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This study investigated associations between working memory and both reading and 

mathematics abilities, and the possible mediating factors of fluid intelligence, verbal abilities, 

short-term memory and phonological processing skills, in a sample of 46 children aged 

between 6 and 11 years with reading disabilities. Participants were tested on measures of 

complex memory, verbal and visuospatial short-term memory, IQ, phonological processing, 

language, literacy and mathematics. As a whole, the sample was characterized by deficits in 

complex memory and visuospatial short-term memory and by low IQ scores, whereas 

language, phonological short-term memory and phonological processing abilities fell in the 

low average range. The severity of reading difficulties was significantly associated with 

working memory, language and phonological processing abilities, whereas poor mathematics 

abilities were associated with complex memory score, phonological short-term memory and 

phonological processing scores.  These findings suggest that working memory skills indexed 

by complex memory represent an important constraint on the development of skill and 

knowledge in the key domains of reading and mathematics. Possible mechanisms for the 

contribution of working memory to learning and the implications for educational practice are 

considered. 
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Working Memory in Children with Reading Disabilities 

The purpose of this study was to investigate the extent to which impairments of working 

memory contribute to the severity of the learning difficulties experienced by children with 

reading disabilities. Although close links between memory function and individual variation 

in a range of aspects of learning and academic achievement in unselected samples of children 

are well established, the degree to which working memory deficits specifically constrain 

learning progress within children with recognized learning disabilities is less well 

understood. The study focuses in particular on the extent to which impairments of working 

memory contribute to the problems in both reading and mathematics commonly experienced 

by children with learning disabilities, and on whether any associations that are found could be 

mediated by other aspects of cognitive function. 

Immediate memory comprises several related sub-systems of memory. The capacity to 

store material over short periods of time in situations that do not impose other competing 

cognitive demands is typically referred to as short-term memory. Findings from 

experimental, developmental, and neuropsychological studies indicate that short-term 

memory is fractionated into at least two domain-specific components that are specialized for 

the retention of phonological and visuospatial material (see Gathercole, 1999, and Vallar & 

Papagno, 2002, for reviews). In terms of the influential working memory model of Baddeley 

and Hitch (1974), developed subsequently by Baddeley (1986, 2000), these components 

correspond to two slave systems: the phonological loop retains material in a phonological 

code that is highly susceptible to time-based decay, and the visuospatial sketchpad has 

limited capacities to represent information in terms of its visual and spatial characteristics. 

The phonological loop is assessed using methods such as the recall of digit or word 

sequences, and visuo-spatial sketchpad functioning is typically measured by tasks involving 

the recall or recognition of visual patterns or sequences of movement. 



 4

Working memory is related to but distinguishable from short-term memory. The term is 

widely used to refer to the capacity to store information while engaging in other cognitively 

demanding activities, and is most commonly assessed using complex memory paradigms that 

impose demands both for temporary storage and significant processing activity with selected 

task components varied across domains.  An example of a complex memory task is listening 

span, in which the participant is asked to make a meaning-based judgment about each of a 

series of spoken sentences, and then remember the last word of each sentence in sequence 

(e.g., Daneman & Carpenter, 1980). Another task is counting span, which involves 

participants in counting target items in successive arrays, and then recalling in sequence the 

tallies of the arrays (Case, Kurland, & Goldberg, 1982). Despite disparate processing 

demands, scores on the two tasks are highly correlated (e.g., Gathercole, Pickering, 

Ambridge, & Wearing, 2004) and are linked also with performance on memory updating 

tasks that are also believed to tap working memory (Jarvis & Gathercole, in press; Miyake, 

Friedman, Emerson, Witzki, Howerter, & Wager, 2000). 

Most theoretical accounts of immediate memory incorporate a distinction between the 

storage-only capacities of short-term memory and the broader and more flexible nature of 

working memory. In addition to the domain-specific storage systems of the phonological loop 

and the visuospatial sketchpad, the Baddeley and Hitch model (1974) includes the central 

executive, responsible for a range of functions including the retrieval of information from 

long-term memory, the regulation of information within working memory, the attentional 

control of both encoding and retrieval strategies, and task shifting (Baddeley, 1986, 1996). 

Proponents of the working memory model have suggested that the storage demands of 

complex memory tasks depend on appropriate subsystems, with processing demands 

supported principally by the central executive (Baddeley & Logie, 1999; Cocchini, Logie 

Della Sala, MacPherson, & Baddeley, 2002). Thus complex memory span such as listening 
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and counting span appear to tap both the central executive and the phonological loop (Lobley, 

Gathercole, & Baddeley, in press), whereas analogous visuospatial complex memory tasks 

(Jarvis & Gathercole, 2003; Shah & Miyake, 1996) may draw upon the resources of the 

central executive and the visuospatial sketchpad. There is a substantial domain-general 

component to such working memory tasks (e.g., Bayliss, Jarrold, Gunn, & Baddeley, 2003; 

Kane, Hambrick, Tuholski, Wilhelm, Payne, & Engle, 2004; Swanson & Sachse-Lee, 2001) 

that has been interpreted as reflecting central executive function. 

Another influential conceptualization of working memory is of a limited resource that 

can be flexibly allocated to support either processing or storage (e.g., Daneman & Carpenter, 

1980; Just & Carpenter, 1992). According to one model in this theoretical tradition, 

developmental increases in complex memory performance reflect improvements in 

processing speed and efficiency that release additional resources to support storage (Case et 

al., 1982). Other theorists have proposed that working memory consists of activated long-

term memory representations, and that short-term memory is the subset of working memory 

that falls within the focus of attention (Cowan, 2001; Engle, Kane, & Tuholski, 1999).  

As the present research is not concerned specifically with distinctions between models, 

the theoretically neutral terms phonological and visuospatial short-term memory will be used 

to refer to storage-only assessments of the respective informational domains, and complex 

memory tasks will be interpreted as tapping working memory. The primary focus is on the 

extent which working memory is associated with the scholastic abilities of with reading 

disabilities, characterized by marked difficulties in mastering skills including word 

recognition, spelling, and reading comprehension. Working memory is already known to be 

linked with reading ability. In typically developing samples of children, scores on complex 

memory tasks predict reading achievement independently of measures of phonological short-

term memory (e.g., Swanson, 2003; Swanson & Howell, 2001). Current evidence suggests 



 6

that although phonological short-term memory is significantly associated with reading 

achievements over the early years of reading instruction, its role is as part of a general 

phonological processing construct related to reading development rather than representing a 

causal factor per se (Wagner et al., 1997; Wagner & Muse, in press). It is also well 

established that children with reading disabilities show significant and marked decrements on 

working memory tasks relative to typically developing individuals (Siegel & Ryan, 1989; 

Swanson, 1994, 1999; Swanson, Ashbaker, & Lee, 1996). 

Mathematical difficulties commonly accompany reading disabilities (Swanson & Saez, 

2003), and are also characterized by deficits in working memory. Associations between 

working memory and mathematical ability vary across age and level of expertise, probably 

due to the changes in procedures and strategies that characterise mathematical development. 

For example, addition commences with simple counting strategies, success at which 

contributes to the gradual acquisition of arithmetic facts. More complex addition 

computations require memory-based problem solving involving either the direct retrieval of 

facts or problem decomposition, leading to eventual automatic retrieval of facts (Geary 

2004). Working memory appears to play an important role at the earliest stage of counting: 

children with low scores on complex memory tasks are more likely to use primitive finger-

based counting strategies than those with high scores, possibly due to the relatively low 

working memory demands of the activities (Geary, Hoard, Byrd, Craven, & DeSoto, 2004). 

In addition, low working memory scores have been found to be strongly and specifically 

associated both with poor computational skills (Wilson & Swanson, 2001) and difficulties in 

solving mathematical problems expressed in everyday language (Swanson & Sachse-Lee, 

2001).  

A key question is how deficits of working memory contribute to impairments of learning 

in reading and mathematics. One explanation is that impairments of working memory 
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compromise the crucial process, for both mathematics and reading, of maintaining recently 

retrieved knowledge and integrating this with recent inputs (Swanson & Beebe-

Frankenberger, 2004). A related suggestion is that learning activities in literacy and 

mathematics classes often impose heavy demands on working memory, resulting in frequent 

task failures in children with poor working memory function. As a result, the normal 

incremental process of acquiring knowledge and skills in these domains is impaired 

(Gathercole, 2004). In a more specific account of the association between working memory 

and mathematical abilities, Geary et al. (2004) proposed that poor working memory capacity 

impairs the process of acquiring mathematical facts that arises from successful counting 

strategies.  

The participants in the present study were children identified by their schools as having 

reading difficulties of sufficient severity to warrant remedial support and who scored at least 

1 SD below the mean on a standardized measure of reading ability that included subtests of 

word recognition, spelling, and reading comprehension (Wechsler, 1993). These criteria were 

less restrictive than the majority of studies in this field, which typically include only children 

who perform within the normal range on tests of fluid intelligence (e.g., Siegel & Ryan, 

1989; Swanson & Sachse-Lee, 2001), as reflected in nonverbal reasoning measures such as 

Coloured Progressive Matrices (Raven, 1986) or performance IQ from the Wechsler 

Intelligence Scales for Children – III RevisedUK (Wechsler, 1992). An issue raised by close 

associations between working memory and fluid intelligence (e.g., Conway, Kane, & Engle, 

2003; Engle, Tuholski, Laughlin, & Conway, 1999; Fry & Hale, 2000) is whether variation in 

fluid intelligence abilities underpins links between working memory and achievements in 

reading and mathematics. Although working memory deficits in children with learning 

difficulties have been found to persist even after fluid intelligence has been taken into 

account (Swanson & Sachse-Lee, 2001), the inclusion in such studies only of children with 
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intelligence scores in the normal range limits sensitivity to this potentially confounding 

factor. Selecting children purely on the basis of their reading disabilities without restricting 

the range of intelligence scores leads to a much stronger test of whether links between 

complex memory scores and learning achievements reflect differences in fluid intelligence 

rather than a specific working memory construct. 

Three further potential mediating factors relating to aspects of verbal ability were also 

investigated. First, several researchers have argued that the key factor underlying individual 

differences on working memory tests is general verbal ability (Nation, Adams, Bowyer-

Crane, & Snowling, 1999; Stothard & Hulme, 1992). Although there is already some 

evidence that working memory skills are dissociable from verbal ability more generally 

(Cain, Oakhill, & Bryant, 2004; Siegel, 1988), it was important to test whether the two 

factors could be distinguished in the present wide-ranging set of children with learning 

difficulties. If working memory performance is simply a proxy for general ability, potential 

associations between working memory and abilities in mathematics and literacy should be 

eliminated measures of verbal ability such as language and verbal IQ are taken into account. 

A further potential factor underlying the working memory measures is phonological 

short-term memory. Scores on short-term memory and complex memory tests are moderately 

associated with one another (e.g., Gathercole & Pickering, 2000; Gathercole et al., 2004), 

probably due to the role played by phonological STM in supporting the storage component of 

the complex memory measures (Baddeley & Logie, 1999; Lobley et al., in press). The extent 

to which short-term memory and complex span measures are independently associated with 

learning achievements in this sample will establish whether possible associations are 

mediated by the contribution of STM abilities rather than working memory more generally, 

The final mediating factor we considered was phonological processing. Phonological 

processing skills as tapped by tasks requiring the manipulation of phonological structure are 
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highly associated with both reading ability (e.g., Bradley & Bryant, 1985; Brady & 

Shankweiler, 1991; Catts, Gillispie, Leonard, Kail, & Miller, 2002; Stanovich & Siegel, 

1994; Wagner & Torgesen, 1987; Wolf & Bowers, 1999) and mathematical skills (e.g., 

Geary, Hoard, & Hamson, 1999; Rourke & Conway, 1997). It has been argued that both 

phonological processing and STM measures reflect a common phonological processing 

substrate (Bowey, 1996; Metsala, 1999). On the basis of the significant verbal storage 

component of working memory tasks, this account could also be extended to encompass 

verbal working memory. In order to test whether possible associations between working 

memory and learning abilities are mediated by phonological processing skills more generally, 

standardized assessments of phonological processing abilities (Fredrickson, Reason, & Frith, 

1997) were also included in the present study. 

A further prediction tested in this study was that working memory should constrain both 

reading and mathematics abilities to a common extent. In a recent study of working memory 

in children with learning disabilities (Pickering & Gathercole, 2004), we found that children 

classified by their schools as having problems in both reading and mathematics had depressed 

performance on complex memory tasks, but that individuals with difficulties restricted to 

reading did not. Thus, working memory deficits appeared to have been associated with more 

pervasive learning disabilities that extended beyond reading alone. It was therefore predicted 

that associations between complex memory measures and reading would be abolished when 

differences in mathematical abilities were taken into account, and vice versa. 

Method 

Participants 

Data are reported for 46 children (13 girls, 33 boys) with a mean age of 9.00 years 

(range 6.06 to 11.00 years, SD = 12 months) taken from a larger study of children identifying 

by their schools as having special educational needs that required additional educational 
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support. All children were attending state schools in the Durham area of North-East England. 

None of the children had emotional or behavioral difficulties, and each child obtained a 

composite standard score of less than 86 on the Wechsler Objective Reading Dimension 

(WORD, Wechsler, 1993). This score is derived from three subtests: reading (of letters and 

single words), spelling (of letters and single words), and reading comprehension (involving 

passage reading followed by orally presented questions). Test-retest reliability coefficients 

for children aged between 6 and 11 years range from .94 to .96 for reading, from .90 to .96 

for spelling, and from .90 to .94 for reading comprehension in the WORD.  

All children were also tested on a measure of mathematical skills, the Wechsler 

Objective Numerical Dimensions (WOND, Wechsler, 1996a). This includes two subtests, 

mathematical reasoning and numerical operations. The mathematical reasoning subtest is 

designed to tap the ability to reason mathematically, and incorporates a wide range of 

materials requiring skills such as shape identification, telling the time, solving mathematical 

problems expressed in language, and interpretation of graphs and charts. The numerical 

operations subtest measures abilities to solve computational problems involving 

mathematical operations such as addition, subtraction, multiplication, division, and algebra. 

Test-retest reliability coefficients for children aged between 6 and 11 years range from .85 to 

.92 for mathematical reasoning, from .82 to .91 for numerical operations, and from .90 to .95 

for the composite in the WOND.  Descriptive statistics for the reading and mathematics 

measures are shown in Table 1. Scores on the WORD were low across all three subtests 

(reading, spelling, and comprehension), with a sample mean composite score of 76.46. 

Scored on the WOND were higher overall (composite score mean=84.39), with lower 

performance on the number operations than the mathematical reasoning subtest. 

______________ 

Table 1 about here 
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______________ 

Procedure 

Each child was tested individually in a quiet area of the school for six sessions lasting 

up to 30 minutes per session across six weeks. The following tests were administered by a 

member of the research team (TPA) in a fixed sequence designed to vary task demands 

across the testing session.  

Ability tests. All participants were administered the Wechsler Objective Language 

Dimensions (WOLD; Wechsler, 1996b). This test battery assesses receptive and expressive 

aspects of oral language function in two subtests: listening comprehension, and oral 

expression. The listening comprehension subtest taps understanding of orally presented 

words and passages, with performance measured either by picture pointing or oral responses. 

The oral expression subtest assesses abilities to express a target  word that has been defined 

and to orally describe scenes, give directions, and explain steps. Test-retest reliability 

coefficients for children aged between 6 and 11 years range from .83 to .88 for listening 

comprehension, .90 to .92 for oral expression, and from .91 to .93 for the composite test 

score. Participants also completed the Wechsler Intelligence Scale for Children - 3rd UK 

Edition (WISC-IIIUK; Wechsler, 1992), yielding measures of verbal IQ and performance IQ. 

Test-retest reliability coefficients range from .92 to .96 for verbal IQ, and from .90 to .91 for 

performance IQ. 

 Memory tests. Three verbal complex memory measures from the Working Memory Test 

Battery for Children (WMTB-C, Pickering & Gathercole, 2001) were administered: 

backwards digit recall, counting recall, and listening recall. In backwards digit recall, the 

child is required to recall a sequence of spoken digits in the reverse order. The number of 

digits in each list increases across trials, and the number of lists correctly recalled is scored. 

In counting recall, the child is required to count the number of dots in an array, and then 
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recall the tallies of dots in the arrays in the sequence in which they were presented. The 

number of dots in the array increases across trials, and the number of correct trials completed 

by each child is scored. In listening recall, the child listens to a series of short sentences, 

determines the veracity of the statements by responding ‘true’ or ‘false’, and recalls the final 

word of each sentence in sequence. The number of sentences in each block increases across 

trials, and the number of correct trials is scored. Test-retest reliability coefficients for children 

aged between 5 and 8 years are .53, .74, and .83 for backward digit recall, counting recall and 

listening recall respectively. For children ages between 9.5 years and 11.5 years, test-retest 

reliability for backward digit recall, counting recall and listening recall are .71, .48, and .38 

respectively. 

Three measures of phonological short-term memory from the WMTB-C (Pickering & 

Gathercole, 2001) were administered. Digit recall and word list recall both involve spoken 

recall of sequences of spoken items (either single digits or high frequency monosyllabic 

words). In each case, the number of items in each sequences increases across trials, and the 

number of correct trials is scored. Word list matching involves the child detecting whether 

words in a second list are in the same order as in the first word list. The number of lists 

increases in each block, and the number of correct trials is scored. Test-retest reliability 

coefficients for children aged between 5 and 8 years are .81, .80, and .45 for digit recall, word 

list recall and word list matching respectively. For children ages between 9.5 years and 11.5 

years, test-retest reliability for digit recall, word list recall and word list matching are .82, .64, 

and .42 respectively. 

Two measures of the visuo-spatial component were administered. In the block recall 

test of the WMTB-C (Pickering & Gathercole, 2001), a child views nine cubes randomly 

located on a board. The test administrator taps a sequence of blocks, and the child has to tap 

that sequence in the correct order. The number of correct trials is recorded. Test-retest 
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reliability coefficients are .63 and .43 for children aged between 5 and 8 years, and between 

9.5 years and 11.5 years, respectively. In the Visual Patterns Test (Della Sala, Gray, 

Baddeley, & Wilson, 1997), the child views a two-dimensional grid of black and white 

squares. After viewing the grid for 3 seconds, the child has to mark the black squares on an 

empty grid. The number of correctly marked grids is scored. This test is standardized for use 

with children as part of the WMTB-C. No estimates of reliability are available for this 

measure.  

Phonological processing tests. Three measures from the Phonological Assessment 

Battery (Fredrickson et al., 1997) were administered. The rhyme task assesses the child’s 

ability to identify rhyming words in sequences of three monosyllabic words such as sand, 

hand, cup and bead, wheat, seat. In the spoonerism task, the child is required to segment 

single syllable words and then exchange initial phonemes to produce new word 

combinations, for example by combining cot with a /g/ to give got, and by transforming 

riding boot to biding root. The alliteration task assesses the child’s ability to identify which 

two of three monosyllabic words share the same initial phoneme, as in bike, name, nose and 

cross, twig, truck. Performance on all tasks was scored as the number of correct trials. Test-

retest reliability coefficients for children aged between 6 and 8 years are .92, .95, and .90 for 

rhyme, spoonerism and alliteration tasks respectively. For children aged between 9 years and 

11 years, test-retest reliability for rhyme, spoonerism and alliteration tasks are .91, .93, and 

.84 respectively 

Results 

Table 2 provides descriptive statistics for the test scores.  Consider first the memory 

assessments. Very low performance was found on both complex memory and visuospatial 

short-term memory measures. Phonological short-term memory scores, on the other hand, fell 

within the low average range. Performance levels were generally consistent across the 
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different subtests associated with each area of memory function. Phonological processing 

performance was at a low average level overall, although it should be noted that performance 

on the alliteration subtest was rather lower than on the rhyme and spoonerisms subtests. 

Language ability also fell in the low average range, both for the oral expression and language 

comprehension subtests. Both verbal and performance IQ scores were at a low level across 

the group as a whole. 

---------------------------- 

Table 2 about here 

---------------------------- 

In order to investigate the extent to which different children performed at low or 

average levels on these measures, standard scores were banded (<81, 81-85, 86-90, 91-95, 

>95) and the number of children obtaining scores in each band for each measure was 

calculated. Table 3 displays the cumulative frequencies derived from these values. These data 

establish that the majority of children scored in the lowest band on the complex memory and 

visuospatial short-term memory measures (61% and 70%, respectively), with very small 

proportions performing in the 85+ range that can be classified as average (9% and 4%, 

respectively). About half of the sample also obtained performance IQ scores below 86, 

although comparable low scores were less common in the remaining measures phonological 

short-term memory, phonological processing, language and verbal IQ. 

---------------------------- 

Table 3 about here 

---------------------------- 

Subsequent analyses focused on interrelations between the cognitive assessments and 

achievements in reading and mathematics. Correlation coefficients were computed between 

the principal measures, and the resulting matrix of correlation coefficients is shown in Table 
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4. Complex memory performance was significantly associated with all other measures, and 

was the strongest predictor of mean reading and mathematics scores of the measures included 

in the study. Although visuospatial short-term memory scores were very low within this 

sample, they correlated significantly only with complex memory, phonological processing, 

and performance IQ scores, and not with either reading or mathematics scores. Phonological 

short-term memory scores were significantly correlated only with complex memory and 

mathematics scores. Language scores and verbal IQ were highly associated with one another, 

and both were significantly correlated with reading and mathematics scores. Performance IQ 

was highly correlated with all measures with the exception of phonological short-term 

memory. Phonological processing scores were strongly associated with complex memory 

scores, and also with both IQ measures and both reading and mathematics scores.  

---------------------------- 

Table 4 about here 

---------------------------- 

Given the high degree of intercorrelation between these measures, it was important to 

establish which factors independently predicted scores on the reading and mathematics 

measures. Accordingly, two multiple regression analyses were performed with the composite 

reading score as the dependent variable; the results of this analysis are summarized in Table 

5. Model 1 included the five cognitive measures that were significantly correlated with 

reading performance in the regression equation: verbal IQ, performance IQ, language, 

phonological processing, and complex memory. Two measures were significant predictors of 

reading scores: language and complex memory. In Model 2, the composite mathematics 

measure was also entered into the regression equation in order to establish the extent to which 

any factors predicting reading also mediated mathematics performance. The independent 
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predictors of reading ability in this analysis were mathematics and language scores, but not 

complex memory scores.  

---------------------------- 

Tables 5 and 6 about here 

---------------------------- 

The predictors of mathematics scores were also explored in a series of multiple 

regression analyses. Model 1 included all six cognitive measures that were significantly 

correlated with mathematics scores: verbal IQ, performance IQ, language, phonological 

processing, complex memory, and phonological short-term memory. None of the variables 

predicted significant independent proportions of variance in this analysis. In order to test 

whether the absence of significant links reflected a shared phonological factor tapped by the 

three measures of phonological processing, complex span, and phonological short-term 

memory, three further multiple regression analyses, each of which incorporated only two of 

these three measures in addition to the two IQ scores and the language measure. In Model 2, 

which incorporated phonological processing and complex memory span measures, the only 

significant independent predictor of mathematics scores was complex memory. In Model 3, 

which included the phonological processing and phonological short-term memory measures, 

phonological processing was a significant predictor, and phonological short-term memory 

was marginally nonsignificant (p=.052). Verbal IQ and complex memory were both 

significant predictors of mathematics ability in Model 4, which incorporated the complex 

memory and phonological short-term memory measures. It therefore appears that the three 

phonological measures all shared a substantial amount of variance with mathematics scores 

but that of the three measures, the complex memory measure was the strongest single 

predictor. 

Discussion 
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Working memory skills were significantly related to the severity of learning difficulties 

in both reading and mathematics in this sample of children with reading disabilities. As a 

group, the children had low IQ scores, but performed at even lower levels on measures of 

working memory (complex memory tasks) and of visuospatial short-term memory. 

Phonological short-term memory, language and phonological processing abilities in this 

sample were in the low average range. A key finding was that working memory skill 

independently predicted the children’s attainments in reading and to a lesser extent in 

mathematics, and that the contribution of working memory was common to both ability 

domains (see also, Pickering & Gathercole, 2004). Reading ability was also significantly 

linked with the children’s language and phonological processing abilities. 

The association between working memory and reading ability in this sample of children 

with learning disabilities was not mediated by fluid intelligence, verbal abilities, short-term 

memory or phonological processing skills. And despite close links between measures of fluid 

intelligence and working memory in adult samples (Conway et al., 2003; Engle et al., 1999), 

fluid intelligence shared no independent associations with either reading or mathematics in 

the present study. This asymmetry of association provides a strong basis for identifying 

working memory as a specific and significant contributor to reading disabilities. Attainments 

in mathematics were more generally related to individual differences common to measures of 

complex span, phonological processing, and phonological short-term memory, suggesting the 

contribution of phonological abilities to development of this skill domain. Of the three 

measures, however, complex memory performance was the single strongest predictor of 

mathematics abilities. 

The specificity of associations between working memory and scholastic attainment in 

this study is consistent with findings from other developmental samples. First, these 

associations have been found to persist after differences in fluid intelligence have been 
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statistically controlled in samples of children with learning difficulties and normal range 

intelligence (e.g., Swanson & Sachse-Lee, 2001). Second, differences in working memory 

ability in both children with reading comprehension problems and with learning difficulties 

remain after account has been taken of variation in verbal IQ (Cain et al., 2004; Siegel & 

Ryan, 1989), indicating that working memory performance is not simply a proxy for verbal 

ability. Third, working memory and phonological short-term memory have been found to 

have dissociable links with learning abilities (e.g., Gathercole & Pickering, 2000; Swanson et 

al., 2004), suggesting that variation in working memory scores is not mediated simply by the 

contribution of phonological STM to performance on complex memory tasks (e.g., Baddeley 

& Logie, 1999). This conclusion is reinforced by the present finding that phonological STM 

performance was not markedly impaired in this sample, and is consistent too with other 

recent evidence that deficits in phonological STM alone are not associated with substantial 

learning difficulties (Archibald & Gathercole, 2004; Gathercole, Tiffany, Briscoe, Thorn & 

ALSPAC, 2005).   

One limitation of the assessment of working memory skill in the present study is the 

dependence of verbally-based assessment methods only. The reason for this is that at the time 

of data collection, robust methods for measuring nonverbal aspects of working memory in 

children were not available. As a consequence, it is not possible to make claims about the 

degree of domain generality of the working memory skills under assessment here. Nonverbal 

complex memory tasks that are suitable for use with children as young as five years of age 

have now been developed, and have been found in large unselected samples of children to 

share the majority of variance with the verbal methods used here of counting recall, listening 

recall, and backwards digit recall (Alloway, Gathercole, & Pickering, 2005), However, 

research with a sample of children with Specific Language Impairment has established 

substantial decrements in the verbal complex memory measures but age-appropriate 
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performance on the visuospatial complex memory tasks. The extent to which the working 

memory problems of the present sample are restricted to verbal working memory must 

therefore remain at present an open issue. 

The independence of the working memory association with severity of learning 

difficulties from phonological processing skills is also consistent with other findings from 

studies of children with learning difficulties (e.g., Swanson & Beebe-Frankenberger, 2004). 

Although the phonological awareness skills of the reading disabled children participating in 

the present study were relatively low, the deficits were neither as extreme nor as marked as 

the working memory deficits. In the light of substantial evidence that children with reading 

difficulties have poor phonological processing, it is perhaps surprising these skills fell within 

the average range for the majority of children in the sample. This finding may reflect the age 

range of the group, which included children as old as 11 years; in most typically developing 

children of this age, phonological processing skills are complete by this point so the measures 

may lack some sensitivity. Also, as phonological awareness is now widely recognized as 

providing the foundation for literacy acquisition in the field of UK education, it is likely that 

these children will have received specific interventions targeting phonological skills that may 

have remediated any deficits in this area.  

Why is working memory skill such an effective and specific predictor of the severity of 

impairments in reading and mathematics in this sample? Swanson has argued that working 

memory provides a resource that allows the learner to integrate information retrieved from 

long-term memory with current inputs, and so that poor working memory capacities will 

compromise the child’s attempts to carry out such important cognitive activities (Swanson & 

Saez, 2003; Swanson & Beebe-Frankenberger, 2004). A related view that we favor is that 

impairments of working memory result in pervasive learning difficulties because this system 

acts as a bottleneck for learning in many of the individual learning episodes required to 
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increment the acquisition of knowledge (Gathercole, 2004). An observational study of study 

of children aged 5 and 6 years who performed very poorly on measures of verbal working 

memory provides support for this view (Gathercole, Lamont, & Alloway, 2005). The children 

were working in the lowest ability groups in both literacy and mathematics within their 

classrooms, and were observed to make frequent errors in activities that placed heavy 

demands on working memory. Particularly high rates of failure were found in following 

complex instructions (which the child often forgot), performing tasks that imposed significant 

storage and processing loads, and in tasks with a complex hierarchical structure (in which the 

child often lost their place, and eventually abandoned prior to completion). Failures in these 

kinds of activities occurred frequently in both literacy and numeracy classes. On this basis, 

we have suggested that children with low working memory skills will have difficulties in 

meeting the routine working memory demands of many structured learning activities that are 

common in the classroom. This will lead to frequent task failures, which represent missed 

opportunities to learn and so to achieve normal incremental progress in complex skill 

domains. 

This account of why impairments of working memory result in learning difficulties in 

both literacy and mathematics has important implications for provision of effective learning 

support for such children. It predicts that promoting teacher awareness of working memory 

loads in classroom activities and effective management of these loads for children with 

impairments of working memory should boost their learning. Current cognitive theory can be 

used to identify a number of methods for reducing working memory loads that could readily 

be applied to classroom practice (Gathercole & Alloway, 2004). For example, task 

instructions should be short and syntactically simple, and repeated as required. In activities 

such as holding a sentence in mind while writing it down, the heavy storage and processing 

can be reduced by keeping sentences short and redundant, and using highly familiar 
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vocabulary. External memory aids such as useful spellings and number lines should be 

provided for the child’s use where possible, and the child encouraged to practice them under 

conditions of low working memory load. Tasks with complex structures could be simplified 

into component parts as a means of reducing the burden of monitoring the child’s current 

place within the task. In addition, children may benefit from receiving training in self-help 

strategies for situations in which working memory fails. 

 In conclusion, the severity of deficits in the areas of both reading and mathematics in 

a sample of children with reading disabilities was closely associated with working memory 

skill. We propose that this association arizes because working memory acts as a bottleneck 

for learning in classroom activities, and suggest that effective management of working 

memory loads in structured learning activities may ameliorate the problems of learning that 

are associated with impairments of working memory. 
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Table 1        

Descriptive statistics for literacy and mathematics measures (standard scores) 

Measure M SD Min. Max.    

Reading        

  Reading 78.91 6.51 63 90    

  Spelling 82.07 7.51 64 93    

  Reading comp. 80.83 9.98 58 99    

  Composite  score 76.46 8.44 55 85    

Mathematics:        

  Mathematical reasoning 89.59 10.27 62 111    

  Number operations 84.02 12.43 60 111    

  Composite score 84.39 12.13 58 108    
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Table 2       
Descriptive statistics for the principal measures; standard scores except where stated otherwise 

Measure M SD Measure M SD 

Phonological STM:   Language:   

 Digit recall 90.35 16.48  Oral expression 93.30 8.10 

 Word recall 89.09 11.32  Language comp. 88.91 10.65 

 Word list matching 91.11 17.11  Composite score 87.78 10.69 

 Mean score 90.18 11.08 Verbal IQ:   

Complex memory:    Information1 7.54 2.15 

 Backwards digit recall 79.48 10.18  Similarity1 8.04 3.08 

 Counting recall 73.72 13.84  Mathematics1 6.28 2.67 

 Listening recall 79.98 13.53  Vocabulary1 7.37 2.40 

 Mean score 77.72 8.96  Comprehension1 7.26 3.32 

Visuo-spatial STM:    IQ score 83.39 11.86 

 Block recall 71.65 13.73 Performance IQ:   

 Visual patterns 78.61 10.73  Picture completion1 8.24 3.63 

 Mean score 75.13 9.56  Coding1 7.13 3.02 

Phonological processing:    Picture arrangement1 7.74 2.69 

 Rhyme 87.26 11.75  Block design1 6.45 3.10 

 Spoonerisms 92.85 10.57  Object assembly1 7.78 3.33 

 Alliteration 82.83 14.85  IQ score 82.35 13.84 

  Mean score 88.78 8.40         

1Scaled score (M=10, SD=3)       
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Table 3        
Proportions of children obtaining bands of standard scores  for each measure 
 
   

       Measure      

 Complex Phonological Visuospatial Phonological Language Verbal IQ Performance

Band memory STM STM processing   IQ 

<81 0.61 0.22 0.70 0.22 0.33 0.39 0.52 

81-85 0.78 0.35 0.87 0.33 0.46 0.57 0.65 

86-90 0.91 0.48 0.96 0.50 0.59 0.72 0.72 

91-95 0.98 0.70 1.00 0.80 0.78 0.85 0.85 

96+ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 4         
Intercorrelations between cognitive skills and achievement measures 

  

Measures 1 2 3 4 5 6 7 8 

1 Phonological STM -        

2 Complex memory 320* -       

3 Visuo-spatial STM 174 443* -      

4 Phonological processing 244 582* 243* -     

5 Language 049 324* 213 179 -    

6 Verbal IQ 052 393* 141 336* 679* -   

7 Performance IQ 126 546* 411* 415* 365* 556* -  

8 Reading 167 557* 162 442* 478* 350* 330* - 

9 Mathematics 338* 591* 254 496* 414* 537* 427* 582* 

*p<.05         



 35

 

Table 5     
Hierarchical regression analysis for the criterion measure of reading scores 

  Reading   

Independent variable B SE b t 

Model 1:     

  Verbal IQ -0.092 0.130 -0.130 -0.713 

  Performance IQ -0.026 0.096 -0.043 -0.273 

  Language 0.334 0.129 0.423 2.595* 

  Phonological processing 0.213 0.149 0.212 1.430 

  Complex memory 0.349 0.152 0.371 2.295* 

  R2=.443, F(5,40)=6.375, p<.001    

Model 2:     

  Mathematics 0.230 0.110 0.330 2.098* 

  Verbal IQ -0.165 0.129 -0.232 -1.279 

  Performance IQ -0.017 0.093 -0.028 -0.185 

  Language 0.316 0.124 0.401 2.533* 

  Phonological processing 0.151 0.146 0.151 1.034 

  Complex memory 0.236 0.156 0.251 1.518 

  R2=.499, F(6,39)=6.481, p<.001       

*p<.05     
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Table 6 
         

Hierarchical regression analysis for the criterion measure of mathematics scores 
    

Independent variable B SE b t Independent variable B SE b t 

Model 1:     Model 3:     

  Verbal IQ 0.332 0.177 0.325 1.880   Verbal IQ 0.325 0.183 0.318 1.777 

  Performance IQ -0.033 0.131 -0.038 -0.251   Performance IQ 0.053 0.128 0.061 0.418 

  Language 0.078 0.175 0.069 0.445   Language 0.128 0.179 0.113 0.715 

  Phonological processing 0.242 0.204 0.168 1.185   Phonological processing 0.412 0.190 0.285 2.164* 

  Complex memory 0.412 0.213 0.305 1.933   Phonological STM 0.261 0.131 0.239 1.999 

  Phonological STM 0.202 0.130 0.184 1.549   R2=.465, F(5,40)=6.965, p<.001    

  R2=.512, F(6,39)=6.824, p<.001         

Model 2:     Model 4:     

  Verbal IQ 0.317 0.18 0.310 1.765   Verbal IQ 0.365 0.176 0.357 2.079* 

  Performance IQ -0.040 0.133 -0.046 -0.301   Performance IQ -0.020 0.131 -0.022 -0.882 

  Language 0.078 0.178 0.069 0.437   Language 0.051 0.175 0.045 0.292 

  Phonological processing 0.270 0.207 0.187 1.308   Complex memory 0.521 0.193 0.385 2.694* 

  Complex memory 0.491 0.211 0.362 2.328*   Phonological STM 0.216 0.13 0.197 1.654 

  R2=.482, F(5,40)=7.499, p<.001         R2=.495, F(5,40)=7.829, p<.001       

*p<.05          
 


