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Abstract

A stochastic metapopulation model of
infectious disease was developed to model
the spread of disease within and between
sites of a region of an aquaculture industry.
The study was a theoretical one examining
the effect of transmission parameters
through a sensitivity analysis. Production
was modelled as either dispersed over many
sites, or concentrated into small areas to
provide ‘firebreaks’ between such areas as a
disease control strategy. The effectiveness of
such a control strategy could then be
examined for different industry and disease
parameters (for example, overall production,
and rates of within- and between-site
infection). At the within-site level, contact
was modelled as either frequency or density
dependent, either of these extreme
formulations being potentially appropriate
for different diseases. Under density
dependence, the effect of high host density
of increasing the basic reproduction number
R0 dominates, in contrast to the frequency
dependent model. However, for both model
types, concentration of production into
separate areas successfully slows the spread
of simulated disease, particularly where
long-distance transmission of the pathogen is
weak due to fast attenuation of infectious
agent over distance and time.
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1 Introduction

As disease control measures to combat
infections such as pancreas disease and
infectious salmon anaemia in Atlantic
salmon, governments have implemented
such policies as control zones and
restrictions on siting of aquaculture farms in
both Norway and Scotland (Anon, 2008).
With these measures, there has been a
general tendency towards concentration of
production into fewer populations with
greater separation. In Scotland, the number
of Atlantic salmon sites declined from 189 to
135 between 1999 and 2007, while
production varied around c. 130,000 tonnes
over the same period (Smith, 2008). In
aggregating aquacultural production, the
proposed benefit is that increased distance
between sites acts as an epidemiological
‘firebreak’, preventing spread of disease from
infected sites to susceptible sites. However,
locally increasing host density has long been
associated with risk of infectious disease
(Reno, 1998). Aggregating production
therefore carries with it both benefits and
costs in terms of disease risk, and whether
the benefits outweigh the costs is very likely
to depend upon the features of particular
diseases. This balance is the subject of this
paper.

With production being divided into
high-density sites, there are two main levels
of epidemiological unit: the site, and the
fish. The added complexity of sites
containing structure due to having multiple
pens, cages, ponds, or raceways is not
considered in this paper. This two-level
contact structure is easily implemented using
a metapopulation model (Levins, 1969),
where a population of individual fish (and
their pathogens) exists at each of a
population of sites (with flow of pathogen
between sites). Metapopulation models are
an established tool in modelling the spread
of diseased individuals or infectious agent in
such structured populations, for example for
measles (Grenfell and Harwood, 1997) and
bovine tuberculosis in possums (Fulford et
al., 2002). At the between-site level, we are

concerned with the relatively rare but
important event of disease introduction.
Modelling such events requires care.

Consider a disease with a risk of de
novo infection of 10−5 y−1. Once introduced,
the disease increases with an intrinsic rate of
natural increase r of 10 y−1. In a stochastic
model, one would expect one infection event
every 10,000 years. However, in a
continuous, deterministic equivalent model,
it takes approximately 5 years until a
population size of one infected individual is
reached. This is quite a bit faster. This simple
model suffers badly from the ‘atto-fox’
problem (10−18 fox) of allowing implausibly
small proportions of a single individual to be
simulated (Mollison, 1991). Clearly, the
continuous, deterministic model is far from
appropriate in modelling risk of disease
under these circumstances, with rare – but
important – events. The opposite problem is
encountered in the Nicholson-Bailey model
(Nicholson and Bailey, 1935) of
host-parasitoid population dynamics. The
deterministic form of the equation predicts
ever-increasing oscillations in populations of
both species. However, the troughs in these
populations are ever smaller over time, and
in an equivalent stochastic model extinction
of one or other species is rapidly reached.

A stochastic modelling approach is
more appropriate for modelling such risk of
disease incursion, as has been carried out (in
the field of aquaculture) for risk of inter-river
transmission of Gyrodactylus salaris (Paisley
et al., 1999; Høgåsen and Brun, 2003), and
inter-site spread of infectious salmon
anaemia (ISA; Scheel et al., 2007), and more
generally by Thrush and Peeler (2006).
These approaches are complemented by risk
evaluation studies of low-frequency,
high-impact disease transmission events, e.g.
for infectious salmon anaemia (ISA; Munro
et. al. 2003) and see Murray and Peeler
(2005) and Peeler et al. (2007) for general
principles.

In this paper, we propose a simple
model for the spread of disease amongst a
population of marine fish farms, using a
metapopulation framework, which is fully
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stochastic. The model parameters include
disease-related and production-related
parameters, allowing predictions to be made
strategically about the effects of aggregating
or dispersing, increasing or decreasing,
production, in terms of the risk and potential
spread of different diseases. The study is a
theoretical one, using hypothetical
parameter values to make relative
comparisons between model outputs through
sensitivity analysis. This allows us to identify
which parameters might be important for
different types of diseases, and thus where
experimental studies might be usefully
focussed. The paper is not concerned with
parameterising the model for specific
diseases: this is a complex task in its own
right.

Our model assumes that the force of
infection between sites is related to distance,
as might be the case where a substantial part
of the risk of disease transmission between
sites comes from spread of infectivity
through the water column (either direct or
by a vector), as can be the case for highly
infectious diseases such as ISA (e.g.
Gustafson et al., 2007). However other
potentially infectious links between sites are
probable. Wellboat movements have been
implicated as a potential disease
transmission risk (Murray et al., 2002); and
for ISA, one recent study indicated risk from
sources aside from the local contact network
and seaway to be a large component of risk
of infection in the Norwegian salmon
industry (Scheel et al., 2007). Though an
important route of pathogen introduction,
for salmon, site-to-site movements outside of
stocking and and harvest are relatively
infrequent (Green et al., 2009). Therefore,
strategically, there is merit in considering the
potential spread of epidemic diseases that
operate over short timescales through local
areas such as single management areas,
outside of introduction through
anthropogenic routes.

2 Method

2.1 Model

We begin with the following simple
compartmental, differential equation model
of density-dependent epidemic dynamics
(i.e. per-individual contact is rate
proportional to population size) and
production at the level of an individual farm.

di

dt
= βsi− γi− µi

ds

dt
= −βsi− µs + α (1)

All individuals, both susceptible (s) and
infectious (i), are subject to harvesting at
rate µ and there is a constant stocking of
new susceptibles at rate α. Susceptible
individuals are infected at rate β, with
density dependence, and infected individuals
are removed at rate γ. There is no separate
removed/recovered class. The basic
reproduction number, R0 is given simply by
R0 = sβ

γ+µ
, dependent on the population size

at the point of introduction of disease. For
R0 > 1, introduction of disease leads to an
epidemic, and R0 < 1 no epidemic.

This model is extended to a
metapopulation model by considering
multiple sites, denoted by subscript u. The
attenuating effect of distance upon the rate
at which infected individuals at site u can
infect susceptibles at site v is denoted by ξu,v,
as a multiplier of the equivalent within-site
infection rate. For simplicity of reading, we
handle between-site infection separately to
within-site infection, and set ξu,u to zero
everywhere below.

diu
dt

= βsuiu +
n∑

v=1

ξv,uβsuiv − γiu − µiu

dsu

dt
= −βsuiu −

n∑
v=1

ξv,uβsuiv + α− µsu (2)

If we sum over all sites (writing the sums of i
and s as I and S), then we obtain equations
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for the dynamics of the whole population:

dI

dt
= β

n∑
u=1

suiu + β

n∑
u=1

su

n∑
v=1

ξv,uiv − (γ + µ)I

dS

dt
= −β

n∑
u=1

suiu − β

n∑
u=1

su

n∑
v=1

ξv,uiv + nα− µS.

(3)

From these equations, an expression
for the basic reproduction ratio R0 may be
obtained. However, given density
dependence, this will be dependent on S as
mentioned above. Therefore su for each site
is set at its disease-free equilibrium value of
α
µ
, obtained by setting β = 0 and solving (1).

Total stocking across the system of all sites is
denoted by A, independent of the number of
sites, and stocking distributed equally across
all sites: α = A

n
. The numbers of infected

individuals across all sites is assumed as
equal and small iu = i & 0.

dI

dt
=

βA

nµ

n∑
u=1

[
I

n
+

n∑
v=1

ξv,u
I

n

]
− (γ + µ)I

(4)

If the landscape is symmetrical with
ξu,v = ξv,u, and homogeneous so that the
summation

∑n
v=1 ξv,u = Ξu is the same for all

sites u, then we can write

dI

dt
=

βA

nµ
[1 + Ξ] I − (γ + µ)I. (5)

Parameter Ξ therefore represents the total
force of infection posed by a site or
experienced by a site as a multiplier of the
within-site transmission rate β. By analogy
with a standard SIR model, taking the ratio
of the recruitment and removal rates for the
I class, we can obtain the following
expression for R0:

R0 =
βA(1 + Ξ)

nµ(γ + µ)
. (6)

Alternatively, we can assume that all
infection is initially located at a single site:
I = ij. In this case, we derive the following

expression for dI
dt

:

dI

dt
= βsjij + β

n∑
u=1

suξj,uij − (γ + µ)ij

=
βA

nµ
I +

βA

nµ

n∑
u=1

ξj,uI − (γ + µ)I. (7)

This expression simplifies to (5) above, and
thus we obtain the same expression for R0 by
this method as above. The presence of n in
the R0 equation indicates that by subdividing
the population (increasing n), R0 is quickly
reduced, all other parameters being equal.

By setting the two derivatives dS
dt

and
dI
dt

in equation (3) to zero, we can obtain
expressions for the equilibrium sizes of the
infectious and susceptible populations (I∞
and S∞) where this is the same for all sites.

I∞ =
A

γ + µ
− µn

β(1 + Ξ)

S∞ =
(γ + µ)n

β(1 + Ξ)
=

A

µR0

, (8)

where I∞ only has a positive solution where
R0 > 1. I∞ = 0 is a second, unstable,
solution with the expected disease-free
equilibrium value of S∞ = A

µ
.

2.2 Frequency dependence

Alternatively, the above model could be
formulated with frequency-dependent
transmission within site (constant
per-individual contact rate). Amending the
single-patch model (1), one obtains

di

dt
= β′

si

s + i
− γi− µi

ds

dt
= −β′

si

s + i
− µs + α (9)

where R0 = β′
γ+µ

, independent of s. The
prime mark indicates that this is not the
same parameter β as in the
density-dependent model; nor does it have
the same units. For the multiple-site model,
frequency dependence is applied only to the
within-site dynamics: (2) is amended
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replacing the term i with i
s+i

as follows:

diu
dt

= βsu
iuρβ

su + iu
+

n∑
v=1

ξv,uβsuiv − γiu − µiu

dsu

dt
= −βsu

iuρβ

su + iu
−

n∑
v=1

ξv,uβsuiv + α− µsu.

(10)

The parameter ρβ indicates the population
size at which density-dependent and
-independent transmission become
equivalent, and is necessary to keep the
terms of the equation dimensionally
compatible (β′ = βρβ). Between-site
transmission remains density dependent.
Again, we can again obtain expressions for
both R0 and the equilibrium state.

R0 =
β

γ + µ

[
ρβ +

AΞ

nµ

]
. (11)

Equilibrium S∞ can be given by the positive
solution of the following quadratic equation,
and from the equation for

∑
u

diu
dt

+ dsu

dt
a

relationship between S∞ and I∞ is obtained.

0 = S2
∞ (βγΞ/n)

+ S∞ (βρβ(γ+µ) + AβΞ/n− γ(γ+µ))

− A(γ+µ)

I∞ =
A− µS∞

γ+µ
(12)

2.3 Between-site transmission

We must now specify the form of ξu,v.
Reasonable assumptions are a) that the
infectious agent disperses over time and
loses infectivity as it disperses, and b) that it
becomes more rarified with distance. We will
assume the first process occurs exponentially
with decay rate λ > 0, and the second
according to an inverse law, as might be
expected if the infectious agent disperses
through surface waters. Where the matrix of
effective inter-site distances is denoted by
du,v, one obtains

ξu,v =
d0

du,v

exp (λ(d0 − du,v)) (13)

where d0 is a constant parameter
representing the distance at which ξ = 1,
which can be considered as representative of
farm size. Modelled decay of infectivity is
therefore faster than exponential, but
becomes closer to exponential at longer
distances. The matrix d must now be
provided, which will be dependent on the
topography of the area studied and the
positioning of sites within it. We assume here
that the landscape consists of a circular
‘island’ with sites evenly spaced around its
perimeter, D

n
units apart, where D is the

island circumference. Distance du,v is then
given by whichever is the smaller of D

n
|u− v|,

D
n
|u− v − n| and D

n
|u− v + n|. Therefore, as

n decreases, the industry scales towards
fewer sites, more widely spaced, though with
a proportionately greater density of fish per
site.

2.4 Model simulation

The deterministic model as presented above
may be criticised for its allowing continuous
numbers of infected fish. This results in tiny
fractional parts of an infected individual
being instantaneously produced across all
sites, giving rise to epidemics in all sites,
even though the risk of between-site
infection may be minimal for high D and λ,
and low n. As an alternative, the model was
simulated using a continuous-time,
individual-based, stochastic implementation
using a Gillespie-type algorithm (Gillespie,
1977), programmed using C++. At time t,
the next event to occur is chosen from the
E = 4n possibilities of the types S → I
(infection), I → ∅ (removal/harvesting),
S → ∅ (harvesting) and ∅ → S (stocking),
where ∅ denotes no individual. The E
transition rates pi are then identified from
the terms of (2) and (10). The next event
occurs after an exponentially distributed
time interval
∆t = − ln(Uniform(0, 1))/

∑E
i=1 pi where

Uniform(·) returns a deviate chosen from the
uniform distribution. The event chosen is
selected at random, weighting by the rates p.
This algorithm is relatively efficient given

doi:10.1016/j.prevetmed.2009.12.004 – 5 –
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that each transition requires only a single
function that is slow to calculate: ln(·), and
two uniform random deviates.

The algorithm used is fast, but could
not be plausibly applied to a production of
130 000 tonnes of fish (Smith, 2008). For
strategic purposes, we therefore restrict
analysis to a smaller population of up to 105

individuals (A/µ = 105). To obtain
compatible population dynamics in the
single-patch model upon disease
introduction for the two contact models,
ρβ = A/µ. Results from the deterministic
model, simply solving the differential
equations numerically with small step size,
are presented for comparison. For ease of
reading (to avoid very large and small
numbers), parameters for the stochastic
model are presented with the following
multipliers: A× 10−5; β × 105; ρβ × 10−5.
Rescaling parameters as such has no effect
on the dynamics of the model. A summary of
the model parameters suitable for sensitivity
analysis is shown in Table 1. The model was
written using C++.

3 Results

3.1 Sensitivity analysis

Epidemic time series for the single-patch
deterministic model with density
dependence are shown in Fig. 1, starting
with a non-zero value for I. Infection begins
to increase only once S reaches a sufficient
level for R0 to exceed unity. Thereafter,
infection depresses S below its disease-free
equilibrium level to S∞ and I reaches an
equilibrium level I∞. Equilibrium S∞ is not
dependent on stocking rate A, though
proportional prevalence is. With frequency
dependence, the epidemic threshold is
independent of S, and therefore of A.

Considering the multiple-site model,
behaviour for different n shows potential
difference between the frequency-dependent
and density-dependent formulations of the
model. Maximum potential between-site
spread occurs where (1 + Ξ) = n. Here, the
density-dependent model simplifies to a

single-patch model, as expected. For other n,
both R0 and equilibrium incidence are
dependent on the ratio 1+Ξ

n
(6),(8). This

ratio will vary with n in a manner dependent
on the formulation of (14): Calculation of R0

for varied λ and n with exponential decay of
infectivity with distance (14) shows that in
all cases, increased n or λ leads to decreased
R0 for the density-dependent model (Fig. 2).
However, with frequency dependence, the
sensitivity of R0 to n is much lower, n only
affecting that term containing Ξ (11).

Näıvely, one would assume this means
there is no benefit to concentrating output to
fewer larger farms, however this does not
take into consideration the speed of
transmission of disease between such larger,
more dispersed farms. Practically, this is of
greater importance than equilibrium
prevalence as it is hoped human intervention
will alleviate an epidemic before that point is
reached. This speed can be measured as the
degree to which initial infection in the
stochastic model spreads around the ‘ring’ of
modelled sites, as shown in Fig. 3, and is
dependent upon both n and λ. In this chart,
spikes of infection before equilibrium can be
seen for each new infection of a site. This
concentration of infection might be expected
to increase significantly the probability of
neighbouring sites becoming infected during
the ‘spike’. In this case, the distribution of
intervals between successive new infections
in Fig. 3 might be expected to be
overdispersed with respect to a Poisson
process. However, if such an effect exists in
the model, it is not sufficiently large in size
to cause a significant departure from an
exponential distribution
(Kolmogorov-Smirnov test: D = 0.037,
p = 0.50 with n = 498 simulated intervals).

The long-term equilibrium behaviour
of the stochastic model in terms of numbers
of susceptibles and infecteds matched closely
to the deterministic model where
between-site transmission rates are sufficient
to disturb the disease-free equilbrium state
at the site level, leading to infection across
all sites.

Repeat simulations were performed
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for up to 50 time units for both density- and
frequency-dependent models with varied n
and λ (Fig. 4). Higher λ implies a quicker
decay of infectivity with inter-site distance.
As expected from (6) and (11), increasing n
causes a greater reduction in epidemic size
in the density-dependent model. The
number of infected sites at time 50 and the
total infected population at this time closely
match each other (Fig. 4). Higher λ also
leads to smaller epidemics to a greater extent
than is shown by analysis of the R0 equations
alone, with a relatively sharp transition in all
cases. Each of the lower plateaux of
prevelance visible on Fig. 4 represents the
epidemic at equilibrium within one site, with
no infection having reached any other site
over the 50 time units.

There is also interaction between the
two parameters n and λ: transition to low
between-site spread occurs at lower λ for
lower n. This results from the shorter
inter-site distance for higher n allowing
infection to more readily spread at higher λ.
This interaction is particularly complex for
density dependence, where epidemics can
persist at the highest λ for intermediate n.
This result is produced by the epidemic
failing to spread with low n due to large
inter-site distance, but failing to persist
within-site for high n due to division into
smaller populations.

A slice through Fig. 4 viewed over
time with frequency dependence, rather than
at a single time point at 50 units, is shown in
Fig. 5. As in Fig. 1, those epidemics which
spread fastest deplete the larger initial pool
of susceptibles, overshooting their eventual
equilibrium. Sensitivity to the value of λ was
large, explaining the rapid drop in sites
infected in Fig. 4.

Equations (6) and (11) show that R0

in the density-dependent model is
completely correlated with A, and partly so
in the frequency dependent model. The
epidemic threshold occurs at R0 = 1. This is
explored further in Fig. 6 where A and n are
varied, and the same results recorded as in
Fig. 2. For the parameter values used
(λ = 0.5, D = 100, d0 = µ = 1, γ = 2,

β = 40), the epidemic threshold occured at
A = 0.3 and A = 0.9 for n = 4 and n = 12
respectively. However, as is typical with SIR
or SIS-type models, numbers of infected
cases just above the threshold are small.

3.2 Effect of the transmission
kernel

We make no attempt to simulate an
industry-wide epidemic of ISA or IPN here,
particularly in the absence of an estimate for
β. However, there is utility in estimating the
relative sensitivity of the between-site force
of infection kernel ξv,u between infected and
susceptible sites, which is inversely
proportional to the time to infection between
sites. This is carried out for the nearest pair
of sites only, considered as being distance d1

apart. Inference of the bounds of the
infection kernel are derived from literature
estimates (Jarp and Karlsen, 1997; Murray et
al., 2005; Scheel et al., 2007).

Murray et. al. (2005) used a particle
tracking model with parameterisation for
two specific diseases: infectious pancreatic
necrosis virus (IPN) and ISA, appropriate for
Atlantic salmon farms in Scotland. These
authors predicted a drop in relative
concentration of infectivity of ×1000 over
distances of approximately 8 to 20 km for
ISA, and over distances of 10 to 90 km for
IPN for current speeds of 1 to 8 cm s−1, with
IPN being a more robust virus. In
comparison, for ISA, Scheel et al. (2007) fit
a model giving decreased infection with
distance proportional to exp(−0.415 du,v),
which suggests a decay of infectivity of
×1000 over a distance of 16.7 km, within the
range of Murray et al. (2005). This
comparatively local spread for ISA is in
agreement with Jarp and Karlsen (1997),
who found that approximately 50 % of ISA
cases in Norwegian sea sites were within 10
km of other ISA positive sites. Scheel et al.
(2007) suggest that the risk for ISA of being
in the same local contact network is equal to
that due to seaway distance at a distance of
5 km. We use these data to parameterise the
transmission kernel.

doi:10.1016/j.prevetmed.2009.12.004 – 7 –
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From Scheel et al. (2007), we assume
an effective farm size at the distance where
local contact is equivalent to seaway
distance: d0 = 5 km. We then re-express
equation (14) into the following form, where
φ represents a proportional drop in
infectivity due to the distance kernel over the
distance d1 − d0:

φ =
d0

d1

exp(λ(d0 − d1)) (14)

A caveat here is that our model assumes
faster than exponential decay at short
distances, and therefore ξ is somewhat
sensitive to the values of d1 and d0 as well as
their difference.

Setting φ = 0.001, d0 = 5 km and
using the ranges of d0 − d1 given above, the
corresponding ranges of values of λ
appropriate for the two diseases were
obtained. These ranges were 0.98 > λ > 0.43
for ISA and 0.80 > λ > 0.11 for IPN, covering
a wide range of the parameter values
explored in the sensitivity analysis above.
The implications of this upon relative
transmission rate ξ for varied nearest
distance between sites is shown in Table 2. It
shows that aggregating production is likely
to have a protective effect against ISA for
inter-site spread, though for IPN, the sign of
the effect is determined by the expected
current speed, at worst weakly increasing
risk.

4 Discussion

4.1 Model behaviour and
assumptions

This model demonstrates, in a practical
sense, three distinct states: First, disease-free
equilibrium; second, epidemic within a
single site; and third, spread amongst
multiple sites. These last two are not
mathematically distinct given that with
enough time, the epidemic will spread to
other sites unless Ξ = 0.

Our model results suggest that
whether aggregation of production benefits

or hinders disease control depends upon the
disease parameters, in particular, on the
form of the model in terms of density or
frequency dependence. Aggregating
production has a negative effect through
increasing local host density under density
dependence, but this effect is absent (within
site) under frequency dependence. However,
for both density and frequency dependence,
causing ‘firebreaks’ in the industry has a
positive effect on reducing the number of
infected individuals and sites under more
aggregated production. The effectiveness of
this however does vary according to the
dispersal distance of the pathogen
(controlled by λ): where infectivity declines
fast with distance, aggregation of production
more effectively prevents between-site
infection. For density dependence, the model
also provides a warning that a small increase
in production can tip the balance between
R0 < 1 and R0 > 1.

Density dependence and frequency
dependence are two opposing model
paradigms. Which is appropriate depends on
the disease and its transmission mechanism.
Where transmission is due to direct contact,
and contact rate is independent of the
density of fish, then a frequency dependent
mechanism may be most apt, as might also
be the case for STIs in some human
populations. Where infectivity is dispersed
within the water column, a density
dependent model may be more suitable.
Even here, however, shoaling fish might
maintain a density that is not directly
proportional to their number in a fixed
volume. For example, Atlantic salmon have
been shown to maintain an effective density
higher than calculated density, to an extent
determined by environmental conditions
such as lighting (Juell et al., 2003). For wild
fish stocks, social structure is particularly
complex, with schools themelves clustered
spatially (Haugland and Misund, 2004).
Under density dependence, disease
transmission becomes more difficult under
rarified conditions, akin to the ecological
concept of the Allee effect. However, in
reality, diseases may lie at an intermediate
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point on the density dependence–frequency
dependence spectrum.

A simple framework for modelling the
decay of infectivity with distance, the
exponential distribution, is used. This
distribution is tunable through its parameter
λ to account for diseases whose infectious
agent is viable in water for greater or lesser
time periods. A reciprocal function is also
used to model the geometrical dispersion of
the infectious agent over a wider ring with
increasing distance, but compared with this,
the exponential distribution has a smaller
tail, producing considerably less infection at
longer distances. However, diffusion,
advection, and a non-exponential decay in
infectivity may produce a decay with
distance in infectivity with either larger or
smaller tails than modelled here.

The model also assumes that risk of
infection is linearly proportional to amount
of infectious agent present. Where there is a
minimum infectious dose of pathogen, for
example due to the requirement to overcome
an innate immune system, the model will
therefore tend to overpredict the risk of
infection at long distance. The effective
decay of infectivity with distance will not
only be determined by tidal speed, but also
by temperature and salinity, the effects of
which are different on different viruses
(Toranzo & Hetrick, 1982; Hawley & Garver,
2008). The stochastic Gillespie algorithm
used here is helpful for modelling such
threshold behaviour. It is easy to implement,
but not fast enough to model an entire
industry, fish by fish. Were this required,
amended algorithms could be used, for
example by using the Gillespie algorithm
where numbers of infected individuals on a
site are small, and conventional mass-action
models where infected individuals are large
in number and these models are an
appropriate approximation.

The transmission kernel assumes that
the force of infection between sites is related
to distance. However, there is likely to be
both heterogeneity in susceptibility and
infectivity both within and between sites,
and other routes of infection than local

spread. Inter-site contact can be represented
by a network, where the direction and
strength of potentially infectious contact by
mechanisms such as fish movements is
explicitly modelled between individual pairs
of farms. This has been developed for UK
aquaculture industries by Thrush and Peeler
(2006), Munro and Gregory (2009) and
Green et al. (2009). Network spread tends
to reduce the effective distance between
farms compared to local spread, due to
long-distance connections producing ‘small
world’-like network dynamics (Kao et al.,
2006). However, contact between marine
salmon sites due to movements is relatively
low (Munro et al. 2009) – though an
important potential route for disease
introduction – and therefore there remains
utility in modelling the shorter-timescale
spread of disease directly through local
spread.

A further modelling assumption is
that of not incorporating culling and fallow
periods. Once infected, sites remain infected
excepting the remote likelihood of stochastic
extinction. Fallow periods would return sites
to the susceptible state, after fallowing. A
particular extension to the model presented
here would be to incorporate synchronised
fallowing periods where stocking and
harvesting are synchronised within a
particular area. Modelling the behavioural or
societal response to disease or disease
control measures is difficult. It has been
assumed above that the disease to be
modelled is not so economically damaging
that on-site infection leads to immediate
imposition of control measures sufficiently
draconian as to remove the onward spread of
all disease. Also, our model is more
appropriate for diseases such as IPN or ISA
that may spread at the within-farm level
comparatively quickly compared with the
time-span of stocking and culling.

4.2 Practical application of the
model

As presented above, our model is a
theoretical framework that can be, through

doi:10.1016/j.prevetmed.2009.12.004 – 9 –
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sensitivity analysis, used strategically to
identify broadly under what conditions
aggregating or distributing production helps
or hinders the control of different diseases.
However, before the model can be used to
model a specific disease problem over a
region, further disease- and site-specific data
are required for parameterisation, as
summarised in Table 3.

A potential means for partial
parameterisation of the connectivity between
sites ξ is the output from advection models.
Such models (Murray et al., 2005; Murray
and Gillibrand, 2006) simulate the flow of
infectivity between sites due to water
currents. Aside from the complication of the
delay between shedding of infectious agent
on one site, and its arrival at another site,
the weighting and directionality of such
potentially infectious contact, as predicted by
advection models, could again be
incorporated into existing contact network
models for disease transmission. Moreover,
anthropogenic spread of disease through, for
example, live fish movements can also be
incorporated into a network model
framework (inter alia Green et al., 2009),
and is a natural extension to the strategic
model presented here.

Advection-diffusion particle-tracking
models explicitly account for the delay
between shedding of infectious agent from
one site, and the arrival of infectious agent at
another, a feature which is not incorporated
into our model framework here. However
where travel times between sites subject to
inter-site infection are short, then this is a
reasonable approximation. Timing could be
incorporated by introducing a lag term:

i̇u = . . . βsu

n∑
v=1

∫ ∞

0

ξv,u(τ)iv(t− τ)dτ . . . .

Here, ξ is time dependent and this kernel
function plus source farm infectivity at time
τ before the present t, iv(t− τ), determine
infection rate, allowing for diffusion of
infectivity over a period of specified length.
The required kernel functions ξv,u(τ) could
be derived as output from the advection

models, where these could be parameterised
for specific farms.
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Table 1 Model parameters used to describe the spread of infectious disease in a region of an

aquaculture industry. For parameter dimensions, L and T represent length and time, and M

the measurement unit of the fish, which could be fish number or biomass.

Parameter Dimension

β force of infection posed by infected fish [M ]−1[T ]−1

(transmission rate)

ρβ population size for equal transmission rate for [M ]

density- and frequency-dependent models

γ removal rate for infected fish [T ]−1

µ harvesting rate for all fish [T ]−1

A stocking rate of new fish across all sites [M ][T ]−1

n number of sites [1]

D linear distance across which sites are spread [L]

d0 effective farm size (distance at which within- [L]

and between-site infection become equal)

λ exponential decay rate of infectivity [L]−1

over distance

Table 2 Sensitivity analysis of a model of the spread of infectious disease in a region of an

aquaculture industry. Between-site relative force of infection ξ for varied rate of decay of

infectivity with distance λ and nearest-neighbour distance d. Single-farm densities of fish S

and I are assumed inversely proportional to d and a constant disease prevalence is assumed;

effective farm size d0 = 5 km.

d, km λ, km−1

IPN range ISA range

0.11 0.8 0.43 0.98

5.0 1 1 1 1

7.5 1.14 0.20 0.51 0.13

10.0 1.15 0.037 0.23 0.015

12.5 1.10 0.0062 0.099 0.0016

15.0 1.00 0.0010 0.041 0.0002
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Table 3 Data required for parameterisation of a model of the spread of a specific infectious

disease in a region of an aquaculture industry.

Site data:

Stocking/ harvesting/ fal-

low details

Parameterisation of stocking rate A and harvesting rate µ,

potentially made time-varying to simulate separable stock-

ing, harvest, and fallow periods.

Farm management/ mor-

tality data

Parameterisation of removal rate γ and harvesting rate µ,

potentially time-varying.

Hydrography, georeferenc-

ing details

Allows calculation of effective site-site distance du,v and site-

site transmission rate ξu,v.

Live fish movement data,

wellboat records, etc.

As a further component of site-site transmission rate ξu,v for

network models.

Disease data:

General literature review Identification of potential transmission routes, etc., parame-

terisation of transmission rate β.

Incidence/ prevalence out-

break data

Allows fitting of model to estimate unknown disease param-

eters.

Longevity studies of infec-

tious agent

Component of site-site transmission rate ξi,v through kernel

function λ.
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Figure 1: Epidemic dynamics for the single-site density-dependent model with removal rate

γ = 1 and harvesting rate µ = 1 (deterministic simulation). Populations of susceptible fish

(S) and infected fish (I) are shown in black and grey, respectively. Initial populations at the

start of the simulation were I0 = 0.01 and S0 = 0. Varied disease transmission rates β and

total stocking rate A are shown.
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Figure 2: Contour plot of modelled R0 for the deterministic, multi-site model with density

dependence, versus number of sites n and rate of decay of infectivity with distance λ. Other

parameters were total region size D = 100; effective farm size d0 = 1; transmission rate

β = 40; total stocking rate A = 1; harvesting rate µ = 1; and removal rate γ = 2.
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Figure 3: Epidemic dynamics for n = 16 sites for a single run of the frequency-dependent

stochastic model, demonstrating stochastic spread between sites leading to successive spikes

of infection, returning to new equilibria. Parameters as in Fig. 2 with rate of decay of

infectivity with distance λ = 1.5 and equivalent transmission rate to the density-dependent

model at ρβ = 1.
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Figure 4: Proportion of sites infected and the total infected population after 50 time units

for the stochastic, multi-site model, versus number of sites n and decay of infectivity with

distance λ. Parameters as in Fig. 2 (except λ) and transmission rates in the two models

were equivalent at ρβ = 1. Number of sites n is varied as 2, thick solid; 4, long dash; 6,

medium dash; 8, short dash; 12, thin solid; 16, long dash; 24, medium dash. Left: frequency

dependent model; right: density dependent model. Means of 25 model runs are shown for

each point.
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Figure 5: Time series for infected number for the stochastic, multi-site model with frequency

dependence for different values of the rate of decay of infectivity with distance λ. Up to 50

time units are shown, with up to 5 time units inset. Parameters as in Fig. 2 with equivalent

transmission rate to the density-dependent model at ρβ = 1 and n = 16 sites. The values

of λ vary across series from 0.0 to 2.0 with step-size 0.2 from the fastest to slowest spread

simulations. Means of 16 simulations are shown. Note that decay of infectivity with distance

occurs still at λ = 0 due to the hyperbolic function in (14).
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Figure 6: Proportion of sites infected and infected population after 50 time units for the

stochastic, multi-site model with density dependence, versus number of sites n and total

stocking across all sites A. Parameters as in Fig. 2 except the rate of decay of infectivity

with distance parameter λ = 0.5. Light columns: n = 4; dark columns: n = 12. Means and

standard deviations are shown, based on 50 simulations for each point.
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