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Abstract

We show balanced growth for solutions of some nonautonomous partial
differential equations which in certain cases also describe the dynamics of
structured populations.
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1. Introduction

In the present note we investigate the asymptotic behaviour of solutions of
certain linear initial boundary value problems (IBVP for short). In particular,
we are interested in when solutions blow up in time but after a normaliza-
tion they converge to a final distribution. In case of autonomous IBVP-s this
phenomenon, which is quite important both from the theoretical ([1],[2],[3]) and
application point of view ([4],[5]), is usually described in the framework of linear
semigroup theory ([6],[7]). Here we present a different approach which works
in certain cases of nonautonomous problems which cannot be covered in the
framework of semigroup theory.

To be more specific we are interested in the asymptotic behaviour of solutions
of the following nonautonomous IBVP.

 a(t)ut(x, t) + b(x)ux(x, t) + c(x)u(x, t) = 0, t > 0, x > 0,
u(0, t) = B(t), t > 0,
u(x, 0) = u0(x), x > 0,

(1.1)

where a, b, c > 0 are smooth enough for the upcoming analysis and for (1.1) to
be well-posed in L1, as well. We assume that B > 0 on which we will make
some additional conditions later on.
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Definition 1.1 The solution u of (1.1) exhibits balanced growth if the following
limit exists for every 0 ≤ x1 < x2 < ∞

lim
t→∞

∫ x2

x1
u(x, t)dx∫∞

0
u(x, t)dx

, (1.2)

and it is independent of the initial condition u0 in (1.1).

Our definition here is motivated by the applications, namely when (1.1) de-
scribes the dynamics of a structured population (see [8],[9],[10],[11] and the
references therein for developments in structured population dynamics). In
particular, when

a(t) ≡ 1, b(x) ≡ 1, u(0, t) = B(t) =
∫ ∞

0

β(x)u(x, t)dx, (1.3)

(1.1) becomes the classical Lotka-Kermack-McKendrick linear age-structured
model where c(x) and β(x) denote the mortality and fertility of individuals of
age x, respectively. In this case u(., t) is the age-distribution of individuals, and
balanced growth characterizes the situation when the population blows up in
time but the proportion of individuals within any age range, compared to the
total population, tends to a limit which just depends on the choosen range but
not on the initial condition.

We arrive at the classical definition of balanced exponential growth if in
addition to Def.1 we assume that u grows exponentially in time.

Several weaker definitions of balanced exponential growth can be found in
[1, 12], in which papers the author characterizes strong and uniform balanced
exponential growth using quite deep functional analytic methods.

In most of the literature (see [1],[3],[13] and the references therein) balanced
exponential growth (or asynchronous exponential growth) is characterised in
the framework of linear semigroup theory. In the framework of semigroup the-
ory the C0 (strongly continuous) semigroup {T (t)}t≥0 on the Banach space X
exhibits balanced exponential growth if there exist 0 < r ∈ R (often called the
Malthusian parameter) and a projection Π of X such that

lim
t→∞

e−rtT (t)x = Πx for all x ∈ X . (1.4)

In other words, the system which is governed by the semigroup {T (t)}t≥0 admits
a global attractor, namely Π(X ). If, in addition, the operator Π has finite rank
then {T (t)}t≥0 is said to have asynchronous exponential growth ([3]), AEG for
short.

In fact, the existence of such r > 0 in (1.4) is related to the existence
of a strictly dominant eigenvalue in the spectrum of the generator A of the
semigroup. Moreover, if {T (t)}t≥0 is a positive C0 semigroup on the Banach
space X then the spectral bound s(A) of the generator A of {T (t)}t≥0 is real,
strictly dominant and it belongs to the spectrum. In other words s(A) is a pole
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of the resolvent R(λ, A). The order of the pole might in general be greater than
one.

Recently, in [13] the authors proved using semigroup methods AEG for so-
lutions of a linear age-structured model (a(t) ≡ 1, b(x) ≡ 1) with delayed birth
rate, i.e. when

u(0, t) = B(t) =
∫ ∞

0

∫ 0

−τ

β(x, σ)u(x, t + σ)dσdx. (1.5)

2. Balanced growth for model (1.1)

In [14] we were able to show using quite elementary methods AEG for the lin-
ear age-structured population model with the delayed birth rate (1.5) in certain
cases. Here we extend this approach for the nonautonomous model (1.1).

Theorem 2.1 The solution u of (1.1) exhibits balanced growth if

B(t) = κert + f(t), where lim
t→∞

f(t)
ert

= 0, κ, r ≥ 0 (2.1)

and

lim
t→∞

a(t)
tα

= 0, ∀ α > 1. (2.2)

Proof. The ODE system of characteristics of the linear partial differential
equation (1.1)1 is

dt

dτ
= a(t),

dx

dτ
= b(x),

du

dτ
+ c(x)u = 0, (2.3)

which by setting

Γ1(t) =
∫

1
a(t)

dt, Γ2(x) =
∫

1
b(x)

dx, (2.4)

can be solved as follows

t(τ) = Γ−1
1 (τ + t0), x(τ) = Γ−1

2 (τ + x0),

u(x(τ), t(τ)) = u(x(0), t(0)) exp
{
−

∫ τ

0

c(Γ−1
2 (r))dr

}
. (2.5)

Now if we choose the initial conditions x(0) = x0 = 0, t(0) = t0 we arrive at

u(x, t) = u(0,Γ1(t)−Γ2(x)) exp

{
−

∫ Γ2(x)

0

c(Γ−1
2 (r))dr

}
= B(Γ1(t)−Γ2(x))π(x),

(2.6)
where

π(x) = exp

{
−

∫ Γ2(x)

0

c(Γ−1
2 (r))dr

}
= exp

{
−

∫ x

0

c(s)
b(s)

ds

}
. (2.7)
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Thus we find that (2.6) is a solution of (1.1) which is independent of the initial
condition u0 for all t for which Γ1(t) > Γ2(x).

If a satisfies condition (2.2) then it is easy to see that Γ1(t) →∞ as t →∞,
thus we have the following:

lim
t→∞

u(x, t)
erΓ1(t))

= κe−rΓ2(x)π(x), for every x ∈ (0,∞). (2.8)

In particular,

lim
t→∞

∫ x2

x1
u(x, t)dx∫∞

0
u(x, t)dx

=

∫ x2

x1
lim

t→∞

B(Γ1(t)− Γ2(x))
B(Γ1(t))

π(x)dx∫∞
0

lim
t→∞

B(Γ1(t)− Γ2(x))
B(Γ1(t))

π(x)dx

=

∫ x2

x1
e−rΓ2(x)π(x)dx∫∞

0
e−rΓ2(x))π(x)dx

=

∫ x2

x1
exp

{
−

∫ x

0
r+c(s)

b(s) ds
}

dx∫∞
0

exp
{
−

∫ x

0
r+c(s)

b(s) ds
}

dx
. (2.9)

Remark 2.2 Notice that condition (2.1) means that B grows at most expo-
nentially in time, while condition (2.2) requires that a grows at most linearly in
time.

Remark 2.3 This result gives a new approach to handle nonautonomous
partial differential equations which cannot be treated in the framework of linear
semigroup theory. Moreover, our approach covers the cases of autonomous
(a ≡ 1) age and size-structured population models if the birth rate B grows in
an exponential fashion. This is ”probably” the case of most of the structured
population models (even with delayed birth rate). See for example Th.5.2 in
[10] where such a result (i.e. the birth rate grows exponentially) was proven for
the classical age-structured model.

Remark 2.4 Model (1.1) gives rise to the investigation of size-structured
models with time dependent mortality and growth rates, since by setting

γ̃(x, t) =
b(x)
a(t)

, µ̃(x, t) =
c(x)− b′(x)

a(t)

(1.1) can be written as

ut(x, t) + (γ̃(x, t)u(x, t))x + µ̃(x, t)u = 0, u(0, t) = B(t), u(x, 0) = u0(x),

a size-structured population model with time dependent growth rate γ̃ and
mortality µ̃. In particular, in case of

a(t) = t, c(x) = m(x) + b′(x), and u(0, t) = B(t) = κert,

where κ, r,m(.) > 0, (1.1) is a nonautonomous size-structured model with
growth rate γ(x, t) = b(x)

t , t > 0 and mortality µ(x, t) = m(x)
t , t > 0, where the



Balanced growth for nonautonomuous models 5

influx of zero (or minimal) size individuals given by B doesn’t depend on the
standing population. By (2.8) we have

lim
t→∞

u(x, t)
tr

= κe−rΓ2(x)π(x), x ∈ (0,∞).

We find this special example quite remarkable since we have an exponential
”input” (the density of zero size individuals) but the population grows polyno-
mially. In fact, a(t) = t is the only case when the solution will grow polynomially
despite the exponential boundary condition B.

Remark 2.5 In [12] the author introduced a concept similar to balanced
growth, namely the concept of conditional asymptotic equality, to characterize
the qualitative behaviour of solutions of certain nonautonomous problems. Con-
ditional asymptotic equality of solutions means that either all solutions tend to
zero (extinction) or for any pair u, v of non-negative non-trivial solution one has

lim
t→∞

u(x, t)
v(x, t)

= 1, (2.10)

uniformly in x. Notice that balanced growth (according to Def.1) does not imply
asymptotic equality of solutions and vica versa. In case of model (1.1) we can
show ”weak” asymptotic equality of solutions even without assuming condition
(2.1) on B. This is because (2.6) provides a formula for the solution u of (1.1)
for every x ∈ (0,∞) which is independent of the initial condition u0 if condition
(2.2) holds. This means that for any pair of non-trivial solutions u, v of (1.1)

we have lim
t→∞

u(x, t)
v(x, t)

= 1 pointwise in x.
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