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Abstract

This note tests for the efficient market hypothesis (EMH) in the market for CO2 emission allowances

in Phase I and Phase II of the European Union Emissions Trading Scheme (EU ETS). As usually is

the case in emerging and non-competitive markets such as the EU ETS, trading often not occurs on a

frequent basis. This has adverse implications for both the gains from permit trade as well as biases the

EMH tests. Variance ratio tests are employed to adjust for the thin trading effect. The results indicate

that Phase I –the trial and learning period– was inefficient, whereas the first period under Phase II

shows signs of restoring market efficiency.
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1 Introduction

The European Union Emissions Trading Scheme (EU ETS) for trading carbon dioxide (CO2) emissions has

generated a great interest among academics and practitioners alike to try to assess the functioning and

actual behavior of this relatively young market. In this market, regulated firms as well as other investors

can buy or sell emission allowances. From an investment point of view, an assessment of the corresponding

market behavior is a necessary step for the correct implementation of (carbon) management strategies and

as such relevant for investors, risk managers and environmental policymakers. At the heart of this is the

efficient market hypothesis (EMH) asserting, in its weak form, that a market is efficient if its current price

reflects all available information. This implies that investors cannot earn abnormal profit by exploiting past

information (e.g., Fama, 1970). In this paper, we use the idea that the weak form efficiency can be tested

using the random walk hypothesis and we utilize variance ratio tests to investigate whether the returns on

the CO2 market follow a martingale difference sequence.

However, in non-competitive and emerging markets, such as the EU ETS, there is often too little trade

(e.g., Wirl, 2009). It is well known that market frictions characterized through infrequent or “thin” trading

adversely affects the gains from permit trade (Liski, 2001) as well as seriously biases the result of the EMH

tests and introduces the problem of serial correlation (Miller et al., 1994). As a consequence, thin trading

has direct implications for effective risk management in CO2 or other type of pollution markets. This note

aims at examining to what extent adjusting for the possibility of thin trading affects the inferences drawn

from testing the EMH of the EU ETS, hence assessing the role of expectations with respect to the CO2

returns in this market.

Whilst the literature on the price dynamics of CO2 allowances as part of the EU ETS is steadily increasing,

the issue of thin trading in relation to the EMH has not been addressed so far. The closest to our contribution

is the study by Daskalakis and Markellos (2008), who empirically test for the weak form efficiency in the

European carbon market. They find no econometric support that the market is behaving efficiently. Among

other things, Seifert et al. (2008) present a stochastic equilibrium model which incorporates the main

features of the EU carbon market. Using an autocorrelation analysis they show that CO2 prices exhibit

non-stationary behavior and that its evolution is not different from the U.S. SO2 market, i.e., the EU ETS

is informational efficient. Paolella and Taschini (2008) undertake a pure econometric analysis addressing the

heteroskedasticity and the unconditional tail distribution behavior of the SO2 and CO2 spot market returns.

They propose the use of a mixed-normal GARCH model to describe and forecast the returns on the CO2

allowances. Benz and Trück (2009) look at the CO2 spot price dynamics and at the volatility of the returns

and advocate the implementation of Markov switching and AR-GARCH models. Finally, Daskalakis et al.

(2009) show that the EU ETS spot prices exhibit jumps and non-stationary behavior.

Our contribution extends the discussion and aforementioned literature by evaluating the EMH for the

EU ETS with the explicit adjustment for the possibility of thin trading. We particularly use a series of
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variance ratio (VR) tests. These tests have been widely used in finance research, but have, to the best of our

knowledge, not been applied to analyze the functioning of tradable permit markets or other “commodity”

markets.1 The VR tests resemble the class of non-parametric tests which have the advantage of preserving

flexibility in the functional specifications, in particular in the context of tradable permits (or quota) (e.g.,

Oude Lansink and van der Vlist, 2008, p.488).

The paper proceeds with a description of the empirical framework. Section 3 discusses the data and

provides some basic statistics. Results are presented in Section 4, followed by conclusions in Section 5.

2 Empirical framework

Our empirical methodology uses a series of variance ratio tests to investigate whether the EU ETS is efficient.

Lo and MacKinlay (1988, 1989) first exploited the idea that variance of a random walk process is linear in

all sampling intervals. This means that if the series under investigation follows a random walk, then its

variance increases linearly with time, i.e., the variance of a k-period change must be k times the variance of

the 1-period change. The VR of a k-period series can formally be defined as:

V R(k) =
var(xt + xt−1 + xt−k+1)/k

var(xt)
= 1 + 2

k−1∑

i=1

(k − 1)
k

ρi, (1)

where ρi is the ith lag autocorrelation coefficient of xi. Eq. (1) shows that V R(k) is a linear combination

of the 1st (k− 1) autocorrelation coefficients with linearly decreasing weights. This implies that V R(k) = 1

under the EMH.

Lo and MacKinlay (1988, 1989) present a number of statistics for testing the EMH hypothesis based on

the estimated variance ratio:

V R(k) =
σ̂2(k)

σ̂2(1)
, (2)

where σ̂2(1) is the unbiased estimator of the one-period variance. The form of the statistic depends on the

particular random walk model assumed under the null hypothesis (see Campbell et al., 1997). There are,

however, various problems with the original VR test. First, the test is based on asymptotic approximation

and it is subject to severe size distortions and low power. To correct for this problem non-parametric tests

have been suggested (e.g., Wright, 2000). Second, the null hypothesis is tested on selected values of k. In

order to accept the hypothesis that a time series has mean reverting properties, one should be able not

rejecting the hull for all values of k; however, conducting separate tests for each value of k leads to size

distortions. It is therefore necessary to conduct a joint test to investigate whether the null hypothesis holds

for all values of k.2 One problem still remains: even with these tests the researcher needs to choose the k

holding periods. This, however, is an arbitrary choice since there is not an optimal value of k. To overcome

1 An exception is Charles and Darné (2009), who apply VR tests to the crude oil market.
2 Examples of multiple variable ratio tests are presented in Chow and Denning (1993) and Kim and Shamsuddin (2008).
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this problem, Choi (1999) has suggested an entirely data-dependent procedure to determine the value of k.

As proven in Kim (2009), this methodology, combined with a bootstrap technique, shows no size distortions

and has substantially higher power than its competitors.

3 Data and summary statistics

We analyze and test the CO2 return data for Phase I and the first time period of Phase II. The price data

on both phases come from BlueNext Spot, which is the major spot market for EU ETS allowances covering

about 75% of the market. The sample for Phase I covers the period 27 June 2005 until 28 December 2007;

the sample for Phase II covers the period 26 February 2008 until 30 December 2009. This yields 627 and

471 observations respectively. Fig. 1 shows the evolution of the spot price for CO2 allowances for both these

phases respectively. At a first glance, the graph for Phase I suggests that the CO2 prices were relatively

stable, varying between 20-30 Euro per ton. Fig. 1 also clearly shows the sharp downward fall of the

carbon price immediately after information became public by the end of April 2006 that there was a de facto

overallocation of allowances. After this sharp fall the spot price recovers slightly and increases from 10 to

about 18 Euro and subsequently varies around 15 Euro for a while. Starting September 2006, there is a

relatively fast downward adjusthment to a price close to zero, and the price remains low until the end of

Phase I. The sample period for Phase II shows a less irregular CO2 price pattern. Starting off with a price

of about 20 Euro in February 2008, there is a steady increase approaching 29 Euro per ton by the end of

June 2008. Since then the prices reveal a downward trend until February 2009.

[FIGURE 1 ABOUT HERE]

Figs. 2 and 3 show for both Phase I and II the daily CO2 returns3 (upper panel), the corresponding

distribution (middle panel) and the QQ-plot4 (lower panel). Fig 2 shows that the returns are essentially

zero during the first period of Phase I; however, deviation from zero starts to occur during the second half

of Phase I. Comparing this with the returns during the first period of Phase II (see upper panel Fig. 3), it

appears that the CO2 returns are showing slightly more variation. This is confirmed by the density graphs

in Figs. 2 and 3 (see middle panels). The density graph and QQ-plot against the normal distribution shows

that the returns distribution also exhibits fat tails, confirming the kurtosis statistics as shown in Table 1.

[TABLE 1 ABOUT HERE]

The series exhibit significant level of skewness and kurtosis. The positive skewness implies that the

returns are flatter to the right compared to the normal distribution. The kurtosis reported indicates that

the return distributions have sharp peaks compared to a normal distribution. The Jarque-Bera statistics

3 We calculated the log returns as: returnt = ln (pt/pt−1) , where pt denotes the allowance price at time t.
4 A QQ-plot is a graphical method for comparing two probability distributions with each other. In our case we plotted the

quantiles of a normal distribution (straight line) against the quantiles of the return data. If the return data follow a normal
distribution then the two lines should (roughly) coincide.
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for testing normality confirm the significant non-normality of returns. Notice, however, that the level of

skewness and kurtosis is much smaller in Phase II than in Phase I. This indicates that the distribution of

the returns under Phase I shows a longer right tail and tend to be more concentrated on the tails of the

distributions. Although Fig. 1 indicates some volatility of the CO2 prices, the number of trades in CO2

emissions were very limited. In fact, for the covered periods, the average number of trades per day in 2005,

2006, 2007 and 2008 was no more than 4, 8, 3 and 1 respectively.5 We believe this is rather small and as

such we contend the EU ETS can be classified as a thin market. Therefore, we test the EMH for the EU

ETS while adjusting specifically for thin trading. To this we turn next.

[FIGURES 2 AND 3 ABOUT HERE]

4 Results

In this section, we test for the EMH hypothesis for the EU ETS allowance prices of CO2 using a series of VR

tests.6 Under the null hypothesis the series follows a random walk and the variance-ratios are expected to

be equal to one. The test is implemented for different holding periods, k. In particular, we test given values

k = 2, k = 5, k = 10, k = 20 and k = 40 days respectively. As suggested by Deo and Richardson (2003)

the choice of k is relatively short. Table 2 reports the test statistics for the non-parametric rank-based tests

(R1 and R2) and signed-based test (S1) as detailed in Wright (2000) for the observed raw market data over

k number of lags. Following Hoque et al. (2007) we reject the EMH in the case of two or more rejections

at the usual level of statistic significance. The null hypothesis is rejected in Phase I for all holding periods

while the EMH is accepted in Phase II when k = 5 and k = 10.

[TABLE 2 ABOUT HERE]

Although Wright’s (2000) VR test has the ability to perform well when the daily returns are non-normal

and non-stationary, it is quite susceptible to size distortions due to sequential trading because it assumes

that the test statistics computed at different time intervals –or holding periods k– are uncorrelated. As

mentioned in the previous section, this is a problem associated with all the individual VR test. To overcome

this possible problem we apply a multiple test as in Kim and Shamsuddin (2008).

The first three rows in Table 3 reports the values of their non-parametric VR-based test on ranks and signs.

The results reinforce our previous finding, i.e. reject the null hypothesis that the CO2 returns during Phase

I followed an i.i.d. process. All overwhelming number of rejections is in the right tail of the distributions,

suggesting that serial correlation is positive. However, results for Phase II show that the market appears

to be efficient; the VR test indicates that we cannot reject the EMH at conventional statistical significance

levels. In addition, we implemented the automatic VR test as in Choi (1999) and Kim (2009). Table 3 reports

5 These represent the average number of trades as recorded by the EEX Emissionsmarkt/Emission Market.
6 See the Appendix for a formal description of the tests implemented.
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the p-value of the obtained with the wild bootstrap technique.7 The results contradict with the previous

finding; the test rejects the EMH of the CO2 market. This implies some cautions in the interpretation of

the results.

In testing the EMH in thin markets it is necessary to take into account the magnitude of trading that

typically characterizes these markets. This market characteristic is associated with the asset (the tradable

permit) not being exchanged at every consecutive time interval. Two strategies are followed to overcome this

problem. The first strategy that should correct for some market distortion involves the use of low/medium

frequency data. The second strategy involves removing the effect of thin trading by a moving average process,

which reflects the periods of non-trading. In particular, Miller et al. (1994) show that the adjusted data

can be obtained by estimating an AR(1) process. For the adjusted data we then repeat Wright’s (2000) VR

test. These results are contained in Table 3. The results confirm the rejection of the EMH for Phase I but

not for Phase II.

The tests with the adjusted data are presented in the last two columns of Table 3. Again the results

seems inconclusive; the automatic variance ratio test (AVR*) test for the daily adjusted data and the weekly

data are contradicting. Although we could speculate that the weekly data are better placed to correct for

the illiquidity of the market, there might be another reason worth to be investigated. As we observed earlier,

the CO2 market exhibited a higher degree of volatility after the sharp adjustment in late April 2006 at

which information was publicly disclosed signalling that emissions were considerably below the allocation of

emission allowances. This information disclosure had a direct impact on the carbon price and accordingly

reshaped the expectations of the market (e.g., Ellerman and Joskow, 2008). To correct for this trend break,

we divided the data of Phase I into two periodic sub-samples. The first period goes from 24/06/2005 to

26/04/2006 and the second from 27/04/2006 to 28/12/2007. This latter period clearly shows a downward

adjustment of the carbon price and reflects an adjustment of the expectations in the sense that the initial

cap on aggregate emissions appeared to be too lenient. We conducted a structural break test on the price

time series and confirms a break around that period.8

We repeated all the previous exercises for the two sub-samples of Phase I and Table 4 reports the results.

We used only daily data, since the use of weekly data would make the sample too small. The empirical

outcome from the automatic VR test suggests a rejection of the EMH for the first part of the Phase I, while

we cannot reject the hull hypothesis for the second sub-sample. As a robustness check we also conducted

the Chow and Denning (1993) and Kim (2006) tests. They reject the hypothesis that the market for the

first period of Phase I was efficient.

[TABLE 3 ABOUT HERE]

[TABLE 4 ABOUT HERE]

7 We experimented with both Mammen and normal distribution and the results appear to be qualitatively identical.
8 The results are available upon request.
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It should be noted that the VR test presented above has the ability to reject linear dependency only.

Therefore, before drawing a final conclusion about the data-generating process characterizing the returns in

the carbon market, we should be able to reconfirm the hypothesis after testing for the absence of non-linear

dependence. Following Hsieh (1991) we applied the BDSL test (see Brock et al., 1996) for this independence

on the residuals of the ARMA model. If we reject the null hypothesis then the series has a high probability

to be non-linear, or exhibits chaotic characteristics. The ability to detect an i.i.d. process is subject to the

choice of the embedding dimension m and the bound ε.9 If we select a value for ε that is too small, the

null hypothesis of a random i.i.d process will be accepted too often irrespective of it being true or false.

As well, it is not safe to choose too large a value for m. To deal with this problem Brock et al. (1991)

suggest that for a large sample size (i.e., T > 500) ε should equal 0.5, 1.0, 1.5 and 2 times the standard

deviations of the data. Given these concerns we present both the p-value based on asymptotic theory and

on a bootstrap, where the latter was based on 1000 replications. Our results are presented in Table 5 and

reconfirms support for the hypothesis that Phase II of the CO2 market follows a weak EMH, while we can

reject the i.i.d. hypothesis for Phase I.

5 Concluding remarks

This paper tests the efficiency of the EU ETS carbon market. Although market efficiency is generally

important, it is particularly relevant when the market is relatively immature and in an emerging state.

Assessing the behavior of market participants in the EU ETS, as reflected through the behavior of CO2

spot price dynamics, is especially relevant for effective risk management and (carbon) investment strategies.

However, in the relatively young European carbon market the number of trades were very limited for the

period in our sample. It is this infrequent or thin trading that has negative implications for both the gains

from permit trade as well as the statistical inferences for testing the EMH.

For the sample periods 27 June 2005 to 28 December 2007 (Phase I) and 26 February 2008 to 4 April

2009 (Phase II) the EMH is tested through variance-ratio tests while adjusting for thin trading. The results

show that the EU ETS was inefficient during Phase I but efficient during the first period of Phase II. This

suggests that the carbon market shows the first signs of maturation after the learning and trial period in

Phase I.
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Appendix: VR tests

In this appendix we present the formal definition of the various VR tests implemented in this paper. The

central hypothesis of the VR methodology used was first exploited by Lo and MacKinlay (1988) the idea

that the variance of random walk process is linear in all sampling intervals, i.e., the variance of a yt − yt−k
will be k times the variance of the first difference.

A.1 Rank and sign test

The variance ratio test proposed by Wright (2000) is a non-parametric test based on ranks (R1 and R2)

and signs (S1 and S2). These types of tests are exact under the independence and identical distribution

assumption, whereas the tests based on signs are exact even under conditional heteroskedasticity. Wright’s

suggested R1 and R2 can are defined as:

R1 =

(
1
TkΣ

T
t=k(r1,t + ...+ r1,t−k+1)

2

1
T Σ

T
t=kr

2
1,t

− 1
)

× φ(k)−1/2,

R2 =

(
1
TkΣ

T
t=k(r2,t + ...+ r1,t−k+1)

2

1
T Σ

T
t=kr

2
2,t

− 1
)

× φ(k)−1/2,

where

r1,t =
(r(yt − T+1

2 ))
√

(T−1)(T+1)
12

,

r2,t = Φ−1
r(yt)

(T + 1)
,

and where Φ−1 is the inverse of the cumulative standard normal cumulative distribution and φ(k) is defined

as:

φ(k) =
2(2k − 1)(k − 1)

3kT
.

The tests based on signs of returns is given by:

S1 =

( 1
TkΣ

T
t=k(st + ...+ st−k+1)

2

1
T Σ

T
t=ks

2
t

− 1
)
× φ(k)−1/2,

S1 =

( 1
TkΣ

T
t=k(st(µ̄) + ...+ st−k+1(µ̄))

2

1
T Σ

T
t=ks

2
t (µ̄)

− 1
)
× φ(k)−1/2,

where st = 2u(yt, 0), st(µ̄) = 2u(yt, µ̄) and

u(yt, q) =





0.5 if yy > q

−0.5 if otherwise
.
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The critical values of the R1, R2, S1 and S2 test can be computed by simulating their exact sampling

distribution. Kim and Shamsuddin (2008) propose a test to overcome the problem that VR tests at various

aggregation intervals lead to rejection rates larger than the nominal size. Their multiple test takes the form

JS = max1≤i≤l | Sl(ki) | . The JS statistic has the same sampling distribution and can be obtained in a

similar way for S1(k). The null hypothesis that the series of a random walk is accepted is when the JS

statistic is smaller than the critical value.

A.2 Automatic variance ratio test

This test was first implemented by Choi (1999) to overcome the problem associated with the choice of the

holding period. He presented a procedure which is entirely data-dependent. The test can be written as:

V R(k) = 1 + 2ΣT−1i=1 z(i/k)ρ̂(i),

where ρ̂(i) is the autocorrelation function and z(x) is the quadratic spectral kernel defined as:

z(x) =
25

12π2x2

[
sin(6πx/5)

6πx/5
− cos(6πx/5)

]
.

Choi (1999) showed that the automatic variance ratio test follows a standard normal distribution as k →

∞, T →∞, T/k →∞, and the process is i.i.d.

AV R(k) =
√
T/k(V R(k)− 1)/

√
2→ N(0, 1).

Recently, Kim (2009) has shown that the AVR test has a serious size distortion and suggests to use a wild

bootstrap procedure to correct this problem.10

10 We thank an anonymous referee for pointing out this reference.
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Table 1: Descriptive statistics

Returns Phase I Returns Phase II

Mean -0.787 -0.110
Median 0.000 0.000
Maximum 66.666 10.547
Minimum -40.000 -10.285
Std. Deviation 8.178 2.773
Skewness 0.9142 -0.181
Kurtosis 14.840 4.425

Jarque-Bera 3744.2 42.373
Probability 0.000 0.000

N.Observations 627 470

Table 2: VR tests daily and weekly returns

K = 2 K = 5 K = 10 K = 20 K = 40

Phase I R1 2.861** 2.995** 2.866** 2.179** 2.582**
unadj. returns R2 1.453 1.622* 1.561* 1.004 1.343*

S1 5.675** 6.698** 7.689** 9.016** 11.414**

Phase I R1 5.298** 4.919** 4.226** 3.244** 3.424**
adj. returns R2 3.919** 3.468** 2.786** 1.902* 2.063*

S1 6.600** 7.887** 8.162** 8.428** 10.148**

Phase II R1 1.821 0.608 0.518 0.419 0.269
unadj. returns R2 2.050* 0.789 0.782 0.624 0.561

S1 1.383 0.353 0.349 0.204 -0.22

Phase I R1 0.032 -0.943 -0.686 -0.451 -0.351
adj. returns R2 0.157 -0.871 -0.532 -0.335 -0.121

S1 -0.877 -1.517 -0.752 -0.635 -0.833

Notes: ‘**’ and ‘*’ denote the significance at the 5% and 10% levels, respectively.
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Table 3: VR tests daily and weekly returns

Daily undaj. returns Daily adj. returns Weekly returns

Phase I R1J 2.995** 5.298*** 1.273
R2J 1.622 3.919*** 1.241
S1J 11.414*** 10.148*** 2.271**
AVR* 0.186 0.828 0.014**

Phase II R1J 1.821 0.943 0.881
R2J 2.053* 0.871 0.586
S1J 1.383 1.517 0.816
AVR* 0.594 0.508 0.802

Notes: ‘**’ and ‘*’ denote the significance at the 5% and 10% levels, respectively. R1J, R2J, S1J are the jont Wright tests

statistics; AVR* is the p -value for the wild bootstrap for the Automatic Variance Ratio Test.

Table 4: VR tests daily and weekly returns for Phase I sub-samples

Undaj. returns Adj. returns

Sub-sample 1 R1J 2.257** 1.059
R2J 2.401** 1.134
S1J 1.876 0.795

CD(R1) 2.331* 3.521**
CD(R2) 1.728 2.549*
MV* 0.330 0.092*
AVR* 0.000** 0.000**

Sub-sample 2 R1J 1.251 3.013**
R2J 0.271 1.837
S1J 13.759*** 4.197**

CD(R1) 2.880** 1.709
CD(R2) 1.713 1.093
MV* 0.218 0.698
AVR* 0.126 0.698

Notes: ‘**’ and ‘*’ denote the significance at the 5% and 10% levels, respectively. R1J, R2J, S1J are the jont Wright tests

statistics, CD1 and CD2 are the statistics for the Chow Denning test, MV* is the p-value for the the wild bootstrap

Chow-Denning (1993) test; AVR* is the p-value for the wild bootstrap for the Automatic Variance Ratio Test.
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Table 5: BDSL test results for phase I and II

Phase I

Dimension ǫ = 0.50 ǫ = 1.00 ǫ = 2.00 ǫ = 0.50 ǫ = 1.00 ǫ = 2.00

Unadjusted returns Adjusted returns

Bootstrap
2 0.000 0.011 0.292 0.000 0.003 0.066
3 0.000 0.000 0.274 0.000 0.002 0.021
4 0.000 0.000 0.039 0.000 0.000 0.007
Asymptotic theory
2 0.000 0.005 0.300 0.000 0.002 0.076
3 0.000 0.001 0.289 0.000 0.000 0.014
4 0.000 0.000 0.025 0.000 0.000 0.007

Phase II

Dimension ǫ = 0.50 ǫ = 1.00 ǫ = 2.00 ǫ = 0.50 ǫ = 1.00 ǫ = 2.00

Unadjusted returns Adjusted returns

Bootstrap
2 0.083 0.299 0.329 0.395 0.498 0.256
3 0.243 0.387 0.294 0.454 0.383 0.150
4 0.321 0.384 0.234 0.364 0.272 0.105
Asymptotic theory
2 0.075 0.328 0.343 0.452 0.548 0.263
3 0.250 0.434 0.317 0.512 0.438 0.156
4 0.348 0.453 0.263 0.435 0.313 0.123

Notes: Only p-values are reportes under the null hypothesis that the time series is a serial i.i.d. process. All calculation are

done using the non-linear toolkit Patterson and Ashley (2000)
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Figure 1: Daily CO2 spot prices in Phase I (upper panel) and Phase II (lower panel).
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Figure 2: Daily CO2 returns, density and QQ-plot Phase I.
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Figure 3: Daily CO2 returns, density and QQ-plot Phase II.

16


