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Abstract 

Nineteen scientists from different disciplines collaborated in highlighting new methodological and 

theoretical aspects in the re-emerging study area of fission-fusion dynamics. The renewed interest in 

this area is due to the recognition that such dynamics may create unique challenges for social 

interaction and distinctive selective pressures acting on underlying communicative and cognitive 

abilities. In five sections, we outline new frameworks for integrating current knowledge on fission-

fusion dynamics and suggest promising directions for future research using a broad comparative 

perspective. In the first section, we briefly review the diverse uses of the term “fission-fusion” and 

propose a fundamental re-thinking away from its current general use as a label for a particular modal 

type of social system (i.e., fission-fusion societies). Specifically, because the degree of spatial and 

temporal cohesion of group members varies both within and across taxa, we note that any social system 

can be described in terms of the extent to which it expresses fission-fusion dynamics, and we thus 

advocate a realignment of use of the term “fission-fusion” to reflect this perspective. The implications 

of this perspective are then discussed and expanded in three sections focusing on the socioecology, 

communication, and cognitive demands of fission-fusion dynamics. The last section explores the 

relevance of fission-fusion dynamics for human social evolution. 
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Fission-Fusion Societies? 

2 Filippo Aureli, Colleen M. Schaffner and Christophe Boesch 

 

2These authors have principal responsibility for this section 

 

The term “fission-fusion” was first introduced by Hans Kummer (1971) to describe the social system of 

a few taxa of nonhuman primates, such as chimpanzees, geladas, and hamadryas baboons, which 

change the size of their group by means of the fission and fusion of subunits (called parties or 

subgroups) according to both their activity and the availability and distribution of resources. Social 

systems characterized by such fission-fusion dynamics are considered rare among mammals, but they 

are typical of some primate (Smuts, Cheney, Seyfarth, Wrangham, and Struhsaker 1987) and other 

mammalian species (e.g., some bats: Kerth and König 1999; dolphins: Connor, Wells, Mann, and Read 

2000; elephants: Moss and Lee in press; Wittemyer, Douglas-Hamilton, and Getz 2005; spotted 

hyenas: Holekamp, Cooper, Katona, Berry, Frank, and Smale 1997). Among primates most studies on 

fission-fusion dynamics have focused on chimpanzees (Boesch and Boesch-Achermann 2000; Mitani, 

Watts, and Muller 2002; Nishida and Hiraiwa-Hasegawa 1987) and spider monkeys (Chapman, 

Wrangham, and Chapman 1995; Symington 1990). Similar patterns also seem to occur in bonobos 

(Hohmann and Fruth 2002; Nishida and Hiraiwa-Hasegawa 1987; Stumpf 2007) and some populations 

of muriquis (Milton 1984). Fission-fusion dynamics are likewise typical of modern humans, including 

hunter-gatherers (Marlowe 2005), although it is not often explicitly recognized. The following quote 

captures this apparent anomaly: “Fission-fusion sociality seems so natural and necessary to humans – 

including anthropologists – that it hardly demands explanation, if it is noticed at all” (Rodseth, 

Wrangham, Harrigan, and Smuts 1991:238). The sharing of such a flexible social nature with our 

closest living relatives suggests that fission-fusion dynamics was characteristic of the social system of 

the last common ancestor of chimpanzees, bonobos, and modern humans. 
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Given the potential role of fission-fusion dynamics in human social evolution, we organized a 

symposium at the XXth Congress of the International Primatological Society and a post-congress 

workshop to explore from a broad comparative perspective whether fission-fusion dynamics create 

unique challenges for social interactions or distinct selective pressures for specific underlying 

communicative and cognitive abilities. In this section, we emphasize that the variation in fission-fusion 

dynamics goes beyond the modal types of societies that have traditionally been described as “fission-

fusion”. We therefore suggest a revision of how the term “fission-fusion” is used to reflect such 

variation, and we propose a new framework to stimulate the quantification of the relative degree of 

fission-fusion dynamics in different taxa in order to facilitate future comparative research. 

 

REDEFINING “FISSION-FUSION”  

Although the distinctions among modal types of “fission-fusion societies” (see electronic supplement A 

for a brief review) are useful to describe the degree of flexibility in the social system of certain species, 

many other systems characterized by fission-fusion dynamics do not fit within these modal types. In 

fact, there is pronounced variation in the degree of fission-fusion dynamics both across and within 

species (see electronic supplement B for examples), which poses a difficulty in using the modal 

terminology. Given this variation, we propose a fundamental re-thinking of that terminology. We 

suggest that the term “fission-fusion” be abandoned as a label for a particular modal type of social 

system (i.e., “fission-fusion societies”), and instead propose that the term “fission-fusion dynamics” be 

used to refer to the extent of variation in spatial cohesion and individual membership in a group over 

time. As a consequence, any animal society can be characterized by its degree of fission-fusion 

dynamics, which can vary from highly cohesive with stable group membership to highly fluid with 

either relatively stable or flexible subgroup membership. 

This perspective on the use of the term “fission-fusion” fits well with Kappeler and van Schaik’s 

(2002) definition of social organization that explicitly incorporates the degree of spatiotemporal 
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cohesion of a social system. In particular, this perspective emphasizes that simple dichotomous 

distinctions of social organizations as being cohesive versus flexible are neither realistic nor accurate 

(Strier 1989). Moreover, this perspective highlights that flexible spatiotemporal grouping patterns in 

primates and other vertebrates are more common – and more complex – than generally recognized 

(Kinzey and Cunningham 1994; Struhsaker and Leland 1979; Sussman and Garber 2007). The critical 

issue is that spatiotemporal variation in grouping patterns influences the opportunities for group 

members to interact with one another and, ultimately, the resulting social system.  

Such a realignment of the use of the term “fission-fusion” requires the development of new 

conceptual frameworks for studying the implications of variation in fission-fusion dynamics across 

groups and species for socioecological, communicatory, and cognitive aspects. As a start, it is 

necessary to develop one or more basic heuristics for describing the degree of fission-fusion dynamics 

seen in a group or species and thus the relative opportunities that individuals have for close-range 

social interaction. Such a conceptual framework would, of course, be multi-dimensional. Here we 

propose a framework involving three dimensions that together capture potential temporal variation in 

spatial cohesion and membership in a given environment: (1) the temporal variation in spatial cohesion 

among group members, (2) the temporal variation in party size, and (3) the temporal variation in party 

composition (Figure 1; see electronic supplement C for detail on the three dimensions).  

 

- Figure 1 about here – 

 

The accumulation of data for the dimensions of the proposed framework, or other variants, would 

permit the relative placement of species and populations of the same species within a complex multi-

dimensional fission-fusion space (e.g., Figure 1), which is an essential first step toward the systematic 

investigation of whether social systems characterized by different degrees of fission-fusion dynamics 

are quantitatively or qualitatively different from one another in terms of socioecological conditions, 
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social interaction and cognitive abilities. However, as the relative positions of most species and 

populations within this multi-dimensional space have yet to be empirically determined, a simplified 

terminology is used throughout the following sections for ease of notation while making comparisons 

between social systems characterized by a higher degree of fission-fusion dynamics (hereafter “higher 

FF” groups or taxa) and those characterized by relatively higher temporal stability in group cohesion 

and membership (hereafter “lower FF” groups or taxa). We note that the terms “higher FF” and “lower 

FF” represent relative points within multi-dimensional fission-fusion space and therefore need to be 

interpreted within our relativistic approach of different degrees of fission-fusion dynamics (i.e., higher 

and lower in at least one of the three dimensions); that is, they do not reflect an actual dichotomy. 

The three-dimensional framework proposed here is a useful first step, but additional 

complementary frameworks are needed, depending on which aspects of fission-fusion dynamics are 

being considered. The following sections propose several new frameworks that are relevant to 

exploring and understanding variation in fission-fusion dynamics in terms of socioecology, 

communication, and cognitive demands. The concluding section explores the implications of fission-

fusion dynamics for human evolution. 

 

The Socioecology of Fission-Fusion Dynamics 

3Anthony Di Fiore, Colin A. Chapman, S. Peter Henzi, Phyllis Lee, Julia Lehmann and Gabriel Ramos-

Fernández 

3These authors have principal responsibility for this section 

 

Over the past 25 years, studies of primate behavior and ecology have contributed greatly to the 

development of socioecological theory, whose principal goal is to explain grouping patterns, range use, 

mating behavior, dispersal tendencies, and inter- and intra-sexual social relationships as adaptive 

responses to features of the ecological and social environment. Primate socioecology historically has 
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taken a reductionist perspective, recognizing a discrete set of modal social systems and seeking to 

explain, for example, the “nepotistic” female social relationships of many cercopithecines as a 

consequence of the competitive regime engendered by food resource distribution. The discipline has 

come a long way using such a categorical framework, but this perspective downplays the fact that 

many aspects of social systems (e.g., the spatiotemporal variation in the association patterns of 

individuals) can vary dramatically, both among populations of a given taxon and within the same 

population over time. Primate socioecology is currently at an important juncture (Janson 2000). If 

primatologists are to continue to contribute to the development of socioecological theory, it is crucial 

for us to re-evaluate past assumptions about how ecological variables influence social systems and to 

expand our efforts to better understand the first principles that shape movement and grouping patterns. 

In the past, the study of higher FF taxa has offered a useful tool for exploring such issues, since their 

responses to ecological changes take place over very short time scales. Here, we return to the example 

of higher FF taxa and suggest a new framework that derives more explicit null models of association by 

using spatially-explicit agent-based simulations that begin from assumptions about the state of 

resources in the environment. 

The modeling approach that we advocate will accomplish several goals. First, it will allow us to 

critically evaluate the validity of currently recognized modal types of primate social systems, 

particularly the so-called “fission-fusion societies” of chimpanzees and spider monkeys (see 

“Redefining Fission-Fusion” above). Second, the approach will let us explore, in silico, new metrics for 

describing patterns of socio-spatial association that might then be applied across taxa and be used for 

quantifying the fission-fusion space discussed above; using these metrics we can then begin to evaluate 

the importance of observed deviations from expected null models. Finally, through this approach we 

expect to be able to explore whether and how apparently similar social systems might arise for very 

different reasons and by different evolutionary routes (Lee 1994; see below). 
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ARE HIGHER FF TAXA “SPECIAL”? 

Because higher FF taxa are relatively uncommon among primates and other mammals, researchers tend 

to imagine that socioecological pressures they face may be somehow different in form or degree from 

those faced by lower FF taxa. Some higher FF groups (e.g., those falling into region C of Figure 1) 

have historically been incorporated into the general socioecological model as follows. First, the flexible 

association patterns of these higher FF groups are commonly interpreted as a solution by large-bodied 

primates – who face a relatively low risk of predation – for coping more efficiently with patchily 

distributed and temporally varying food sources (Dunbar 1988; Klein and Klein 1977; Milton 1984; 

Strier 1992; Symington 1988; van Schaik 1989; Wrangham 1977, 1980). Under these circumstances, 

females are suggested to spread out from one another when resources are scarce to reduce feeding 

competition, and possibly to aggregate and forage together when resources are plentiful. More recently, 

fission-fusion dynamics in these taxa have been viewed as affording flexible responses for optimal 

solutions to the usually contrasting pressures of avoiding predators and minimizing feeding competition 

when there is temporal or spatial fluctuation in predation pressure and food availability (Boesch and 

Boesch-Achermann 2000). For some higher FF taxa (e.g., chimpanzees, spider monkeys), males are or 

are presumed to be philopatric and cooperate with male relatives to defend access to the ranges of 

several females against males from neighboring groups (Ghiglieri 1984; Strier 1994; Wrangham 1979), 

which in turn is thought to force the dispersal of maturing females (Pusey 1979; Pusey and Packer 

1987). Additional social and demographic factors (e.g., overall community size, presence of cycling 

females) have been shown to affect fission-fusion dynamics and party size (Lehmann and Boesch 

2004). For other higher FF taxa (e.g., geladas and some baboons, which live in multilevel societies; 

region B of Figure 1) the risk posed by nocturnal predators is seen as the selective pressure favoring the 

aggregation of large numbers of animals at communal sleeping sites, while competition drives 
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fissioning of these large groups into smaller, cohesive, foraging parties during the day (Dunbar 1988; 

Kummer 1968), and the risk of infanticide prompts the consistent association of particular males with 

particular females (Henzi and Barrett 2003). 

There are a number of problems inherent in the notion that higher FF groups face “special” 

ecological pressures. First, past socioecological models of higher FF groups in primates offer only post 

hoc and incomplete explanations for observed patterns of association and kinds of social relationships. 

For example, the existence of a positive relationship between habitat-wide fruit availability and 

foraging party size in both spider monkeys and chimpanzees is taken as evidence that resource 

distribution constrains grouping patterns, and yet resource patch density and distribution explain less 

than half the variance in party size in these taxa (Chapman et al. 1995). In addition, long-term primate 

studies are increasingly revealing that considerable flexibility in grouping patterns and within-group 

social relationships may exist both between populations and within the same population of higher FF 

taxa over time (Strier 2003; see electronic supplement B). Thus, models of how ecological conditions 

shape even such basic aspects of social systems as group or party size are less than straightforward. 

Moreover, as primatologists pay more attention to work on non-primate taxa, we are coming to 

appreciate that a wide variety of other vertebrates are also characterized by fission-fusion dynamics 

(see “Fission-Fusion Societies?” above and electronic supplement B). The extent to which 

socioecological models developed from primate studies can be applied across taxa is unknown, but it is 

very unlikely that any one set of similar ecological conditions determines superficially similar fission-

fusion dynamics in these disparate taxa. Having identified a number of limitations to current 

socioecological models (see electronic supplement D) we outline a research framework that may help 

us to address these limitations. 
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A WAY FORWARD? DERIVING AN INCLUSIVE SPATIAL NULL MODEL 

Our proposition is to develop a new set of null models of association and sociality that begin from first 

principles to simultaneously explore links between ecological, social, and demographic variables on the 

one hand and the socio-spatial relationships on the other. Given that there is a great complexity in the 

environments in which grouping takes place, producing null expectations of grouping patterns should 

take as a starting point a spatially-explicit description of the environment inhabited by a species. Spatial 

analysis is a mature field that offers many tools useful to socioecologists for describing how resources 

(e.g., food, watering holes, sleeping sites) or predation risk vary in space and time (Dale, Dixon, Fortin, 

Legendre, Myers, and Rosenberg 2002; Fortin, Dale, and van Hoef 2002). From this description of the 

environmental complexity faced by animals, null models can be produced that predict what grouping 

patterns may arise simply as a consequence of the environment. One possible null model might be 

summarized as follows: 

 

Within a primate social group, patterns of association across time are a consequence solely 

of individual decisions that maximize access to resources (i.e., they are not influenced by social 

factors, such as individuals’ relative dominance rank or their relatedness to other group 

members). The temporal variation in spatial cohesion and membership characteristic of higher 

FF groups emerges in response to a specific subset of all possible patterns of resource 

dispersion. 

 

Subsequently, deviation from what is predicted from these first principles can be analyzed to 

understand the relevant factors that, in addition to environmental variation, influence grouping patterns 

and social relationships. Some of these deviations will not lead too far (e.g., sleeping sites could 

physically constrain spatial dispersion), while others could be fascinating (e.g., quantitative 
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descriptions of how alternative social strategies, such as infanticide avoidance, might influence 

grouping). 

One way to develop null models of movement and grouping patterns against which empirical data 

can be compared is through the use of spatially-explicit agent-based simulations. Throughout the 

history of primate socioecological research, these kinds of models have been used by various 

researchers (Boyer, Miramontes, Ramos-Fernández, Mateos, Cocho, and Larralde 2004; Boyer, 

Ramos-Fernández, Miramontes, Mateos, Cocho, Larralde, Ramos, and Rojas 2006; Ramos-Fernández, 

Boyer, and Gómez 2006; Rodman and Di Fiore 1993; te Boekhorst and Hogeweg 1994; reviewed by 

Dunbar 2002), but they have yet to gain widespread acceptance (Bryson, Ando, and Lehmann 2007). 

We stress that these are null models, which need to be used as tools to begin to understand the behavior 

of real animals, rather than as an actual descriptions of an animal’s behavior (Peck 2004). 

The central elements of a spatially-explicit agent-based simulation model include a habitat in which 

various kinds of resources (e.g., depleting food patches, sleeping sites) and agents (e.g., individual 

model animals, predators) occupy particular locations (Figure 2). Such a model would begin by 

explicitly designating the distribution of food resources, as food necessarily drives travel patterns – i.e., 

even if every other factor was missing from the environment, animals would still need to move to feed. 

Based on the spatially-explicit descriptions of environmental variation, a set of model parameters or 

dimensions that capture this variation is developed. Multiple agents within the simulation are then 

given simple foraging rules (e.g., “move to the next available patch” or “move to the largest patch 

within a certain distance”), and the emergent spatial structuring of those individuals (association 

patterns) are assessed after the model is run for a number of steps. The model is then iterated many 

times, and the resulting grouping patterns of the agents is recorded for different values of the 

environmental parameters, generating a surface that reflects what association patterns are predicted to 

be associated with what combinations of environmental variables. Observed field data can then be 

examined for concordance with this model surface. If we start with realistic values for meaningful 
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environmental parameters, and notice that the particular grouping patterns arise only in certain 

environments and not in others, we obtain testable predictions about the effect of the environment on 

grouping, and this provides a means of understanding deviations from a purely ecological explanation. 

For examples of the use of spatially-explicit agent-based simulations see electronic supplement E. 

 

- Figure 2 about here - 

 

As with traditional socioecological models, accurate empirical measures of environmental variables 

of interest (e.g., food distribution) are desirable to lend “realism” to a simulation, but one important 

advantage of a simulation-based approach is that it is possible to explore the effect of a range of values 

for any model parameter, even ones very difficult to measure because of observational limitations or 

the time frame needed for accurate measures (e.g., predation pressure or infanticide risk). Moreover, 

once a simple model has been constructed, additional environmental variables can be added or removed 

to explore their effect on the emergent spatial structuring. In sophisticated models, the various 

resources and agents in the simulation might themselves show temporal variation in their size (e.g., 

growing and shrinking in size to simulate food patches such as fruiting trees with ripening and then 

diminishing crops), location (e.g., moving in space according to behavioral rules to simulate mobile 

prey or predators), or state (e.g., cycling through varying stages of “receptivity” to simulate female 

reproductive state). 

The power of the agent-based modeling approach lies in its versatility and potential for expansion 

in ways that are informed by observational studies. For example, although initial null models might not 

explicitly incorporate social factors (e.g., dominance or kinship relationships among different agents) 

or demographic factors (e.g., group size, population sex ratio, number of simultaneously receptive 

females), which are known to influence the degree of spatial cohesion among animals (Lehmann and 

Boesch 2004), the modeling approach is sufficiently versatile to accommodate the inclusion of these 
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kinds of variables. This could be done, for example, by altering the behavioral rules that agents follow 

when they encounter one another (e.g., “retreat” when the other agent is a more dominant agent, 

“follow” when the other agent is in estrus) or by making the behavior of agents contingent on 

accumulated information about the set of agents previously encountered (e.g., “do X” when the sex 

ratio of encountered agents is male-biased and “do Y” when it is female biased). Indeed, research on 

other mammalian taxa suggests that broadening our perspective from purely resource-based models to 

more socio-reproductively based ones may have considerable application to understanding primate 

spatial and social associations. For example, it is clear that a variety of social factors are key 

determinants of grouping patterns in other social mammals – e.g., the risk of infanticide influences 

grouping in lions (Grinnell and McComb 1996; Packer and Pusey 1983), allomaternal care shapes the 

social associations of elephants (Lee 1987), and the importance of reproductive competition over 

females shapes male alliances among dolphins (Connor et al. 2000). The potential influence of these 

kinds of variables on primate associations and sociality could be explored by integrating them into 

agent-based simulations, which in turn could be used to develop new predictions that could then be 

tested with field data. We believe that this integration of theory, modeling, and observation will be a 

profitable way to understand the causes and consequences of higher FF dynamics in primate and non-

primate taxa as well as to help identify the range of socioecological conditions under which lower FF 

groups are likely to arise. 

 

Implications of Fission-Fusion Dynamics for Communication 

4Karen B. Strier, Colleen M. Schaffner, Joseph H. Manson and Simon K. Bearder 
 

4These authors have principal responsibility for this section 
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Within primate groups, social signals may perform functions as simple as coordinating group 

movement (Boinski 1996), or as intricate as conveying and negotiating relationship qualities and 

processes such as formal submission and dominance (Flack and de Waal 2004, 2007), reconciliation 

(Aureli and de Waal 2000), and trust in the context of coalition formation (Smuts and Watanabe 1990). 

The kinds of signals and the size of signal repertoires selected to fulfill these functions are expected to 

be affected by fission-fusion dynamics (Kummer 2002; Milton 2000). Members of lower FF groups 

must resolve the conflicts generated by relatively high levels of association and avoid social 

disintegration. Members of higher FF groups must have ways to re-establish relationships and resolve 

uncertainties (e.g., concerning alliances, dominance status and each individual’s relationship to third 

parties) depending on the frequency and patterns of spatial and temporal separations (Barrett, Henzi 

and Dunbar 2003). The interacting effects of the spatiotemporal variation in grouping patterns (see 

“Redefining Fission-Fusion” above) and social dynamics determine whether communication functions 

primarily to solve the problems posed by relatively high levels of association or those posed by 

extended or frequent spatial separations, independent of the sensory anatomy and physiology that 

different modes of communication (e.g., visual, olfactory, auditory) require. 

Differences in communication patterns may reflect distinct evolutionary routes that could have led 

to both higher and lower FF groups, and we begin our consideration of communication with a 

description of two possible routes. We then present a framework for the evolution of social signaling 

that illustrates the relative importance of signals for maintaining spatial cohesion, separating from other 

group members, resolving uncertainty due to low spatial cohesion when individuals reunite, and 

negotiating social interactions depending on the degree of fission-fusion dynamics and the evolutionary 

route. We finish by showing the utility of the framework for generating testable hypotheses about how 

communicatory signals might vary depending on the social complexity and level of cohesion 

underlying fission-fusion dynamics. Our framework for the evolution of social signaling is heuristic. It 
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is meant to stimulate research that investigates the extent to which variation in fission-fusion dynamics 

influences communication as little such data exist at present. 

 

- Figure 3 about here - 

 

THE PHYLOGENY OF FISSION-FUSION DYNAMICS 

Figure 3 depicts two hypothetical evolutionary routes by which higher FF groups can arise and yield a 

variety of social systems (see electronic supplement B). On Route A, social relationships became 

increasingly valuable as the fitness gained through long-term associations – beginning between mates 

and/or between mothers and their adult offspring – increased. Along Route A, then, the driving force 

behind increasing gregariousness was the increasing value of social relationships for mutual 

advantages, which over time and with expanding scope could have resulted in lower FF groups, such as 

those of macaques and capuchin monkeys. The high value of social relationships (Cords 1997; 

Kummer 1978) selected for increasingly sophisticated relationship negotiation skills, thus permitting 

group members to remain together unless ecological pressures impose high levels of resource 

competition that necessitate fissioning. On Route A we can envision two main ways in which higher FF 

groups could have evolved: 1) by large groups fissioning into temporary smaller parties such as those 

observed in the communities of chimpanzees and spider monkeys (Nishida and Hiraiwa-Hasegawa 

1987; Symington 1990); or 2) by small groups temporarily fusing into larger bands/clans and then 

aggregating with other bands/clans to exploit limited safe sleeping locations as is the case with the 

multilevel societies of hamadryas baboons (Stammbach 1987), with the basic subunits having a 

relatively fixed composition. On Route A, then, higher FF groups would have emerged among taxa in 

which sophisticated relationship negotiation skills already existed and formed the background from 

which the additional skills necessary for resolving relationship uncertainties in the face of periodic 

separations must have evolved. This scenario also conforms to the perception of higher FF taxa 
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evolving along Route A having greater social complexity because their communication repertoire 

requires adeptness at negotiating social relationships while together, signaling departures, and 

reassessing their relationships following separation (Barrett et al. 2003; Dunbar 2003). The particular 

signals employed by higher FF groups need not be more cognitively demanding, but their repertoires 

may be more extensive than those of lower FF groups. 

By contrast, species on Route B in our scenario would move to higher FF groups from a solitary 

rather than a group-living condition (Müller and Thalmann 2000; Sterline, Nguyen and Fashing 2000; 

Figure 3). Route B does not require that differentiated social relationships became increasingly 

valuable as gregariousness intensified, and associations may have been short-lived and random or 

opportunistic. In some galagos, for example, it may be thermally advantageous or safer with respect to 

predators to sleep with conspecifics than alone, but it is the number of conspecifics (as opposed to 

differences in their individual value as social partners) that leads them to fusion. However, it may also 

be easier or more efficient to associate with familiar conspecifics than with strangers, and the resulting 

higher FF groups may shift into facultatively lower FF groups if ecological conditions permit (Bearder 

1999; Figure 3). Along Route B, the transition from solitary to higher FF groups could have required 

that minimal social skills (i.e., for distinguishing familiar individuals from strangers) and signals for 

resolving relationship uncertainties over distance and time became somewhat enhanced, though not to 

the level attained by lineages traversing Route A. Similarly, lower FF groups that emerge through 

Route B are expected to lack the range of relationship negotiation signals found in both lower FF and 

higher FF groups on Route A. 

 

- Figure 4 about here - 

 

MAPPING THE SOCIAL LANDSCAPE  
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The different evolutionary trajectories by which higher FF groups could have arisen have implications 

for the evolution of social signaling. Figure 4 illustrates our framework by depicting a two-dimensional 

landscape for mapping social systems along two intersecting continua to consider the range and types 

of signaling mechanisms required to regulate spatial cohesion and social relationships. The X-axis in 

our landscape represents the degree of cohesiveness, operationalized here as the percentage of 

conspecifics within a given individual’s social group that it can communicate with at any given time 

(which depends on the temporal variation in spatial cohesion, party size and composition; see 

electronic supplement C). We hypothesize that different kinds of signals are needed depending on 

whether they function primarily (a) to resolve relationship uncertainties that arise without constant 

contact and to convey information about fission events, or (b) to maintain coordination within 

relatively cohesive groups. The Y-axis of the landscape represents the complexity and differentiation of 

dyadic social relationships (sensu Hinde 1979), measurable by criteria such as high between-dyad 

variation and low within-dyad variation in rates and intensities of friendly and antagonistic behavior. 

At one extreme of our Y-axis dimension, adults would regard adult conspecifics of the same sex, 

reproductive condition and possibly degree of relatedness as interchangeable; at the other extreme, each 

dyadic relationship would be highly distinct along several dimensions (e.g., agonistic asymmetry, 

tolerance of close proximity, services provided). The X-axis demarcates a critical threshold for 

distinguishing between social environments that either do (upper) or do not (lower) require 

communication signals for the long-term maintenance of differentiated social relationships. Individuals 

of species that fall below this threshold may be able to recognize one another and may have signals for 

mediating their social interactions and coordinating their movements, but it is only among species that 

fall above this threshold that we expect to find signals that allow for the establishment and maintenance 

of long-term, differentiated social relationships. 

The intersection of the two axes in Figure 4 divides the social landscape into four quadrants. 

Species in quadrant I are low in spatial cohesion and social complexity. Examples include solitary 
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mammals in which adults associate only to mate and to contest access to resources (e.g., shrews: 

Cantoni 1993; giant mouse lemurs: Schülke and Ostner 2005). Courtship and assessment signals are 

used in these contexts, but they communicate only about the current interaction, not the dyadic 

relationship. Among species in quadrant II, signals serve to coordinate activities and maintain cohesive 

spatial associations, but social interactions are not based on differentiated social relationships. 

Examples include schooling fish that execute sophisticated anti-predator maneuvers (Pitcher and 

Wyche 1983). 

In the upper half of Figure 4 we find animals that live in complex societies, which have been 

defined by de Waal and Tyack (2003a), as societies that are (a) individualized, (b) longitudinally stable, 

and probably (c) characterized by strong learning effects on social behavior and survival strategies. It is 

only in these societies that we expect to find signals by which individuals can convey the relationship 

qualities and processes described at the beginning of this section. We expect the evolution of 

communicative abilities to differ among taxa that fall in quadrants III and IV mainly because of 

differences in the degree to which individuals need to negotiate conflicts of interest immediately when 

extended separation is not a common option (quadrant III) or need to resolve uncertainties about 

relationships in the face of frequent separations (quadrant IV). We suggest that when fissioning is a 

viable ecological option, conflicts can be avoided instead of deliberately resolved. Prolonged, elaborate 

displays may be warranted during reunions when fissioning is rare (quadrant III), whereas simple 

greeting interactions of shorter duration may suffice when fission-fusion dynamics are common 

(quadrant IV) (Aureli and Schaffner 2007). Finally, different degrees of social complexity and 

sophistication in signaling should occur depending on whether species arrived in quadrant IV via Route 

A or Route B. Individuals from Route B (e.g., lesser galagos) would have a more limited range of 

signals than individuals from Route A (e.g., chimpanzees).  

 

ADDITIONAL FACTORS 
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Local ecological conditions can result in interspecific variation that affects the relative placement of 

taxa within quadrants III or IV. We identify two parallel gradients in our qualitative assessment of 

primates (dotted lines in Figure 4), each of which reflects the range spanned by taxa with evolutionarily 

distinct life histories. The upper gradient represents taxa with comparatively slow life histories, such as 

the atelins, apes, capuchin monkeys and several Old World monkeys, while the lower gradient 

represents taxa with comparatively fast life histories, such as galagos and callitrichids. Taxa with 

slower life histories tend to have more complex and differentiated social relationships, based on their 

slower rates of development and longer life spans (Charnov 1991), than those with faster life histories 

when their degree of cohesiveness is similar. 

Our landscape accounts for the differences in how signals are employed by populations of the same 

or closely-related species whose cohesion and quality of social relationships affect their respective 

positions in any of the quadrants. For example, the specialized reconciliation gestures observed in some 

captive chimpanzees (de Waal and Roosmalen 1979) are apparently absent in wild populations (Arnold 

and Whiten 2001), possibly because the increased spatial cohesion imposed by captivity necessitates 

more explicit, unambiguous reconciliation signals than is required when spatial separation through 

fission is an option. The gradients, which express the interacting effects of ecology and phylogeny, 

provide an additional basis for predictions about how intraspecific variation in signals might vary with 

a taxon’s life history pattern. An additional factor affecting signaling is an individual’s range of social 

opportunities (see electronic supplement F). 

This framework for the evolution of social signaling generates a suite of testable hypotheses about 

the minimum requirements that different kinds of social patterns impose on communication. We have 

focused on the functions rather than the forms of social signals. However, consideration of the ways 

that different modes of communication permit individuals to keep track of one another without 

maintaining spatial cohesion is a critical next step (Kummer 2002; see electronic supplement G for 

examples). The parallel gradients that distinguish species according to their life history patterns, the 
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impact of variation in social opportunities (see electronic supplement F), the evolutionary route 

followed to reach their position on the multi-dimensional fission-fusion space, and the different 

abilities to coordinate their activities over space and time provide additional variables around which 

future comparative studies on the role of communication in regulating social relationships can be 

designed. 

 

Cognitive Demands of Fission-Fusion Dynamics 

5Filippo Aureli, Josep Call, Richard Connor and Kay Holekamp 

 

5These authors (in alphabetic order) have principal responsibility for this section 

 

Chimpanzees, elephants, and dolphins – all taxa characterized by a high degree of fission-fusion 

dynamics – are also all species renowned for having relatively large brains and advanced cognitive 

abilities. One then might argue that possessing these characteristics and living in higher FF groups fit 

together in a causal manner. However, this is not necessarily true. Here, we explore this issue and 

propose a framework to identify some of the cognitive abilities we expect to find enhanced among 

animals living in higher FF groups. 

 

EVOLUTIONARY HISTORY MATTERS 

Chimpanzees, elephants, and dolphins are certainly special in that they display an array of cognitive 

abilities that are not found in many other animals, one of which is the apparently sophisticated manner 

in which they manage their social relationships over both space and time (de Waal and Tyack 2003b). 

Chimpanzees, elephants, and dolphins each have a particular evolutionary history and share a number 

of characteristics (e.g., slow life histories and long developmental periods), any and all of which may 
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have influenced their cognitive abilities. Living in higher FF groups, therefore, may not be a causal 

factor, but simply a correlate of enhanced brain power. 

Even if living in higher FF groups has evolutionarily consequences, its effects may well be 

contingent on what evolution was given to work with in the first place. When considering the whole 

array of species living in higher FF groups, as in the case of communication discussed above, we need 

to recognize the variation in cognitive abilities among these species, which is strongly dependent on the 

phylogenetic route by which a social organization with a higher degree of fission-fusion dynamics was 

achieved (see “The Phylogeny of Fission-Fusion Dynamics” above). For example, the ancestors of 

modern chimpanzees were likely group-living primates with the cognitive abilities to weigh the costs 

and benefits of interacting with multiple group members in ways dependent on current circumstances 

(Route A in Figure 3). This capacity could then be used in the fission-fusion context characterized by 

broader temporal and spatial scales. In this respect, chimpanzees stand in contrast to some other 

primates, like galagos, which have moved during their evolutionary histories from a solitary state 

towards a more social state in higher FF groups (Route B in Figure 3; Bearder 1999). In these cases, it 

is not a matter of employing an already existing set of social skills in a new context, but of developing 

them de novo. We should not assume, therefore, that a higher degree of fission-fusion dynamics 

automatically endows each species with the same cognitive abilities. Rather, given that a high degree of 

fission-fusion dynamics evolved multiple times in a wide range of taxa (from fish to birds to 

mammals), we should expect that cognitive adaptations to such dynamics are both variable and 

strongly influenced by the species’ evolutionary history, in addition to the nature of fission-fusion 

dynamics (see electronic supplements B) and the degree of differentiation of social relationships (from 

simple aggregations to complex societies: Figure 4). Comparative studies of cognitive adaptations to 

different degrees of fission-fusion dynamics should therefore use appropriate phylogenetic methods 

(e.g., Pagel and Harvey 1991; Nunn and Barton 2001).  
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THE DEMANDS OF SOCIO-SPATIAL FLEXIBILITY  

Another important issue is whether species living in higher FF groups have greater cognitive abilities 

than species that share a common evolutionary history but live in lower FF groups. We focus here on 

taxa that derive from group-living ancestors (Route A in Figure 3). When comparing species living in 

higher and lower FF groups, we must recognize that each kind of group offers opportunities for new 

skills to develop but also for certain selection pressures to be relaxed. We should not assume therefore 

that one kind of group necessarily produces greater cognitive abilities or “social intelligence” than 

another. With this in mind, we can formulate a framework regarding the cognitive demands that the 

socio-spatial flexibility of different fission-fusion dynamics may impose, and use this to develop 

testable hypotheses. 

The degree of fission-fusion dynamics experienced may make different demands on the various 

cognitive processes involved in the acquisition, storage, processing, and use of social information. At 

present, it is not clear whether any cognitive abilities are unique to higher FF taxa, although various 

suggestions have been made (Barrett et al. 2003; Boesch and Boesch-Achermann 2000; Dunbar 2003; 

Milton 2000; Skoyles and Sagan 2002), and it seems most parsimonious to assume that we are dealing 

with relative enhancement of certain cognitive abilities, rather than a suite of new skills. 

Living in lower FF groups may impose higher demands on information acquisition than living in 

higher FF groups because normally there are more group members present (and for longer periods) in 

the former than in the latter. Thus, members of lower FF groups are constantly bombarded with social 

information that often involves multiple partners engaged in fast-paced interactions. It is even possible 

that members of lower FF groups cope with such massive amounts of social information by paying 

selective attention to certain stimuli and filtering out redundant or unnecessary information. By 

contrast, individuals living in higher FF groups may display an enhanced ability to pick up subtle social 

cues and to use behaviors designed to probe others and extract relevant information from them (e.g., 

behaviors designed to test bonds: Zahavi 1977). These enhanced information acquisition skills may 
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allow individuals to detect altered relationships among individuals who were temporarily in a different 

party (Connor 2007). Within higher FF taxa, these abilities are likely more important where party 

composition is highly variable (e.g., chimpanzees) and less relevant where the majority of social 

interactions are exchanged within parties with mostly fixed composition, although such parties fission 

and fuse with others to form multilevel societies (e.g., hamadryas baboons). 

The storage and processing of information appear more demanding in higher FF than lower FF 

groups. This is a direct consequence of the patchier information gathered by individuals in higher FF 

groups. At the most basic level, these individuals must remember for longer periods the members of 

their own group because they are not exposed to them continuously. Moreover, due to changing party 

composition, these individuals not only have to keep track of who was involved in a particular 

interaction, but also the identity of others that were present (and absent) at the event. There is some 

evidence suggesting that chimpanzees can encode who witnessed an event such as a particular food-

baiting episode (Hare, Call and Tomasello 2001), but comparative systematic data are needed for 

appropriate testing of this hypothesis (and the other hypotheses below). 

The dispersed nature of higher FF groups in space and time may have favored an ability to encode 

information concerning who was involved in what interaction and to remember such knowledge over 

longer time-frames than would be needed in lower FF groups. Renegotiating important long-standing 

relationships (sensu Kummer 1978), because individuals have forgotten where they stand with respect 

to each other, is wasteful of both time and energy. Selection should therefore favor individuals living in 

higher FF groups who are able to retain knowledge about partners (and their relationships with others, 

i.e., third party relationships) over a long time-scale, even in the absence of those partners, so they can 

“pick up where they left off” when they meet again. 

The patchy nature of information gathered by members of higher FF groups may also promote 

enhancement of various information-processing skills. Inferential skills may enable animals to extract 

information about relationships among others from cues based on limited dyadic and triadic 
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observations, which may be particularly important when all interactions cannot be witnessed. For 

example, spotted hyenas use transitive inference very effectively in social situations (Engh, Siebert, 

Greenberg and Holekamp 2005). Thus, although transitive inference is not exclusive to higher FF taxa 

(e.g., pinyon jays: Paz-y-Mino, Bond, Kamil and Balda 2004), we predict its enhancement in higher FF 

taxa. 

It is also possible that, for some higher FF taxa, the ability to understand relations between relations 

(analogical reasoning) will be enhanced. This can act as a way of reducing cognitive demands while 

enhancing cognitive capacity (for example, by storing information on particular kinds of relationships, 

rather than retaining knowledge of many specific individual interactions: Call 2001). Within lower FF 

taxa, the need to store such information “off-line” may be reduced by the increased likelihood of 

witnessing interactions between dyads. Furthermore, in taxa where fission-fusion dynamics involve 

parties of mostly fixed composition (e.g., the joining and splitting of stable one-male units of 

hamadryas baboons), cognitive demands can be reduced by forming equivalence classes (cf. 

Schusterman, Reichmuth Kastak and Kastak 2003). For example, it would be easier to remember that 

“party X” was present during an interaction instead of individuals A, B, C, D and E. 

Cognitive demands can also be reduced if assessment and updating of social relationships with 

various partners is achieved via emotional mediation, which is based on the emotion experienced when 

partners interact and the role of partner-dependent emotional experience in guiding future interactions 

(Aureli and Schaffner 2002). Under this scenario, individuals’ behavior toward other animals may 

reflect an emotional response akin to Damasio’s (1994) “somatic markers”, which guide current action 

by producing a positive or negative “gut feeling” about another individual, based on both experienced 

and observed interactions involving the other individual. This emotional response reflects the nature of 

past interactions but does not require any active recollection of them, or indeed any conscious cognitive 

response at all, merely a linking of a particular individual and situation with a particular emotional 

experience. Compared to lower FF taxa, emotional mediation in higher FF taxa should be based on a 
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lower sample size of direct observations (because they do not witness all interactions of others) and on 

more indirect evidence (e.g., detectable changes in the behavior of others toward a particular individual 

after fusion).  

Finally, information should be put to good use, and we can also hypothesize possible differences in 

this regard between higher FF and lower FF taxa. Owing to the changing opportunities of social 

partners in higher FF taxa, individuals may possess an enhanced capacity to inhibit and control their 

responses. For example, given that the appropriate response to a situation may vary depending on party 

composition, the capacity to inhibit responses under less favorable conditions should prove selectively 

advantageous. Thus, inhibiting prepotent responses, assessing a situation before acting, and possibly 

concealing changed relationships at reunions would all be expected to be enhanced in taxa experiencing 

a higher degree of fission-fusion dynamics. Japanese macaques provide an illustrative example of how 

members of lower FF groups may react to sudden changes in group composition without showing 

appropriate behavioral inhibition. High-ranking juvenile macaques whose relatives have been removed 

from the group invariably continued to challenge subordinate animals with intact matrilines (Chapais 

1992). This led to the high-ranking juveniles losing their dominance rank due to the lack of support 

from their absent relatives. Chimpanzees, in contrast, seem to be able to inhibit aggressive behavior 

under challenging conditions (Aureli and de Waal 1997). As mentioned above, comparative systematic 

data are needed for appropriate testing of this and other hypotheses. 

The particularly fluid nature of higher FF groups also may allow individuals to model the future 

and optimize social outcomes in many situations. For these individuals enhanced planning skills could 

be especially beneficial by enabling them to “engineer” party composition and associate with the most 

profitable partners (see below). Chimpanzees seem to display such planning skills during boundary 

patrols, territorial incursions and cooperative hunting (Boesch and Boesch-Achermann 2000; 

Wrangham 1999). There is also some indication of planning for future needs from tool use experiments 

in bonobos and orangutans (Mulcahy and Call 2006) and from the selection of the most helpful partners 
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in a cooperative task in chimpanzees (Melis, Hare and Tomasello 2006). In addition, further cognitive 

demands can be encountered when individuals are in parties of varying size and composition due to a 

biological market of exchanges (Barrett et al. 2003; see electronic supplement H). 

 

In conclusion, if different degrees of fission-fusion dynamics make characteristic cognitive 

demands on animals, then we should expect to see enhanced abilities of the kind described above in 

higher FF taxa compared to closely-related taxa living in lower FF groups. Empirical evidence for such 

a difference in demands and enhanced abilities is clearly needed. Our framework provides guidance on 

how to gather such evidence and how to carry out “fair” tests to probe these abilities. That is, species-

appropriate tests should be implemented to reflect the potentially different phylogenetic routes to 

fission-fusion dynamics and their different underlying brain substrates. 

 

Implications of Fission-Fusion Dynamics for the Evolution of Complex Human Societies 

6Amanda H. Korstjens, Robert Layton, Carel P. van Schaik, Christophe Boesch and Robin I. M. 

Dunbar 

6These authors have principal responsibility for this section 

 

Modern humans (and particularly modern foraging peoples: Marlowe 2005) offer what is in many ways 

an archetypal example of a higher FF taxon. We therefore build on issues raised in the preceding 

sections to investigate how human society – characterized by well-structured social relationships but 

with a low level of spatial cohesiveness during the day – may have evolved. In trying to understand the 

origins and evolution of human society, we can usefully ask four separate questions: (1) To what extent 

does human society differ from that seen in other anthropoid primates (in particular, in chimpanzees)? 

(2) By what evolutionary route did modern human social systems evolve? (3) What function(s) do 
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higher FF groups have for hominids? And (4) what cognitive demands do higher FF groups impose on 

humans? We do not believe that it is possible to provide definitive answers to any of these questions at 

present; our intention, rather, is to develop a framework that identifies issues that need to be explored 

in order to provide those answers. 

 

HUMAN AND APE SOCIAL SYSTEMS COMPARED 

The social systems of great apes and humans share a low level of spatial cohesiveness but strongly 

developed social relationships (quadrant IV in Figure 4). Orangutans are clearly the least cohesive of 

the apes, but they are known to aggregate more when ecological conditions are favorable, and there 

appears to be some form of a community (Delgado and van Schaik 2000). Even the generally cohesive 

gorilla groups may be part of some form of multilevel society (Bradley, Doran-Sheehy, Lukas, Boesch 

and Vigilant 2004). Our closest relatives, chimpanzees and bonobos, whose physiology and food 

choice are more comparable to those of humans, have a social system with a high degree of fission-

fusion dynamics but also a very strong level of cooperation and affiliation within communities. 

Bonobos differ from chimpanzees mainly in having slightly larger party sizes and a generally higher 

level of spatial cohesion. In addition, while male alliances are important in chimpanzees, female 

alliances and male-female alliances are more important in bonobos (Hohmann and Fruth 2002; Parish 

and de Waal 2000). For simplicity, we limit our framework mainly to a comparison between early 

humans and chimpanzees (including bonobos, unless stated otherwise).  

Humans and chimpanzees share a number of features (see also Layton and Barton 2001; Moore 

1996; Nishida and Hiraiwa-Hasegawa 1987): an omnivorous diet associated with cooperative hunting, 

tool use (though cooperative hunting and tool use may not apply to bonobos), large community size, 

and higher FF groups within the context of a multimale/multifemale social organization. There are also 

a number of shared features that are expressed differently in the two taxa: sexual division of labor (only 

in humans does this entail a form of mutual dependence), hunting (meat sharing occurs in both 
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chimpanzees and humans, but only in humans do we see prey killed elsewhere and brought back to a 

camp for distribution), and flexible territoriality. To compare the differences between chimpanzees and 

modern humans regarding territorial tendencies, we first need to understand the phylogenetic 

connection between human and chimpanzee grouping patterns. If the human band (i.e., overnight 

camp) corresponds to the chimpanzee community, then territoriality is more relaxed in modern humans 

than in chimpanzees. In many hunter-gatherer societies, adult humans of both sexes can readily move 

(temporarily or permanently) between bands (e.g., Lee 1979: 42, Turnbull 1965: 96, Woodburn 1982: 

435). However, if the regional hunter-gatherer community (commonly associated with a unique dialect) 

corresponds to chimpanzee community then territoriality of modern hunter-gatherers is more 

comparable to that of chimpanzees. Relations between regional communities are more constrained 

(e.g., Andrews 1996), although exchange across community boundaries does occasionally take place 

(e.g., McBryde 1978). When we assume that chimpanzee communities should be compared to regional 

communities (and the cognitive evidence suggests that this is the correct equivalence: Dunbar 1993), 

then human social evolution has moved toward longer-term association in sub-units (i.e., the time 

intervals between fusion of subunits has increased). 

Finally, human societies differ from those of apes in a number of respects: the assembly of the 

whole band at an overnight base camp, the presence of social and economic pair bonds, significant 

alloparental inputs in child rearing, exchange of goods as tokens of social relations, and, perhaps rather 

obviously, the use of language in regulating relationships (see also Dunbar 1993; Marlowe 2005; 

Rodseth et al. 1991). These differences are numerically and qualitatively sufficiently large that they are 

unlikely to have arisen at the same time, which raises the second issue of our framework: how were 

these differences acquired in the hominid lineage? 

 

PHYLOGENY AND FUNCTION FOR HUMAN HIGHER FF GROUPS 
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At present, we can say little about the sequence of specific events that occurred in the hominid lineage, 

but it is likely that human higher FF groups derived from group-living species that depended on 

cooperation and had various social skills (e.g., conflict resolution: Aureli and de Waal 2000; alliance 

formation: Harcourt and de Waal 1992) useful for maintaining social relationships in spite of low 

spatial cohesion (Route A in Figure 3). The best we can do is to assume that whatever chimpanzee and 

bonobo societies have in common with those of modern humans resembles those of their common 

ancestor (Moore 1996) and then ask what changes had to be made, and in what sequence, in order for 

the differences to develop. Because these changes are inevitably linked to the function of fissioning and 

fusing, the third question of our framework is embedded in the discussion below. 

Most of the differences we listed between chimpanzee and human society are unique features of 

humans and probably evolved fairly recently in human evolutionary history. The use of sites where the 

community aggregates at night (i.e., a possible precursor of home bases), however, is common in many 

primates (although not in chimpanzees or bonobos). The use of a limited number of sleeping sites is 

driven by predation pressure and availability of safe refuges that are large enough for the group 

(Anderson 2000). If the society has a relatively low level of spatial cohesiveness, a lack of safe 

sleeping sites or extreme predation risk may force the group members to come together at night. Such a 

situation is especially obvious in hamadryas baboons (Kummer 1995), though similar patterns may be 

seen in all Papio baboons. The fact that baboons live in as large a variety of habitats as our earliest 

ancestors did (from rainforests to open savannah areas), including more open and drier habitats than 

those where modern chimpanzees occur, seems relevant, given that Papio and our earliest ancestors 

first emerged at about the same time (Jolly 2001; Moore 1996). We envisage an evolutionary path in 

which a chimpanzee-like hominid ancestor, with a low degree of spatial cohesiveness but highly 

structured social relationships, started to exploit not just forests but also more open savannah/woodland 

environments. In such environments, daytime food searching demands required individuals to forage in 

small parties, just like contemporary chimpanzees in forested habitats and baboons in dry savanna 
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habitats do (Nishida and Hiraiwa-Hasegawa 1987; Stammbach 1987). However, some variable – most 

likely the rarity of essential resources such as safe refuges at night (with an increased risk of predation 

in the more open habitat) or waterholes (scarce in savannah habitats but less so in forests) – forced 

individuals to aggregate once a day in large groups that contained the entire band or community, as 

happens in hamadryas baboons (Stammbach 1987), but unlike contemporary woodland and forest 

chimpanzees (Nishida and Hiraiwa-Hasegawa 1987).  

Coming together at night and at waterholes is not the only difference between the fission-fusion 

dynamics of chimpanzees and baboons: they also differ in the type of parties that are commonly 

formed. As discussed earlier (see “Fission-Fusion Societies?” above), in hamadryas baboons large 

night aggregations split into smaller foraging parties based on one-male units during the course of the 

day, whereas in chimpanzees community members are very rarely all together and form parties rather 

independently. This difference can have a major impact on the level of cooperation that occurs among 

community members. A chimpanzee-like system may be more conducive to cooperation (as seen 

among chimpanzee males during hunting of difficult prey and border patrols) than a hamadryas 

baboon-like system because all members of a chimpanzee community may regularly interact 

affiliatively when they meet in different parties. In a baboon-like system, on the other hand, individuals 

always remain in the same party (at the smallest unit level) and there is little affiliative interaction 

between members of different parties. 

We do not know what kind of aggregation or dispersal behavior may have occurred among 

australopithecines, but most paleoanthropologists agree that australopithecines were highly sexually 

dimorphic (similar to baboons) and that therefore neither a chimpanzee-like social system nor that 

approximating modern hunter-gatherers was found among them. Rather, inter-male competition may 

have been similarly strong as it is in baboons (Foley and Lee 1989; Plavcan and van Schaik 1997), 

which tends to reduce levels of cooperation among males. Indeed, what was once thought to be 

evidence for “home bases” among early Palaeolithic hominids is now discounted, as the accumulations 

 32



of tools and bones are considered to have been caused by transport in streams or flash floods (Binford 

1987; Stern 1993). All we can say at this stage is that the typical chimpanzee strategy of building nests 

wherever individuals happen to find themselves at nightfall would have been constrained by the 

occurrence of fewer suitable sites in more open savannah/woodland environments. We stress 

nonetheless that this hypothetical formation of large groups at least once a day at a safe location would, 

in combination with a society in which cooperation is common, offer a whole new set of opportunities, 

especially for a large-brained primate like our ancestors. Note that some of the benefits of aggregating 

once a day do not require anything as advanced as a home base, but only require that individuals spend 

a relatively long period of social time in each other’s presence while not engaged in activities such as 

foraging, hunting, or patrolling their boundaries. 

As the daily aggregation at a safe limiting resource evolved into a home base in later Homo species, 

fusing at nighttime may have offered the opportunity for sexual division of labor whereby gatherers 

and hunters shared their spoils at the end of the day (Key and Aiello 2000). Some degree of resource 

redistribution would be allowed by alloparenting (Kennedy 2003), costly signaling by males, and 

perhaps pair bonding; the latter could allow pooling of resources within a domestic unit in a context 

where confidence in reciprocity of food transfers was maximized (a feature that may have been 

reinforced or actively selected for by the parental investment demands of increasing brain size: Key 

and Aiello 2000). Because they no longer had to leave the safety of the home base to forage, the home 

base would presumably have increased the survival chances of the weakest individuals (e.g., young 

children, older people, women with newborns, and heavily pregnant women) who could nonetheless 

perform essential tasks at the home base such as childcare. At this stage, the sharing of spoils means 

that individuals in the community could distribute themselves optimally over the area to increase 

efficient use of resources. Eventually, this could have given rise to the multi-layered society of modern 

hunter-gatherers in which survival risks were further reduced through cooperation between different 

bands, in the form of trading and allowing some trespassing onto each other’s territories (Klein 1999; 
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Layton and Barton 2001). Many of these latter changes imply significant demands in terms of social 

skills and may have selected for the evolution of larger brains (see electronic supplement I for 

archeological evidence). 

 

COGNITIVE DEMANDS OF HUMAN HIGHER FF GROUPS 

This leads us into the last of the four questions of our framework, because the scale of human social 

groups (and, in particular, the size and dispersion of forager communities, in combination with a 

gathering at home bases) must inevitably impose considerable demands on human cognition (Aiello 

and Dunbar 1993). We would simply like to stress that a high degree of fission-fusion dynamics may 

be cognitively taxing (see “Cognitive Demands of Fission-Fusion Dynamics” above) and, without the 

gathering of individuals at night, may undermine high degrees of cooperation for two reasons. First, 

fission-fusion dynamics do not allow for regular updating of information about social relationships in 

the community and this makes it more difficult for individuals to depend too strongly on a relationship 

when individuals are spatially dispersed. Second, regular fissioning and fusing creates opportunities for 

free riders (Enquist and Leimar 1993) because each individual’s behavior cannot be monitored while 

the group is dispersed. Coming together daily not only allows individuals to reinforce bonds, it 

provides opportunities to observe the social interactions taking place among other individuals (and thus 

update reputations) and additionally forces individuals to resolve conflicts in order to reduce tensions in 

the group instead of simply avoiding one another. In combination with the cognitive abilities of great 

apes and their tendency towards complex social relationships, this could have been the point of 

departure for the high level of cooperation and the evolution of complex symbols to indicate intentions 

that we observe in hominids. Social learning and information exchange at these daily gatherings is 

likely to further increase the development of a society with highly structured social relationships and 

elaborate signals. Even though the original need for fusing on a daily basis may have disappeared as 

hominids came to occupy various environments, the habit of doing so may just have been the 
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evolutionary adaptation that allowed our ancestors to become a highly adaptable species, capable of 

spreading across the world. 

 

Conclusions 

The five interlinked sections of this article propose several new frameworks within which to pursue 

research on a range of topics that we believe are particularly relevant to fission-fusion dynamics. In the 

30 years since the term “fission-fusion” was first introduced (Kummer 1971), research in this area has 

been rather patchy and has focused only on a limited number of topics. For example, significant 

methodological improvement for the recognition of non-random association patterns has been made 

(see electronic supplement A), and several socioecological factors influencing party size have been 

identified (e.g., Chapman et al. 1995; Lehmann and Boesch 2004; Mitani, Watts and Lwanga 2002). 

Less attention has been paid to other aspects of fission-fusion dynamics, such as the rate of change in 

party size or the extent to which parties, when they do form, are comprised of the same set of 

individuals. 

A possible reason for the lack of more systematic investigation of fission-fusion dynamics is the 

tendency for researchers to continue to adhere to a dichotomous perspective on flexible versus cohesive 

organizations and to have mainly focused on the so-called “fission-fusion societies” of chimpanzees 

and spider monkeys. We believe that much progress can be achieved by acknowledging that this is a 

false dichotomy and by recognizing that fission-fusion dynamics occur to some extent in most social 

systems (cf. Kinzey and Cunningham 1994; Strier 1989; Struhsaker and Leland 1979; Sussman and 

Garber 2007). We reiterate, therefore, that a starting point for a renewed research input is the adoption 

of a relativistic approach that places species – and even populations of the same species – within a 

complex, multidimensional fission-fusion space of the sort illustrated in Figure 1. Higher and lower FF 

groups refer to relative positions within such a space, and comparisons between taxa and populations 
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thus need to be interpreted within such a relativistic framework of higher or lower degrees of fission-

fusion dynamics. 

A second critical point we have stressed is the pressing need for primatologists – and other 

researchers interested in the evolution of flexible patterns of social organization – to develop new null 

models against which the associations of individuals can be compared. The generalized modeling 

framework of spatially-explicit agent-based simulation is a powerful tool that can be applied to many 

different taxa. Another critical point emphasized in our frameworks is that the evolutionary route 

followed to reach a given degree of fission-fusion dynamics has fundamental implications for the types 

of social and cognitive skills the organism may posses. This means that two species that lie relatively 

close to one another in the multidimensional fission-fusion space may nonetheless differ in important 

respects depending on their phylogenetic background. Thus, interspecific comparisons need to take 

evolutionary history into account (Pagel and Harvey 1991; Nunn and Barton 2001).  

The relativistic approach based on the degree of fission-fusion dynamics within such an 

evolutionary framework provides an effective way to evaluate patterns of communication across taxa. 

Given similar differentiation of social relationships, we expect that communication in lower FF groups 

would be focused around coordinating movement, resolving conflicts and promoting cooperation, 

whereas the communication systems of higher FF groups must accommodate the additional 

requirements of routinely negotiating separations, re-establishing relationships, and reducing tension at 

reunions. In addition, while carrying out comparative analyses we need to be aware that higher FF 

groups may have evolved either from rather solitary species with limited social skills or from relatively 

cohesive groups that already possessed effective means for maintaining differentiated relationships. 

Furthermore, despite the fact that many animals living in higher FF groups have large brains and 

sophisticated cognitive abilities, we suggest that a higher degree of fission-fusion dynamics does not 

necessarily impose selection pressures that promote the evolution of novel forms of “social 

intelligence”. However, evolutionary enhancement in existing cognitive skills may increase fitness in 
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higher FF taxa, and thus promote cognitive attributes such as long-term memory about who did what to 

whom and the inferential abilities necessary to put together patchy social information. Finally, the 

nature of fission-fusion dynamics of early hominids, in particular the suggested combination of both a 

high degree of interaction among community members due to frequent changes in party composition 

and a tendency to reunite on a daily basis, may have strongly influenced the evolution of the highly 

adaptable and cognitively sophisticated species that we are today. 

Given these premises, the proposed frameworks we advocate here are expected to stimulate new 

momentum in the investigation of whether qualitative or quantitative differences in fact exist between 

species or populations in the underlying socioecological conditions, communication skills, or required 

cognitive abilities depending on their degree of fission-fusion dynamics. As higher FF groups occur in 

a wide variety of taxa, a broad comparative perspective, not limited to primates, should help elucidate 

underlying principles, and also highlight fundamental differences due to evolutionary history. This 

perspective could also be highly beneficial in increasing our understanding of the causes of the 

variability in human fission-fusion dynamics and the evolution of our complex societies. 
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Figure legends 

Figure 1. A three-dimensional conceptual framework to represent the degree of fission-fusion dynamics 

of groups and taxa. The X-axis represents the temporal variation in spatial cohesion among group 

members; the Y-axis represents the temporal variation in party size; and the Z-axis represents the 

temporal variation in party composition. Region A illustrates cases that are low in all three dimensions 

such as very cohesive groups or constantly dispersed situations (e.g., territorial, solitary species). 

Region B would include cases that are highly variable in spatial cohesion and party size, but not in 

party composition, such as the multilevel societies of hamadryas baboons that are based on the 

relatively stable one-male units. Region C represents cases that are high in all three dimensions such as 

the highly fluid communities of chimpanzees, spider monkeys and spotted hyenas characterized by 

highly variable party membership. Groups of modern humans, bottlenose dolphins and elephants would 

likely be located between regions B and C. Comparative data for each dimension are needed for the 

accurate relative placement of species and populations. 

 

Figure 2. Hypothetical components of a spatially explicit agent-based simulation model. On the left is a 

photograph of the landscape being simulated. The top layer on the right side of the figure [A] shows 

“baboon” agents distributed across the landscape at one point in time and showing varying degrees of 

spatial association (e.g., four “parties” containing 2 to 6 independently-locomoting animals). The 

bottom two layers on the right represent the spatial distribution of two key resources presumed to be 

important to baboons at that same point in time, where [B] represents the gradient of food resource 

availability across the landscape, with the degree of shading proportional to average energy return rate 

(e.g., calories per unit time) that “baboons” could receive by foraging at that location, and [C] 

represents the locations of possible sleeping sites (e.g., cliffs) where predation risk is lower (i.e., the 

degree of shading is inversely proportional to the degree of predation risk experienced at that site). In 

running a simple simulation, individual “baboons” are given a foraging rule that moves them across the 
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landscape (e.g., “move to an adjacent location where the return rate is higher”). At each step, the 

positions of all “baboons” and the details of each resource layer are updated, and various measures of 

association (e.g., average inter-individual distance, average party size, etc.) can be calculated. 

 

Figure 3. Alternative routes to higher degree of fission-fusion dynamics. Note that the ecological 

conditions that require fissioning of cohesive groups along Route A may also make cohesiveness 

detrimental for higher FF groups along Route B. In this scenario, extended associations may impose 

ecological costs that would need to be offset by other advantages, such as increased survival of 

offspring or reproductive success among mates, to achieve the neutrality required for the social 

transitions along Route B. 

 

Figure 4. Social landscape and its implications for social signals. The X-axis represents the degree of 

cohesiveness, while Y-axis represents the degree of differentiation of social relationships. The type and 

frequency of signals required to maintain the corresponding range of social associations emerges as an 

interaction of the two axes within the social landscape space. The position of species on the landscape 

is meant to be relative and not absolute. To illustrate the variation that is captured by our framework, 

several primate species have been placed within the landscape. The utility of the landscape is further 

demonstrated by the placement of several carnivore species. Polar bears are largely solitary and fall 

within quadrant I. Dwarf mongooses, wolves and spotted hyenas fall above the X-axis as they are 

group-living species with highly individualized relationships, but differ in the extent of cohesiveness 

(Holekamp, Boydson, and Smale 2000). Intraspecific variation may also be illustrated within the 

landscape. For example, female and male African elephants are positioned along the X-axis to reflect 

the sex difference in cohesiveness (see electronic supplement B).
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