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Abstract. Is it possible to symbolically express and analyse an individual-
based model of disease spread, including realistic population dynamics? This
problem is addressed through the use of process algebra and a novel method
for transforming process algebra into Mean Field Equations. A number of
stochastic models of population growth are presented, exploring different rep-
resentations based on alternative views of individual behaviour. The overall
population dynamics in terms of mean field equations are derived using a
formal and rigorous rewriting based method. These equations are easily com-
pared with the traditionally used deterministic Ordinary Differential Equation
models and allow evaluation of those ODE models, challenging their assump-
tions about system dynamics. The utility of our approach for epidemiology is
confirmed by constructing a model combining population growth with disease
spread and fitting it to data on HIV in the UK population.
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1. Introduction

Epidemiology has benefited for many years from a symbolic approach: Ordinary
Differential Equations (ODEs) have been used to capture the spread of disease
since the Kermack and McKendrick models of the 1920s [15]. More sophisticated
models have been built since, capturing features of population dynamics such as
growth, seasonality, metapopulations, and networks of contact. A disadvantage of
this approach is that the equations express population features which are difficult
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to measure in the field. One such feature is the transmission rate of a disease (from
an infected individual to a susceptible individual in the population) which incor-
porates aspects of likelihood of appropriate contact, and likelihood of contracting
the disease following contact. Mathematical biologists have for many years writ-
ten down the ODE description believing that behaviour at the population level
translates simply and intuitively from assumptions about individual interactions.
Turner et al [29] showed that this is not necessarily the case. There is a need
for a rigorous relation between the actions of individuals and the outcome at a
population level.

An alternative approach is to base models on individual behaviour, for ex-
ample, probabilistic Cellular Automata models [1]. The most common way to
interrogate the model is simulation, but full exploration of the model requires in-
stantiation over a range of parameter values. Ensuring that all important areas of
parameter space have been covered incurs heavy computational expense, and may
even be impossible. Limited algebraic analysis is available through methods such
as pair approximation [14].

A third approach combines the advantages of symbolic modelling with those
of individual-based modelling: process algebra. Process algebra has increasingly
been used to model a wide range of biological systems [6, 20, 24, 26, 27]. The
benefits of using process algebra to study such systems are twofold. First, process
algebra allows symbolic, precise and unambiguous expression of a model. Second,
process algebra has a formal mathematical semantics, allowing rigorous investiga-
tion of the model via a range of techniques.

Our work uses the discrete time process algebra Weighted Synchronous Cal-
culus of Communicating Systems (WSCCS)[28]. The semantics of WSCCS can
be viewed as a Discrete Time Markov Chain (DTMC). Simulation can be used
to explore the model. Steady state analysis can be carried out, and properties of
the Markov Chain computed, e.g. probability of being in a particular state, or
average number of occurrences of an action before a specific event occurs. As with
cellular automata, such investigation can be computationally expensive for mul-
tiple parameter values. Our previous work [17, 18] has been to facilitate symbolic
analyses of the model by developing a rewriting-based method to derive Mean
Field Equations (MFEs) from a description of a system in WSCCS. The MFEs
describe the average behaviour of the system at the population level and are anal-
ogous to traditional ODE models. Although our focus is on biological systems, the
technique can be applied to any system characterized by large numbers of simi-
lar components cooperating dynamically. The MFEs provide an approximation of
the system dynamics (the DTMC corresponding to the WSCCS description). The
MFEs are amenable to analysis using established algebraic techniques developed
by mathematical biologists for ODEs. The key advantage of our approach is that
biological observations of individuals can be exploited in making the (individual
based) WSCCS model, and the MFEs are derived automatically and efficiently.

In this paper we consider the problem of using process algebra to accurately
represent population growth and thereby construct useful models of disease spread.
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Population dynamics have been of interest to modellers for centuries. In 1798
Malthus [16] proposed a simple exponential growth model based on compound
interest but noted that this was unrealistic, since when a population becomes very
large, access to resources will become restricted, limiting further growth in the
population. Verhulst proposed the logistic growth model [30] to overcome this de-
ficiency and this is still widely used to describe density dependent growth. Clearly
the question of how exactly to model growth remains contentious since other can-
didates have been proposed [3, 10, 11, 25]. The question of population growth is
of importance because given a model of disease spread, the addition of a fluctu-
ating population can alter the dynamics of the epidemic. Therefore, developing a
suitable model of population growth is an important step in producing realistic
models of disease spread which can be analysed to provide predictive information
about potential impact of epidemics, and to evaluate control strategies.
Related Work. Others have investigated individual based models of population
dynamics and related their behaviour to population level equations. Sumpter [26]
developed a simple WSCCS model of population growth and derived MFEs for
the model. Brännström and Sumpter [4] presented individual based (not process
algebra) models of competition which could be used to derive several existing pop-
ulation models but notably not Verhulst’s logistic equation. The work presented
here improves on previous work by applying a rigorous method across a range of
different models of population growth.
Outline of the Paper. Sect. 2 gives a brief description of the syntax and semantics
of the language used in our models (WSCCS), and an outline of the method for
deriving MFEs. In Sect. 3 WSCCS models of population dynamics are presented,
which include density dependent growth in a variety of formulations (in either
births or deaths, and introduced implicitly by enriching the WSCCS language or
explicitly by including agents representing resources for which the population com-
petes). The resultant changes in overall population dynamics are explored, com-
paring the derived MFEs to traditional population level equations for population
dynamics. In Sect. 4 we add disease spread to our model of population dynamics
and fit the resulting model to data from the literature on HIV prevalence in the
UK. Our results are summarised and conclusions drawn in Sect. 5.

2. Background

2.1. WSCCS Syntax and Semantics

In WSCCS the basic components are actions and the processes (or agents) that
carry out those actions. The actions are chosen by the modeller to represent ac-
tivities in the system. For example, infect , send , receive, throw dice, and so on.
Essentially, processes order actions in time, providing sequences of actions, choices
between actions, and actions in parallel. When actions occur in parallel we denote
the multiplication by a#b. Actions form an Abelian group, such that a#a =

√

where a is the inverse of the action a and
√

is the identity action. Actions occur
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instantaneously and have no duration. WSCCS is a probabilistic process algebra,
meaning that the decision to move from one state to another can be a probabilistic
one. The formal syntax and semantics of WSCCS is presented in Tofts [28]. The
main details are repeated here for the convenience of the reader.

The possible WSCCS expressions are given by the following BNF grammar:

A ::= X | a :A | Σ{wi.Ai|i ∈ I} | A×B | AdL | Θ(A) | A[S] | X
def= A .

Here X ∈ Var , a set of process variables; a ∈ Act , an action group; wi ∈ W , a set
of weights; S a set of renaming functions, S : Act → Act such that S(

√
) =

√
and

S(a) = S(a); action subsets L ⊆ Act with
√
∈ L; and arbitrary indexing sets I.

The informal interpretation of the operators is as follows:

• 0 a process which cannot proceed, representing deadlock ;
• X the process bound to the variable X ;
• a :A a process which can perform the action a becoming the process A ;
• Σ{wi.Ai|i ∈ I} the weighted choice between processes Ai , the weight of

Ai being wi . Considering a large number of repeated experiments of this
process, we expect to see Ai chosen with relative frequency wi/Σi∈Iwi . This
is therefore also referred to as probabilistic choice. The binary plus operator
can be used in place of the indexed sum, i.e. writing Σ{11.a : 0, 22.b : 0|i ∈
{1, 2}} as 1.a : 0 + 2.b : 0 . Weights are generally positive natural numbers or
reals, but may also incorporate the special weight ω which is greater than all
natural numbers. In combination with the operator Θ(A) this yields a form
of priority: in a choice between an ω weight and a natural number weight,
the process with the ω weight must be taken if possible. Prioritised weights
are written mωn where m,n ≥ 0 ;

• A×B the synchronous parallel composition of A and B . At each stage each
process must perform an action with the composed process performing the
composition of the individual actions, e.g. a : A × b : B yields a#b : (A×B).
This is a powerful operator: models are constructed by describing simple indi-
viduals and composing a number of those in parallel. McCaig [17] introduces
an extended notation A{n} which is syntactic sugar for n instances of process
A in parallel, where n ∈ N ;

• AdL a process which can only perform actions in the group L . This operator
is used to enforce communication on actions b /∈ L. Two processes in parallel
may communicate when one carries out an action and the other carries out
the matching co-action, e.g. infect and infect . Communication can be used to
model passing of information from one process to another, or to coordinate
activity. Such communication is strictly two-way; that is, only two processes
may interact on this action ;

• Θ(A) discards all the non-ω weighted parts of the process A , i.e. ensures pri-
oritised actions are always executed in preference to non-prioritised actions ;

• A[S] represents A relabelled by the function S (we do not use relabelling in
this paper, but it is included for completeness) ;
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a:A
a−→A

P
{wi.Ai|i∈I}

wi7−→Ai

A
a−→A′ B

b−→B′

A×B
a#b−→A′×B′

A
w7−→A′ B

v7−→B′

A×B
wv7−→A′×B′

A
a−→A′ B

w7−→B′

A×B
w7−→A×B′

A
w7−→A′ B

a−→B′

A×B
w7−→A′×B

A
a−→A′ a∈L
doesL(A)

A
w7−→A′ doesL(A′)

doesL(A)

A
a−→A′ a∈L

AdL a−→A′dL
A

w7−→A′ doesL(A′)

AdL w7−→A′dL

A
a−→A′

A[S]
S(a)−→A′[S]

A
w7−→A′

A[S]
w7−→A′[S]

A
a−→A′ X

def
= A

X
a−→A′

A
w7−→A′ X

def
= A

X
w7−→A′

A
a−→A′

Θ(A)
a−→Θ(A′)

A
nωi
7−→A′@(j>i).A

mωj
7−→A′′

Θ(A)
n7−→Θ(A′)

Table 1. Operational rules for WSCCS

• X
def= A represents binding the process variable X to the expression A .

The semantics of WSCCS is transition based, defining the actions that a
process can perform and the weight with which a state can be reached. The oper-
ational rules of WSCCS, presented in Table 1, formalise the descriptions above. In
particular note the two different arrows which feature in the table: a→ represents a
transition associated with the action a ; and w7−→ represents a transition associated
with a weight w . The auxiliary predicate doesL(A) , which denotes the ability
of A to perform L after zero or more actions, is well defined since only finitely
branching choice expressions are allowed.

2.2. Deriving Mean Field Equations from WSCCS Models

In McCaig’s thesis [17] and the related report [18] a method (referred to hereafter
as the Stirling method) is described to automatically derive Mean Field Equations
from WSCCS models. We give an overview of the approach here to aid under-
standing of the following sections. Worked through derivations are given at the
end of this section and in Sect. 3.2.1. The method provides equations for all other
models in the paper.

Consider the simple model of population growth in Fig. 1. The N agents
die with probability pd, becoming the null agent 0, give birth with probability pb,
becoming the agent consisting of two N agents in parallel, or do neither with prob-
ability (1− pd − pb), remaining as a single agent N . The model can be simulated,
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N
def= pd.

√
: 0 + pb.

√
: (N ×N ) + (1− pd − pb).

√
: N

Population def= N{n}d{
√
}

Figure 1. Naive population model

producing a single trace through the dynamics of the system. A second simulation
may of course produce quite different behaviour since this is a stochastic pro-
cess; therefore, of more interest is the average behaviour of the system as time
progresses. This can be obtained by averaging the time series results of repeated
simulations of the system. Clearly this becomes time-consuming and computation-
ally expensive as the number of processes n and number of repetitions increases.
An alternative is to generate the whole transition system for the model and to av-
erage the states produced, but as n increases the state space grows exponentially
thereby also incurring considerable computational expense.

The Stirling method avoids generating the state space of the whole system,
instead applying transformations to the WSCCS expression of the model, yield-
ing an approximation (mean) of the transition system in the form of first-order
mean field equations. The approximation is shown to be “good” (i.e. lies within
the standard deviation when compared with repeated simulations) in McCaig’s
thesis. Further, when the system becomes infinitely large, the mean of the DTMC
corresponding to the transition system is proved to be equivalent to the derived
MFEs. Larger populations eliminate the stochastic effects associated with low copy
numbers.

The advantages of our approach are: the computational expense of generating
the state space and/or simulation is avoided (the Stirling method is O(a2c) where
a is the number of agent types and c is the number of distinct actions in the
WSCCS description); it is a symbolic approach (avoiding questions regarding the
exploration of the parameter space); and the MFEs, being a different view of the
system and amenable to further analysis, offer new insight to the system.

The Stirling method applies to models of the form A1{n1} × ... × Am{nm}
where the Ai communicate with each other (usually on a subset of actions). Models
are limited in that steps involving probabilistic choice between actions must be
separate from steps involving communication (which must have branches weighted
1). These restrictions on model form have not proved to be a barrier to expressing
epidemiological models.

Independently, the PEPA group [5, 13] and Cardelli [7] have proposed meth-
ods for deriving ODEs from process algebra. Their work differs in that their process
algebras are continuous, based on rates rather than probabilities. Two of the meth-
ods are based on a mass action assumption, and not tied to the standard process
algebra semantics. In contrast, our goal has been to preserve this association, so
that understanding individuals and their interactions translates automatically to
population behaviour via process algebra semantics.
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for each agent Ai {
for each (wj .aj : Aj) ∈ transitions(Ai) {

for each Ak ∈ components(Aj) {
TT[(Ai, aj),Ak] = TT[(Ai, aj),Ak] + calculateTerm(Ai, wj , aj)

} } }

Figure 2. Constructing the transition table from a WSCCS model

Transition Table: Relating Actions to Overall System Evolution. The transition
system may be viewed as the evolution of the state vector A1{n1}× ...×Am{nm} .
For a particular Ai an action has three possible effects:

exit activity. Following the action, the process Ai evolves to some other agent
Aj therefore the number of Ai agents is decreased.

entry activity. Following the action, the process Ai evolves to some other agent
Aj therefore the number of Aj agents is increased.

none. The process becomes Ai and there is no change in number of Ai agents.
WSCCS is a synchronous calculus, therefore in each time step, for every agent in
the system, one of the above activities will occur. Our method is based around
construction and interpretation of a transition table TT noting these exit and
entry activities (Fig. 2).

The rows of TT denote the agents Ai at time t and their enabled actions aj .
The columns of the transition table denote the agents Ak at the next time t + 1.
The term in cell [(Ai, aj), Ak] is an expression describing the number of Ait agents
performing aj to become Akt+1. The derivation of this symbolically expressed term
is fully determined (see below) by the context of the action carried out (e.g. part
of a probabilistic choice, or part of a communication) and the composition of the
population. Where Ai evolves to the same agent Ak irrespective of the action
performed a single row labelled [(Ai, ∗), Ak] is used for that agent. An example
is the Res1 agent of Fig. 4. The mean field equation for Akt+1 is obtained by
summing the terms in the column Ak.

Some auxiliary definitions are required. Processes can be classified by syn-
tactic features as: communicating (having an action enabled that is involved in
a communication), probabilistic (having only actions enabled that are not in-
volved in communication), and priority (communicating and using ω weights).
Given a serial process A = w1.a1 : A1 + w2.a2 : A2 + ... + wn.an : An define
transitions(A) = {w1.a1 :A1, w2.a2 :A2, ..., wn.an :An}. Given a parallel process
A = A1 × A2 × ... × An define components(A) = {A1, A2, ...An}. For a process
communicating on action a, we define two groups of agents involved in the com-
munication: collaborators are those processes with the matching action a, and
competitiors are those processes with the same action a.

The pseudo code to compute the terms in TT is given in Fig. 3. For proba-
bilistic choice, the semantics of WSCCS (Table 1) specifies that over a number of
experiments the different branches will be taken in numbers consistent with their
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function calculateTerm (A,w, a): String {
case A in {

probabilistic(A): return w ∗At;
communicating(A) and priority(A):

term = (At ∗ collaborators(A))/(At + competitors(A));
if a equals

√
return (A - term) else return term;

communicating(A) and not priority(A):
term = (At ∗ collaborators(A))/(At + collaborators(A) + competitors(A));
if a equals

√
return (A - term) else return term;

}}

Figure 3. Calculating the number of agents at time t + 1

weights. For convenience, the weights in such choices sum to 1 in the models in
this paper hence the term is simply wAt. For communication, we enumerate the
possible outcomes based on a classification of modes of communication (prioritised
or not, single action a or multiple actions e.g. a#a#a). This results in complex
formulae based on the weighted multinomial choice of those outcomes giving the
average number of communications. For single actions, as used in this paper, these
formulae can be simplified. These are the formulae used in the calculateTerm func-
tion of Fig. 3. The full version of the method [17, 18] assumes weights do not have
to sum to 1, and also gives the formulae for multiple action communications.

2.2.1. Derivation of MFE for a Simple Population Growth Model. Consider again
the simplistic model of population growth given in Fig. 1. The actions in Fig. 1 are
simply

√
. That is, activities are of no interest, only the evolution of numbers of

agents is significant. As in all of our models, the system as a whole is described by
the system equation Population, comprising multiple copies of each kind of agent
in parallel.

The transition table for this system is as follows:

0 Nt+1

(Nt,
√

) pdNt (1− pb − pd)Nt + 2pbNt

Each column leads to a MFE for that agent, but 0 is ignored here since this is not
of interest to us. The Stirling method generates the following MFE:

Nt+1 = (1 + pb − pd)Nt , (1)

where Nt+1 represents the number of N agents at time t + 1 expressed in terms
of Nt, the number of N agents at time t. Since this model has no communication
between agents, and a single step with probabilistic choice, the derived MFE can
be easily verified manually. A further example of derivation of the MFE is given
in Section 3.2.1, but otherwise the method is used to generate MFE for models of
population growth without further explanation.
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3. Density Dependent Growth

Equation (1) describes a simple recurrence relation. With pb > pd the population
will become infinitely large; pb < pd will lead to the population dying out, while
pb = pd will lead to an equilibrium state for any initial population size, N0 = n.
The probabilities pb and pd are fixed, therefore the average behaviour of this model
is similar to that of the simple exponential growth model described by Malthus
[16]. Biologically, it is more realistic to consider a model in which the probability
of birth and death vary depending on the size of the population at each instant in
time (density dependence). For example, as the population grows, resources such
as food and shelter become scarce, therefore individuals become weaker and are
more likely to die. Alternatively this weakness may manifest itself as a reduced
fecundity and a reduction in the birth rates. This section presents several ways of
modelling these notions in WSCCS, obtaining more realistic models of population
growth.

3.1. Functional Probabilities

What is required is the ability to modify pb and/or pd on the fly as the popula-
tion changes. The first method described here is to add assumptions about how
probability of birth and death depend on population size using functional proba-
bilities [17]. Functional probabilities add considerable convenience and elegance of
expression to complex models, while adding no new semantic concepts to WSCCS.
Functional probabilities are implemented by encoding population size as part of
the agent name, a technique [19] commonly used in process algebra. The size of
the resultant model is much increased, and the translation itself is unremarkable:
the interested reader is referred to [17] for the full details.

Instead of fixed probabilities, a functional definition is given. For example,
probability px is a function f of the number of A agents (denoted bAc):

px
def= min(max(0, f(bAc)), pL) .

The function may take any format required, since it appears directly in the MFEs
and is often not computed numerically. The probability pL is the upper limit for
px, chosen to ensure that all probabilities in the model are always in the range
0 ≤ p ≤ 1. The min and max expressions may be required to ensure that px is in
the allowed range, but these terms make mathematical analysis of the MFEs more
complex. If there is a low likelihood of reaching a state where min and max are not
satisfied by f then it is reasonable to assert px = f(bAc) in further analyses. The
justification is that those states make little contribution to the average behaviour
captured by the MFEs therefore can be ignored.

3.1.1. Density Dependent Birth. Density dependent birth can be added to the
model of Fig. 1 by making the probability of birth pb inversely proportional to
bNc.

pb
def= min(max(0, pb0 − k ∗ bNc), pL) ,
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where pb0 is the probability of birth in the absence of crowding and k is a measure
of the strength of the effect of crowding, 0 < k � 1.

Using the method of Sect. 2.2, the MFE derived is

Nt+1 = Nt + (pb0 − kNt − pd)Nt

= Nt + (pb0 − pd)Nt

(
1− kNt

pb0 − pd

)
. (2)

This is our first realistic model of population growth, derived from an expression
of individual behaviour. Compare this to the discrete time version of Verhulst’s
logistic equation

Nt+1 = Nt + rNt

(
1− Nt

K

)
. (3)

where r represents reproductive rate and K the carrying capacity of the popula-
tion. Simple substitution of r = (pb0 − pd) and K = (pb0 − pd)/k in (3) yields (2).
The logistic equation is the most commonly used equation for describing popula-
tion dynamics and is frequently included as a self limiting growth term in models
of disease spread. This gives confidence in our approach, and endorses Verhulst’s
equation.

3.1.2. Density Dependent Death. Density dependent death can similarly be added
to Fig. 1 by choosing probability of death pd directly proportional to bNc with

pd
def= min(max(0, pd0 + k ∗ bNc), pL) ,

where pd0 is the probability of death in the absence of crowding. The MFE, derived
once again using our method,

Nt+1 = Nt + (pb − (pd0 + kNt))Nt

= Nt + (pb − pd0)Nt

(
1− kNt

pb − pd0

)
,

is equivalent to the logistic equation with r = (pb − pd0) and K = (pb − pd0)/k.

3.1.3. Summary. The results above are pleasing: we have shown that it is possi-
ble to derive the logistic equation from an individual based model of population
growth. This contradicts the findings of Brännström and Sumpter [4] who did
not find the logistic equation for any of their models. Our results should not be
surprising: in the functional probabilities we are making the probabilities linearly
proportional to the population size, effectively encoding the same assumptions
which lead to the logistic equation in the traditional population level models. It
would have been more surprising if we had not derived the logistic equation.
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N1 def= 1.get : (N2×N2) + 1.
√

: N2

Res1 def= 1.get : Res2 + 1.
√

: Res2

N2 def= pd.
√

: 0 + (1− pd).
√

: N1

Res2 def= 1.
√

: Res1

Population
def= (N1{n} × Res1{f})d{

√
}

Figure 4. Density dependence on births with non-prioritised communication

3.2. Explicit Resource

The advantage of individual based modelling techniques is that population level
assumptions can be avoided, to be replaced by population level behaviours arising
from the explicit individual interactions. To the models seen so far we add agents
representing “resource”, e.g. food, shelter, or space. The resource is required by
individuals to survive. It is finite and individuals must compete for it. It does
not last forever, therefore must be reacquired at regular intervals. Access to this
resource can be used to determine the likelihood of either birth or death.

Acquiring a resource is modelled in WSCCS by communication between re-
source agents and individuals, requiring the use of more complex language features
than seen in the models so far. Two forms of communication are available: priori-
tised and non-prioritised. Using prioritised communication between the resource
agents and the population agents forces individuals to obtain the resource if it is
available; however, in a population it is likely that some individuals may fail in
this. For example, individuals foraging may fail to find food which is present. Us-
ing non-prioritised communication models the possibility that individuals do not
obtain the resource, even when it is available, and is therefore more biologically
plausible. As above, models exploring density dependence on births and density
dependence on deaths are considered separately.

3.2.1. Density Dependence on Births. The model given in Fig. 4 has individuals in
the population competing for the available resource (the get action), giving birth
after obtaining this resource, and dying probabilistically.

The agents N1 and N2 represent the members of the population at the
different stages of the model. The N1 agents can obtain the resource and become
the parallel agent N2×N2, representing birth. If they do not obtain the resource
the N1 agents become a single N2 agent. In the second stage of the model the N2
agents make a probabilistic choice to die or survive. The total number of resource
agents is constant therefore the agents Res1 and Res2 should be thought of as
units of resource produced by the environment in a time step rather than, for
example, discrete portions of food consumed by the population.

Deriving the terms of the MFEs for this model is more complex than for the
previous examples: although the definition of N1 suggests the choice to get or not is
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equally weighted, in fact this choice is also influenced by availability of Res1 agents
with which to synchronise. This is reflected in the calculateTerm function described
in Sect. 2.2. For example, here it is possible that no individuals get the resource
(with very low probability), or that all do (also with low probability, and assuming
bN1c ≤ bRes1c), or all of the possibilities inbetween. As explained earlier, the
calculateTerm function yields a formula based on the weighted multinomial choice
of those possible outcomes. The Stirling method yields the following transition
table. Note that the term for the communicating action (get) reflects that N1
collaborates with Res1 but has no competitors for the action.

0 N1t+1 N2t+1 Res1t+1 Res2t+1

(N1t, get) 2 N1t∗Res1t
N1t+Res1t

(N1t,
√

) N1t − N1t∗Res1t
N1t+Res1t

(Res1t, ∗) Res1t

(N2t,
√

) pdN2t (1− pd)N2t

(Res2t, ∗) Res2t

From the table above, summing each column, the Stirling method generates
MFE for all agents, i.e. N1, N2,Res1,Res2, where N1 is expressed in terms of N2
and vice versa. Similarly for Res1 and Res2. Generally we are interested only in a
complete cycle of behaviour. That is, starting with agents N1, evolving to agents
N2, then back to N1 (two stages here). We take the N1 equation, substitute to
remove occurrences of N2 and obtain an equation only in N1 (and Res1). Finally,
we rename N1 as simply N . The fact that the number of resource agents remains
constant means that the derived MFE for Res1 can be simplified to f in the MFE
for N . This leads to the MFE

Nt+1 = (1− pd)Nt +
(1− pd)fNt

f + Nt
. (4)

Here the term (1 − pd)Nt represents those individuals in the population which
survive the probabilistic death stage. The term fNt/(f +Nt) represents the mean
number of new births with the factor (1− pd) representing the proportion of new
births which survive the probabilistic death stage. We find the steady state of this
model by setting Nt+1 = Nt = N∗:

N∗ = (1− pd)N∗ +
(1− pd)fN∗

f + N∗ .

Solving for N∗ we get

N∗ =
(1− 2pd)f

pd
.

For biological realism the steady state should be positive, therefore pd < 0.5.
Note that this fact is not obvious from the WSCCS model, but becomes clear
in the MFE. The values of these probabilities can be observed in the field, but
an important factor is the length of timestep. If we need to reduce pd to meet
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N1 def= 1.get : N2 + 1.
√

: 0

Res1 def= 1.get : Res2 + 1.
√

: Res2

N2 def= pb.
√

: (N1×N1) + pd.
√

: 0 + (1− pb − pd).
√

: N1

Res2 def= 1.
√

: Res1

Population
def= (N1{n} × Res1{f})d{

√
}

Figure 5. Density dependence on deaths with non-prioritised communication

the above requirement we can reduce the timestep represented by our models and
adjust all other parameters accordingly.

Sumpter [26] developed a mechanism for describing self limiting growth in a
population which made use of food as an agent. Using an heuristic he derived the
following MFE

Nt+1 = (1− pd)Nt + min[(1− pd)Nt, f ] ,

where pd is the probability of death in any timestep and f is the number of food
agents. The underlying assumptions of this model are undesirable biologically:
individuals are guaranteed to find food if it is available because prioritised com-
munication is used. Therefore, every member of the population will give birth at
each step of time until the size of the population is larger than the number of
food agents, after which the number of births will be equal to the number of food
agents. This model has a stable steady state of N∗ = f/pd, when pd ≤ 0.5, which
is larger than for our model.

3.2.2. Density Dependence on Deaths. In Fig. 5 the N1 agents can once again get
the resource, becoming the agent N2, but here if they do not get the resource they
die, becoming the null agent 0. The N2 agents then give birth probabilistically
and, to be realistic, can also die probabilistically. That is, in each step of time a
proportion of the population die, for instance, due to age and some die due to a
lack of food. The MFE for this model is

Nt+1 = (1 + pb − pd)
fNt

f + Nt
, (5)

where the term f/(f + Nt) represents the proportion of the population who sur-
vive the competition for resource, with the factor (1 + pb − pd) representing the
increase in the population due to births and the decrease due to probabilistic
death. Equation (5) can be rearranged to give

Nt+1 =
aNt

1 + bNt
, (6)

where a = (1 + pb − pd) and b = 1/f . Equation 6 is the Beverton-Holt model [3],
originally proposed as a model of salmon populations displaying density dependent
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birth. Even though our model is based on density dependent death the interpre-
tations of a and b here are similar to the original Beverton and Holt definitions.
Parameter a corresponds to the proliferation rate per generation and parameter b
corresponds to a measure of the maximal population size. Our derivation endorses
the plausibility of the Beverton-Holt model, which is commonly used in models of
plant populations but not so widely used for animal populations.

Setting Nt+1 = Nt = N∗ in (5) and solving for N∗ yields the steady state

N∗ = (pb − pd)f .

In this case to ensure the steady state is positive we require pb > pd .

3.2.3. Summary. Communication is one of the most important language features
of process algebra. Here, it has been used to synchronise the behaviour of processes
and thus restrict population growth. This explicit resource acquisition does not
result in logistic growth, as in the previous models, but does yield a growth model
previously defined in the literature by Beverton and Holt. This gives confidence in
this method of regulating population growth, and also in our modelling approach.

Of course, making as much as possible explicit in the model relies on a deep
understanding of the behaviour described, and of the nature of synchronisation
and parallelism in process algebra. Small changes to the process behaviour may
have a large effect on population dynamics. This can be both an advantage and
a disadvantage, and forces the modeller to think carefully about the biological
interpretation of the model. For example, swapping the order of the step where
resource is obtained and the step where individuals are born or die seems a small
change, but the biological implication is that newborn individuals are now available
to compete for the available resource and the individuals which probabilistically
die are not. The population dynamics have altered. Biological interpretation of
the model is paramount and this becomes more obvious when considering more
complex models such as that in Sect. 4 in which infectious disease spread is added
to population dynamics.

4. Population Dynamics and Disease

While population dynamics are interesting in their own right they are also crucial
in developing realistic models of disease spread. In this section a model adding
disease spread to population growth is presented and the model is then fitted to
widely available data on HIV spread in the UK [12].

4.1. Model

The model of Fig. 6 adds infectious disease spread, based on the models of Norman
and Shankland [20], to the density dependent death population dynamics of Fig. 5.
In a typical disease model the population is divided into 3 groups: susceptibles (S)
have never had the disease, infecteds (I) currently have the disease, and recovereds
(R) have previously had the disease and are immune to future infection. This is
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S0 def= 1.get : S1 + 1.
√

: 0 S1 def= ω.infect : SI2 + 1.
√

: S2

R0 def= 1.get : R1 + 1.
√

: 0 R1 def= ω.infect : R2 + 1.
√

: R2

I0 def= 1.get : (I1× Trans) + 1.
√

: 0 I1 def= ω.infect : I2 + 1.
√

: I2

Res0 def= 1.get : Res1 + 1.
√

: Res1 Trans def= ω.infect : 0 + 1.
√

: 0

Res1 def= 1.
√

: Res2

Res2 def= 1.
√

: Res0

S2 def= pb.
√

: (S0× S0) + (1− pb − pd).
√

: S0 + pd.
√

: 0

SI2 def= pb.
√

: (S0× S0) + pa.
√

: I0 + (1− pa − pb − pd).
√

: S0 + pd.
√

: 0

I2 def= pb.
√

: (I0× S0) + pr.
√

: R0 + (1− pr − pb − pd).
√

: I0 + pd.
√

: 0

R2 def= pb.
√

: (R0× S0) + (1− pb − pd).
√

: R0 + pd.
√

: 0

Population
def= Θ((S0{s} × I0{i} ×Res0{f})d{

√
})

Figure 6. SIR model with density dependence on deaths

the classic SIR presentation of disease transmission, introduced by Kermack and
McKendrick [15].

The first stage in the model is the foraging stage in which S0, I0 and R0 all
compete for resource. Those that do not obtain the resource will die, as in the
model of Fig. 5. The second stage is a contact stage in which infected agents come
into contact with the population and potentially pass the disease to susceptibles.
The infected individuals are represented by parallel agents with the Trans agents
passing on the disease and the I1 agents able to be contacted by a Trans agent.
Communication is prioritised so that all Trans make contact. While this form
of communication was inappropriate for obtaining a resource in the models of
Section 3.2, here prioritised contact is biologically plausible for two reasons. First,
contact is not guaranteed to result in infection (see SI2). Second, contact with
the whole population is possible (so the Trans are not magically seeking out the
susceptibles). S1 that are contacted become SI2, while I1 and R1 agents are
not affected by contact since infected and recovered individuals cannot become
infected again. After the contact stage the Trans agents all become the null agent
0 so that the infected individuals are once again represented by a single agent. The
final stage is the probabilistic stage in which all individuals can give birth to a
susceptible individual, with probability pb, or die, with probability pd. In addition
the SI2 agents become infected with probability pa and I2 agents can recover with
probability pr.
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The system of MFEs derived from this model is:

St+1 =
f

f + Nt

(
(1− pd)St + pbNt −

paStIt

Nt

)
,

It+1 =
f

f + Nt

(
(1− pd − pr)It +

paStIt

Nt

)
,

Rt+1 =
f

f + Nt

(
(1− pd)Rt + prIt

)
, (7)

where Nt = St + It + Rt , the total population size at time t. These are similar to
the standard SIR equations with frequency dependent transmission of disease [2],
a form arising naturally from WSCCS models [20]. Here, however, there is an extra
factor of f/(f + Nt) on each equation describing the proportion of the population
with appropriate resource. This is unconventional since in traditional models the
transmission term (in this case (paStIt)/Nt) is not affected by the density depen-
dent birth or death term. We emphasise that the population dynamics of (7) come
directly from explicit representation of individuals competing for resource rather
than any population level assumptions imposed on the model. These equations are
therefore candidates for modelling population dynamics in disease systems, despite
the differences to traditional models.

In contrast, if we had taken the population dynamics from Sect. 3.1, with
functional probability of birth, and added disease as above, we would merely add
a logistic term to the equation for S with each group also dying probabilistically.
This result would be closer to the traditional ODE models and would be simpler to
analyse mathematically than (7) since the nonlinear density dependent term only
appears in one equation (S). Despite this, the resource based approach to density
dependence is preferable since this avoids implicit assumptions about population
growth that may be incorrect.

4.2. Data Fitting

Although Fig. 6 and the derived MFE (7) describe a generalised disease they can
still be useful as a first model for studying real disease systems, given appropriate
simplifying assumptions. In this section we fit (7) to data for the spread of HIV in
the UK. HIV was chosen for three reasons. First, data is available. The UK popula-
tion statistics are published by the Office for National Statistics [23] and statistics
on HIV diagnoses and deaths are published by Health Protection Agency [12]. The
data we use is annual population data from 1997 to 2007 and numbers of people
infected with HIV for the same period. Second, the model of Fig. 6 incorporates
frequency dependent transmission of disease, i.e. individuals make a fixed number
of contacts regardless of the size of the population. HIV, in common with other
sexually transmitted diseases, is usually regarded as having frequency dependent
transmission. Third, the model of Fig. 6 does not incorporate a term for death due
to the disease. HIV can be viewed in this way if data for the period 1997-2007 is
considered, which corresponds to the period after the introduction of highly active
antiretroviral therapy (HAART) [8]. Since HAART greatly reduces the number of
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deaths associated with infection the assumption that the disease does not increase
the probability of death is reasonable.

The process of fitting to data is done in two steps. First we fit the data for
overall population growth ignoring the disease, assuming values for the parameters
pb (probability of birth) and f (amount of resource), and fitting a value for pd

(probability of death) to get the best fit of the model to the data. Second we look
at aspects of the disease, assuming a value for pr (probability of recovery) and
fitting pa (probability of transmission following contact).

The time step we choose for the model is one year since we are fitting the
model to annual data. This implies that infectious individuals make only one poten-
tially infectious contact per year. Recall that this means unprotected sex between
an infectious individual and a susceptible individual, and is an average for the
whole population (not just the sexually active subgroup of the population). Note
also that in our models, transmission is the product of c the contact rate and pa

the rate of infection following contact. Therefore, for a fixed transmission rate, as
c increases, pa decreases. Given that we are taking a simplified view of the disease,
it is more straightforward to set c = 1 and to fit pa to the data. We will take the
simplifying assumptions into account when interpreting the results.

The underlying population growth expressed in Fig. 6 is

Nt+1 = St+1 + It+1 + Rt+1

= (1 + pb − pd)
fNt

f + Nt
,

i.e. the same as (5), the MFE for Fig. 5. This is because the disease has no effect
on the overall size of the population. We fit (5) to the total population size [23].

The probability of birth was taken to be pb = 0.0119. This corresponds to a
crude birth rate of 11.90 per 1000 of the population, which was the mean birth rate
in the UK between 1997 and 2006 [22, 9, 21]. The quantity of available resource
was chosen to be very large, f = 1012, because it was felt that competition for
resources would have a small effect in a developed country such as the UK. This
means that pd is the only parameter to be fitted and the equation becomes

Nt+1 = (1.0119− pd)
1012Nt

1012 + Nt
, (8)

with initial conditions N1997 = 58314249 (the UK population in 1997 [23]). Fitting
(8) to the data by the method of least squares [31] gives the probability of death
as pd = 0.00782.

Next the data for the numbers of HIV infections is fitted to (7). Since recovery
from HIV infection is not possible we choose pr = 0 and can eliminate the equation
for R. Making use of the parameters which were already fitted above the equations
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Figure 7. Infecteds (I) of (7) for pb = 0.0119, f = 1012, pd =
0.00782, pr = 0, pa = 0.138 and initial population S1997 =
58291402, I1997 = 15182, R1997 = 0.

to be fitted to the data for the numbers of infected individuals are

St+1 =
1012

1012 + St + It

(
0.99218St + 0.0119(St + It)−

paStIt

St + It

)
,

It+1 =
1012

1012 + St + It

(
0.99218It +

paStIt

St + It

)
, (9)

with I1997 = 22847 (the number of infected individuals in the UK in 1997 [12])
and S1997 = N1997 − I1997 = 58291402. This leaves us with one parameter, pa, to
be chosen. By fitting the equation for I to the data, again by least squares, we
find pa = 0.138.

In Fig. 7 the MFE for I is plotted alongside the data for the number of
infections. We can see that the model follows the data closely for the entire period
being considered. This shows us that, despite its simple, generalised nature, our
model can be useful in describing a real disease system. To more accurately describe
the spread of HIV a more specific model could be developed. Such a model would
feature disease induced death - HAART does not entirely eliminate AIDS related
deaths - and may also split the population into subpopulations since it is well
known that some groups (e.g. intravenous drug users and gay men) are at increased
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risk of infection. The population model itself would also be more realistic, including
migration as well as births and deaths.

5. Conclusion

In this paper we have presented models of population dynamics in which the pop-
ulation will, over time, tend to some steady state and will not display unbounded
growth. Two distinct mechanisms were used to achieve bounded growth: the im-
plicit approach in which the effects of restricted resources are included by allowing
more complex language features in the model (functional probabilities) and the
explicit approach in which those resources are represented by agents. The intro-
duction of functional probabilities allow us to succinctly take full advantage of
the expressive capabilities of WSCCS. These models led naturally to the logistic
equation [30], the classical expression used to describe population dynamics. This
is in contrast to the results of Brännström and Sumpter [4] who found several
other existing expressions could be derived from their individual based models but
not the logistic equation. The logistic equation arises from our models because
the assumptions used to introduce density dependence – functional probabilities
which are linearly proportional to the population size – match the assumptions on
which the logistic equation is based. If we use functional probabilities which are
non-linearly proportional to the population size we would of course obtain different
MFEs. It can be easily argued that adding functional rates is self-defeating for our
objectives; if we allow inclusion of strong implicit assumptions, such as the nature
of population growth, then we may as well simply write down the MFEs directly.

In order to reduce the number of population level assumptions in our models
we have also developed models which feature agents to represent resource, with
the dynamics in the population arising from the competition between individuals
for that resource. With density dependent death this model leads to the Beverton-
Holt model [3] which was proposed for the population dynamics of fish stocks. The
fact that this equation has naturally arisen here from the competition between
individuals means we can consider the Beverton-Holt model a serious candidate
to be used when modelling population dynamics.

Lastly, our goal in population modelling is to incorporate models of disease to
gain a more realistic individual based disease model. By adding a model of disease
spread to population dynamics we have derived a system of equations (7) which
differs from those which have previously been described in the literature. The
population dynamics in our model naturally arise from the interactions between
individuals and the environment, rather than any assumptions imposed at the
population level. Therefore, we have well-founded reason to propose this model for
a disease system featuring density dependence in deaths. The model was validated
with respect to data on HIV in the UK population. Since a very simple model
was used, a number of strong assumptions were required in fitting the model to
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the data. Future work will include developing more complex realistic models and
validating those models with disease data.

Of course it would have been possible, especially for these simple models, to
write down plausible mean field equations, or to have written down the Markov
Chain directly. The advantage of process algebra is that it gives a convenient
and modular way of writing down individual behaviour. The contribution of our
work is to then convert that individual based model into something facilitating
rigorous algebraic manipulation. The resulting (automatically derived) population
dynamics are based directly on explicit assumptions about the individual interac-
tions which are fundamentally important in any biological system. Our approach
therefore makes it straightforward to study the population level dynamics under
different assumptions.
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