
UNCORRECTED P
ROOF

PR : 3589 ARTICLE IN PRESS
Pattern Recognition () --

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsev ier . com/ locate /pr

1

Feature subset selection in large dimensionalitydomains

Iffat A. Gheyas∗, Leslie S. Smith3

Department of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, Scotland, UK

A R T I C L E I N F O A B S T R A C T

Article history:
Received 30 January 2009
Received in revised form 31 May 2009
Accepted 17 June 2009

Keywords:
Curse of dimensionality
Feature subset selection
High dimensionality
Dimensionality reduction

Searching for an optimal feature subset from a high dimensional feature space is known to be an NP-
complete problem. We present a hybrid algorithm, SAGA, for this task. SAGA combines the ability to
avoid being trapped in a local minimum of simulated annealing with the very high rate of convergence of
the crossover operator of genetic algorithms, the strong local search ability of greedy algorithms and the
high computational efficiency of generalized regression neural networks. We compare the performance
over time of SAGA and well-known algorithms on synthetic and real datasets. The results show that SAGA
outperforms existing algorithms.

© 2009 Elsevier Ltd. All rights reserved.

5

1. Introduction7

The purpose of data mining is knowledge discovery: to gener-Q1
ate new knowledge about events and phenomena from existing data9
sets for classification or forecasting future events. Data sets consist
of a number of vectors, each corresponding to some occurrence of11
an event: each vector consists of a large number of features (or ex-
planatory variables). In general, which features matter is not known.13
As a result, all sorts of information about events of interest are often
gathered. Improvements in data acquisition capacity, falling costs of15
data storage, and development of database and data warehousing
technology, have led to more and more high dimensional datasets17
(with tens or hundreds of thousands of features) emerging [1]. Many
of these features are irrelevant or redundant. Unnecessary features19
increase the size of the search space and make generalization more
difficult. This curse of dimensionality (each feature is a separate di-21
mension) is a major obstacle in machine learning and data mining.
Hence feature selection is an active area of research in pattern recog-23
nition [2], machine learning [3], data mining [4] and statistics [5]. In
particular, the prediction performance of any learning algorithm de-25
pends on how efficiently the algorithm learns patterns in the data.
Irrelevant and redundant features increase the search space size,27
making patterns more difficult to detect and making it more difficult

29

Abbreviations: ACO, ant colony optimization; GA, genetic algorithm; GRNN,
generalized regression neural networks; PSO, particle swarm optimization; SA,
simulated annealing; SBS, sequential backward selection; SFBS, sequential float-
ing backward selection; SFFS, sequential floating forward selection; SFS, sequen-
tial forward selection

∗ Corresponding author. Tel.: +44 0 1786 467430; fax: +44 0 1786 464551.
E-mail addresses: iag@cs.stir.ac.uk, iaglss@cs.stir.ac.uk (I.A. Gheyas),

lss@cs.stir.ac.uk (L.S. Smith).

0031-3203/$- see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2009.06.009

to capture rules necessary for forecasting or classification, whether
by machine or by hand. In addition, the more the features, the higher 31
the risk of overfitting. The probability that some features will coin-
cidentally fit the data increases, unless the sample size grows expo- 33
nentially with the number of features. Furthermore, in most prac-
tical applications, we want to know the collection of core variables 35
that are most critical in explaining an event.

Feature subset selection entails choosing the feature that max- 37
imizes the prediction or classification accuracy. The feature subset
selection approach is based on the principle of parsimony (or Occam's 39
razor) [6]. This says that, we prefer the model with the smallest
possible number of parameters that adequately represents the data. 41
Einstein is quoted in Parzen [7, p. 68] as remarking that “everything
should be made as simple as possible, but not simpler”. However, 43
this principle is difficult to apply in feature selection problems. Se-
lecting the best feature subset is proven to be an NP-complete prob- 45
lem [8]. The task is challenging because, first, features which do not
appear relevant singly may become highly relevant when taken with 47
others. There can be two-way, three-way or complex multi-way in-
teractions among features. As a result a feature that is weakly as- 49
sociated with prediction (or classification) can improve prediction
accuracy if it is complementary to other features. Second, relevant 51
features may be redundant so that the omission of some of them
will remove unnecessary complexity (and noise) from the forecasting 53
problem. There can be many levels of multi-way redundancy in the
feature space. Third, high feature correlation does not imply absence 55
of feature complementarity. Fourth, high levels of multicollinearity
increase the probability that a good predictor of the output signal 57
will be found non-significant and rejected from the model.

An exhaustive search of all possible subsets of features will guar- 59
antee that the best subset of features is found. Unfortunately this is
computationally impractical for even a medium sized database (for 61

Please cite this article as: I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains, Pattern Recognition (2009), doi:
10.1016/j.patcog.2009.06.009

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
mailto:iag@cs.stir.ac.uk
mailto:iaglss@cs.stir.ac.uk
mailto:lss@cs.stir.ac.uk
http://dx.doi.org/10.1016/j.patcog.2009.06.009
Original Text:
Inserted Text
,

Original Text:
Inserted Text
 there are

Original Text:
Inserted Text
is

Original Text:
Inserted Text
1982

Original Text:
Inserted Text
|mbox{''} [7].

lss
Cross-Out

lss
Inserted Text
subset

UNCORRECTED P
ROOF

2 I.A. Gheyas, L.S. Smith / Pattern Recognition () --

PR : 3589 ARTICLE IN PRESS

n features, the number of possible feature subsets is 2n, too large to1
be evaluated even for modest n). A major thrust of current research
work is focused on the determination of an optimal feature subset.3
The choice is a trade-off between computational time and quality of
the generated feature subset solutions. In this paper, we present and5
test a novel hybrid algorithm for selection of optimal feature subsets.
The proposed algorithm consistently generates better feature subsets7
compared to existing search algorithms within a predefined time
limit and keeps improving the quality of selected subsets as the9
algorithm runs.

The rest of the paper is organized as follows: a brief review of11
previous work in Section 2, the new algorithm in Section 3, (with
the procedure for estimating fitness of a feature subset in Section13
3.1, an overview of generalized regression neural networks (GRNN)
in Section 3.2 and details of the constituent search algorithms in15
Section 3.3), and comparative performance measurement in Section
4, results and discussions in Section 5, followed by summary and17
conclusions in Section 6.

2. Review of existing techniques19

Two broad categories of optimal feature subset selection have
been proposed: filter and wrapper. In filter approaches, features21
are scored and ranked based on certain statistical criteria and the
features with highest ranking values are selected. Frequently used23
filter methods include t-test [9], chi-square test [10], Wilcoxon
Mann–Whitney test [11], mutual information [12], Pearson correla-25
tion coefficients [13] and principal component analysis [14]. Filter
methods are fast but lack robustness against interactions among27
features and feature redundancy. In addition, it is not clear how
to determine the cut-off point for rankings to select only truly29
important features and exclude noise.

In the wrapper approach, feature selection is “wrapped” in a31
learning algorithm. The learning algorithm is applied to subsets
of features and tested on a hold-out set, and prediction accuracy33
is used to determine the feature set quality. Generally, wrapper
methods are more effective than filter methods. Since exhaustive35
search is not computationally feasible, wrapper methods must em-
ploy a search algorithm to search for an optimal subset of fea-37
tures. Wrapper methods can broadly be classified into two cate-
gories based on search strategy: (i) greedy and (ii) randomized/sto-39
chastic.

Greedy wrapper methods use less computer time than other41
wrapper approaches. Sequential backward selection (SBS) (also
known as backward stepwise elimination) [15] and Sequential43
forward selection (SFS) (also known as forward stepwise selection)
[16] are the two most commonly used wrapper methods that use a45
greedy hill-climbing search strategy. SBS starts with the set of all
features and progressively eliminates the least promising ones. SBS47
stops if the performance of learning algorithms drops below a given
threshold due to removal of any remaining features. SBS relies heav-49
ily on the monotonicity assumption [17]. This states that prediction
accuracy never decreases as the number of features increases. This51
assumption is dubious because of the difficulties associated with
search space dimensionality and overfitting. In reality, the predictive53
ability of a learning algorithm may decrease as the feature subspace
dimensionality increases after a maximum point due to a decreasing55
number of samples for each feature combination. When faced with
high-dimensional data, SBS often finds difficulties in identifying the57
separate effect of each explanatory variable on the target variable.
Because of this, good predictors can be removed early on in the algo-59
rithm (in SBS, once a feature is removed, it is removed permanently).
By contrast, SFS starts with an empty set of features and iteratively61
selects one feature at a time—starting with the most promising
feature—until no improvement in classification accuracy can be63

achieved. In SFS, once a feature is added, it is never removed. SBS is
robust to interaction problems but sensitive to multicollinearity. On 65
the other hand, SFS is robust to multicollinearity problems but sen-
sitive to feature interaction. As a result, both SBS and SFS can easily 67
be trapped into local minima. The problem with SFS and SBS is their
single-track search. Hence, Pudil et al. [18] suggest floating search 69
methods (SFFS, SFBS) that performs greedy search with provision
for backtracking. However, recent empirical studies demonstrate 71
that sequential floating forward selection (SFFS) is not superior to
SFS [19] and sequential floating backward selection (SFBS) is not 73
feasible for feature sets of more than about 100 features [20]. The
problem with sequentially adding or removing features is that the 75
utility of an individual feature is often not apparent on its own, but
only in combinations including just the right other features. 77

Stochastic algorithms developed for solving large scale combina-
torial problems such as ant colony optimization (ACO), genetic algo- 79
rithm (GA), particle swarm optimization (PSO) and simulated anneal-
ing (SA) are at the forefront of research in feature subset selection 81
[17,21–23]. These algorithms efficiently capture feature redundancy
and interaction and do not require the restrictive monotonicity as- 83
sumption. However, these algorithms are computationally expensive
(though far less so than exhaustive search). 85

Recently, several authors proposed hybrid approaches taking ad-
vantages of both filter and wrapper methods. Examples of hybrid 87
algorithms include t-statistics and a GA [24], a correlation-based fea-
ture selection algorithm and a genetic algorithm [25], principal com- 89
ponent analysis and an ACO algorithm [26], chi-square approach and
a multi-objective optimization algorithm [27], mutual information 91
and a GA [28,29]. The idea behind the hybrid method is that filter
methods are first applied to select a feature pool and then the wrap- 93
per method is applied to find the optimal subset of features from the
selected feature pool. This makes feature selection faster since the 95
filter method rapidly reduces the effective number of features un-
der consideration. Advocates of hybrid methods argue that the risk 97
of eliminating good predictors by filter methods is minimized if the
filter cut-off point for a ranked list of features is set low. However, 99
hybrids of filter and wrapper methods may suffer in terms of ac-
curacy because a relevant feature in isolation may appear no more 101
discriminating than an irrelevant one in the presence of feature in-
teractions. 103

Wrapper methods use a learning algorithm to assess the accu-
racy of potential subsets in predicting the target. Currently, the most 105
popular learning algorithm used in wrapper schemes is the support
vector machines (SVM) [30]. However, the accuracy of an SVM is de- 107
pendent on the choice of kernel function and the parameters (e.g.
cost parameter, slack variables, margin of the hyper plane, etc.). Fail- 109
ure to find the optimal parameters for an SVM model affects its pre-
diction accuracy [31]. Another drawback of the SVM is its compu- 111
tational cost [32]. Wrapper methods are computationally more de-
manding than filter methods because they evaluate the candidate 113
feature subsets using a learning algorithm, and these are usually it-
erative methods. This can increase the computational cost. To accel- 115
erate the wrapper approach in feature subset search, it is vital to
employ a fast learning algorithm. Furthermore, empirical evidence 117
suggests that SVMs are very sensitive to noisy training data, which
can degrade their performance [33]. They are also prone to overfit- 119
ting and poor generalization [34].

Development of a highly accurate and fast search algorithm for 121
the selection of optimal feature subset is an open issue.

3. Proposed algorithm 123

A good search algorithm should provide: (1) good global search
capability that allows for the exploration of new regions of the solu- 125
tion space without getting stuck in local minima, (2) rapid conver-

Please cite this article as: I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains, Pattern Recognition (2009), doi:
10.1016/j.patcog.2009.06.009

http://dx.doi.org/10.1016/j.patcog.2009.06.009
Original Text:
Inserted Text
 in

Original Text:
Inserted Text
-Whitney

Original Text:
Inserted Text
Principal Component Analysis

Original Text:
Inserted Text
Backward Selection

Original Text:
Inserted Text
Backward Stepwise Elimination

Original Text:
Inserted Text
Forward Selection

Original Text:
Inserted Text
Forward Stepwise Selection

Original Text:
Inserted Text
 climbing

Original Text:
Inserted Text
 -- until

Original Text:
Inserted Text
1994

Original Text:
Inserted Text
 [18]

Original Text:
Inserted Text
 Sequential Floating Forward Selection

Original Text:
Inserted Text
 Sequential Floating Backward Selection

Original Text:
Inserted Text
Ant Colony Optimization

Original Text:
Inserted Text
Genetic Algorithm

Original Text:
Inserted Text
Particle Swarm Optimization

Original Text:
Inserted Text
Simulated Annealing

Original Text:
Inserted Text
 based

Original Text:
Inserted Text
Support Vector Machines

lss
Cross-Out

UNCORRECTED P
ROOF

PR : 3589 ARTICLE IN PRESS
I.A. Gheyas, L.S. Smith / Pattern Recognition () -- 3

gence to a near optimal solution, (3) good local search ability, and1
(4) high computational efficiency.

We present a hybrid algorithm (SAGA), named after two ma-3
jor underlying search algorithms (SA and GA), for selecting optimal
feature subsets efficiently. This algorithm is based on a simulated5
annealing, a genetic algorithm, a generalized regression neural net-
works and a greedy search algorithm. SAGA combines the ability7
to avoid being trapped in a local minimum of SA with a very high
rate of convergence of the crossover operator of GA, the strong lo-9
cal search ability of the greedy algorithm and high computational
efficiency of GRNN. Our hybrid approach solves the feature selec-11
tion problems without including filter steps. Hence, unlike existing
hybrid algorithms, SAGA does not compromise accuracy for speed.13

The SA algorithm here is a mutation-based search approach. Mu-
tation represents a long jump in the search space. The strength of15
SA is good global search ability. The major disadvantage of SA is its
slow convergence speed. On the other hand, GA implements both17
crossover and mutation operations. The strength of GA is its rapid
convergence, but the combination of crossover and a low fixed mu-19
tation rate often traps the search in a local minimum. In addition,
the local search capability of SA and GA is weak. By contrast, greedy21
algorithms have good local search ability, but lack global search abil-
ity.23

SAGA organizes a search in three stages.
Stage 1: SAGA employs a SA to guide the global search in a solution25

space. As long as the temperature is very high, SA accepts every
new solution, thus yielding a near random search through the search27
space. On the other hand, as the temperature becomes close to zero,
only improvements are accepted. The SA is run for approximately29
50% of the total time available.

Stage 2: SAGA employs a GA to perform optimization. The GA31
population was set at 100. The initial population consists of the
best solutions detected by SA. The main purpose of crossover in33
GA is to exchange information between pairs of good solutions to
form new (and hopefully better) solutions. The crossover operator35
thereby assists in rapid convergence to a good solution. The mutation
operator in GA introduces new genes into the population and retains37
genetic diversity. The GA runs for about 30% of total time spent by
SAGA to find the optimal feature subset solution.39

Stage 3: SAGA applies a hill-climbing feature selection algorithm.
The greedy algorithm performs a local search on the k-best solutions41
(elite) given by two global optimization algorithms (SA and GA) and
selects the best neighbours (in our context neighbours are defined in43
terms of the Euclidean distance between a pair of feature subsets).
The hill-climbing algorithm is run in the remaining execution time.45

Computational efficiency is essential for exploring a huge search
space. To enhance it, the following measures were taken. First, SAGA47
employs a robust and fast learning algorithm (GRNN) for assessing
candidate solutions. GRNN, based on fuzzy means clustering, is a49
`one-pass' algorithm. GRNN has just one parameter (smoothing fac-
tor) that needs to be chosen, but our empirical research reveals that51
the prediction accuracy of GRNN is not very sensitive to the param-
eter setting. Hence in GRNN we need not to develop and validate53
many predictive models. Furthermore, GRNN requires no training
time other than the time required to pre-process and store the entire55
training set. Another major reason why we choose GRNN is that it
suffers relatively more from the curse of dimensionality than other57
algorithms [35]. This is an advantagewhen trying to eliminate unnec-
essary variables because GRNN does not have the luxury of produc-59
ing good results when there are irrelevant and redundant features.
Other advantages of GRNN are its non-parametric nature and its ro-61
bustness against local minima, overfitting and outliers [36–38]. Sec-
ond, Cooper and Hinde (2003) report that evolutionary algorithms63
spend approximately a third of the time testing on already tested
candidate solutions [39]. SAGA stores information about the candi-65

date solutions evaluated so far in a database and never evaluates a
possible solution more than once. 67

As a result, SAGA has all the four qualities mentioned above.

3.1. Computing fitness of feature subsets 69

Our proposed algorithm (SAGA) employs GRNN classifiers to eval-
uate candidate feature subset solutions. Before the evaluation of fea- 71
ture subsets, each feature was normalized by scaling it between 0
and 1. We perform 10-fold cross validation to estimate the testing 73
accuracy of the GRNN classifier. The higher the accuracy, the fitter
the solution. If the accuracies of two solutions are the same, then 75
the solution using the smaller number of features wins.

3.2. Generalized regression neural networks learning algorithm 77

GRNN is an instance-based algorithm. In GRNN [40] each obser-
vation in the training set forms its own cluster. When a new input 79
pattern x is presented to the GRNN for the prediction of the output
value, each training pattern (prototype pattern) yi assigns a mem- 81
bership value hi to x based on the Euclidean distance d as in Eq. (2).
The formula for the Euclidean distance between x and yi is 83

d = d(x,yi) =
√√√√ n∑

j=1

(xj − yij)
2 (1)

where x = (x1, . . . , xn) is the presented pattern and yi = (yi1, . . . , yin) 85
is the i-th prototype pattern. n is the total number of features in
the study. xj is the value of the j-th feature of the presented pattern 87
(features can be multivalued or not). yij is the value of the j-th feature
of the i-th prototype pattern 89

hi =
1√
2��2

exp

(
− d2

2�2

)
(2)

where � is the smoothing function parameter (we specify a default 91
value: � = 0.5).

Finally, GRNN calculates the output value z of the pattern x as in 93
Eq. (3). The predicted output is the weighted average of the outputs
of all prototype patterns. GRNN can handle continuous output vari- 95
ables and categorical output variables with two categories: event of
interest (coded as `1') or not (coded as `0'): 97

z =
∑

i(hi × output of yi)∑
ihi

(3)

If the output variable is binary, then GRNN calculates the prob- 99
ability of the event of interest. If the output variable is continuous,
then it estimates the value of the variable. 101

3.3. Implementation of the underlying search algorithms of the SAGA

We encode possible feature subset solutions in ordered, fixed- 103
length binary strings where `1' indicates the presence of the feature
and `0' its absence. One of the objectives was realizing exactly how 105
time consuming the feature selection task can be. Hence, a prede-
fined time limit instead of the maximum number of total iterations 107
was chosen as the stopping criterion which has inevitably made
our algorithm rather complicated (in any practical application, one 109
should therefore use a standard stochastic algorithm with imposing
a maximum number of iterations as stopping criterion). A search al- 111
gorithm spends almost 99% of its running time evaluating the fitness
of solutions. The computation time required to evaluate a feature 113
subset depends on the number of features present in the subset and
the number of instances in the dataset. Hence, we empirically find 115

Please cite this article as: I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains, Pattern Recognition (2009), doi:
10.1016/j.patcog.2009.06.009

http://dx.doi.org/10.1016/j.patcog.2009.06.009
Original Text:
Inserted Text
SA

Original Text:
Inserted Text
, a GA

Original Text:
Inserted Text
, a GRNN Generalized Regression Neural Networks

Original Text:
Inserted Text
 climbing

Original Text:
Inserted Text
parametric

Original Text:
Inserted Text
GRNN generalized

Original Text:
Inserted Text
 learning

Original Text:
Inserted Text
Specht, 1991

Original Text:
Inserted Text
 [40]

Original Text:
Inserted Text
:

Original Text:
Inserted Text
|sigma{}|equ

Original Text:
Inserted Text
In

lss
Cross-Out

UNCORRECTED P
ROOF

4 I.A. Gheyas, L.S. Smith / Pattern Recognition () --

PR : 3589 ARTICLE IN PRESS

out the time t(=t(1 : 10,000)) required to estimate the fitness scores 1
of feature subsets with various dimensionalities from 1 to 10,000
using GRNN and store the information (dimensionalities of subsets3
and time required to assess their fitness) in database.

3.3.1. Pseudocode of simulated annealing5
Step 1: Set the initial temperature (Ti): Ti is the total run time for

SA.7
Step 2: Set the current temperature (Tc): Tc = Ti .
Step 3: Initialize population: Randomly select 100 individuals9

I (=I(1 : 100)) from the pool of individuals for initial population.
Step 4: Evaluate the fitness of each individual: Based on each in-11

dividual I, extract a new dataset Dnew from the (normalized) origi-
nal dataset D with the features that are present in the solution of13
the individual. Evaluate the fitness scores Eo (=Eo(1 : 100)) of fea-
ture subsets using GRNN and store the information (feature subset15
solutions with fitness scores).

Step 5: Update the effective temperature (T): Based on the dimen-17
sionality of each individual evaluated in the previous step, retrieve
the time elapsed in evaluating the individual. Calculate the total time19
spent Tspent on evaluating individuals of population by adding the
time spent for each individual. Finally update the effective temper-21
ature: Tc = Tc − Tspent .

Step 6: For all current feature subset vectors I (=I(1 : 100))23
change the bits of vectors with probability pmutation: pmutation = 0.5−
0.5 exp(Tc/�) where � = Ti/log2(0.5).25

Step 7: Evaluate the fitness En (=En(1 : 100)) of the new candidate
solutions if not already evaluated.27

Step 8: Determine if this new solution is kept or rejected and
update the database.

29
• If En � Eo, the new solution is accepted. The new solution replaces
the old solution and Eo is set to En.31

• If En <Eo, calculate the Boltzmann acceptance probability Paccept .
If the acceptance probability is greater than or equal to a random33
number between 0 and 1, the new solution is accepted and it
replaces the old one and Eo. If the acceptance probability is less35
than the random number, the new solution is rejected and the old
solution stays the same: Paccept = exp(−(Eo − En)/Tc).37

Step 9: Update the effective temperature. If the effective temper-
ature is greater than or equal to zero, return to step 6. Otherwise,39
the run is finished.

3.3.2. Pseudocode of genetic algorithm41
Step 1: Select the best-to-date solution.
Step 2: Create 10,000 new candidate solutions from the selected43

solution by changing only one bit (feature) at a time.
Step 3: Evaluate the new solutions if they are not evaluated before45

and update the database. Replace the previous solution by the new
solution(s) if they are better than the previous solution.47

Step 4: Go back to step 2 and perform the hill climbing on each
of the accepted new solutions. Repeatedly apply the process from49
steps 2 to 3 on selected solutions as long as the process is successful
in finding improved solutions in every repetition and as long as the51
time is available.

Step 5: Update the database and update the time available.53
Step 6: Select the next best-to-date solution from the database

and go back to step 2 if time is still available.55

3.3.3. Pseudocode of hill-climbing algorithm
Step 1: Select the best-to-date solution.57
Step 2: Create 10,000 new candidate solutions from the selected

solution by changing only one bit (feature) at a time.59

Step 3: Evaluate the new solutions if they are not evaluated before
and update the database. Replace the previous solution by the new 61
solution(s) if they are better than the previous solution.

Step 4: Go back to step 2 and perform the hill climbing on each 63
of the accepted new solutions. Repeatedly apply the process from
steps 2 to 3 on selected solutions as long as the process is successful 65
in finding improved solutions in every repetition and as long as the
time is available. 67

Step 5: Update the database and update the time available.
Step 6: Select the next best-to-date solution from the database 69

and go back to step 2 if time is still available.

4. Comparative performance analysis 71

We compare our algorithms with the following benchmark algo-
rithms: four commonly used greedy search algorithms (sequential 73
backward selection [15], sequential forward selection [16],
sequential floating forward selection [18], and sequential float- 75
ing backward selection [18]) and four popular stochastic search
algorithms (ant colony optimization [21], genetic algorithm [17], 77
particle swarm optimization [22] and simulated annealing [23]).
We also compare our algorithm against a hybrid of filter and wrap- 79
per approaches—filter-wrapper (FW). Many hybrid algorithms have
been proposed for feature subset selection with encouraging re- 81
sults [24–29]. It was not possible to implement all the methods
and empirically assess them. Instead, based on the experience of 83
other authors, we develop a representative hybrid algorithm FW.
This consists of a number of popular filter methods and a stochastic 85
algorithm. FW is a three stage algorithm.

Stage 1: Since, it is hard to decide which filter method is best 87
for a dataset because the performance of a filter method varies with
different datasets [24], we use a number of popular filter methods 89
to filter out irrelevant features. FW eliminates a feature when all of
these filter methods—t-test, symmetric uncertainty [38], and Pear- 91
son's correlation coefficients—dismiss the feature as irrelevant at the
0.05 level. 93

Stage 2: FW uses PCA [14] to filter out redundant features.
Stage 3: FW uses SA [23] to find an optimal solution since our 95

empirical results suggests that SA is better than other stochastic
algorithms. 97

The proposed and benchmark algorithms were tested on 30
datasets (descriptions of datasets are provided in Section 4.2). 99

4.1. Test strategy for a standardized comparison of search algorithms

There are a number of strategies employed to ensure fair com- 101
parison of search algorithms.

• All algorithms were run on a 3.40GHz Intel� Pentium� D CPU 103
with 2GB RAM.

• The values of each feature were normalized in a 0–1 range before 105
the experiment.

• All algorithms use GRNN classifiers to evaluate each of the resulting 107
subsets using 10-fold cross validation.

• No algorithm evaluates the same solution more than once. 109
• Each stochastic search algorithm (ACO, FW, GA, PSO, SA and SAGA)
was run 10 times on each dataset, each time with different ini- 111
tial populations of 100 individuals. The final performance of each
algorithm was calculated by averaging over all 10 simulations. 113

• Algorithms were ranked based on their performance. Their per-
formance is measured in terms of classification accuracy with the 115
best solution found during the entire run. Two different solutions
having the same accuracy level are assessed in terms of the num- 117
ber of features present in the feature subset solutions. We assign
rank 1 to the best algorithm and rank m (m�10) to the worst al- 119

Please cite this article as: I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains, Pattern Recognition (2009), doi:
10.1016/j.patcog.2009.06.009

http://dx.doi.org/10.1016/j.patcog.2009.06.009
Original Text:
Inserted Text
 code

Original Text:
Inserted Text
SA

Original Text:
Inserted Text

Original Text:
Inserted Text
|equ Total

Original Text:
Inserted Text
;

Original Text:
Inserted Text
Current

Original Text:
Inserted Text
Population

Original Text:
Inserted Text
:

Original Text:
Inserted Text
 code

Original Text:
Inserted Text
GA

Original Text:
Inserted Text
Step 1: Select the best-to-date solution.Step 2: Create 10000 new candidate solutions from the selected solution by changing only one bit feature at a time.Step 3: Evaluate the new solutions if they are not evaluated before and update the database. Replace the previous solution by the new solutions if they are better than the previous solution.Step 4: Go back to step 2 and perform the hill climbing on each of the accepted new solutions. Repeatedly apply the process from steps 2 to 3 on selected solutions as long as the process is successful in finding improved solutions in every repetition and as long as the time is available.Step 5: Update the database and update the time available.Step 6: Select the next best-to-date solution from the database and go back to step 2 if time is still available.Pseudo code of Hill-climbing algorithm

Original Text:
Inserted Text
SBS

Original Text:
Inserted Text
Backward Selection

Original Text:
Inserted Text
SFS Sequential Forward Selection

Original Text:
Inserted Text
SFFS Sequential Floating Forward Selection

Original Text:
Inserted Text
SFBS Sequential Floating Backward Selection

Original Text:
Inserted Text
ACO Ant Colony Optimization

Original Text:
Inserted Text
GA Genetic Algorithm

Original Text:
Inserted Text
PSO Particle Swarm Optimization

Original Text:
Inserted Text
SA Simulated Annealing

Original Text:
Inserted Text
FW

Original Text:
Inserted Text
 to 1

lss
Cross-Out

lss
Cross-Out

lss
Replacement Text
Step 1: Construct a chromosome pool of size 100 with the 100 fittest chromosomes from the list of feature subset solutions evaluated so far by the SA.
Step 2: Select 50 pairs of chromosomes using rank-based selection strategy.
Step 3: Perform crossover between the chromosomes using the half uniform
Crossover scheme (HUX). In HUX, half of the non-matching parents’ genes are swapped.
Step 4: Kill the parent solutions.
Step 5: Mutate offspring with probability 0.001.
Step 6: Evaluate the fitness of the offspring provided if it has not already been evaluated and if sufficient time is available. Update the database and estimate the time left.
Step 7: Go back to step 2 if the time is not up.

UNCORRECTED P
ROOF

PR : 3589 ARTICLE IN PRESS
I.A. Gheyas, L.S. Smith / Pattern Recognition () -- 5

gorithm. The Friedman test is used to test the null hypothesis that1
the performance is the same for all algorithms. After applying the
Friedman test and noting that it is significant, a pairwise compar-3
ison test (comparison of groups or conditions with a control [42,
p. 181]) was used in order to test the (null) hypothesis that there5
is no significant difference between any pair of the 10 algorithms.

4.2. Descriptions of datasets7

We use 11 synthetic datasets, 18 real-world benchmark datasets
and one new real-world dataset to perform experiments. All of these9
datasets are high dimensional.

4.2.1. Synthetic datasets11
Feature interactions and feature redundancy are two major prob-

lems often encountered when reducing the dimensionality of feature13
space. The principal motivation behind generating synthetic datasets
was to recreate these problems on large scale and perform experi-15
ments on controlled datasets.

Each dataset consists of 10,000 instances each of 10,000 features.17
Approximately one third of these features were completely irrele-
vant. Among these 10,000 features only 10 informative features were19
included in the model. One third of them were actually the exact
copy of the set of these 10 relevant features. The remaining features21
are correlated to varying degrees with the relevant features. All fea-
tures are continuous-valued. They are highly correlated and they in-23
teract with one another. The response variable is a binary variable.
The following steps were taken to generate these datasets.25

Step 1: Specify different mean vectors and different covariance
matrices for all the features for the 11 different datasets. Since mean27
vectors and covariance matrices of no two datasets are the same, the
joint distribution of features is different in each dataset.29

Step 2: Generate 10,000 combinations of feature values for each
dataset from its unique mean vector and covariance matrix.31

Step 3: The probability of the event of interest for each instance
was estimated by the following model (we specified different sets33
of model parameters for different datasets). Only 10 features among
10,000 features were included in the model. To simulate interactions35
between features, we included three interaction terms. Interaction
terms are formed by the multiplication of two or more explanatory37
variables. We included one two-way interaction term (−�5X66X5789),
one three-way interaction term (−�9X420X1103X8652) and one multi-39
way interaction term (+�6X420X6166X6999X7200).

P(Y)= 1/(1 + exp(−Z)) (4)41

Z = �0 + �1X66 + �2X1103 + �3X4447 + �4X5789 − �5X66X5789

+ �6X420X6166X6999X7200 + �7X8652 + �8X9995

− �9X420X1103X8652

where P(Y) is the probability of the event of interest; (X1,X2, . . . ,X10,000)43
represent different features; (�0,�1,�2,�3,�4,�5,�6,�7,�8,�9) are
the model parameters.45

We used Eq. (4) to generate all of the synthetic datasets. All the
features in the model were arranged in the random order in all47
datasets. The differences between the datasets are mainly due to dif-
ferent combinations of feature values and different values of model49
parameters.

Step 4: Generate a uniformly distributed random number in the51
range (0, 1) for each observation. If the random number is greater
than the probability of the event of interest, the value of the response53
variable is 1, otherwise 0.

4.2.2. Benchmark datasets (modified)55
In addition to 11 synthetic datasets, we tested these algorithms

on 18 benchmark datasets. Benchmark datasets were taken from57

UCI machine learning repository. The benchmark datasets are real-
world datasets. The benchmark datasets on which the algorithms 59
were tested are: (1) Adult dataset, (2) Annealing dataset, (3) Breast
Cancer Wisconsin (Diagnostic) dataset, (4) Breast Cancer Wisconsin 61
(Prognostic) dataset, (5) Chess—King-Rook vs. King-Pawn, (6) Con-
gressional Voting Records dataset, (7) Dermatology—Psoriasis, (8) 63
Dermatology—Seboreic Dermatitis, (9) Dermatology—Lichen Planus,
(10) Dermatology—Pityriasis Rosea, (11) Dermatology—Cronic Der- 65
matitis, (12) Dermatitis—Pityriasis Rubra, (13) Hepatitis, (14) Mush-
room, (15) Spambase, (16) Wine, (17) Yeast, and (18) Zoo. The de- 67
scriptions of the original benchmark datasets are available in [43].
These datasets contain varying number of features and instances, but 69
have fewer than 10,000 features. Hence, we add a series of randomly
generated features to each dataset to make a total of 10,000 features. 71
We added completely irrelevant features because we did not want
to destroy the original properties of the benchmark datasets. We did 73
not change the number of observations of the benchmark datasets.

4.2.3. New real-world dataset (smoking dataset) 75
We received a three stage cross sectional survey data on the

smoking habits of teenagers from the Centre for Tobacco Control Re- 77
search at the University of Stirling and Open University. The data
were collected from Scotland, England, Northern Ireland and Wales 79
in three survey stages: stage 1 in 1999, stage 2 in 2002 and stage
3 in 2004. The response variable is a binary variable (1 = smoker, 81
0 = non-smoker). Explanatory variables include socio-demographic
characteristics of respondents, their knowledge and attitudes to- 83
wards tobacco promotion of all sorts and their smoking knowledge,
attitudes and behaviour. This smoking dataset contains 285 features, 85
3321 instances but has a large number of missing values. Among
the respondents, an overall proportion of 11% (355 respondents) are 87
smokers. We applied multiple imputation with MCMC (Monte Carlo
Markov Chain) algorithm to replace missing values [44]. We did not 89
add artificial features to this dataset.

5. Results and discussion 91

We compare our proposed algorithms (SAGA) with the conven-
tional search algorithms (ACO, FW, GA, PSO, SA, SBS, SFBS, SFFS 93
and SFS) on 30 high dimensional datasets. The algorithms were 95

Fig. 1. Performance of the different algorithms (accuracy only).

Please cite this article as: I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains, Pattern Recognition (2009), doi:
10.1016/j.patcog.2009.06.009

http://dx.doi.org/10.1016/j.patcog.2009.06.009
Original Text:
Inserted Text
Siegel S, Castellan NJ 1988 Comparison

Original Text:
Inserted Text
ten

Original Text:
Inserted Text
 world

Original Text:
Inserted Text
ten

Original Text:
Inserted Text
ten

Original Text:
Inserted Text
ten thousand

Original Text:
Inserted Text
ten

Original Text:
Inserted Text
ten thousand

Original Text:
Inserted Text
, P

Original Text:
Inserted Text
|equ Probability

Original Text:
Inserted Text
-Psoriasis

Original Text:
Inserted Text
-Seboreic

Original Text:
Inserted Text
 world

Original Text:
Inserted Text
centre

Original Text:
Inserted Text
tobacco control research

Original Text:
Inserted Text
stage

Original Text:
Inserted Text
 percent

Original Text:
Inserted Text
-dimensional

lss
Cross-Out

lss
Replacement Text
41

lss
Cross-Out

UNCORRECTED P
ROOF

6 I.A. Gheyas, L.S. Smith / Pattern Recognition () --

PR : 3589 ARTICLE IN PRESS

Table 1
Summary results.

Search
method

Time
(h)

Number of significantly
outperformed
algorithms

Accuracy
(%)

Features Search
method

Time
(h)

Number of
outperformed
algorithms

Accuracy
(%)

Features

ACO 1 2 15 (8) 4241 (1231) SAGA 1 8 35 (182) 71 (26)
8 1 44 (17) 2375 (1296) 8 8 64 (12) 27 (24)
16 2 50 (19) 1595 (4388) 16 9 80 (10) 22 (14)
24 1 52 (19) 836 (546) 24 9 91 (6) 10 (6)
72 1 54 (18) 599 (808) 72 9 95 (4) 17 (9)
168 1 55 (18) 524 (1792) 168 9 96 (3) 17 (7)
240 1 55 (18) 442 (617) 240 9 96 (3) 12 (8)

FW 1 7 25 (129) 5797 (2487) SBS 1 2 15 (79) 8750 (87)
8 5 54 (14) 436 (283) 8 2 50 (5) 35 (38)
16 5 67 (11) 218 (129) 16 0 (converged) (converged)
24 7 75 (12) 169 (134) 24 0
72 7 77 (10) 256 (249) 72 0
168 7 77 (10) 226 (107) 168 0
240 7 77 (10) 200 (91) 240 0

GA 1 4 18 (93) 6984 (18) SFBS 1 2 14 (75) 9040 (96)
8 2 52 (15) 553 (409) 8 0 38 (8) 57 (29)
16 1 56 (14) 446 (379) 16 6 68 (6) 45 (27)
24 1 58 (14) 553 (2119) 24 5 (converged) (converged)
72 1 59 (13) 513 (204) 72 5
168 2 61 (11) 388 (320) 168 4
240 2 62 (10) 482 (206) 240 4

PSO 1 0 10 (53) 5598 (3046) SFFS 1 2 31 (161) 1 (0.4)
8 3 54 (11) 852 (1230) 8 5 57 (9) 41 (10)
16 2 55 (11) 242 (166) 16 6 67 (5) 34 (11)
24 1 56 (11) 222 (305) 24 5 (converged) (converged)
72 2 61 (7) 240 (87) 72 5
168 3 65 (5) 307 (1 0 0) 168 4
240 4 68 (4) 181 (76) 240 4

SA 1 0 8 (42) 6647 (3451) SFS 1 8 31 (162) 3 (2)
8 1 49 (12) 708 (745) 8 8 63 (11) 37 (42)
16 4 60 (10) 290 (137) 16 5 (converged) (converged)
24 4 66 (11) 142 (208) 24 4
72 7 81 (6) 229 (153) 72 2
168 8 95 (3) 323 (187) 168 2
240 8 95 (3) 157 (69) 240 2

The values in parenthesis represents the standard deviation. The lower the standard deviation, the more consistent the algorithm.

evaluated based on the fitness of the best feature subset solutions1
generated by the algorithms within the allowed time limits. The
Friedman test reveals significant differences (p<0.05) in the perfor-3
mance of the 10 search algorithms at all time limits. Table A1 shows
statistical test results for pairwise comparisons of algorithms. We5
assign rank 1 to the best algorithm, rank 2 to the next best algorithm
and so on.7

Fig. 1 displays the results for the mean accuracy of the reduced
datasets at run times of 1, 8, 16, 24, 72, 168 and 240h: SAGA out-9
performs the others at all run times, though not always significantly.
Table 1 summarizes the results in more detail, providing the mean11
accuracy, average number of features selected over all 30 datasets
both with standard deviations. The average accuracy represents the13
overall performance. However, if two solutions are equally accurate
(as is almost the case with SAGA and SA at 168 and 240h), then15
the one with fewer features is fitter. We note that SAGA achieves
the same accuracy with far fewer features than SA at 168 and 240h.17
Table 1 also reports the relative performance of search algorithms in
terms of the number of algorithms that are significantly worse than19
the control (based on pairwise comparison tests).

The key findings of this work are:

21
• SAGA holds the first position at all seven durations of running
where the best performance is significantly better than the next 23
best at the significance level of 0.05.

• The rate of improvement in search algorithms decreases as the 25
time passes. However, as the running time increases, the improve-
ment in the performance of SAGA declines slowly, relative to the 27
others, with the exception of SA. Extensive experiments illustrate
that after 8h of searching; SAGA had a 64% mean accuracy with 29
a 12% standard deviation. The mean accuracy rate of SAGA im-
proved by 32% (from 64% to 96%) over the last 232h of running for 31
which the standard deviation was reduced by about 9% (from 12%
to 3%), while the overall accuracy rate of SA increased from 49% to 33
95% (46%) and the standard deviation dropped from 12% to 3% (a
9% drop). The other algorithms had significantly lower rates of in- 35
crease in accuracy with increasing running time. The accuracy im-
provements of other algorithms over the last 232h of running are 37
as follows: using the ACO the mean accuracy increased by about
10% and the standard deviation increased by about 1%, using the 39
FW the accuracy increased by about 23% while the standard devi-

Please cite this article as: I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains, Pattern Recognition (2009), doi:
10.1016/j.patcog.2009.06.009

http://dx.doi.org/10.1016/j.patcog.2009.06.009
Original Text:
Inserted Text
ten

Original Text:
Inserted Text
the

Original Text:
Inserted Text
the

Original Text:
Inserted Text
eight hours

UNCORRECTED P
ROOF

PR : 3589 ARTICLE IN PRESS
I.A. Gheyas, L.S. Smith / Pattern Recognition () -- 7

ation dropped by about 4%, using the GA the accuracy increased1
by about 10% while the standard deviation dropped by about 5%,
and using the PSO the accuracy increased by about 14% while the3
standard deviation dropped by about 7%.

• Throughout the running period, SAGA selected a much smaller5
number of features than other algorithms. For this reason, the
performance of SAGA remained significantly better than SA even7
when the accuracy rates of both algorithms were almost the same
(at 168 and 240h).9

In addition, we note that if the search space is too large while
the time available to conduct a search through the search space is11
very brief, SFS is a good choice among other conventional search
algorithms. One and 8h later, SFS finished joint first with SAGA,13
outperforming eight algorithms.

Further, if sufficient time is available, then SA should be consid-15
ered among the conventional search algorithms. After the first 1h
of running, the performance of SA was the worst among all search17
algorithms. After 8h, SA outperformed two algorithms. After 24h, it
outperformed four algorithms. After 72h of searching, it became the19
second best algorithm, outperforming seven algorithms. After 168h,
it outperformed eight algorithms.21

We also noted that when a greedy algorithm reaches the local
minima it cannot climb `out'. Both SBS and SFS rapidly converged23
within approximately 8h. SFFS and SFBS offer only slightly more
resistance to local minima. They converged within 16h. We found an25
interesting pattern in the relative performance of the algorithms (in
terms of the number of significantly outperformed algorithms) over27
time. The relative performance of ACO, GA, SBS and SFS deteriorates,
while the relative performance of PSO and SA improves as the time29
elapses. The relative performance of SFBS and SFFS roughly follows
the Gaussian distribution over time. In addition, FW offers the most31
consistency (after SAGA) over time in terms of relative performance.
Although FWapplies a SA, it did not generate a dramatic performance33

Table A1
Pairwise comparisons between search algorithms.

Rank Algorithm (s) Significantly outperformed algorithms

After 1h
1 SAGA, SFS (1) FW, (2) GA, (3) SFFS, (4) ACO, (5) SBS, (6) SFBS, (7) PSO, (8) SA
2 FW (1) GA, (2) SFFS, (3) ACO, (4) SBS, (5) SFBS, (6) PSO, (7) SA
3 GA (1) SBS, (2) SFBS, (3) PSO, (4) SA
4 SFFS, ACO, SBS, SFBS (1) PSO, (2) SA
5 PSO, SA –

After 8h
1 SAGA, SFS (1) SFFS, (2) FW, (3) PSO, (4) GA, (5) SBS, (6) SA, (7) ACO, (8) SFBS
2 SFFS, FW (1) GA, (2) SBS, (3) SA, (4) ACO, (5) SFBS
3 PSO (1) SA, (2) ACO, (3) SFBS
4 GA, SBS (1) ACO, (2) SFBS
5 SA, ACO (1) SFBS
6 SFBS –

After 16h
1 SAGA (1) SFBS, (2) SFFS, (3) FW, (4) SFS, (5) SA, (6) PSO, (7) ACO, (8) GA, (9) SBS
2 SFBS, SFFS (1) SFS, (2) SA, (3) PSO, (4) ACO, (5) GA, (6) SBS
3 FW (1) SA, (2) PSO, (3) ACO, (4) GA, (5) SBS
4 SFS, SA (1) PSO, (2) ACO, (3) GA, (4) SBS
5 PSO (1) GA, (2) SBS
6 ACO, GA (1) SBS
7 SBS

improvement over time, like SA did. We suspect that a number of 35
key features were already removed from the feature pool by filter
methods, before SA began its search. 37

6. Summary and conclusions

We have presented a hybrid algorithm SAGA that combines the 39
strengths of a number of existing algorithms to select the optimal
feature subsets from a large feature space. SAGA is a hybrid of a num- 41
ber of wrapper methods—a SA, a GA, a GRNN and a greedy search
algorithm. We compare our proposed algorithm against the follow- 43
ing benchmark algorithms: ACO, FW, GA, PSO, SA, SBS, SFBS, SFFS
and SFS on both synthetic and real-world datasets. Among these 45
datasets, one dataset has 285 features and the remaining 29 datasets
have 10,000 features each. We study the performance of these algo- 47
rithms at different time intervals: after 8, 16, 24, 72, 168 and 240h
of running. The performance of our algorithm is highly encouraging. 49
SAGA shows the best performance over every interval. We conclude
that no existing algorithm is entirely satisfactory in isolation, but Q251
that a carefully designed combination can overcome the weaknesses
of each. 53

7. Uncited reference

[41]. 55

Acknowledgements

Wewould like to thank our anonymous reviewers for their insight
and suggestions for improvement.

Appendix A 57

Table A1 shows statistical test results for pairwise comparisons Q3
of algorithms. 59

Please cite this article as: I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains, Pattern Recognition (2009), doi:
10.1016/j.patcog.2009.06.009

http://dx.doi.org/10.1016/j.patcog.2009.06.009
Original Text:
Inserted Text
1

Original Text:
Inserted Text
 world

Original Text:
Inserted Text
Acknowledgement

lss
Cross-Out

UNCORRECTED P
ROOF

8 I.A. Gheyas, L.S. Smith / Pattern Recognition () --

PR : 3589 ARTICLE IN PRESS

Table A1 (Continued)

Rank Algorithm (s) Significantly outperformed algorithms

After 24h
1 SAGA (1) FW, (2) SFBS, (3) SFFS, (4) SA, (5) SFS, (6) GA, (7) PSO, (8) ACO, (9) SBS
2 FW (1) SFFS, (2) SA, (3) SFS, (4) GA, (5) PSO, (6) ACO, (7) SBS
3 SFBS, SFFS (1) SFS,(2) GA, (3) PSO, (4) ACO, (5) SBS
4 SA, SFS (1) GA, (2) PSO, (3) ACO, (4) SBS
5 GA, PSO, ACO (1) SBS
6 SBS –

After 72h
1 SAGA (1) SA, (2) FW, (3) SFBS,(4) SFFS, (5) SFS, (6) PSO, (7) GA, (8) ACO, (9) SBS
2 SA, FW (1) SFBS, (2) SFFS, (3) SFS, (4) PSO, (5) GA, (6) ACO, (7) SBS
3 SFBS, SFFS (1) SFS, (2) PSO, (3) GA, (4) ACO, (5) SBS
4 SFS, PSO (1) ACO, (2) SBS
5 GA, ACO (1) SBS
6 SBS –

After 168h
1 SAGA (1) SA, (2) FW, (3) SFBS, (4) SFFS, (5) PSO, (6) SFS, (7) GA, (8) ACO, (9) SBS
2 SA (1) FW, (2) SFBS, (3) SFFS, (4) PSO, (5) SFS, (6) GA, (7) ACO, (8) SBS
3 FW (1) SFBS, (2) SFFS, (3) PSO, (4) SFS, (5) GA, (6) ACO, (7) SBS
4 SFBS, SFFS (1) SFS, (2) GA, (3) ACO, (4) SBS
5 PSO (1) GA, (2) ACO, (3) SBS
6 SFS, GA (1) ACO, (2) SBS
7 ACO (1) SBS
8 SBS –

After 240h
1 SAGA (1) SA, (2) FW, (3) PSO, (4) SFBS, (5) SFFS, (6) SFS, (7) GA, (8) ACO, (9) SBS
2 SA (1) FW, (2) PSO, (3) SFBS, (4) SFFS, (5) SFS, (6) GA, (7) ACO, (8) SBS,
3 FW (1) PSO, (2) SFBS, (3) SFFS, (4) SFS, (5) GA, ((6) ACO, (7) SBS
4 PSO, SFBS, SFFS (1) SFS, (2) GA, (3) ACO, (4) SBS
5 SFS, GA (1) ACO, (2) SBS
6 ACO (1) SBS
7 SBS –

References1

[1] I. Guyan, A. Elisseeff, An introduction to variable and feature selection, Journal
of Machine Learning Research 3 (2003) 1157–1182.3

[2] P. Mitra, C.A. Murthy, S.K. Pal, Unsupervised feature selection using feature
similarity, IEEE Transactions on Pattern Analysis and Machine Intelligence 245
(2002) 301–312.

[3] M. Robnik-Sikonja, I. Kononenko, Theoretical and empirical analysis of Relief7
and ReliefF, Machine Learning 53 (2003) 23–69.

[4] M. Dash, K. Choi, P. Scheuermann, H. Liu, Feature selection for clustering—a9
filter solution, in: Proceedings of the Second IEEE International Conference on
Data Mining (ICDM'02), IEEE Computer Society Washington, DC, USA, 2002, pp.11
115–122.

[5] T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning,13
second ed., Springer, Berlin, 2001.

[6] D.A. Bell, H. Wang, A formalism for relevance and its application in feature15
subset selection, Machine Learning 41 (2004) 175–195.

[7] E. Parzen, ARARMA models for time series analysis and forecasting, Journal of17
Forecasting 1 (1982) 67–87.

[8] A.A. Albrecht, Stochastic local search for the feature set problem, with19
applications to microarray data, Applied Mathematics and Computation 183
(2006) 1148–1164.21

[9] J. Hua, W. Tembe, E.R. Dougherty, Feature selection in the classification of high-
dimension data, in: IEEE International Workshop on Genomic Signal Processing23
and Statistics, 2008, pp. 1–2.

[10] X. Jin, A. Xu, R. Bie, P. Guo, Machine learning techniques and chi-square feature25
selection for cancer classification using SAGE gene expression profiles, Lecture
Notes in Computer Science 3916 (2006) 106–115.27

[11] C. Liao, S. Li, Z. Luo, Gene selection using Wilcoxon rank sum test and support
vector machine for cancer, Lecture Notes in Computer Science 4456 (2007) 5729
–66.

[12] H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria31
of max-dependency, max-relevance, and min redundancy, IEEE Transactions on
Pattern Analysis and Machine Intelligence 27 (2005) 1226–1238.33

[13] J. Biesiada, W. Duch, Feature selection for high-dimensional data—a Pearson
redundancy based filter, Advances in Soft Computing 45 (2008) 242–249.35

[14] L. Rocchi, L. Chiari, A. Cappello, Feature selection of stabilometric parameters
based on principal component analysis, Medical and Biological Engineering and37
Computing 42 (2004) 71–79.

[15] S.F. Cotter, K. Kreutz-Delgado, B.D. Rao, Backward sequential elimination for39
sparse vector selection, Signal Processing 81 (2001) 1849–1864.

[16] S. Colak, C. Isik, Feature subset selection for blood pressure classification 41
using orthogonal forward selection, in: Proceedings of 2003 IEEE 29th Annual
Bioengineering Conference, 22–23 March 2003, pp. 122–123. 43

[17] J. Yang, V. Honavar, Feature subset selection using a genetic algorithm, IEEE
Intelligent Systems and their Applications 13 (1998) 44–49. 45

[18] P. Pudil, J. Novovicov, J. Kittler, Floating search methods in feature selection,
Pattern Recognition Letters 15 (11) (1994) 1119–1125. 47

[19] M. Bensch, M. Schroder, M. Bogdan, W. Rosenstiel, P. Czerner, R. Montino, G.
Soberger, P. Linke, R. Schmidt, Feature selection for high-dimensional industrial 49
data ESANN 2005, Brugge, 27–29 April 2005.

[20] H.T. Ng, W.B. Goh, K.L. Low, Feature selection, perceptron learning, and a 51
susability case study for text categorization, in: 20th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, 53
Philadelphia, 27–31 July 1997, pp. 67–73.

[21] S.M. Vieira, M.C. Sousa, T.A. Runkler, Ant colony optimization applied to feature 55
selection in fuzzy classifiers, Lecture notes in computer science 4529 (2007)
778–788. 57

[22] X. Wang, J. Yang, X. Teng, W. Xia, J. Richard, Feature selection based on rough
sets and particle swarm optimization, Pattern Recognition Letters 28 (2007) 59
459–471.

[23] M. Ronen, Z. Jacob, Using simulated annealing to optimize feature selection 61
problem in marketing applications, European Journal of Operational Research
171 (2006) 842–858. 63

[24] F. Tan, X. Fu, H. Wang, Y. Zhang, A. Bourgeois, A hybrid feature selection
approach for microarray gene expression data, Lecture Notes in Computer 65
Science 3992 (2006) 678–685.

[25] K.M. Shazzad, J.S. Park, Optimization of intrusion detection through fast hybrid 67
feature selection, in: Proceedings of the Sixth International Conference on
Parallel and Distributed Computing, IEEE Computer Society, Washington, DC, 69
USA, 2005, pp. 264–267.

[26] Z. Yan, C. Yuan, Ant colony optimization for feature selection in face recognition, 71
Lecture notes in Computer Science 3072 (2004) 221–226.

[27] K.M. Osei-Bryson, K. Giles, B. Kositanurit, Exploration of a hybrid feature 73
selection algorithm, Journal of the Operational Research Society 54 (2003) 790
–797. 75

[28] M. Fatourechi, G. Birch, R.K. Ward, Application of a hybrid wavelet feature
selection method in the design of a self-paced brain interface system, Journal 77
of Neuroengineering and Rehabilitation 4 (2007).

[29] J. Huang, Y. Cai, X. Xu, A wrapper for feature selection based on mutual 79
information, in: 18th International Conference on Pattern Recognition, vol. 2,
2006, pp. 618–621. 81

Please cite this article as: I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains, Pattern Recognition (2009), doi:
10.1016/j.patcog.2009.06.009

http://dx.doi.org/10.1016/j.patcog.2009.06.009
Original Text:
Inserted Text
learning

Original Text:
Inserted Text
Selection

Original Text:
Inserted Text
High-Dimensional Industrial Data

Original Text:
Inserted Text
annual international

Original Text:
Inserted Text
conference

Original Text:
Inserted Text
development in information retrieval. July 27--31

Original Text:
Inserted Text
sixth international conference

Original Text:
Inserted Text
parallel

Original Text:
Inserted Text
distributed computing

UNCORRECTED P
ROOF

PR : 3589 ARTICLE IN PRESS
I.A. Gheyas, L.S. Smith / Pattern Recognition () -- 9

[30] K.Z. Mao, Feature subset selection for support vector machines through1
discriminative pruning analysis, IEEE Transactions on Systems, Man, and
Cybernetics, Part B, Cybernetics 34 (2004) 60–67.3

[31] C. Campbell, N. Cristianini, Simple learning algorithms for training support
vector machines, CiteSeerXbeta, 1998.5

[32] C. Zhang, P. Li, A. Rajendran, Y. Deng, D. Chen, Parallelization of multicategory
support vector machines (PMC-SVM) for classifying microarray data, BMC7
Bioinformatics 7 (2006).

[33] Z. Gao, G. Lu, M. Liu, M. Cui, A novel risk assessment system for port state9
control inspection, in: IEEE International Conference on Intelligence and Security
Informatics, 17–20 June 2008, pp. 242–244.11

[34] L. Bo, L. Wang, L. Jiao, Training hard margin support vector machines using
greedy stepwise algorithm, Lecture Notes in Computer Science 3518 (2005)13
632–638.

[35] D. Tormandl, A. Schober, A modified general regression neural network15
(MGRNN) with new, efficient training algorithm as a robust `black box'-tool for
data analysis, Neural Networks 14 (2001) 1023–1034.17

[36] N. Currit, Inductive regression: overcoming OLS limitations with the general
regression neural network, Computers, Environment and Urban Systems 2619
(2002) 335–353.

[37] I. Bialobrzewski, Neural modelling of relative air humidity, Computers and 21
Electronic in Agriculture 60 (2008) 1–7.

[38] O. Yagci, D.E. Mercan, H.K. Cigizoglu, M.S. Kabdasli, Artificial intelligence 23
methods in breakwater damage ratio estimation, Ocean Engineering 32 (2005)
2016–2088. 25

[39] J. Cooper, C. Hinde, Improving genetic algorithms' efficiency using intelligent
fitness functions, Lecture Notes in Computer Science 2718 (2003) 1–58. 27

[40] D.F. Specht, A general regression neural network, IEEE Transactions on Neural
Networks 20 (1991) 568–576. 29

[41] T. Chou, K. Kang, J. Luo, N. Pissinou, K. Makki, Correlation-based feature selection
for intrusion detection design, in: Military Communications Conference, 31
MILCOM 2007, IEEE, 29–31 October 2007, pp. 1–7.

[42] S. Singel, N.J. Castellan Jr., Nonparametric Statistics: for the Behavioural Sciences, Q433
McGraw-Hill, New York.

[43] UCI Irvine Machine Learning Repository, available online: 35
〈http://archive.ics.uci.edu/ml/〉.

[44] H.T. Ng, W.B. Goh, K.L. Low, Feature selection, perceptron learning, and a 37
susability case study for text categorization, in: 20th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, 39
Philadelphia, 27–31 July 1997, pp. 67–73.

About the Author—IFFAT A. GHEYAS is a Ph.D. student in the Department of Computing Science and Mathematics at the University of Stirling. Her primary research interest
is artificial intelligence. Currently, she is working on machine learning algorithms for data mining tasks.

41
About the Author—LESLIE S. SMITH (B.Sc. (Glasgow) 1973, Ph.D. (Glasgow) 1981) is a Professor of Computing Science at Stirling University. He is particularly interested in
early auditory processing, neuroinformatics, neuromorphic systems. He is SMIEEE and a member of Acoustical Society of America and the Society of Neuroscience. 43

Please cite this article as: I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains, Pattern Recognition (2009), doi:
10.1016/j.patcog.2009.06.009

http://archive.ics.uci.edu/ml/
http://dx.doi.org/10.1016/j.patcog.2009.06.009
Original Text:
Inserted Text
transactions

Original Text:
Inserted Text
. Part

Original Text:
Inserted Text
2088

Original Text:
Inserted Text
2016

Original Text:
Inserted Text
2007,

Original Text:
Inserted Text
statistics

Original Text:
Inserted Text
behavioural sciences

Original Text:
Inserted Text
. [Online], Available

Original Text:
Inserted Text
annual international

Original Text:
Inserted Text
conference

Original Text:
Inserted Text
development in information retrieval, July 27--31

Original Text:
Inserted Text
Iffat

Original Text:
Inserted Text
Gheyas

Original Text:
Inserted Text
Artificial Intelligence.

Original Text:
Inserted Text
Leslie

Original Text:
Inserted Text
Smith

Original Text:
Inserted Text

Original Text:
Inserted Text
: is

lss
Cross-Out

lss
Inserted Text
, 1988

	Feature subset selection in large dimensionality domains
	Introduction
	Review of existing techniques
	Proposed algorithm
	Computing fitness of feature subsets
	Generalized regression neural networks learning algorithm
	Implementation of the underlying search algorithms of the SAGA
	Pseudocode of simulated annealing
	Pseudocode of genetic algorithm
	Pseudocode of hill-climbing algorithm

	Comparative performance analysis
	Test strategy for a standardized comparison of search algorithms
	Descriptions of datasets
	Synthetic datasets
	Benchmark datasets (modified)
	New real-world dataset (smoking dataset)

	Results and discussion
	Summary and conclusions
	Uncited reference
	Acknowledgements
	Appendix A
	References

