responses to opinion questionnaire items could 

be influenced by the apparent responses of previous participants (which were actually 

faked in order to directly manipulate the magnitude of the apparent majority).  

As these studies illustrate, controlled manipulations of modeled behaviors can 

reveal much about what can be transmitted. And yet, when we look at real cultures 

and traditions, i.e. those that occur spontaneously in natural populations, there is an 

inevitable shift of focus due to the kind of data involved. Different issues arise as the 

important questions, and a rather different perspective tends to be taken, with 

populations, rather than individuals, representing the principal units of study.  

For example, research on traditions in nonhuman primates began with reports 

of novel behaviors spreading through populations. Early reports of this kind were 

given for Japanese macaques, Macaca fuscata, concerning a number of new behaviors 

including food-washing, bathing, and acceptance of particular unfamiliar foods into 

the diet (see Itani and Nishimura, 1973; Kawai, 1965; Kawamura, 1959). The 

researchers report data on the rate at which these behaviors were adopted within the 

populations concerned, and also on the relationships between individuals who 

appeared to have influenced each others’ adoption of the practice in question. More 

recently, studies of white-faced capuchin monkeys, Cebus capucinus, in the field have 

documented traditions in both their social (Perry et al., 2003) and foraging (Panger et 

al., 2003) behaviors. These studies have documented both the emergence and 

extinction of particular behaviors (Perry et al., 2003), and the social relationships 

between individuals that share particular forms of a behavior (Panger et al., 2002). 

See Reader and Biro (this issue) for a comprehensive review of social learning 

experiments in wild animals. 

In humans, data on real trends in human populations has been used to test 

predictions about the dynamics of transmission. Bentley and colleagues (Bentley, 

Hahn & Shennan, 2004; Bentley, Lipo, Herzog & Hahn, 2007) have used data from 

popularity charts of baby names, music sales, and dog breeds, finding that the steady 

rates of turnover observed in each are consistent with random copying. The 

implication of this is that changes in the frequencies of such cultural traits over time 

will be determined purely by random events (analogous to neutral genetic drift). 

Interestingly, Henrich (2001) came to the opposite conclusion when considering the 

adoption curves associated with the diffusion of novel inventions and ideas (from 

Rogers, 1995). Henrich (2001) demonstrated that the typical S-shaped adoption 

curves are likely to be attributable to biased social transmission processes such as 

conformist learning, and appear inconsistent with unbiased transmission (although see 

Hoppitt, Boogert & Laland, this issue, for discussion of the diagnostic use of diffusion 

curves). These apparently contradictory conclusions highlight an important issue: the 

particular datasets chosen may impact greatly on the eventual conclusions. It may be 

the case that unbiased transmission is more common in certain contexts. Alternatively 

it could be the case that a population-level mix including both conformist and anti-

conformist learning (or indeed forms of frequency dependent copying which do not 

quite exhibit the disproportionate influence of strong conformity) could generate 

outcomes that are impossible to differentiate from random copying in popularity chart 

data (Mesoudi & Lycett, 2009). 

Studies of social transmission in natural human languages have likewise 

predominantly addressed questions about rates of change over time, and the 

emergence of new forms out of old (Lieberman, Michel, Jackson, Tang & Nowak 
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2007; Pagel, 2009; Pagel, Atkinson & Meade, 2007). Analyses of the similarities and 

differences between languages have allowed linguists to generate family trees, which 

indicate how closely related particular languages are in terms of common cultural 

descent (Pagel, 2009).  

Studies of real traditions therefore tend to concern not the precise nature of 

what can be transmitted, but shifting trends across the population, i.e. the patterns 

with which particular preferences or skills catch on, or die out. Dyadic experiments 

involving a pairing of experimenter or trained demonstrator and participant simply 

cannot capture the dynamic, evolutionary properties of social learning (e.g. Mesoudi, 

Whiten & Laland, 2006) since they only involve transmission over one “generation”. 

Furthermore, it is clear when considering studies of real traditions that, in natural 

contexts, social learning involves multiple influences on behavior, and that there is 

rarely a clear-cut answer to the question of whom exactly a particular trait might have 

been copied from. Dyadic social learning experiments also fail to capture this feature 

of social learning, since there is only one potential model.  

Transmission Chain Designs. There are, however, some experimental designs 

which are specifically devised in order to study the effects of repeated transmission 

over multiple generations. Mesoudi et al. (2006) have described such designs as using 

the “transmission chain method” (p339). Essentially in these experiments, naïve 

participants are initially exposed to some novel stimulus material, or a demonstrated 

action, as in typical dyadic social learning experiments. However, the key difference 

is that these participants then go on to take the role of demonstrator, in that their 

responses then form the stimulus material for the subsequent participant. In this way, 

researchers can study how information can be shaped, degraded, or built upon, over 

repeated transmission events. Since these studies give an indication of the longevity of 

particular behaviors over repeated transmission, they provide a much better insight 

into the sorts of traditions that might actually be sustained in real populations.  

An example of one such study was the pioneering work of Jacobs and 

Campbell (1961), following up on the studies by Asch (e.g. 1955) and Sherif (1936), 

mentioned earlier. Whilst it was well known that participants could be induced to give 

responses which were in direct conflict with their perceptual experience (as shown by 

Sherif and Asch), Jacobs and Campbell (1961) were interested in the extent to which 

such counter-intuitive beliefs could be perpetuated through a group by social 

transmission alone. Jacobs and Campbell (1961) established experimental groups 

which were founded by confederates, instructed to respond with a significant 

overestimation of their true perception of the strength of a visual movement illusion. 

However, the confederates were gradually replaced by naïve participants. In an 

example of one of their conditions, there were three individuals present in the group at 

any one time, and at the start of the experiment two of these individuals were 

confederates and one was a naïve participant. Each individual from the group was 

asked to estimate the degree of the illusory movement perceived, starting with the 

confederates, and their responses were recorded. This was repeated thirty times, after 

which one of the confederates was removed and replaced by another naïve participant. 

Thirty more trials were then carried out with this new group, and the remaining 

confederate was then removed and replaced with a further naïve participant. This 

procedure continued for a total of ten “generations”. Jacobs and Campbell (1961) 

found that the overestimation bias induced by the confederates persisted for several 

generations after the final confederate had been removed. Nonetheless, in all cases, 

estimates of motion did eventually return to the same levels as those given by control 

groups which had never had any contact with confederates.  
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Along a similar vein, Flynn (2008) has followed up on the research by Horner 

and Whiten (2005), also mentioned earlier, which indicated that young children would 

imitate all elements of a demonstrated action, including those that were irrelevant to 

the goal of extracting a reward (see also Flynn, this issue). Flynn (2008) used the 

same task as Horner and Whiten (2005), and tested a similar age group. However, she 

used a transmission chain design in which the child participant became the 

demonstrator for the subsequent participant. In this way she was able to study the 

level of fidelity with which the behavior was transmitted in eight chains, each 

composed of five or six children. Interestingly, the irrelevant actions dropped out of 

the demonstrations relatively rapidly, with most chains converging on the most 

efficient possible solution by the final participant. The implications of this study are 

therefore very much in line with those of Jacobs and Campbell’s (1961) experiment: 

although arbitrary and functionless behaviors and beliefs can certainly be transmitted, 

at least over a single generation, repeated transmission will often filter these out. It 

should be noted however, that Flynn’s (2008) study necessitated that young children 

played the role of demonstrator from the second generation onwards, and that children 

may have been less likely to “overimitate” the actions of their peers, compared with 

those of an adult. In contrast, Horner and Whiten’s (2004) study used only adult 

demonstrators. 

Designs involving repeated transmission have also been used with nonhuman 

species, also generating valuable insights (see Whiten & Mesoudi, 2008, for a review 

of such studies). An early example was Menzel, Davenport and Rogers’s (1972) study 

of chimpanzees’ responses to novel objects. Menzel et al. (1972) made use of what 

they described as a “serial-grouping paradigm” (p162), which was in fact very similar 

to the design described above for Jacobs and Campbell’s (1961) study. The sample 

tested consisted of 19 captive chimpanzees with limited experience of object 

interaction, and the researchers studied them as 17 successive groupings of three 

animals. These trios lived together for at least two months, at which point a new trio 

was formed by removing the longest-standing member, and replacing them with a 

naïve individual. Menzel et al. (1972) found that the first and second trios avoided 

both of the test objects, but one member of the third trio habituated to one object and 

began interacting with it, and one member of the fifth trio likewise habituated to the 

other test object. Subsequent trios would then interact with these objects, continuing 

the “play” tradition, even once the originator had left the group. Menzel et al.’s (1972) 

results imply that for these chimpanzees, the cultural history of the group’s interaction 

with the objects was a better predictor of how any given individual would react to 

them, rather than that individual’s own temperament. Again, this is a result which 

could not be obtained using a simple dyadic design.  

Within the literature on human language learning, transmission chain designs 

are proving to be particularly informative. It has been suggested that certain features 

of language may actually be best explained in terms of the filtering process generated 

by repeated transmission over multiple generations of learners (e.g. see Christiansen 

& Chater, 2008; Kirby, Dowman & Griffiths, 2007). Kirby and colleagues (e.g. Kirby 

et al., 2007; Kirby & Hurford, 2002) have used this idea to develop an “Iterated 

Learning Model” of language structure, with iterated learning referring to “a process 

in which an individual acquires a behavior by observing a similar behavior in another 

individual who acquired it in the same way.” (Kirby, Cornish & Smith, 2008, 

p10681). Kirby et al. (2008) have thus made use of an experimental chain design in 

order to examine whether this emergence of structure could be studied on a small 

scale in the laboratory. Kirby et al. (2008) exposed participants to an initially 
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structureless artificial language, by pairing strings of labels with particular visual 

stimuli. Participants were then tested on their knowledge of the language by asking 

them to produce the appropriate string of labels when shown further images. The 

strings produced during testing, plus the corresponding visual stimuli, were used as 

training materials for the next participant. It was found that, over ten generations of 

learners, the languages evolved to become more structured and easier to learn.  

Laboratory Models of Cumulative Culture in Adult Humans. In our own work 

(e.g. Caldwell & Millen, 2008a; 2008b; 2009, 2010) the repeated transmission (or 

iterated learning) that is intrinsic to culture, whether human or nonhuman, is similarly 

fundamental to the phenomenon we wish to investigate. Repeated transmission in 

humans often results in an accumulation of inventions and technologies as later 

generations build on the skills and knowledge of previous ones (e.g. Boyd & 

Richerson, 1985; Henrich & McElreath, 2003). Tomasello (e.g. 1999) has described 

this cumulative, transgenerational learning as a “ratchet effect” (p5), to capture the 

way in which practices tend to be faithfully preserved in the population until some 

improvement or elaboration is invented. Capturing this aspect of human social 

learning in the laboratory requires an approach which goes beyond dyadic designs.  

In our research we have also used methods which involve repeated 

transmission, which involve no formal demonstrations at all, even at the very 

beginning of the chain. Caldwell and Millen (2008a) ran twenty chains, each 

composed of ten participants. Participants were presented with simple technical 

challenges, which each had clear objective measures of “success” which could be 

used to evaluate the performance of participants over generations. As in the studies by 

Jacobs and Campbell (1961), and Menzel et al. (1972), described previously, the 

complete chain of participants were separated into small test groups who were 

together concurrently, with the longest-standing member of the group removed, and 

replaced by a naïve individual, at regular intervals until all members of the chain had 

taken part. Figure 1 (“Two Model Condition”) shows how the membership of the test 

group changed over a complete trial in Caldwell and Millen (2008a). Following 

Jacobs and Campbell (1961) and Baum, Richerson, Efferson & Paciotti (2004) we 

have referred to this type of design as a “microculture” (Jacobs & Campbell, 1961), or 

“microsociety” (Baum et al., 2004), capturing the notion of the chain as a population 

in miniature, with concurrent participants representing a cohort of contemporaries. 

Caldwell and Millen (2008a) gave ten chains of participants the task of 

building a paper airplane to fly as far as possible, and gave ten chains the task of 

building a tower from spaghetti and modeling clay, to be as high as possible. The 

respective goal measures (of flight distance and tower height) could be used to 

evaluate performance on the task. Consistent with the cumulative learning expected, 

in both cases later participants were found to perform better on these tasks than earlier 

ones. The real value of these methods has been to open up the possibility of testing 

hypotheses concerning the necessary conditions for cumulative culture. Although real 

human traditions can provide rich data indicating that cumulative cultural evolution 

has occurred, the microsociety method allows us to actively manipulate particular 

variables that may influence whether or not cumulative effects are observed. A great 

deal of attention has been paid to the phenomenon of human cumulative culture in the 

recent research literature, and there has been much speculation about the possible 

reasons for its apparent absence in nonhuman traditions (see Caldwell & Millen, 

2008b, for a review of the key perspectives). Our laboratory models allow some of 

these theories to be put to the test.  
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Attempting to do just that, Caldwell and Millen (2009) used the paper airplane 

task in order to compare conditions in which participants had access to different social 

learning mechanisms, separating out information in the form of actions (allowing for 

imitation), results (allowing for emulation), and teaching. Despite assertions that 

imitation and teaching may be necessary for cumulative culture to occur (e.g. 

Tomasello, 1999; Boyd & Richerson, 1996), Caldwell and Millen (2009) found 

evidence of cumulative effects even when participants only had access to information 

in the form of results, and were therefore restricted to emulative learning (from 

finished products).  

Population Size and Cumulative Culture. The aim of the current experiment 

was to test hypotheses concerning population size and cumulative culture. As 

mentioned previously, dyadic social learning experiments not only neglect the 

repeated transmission involved in real traditional behavior, but also fail to capture the 

fact that any given learner may have access to multiple potential models. This is also 

an important feature of social learning in natural contexts, and researchers have 

devoted considerable attention to the adaptive strategies that learners could exploit in 

order to choose between observed behavioral alternatives (e.g. Boyd & Richerson, 

1985; Kendal, Coolen, van Bergen & Laland, 2005; Laland, 2004).  

The matters of population size and model selection are particularly pertinent to 

the issue of cumulative culture. Henrich (2004) has developed a formal model of 

cumulative cultural evolution which illustrates the importance of population size 

when learners are attempting to maximize their own skill level by copying the most 

skilled model available. In Henrich’s (2004) model, members of a population attempt 

to learn from the most skilled individual, but learning is imperfect such that 

transmission typically leads to some loss of skill. Henrich (2004) has shown that when 

population size increases, the effects of model selectivity (which becomes more 

effective the more models one has to choose from) and occasional serendipitous 

copying errors (which likewise increase in number with increasing population size) 

will outweigh the losses involved in most cases of transmission. The net effect will 

therefore be an increasing skill level in the population. Henrich (2004) has used this 

model to illustrate how it would be possible for a small population to experience 

maladaptive skill loss, and posits this as an explanation for the apparent decline in the 

variety and complexity of material culture from the population of Tasmania between 

8000 B.P. and 3000 B.P.  

Powell, Shennan and Thomas (2009) have extended Henrich’s model, taking 

into account subpopulation density, and migration between subpopulations, as well as 

total population size. Powell et al. (2009) use the results of simulations to argue that 

the timing of the Upper Paleolithic transition (involving a marked escalation in 

technological and cultural complexity) is likely attributable to demographic, rather 

than cognitive, changes.  

  Using our experimental methods, it is relatively easy to manipulate this 

variable of population size. Caldwell and Millen (2008a) used test group cohorts 

consisting of four participants, two of whom were building, and two of whom were 

observing (see Figure 1, “Two Model Condition”). In the current experiment 

therefore, we simply manipulated this variable of cohort size, such that participants 

either had access to a greater (Figure 1, “Three Model Condition”), or lesser number 

of potential models (Figure 1, “One Model Condition”). Using our paper airplane task 

described previously, it was predicted that access to a greater number of models 

would result in greater increases in skill level in the population (as measured by flight 

distance).   
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Method 

Participants. Participants were recruited on campus at the University of 

Stirling and the University of Edinburgh. Three hundred participants took part (ten 

chains of ten individuals for each of the three conditions). Data for the two model 

condition (100 participants) were collected as part of a previous experiment (reported 

in Caldwell & Millen, 2009, as condition AR). The remaining 200 participants (in the 

one model and three model conditions) were recruited specifically for the purpose of 

making the comparison of the effects of test group size. 

Participants took part in exchange for a participation fee, paid at a rate of £5 

per hour. University of Stirling Psychology students were offered the choice between 

the participation fee and a research participation credit. All participants (whether 

given the credit or the fee) were also given a monetary performance incentive to 

encourage them to score as well on the task as possible (an extra ten pence for each 

meter of flight achieved, which resulted in participants receiving an average of an 

extra 60 pence). 

The mean age of the participants was 21.40 years (SD = 5.98, youngest = 16, 

eldest = 52), and 68% of the sample were female (totals = 95 males, 205 females). 

Ethical approval for this research was granted by the University of Stirling 

Department of Psychology Ethics Committee. The procedure was explained to all 

participants in advance, and they each gave written consent to participation. 

Procedure. For each trial the full chain of ten participants was assembled prior 

to the experiment commencing. They were informed that they were about to take part 

in a team challenge, and that they would be called in turn to engage in the task. 

Participants were each randomly assigned a number between one and ten to indicate 

their position in the chain. They completed consent forms and then waited their turn to 

join the group in the test area. The test area could not be seen by the waiting 

participants.  

When participants joined the group in the testing area they were provided with 

written instructions about the nature of the task. They were informed of the aim of the 

task (i.e. to build a paper airplane that flew as far as they could make it go) and of 

their time restrictions (five minutes of observation time followed by five minutes in 
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which to build their own plane). They were also informed that their participation fee 

would be increased in proportion with their performance on the task (as detailed in 

Participants section above). Figure 1 shows schematics of the membership of the test 

groups for the three different conditions, indicating the role of each participant at any 

given time during a single trial. Participants were encouraged to observe and learn 

from others, but were expressly forbidden from building another individual’s plane 

for them. Thus they were instructed not to touch another individual’s piece of paper. 

Each participant was provided with a single sheet of A4 paper with which to create 

their airplane.  

Within the test group, participants were kept aware of their current role 

(observing or building) and the time elapsed, by a computer display and reminders 

from the experimenter. Once an individual’s five minute building period was up, their 

plane was evaluated. This involved the participant throwing their plane three times, 

with the experimenter recording the distances flown, and then taking the best of the 

three measurements (to allow for mis-throws). Participants in the test group could see 

planes being thrown. Once a plane’s flight distance had been recorded, it was then 

placed on display in the test group, and the experimenter wrote down the 

measurements next to each, so that this information was also available. Each plane 

was held on display for five minutes, when it was removed and replaced by the next 

most recently completed plane.  

As can be seen from Figure 1, the total time of a complete trial varied across 

the experimental conditions. It was important to ensure that in all conditions, each 

participant had the same amount of time in which to build their plane. The 

manipulation of test group size therefore meant that the three model condition 

progressed more rapidly than the two model condition, and the two model condition 

more rapidly than the one model condition. It should be noted that the number of 

completed planes on display at any one time also varied across conditions in the same 

way as the number of models in the test group. As planes were always placed on 

display for five minutes after completion, this meant that in the one model condition 

there was only ever one plane on display at any one time, whereas in the two model 

condition there were two, and in three model condition three. 
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Results 

It was expected that there would be evidence of cumulative learning in all 

three experimental conditions. Page’s L Trend Test (Page, 1963) was used to analyze 

the complete data over the ten generations to explicitly test for successive increases in 

the flight distance score (Caldwell & Millen, 2008a; 2009). As reported in Caldwell & 

Millen (2009) this was significant for the two model condition (L = 3221, k = 10, N = 

10, p = 0.016). Cumulative improvement was also found for participants in the one 

model condition (L = 3250.5, k = 10, N = 10, p = 0.005). However, the effect of 

improvement over generations did not reach significance for the three model 

condition (L = 3117, k = 10, N = 10, p = 0.145). Figure 2 displays the data for all three 

conditions. 

In order to compare conditions, data were collapsed across the first three 

(positions 1, 2 and 3) middle three (4, 5 and 6), and final four (7, 8, 9 and 10) 

participants in each chain. Means are reported in Table 1. Tests indicated that the 

distribution of these values was not significantly different from the normal 

distribution. These values therefore allowed us to perform a 3x3 ANOVA, with 

generation (early, middle and late) as a repeated measures variable, and experimental 

condition (one, two or three model) as a between-subjects variable.  

 

 
 

It should be noted that the choice to collapse data across these particular chain 

generations was partly arbitrary. The first three generations were grouped due to the 

fact that the effects of the group size manipulation ought only to be fully apparent 

from participant four onwards (being the first participant to actually experience three 

models in the three-model condition). However, the split between middle and late 

generations was made purely to generate relatively even group sizes for statistical 

comparison. The relevant statistics (ANOVA and t-tests) have also been run using 

generations 4, 5, 6 and 7 as the “middle” grouping, and generations 8, 9 and 10 as the 

“late” grouping. There was no change to the significance of the ANOVA results 

reported below. This alternative split does however result in one more post-hoc 

comparison and one more t-test reaching significance. The relevant comparisons are 

identified in the results. All other results arising from this alternative grouping are not 

discussed further for reasons of brevity as they are consistent with those reported 

below. 
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There was a main effect of generation [F(2,54) = 3.345, p = 0.043], consistent 

with our finding that scores were higher later in the chain. Post-hoc comparisons 

(Fishers LSD) indicated that the late generations’ (positions 7-10) scores were higher 

than those of the early generations (positions 1-3) (p = 0.026). The late generations’ 

scores were not significantly different from those of the middle generations (positions 

4-6) however (p = 0.459). The middle generations’ scores were also not significantly 

different from those of the early generations (p = 0.082), although it should be noted 

that this comparison was significant when using the alternative split mentioned above, 

comparing values collapsed across positions 1-3, with those collapsed across positions 

4-7 (instead of 4-6). 

There was no main effect of model condition [F(2,27) = 1.457, p = 0.251], 

indicating that no condition was better overall than others. There was also no 

interaction between generation and condition [F(4,54) = 0.694, p = 0.599], so the 

trend towards improvement later in chains was not significantly stronger in any of the 

conditions over others. 

Independent t-tests were run using these same collapsed values for early, 

middle and late in the chain, in order to explore the nature of any differences between 

the conditions. These are reported in Table 2. The only comparison which was 

significant was the comparison between the two model and three model conditions for 

the late generations, and this was in the direction of the two model condition scores 

being higher for this section of the chain, contrary to expectations. Using the 

alternative collapsed values discussed above (comprising positions 4-7 as the 

“middle” generations, and 8-10 as the “late” generations), the comparison between the 

one model and three model condition was also significant for the late generations. 

Again this was in the direction of the scores from the one model condition being 

higher than those of the three model condition. These comparisons should be 

interpreted with caution due to the number made (since all would be non-significant if 

applying a correction for multiple comparisons such as the Bonferroni correction). All 

the same, it is clear that any differences between the conditions are in fact, contrary to 

predictions, in the direction of the three model condition participants scoring lower on 

the flight distance measure, compared with those in the smaller sized groups, with any 

such effects restricted to later in the chain of participants.  
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Discussion 

Results for the one model condition were very much in line with results that 

we have reported to date using two model designs (Caldwell & Millen, 2008a; 2009). 

In the one model condition we found a significant effect of cumulative improvement 

over generations of participants within chains, as also found in the two model 

condition. Furthermore there were no apparent differences between these conditions 

in terms of either the overall level of performance, or the extent of the cumulative 

effect.  

This replication of our previous findings, using a different design, has 

interesting implications for understanding the strategies that human participants use in 

order to engage in cumulative learning. It had been expected that more information (in 

the form of a larger test group, greater number of potential models, and greater 

number of completed planes to inspect) would equate to better performance on this 

task, and potentially more pronounced cumulative effects. However, no such 

differences were found between the one model and two model conditions. Participants 

in the one model condition saw only one person building a plane, and were exposed to 

a total of two completed designs (one which was on display while they observed their 

predecessor in the chain, and the completed design of their predecessor which was 

placed on display at the start of their five minute building period). Clearly this 

information was sufficient to generate a cumulative learning effect. It may be that 

participants were explicitly comparing the success of the two completed designs, and 

preferentially copying planes which flew further, which ought to generate a 

cumulative learning effect. However, it remains possible that the effect would be 

found even if participants were only exposed to one previous design.  

In our previous work (Caldwell & Millen, 2009) we have run a condition in 

which participants were not provided with explicit information regarding flight 

distances, but did see other participants building their planes. Under these 

circumstances, participants did not have access to direct information about the 

effectiveness of particular designs. Nonetheless, participants must have been able to 

make judicious decisions about whether or not to copy, since even in this condition, a 

significant cumulative effect was found (Caldwell & Millen, 2009). It is possible that 

participants were able to use heuristics associated with the visual properties of the 

finished products in order to judge what might be a good or bad design (using, for 

example, apparent aerodynamic properties or symmetry). They may also have been 

able to make a simple decision about whether or not to copy based on their knowledge 

of their own expertise (and therefore the likelihood of their own design being better 

than another participant’s), possibly also taking into account the likely expertise of the 

previous participants (again using heuristics such as sex, or apparent building 

proficiency).  

The implication of this for our current experiment is that human participants 

do not apparently need to be able to make precise comparisons of explicit payoff 

information in order to engage in the strategic use of social information which results 

in cumulative cultural learning. An even more impoverished version of our one model 

condition, where participants saw only one completed design, might therefore also 

still generate such an effect.  

The results from our three model condition are rather more difficult to 

interpret. Although cumulative improvement was identified in both the one model and 

two model conditions, the three model condition showed no significant effect of 

increased flight distances over generations (although this seems primarily attributable 

to some unusually low scores towards the end of the chains in this condition). It had 
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been expected that those conditions with larger test groups (and therefore a greater 

number of potential models) would be likely to have an advantage over those with 

smaller groups, and that if any difference were found it would be in this direction. 

This would be consistent with the mathematical models of population size described 

in the introduction, as well as mathematical models involving manipulation of the 

number of “cultural parents” (Enquist, Strimling, Eriksson, Laland & Sjostrand, 

2009). However, we did not find such an effect. As well as showing no significant 

effect of cumulative learning, the scores for participants in the three model condition 

were actually somewhat lower than those for the two model condition. 

As noted in the results section above, the t-tests should be interpreted with 

some caution due to the number of comparisons made. Nonetheless, it was important 

to carry out these comparisons, restricted to particular stages of the chains, in order to 

properly compare across conditions. For the three model condition, participants 1, 2 

and 3 were not in fact exposed to three models, and their test group size was smaller 

than for the participants later in the chain. In comparing across the conditions 

therefore, we are particularly interested in the performance of participants 4-10. Any 

differences between conditions in the scores of the first three participants would likely 

be a consequence of other differences between the conditions at these early points in 

the chain, such as the differing amounts of observation time for the initial participants 

(which would in fact favor the one model condition, see Figure 1). However, no 

differences were found between the three conditions for these early stages in the 

chain. Indeed, any advantage for the two model over the three model condition 

appeared to be entirely restricted to later (6/7-10) in the chain.  

We do not believe that the results indicate that being able to make a greater 

number of comparisons is detrimental to people’s ability to generate cumulative 

culture. Clearly, greater amounts of information about potential designs and models 

ought to increase the chances of an individual participant making a good choice about 

their own design. But our results do illustrate that the strengths of microsociety 

designs also bring with them limitations on how far we can extrapolate the results to 

real cultural phenomena. Whilst microsociety designs make the laboratory study of 

cultural phenomena tractable, they also place constraints on the types of behavior, and 

the amount of information, that can be transmitted between participants.  

In our largest test groups, it seems that participants may have simply been 

unable to make use of all of the information available in the time allocated. As will be 

apparent from Figure 1, in these test groups a participant was removed, and replaced 

by a new test group member, every one minute and forty seconds. The completed 

planes were likewise replaced at the same rate. This replacement rate was necessary 

so that we could increase the size of the test group, whilst maintaining constant 

individual building times across conditions (important for obvious reasons). 

Participants in this condition saw three other participants complete their planes prior 

to beginning their own build. Furthermore, for participants later in the chain, 

additional completed planes would have been on display during their observation 

period. But the rapid rotation of the various sources of social information appears to 

have been counterproductive, perhaps depriving participants of the time required in 

order to process a particular design. For example, if a participant from this condition 

initially focused on the design of the “oldest” participant currently in the group (e.g. 

the seventh participant chooses to observe the second) then the rapid replacement rate 

would mean that the resulting plane was removed from the test group shortly after 

participant seven themselves began building. Clearly this was not a problem for 

participants in the one model condition, due to the fact that they only had the 
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opportunity to observe one other participant (i.e. their immediate predecessor), and 

the resulting plane would remain on display for the entire duration of their own 

building period.  

The contracted timescale involved in the study is of course one of the great 

benefits of using microsociety designs. However, in this case, it seems that increasing 

the time periods involved across the board, for all conditions, might have produced a 

different result, potentially limiting what we can conclude from the current results. All 

the same, it remains an open question which of these alternatives would represent a 

better model of real human cultural learning, given that there will inevitably be certain 

constraints on how much can be observed by one individual even in large populations.  

Our methods offer many possibilities for future research. One particularly 

interesting avenue for future research concerns the possibility of detecting exactly 

which social learning strategies (e.g. Laland, 2004) participants are employing. In 

some of our previous work (Caldwell & Millen, 2008a; 2010) we have taken 

photographs of the designs produced by individual participants, and this has allowed 

us to generate similarity scores for particular pairs of designs. Using similar 

approaches it may be possible to determine whose designs participants are copying, 

and hence answer questions about the social learning strategies involved. Franz and 

Nunn (2009; this issue) have also developed methods which allow for investigating 

social learning strategies in natural contexts, although using a very different approach 

from our own. In conclusion, microsociety designs have much to offer the study of 

culture, and can reveal a great deal regarding the longevity of transmitted behaviors, 

and the ways in which repeated transmission shapes behavior. And this is achieved by 

(at least up to a point) placing social learning back in context. 
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