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Summary 

Two barn swallows (Hirundo rustica) flying in the Lund wind tunnel were filmed using 

synchronised high-speed cameras to obtain posterior, ventral and lateral views of the birds in 

horizontal flapping flight. We investigated wingbeat kinematics, body tilt angle, tail spread 

and angle of attack at speeds of 4 to 14 ms-1. Wingbeat frequency showed a clear U-shaped 

relationship with air speed with minima at 8.9 ms-1 (bird #1) and 8.7 ms-1 (bird #2). A method 

previously used by other authors of estimating the body drag coefficient (CD,par) by obtaining 

agreement between the calculated minimum power (Vmin) and the observed minimum 

wingbeat frequency does not appear to be valid in this species, possibly due to upstroke 

pauses that occur at intermediate and high speeds, causing the apparent wingbeat frequency 

to be lower. These upstroke pauses represent flap-gliding, possibly a way of adjusting the 

force generated to the requirements at medium and high speeds, similar to the flap-bound 

mode of flight in other species. Body tilt angle, tail spread and angle of attack all increase 

with decreasing speed, thereby providing an additional lift surface and suggesting an 

important aerodynamic function for the tail at low speeds in forward flight. Results from this 

study indicate the high plasticity in the wing beat kinematics and use of the tail that birds 

have available to them in order to adjust the lift and power output required for flight. 
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Introduction 

During horizontal powered flight, a bird must flap its wings to generate lift and thrust to 

overcome gravity and drag. The instantaneous forces on the wings vary during the course of a 

wingbeat cycle due to time-varying wing planform, degree of flexing the elbow and wrist 

joints, angle of attack, wing twist, rotational velocity of wings, elastic properties of the 

primaries, forward velocity, etc. The kinematics of a wingbeat is dynamically a very 

complicated process, yet it contains the physical key to the mechanical power required to fly, 

and hence is of interest to researchers.  

Depending on species, i.e. size and morphology, birds will flap their wings continuously 

or in bursts with wingbeats interspersed by phases of glides or bounds, the latter flight mode 

resulting in a sinusoidal flight trajectory around the horizontal level. Species using bounding 

flight or intermittent flight (wings not completely folded during the non-flapping phase) 

include the budgerigar Melopsittacus undulatus, finches such as the zebra finch Taenopygia 

guttata, starling Sturnus vulgaris and woodpeckers (Rayner, 1995; Tobalske, 1995, 1996; 

Tobalske and Dial, 1994; Tobalske et al., 1999). In birds that typically use continuous 

flapping flight, some characteristics of the wingbeat kinematics change with speed. For 

example, in some species the relation between wingbeat frequency and speed is U-shaped 

(Pennycuick et al., 1996), in a similar way to the mechanical power output of bird flight 

(Pennycuick, 1975, 1989a; Rayner 1979, 1999). In other species, such as the starling, 

wingbeat frequency appears to have a more or less linear relationship with air speed 

(Tobalske, 1995), or there is no systematic change with speed (black-billed magpies, Pica 

pica and pigeons, Columba livia: Tobalske and Dial, 1996). Other features of wingbeat 

kinematics related to force generation may also change in relation to forward air speed.  

Birds’ tails also play an important aerodynamic role in mechanical flight power and 

flight performance. Conventional models of bird flight ignore the tail (e.g 
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Pennycuick,1989a), although it has been calculated that the tail of many birds could generate 

as much as a third of the total lift required to support a bird’s weight (Thomas, 1995). 

In this paper we present data on wing and tail kinematics over a wide range of speeds in 

two swallows Hirundo rustica flying in a wind tunnel. We observed interesting features 

associated with flapping flight and we discuss these findings in relation to the theory of flight 

mechanics.  

 

Materials and methods  

Windtunnel 

The experiment was conducted in a low-turbulence, closed-circuit design wind tunnel at 

Lund University, Sweden (for design details see Pennycuick et al., 1997). The test section is 

octagonal in cross section and is 1.22 m wide by 1.08 m high. The first 1.20 m length of the 

test section is enclosed by Plexiglas walls, and the last 0.5 m is open, giving unrestricted 

access to the bird. A pitot-static survey showed that the air speed was within ±1.3% of the 

mean across 97.5% of the test section, only deviating from this value at 3 corner points, while 

hot-wire anemometer measurements showed that the turbulence in the closed part of the test 

section was as low as 0.04 % of the wind speed (Pennycuick et al., 1997). A fine nylon net of 

thread diameter 0.15 mm, with a mesh size of 29mm×29mm, was placed across the exit from 

the contraction about 50 cm upstream from the position of the bird in the test section. This 

net will introduce a small additional turbulence into the flow (Pennycuick et al., 2000). 

 

Equivalent air speed 

The Lund windtunnel uses dynamic pressure (q) to set the equivalent air speed (Ve) 

which can be defined as 

Ve = √(2q/ρ0), 
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where ρ0 is the value assumed for the air density (1.23 kg m-3) at sea level under 

International Standard Atmospheric conditions. The disparity between true and equivalent air 

speed varies depending on changes in air temperature and barometric pressure. Equivalent air 

speed is used throughout this paper, as it is this that determines the magnitudes of 

aerodynamic forces acting upon the bird. 

 

Birds and training 

Four adult male barn swallows were caught near Lund, Sweden, on May 21 1999. All 

were willing to fly in the windtunnel from the beginning but two birds flew more steadily and 

for longer periods than the others and were therefore chosen for the experiment (for 

morphological details see Table 1). Over the first week each of the birds was trained to fly in 

the windtunnel for approximately 1 hour per day. After this the two birds used in this 

experiment were sufficiently steady in flight (maintaining their position in the horizontal and 

vertical planes) for data collection. All birds were released at the original capture site after 

the experiment was completed on June 16, 1999.  

 

Kinematic analysis 

Swallows were filmed while flying in the windtunnel using two high speed RedLake 

video cameras (Motionscope PCI 500, USA) at 125 frames s-1 and with the shutter open for 

1/1875 seconds. The cameras were synchronised to record simultaneous images of the bird 

from different angles. The camera output was directly transferred via frame grabbers to a PC 

(Pentium II 233 MHz) in the form of two animation (.AVI) files, one from each camera. Then 

individual frames were extracted from these files as sequences of compressed (.JPG) 

monochrome picture files, measuring 480 pixels ×420 pixels, where pixels were square 
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(aspect ratio 1). Flight sequences, averaging 1.3 s in duration, of posterior (image plane x, z) 

and ventral (image plane y, z) views of the swallows were obtained by positioning one 

camera behind the test section far back in the first diffuser without affecting the flow in the 

test section (see Pennycuick et al. 1997), and the other underneath the test section. The co-

ordinate axes are defined as: x = direction of flow, y = vertical direction, and z = 

perpendicular to x and y. The distance of the ventral view camera to the bird was about 70 

cm, while the posterior view camera was placed 3 m behind the bird. Swallows were filmed 

in steady flight at 1ms-1 intervals between 4 and 14 ms-1. Air speeds were set randomly and 

five flight sequences obtained for each air speed. One bird (#2) would not fly at 14 ms-1 so 

the top air speed for this bird is 13 ms-1. After five flight sequences at each air speed had been 

obtained for posterior and ventral views, one of the cameras was moved to the side of the test 

section and lateral views of swallows were filmed to obtain body and tail tilt angles. Again, 

five replicate flight sequences containing one full wingbeat were obtained for each air speed. 

Film analysis was carried out using Redlake Imaging Motionscope 2.16, allowing pixels to be 

marked and reading of current pixel co-ordinates, which allowed the calculation of angles 

between lines. Wing areas were measured in Mapinfo Professional 4.5 by using the reference 

length on the bird (REF, see Table 1). The following data were extracted from the posterior, 

ventral and lateral views of the swallows in flight: 

1) Wingbeat frequency was calculated by dividing the number of wingbeats by the 

number of frames and converting the value to wingbeats s-1 (Hz). To calculate the wingbeat 

cycle period the inverse of wingbeat frequency was taken. 

2) Wingbeat amplitude was calculated as the angle described by the pivoting of the right 

shoulder joint-wrist line during the time between the end of an upstroke and the end of the 

next downstroke (see Pennycuick et al. 2000). The shoulder joint was a well defined point 

easily distinguished on the posterior view images. Wingbeat amplitude using the shoulder 
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joint-wingtip line was also calculated for direct comparison with other studies. The beginning 

or end of a stroke was defined as the point where the wing amplitude angle reached 

maximum values above or below the horizontal in the xz plane. Ensuring that the bird was in 

horizontal flight, a maximum of ten wingbeat amplitudes from the right wing was calculated 

for each flight sequence (range 1-10) and the average taken. From these data, the duration of 

the downstroke and it’s angular velocity, and the up and downstroke fractions of the 

wingbeat cycle period were also calculated. Downstroke angular velocity was calculated by 

converting the duration of the entire downstroke in frames, to seconds and calculating 

velocity as radians per second. Due to the 8 ms per frame as the minimum time resolution for 

any instantaneous kinematic event, the maximum error of stroke duration was 16 ms, which 

is about 20 % of the maximum downstroke duration. Note that on average the error will be 8 

ms for determining stroke duration, which is half that of the maximum. 

3) Wingspan: For each speed the lengths of the mid-downstroke and mid-upstroke 

wingspan (wingtip to wingtip) were measured and the span ratio expressed as the upstroke 

span divided by the downstroke span. Lengths were obtained using Mapinfo and a reference 

length of a known distance on the bird was used to calibrate the values (see Table 1). Three 

downstroke and upstroke spans were calculated and averaged for each flight sequence. 

4) Upstroke pauses: It was observed that in steady level flight swallows would 

occasionally pause for a fraction of a second in the middle of the upstroke. The duration of 

these pauses were measured and averaged per wingbeat with pauses across the entire flight 

sequence. Not all wingbeats exhibited such pauses and so we also noted the proportion of 

wingbeats with upstroke pauses. Due to the frame frequency (125 Hz) of the cameras, the 

minimum pause length that could be detected was if the wing remained in the same position 

on two consecutive frames, representing a minimum time of 8 ms. Our measurements hence 

underestimate the duration of the pauses by a maximum 16 ms and on average 8 ms. 
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5) Body tilt angle was calculated from lateral flight sequences by drawing a line between 

the sharp angle of the inner dorsal bill and the feathering and the tip of the central tail feather, 

and measuring the angle of the line relative to the direction of airflow, given by the metal 

frame of the tunnel test section. Body tilt angles at the end of the downstroke, mid-upstroke, 

and the end of the upstroke were calculated and averaged for each flight sequence. 

6) Tail spread angle and angle of attack were calculated from ventral and lateral flight 

sequences respectively. Tail spread angle was calculated by drawing two lines out from the 

centre of the tail (where it meets the body) to the tips of the tail streamers. Care was taken to 

use only those images where the bird was in steady forward flight (not moving side to side) 

and the streamers were straight-sided. Three tail spread angles at mid-downstroke were 

measured and averaged for each flight sequence. Tail angle of attack was measured in a 

similar way to body tilt, measuring the angle of the line between the proximal and distal ends 

of the central tail feathers to the direction of airflow. One measurement at mid-downstroke 

was made for each flight sequence. 

 

Statistics 

Analyses were carried out using General Linear Models in MINITAB release 12.1 (Ryan 

et al. 1985). Mean values were calculated for the flight variables at each airspeed. A model 

was constructed for each of the flight variables (dependent variable) with airspeed (covariate) 

included initially as a linear, quadratic, and upto quartic term, then sequentially removing the 

highest level non-signficant terms. Residuals from the analyses were tested for normality 

(Anderson-Darling) and homoscedascity, and descriptive data are presented as means ± s.e. 

The bootstrapping procedure was carried out using S-PLUS 4.5 (MathSoft Inc. 2000). 

Results 
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The lowest air speed at which the swallows were consistently able to maintain forward 

flapping flight was 4 ms-1, although one swallow did fly briefly at 3.4 ms-1. At air speeds 

lower than this the birds would adopt turning flight before settling onto the base or sloping 

sides of the test section. The highest speeds we were able to obtain film sequences for was at 

14 ms-1 (bird #1) or 13 ms-1 (bird #2). At air speeds higher than this the birds would fly for 

very short periods of time, but typically would hold on to the net at the back of the test 

section and appeared unable to maintain sufficient flight speed.  

Data are presented graphically for the two swallows separately, with swallow #1 

indicated by (i) after the figure letter, and swallow #2 by (ii). Statistics are given in the figure 

legends, and equations for the fitted lines are provided in Table 2. 

 

Wingbeat kinematics 

Wingbeat frequency ranged from 6.95 to 8.99 Hz in bird #1, and 7.07 to 8.42 Hz in bird 

#2 and, for both birds, showed a curvilinear relationship with air speed (Fig. 1). The 

quadratic function of the relationship was derived from the regression coefficients, and 

differentiated to find the minima (wingbeat frequency versus air speed). Bootstrapping was 

used to generate a population of minima from the original data set allowing 95% confidence 

intervals to be estimated. Minimum wingbeat frequency speed for bird #1 was 8.89 ms-1 (95% 

confidence intervals: 7.88 - 9.90), and for bird #2 it was 8.66 ms-1 (8.00 - 10.00). The 

corresponding wingbeat frequencies at these speeds were 7.04 Hz (6.62 - 7.50) for bird #1, 

and 7.11 Hz (6.67 - 7.51) for bird #2. 

The wingbeat cycle period, i.e. the duration of a downstroke and upstroke, was divided 

into upstroke and downstroke fractions. The downstroke fraction decreased from near 0.50 at 

4 ms-1 to 0.40 at 14 ms-1 in bird #1 (Fig. 2). Bird #2 showed higher values with a similar 
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decrease with air speed from 0.54 at 4 ms-1 to 0.45 at 12 ms-1, but with a somewhat higher 

value at 13 ms-1.  

Wingbeat amplitude increased with air speed (Fig. 3A) from approximately 70o at low 

speeds to over 120o at high speeds. Wingbeat amplitude on the basis of wingtip movements 

yielded consistently about 10° higher values than shoulder joint-wrist amplitude (Fig. 3A), 

indicating that the wing bends at the wrist at the bottom of the downstroke. The duration of 

the downstroke increased between 4 ms-1 and 7 ms-1 and then decreased with increasing air 

speed (Fig. 3B i). This pattern was more apparent in bird #1 than bird #2, which showed a 

peak in downstroke duration at 5 ms-1 (Fig. 3B ii). The angular velocity of the downstroke 

remained fairly constant at low speeds until an air speed of approximately 7 ms-1 was reached 

after which angular velocity increased with air speed (Fig. 3C). 

Wingspan was maximal at mid-downstroke and minimal during mid-upstroke. Mid-

downstroke wingspan decreases with increasing air speed from approximately 32cm at 4ms-1 

to between 26cm (bird #1) and 29cm (bird #2) at the highest air speeds (Fig. 4A). Mid-

upstroke wingspan and span ratio increased from 4 ms-1 to maximum values at 5 ms-1. Both 

measures then showed a gradual and near linear decline with further increasing air speed until 

approximately 10-11 ms-1, after which wingspan and span ratio showed little change (Fig. 

4B,C). 

A pause during the upstroke of the wingbeat cycle was only observed at air speeds 

exceeding 8 ms-1 for bird #1, and 5 ms-1 for bird #2. At these speeds, upstroke pauses (8 to 56 

ms duration) did not always occur during every wingbeat cycle but would often skip a few 

wingbeats and then resume. Runs of wingbeats with upstroke pauses typically varied between 

1 and 3, with maximum 6 consecutive wingbeats containing pauses. Both birds showed an 

initial increase in the duration of the upstroke pause up to an average at about 20 ms at 10ms-

1 (Fig. 5). The proportion of wingbeats with an upstroke pause was maximum at 61% at 12 
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ms-1 for bird#1, and 69% at 11 ms-1 for bird#2, with lower proportions below and above these 

speeds. The position of the wings during the pause was identical to that during mid-upstroke 

of wingbeats without a pause. Hence, during a pause the wings were held in a position so that 

some lift (and drag) was generated. The wing tip showed an elliptical trajectory at speeds of 

4, 8 and 12 ms-1 when viewed laterally, with the wingtip more anterior during downstroke 

than during upstroke (Fig. 6A). The path of the wingtip moved back along the horizontal axis 

of the bird with increasing speed, reflecting the fact that the wing was increasingly flexed at 

higher air speeds. From a rear view the wingtips also traced an elliptical trajectory, with a 

more distally position of the wingtip during the downstroke than during the upstroke (Fig. 

6B). At 12 ms-1, the illustrated example indicates the position and duration of an upstroke 

pause as observed (Fig. 6). 

 

Body tilt, tail spread and tail angle of attack 

Body tilt angle ranged from 5 to 21o from horizontal, decreasing with increasing air 

speed (Fig. 7). Changes in air speed from 4 to 6 ms-1 caused marked reductions of 

approximately 40% in body tilt angle. Once air speeds of 11-12 ms-1 had been reached, body 

tilt angle remained fairly constant at between approximately 5 and 8o. The angle of tail spread 

at very low air speeds reached a maximum of 56.6o (bird #2) at 4 ms-1 although the average 

tail spread angle at this speed was considerably lower (Fig. 8A). For both birds tail spread 

angle decreased with increasing air speed until 7-8 ms-1, whereupon it became relatively 

constant at approximately 6.4o for bird #1 and 8.4o for bird #2. The angle of attack of the tail 

to the direction of airflow also decreased with increasing air speed, from 20-25o at 4 ms-1 to 

1-5o at 12-14 ms-1 (Fig. 8B). At the lowest air speeds, tail angle of attack exceeded the body 

tilt angle, whereas at air speeds higher than 6 ms-1, body tilt was greater than that of the tail.  

Estimating body drag coefficient 
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Pennycuick et al. (1996) assumed that speeds of minimum power and minimum 

wingbeat frequency are identical and used this assumption to indirectly estimate the body 

drag coefficient. They used the flight mechanical theory of Pennycuick (1989a), from which 

it is possible to calculate mechanical power required for flight and characteristic flight speeds 

such as the minimum power speed (Vmp). By changing the body drag coefficient, CD,par, the 

mechanical power as calculated by the program will change and hence also Vmp equal to the 

observed speed of minimum wingbeat frequency. Using this method we obtained a CD,par= 

0.03 for both birds using the estimated speeds of minimum wingbeat frequency (see above). 

 

Discussion  

The patterns of wingbeat kinematics observed were strikingly similar in the two barn 

swallows studied, suggesting that our results are general to barn swallows. The function of 

the tail streamer in the barn swallow is a subject of much debate (Norberg, 1994; Barbosa and 

Møller, 1999; Evans, 1998, 1999; Hedenström and Møller, 1999; Buchanan and Evans, 

2000), and aerodynamic modelling has been employed to investigate the possible effect of 

tail streamers on flight (Evans and Thomas, 1992; Thomas, 1993). However, wing kinematics 

and aerodynamic performance of the swallow as a whole, has to date, been largely ignored. 

In horizontal flight, our study subjects flew readily from 4 ms-1 to 13-14 ms-1, with steady 

flight for brief periods (< 20 seconds) at a maximum 15 ms-1. Above about 7 ms-1, the tail 

was furled and the drag from the tail streamers would have been negligible. The area of two 

tail streamers beyond the trailing edge of the tail is approximately 150 mm2 in a barn 

swallow, which is only about 0.9 % of the total projected area of the bird. At lower speeds 

and during turning, the tail was spread and tail angle of attack exceeded that of body tilt, 

probably increasing the lift to drag ratio of the whole bird (Thomas, 1993). Our results 
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indicate that the tail as a whole probably has an aerodynamic function at low speed and may 

provide an additional lifting surface.  

 

Wingbeat frequency and body drag 

The range of wingbeat frequencies observed during this study (7-9 Hz) corresponds 

closely to the 8.2 Hz calculated by Pennycuick using a formula based on a barn swallows’ 

size and morphology (Pennycuick, 1996). Danielsen (1988) measured 9.0 and 9.3 Hz in two 

barn swallows on migration, i.e showing similar wingbeat frequency as our swallows when 

flying in the higher speed range. Compared with other species of similar size, the swallow 

has quite low wingbeat frequency and relatively long wings that increase the wing moment of 

inertia. Wingbeat frequency showed a clear U-shaped relationship with air speed with 

minima at 8.9 ms-1 and 8.7 ms-1 for bird #1 and bird #2, respectively. A measure of the drag 

caused by the body (body drag coefficient, CD,par) is required to calculate the mechanical 

power of flight in relation to air speed in birds (Pennycuick, 1989a). The speed of minimum 

wingbeat frequency is believed to be identical with the speed associated with minimum 

power (Vmp) (e.g. Pennycuick et al. 1996). Agreement between calculated Vmp (using CD,par) 

and observed wingbeat frequency can be obtained by adjusting the value of CD,par, allowing a 

more “realistic” estimate of CD,par to be calculated. Pennycuick et al. (1996) found that, to get 

a match between calculated Vmp and minimum wingbeat frequency in a thrush nightingale 

and a teal, the CD,par had to be set at 0.08 rather than the “old default” value of 0.4 (cf. 

Pennycuick, 1989a). Using the same technique for the two swallows we found that CD,par 

must be reduced even more to 0.03. However, if we consider the plots of wingbeat frequency 

in relation to speed (Fig. 1), one will note two minima, at 7-8 ms-1 and 10 ms-1, with slightly 

elevated values in-between. This pattern is present in both birds and can be attributed to the 

upstroke pauses observed at speeds above about 7-9 ms-1, which causes the apparent 
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wingbeat frequency to decline and shift the speed of minimum wingbeat frequency upwards. 

Hence, the continuous flapping flight speed of minimum wingbeat frequency should be 

lower, and closer to the speed of minimum power than the apparent values estimated from 

Fig. 1. Hence, if instead using the lower ends of the 95% confidence limits around the 

estimated minima for speeds of minimum wingbeat frequency (7.88 and 8.00 ms-1 for bird#1 

and bird#2, respectively), we get CD,par= 0.05 and 0.04 for the two birds, respectively. 

Although swallows are streamlined birds these values seem extremely low. 

Pennycuick et al. (2000) developed a new technique for directly estimating the 

mechanical power required to fly in birds. This method is based on the observation that the 

birds’ body exhibits vertical movements, such that it raises its position in relation to the 

horizontal during the downstroke, when most of the lift force is generated, and lowers its 

position during the upstroke. By measuring the amplitude of the humeral excursion and 

angular velocity of the wings, Pennycuick et al. (2000) were able to calculate the mechanical 

power output of a swallow (swallow #1 of this study). The mechanical power was only 

calculated for speeds of 6-11 ms-1; CD,par was set to 0.26 and the profile power ratio X1 to 

2.25. These values achieved the best fit between calculations of the mechanical power using 

the body drag coefficient and profile power ratio (Pennycuick 1989a) and the average 

mechanical power derived from wind tunnel observations (see Pennycuick et al., 2000 for 

details). The Vmp was estimated at 5.3 ms-1 for this swallow and these parameter settings, 

which is clearly outside the 95% confidence interval for the speed of minimum wingbeat 

frequency (7.9-9.9 ms-1, see Results). Estimating CD,par on the basis of wingbeat frequency, 

therefore, may not be valid in this species. 
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Flight mode and kinematics of wings and tail 

Many smaller bird species exhibit bounding or intermittent flight in which bursts of 

wingbeats are followed by periods without wingbeats (e.g. Rayner, 1985; Tobalske et al., 

1999). There are two main explanations for the function of bounding flight: the first 

postulates that the total drag taken over an entire bounding cycle is lower than had the bird 

flapped its wings continuously because the profile drag is reduced by folding the wings for a 

fraction of the cycle (Lighthill, 1977). The second explanation, the “fixed-gear hypothesis”, 

assumes that the fibres of the pectoralis muscle restrict small birds to a narrow range of 

frequencies where the efficiency of the muscle is maximum (Rayner, 1985). This second 

hypothesis implies that bounding is a means of adjusting the power output to the level 

required for a certain flight speed. In zebra finches the wingbeat frequency increased from 25 

Hz at 0 ms-1 (hovering) to 27 Hz at 14 ms-1 (Tobalske et al. 1999), a 12% increase compared 

with the 19% and 29% increase from minimum to maximum wingbeat frequency in the two 

swallows. It is possible that differences in the relative ranges of wingbeat frequencies used 

over the same range of speeds in zebra finch and barn swallow represent the variation 

between a typical bounding species using continuous flapping and flap-gliding. The upstroke 

pauses seen in the swallows may be a way to adjust the force generation to the required level 

at medium and high speeds, and may perhaps be regarded intermittent flap-gliding (cf. 

Danielsen, 1988). 

Amplitude increased with speed, which combined with downstroke duration yield a 

nearly constant downstroke angular velocity between 4-7 ms-1, which then increases with 

further increase in air speed. Changes of these parameters are closely linked to the force 

generation of the wings and the power output (cf. Pennycuick et al., 2000). The wing-tip 

showed elliptical paths when viewed laterally, with the centre of the ellipse moving back 

along the horizontal axis of the bird with increasing airspeed. This is similar to that of 
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pigeons at speeds of 10 ms-1 and above, but not magpies which show no apparent differences 

in relation to speed (Tobalske and Dial, 1996). It is perhaps due to this that the pigeon and the 

swallow are more similar with respect to wing morphology than the swallow and magpie. 

The reduction in the degree of body tilt and tail spread, with increasing speed is similar 

to that reported for magpies and pigeons by Tobalske and Dial (1996). In addition, our data 

show that the tail angle of attack exceeds body tilt at low air speeds, and decreases with 

increasing speed. These observations suggest that there is an aerodynamic function of the tail 

at low speeds. Thomas (1996) used a simple aerodynamic model to argue that the power 

required for flight at low speeds can be reduced by increasing both the degree of tail spread 

and the angle of attack. While there are broad similarities in the direction of change predicted 

by the model and that observed in this study, there are both qualitative and quantitative 

differences which indicate that modifications to the model are required (Evans, Rosén, Park 

and Hedenström, in prep.). 

 

Variable wing span 

Pennycuick (1989b) developed a method for calculating the lift:drag ratio based on the 

“span ratio”, i.e. the ratio of the wingspan during the upstroke to that during the downstroke, 

assuming that the circulation of the wingtip vortices and the lift distribution remains constant 

throughout the cycle. A concertina wake concomitant with these properties was observed in a 

kestrel Falco tinnunculus (Spedding, 1987). A requirement for applying the simplified span 

ratio method to calculate effective lift:drag ratios is that the duration of the up- and 

downstrokes are the same (Pennycuick, 1989b), which was obviously violated in our 

swallows (see Fig. 2). The span ratio declined with increasing speed from 0.5 at 5 ms-1 to 

about 0.2 or less at 10-11 ms-1, but it was 0.4 at 4 ms-1. The lower value at 4 ms-1 indicates 

that the upstroke is feathered at this speed and provides no lift, although the upstroke does 
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provide small lift forces at higher speeds (≥6 ms-1) as indicated by the observations of vertical 

accelerations of the body (Pennycuick et al., 2000). The swallow body accelerated 

downwards during the wing upstroke, although not as much as during a free fall, which is 

evidence for an upward lift force. An interesting observation regarding the span ratio was that 

the wingspan at mid-downstroke declined from the maximum possible at 4 ms-1 with a 3-5 

cm reduction in wingspan at higher speeds. We did not observe any drastic changes in either 

the upstroke nor the downstroke kinematics, suggesting that the wingbeat kinematics change 

in a continuous manner in relation to air speed. Such changes of kinematics differ from those 

predicted by the “gait theory” of flapping forward flight, but as yet we have no data on the 

actual vortex wakes of these birds. The span during the upstroke declined even more than 

during the downstroke resulting in the overall decline in span ratio. Even if the span 

reduction during downstrokes was quite small, it may be analogous to the wingspan 

adjustments in gliding flight (Tucker, 1987). In gliding flight, reducing the span with 

increasing speed increases the overall lift:drag ratio of the bird, by trading profile drag 

against required lift production. We propose that by reducing the span at high speeds the 

swallow will reduce the profile drag and yet produce enough lift to overcome induced and 

parasite drag. This analogy does however not apply to Pennycuick’s (Pennycuick, 1989a) 

method of calculating the profile power as a multiple of the “absolute minimum power” – a 

quantity that is proportional to b-3/2, where b is wingspan. Then profile power is always 

minimum with maximum wingspan and there is no trade-off with induced power. In pigeons 

and magpies, also studied in a windtunnel, the span during mid downstroke was constant 

across a wide speed range (Tobalske and Dial, 1996). Other bird species with high aspect 

ratio wings, such as arctic tern Sterna paradisaea and skuas Stercorarius spp., likewise flex 

their wings and reduce their wingspan during downstroke when observed in fast cruising or 

chasing flights (pers. obs.). 



 18

Depending on size and structure there are many ways that birds can adjust the lift and 

power output required in relation to speed, including changing wingbeat frequency, wingbeat 

amplitude, span and span ratio, body tilt angle, tail angle of attack, etc. Considering the 

plasticity in this system it may be inferred that some caution is warranted when equating 

speeds of minimum wingbeat frequency and minimum power (cf. Pennycuick et al., 2000). 

There is a continuum with respect to flight kinematics between continuous flapping flight to 

bounding flight, including the intermittent flap-gliding represented by the upstroke pauses 

seen in the swallows, and where a particular species falls on this continuum is determined by 

its size, wing and muscle morphology. These characters are in turn the products of 

evolutionary adaptations moulded by a species’ flight requirements. 
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Table 1 

Body and wing measurements for the two male barn swallows studied in the wind tunnel. 

REF is a reference length on the bird from the well defined angle between the leading edge of 

the wing and the body to the tip of the central tail feather, used for measuring wing spans 

from images 

 

 Mass 

(kg) 

Wing span 

(m) 

Wing area 

(m2) 

Aspect ratio1 REF 

(mm) 

Swallow #1 0.0190 0.318 0.01365 7.4 94 

Swallow #2 0.0180 0.328 0.01447 7.4 94 

1Aspect ratio is defined as wing span squared divided by wing area 
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Table 2 

 

Flight variable  Bird Equation of the fitted line 
 

Wingbeat frequency 1 
2 

12.56 – 1.24V + 0.070V2 
11.85 – 1.09V + 0.063V2 

Dowstroke fraction 1 
2 

-0.24 + 0.14V – 0.0052V2 

-0.093 + 0.10V – 0.0029V2 
Wingbeat amplitude  
(wrist) 

1 
2 

48.00 + 5.03V 
40.90 + 51.18V 

Wingspan i) mid-downstroke 1 
2 

36.86 - 1.29V + 0.042V2 
32.56 - 0.29V 

                 ii) mid-upstroke 1 
2 

19.85 - 1.29V 
18.13 - 1.19V 

                iii) span ratio 1 
2 

0.63 - 0.039V 
0.58 - 0.037V 

Body tilt angle 1 
2 

32.08 - 3.51V + 0.11V2 
39.37 - 5.70V + 0.25V2 

Tail angle of spread 1 
2 

178.26 - 52.88V + 5.27V2 - 0.17V3 
213.90 - 85.63V + 13.35V2 - 0.92V3 + 0.024V4 

Tail angle of attack 1 
2 

75.97 - 18.58V + 1.63V2 - 0.049V3 
51.47 - 10.56V + 0.79V2 - 0.019V3 
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Figure legends 

Fig. 1 Wingbeat frequency had a significant curvilinear relationship (quadratic function) 

with air speed for both birds (GLM, bird #1: F1,8 = 126.88, P < 0.0001; bird #2: F1,8 = 84.83, 

P < 0.0001). The equation for the fitted curve is given in Table 2. The proportion of variance 

(R2) explained by the statistical model was extremely high for both birds (96.9% and 96.1% 

respectively). Values are means ± s.e. 

 

Fig. 2 The downstroke fraction of the wingbeat cycle period. Horizontal lines represent a 

fraction of 0.5 where the downstroke and upstroke fractions are equal. For both birds, the 

relationship between downstroke fraction and air speed was best represented with a quadratic 

function (GLM, bird #1: F1,8 = 176.08, P < 0.0001; bird #2: F1,7 = 21.45, P < 0.01). Values 

are means ± s.e. 

 

Fig. 3 Wingbeat amplitude (A: wrist amplitude = •, wingtip amplitude =      ) increased with 

air speed (wrist amplitude, GLM, bird #1: F1,9 = 276.05, P < 0.0001, R2 = 96.5%; bird #2: 

F1,8=241.85, P < 0.0001, R2 = 96.4%). The duration of the downstroke (B) decreased, and the 

downstroke angular velocity (C) increased with air speeds exceeding 7 ms-1. Values are 

means ± s.e.  

 

Fig. 4 Mid-downstroke (maximum) wingspan (A) decreased with increasing air speed, 

although for bird #1 this relationship was best represented with a quadratic function and for 

bird #2, a linear function (GLM, bird #1: F1,8 = 12.54, P < 0.01, R2 = 85.9%; bird #2: F1,8 = 

63.42, P < 0.0001, R2 = 88.8%). Mid-upstroke (minimum) wingspan (GLM, bird #1: F1,9 = 

73.37, P < 0.0001, R2 = 89.1%; bird #2: F1,8 = 91.09, P < 0.0001, R2 =91.9%; Fig. 4B) and 

wingspan ratio (GLM, bird #1: F1,9 = 67.61, P < 0.0001, R2 = 88.3%; bird #2: F1,8 =86.72, P 
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< 0.0001, R2 = 91.6%; Fig. 4C) also decreased with increasing air speed. Values are means ± 

s.e. 

 

Fig. 5 A brief pause was observed during the upstroke at air speeds exceeding 6 ms-1 (A) 

and 8 ms-1 (B). The average length of these pauses at each air speed has been calculated using 

only those wingbeats containing the pauses (i.e. does not include pauses of zero length). The 

duration of these pauses reached maximal levels between 10-12 ms-1. Values are means ± s.e. 

 

Fig. 6 Wingtip path of a characteristic wingebat in lateral view (A) and rear view (B) at 4 

ms-1, 8 ms-1 and 12 ms-1. Arrows indicate the direction of movement and filled circles 

indicate the position of the wingtip on each frame with 8 ms between nearest circles. The 

silhouettes illustrate the body posture at the upstroke/downstroke transition. 

 

Fig. 7 Body tilt averaged across the upstroke, downstroke and mid-stroke portions of the 

wingbeat cycle. For both birds, body tilt angle had a significant quadratic relationship with 

air speed, and decreased with increasing air speed (GLM, bird #1: F1,8 = 5.92, P < 0.05; bird 

#2: F1,7 = 41.78, P < 0.0001). Values are means ± s.e. 

 

Fig. 8 Tail spread (A) decreased with increasing air speed, although for bird #1 this 

relationship was best represented by a cubic function, and for bird #2 a quartic function 

(GLM, bird #1: F1,7 = 17.61, P < 0.01; bird #2: F1,5 = 13.05, P < 0.05). Tail angle of attack 

(B) also decreased with increasing air speed, and for both birds this relationship was best 

represented by a cubic function (GLM, bird #1: F1,7 = 8.36, P < 0.05; bird #2: F1,6 = 6.42, P < 

0.05). The angle of tail spread in some of the flight sequences for bird #1 (Fig. A i) were 
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obscured: the number of flight sequences for which tail spread angle data were obtained, 

therefore, varies between one and five. All other n = 5. Values are means ± s.e.  
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Fig. 6 
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