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SUMMARY ABSTRACT 

 

Many bumblebee species are suffering from the effects of habitat fragmentation and 

population isolation. In some cases, populations have lost genetic diversity due to 

genetic drift and it is possible they are now at heightened risk of extinction. Inbreeding 

may be particularly costly to bumblebees because, as Hymenoptera, their 

complementary sex determination system can lead to the production of sterile or 

inviable diploid males. However, little is known about the effect that diploid male 

production has on bumblebee colony fitness. Here, the consequences of brother-sister 

mating in the bumblebee Bombus terrestris are investigated, and the production of 

diploid males was found to exert considerable costs at the colony level by reducing 

productivity and survival. Diploid males may therefore act as indicators of the genetic 

health of populations, and their detection could be used as an informative tool in 

hymenopteran conservation. Due to the costs associated with inbreeding, selection may 

have favoured the evolution of kin recognition systems in bumblebees. Data are 

presented that suggest that B. terrestris can discriminate between kin and non-kin as 

gynes were less willing to mate with siblings compared to non-relatives. 

 

Theory predicts that inbreeding may impose further costs on bumblebees through 

increased levels of parasitism, but empirical data are scarce. The relationship between 

population genetic diversity and parasite prevalence is assessed using Hebridean island 

populations of Bombus muscorum and Bombus jonellus. In the more outbred B. jonellus, 

there was no relationship between parasite prevalence and population heterozygosity. 

But prevalence of the gut parasite Crithidia bombi and the tracheal mite Locustacarus 

buchneri were found to be higher in populations of B. muscorum that had lower genetic 
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diversity. In addition to assessing infection status, the activity of the immune system 

was assessed in each individual bee. However, there was no relationship between 

population heterozygosity and these immune parameters. This suggests that, in some 

Hymenopteran species, as populations lose genetic diversity the impact of parasitism 

will increase, potentially pushing threatened populations closer to extinction. Therefore, 

preventing population fragmentation by the creation of suitable habitats and by ensuring 

connectivity between habitat patches are important aspects of hymenopteran 

conservation.  

 

Finally, this thesis investigates the potential threat of pathogen spread from 

commercially reared bumblebees used for crop pollination to wild bumblebees. 

Although no direct evidence for parasite spillover is found, the prevalence of C. bombi 

was significantly higher in B. terrestris by the end of the season on farms that used 

commercial bumblebees compared to farms that did not. This high prevalence does 

suggest that pathogen spillover is a potential threat and it would be preferable to reduce 

the usage of commercial bumblebees where possible. For example, sowing wild flower 

mixes could boost natural pollinator populations, which in turn would benefit soft fruit 

pollination. Overall, this thesis contributes to our knowledge of the consequences of 

inbreeding in bumblebees and the relationship between genetic diversity and parasite 

prevalence. It provides a greater understanding of the factors that might be pushing 

threatened pollinators towards extinction and as a whole provides important information 

that may inform conservation practitioners, whose aim is to protect the future of our 

hymenopteran pollinators. 
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1.1 The global loss of biodiversity 

1.1.1 Anthropogenic causes of species declines 

 

Human intervention in natural ecosystems seriously threatens global biodiversity. 

Indeed, many ecologists believe that a global mass extinction may be occurring due to 

the rapid rate at which species are being lost (Diamond, 1989; McKinney & Lockwood, 

1999). The destruction and degradation of natural habitats is the most important cause 

of such anthropogenic biodiversity decline (Tilman et al., 1994). The loss of habitat also 

inevitably leads to its fragmentation, which causes formerly widespread species to 

become restricted to small patches where populations often become small and isolated 

and extinction risks are heightened (Fahrig, 2003). Human-mediated introduction of 

non-native species is also responsible for a large proportion of species declines. Such 

invasive alien species can detrimentally effect native species through introducing 

disease, competition, genetic hybridisation and habitat modification (Mack et al., 2000) 

and are thought to be a leading cause of extinctions (Clavero & Garcia-Berthou, 2005). 

 

1.1.2 The decline of bumblebees 

 

Many bumblebee species have been subjected to habitat loss and invasive species, and 

have been suffering significant range contractions throughout the Northern Hemisphere 

over the last few decades (Kosior et al., 2007; Williams & Osbourne, 2009). These 

declines were initially documented in the UK due to the comprehensive historical 

information on the distribution and abundances of the native bumblebee species 

(Alford, 1980; Williams, 1982). It is now recognised that 3 of the 25 native species have 
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become extinct, 10 species have undergone severe range contractions and 7 species 

have been placed on the UK Biodiversity Action Plan (Goulson, 2010a). It has been 

more recently recognised that similar trends are occurring elsewhere in Europe. 

Fitzpatrick et al. (2007) compared distribution maps of Irish bumblebees pre- and post- 

1980 and found that similar species are declining in Ireland and Britain. Additionally, 

late-emerging species have suffered the most significant declines. A further study by 

Kosior et al. (2007) assessed the distribution and status of bumblebees in mainland 

Europe and found that approximately 30% of species were threatened throughout their 

range. The equivalent baseline data is not available in North America but there is 

emerging evidence that some bumblebee species have been suffering from dramatic 

declines in recent decades (Cameron et al., 2011). 

 

The primary cause of these losses is the intensification of agriculture, which has 

coincided with the period of most significant bumblebee declines in the latter half of the 

20th century (Goulson et al., 2008; Williams & Osborne, 2009). Such intensification has 

resulted in a loss of flower rich grasslands and other natural habitat, which has led to a 

decline in floral diversity. This leads to a loss of bumblebees as they are dependent on 

flowers for nectar and pollen, which almost exclusively comprise their diet. Indeed, a 

direct correlation has been found between the number of wild bee species and the floral 

diversity of an area (Hines & Hendrix, 2005).  The intensification of agriculture has also 

lead to a loss of potential nesting sites for bumblebees, for example in hedgerows and 

unimproved grassland, and this is thought to have contributed to their decline (Goulson 

et al., 2008).  
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Although it is recognised that agricultural intensification is partly responsible for 

bumblebee losses in North America (Grixti et al., 2009), it is also thought that the 

spread of disease from commercial bumblebees is having a detrimental impact on 

bumblebee populations (Cameron et al., 2011). Studies have found higher prevalence of 

the bumblebee pathogens Crithidia bombi and Nosema bombi at sites near to 

glasshouses where commercial bumblebees are deployed and suggest this is evidence 

for pathogen spillover into the wild bumblebee population (Colla et al., 2006; 

Otterstatter & Thomson, 2008). In the early 1990’s bumblebee queens from North 

America were shipped to European rearing facilities, where it is thought they may have 

become infected with disease. The colonies were then shipped back to North America 

and released. Disease is thought by some to be responsible for the recent catastrophic 

declines in at least five native bumblebee species in North America since this time 

(Thorp & Shepherd, 2005; Winter et al., 2006). However, it should be noted that there 

is no direct evidence for this at present (Brown, 2011). 

 

1.2 Inbreeding and inbreeding depression 

1.2.1 Overview 

 

Genetic diversity is vital in maintaining the fitness of populations and is an important 

consideration in the conservation of species that have been undergoing population 

declines. Such diversity is required to withstand short-term environmental perturbations 

and is crucial in allowing populations to evolve and adapt to long-term environmental 

change (Frankham et al., 2010). Large populations of naturally outbreeding species 

usually have extensive genetic diversity but small isolated populations are at risk from 
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losing their diversity. In smaller populations, random genetic drift can result in a steady, 

inexorable loss of genetic diversity, a process that may be greatly exacerbated during 

population bottlenecks. This process promotes homozygosity of certain alleles and 

causes rare alleles to be lost (Frankham et al., 2010).  

 

The loss of genetic diversity in small populations can also occur in the short term as a 

result of inbreeding (Keller & Waller, 2002). The term inbreeding is used in a number 

of different contexts but it invariably refers to situations where matings occur between 

relatives. Inbreeding due to such non-random mating refers to the degree of relatedness 

between mates, relative to two mates chosen at random from the population. Population 

subdivision can also cause non-random mating, which then leads to inbreeding (Keller 

& Waller, 2002). The consequence of all types of inbreeding is a loss of genetic 

diversity because it increases the frequency of individuals that are homozygous for 

alleles that are identical by descent (Keller & Waller, 2002). If this loss of genetic 

diversity leads to a loss of reproductive fitness it is termed inbreeding depression, which 

is predominantly caused by an increase in the frequency of homozygotes for deleterious 

recessives (Charlesworth & Charlesworth, 1999). It should be noted that if a species has 

always had a small effective population size, it may regularly inbreed and if deleterious 

recessives are frequently purged from populations, inbreeding depression may not 

occur. However, if a rare species was previously more common it is more likely that 

inbreeding depression will occur. 

 

Inbreeding depression in diploid organisms significantly increases the risk of extinction 

(Frankham, 2005). This has been clearly demonstrated with stochastic computer models 

in a study by O'Grady et al. (2006). A meta-analysis of the literature was used to 
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estimate the impact of inbreeding depression on the fitness of species across a broad 

taxonomic range and this estimate was used to model its effect on extinction risk. It was 

found that inbreeding depression significantly reduced the time to extinction in all of the 

30 species modelled. Further evidence of this relationship has been found under natural 

conditions. For example, small isolated populations of the Glanville fritillary butterfly 

Melitaea cinxia were found to have reduced heterozygosity and a resultant increase in 

extinction risk via effects on larval survival, adult longevity and egg-hatching rates 

(Saccheri et al., 1998). Additionally, genetic factors have been found to be related to 

population dynamics and hence extinction risk in two species of wolf spider in the 

Genus Rabidosa. Smaller populations with lower genetic diversity were found to have 

reduced population growth rates, particularly under stressful environmental conditions 

and this increased their probability of extinction (Reed et al., 2007). 

  

1.2.2 Inbreeding in haplodiploids 

 

Haplodiploid organisms have often been assumed to suffer less inbreeding depression as 

recessive deleterious and lethal mutations were thought to be purged through the 

haploid males (Werren, 1993). But some authors have challenged this assumption, 

primarily because purging will not be effective against female sex-limited traits, such as 

hibernation survival and fecundity (Henter, 2003). Indeed, a meta-analysis by this 

author concluded that when inbreeding is experimentally imposed on haplodiploid 

populations, substantial inbreeding depression does occur. For example, the 

haplodiploid wasp Uscana semifumipennis demonstrated significant inbreeding 

depression, with longevity and fecundity reduced 38% and 32% respectively (Henter, 

2003).  
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Haplodiploids may suffer further genetic costs of inbreeding due to their single-locus 

complementary sex determination (sl-CSD) system, which is ancestral to the 

haplodiploid Hymenoptera. Under this system, individuals heterozygous at the 

polyallelic sex-determining locus develop into diploid females and hemizygotes develop 

into haploid males. When a diploid individual is homozygous at the sex locus a diploid 

male is produced. This rarely occurs in large outbreeding populations because many 

CSD alleles can be maintained by negative frequency-dependent selection. However, 

genetic drift in small populations increases diploid male production (DMP) by reducing 

CSD allelic richness (Cook & Crozier, 1995). Inbreeding also increases DMP as there is 

a higher probability that a matched mating will occur, where a female mates with a 

haploid male that carries a sex allele identical to one of her own and produces a colony 

where on average 50% of the offspring are diploid males (Duchateau et al., 1994).  

 

Diploid males represent significant fitness costs, primarily through their inviability or 

sterility. For example, in the parasitoid wasp Brecon hebetor, very few diploid males 

mature beyond the embryo stage (Petters & Mettus, 1980). In a few species, such as the 

sawfly Athalia rosae ruficornis and the wasp Diadromus pulchellus, diploid males can 

produce diploid sperm and mate, but this results in sterile or inviable triploid progeny so 

the costs are merely deferred by a generation (Naito & Suzuki, 1991; Elagoze et al., 

1994). It should be noted that in some hymenopteran species diploid males are viable, 

for example in the parasitoid wasp Cotesia glomerata, diploid males have been found to 

successfully reproduce (Elias et al., 2009). It is thought that diploid male fertility has 

been selected for over time in this species as the occurrence of inbreeding is relatively 

frequent (Elias et al., 2010). In social insects, however, diploid males do exert 
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substantial fitness costs as they effectively replace 50% of the female workforce and do 

not contribute to colony productivity and this can be viewed as 50% worker mortality 

(Duchateau et al., 1994; Packer & Owen, 2001). In honey bees and ants this cost is 

reduced as the larvae are consumed by the workers, but in bumblebees they are reared 

to adulthood (Duchateau et al., 1994). The production of diploid males has been shown 

to slow the rate of colony growth in Bombus atratus under laboratory conditions 

(Plowright & Pallett, 1979) and result in higher mortality of founding queens in the fire 

ant Solenopsis invicta (Ross & Fletcher, 1986). Modelling has demonstrated that DMP 

can initiate a rapid extinction vortex and suggests that haplodiploids are more prone to 

extinction due to genetic reasons than previously supposed (Zayed & Packer, 2005).  

 

1.2.3 Inbreeding in bumblebees 

 

The study of genetic diversity and inbreeding in bumblebees is particularly relevant 

because of the population declines and range contractions they have been experiencing. 

Due to the loss of habitat, populations of the rare species have become fragmented and 

genetically isolated and are therefore susceptible to inbreeding depression, which has 

serious implications for their persistence (Darvill et al., 2006; Ellis et al., 2006; 

Takahashi et al., 2008). 

 

The negative genetic consequences of population fragmentation and isolation are 

exacerbated in bumblebees as there are a number of factors that predispose them to 

inbreeding and a low level of heterozygosity. Firstly, as haplodiploids, in any one 

generation there are only 75% as many gene copies compared to diplodiploid 

organisms. The effective population size of a haplodiploid is, therefore, smaller than for 
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an equivalent diplodiploid (Packer & Owen, 2001). Secondly, the effective population 

size of bumblebees is further reduced by their social nature as it is determined by the 

number of successful nests in an area and not by the number of sterile workers, which 

are considerably more abundant (Goulson, 2010a). Finally, the majority of bumblebee 

species are monoandrous (Estoup et al., 1995; Schmid-Hempel & Schmid-Hempel, 

2000). This increases their susceptibility to inbreeding compared to polyandrous 

species, which effectively have more breeding individuals per generation (Page & 

Metcalf, 1982). Additionally, polyandrous species such as the field cricket Gryllus 

bimaculatus are able to avoid the costs of genetic incompatibility through 

postcopulatory selective fertilisation (Tregenza & Wedell, 2002). 

 

Only a small number of studies have directly investigated inbreeding in bumblebees and 

these focus on the common and widespread species, Bombus terrestris. Duchateau et al. 

(1994) found that the growth rate of inbred colonies producing diploid males was only 

slightly affected. Gerloff et al. (2003) mimicked inbreeding through one generation of 

brother-sister mating in B. terrestris and studied its effects on two measures of fitness; 

immune defence and body size. Contrary to expectation, inbreeding did not significantly 

affect immune response or body size in either workers or haploid males and the 

variation in these response variables was largely explained by the maternal family and 

the colony of origin. Gerloff & Schmid-Hempel (2005) then extended this study to 

investigate the effects of inbreeding on hibernation survival, colony foundation success, 

colony size and the quantity and quality of reproductive output in the next generation. 

Colony size was negatively affected by inbreeding but variation in the other life history 

traits were again predominantly explained by maternal genotype. In contrast, an earlier 

study by Beekman et al. (1999) did find some evidence for inbreeding depression in B. 
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terrestris: inbreeding had a slight negative impact on the fecundity of the queens and on 

the size of colonies. 

 

The apparent lack of severe inbreeding depression in B. terrestris partly explains why 

this species can be invasive and has been extremely successful in colonizing new areas 

from small founder populations. For example, B. terrestris is spreading rapidly across 

Tasmania after its introduction in the early 1990’s, despite a severe genetic bottleneck 

and ensuing low genetic diversity (Schmid-Hempel et al., 2007). However, this success 

is likely to have been aided by a favourable climate, lack of inter-specific competition 

and few parasites (Gerloff & Schmid-Hempel, 2005).  

 

Rather than directly study inbreeding, a number of studies have investigated the 

population and genetic structure of various bumblebee species. The findings show that 

more common species, for example B. terrestris and Bombus pascuorum, exhibit little 

spatial genetic differentiation between populations (Estoup et al., 1996; Widmer et al., 

1998; Pirounakis et al., 1998; Widmer & Schmid-Hempel, 1999). However, when rare 

and common species are compared, the rare species with fragmented populations, such 

as Bombus sylvarum and Bombus humilis, have a much lower genetic diversity than 

common, widespread species such as B. terrestris and B. pascuorum (Ellis et al., 2006). 

Similar results have been found in North America, where populations of declining 

species of bumblebees have lower levels of genetic diversity than co-occurring 

populations of species that are not suffering from declines (Cameron et al., 2011). 

Additionally, extremely low effective population sizes have been found in two species 

of threatened bumblebees in the UK: in B. sylvarum effective population size ranged 
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from 21 to 72 (Ellis et al., 2006) and in Bombus distinguendus the size ranged from 

only seven to 42 (Charman et al., 2010).  

 

Darvill et al. (2006) investigated inbreeding and population structure in B. muscorum, 

yet another rare and declining species now predominantly found in the Western Isles of 

Scotland. Isolated island populations were found to be genetically differentiated to those 

closer to the mainland and had substantially reduced genetic diversity. In addition, 

genetic diversity was lower than in the closely related but more common species, B. 

pascuorum. Subsequent work has shown that B. muscorum shows markedly higher 

population structuring and isolation by distance than the coexisting Bombus jonellus (θ 

= 0.13 compared to θ = 0.034). This indicates that B. muscorum has a lower dispersal 

ability (estimates of the maximum dispersal range being only 8 km, compared to 50 km 

for B. jonellus) and hence is more susceptible to population isolation due to habitat 

fragmentation (Darvill et al., 2010). Diploid males have also been recorded in rare 

bumblebee species (Darvill et al., 2006; Takahashi et al., 2008), demonstrating that the 

loss of genetic variation has an associated fitness cost. It seems probable that inbreeding 

and loss of genetic diversity in isolated bumblebee populations reduces their fitness but 

it remains to be established if this is driving them to extinction.  

 

1.2.4 Inbreeding and parasite susceptibility 

 

One mechanism by which genetically impoverished populations may become extinct is 

through parasitism. Inbreeding and increased homozygosity can increase either the 

prevalence of parasites at the population level or susceptibility to parasites at the 

individual level. At the population level, a loss of genetic diversity due to inbreeding 
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reduces the capacity of the population to respond to novel virulent pathogen genotypes. 

The more genetically diverse a population is, the more likely it is that some individuals 

can resist a pathogen and this limits epidemic spread and facilitates evolution. In large 

populations, selection maintains this diversity but in small populations, alleles will be 

lost by genetic drift, and this will increase the probability that a pathogen that can kill 

one individual can kill many or all individuals (Frankham et al., 2010). Studies in 

vertebrates have supported this, for example the genetic diversity of populations of the 

frog Rana latastei is negatively correlated with susceptibility to an emergent pathogen 

(Pearman & Garner, 2005). Similar relationships have been found in other taxa for 

example the endangered fish Poeciliopsis o. occidentalis (Hedrick et al., 2001) and the 

rodent Peromyscus maniculatus (Meagher, 1999). 

 

At the individual level, correlations between heterozygosity and variations in fitness 

related traits, for example parasite susceptibility, are collectively known as 

heterozygosity-fitness correlations (HFC). HFCs have been reported where loss of 

heterozygosity in individuals leads to higher rates of infection and disease, for example 

in sheep, (Coltman et al., 1999), sparrows (MacDougall-Shackleton et al., 2005), sea 

lions (Acevedo-Whitehouse et al., 2006) and cooperative crows (Townsend et al., 

2009). However, this is certainly not a universal trait as a number of studies have 

recently emerged that show no such relationship (Pujolar et al., 2009; Cote et al., 2005). 

Indeed, Chapman et al. (2009) has used multivariate techniques to conduct a powerful 

meta-analysis of HFC studies and concluded that there was only weak evidence for 

heterozygosity-fitness correlations across many traits. Additionally, there is ongoing 

debate about the extent to which the measures of heterozygosity used in HFCs 
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(predominantly microsatellites) actually reflect the true inbreeding co-efficient of 

individuals (for example, David, 1998; Slate et al., 2004; Ljungqvist et al., 2010). 

 

The majority of studies incorporated in the meta-analysis by Chapman et al. (2009) 

were vertebrates and the studies that have addressed the effects of inbreeding on 

immunity and/or parasitism in invertebrates have demonstrated that the relationship is 

complex. For example, Stevens et al. (1997) found that the effect of inbreeding on the 

susceptibility of the flour beetle Tribolium castaneum to parasitic nematodes was not 

consistent and depended on host lineage. The effect of inbreeding can also depend on 

host sex, for example inbred females of the autumnal moth Epirrita autumnata have a 

significantly reduced immune response, but there is no such effect in males (Rantala & 

Roff, 2007). It has also been shown that the effect of inbreeding on infection can depend 

on the parasite species, with inbred Daphnia magna hosts becoming more susceptible to 

one parasite species but not to another (Haag et al., 2003). A recent study by Drayton & 

Jennions (2011) found that inbreeding in the cricket Teleogryllus commodus had no 

negative affect on immunity as measured by lysozyme-like activity and hemocyte 

counts. The effect of inbreeding on infection can also depend on the genetic diversity in 

the parasite population. Experiments have shown that genetically diverse populations of 

Daphnia magna only had lower infection rates compared to homogenous populations 

when exposed to a number of different parasite strains. No such effect of host 

heterogeneity was found in host populations exposed to single parasite strains (Ganz & 

Ebert, 2010). 

 

There is, however, evidence to suggest that inbreeding can decrease the immunity of 

invertebrates at the individual level. Spielman et al. (2004) found that inbred 
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populations of Drosophila melanogaster had a significantly reduced resistance to the 

insecticidal toxin, thuringiensin, and live Serratia marcescens bacteria and this was 

shown to result from the loss of specific resistance alleles. A further laboratory study 

with Drosophila has also found evidence for inbreeding depression, which then led to 

increased susceptibility to parasites. Experimentally inbred lines of Drosophila 

nigrospiracula were found to have a reduced capacity to sustain defensive behaviours 

against the ectoparasitic mite Macrocheles subbadius (Luong et al., 2007). Similarly, 

inbred termites suffer from increased disease susceptibility, which is due to a decrease 

in the efficacy of group level disease resistance rather than a loss of individual 

immunity per se (Calleri et al., 2006). Fewer studies have investigated the relationship 

between heterozygosity and parasite prevalence at a population level but two studies 

have found no correlation in subpopulations of snails and earthworms (Trouve et al., 

2003; Field et al., 2007). However, another study on a freshwater snail did find a 

negative correlation between population heterozygosity and probability of infection 

(Puurtinen et al., 2004). Similarly, in D. magna, the transmission of a virulent parasite 

was found to be higher in inbred host populations (Ebert et al., 2007).  

 

In bumblebees, circumstantial evidence does exist supporting the hypothesis that inbred 

populations are more susceptible to parasitic infection. Firstly, the invasive Bombus 

terrestris in Tasmania is highly inbred due to small numbers of founding queens and 

individuals have been found to support very high loads of ectoparasitic mites (Schmid-

Hempel et al., 2007; Allen et al., 2007). Secondly, an interdisciplinary study has looked 

at the population genetics and levels of pathogen infection in bumblebee populations 

across North America. The populations that were found to be declining had lower levels 
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of genetic diversity and significantly higher prevalence of the pathogen Nosema bombi 

compared to the stable bumblebee populations (Cameron et al., 2011).  

 

1.2.5 The parasite hypothesis 

 

Despite the lack of consistent experimental evidence about the effect that inbreeding in 

bumblebees may have on immunity, there is reason to believe that parasite load will be 

greater in inbred populations that have a lower heterozygosity. This is due to the 

parasite hypothesis, which states that genetically diverse colonies of social insects have 

a selective advantage as they are more resistant to parasitism (Sherman et al., 1988; van 

Baalen & Beekman, 2006). Fundamental to this hypothesis is the assumption that 

different host genotypes have a varying susceptibility to different parasite strains, which 

would mean that a parasitic infection is not likely to spread as rapidly and as far through 

a genetically heterogeneous colony (Sherman et al., 1988; Schmid-Hempel, 1998). 

Experimental support for the hypothesis has been provided by a number of studies using 

bumblebees and their parasites as a model system and these are summarised below. 

 

Shykoff & Schmid-Hempel (1991a) used the host-parasite system of B. terrestris and 

the intestinal trypanosome C. bombi to show that within species variation in 

susceptibility to the parasite does exist and infections spread more slowly between 

unrelated workers than among related workers. Strong effects of colony genotype on the 

probability of infection and transmission of C. bombi were also reported by Schmid-

Hempel & Schmid-Hempel (1993). Further evidence for a genetic component in the 

patterns of infection has been provided by Wilfert et al. (2007) through studying 

quantitative trait loci (QTL) related to C. bombi infection in B. terrestris. Investigations 
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under field conditions have provided additional support for the parasite hypothesis. 

Liersch & Schmid-Hempel (1998) created genetically homogeneous and heterogeneous 

colonies of B. terrestris and placed them in the field where they were naturally exposed 

to parasitism. It was found that the genetically heterogeneous colonies had significantly 

lower prevalence, load and richness of a range of parasites, including protozoa, 

nematodes, mites and parasitoids. This work was taken further by Baer & Schmid-

Hempel (2001) who artificially inseminated queens with sperm from one to four males, 

to represent different levels of polyandry. They found that the intensity and prevalence 

of C. bombi decreased with increasing levels of colony heterogeneity resulting from 

multiple inseminations. 

 

The evidence outlined above does suggest that heterogeneous colonies of bumblebees 

suffer less damage from parasitic infections than homogeneous colonies but modelling 

has shown that this advantage may be smaller than expected. van Baalen and Beekman 

(2006) modelled the effect of colony heterogeneity on the fitness cost inflicted by 

parasites and diseases and their results supported the parasite hypothesis to an extent. 

However, in heterogeneous colonies more genotypes are present that are susceptible to 

different parasites and so they may actually suffer an increased frequency of infection at 

the colony level, despite there being less per-infection damage.  

 

The parasite hypothesis is used to contribute to the explanation for the evolution of 

multiple mating in eusocial insects (Sherman et al., 1988). Because polyandry reduces 

the average relatedness between colony members it was seen as a paradox for the 

original kin-selection explanations for the evolution of eusociality in hymenopterans 

(Hamilton, 1964). It is now understood that multiple mating can have selective 
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advantages by increasing the genetic heterogeneity within a colony, as seen in the case 

of parasites. However, bumblebees are predominantly monogamous (Estoup et al., 

1995) so theories concerning multiple mating are not generally applicable. But the 

parasite hypothesis provides a useful framework against which to predict what effect 

bumblebee genetic diversity might have on parasite susceptibility. 

 

1.2.6 Inbreeding avoidance 

 

Due to the potential fitness costs associated with inbreeding, one might predict that 

selection would have favoured the evolution of kin recognition and inbreeding 

avoidance behaviours in bumblebees. The mating behaviour of bumblebees has been 

well studied in the laboratory (for example, Sauter & Brown, 2001) but little is known 

about inbreeding avoidance behaviours. One study found that queens of Bombus 

frigidus and possibly Bombus bifarius preferentially mated with unrelated males when 

given a choice (Foster, 1992). Males of these two species exhibit the pre-mating 

behaviour known as ‘patrolling’, where males mark objects with a pheromone and visit 

them sequentially to encounter potential mates attracted by the scent (Alford, 1975; 

Williams & Zervos, 1991). In the natural situation it is unlikely that reproductives will 

encounter both siblings and non-siblings at the same time. Therefore, choice 

experiments such as Foster’s (1992) perhaps do not represent the natural situation and 

clearly more research is need into the potential inbreeding avoidance behaviour of 

bumblebees. 
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1.3 Bumblebee parasites and immunity 

1.3.1 The parasite of bumblebees 

 

Bumblebees have long been known to harbour a great number and diversity of parasites 

(Alford, 1975; Schmid-Hempel, 1998) (see table 1.1). For the majority of the parasite 

species listed in Table 1, little is known about their biology, epidemiology or how the 

host-parasite interaction impacts bumblebee population biology. However, the most 

common parasites have been quite intensively studied and the following paragraphs 

introduce the parasite species that are encountered in the subsequent chapters. 

 

Table 1.1 A summary of the parasites reported for bumblebees (taken & adapted from Schmid-

Hempel, 2001). 

Group Parasite Remark 
Virus Acute Bee Paralysis Uncertain status in nature 
 Entomopox virus  
   
Bacteria Spiroplasma In haemolymph 
 Aerobacter cloaca and   
 other unidentified bacteria  
   
Fungi Acrostalagmus sp. Short hibernation in diseased queens. 
 Beauveria bassiana  
 Candida sp.  
 Hirsutella sp.  
 Paecilomyces farinosus Pathogenic 
 Verticilium lecanii  
   
Protozoa Nosema bombi See section 1.3.1.2 
 Crithidia bombi See section 1.3.1.1 
 Apicystis bombi See section 1.3.1.3 
 Neogregarina sp.  
   
Nematodes Sphaerularia bombi Infects overwintering queens, causing a 

behavioural change; queens do not found 
nests but seek further hibernating sites. 

   
Hymenopteran Syntretus splendidus Probably exclusively attacks spring queens 
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parasitoids Melittobia acasta; M. chalybii  
 Monodontomerus montivagus  
 Pediobius williamsoni  
   
Dipteran parasitoids Apocephalus borealis Feeds on thoracic muscles 
 Boettcharia litorosa  
 Helicobia morionella  

 
Brachioma devia; B. sarcophagina; B. 
setosa Can be extremely destructive 

 

Conops algirus; C. argentifacies; C. 
elegans;  C. flavipes; C. quadrifasciatus; C. 
vesicularis 

Investigated particularly in B. terrestris 

 Melaloncha sp.  

 

Physocephala brugessi; P. dimidiatipennis;    
P. dorsalis; P. nigra; P. obscura; P. rufipes;   
P. sagittaria; P. tibialis; P. vittata 

Pupa can be hyper-parasitised by 
pteromalid wasps 

 Senotainia tricuspis  
 Sicus ferrugineus Investigated particularly in B. terrestris 
 Zodion sp.  
   
Lepidoptera Ephestia kühniella Feeds on colony provisions 
   
Acari (mites) A large number of species Unclear status as parasites. 
 Locustacarus buchneri See section 1.3.1.4 
      

 

1.3.1.1 Crithidia bombi 

The intestinal parasite C. bombi (Trypanosomatidae, Zoomastigophorea, (Lipa & 

Triggiani, 1988)) is a single-celled flagellate. Recent molecular work has discovered 

that this species has two very distinct lineages and so it is now classified as two separate 

species: C. bombi & Crithidia expoeki (Schmid-Hempel & Tognazzo, 2010). But due to 

the recent nature of this discovery, this thesis only refers to C. bombi. The cells of the 

parasite attach to the walls of the mid- and hindgut in infected bumblebees and multiply 

rapidly. New parasite cells are then released from two to five days after the initial 

infection and pass out in the faeces, increasing in numbers for 8-13 days, after which the 

faecal pathogen load levels out but continues to fluctuate (Schmid-Hempel & Schmid-

Hempel, 1993; Logan et al., 2005). Horizontal transmission of the parasite occurs 

between workers within a colony by the ingestion of infective cells on nest materials. 
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Horizontal transmission between colonies occurs when foraging workers from 

uninfected colonies ingest cells left on flowers by workers from infected colonies 

(Durrer & Schmid-Hempel, 1994). A study by Imhoof & Schmid-Hempel (1999) 

showed that the rate of horizontal transmission by C. bombi is notably high, with all 

workers from lab-reared colonies of B. terrestris showing signs of infection after only 

10 days of exposure in the field. In addition, the rate of horizontal transmission 

increases as the season progresses, due to the larger number of foraging workers. The 

vertical transmission of the parasite to the next generation depends on the parasite 

infecting daughter queens that survive to establish their own nests the following spring 

(Ulrich et al., 2011). 

 

The prevalence of C. bombi among bumblebees is typically high but varies among host 

species, locality and the time of year, usually falling within the range of 10% to 35% of 

bees infected (Shykoff & Schmid-Hempel, 1991b; Korner & Schmid-Hempel, 2005). 

Colonies infected with C. bombi are able to survive and reproduce, suggesting that the 

virulence of the parasite is low (Imhoof & Schmid-Hempel, 1999). However, C. bombi 

is pathogenic and can cause a slower colony development early in the season and a 

reduction in ovary size in queens as well as workers (Shykoff & Schmid-Hempel, 

1991c). Infections may also affect the build-up of the queen’s fat body for hibernation 

(Schmid-Hempel, 2001). In addition, the parasite can result in higher worker mortality 

under adverse environmental conditions. For example, starvation causes the mortality 

rate from the parasite to increase by more than 50% (Brown et al., 2000). As such 

starvation can occur in natural situations, for example when rain or cold weather 

interrupts foraging, it is possible that C. bombi has significant adverse effects on the 

growth and survival of bumblebee colonies in the wild (Brown et al., 2000). The 
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virulence of C. bombi has also shown to be context-dependent and can cause substantial 

loss of fitness for B. terrestris queens under stressful hibernation and colony founding 

(Brown et al. 2003b). 

 

The nutritional status of the bumblebee host also affects the population dynamics of the 

parasite itself, as was demonstrated in a study by Logan et al., (2005). It was found that 

pollen-starved bees maintained a significantly lower C. bombi population that 

developed later after infection. This has implications for the horizontal transmission of 

the parasite between colonies as there would be a decreased parasite population in the 

faeces of pollen starved bees, which would decrease inter-colony transmission. This 

could in turn decrease the overall parasite population and so C. bombi may be less 

prevalent in food stressed host populations than would be expected when only 

considering host susceptibility. 

 

Infection by C. bombi also impairs cognitive processes and diminishes a bumblebees’ 

ability to utilize floral information and make economic foraging decisions (Gegear et 

al., 2006). Although this subtle behavioural change may not significantly reduce the 

fitness of the individual bee, the cost to the colony may be much more severe as the 

reproductive success of a colony is directly related to the foraging success of workers 

(Schmid-Hempel & Schmid-Hempel, 1998). C. bombi has been found to have further 

effects on the foraging behaviour of bumblebees with the number of flowers visited per 

minute and the flower handling time varying with infection intensity. Bees with more 

intense infections (i.e. more infectious bees) visited fewer flowers per minute and this 

may subsequently influence the probability of transmission but further work is needed 

to fully understand this complex system (Otterstatter & Thomson, 2006). 
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The interaction between C. bombi and its host (B. terrestris in all experiments) is 

strongly influenced by the genotypes of both. Transmission experiments have shown 

there is genotypic variation in the expression of host susceptibility and parasite 

infectivity (Schmid-Hempel & Schmid-Hempel, 1993; Schmid-Hempel et al., 1999). It 

has also been shown that there is extremely high diversity of parasite genotypes, which 

again indicates that there are strong genotypic host-parasite interactions in this species 

(Schmid-Hempel & Funk, 2004). Such genotypic interactions suggest that C. bombi 

exerts considerable selection pressure on its host and this is supported by studies that 

have demonstrated the high virulence of this parasite, even if this virulence is condition 

or context dependent (Brown et al., 2000; Brown et al., 2003b). 

 

1.3.1.2 Nosema bombi 

Nosema bombi (Microsporidia, Nosematidae,  Fantham & Porter, 1914) is another 

single-celled intestinal parasite and the only microsporidian known to infect 

bumblebees. The spores germinate in the gut lumen of infected bumblebees and 

primarily invade the mid-gut cells and the malpighian tubules but infections have also 

been found in fat tissue, nerve tissue, tracheae and reproductive organs (Larsson, 2007). 

After replication, the parasite releases mature spores back into the gut lumen, which 

begin to be passed out in the faeces from five days to as much as 21 days after the initial 

infection (McIvor & Malone, 1995). N. bombi is particularly infective of larvae and 

young bees (Rutrecht et al., 2007), although it can also infect mature adults (Schmid-

Hempel & Loosli, 1998). A higher infectivity of young bees favours the successful 

transmission of N. bombi because it can take up to 21 days before infective spores are 

passed out in the faeces. As the life expectancy of a bumblebee worker in the field is 
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roughly 20-30 days (Rodd et al., 1980), young bees are much more likely to survive to 

the time post-infection when spores can be transmitted. 

 

The transmission dynamics of N. bombi are less well understood than those of C. bombi. 

One study found a positive relationship between spore dose and infection success and 

that a transmittable infection can only be established if a bee ingests a minimum dose of 

100,000 spores (Rutrecht et al., 2007). This suggests that the nest is the major arena for 

infection, as spores will accumulate due to the concentration of bees and their faeces 

(particularly as infected colonies are dirtier, possibly due to the diarrhoea caused by the 

parasite and/or decreased cleaning behaviour of the workers) and these spores will be 

protected from destructive UV rays. This is further supported by the fact that N. bombi 

preferentially infects larva and young bees, both of which remain within the nest 

(Rutrecht & Brown, 2008). However, horizontal transmission between colonies must 

also occur as this one species of parasite infects many phylogenetically distant 

bumblebee species (Tay et al., 2005). If no horizontal transmission takes place, genetic 

differentiation would have occurred in the parasite as it has done in its host, resulting in 

greater genetic diversity between N. bombi lineages. 

 

The effect of N. bombi on its host appears to be variable, demonstrated by the 

contrasting results of different studies. A number of studies have found infection by N. 

bombi to be unrelated to the number of reproductives produced or the size of the colony, 

which suggests the parasite has few detrimental fitness effects (Fisher & Pomeroy, 

1989; Imhoof & Schmid-Hempel, 1999; Whittington & Winston, 2003). However, these 

studies were simply correlative and did not experimentally infect bumblebees to 

investigate causal relationships. To further understand this parasite, Otti & Schmid-
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Hempel (2007) investigated the effects of N. bombi in B. terrestris under standardised 

laboratory conditions. They found that the mortality rate of infected workers was five 

times higher than that of uninfected workers. Additionally, infected males had a lower 

survival and significantly less sperm and some gynes had extended abdomens, crippled 

wings and were unwilling to mate. Such severe infection effects in the sexuals are likely 

to either substantially reduce or completely eliminate their reproductive success. This 

high virulence may result from the unlimited food resources in the laboratory enabling 

the bees to support more intense infections than they would in the field. A field 

experiment was then conducted to investigate the effect of N. bombi under natural 

conditions (Otti & Schmid-Hempel, 2008). Infected queens produced significantly 

smaller colonies than uninfected queens and they also produced no sexual offspring, 

whereas a number of the uninfected colonies produced males. If N. bombi had similarly 

high virulence in all of its bumblebee host species, its transmission to further 

generations would be impeded. Rutrecht & Brown (2009) investigated this apparent 

paradox by conducting controlled laboratory infections in Bombus lucorum, a 

bumblebee species that occurs sympatrically with B. terrestris. Although B. lucorum 

was negatively affected by infection with N. bombi, the virulence did not appear to be as 

high as in B. terrestris, as colonies were still able to produce reproductives that were 

capable of mating, thus enabling the successful vertical transmission of this parasite. 

 

The prevalence of N. bombi varies spatially, temporally and across species. This has 

been demonstrated in a study by Paxton (2005), which recorded the incidence of N. 

bombi in 21 bumble bee species from 7 European countries in 2003 and 2004. A total of 

2846 bees were examined and microsporidia were detected in 9 of the species. 

Interestingly, N. bombi was found in all species where more than 60 individuals were 
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examined, which suggests the parasite is ubiquitous even if it exists at low levels in 

some species. The incidence of infection varied between countries, year and species. 

For example, 46% of B. terrestris/lucorum were infected in Ireland in 2003, whilst only 

3% were infected in Sweden. And, overall, an average of 19.3% of B. terrestris/lucorum 

were infected, compared to only 3.7% of B. pascuorum. The factors that drive these 

high levels of variation are unknown. 

 

1.3.1.3 Apicystis bombi 

Comparatively little is known about the third gut microparasite to infect bumblebees. A. 

bombi (Neogregarinida, Lipotrophidae: Lipa & Triggiani, 1996) infects adult 

bumblebees through the ingestion of spores. These release sporozoites that penetrate 

through the gut wall infecting the fat body cells where they develop and multiply. 

Spores are then excreted in the faeces, to be transmitted to other individuals 

(Macfarlane et al., 1995).  

 

Apicystis bombi is known to have quite serious detrimental effects on its host; infected 

workers have a disintegrated fat body (Durrer & Schmid-Hempel, 1995) and infected 

colonies have a much decreased chance of growth and reproduction (Schmid-Hempel, 

1998). In addition, A. bombi causes the premature death of queens after emergence 

(Macfarlane et al., 1995; Rutrecht & Brown, 2008). Very little is known about the 

distribution of this parasite, although it is less common than both C. bombi and N. 

bombi. 
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1.3.1.4 Locustacarus buchneri 

The endoparasite L. buchneri Stammer (Acari: Podapolipidae) infects the trachea of 

bumblebees. Gravid female mites overwinter inside hibernating bumblebee queens and 

when the queens become active in the spring, the mites pierce the tracheal wall with 

their mouthparts and feed on the haemolymph. Several mites may infest a single host 

and females deposit up to 50 eggs, which hatch into the mobile larviform females and 

males. After mating the females can migrate to other hosts within the nest via the host’s 

spiracles (Alford, 1975) and will predominantly move from adult bees to 3rd or 4th instar 

bee larvae, when the wax-pollen larval surround opens to allow feeding (Yoneda et al., 

2008). 

 

As with most parasite species, the prevalence of L. buchneri is highly variable. It is 

typically found in less than 10% of field caught bumblebees (Macfarlane et al., 1995) 

but prevalence of up to 50% have been found in some species, although it is unclear 

why certain bumblebee species appear to be preferentially parasitised (Otterstatter & 

Whidden, 2004). Little experimental work has been carried out on this parasite but 

observations suggest that this mite can have negative fitness effects on its host. For 

example, Husband & Shinha (1970) reported that bees infected with large numbers of L. 

buchneri were suffering from diarrhoea and had a decreased foraging ability. 

Additionally, a B. terrestris queen that was observed to be weak and cease in its nest 

building activity, was found to contain a large number of L. buchneri and was almost 

entirely wasted away internally (Skou et al., 1963). However, one laboratory study 

found that bumblebees infected with L. buchneri were no less efficient at foraging than 

uninfected bees (Otterstatter et al., 2005), although the sample size was small.   
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1.3.2 The bumblebee immune system 

 

The immune system of bumblebees, like that of all invertebrates, provides protection 

against the vast array of parasites and pathogens that may be encountered throughout 

their life history. The system is activated when an attacker breaks through the external 

barriers of the outer body wall or endothelia and is recognised as non-self. This 

recognition is achieved by pattern recognition receptors that identify pathogen 

associated molecular patterns (PAMPs) on the surface of the intruding microbe 

(Medzhitov & Janeway, 2000). The identification of PAMPs initiates a series of events 

that eventually leads to the appropriate defence response. Invertebrate defence 

responses are often classified into either the constitutive or inducible branches of 

immunity.  

 

Constitutive immunity includes the production of haemocytes and the enzyme 

phenoloxidase (PO) from its inactive precursor prophenoloxidase (pro-PO). These 

immune responses are referred to as constitutive as they are present even without 

contact with a pathogen and as a result they can be activated rapidly and are effective 

against a broad range of parasites (Schmid-Hempel, 2005).  PO catalyses the oxidation 

of phenols into quinones, which then polymerize into melanin (Soderhall & Cerenius, 

1998). Melanin is deposited round the parasite, isolating and externalising it; such 

melanisation is a common defence mechanism in a wide range of invertebrates (e.g. 

Allander & Schmid-Hempel, 2000). Haemocyte-mediated immune responses include 

phagocytosis, nodulation and encapsulation. Phagocytosis occurs when a haemocyte 

encounters a pathogen smaller than itself and engulfs it. When multiple haemocytes 

bind to and smother larger pathogens, it is known as nodulation. Encapsulation is 
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similar to nodule formation but occurs on a larger, more organised scale in response to 

macro-parasite infection (Lavine & Strand, 2002).  

 

The inducible element of the invertebrate immune system is slower to activate and may 

be tailored to particular pathogen classes. It involves the production of anti-microbial 

peptides, which are manufactured in the fat body, epithelium and hemocytes. A large 

number of antimicrobial peptides have been described, which are effective against a 

variety of pathogens (Hetru et al., 1998). Recent work has shown that the bumblebee B. 

terrestris strongly upregulates three known antimicrobial peptides (abaecin, defensin 1 

and hymenoptaecin) after wounding and bacterial infection (Erler et al., 2011). 

Evidence has also shown that the invertebrate immune system is more sophisticated that 

previously supposed as it exhibits a form of immune memory and specificity. The 

offspring of immune challenged bumblebee queens showed significantly higher 

antibacterial activity than the offspring of control queens (Sadd et al., 2005). This trans-

generational immune priming has been demonstrated to be mediated by factors inside 

the egg (Sadd & Schmid-Hempel, 2007). 

 

Immunocompetence (IC) can be defined as the ability of an organism to mount an 

immune defence against a parasite through either cellular, humoral or behavioural 

pathways (König & Schmid-Hempel, 1995; Schmid-Hempel & Schmid-Hempel, 1998; 

Adamo, 2004; Rantala & Roff, 2005; Wilson-Rich et al., 2008). It is possible to 

empirically estimate IC by mimicking the challenge posed by a real parasite using 

synthetic material, which creates a standardised challenge against which different 

responses can be compared. The most universal method involves implanting a nylon 

monofilament into the abdomen of an insect, where it is exposed to the circulating 
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haemolymph. This triggers the encapsulation response, which can be measured as the 

degree of melanisation (König & Schmid-Hempel, 1995; Schmid-Hempel & Schmid-

Hempel, 1998). This measure is a good illustration of the non-specific constitutive 

immune response as melanisation is used by invertebrates to respond to a wide and 

indiscriminate range of pathogens (Gupta, 1986).  

 

In bumblebees, implanting a nylon monofilament mimics the action of conopid flies, 

which are widespread parasites of bumblebees that oviposit into the abdomen of worker 

bees (Schmid-Hempel et al., 1990). The encapsulation response has helped elucidate 

many aspects of the bumblebee immune system (e.g. Schmid-Hempel & Schmid-

Hempel, 1998; Allander & Schmid-Hempel, 2000). Additionally, the encapsulation 

response has been found to positively correlate with overall size of a bumblebee colony 

and the number of reproductives it produces, so it is a good correlate of fitness (Baer & 

Schmid-Hempel, 2003). 

 

The level of phenoloxidase in an insect can be measured photospectrometrically and is 

also used to estimate an individual’s IC. The role of PO in insect immunity is 

undoubtedly very complex and some studies have suggested its role is not essential as 

pathogens can sometimes be overcome in its absence (for example Leclerc et al., 2006). 

However, more recent data have provided convincing evidence of the importance of the 

role of PO (summarised in Cerenius et al., 2008). For example, the bacterial pathogen 

of the moth Manduca sexta can inhibit host PO but when this bacterium has a mutation 

that prevents the PO inhibitor from working it loses its virulence and the moth suffers 

no ill effects (Eleftherianos et al., 2007).  A genetic correlation has also been found 
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between PO levels in the haemolymph and ability to encapsulate artificial implants in 

larvae of the moth Spodoptera littoralis (Cotter & Wilson, 2002). 

 

However, despite the essential role of PO in immunity, its measurement often does not 

explain resistance to certain parasites and correlations between levels of PO and 

resistance to real pathogens are not normally found. For example, Cornet et al. (2009) 

found no relationship between PO activity in Gammarus pulex and resistance to the 

bacteria E. coli, suggesting that other pathways are important in the defence against this 

infection. Similar results were found in D. magna, where variation in PO activity was 

not predicted by the differences in parasite resistance within and between populations 

(Mucklow et al., 2004). Additionally PO activity did not predict resistance to two 

different pathogens in yellow dung flies Scathophaga stercoraria (Schwarzenbach & 

Ward, 2007). These studies do not question the importance of PO, but demonstrate the 

short falls of measuring a single immune parameter to explain the overall 

immunocompetence of an individual.  

 

1.4 The commercialisation of bumblebees 

 

1.4.1 Bumblebees as valuable pollinators 

 

Bumblebees are hardy and efficient pollinators and provide essential reproductive 

services for numerous wild and cultivated flowering plants. Due to their relatively large 

body size and dense pile, bumblebees are able to forage in much lower temperatures 

than many other insects, including honeybees (Heinrich, 1979). Their dense hair allows 
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bumblebees to efficiently transport pollen and they are also able to sonicate (buzz 

pollinate) those flowers that shed pollen through apical pores (King, 1993). For these 

reasons, bumblebees provide a superior pollination service for a wide variety of plants, 

including many crops and as a consequence have been reared commercially for use in 

agriculture since the 1980s (Velthuis & van Doorn, 2006). The majority of 

commercially reared bumblebees are used for greenhouse tomatoes, but large numbers 

are also used for the pollination of various cucurbits, soft fruits, field beans, apples and 

almonds (Free & Williams, 1976; Stanghellini et al., 1997; Stubbs & Drummond, 2001; 

Thomson & Goodell, 2001). Studies have since shown that bumblebees do indeed 

provide economic benefits to farmers through an increased crop yield (Serrano & 

Guerra-Sanz, 2006; Lye et al., 2011). 

 

1.4.2 The threat of commercial bumblebees 

 

Despite the economic benefits that commercial bumblebees can provide, they do pose a 

threat to native bumblebee fauna and this can be through the spread of parasites and 

pathogens (Goulson, 2010b). The threat arises as the commercial bumblebees are not 

contained on the crop they are there to pollinate and frequently forage on surrounding 

wildflowers, where diseases can be transmitted (Morandin et al., 2001; Whittington et 

al., 2004). In North America, the accidental introduction of the gut parasite N. bombi 

with commercial bumblebees is thought by some to be responsible for the dramatic 

decline of seven species of native bumblebees since the 1990s (Winter et al., 2006) 

although direct evidence is lacking (Brown, 2011). Additionally, studies have shown 

that pathogen spillover from commercial to native bumblebees has occurred in Canada. 

The prevalence of parasites in wild bumblebee populations was compared between sites 
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close to glasshouses using commercial bumblebees and sites over 50km from any 

commercial greenhouse. It was found that C. bombi was present at significantly higher 

prevalence at the sites near glasshouses. Additionally, bees foraging closest to the 

greenhouse had more intense infections (Colla et al., 2006; Otterstatter & Thomson, 

2008). Such pathogen spillover can occur even if the commercial bees are initially free 

of disease as the high densities of bumblebees in glasshouses provide suitable 

conditions for rapid spread of any pathogen with which they come into contact. 

 

Another threat associated with the use of commercial bumblebees is competition for 

resources with native species. There are concerns for such competition occurring in 

Japan and South America as the non-native B. terrestris has become naturalised as a 

result of escapees from glasshouses (Matsumura et al., 2004; Montalva et al., 2011). B. 

terrestris has been shown to have four times the reproductive output of native Japanese 

bumblebees and they also overlap with native species in their preferred forage 

(Matsumura et al., 2004; Inari et al., 2005). There are also concerns for resource 

competition occurring in Chile due to considerable distributional overlap in native and 

non-native bumblebee species (Montalva et al., 2011). In the UK, the commercial bees 

imported are predominantly the subspecies B. terrestris dalmatinus and B. t. terrestris 

but the native endemic subspecies is B. t. audax. The commercial subspecies have been 

found to have a greater foraging efficiency and reproductive rate compared to B. t. 

audax and so there are concerns that commercial bees established in the wild would 

have a competitive advantage (Ings et al., 2006). There is also the risk of losing the 

native subspecies entirely through introgression as B. t. dalmatinus and B. t. audax 

readily interbreed (Ings et al., 2005). 
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1.5 The bumblebee life cycle 

 

Bumblebees are annual, primitively eusocial Hymenoptera that inhabit mainly the 

temperate regions of the world. Their annual life cycle is described in detail by Sladen 

(1912) and Alford (1975). Queens emerge from hibernation in the spring and 

individually found colonies. Once the queen has produced the first batch of offspring, 

the workers take over the tasks of foraging, brood care and nest maintenance. Sexuals 

(young queens and males) are produced towards the end of the colony cycle, usually in 

the late summer, and leave the nest to find a mate. Once mated the queens forage and 

find a hibernation site and the old founding queen, the workers and the males die. The 

following spring the queens that have survived hibernation give rise to the next 

generation (Alford, 1975). 

 

1.6 Aims and objectives 

 

Many bumblebee species are suffering from the effects of habitat fragmentation and 

population isolation. In some cases, populations have lost genetic diversity due to 

inbreeding and it is possible they are now at heightened risk of extinction. As 

bumblebees are keystone species and have a valuable role as pollinators, it is vital to 

understand what factors might be threatening these populations. Inbreeding may be 

particularly costly to bumblebees because, as Hymenoptera, their complementary sex 

determination system can lead to the production of sterile or inviable diploid males. 

Furthermore, inbreeding may cause increased levels of parasitism and this could play a 

role in driving the decline of isolated populations.  



 34 

 

The overall aim of this thesis is to investigate the effect of inbreeding on bumblebees 

and establish whether the production of diploid males and a potentially increased 

susceptibility to parasites is contributing to their decline. A further aim is to investigate 

the potential threat of pathogen spillover from commercial bumblebees. An 

understanding of these effects is vital to establish what factors might be pushing 

threatened pollinators towards extinction and may assist with the development of 

appropriate conservation strategies. 
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The specific aims of each chapter are: 

 

1. To assess the cost of inbreeding, in terms of diploid male production, in the 

bumblebee Bombus terrestris. 

 

2. To investigate whether bumblebees attempt to avoid inbreeding through a kin 

recognition system. 

 

3. To establish whether there is a relationship between levels of inbreeding and 

parasite prevalence in two bumblebee species, Bombus muscorum and Bombus 

jonellus, in the Western Isles of Scotland. 

 

4. To further investigate the relationship between population genetic diversity, 

parasite prevalence and individual immunity in B. muscorum. 

 

5. To assess whether bumblebees are at further risk due to the spread of pathogens 

from commercial bumblebees imported for soft fruit pollination. 
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Chapter 2 -  Impacts of inbreeding on bumblebee 

colony fitness under field conditions 

This chapter has been published as: 

Whitehorn, P. R., Tinsley, M.C., Brown, M.J.F., Darvill, B. & Goulson, D. (2009). Impacts 

of inbreeding on bumblebee colony fitness under field conditions. BMC Evolutionary 

Biology 9: 152. 

 

All authors commented on draft versions of this manuscript and the published version is 

presented here. 
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2.1 Abstract  

 

Inbreeding and the loss of genetic diversity are known to be significant threats to small, 

isolated populations. Hymenoptera represent a special case regarding the impact of 

inbreeding. Haplodiploidy may permit purging of deleterious recessive alleles in 

haploid males, meaning inbreeding depression is reduced relative to diploid species. In 

contrast, the impact of inbreeding may be exacerbated in Hymenopteran species that 

have a single-locus complementary sex determination system, due to the production of 

sterile or inviable diploid males. We investigated the costs of brother-sister mating in 

the bumblebee Bombus terrestris. We compared inbred colonies that produced diploid 

males and inbred colonies that did not produce diploid males with outbred colonies. 

Mating, hibernation and colony founding took place in the laboratory. Once colonies 

had produced 15 offspring they were placed in the field and left to forage under natural 

conditions. 

 

The diploid male colonies had a significantly reduced fitness compared to regular 

inbred and outbred colonies; they had slower growth rates in the laboratory, survived 

for a shorter time period under field conditions and produced significantly fewer 

offspring overall. No differences in success were found between non-diploid male 

inbred colonies and outbred colonies. 

 

Our data illustrate that inbreeding exacts a considerable cost in B. terrestris through the 

production of diploid males. We suggest that diploid males may act as indicators of the 
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genetic health of populations, and that their detection could be used as an informative 

tool in hymenopteran conservation. We conclude that whilst haplodiploids may suffer 

less inbreeding depression than diploid species, they are still highly vulnerable to 

population fragmentation and reduced genetic diversity due to the extreme costs 

imposed by the production of diploid males. 

 

2.2 Introduction  

 

The genetic health of populations is increasingly viewed as one of the most important 

factors in maintaining fitness in an uncertain and changing environment (Frankham et 

al., 2004). It is well established that inbreeding depression in diploid organisms 

significantly increases the risk of extinction (Saccheri et al., 1998). By contrast, 

haplodiploid organisms have often been assumed to suffer less inbreeding depression as 

deleterious recessive mutations were thought to be purged through the haploid males 

(Werren, 1993). However, some authors have challenged this assumption, partly 

because purging may not be effective against female sex-limited traits, such as 

hibernation survival and fecundity (Henter, 2003).  

 

Haplodiploids may suffer further genetic costs of inbreeding due to their single-locus 

complementary sex determination (sl-CSD) system, which is ancestral to the 

haplodiploid Hymenoptera. Under this system, individuals heterozygous at the 

polyallelic sex-determining locus develop into diploid females and hemizygotes develop 

into haploid males. When a diploid individual is homozygous at the sex locus a diploid 

male is produced. The frequency of diploid males depends on the number of CSD 

alleles and so they are rarely produced in large outbreeding populations because many 
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alleles are maintained by negative frequency-dependent selection (Duchateau et al., 

1994; Page & Metcalf, 1982). However, genetic drift in small populations is expected to 

increase diploid male production (DMP) by reducing CSD allelic richness (Cook & 

Crozier, 1995).  

 

Diploid males represent significant fitness costs, primarily through their inviability or 

sterility (Petters & Mettus, 1980; Elagoze et al., 1994). In a few species, diploid males 

can produce diploid sperm and mate, but this invariably results in sterile triploid 

progeny so the costs are merely deferred by a generation (Naito & Suzuki, 1991). In 

social insects further costs of diploid males are apparent, as they replace 50% of the 

female workers and do not contribute to colony productivity (Duchateau et al., 1994). 

This has been shown to slow the rate of colony growth in Bombus atratus, under 

laboratory conditions (Plowright & Pallett, 1979) and result in high mortality of 

founding queens in the fire ant Solenopsis invicta (Ross & Fletcher, 1986). Recent 

modelling has demonstrated that DMP can initiate a rapid extinction vortex and 

suggests that haplodiploids are more prone to extinction than previously supposed 

(Zayed & Packer, 2005).  

 

The study of genetic diversity and inbreeding in bumblebees is currently of particular 

importance as many species have been suffering from significant population declines 

and range contractions (Thorp & Shepherd, 2005; Kosior et al., 2007). This has been 

attributed predominantly to the intensification of agriculture and the associated loss of 

flower rich meadows and other habitats on which bumblebees depend (Goulson, 2010a; 

Goulson et al., 2005; Goulson et al., 2008; Carvell et al., 2006). The remaining 

populations of rare species have become fragmented, genetically isolated and suffer 
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from a loss of genetic diversity. They are now susceptible to inbreeding depression, 

with serious implications for their persistence (Darvill et al., 2006; Ellis et al., 2006; 

Takahashi et al., 2008). 

 

The genetic consequences of population fragmentation and isolation are exacerbated in 

bumblebees as a number of factors predispose them to low levels of heterozygosity and 

hence inbreeding. Firstly, as haplodiploids, there are only 75% as many gene copies in 

any one generation compared to diplodiploid organisms, hence reducing the effective 

population size (Packer & Owen, 2001). Secondly, the effective population size of 

bumblebees is reduced still further by their social nature, as it is determined by the 

number of successful nests in an area and not by the number of more abundant sterile 

workers (Pamilo & Crozier, 1997). Finally, the majority of bumblebee species are 

monoandrous (Estoup et al., 1995; Schmid-Hempel & Schmid-Hempel, 2000). This 

increases their susceptibility to inbreeding compared to polyandrous species, which 

effectively have more breeding individuals per generation (Page & Metcalf, 1982) and 

which in some instances can avoid the costs of negative genetic incompatibility through 

postcopulatory selective fertilization (Tregenza & Wedell, 2002). Whilst small effective 

population size in haplodiploids may not result in inbreeding depression per se it will 

decrease CSD allelic richness, which in turn will increase diploid male production. 

 

Investigations into the effects of inbreeding in bumblebees have had varying outcomes. 

Under laboratory conditions one generation of brother-sister mating in B. terrestris had 

no effect on immune defence or body size (Gerloff et al., 2003). However, a similar 

experiment found that inbreeding did have a significant negative effect on colony size, 

whereas the impact of inbreeding on other fitness traits was highly variable across 
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maternal genotypes (Gerloff & Schmid-Hempel, 2005). Additionally, when B. terrestris 

queens were sib-mated for several generations, a negative effect on queen fecundity and 

colony size was observed (Beekman et al., 1999). The cost of diploid male production is 

unclear: Duchateau et al. (1994) found that the growth rate of laboratory diploid male 

colonies of B. terrestris was not significantly affected, yet Plowright & Pallett (1979) 

found diploid male colonies of B. atratus had a significantly slower growth rate, albeit 

with a very small sample size. Diploid males have been observed in rare and threatened 

bumblebee species in the wild (Darvill et al., 2006; Takahashi et al., 2008), so the true 

costs of their production are important to ascertain. 

 

This study aimed to determine the costs of brother-sister mating in the bumblebee B. 

terrestris, specifically focusing on survival and growth in field conditions and the 

fitness of diploid male colonies. Young B. terrestris gynes were mated in the laboratory 

with either their brothers or with un-related males. Their survival during hibernation 

was recorded and those queens that established colonies in the laboratory generated 

three experimental treatments: 

1) Sib-mated queens not producing diploid male offspring (Inbred treatment) 

2) Sib-mated queens producing diploid male offspring (Diploid male treatment) 

3) Outbred queen colonies (Outbred treatment) 

 

The rate of growth of these colonies was measured and once they had produced 15 

offspring they were placed in the field. The development and survival of these colonies 

were followed throughout a summer season to demonstrate the costs of inbreeding and 

DMP in a natural setting. 
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2.3 Methods 

2.3.1 Experimental protocol 

 

10 laboratory colonies of B. terrestris, purchased from Koppert Biological Systems, The 

Netherlands, in February 2008, provided young queens and males. When these sexuals 

emerged they were removed from the maternal colony and housed in single sex sibling 

groups before being mated in large mesh sided flight cages between 1st April and 16th 

April 2008.  

 

To generate the outbred treatment, maternal colonies were paired randomly and 

daughter queens were mated with the unrelated males from their paired colony. To 

generate inbred colonies, daughter queens were mated with their brothers. It was 

expected that approximately half the inbred matings would result in diploid male 

colonies. Only sibling groups were used; all males in the mating cage at any one time 

were brothers, and all queens were sisters. Bees were mated in groups (n = 15 to 60), 

always in a 1:2 ratio of queens to males. During copulation mating pairs were removed 

from the flight cage, placed into clear plastic boxes, then left undisturbed until 

copulation ended. 

 

A total of 210 queens were successfully mated (82 non-sibmated and 128 sibmated); an 

average of 21 ± 3.2 (mean ± SE) queens per maternal colony. After mating, males were 

removed and queens were kept in the box for 48 hours under natural lighting with sugar 

water and fresh pollen ad libitum (honey bee pollen stored at -200C). After this period 

queens were housed individually in match boxes and hibernated in an incubator at 6 oC 

for 47 days.  
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Queens that survived hibernation were placed in individual wooden boxes (10cm x 

10cm x 10cm) and kept under standard rearing conditions (280C, 60% relative humidity 

and red light (Plowright & Jay, 1966)). Sugar water (50% Attracker solution in distilled 

water, Koppert Biological Systems, The Netherlands) was provided ad libitum and 

pollen balls (ground fresh pollen mixed with Attracker) were provided three times a 

week. When a queen had produced five offspring, the new colony was transferred to a 

larger plastic box (25cm x 22cm x 14cm) with a separate feeding chamber. Following 

Duchateau et al. (1994), diploid male colonies were identified as those producing 

workers and males in approximately equal numbers from the first brood. When fifteen 

eclosed offspring had been produced the nest box was insulated and placed in a 

waterproof outer box. The colony was then transferred to the field site where the 

workers could forage under natural conditions. Colonies of all treatments were placed 

out in the field at approximately the same time. The field site was situated on the edge 

of Stirling University campus, from where ornamental gardens, deciduous woodland 

and mixed farmland were available within 500m radius (a conservative estimate of 

foraging range for this species, see Darvill et al., 2004; Knight et al., 2005). 

 

After field placement, colonies were checked weekly; on each occasion 10% of the 

offspring was removed and stored at -80oC for later dissection in a separate study on 

parasite resistance. No offspring were removed if fewer than 10 were present. When the 

queen died, each colony’s inner brood chamber was collected and frozen for subsequent 

inspection. 
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2.3.2 Variables measured 

 

Hibernation survival 

Following Gerloff & Schmid-Hempel (Gerloff & Schmid-Hempel, 2005) queens were 

classified as having survived hibernation only if they survived for at least 72 hours post 

hibernation; those that did not were unlikely to have survived under natural conditions. 

A considerable proportion of queens (0.108, n = 23) fell into this category. All 

subsequent analyses remain qualitatively unchanged if these queens are included. 

 

Colony foundation 

Queens were considered to have founded a colony if they successfully reared at least 

one offspring to adulthood. The number of days from the end of hibernation to the 

emergence of the first worker was recorded. Queens that had not laid eggs 12 weeks 

after the end of hibernation were removed from the experiment. 

 

Colony growth 

The number of colonies successfully rearing ≥5 and ≥15 offspring was recorded. These 

colony sizes were specifically relevant as at 5 offspring the colony was transferred to a 

larger box where the workers had to travel a short distance to find food and at 15 

offspring the colony was transferred outside to forage independently. 

 

Survival under field conditions 

The number of weeks between the field placement date and the queen’s death was 

recorded. 
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Final colony size 

The final colony size was recorded when the queen died. For the colonies which were 

placed outside this was assessed by counting the number of empty cells in the brood 

clump. This is a reliable indirect measure of fitness as the number of reproductives 

produced by a colony is highly correlated with colony size (Gerloff & Schmid-Hempel, 

2005; Muller & Schmid-Hempel, 1992). For colonies that had not reached 15 offspring, 

the experiment was ended 120 days after the queen had emerged from hibernation and 

the final colony size was counted at this time.  

 

2.3.3 Statistical analyses 

 

Data were analysed in SPSS 15.0 for Windows (2007 Chicago: SPSS Inc.). Binary 

logistic regression was used to investigate determinants of hibernation survival and 

colony foundation. Inbreeding treatment and maternal colony were entered as fixed 

factors and hibernation end date was included as a co-variate to control for variation in 

experiment start dates. Colony growth was analysed with binary logistic regression to 

assess whether or not colonies from different inbreeding treatments crossed the 5 

worker and 15 worker size thresholds. Similarly, General Linear Models (GLMs) were 

used to investigate whether inbreeding status influenced the number of days to the 

emergence of a colony’s 1st, 5th and 15th offspring, as well as the impact of inbreeding 

on colony field survival time and total number of offspring produced. In each case 

inbreeding treatment and maternal colony were entered as factors and hibernation end 

date as a covariate. All data sets used in GLMs were normally distributed (verified with 

Anderson-Darling tests). Variables not contributing significantly to models were 

removed in a step-wise fashion. Pairwise differences between factor means were 
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investigated using Tukey’s post hoc tests. Means are recorded ± their standard errors 

throughout. 

 

2.4 Results  

2.4.1 Hibernation survival 

 

In total 93 queens (43.7%) survived the hibernation period and subsequent 72 hours. 

The probability of surviving hibernation was significantly affected by the maternal 

family line (χ2
9, = 31.84; P < 0.0001); survival ranged from 11.5% to 68.0% between 

maternal colonies (see figure 2.1). Mating date was also a significant predictor of 

hibernation survival; queens mated earlier were more likely to survive (χ2
1, = 19.28, p < 

0.0001). There was no difference in survival between queens mated to unrelated males 

and sib-mated queens (46.34%, n = 82 and 41.98%, n = 131 respectively. χ2
1, = 1.67; P 

= 0.199). 
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Figure 2.1 - Hibernation survival for experimental queens from each maternal colony. 

The probability of surviving differed significantly between maternal colonies (P < 0.0001). Sample size 

within each maternal colony ranged from 8 to 40 and error bars show 95% shortest unbiased confidence 

limits. 

 

2.4.2 Colony foundation 

 

Out of the queens that survived hibernation, 47 produced at least one offspring and were 

considered to have successfully founded a colony. Of these 47 colonies, 20 were 

outbred, 17 were inbred and 10 were diploid male colonies. There was no difference 

between colony founding ability between queens mated to unrelated males and sib-

mated queens (57.14%, n = 35 and 50.94%, n = 53 respectively. χ2
1, = 0.326, p = 0.568). 

Additionally, colony founding ability was not predicted by maternal colony (χ2
9, = 

14.25, P = 0.114) or hibernation end date (χ2
1, = 0.78, p = 0.378). 
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2.4.3 Colony growth 

 

The number of colonies reaching 5 and 15 offspring 

The probability of a colony growing past the 5 and 15 offspring size thresholds was not 

influenced by inbreeding status (χ2
2, = 0.36, P = 0.835; χ2

2, = 1.70, P = 0.428 

respectively) (figure 2.2). Maternal line did not significantly influence the number of 

colonies reaching 5 and 15 offspring (χ2
9, = 11.42, P = 0.248; χ2

9, = 11.76, P = 0.227 

respectively) and neither did hibernation end date (χ2
1, = 0.08, P = 0.779; χ2

9, = 0.54, P = 

0.461 respectively). 
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Figure 2.2 - The percentage of queens producing 5 and 15 offspring according to treatment. 

Black bars represent the outbred treatment, grey bars the inbred treatment and white bars the diploid male 

treatment. No significant difference was found between these values (P = 0.835 for 5 offspring & P = 

0.248 for 15 offspring). Sample size within each treatment ranged from 6 to 18 and error bars show 95% 

shortest unbiased confidence limits. 
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The rate of colony growth 

We assessed the rate of growth of colonies after foundation by recording the time until 

they crossed three size thresholds: 1, 5 and 15 offspring. The inbreeding treatments did 

not significantly influence the time taken to reach these sizes, neither did maternal 

colony origin or hibernation end date (table 2.1). However, due to the earlier emergence 

of offspring in the DMP colonies, the mean interval between emergence of the 1st and 

15th offspring was considerably longer for the diploid treatment (41.3 days ± 2.00, n = 

6) than for either the inbred (26.51 days ± 1.18, n = 14) or outbred (23.6 days ± 1.21, n 

= 16) treatments (figure 2.3). This variation was highly significant (F2, 25 = 35.13; 

P<0.001). Post hoc tests confirmed that the diploid male treatment differed from both 

the others (P<0.0001), but that no difference existed between the inbred and outbred 

colonies (P>0.246). Maternal colony also influenced the number of days between the 

emergence of the 1st and 15th offspring (F8, 25 = 6.35, p<0.001). 

 

Table 2.1 - Output of GLM for the rate of colony growth.  

The rate of colony growth is represented by the number of days from the hibernation end date to the 

emergence of the 1st, 5th and 15th offspring and the number of days to the emergence of the 15th offspring 

from the 1st offspring, respectively, with respect to inbreeding treatment, maternal colony and the co-

variate hibernation end date. Degrees of freedom are given in parentheses. 

  
Days to 1st 
offspring   

Days to 5th 
offspring   

Days to 15th 
offspring   

Days from 1st to 
15th offspring 

            
 F P  F P  F P  F P 
            
Inbreeding 1.70 0.194  0.75 0.480  0.62 0.545  35.13 <0.001 
Treatment (2, 46)   (2, 39)   (2, 33)   (2, 25)  
            
Maternal  1.68 0.133  1.30 0.281  1.70 0.149  6.35 <0.001 
Colony (9, 34)   (8, 30)   (8, 24)   (8, 25)  
            
Hibernation 2.03 0.164  1.37 0.251  3.48 0.074  2.09 0.161 
end date (1, 34)     (1, 30)     (1, 24)     (1, 24)   
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Figure 2.3 - Mean time from colony foundation to 15th offspring, according to treatment. 

Bars show the mean duration of the period between the emergence of the 1st and 15th offspring. Means 

and their standard errors were predicted from the GLM. This measure of colony growth is significantly 

slower for the diploid male treatment than either outbred or inbred colonies (P < 0.001, see text). 

 

2.4.4 Survival and growth under field conditions 

 

Survival in the field 

The diploid male colonies survived for a shorter time period under field conditions 

compared to the outbred and regular inbred colonies; a mean of only 1.5 (± 0.86) weeks, 

compared to means of 4.5 (± 0.54) and 3.4 (± 0.56) weeks respectively (F2,32 = 4.33, p < 

0.05) (figure 2.4). Post hoc tests revealed the outbred and diploid male treatments were 

significantly different (p < 0.02); no significant difference existed for other pairwise 

comparisons (inbred-outbred P= 0.388, inbred-diploid male P = 0.159). Maternal line 
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and field placement date did not cause significant variation in field survival duration (F7, 

24 = 1.19, p = 0.345 and F1, 31 = 3.49, p = 0.071 respectively). 
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Figure 2.4 - The mean number of weeks colonies survived under field conditions according to 

treatment. 

Bars represent the least square means and their standard errors as predicted by the GLM. Diploid male 

colonies survived significantly fewer weeks than the outbred colonies (P < 0.05, see text). 

 

Colony growth in the field 

The number of offspring a colony produces is a major determinant of colony fitness. All 

colonies had 15 offspring when placed into the field. Outbred and inbred colonies 

continued to grow under field conditions, producing total means of 30.9 (± 2.42) and 

29.7 (± 2.50) offspring each. However, diploid male colonies produced very few 

additional offspring in the field, reaching a mean of only 15.8 (± 3.82) offspring. This 

striking variation between inbreeding treatments was significant (F2, 32 = 6.03, p < 0.01) 

(Figure 5). Post hoc tests confirmed that diploid male colonies differed significantly 

from both the outbred and inbred treatments (p = 0.006 & p = 0.013 respectively); the 

difference in mean size between outbred and inbred colonies was not significant (p = 
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0.935). Maternal colony and field placement date did not significantly influence final 

colony size (F7, 24 = 1.43, p = 0.241; F1, 31 = 1.39, p = 0.248 respectively). 
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Figure 2.5 - The mean total number of offspring produced by colonies in the field according to 

treatment. 

Bars represent least square means and their standard errors as predicted by the GLM. Diploid male 

colonies produced significantly fewer offspring than both the outbred and the regular inbred colonies (P < 

0.01, see text). 

 

2.5 Discussion  

 

For the first time we demonstrate that brother-sister mating in B. terrestris exacts high 

costs under field conditions through the production of diploid males. A number of 

fitness parameters were negatively affected by diploid male production, including 

colony growth rate, total offspring production and colony survival, but no significant 

effects of inbreeding in the absence of diploid male production were detected.  

 



 53 

The costs of diploid male production were first evident whilst colonies were growing in 

the laboratory, where the number of days between the emergence of the 1st and 15th 

offspring was considerably greater for the diploid male colonies. This slower growth 

rate presumably occurs because colony resources are diverted away from the production 

of industrious female workers; diploid males are idle within the colony and so the 

workforce is approximately halved, resulting in less brood care and slower growth. 

These findings augment the study by Plowright & Pallett (1979) who found that DMP 

colonies in B. atratus had a considerably slower rate of growth than all-worker-

producing inbred colonies in laboratory conditions.  

 

Overall colony fitness was gauged by the total number of offspring produced by the end 

of the experiment, as the number of reproductives reared by a colony is highly 

correlated with the number of workers (Muller & Schmid-Hempel, 1992; Gerloff & 

Schmid-Hempel, 2005). The mean number of offspring produced by the diploid male 

colonies was significantly lower than in the other treatments. In fact, the mean was only 

15.8, which is barely greater than the colony size of 15 when nests were placed in the 

field. The low number of offspring in these colonies would result in fewer foraging 

workers and hence a lower food intake. This would have initially impeded growth and 

subsequently led to colony starvation. This is reflected in lower survival of DMP 

colonies; the queens survived approximately a third of the time of the outbred colonies, 

and died presumably due to starvation due to the lack of foraging workers. A similar 

outcome has been found in the fire ant Solenopsis invicta, where DMP colonies had 

lower brood weight, fewer adult workers and higher queen mortality compared to all-

worker-producing colonies (Ross & Fletcher, 1986). This was explained by the queen 
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having to cope on her own for longer before there were sufficient workers to take over 

foraging duties. 

 

As well as reducing colony survival, bumblebee diploid males impose a genetic load on 

populations as they yield no reproductive return for the resources invested in them. B. 

terrestris diploid males produce diploid (rather than haploid) sperm. They also have 

smaller testes and fewer spermatozoa than haploid males, and hence have reduced 

fertility (Duchateau & Marien, 1995). Although they develop normally in other respects 

and are capable of mating, Duchateau & Marien (1995) found that the queens mated to 

diploid males did not produce colonies. It has since been found that such queens are 

capable of producing a viable colony containing triploid offspring, but the triploid 

queens produced are inviable or infertile (Ayabe et al., 2004). Therefore, as in other 

species such as the sawfly Athalia rosae ruficornis, the costs of diploid males are not all 

immediately apparent, but become so a generation later (Naito & Suzuki, 1991). 

 

Diploid males have been found to be sensitive indicators of the loss of genetic diversity 

in Hymenoptera. For example, an apparently abundant species of orchid bee Euglossa 

imperiali was found to have large numbers of diploid males, ranging from 12% to 100% 

of the total population. This turned out to be the result of an extremely low effective 

population size (Zayed et al., 2004). In a further study of more orchid bee species, the 

highest diploid male frequency and the lowest genetic variability was found in the rarest 

species (Lopez-Uribe et al., 2007). Diploid males have also been found in rare and 

localised bumblebee species. In the Japanese bumblebee Bombus florilegus, diploid 

males were found in 28% of colonies produced in the laboratory from wild caught 

mated queens, a figure thought to be due to matched matings resulting from notably low 
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genetic diversity and small population size. Additionally, the frequency of triploid 

females was found to be 2.7% in natural populations (Takahashi et al., 2008). Diploid 

males were detected at a frequency of 5% in the wild (with respect to haploid males) in 

the threatened bumblebee Bombus muscorum, again probably due to reduced genetic 

diversity brought about by population fragmentation and isolation (Darvill et al., 2006). 

As diploid males are produced from the first brood, they will be found on the wing, 

even if the colony  from which they have been produced dies prematurely, as our results 

suggest is highly likely. Because of the significant costs diploid males represent for 

bumblebee fitness, their frequency could potentially be used as an indicator of the 

genetic health of the population and hence its sustainability and conservation 

requirements (Zayed et al., 2004). Where the production of diploid males is high, 

translocations from other populations might be considered as a means of increasing 

genetic diversity. However, given that DMP colonies are short-lived under field 

conditions, their apparent absence will not always indicate a genetically healthy 

population. A method of directly assessing CSD allele diversity would therefore be of 

great value. 

 

In this experiment the only apparent cost of inbreeding was the production of diploid 

males, as the non-DMP inbred colonies did not differ significantly from the outbred 

colonies in all the variables measured. It should be noted, however, that this lack of 

difference could be due to the inbred colonies resulting from only one generation of 

brother-sister mating, which would not substantially decrease their level of 

heterozygosity relative to the outbred colonies. Indeed, one study has demonstrated 

decreased fecundity and colony size when B. terrestris queens are sibmated for several 

generations (Beekman et al., 1999). Despite the fact that some evidence indicates that 
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Hymenoptera, including bumblebees (Gerloff & Schmid-Hempel, 2005; Beekman et al., 

1999), suffer from inbreeding depression, a meta-analysis has shown that the magnitude 

of fitness loss on inbreeding is less than that experienced by diploid insects (Henter, 

2003). This supports ideas that deleterious recessive alleles are expressed and thus 

purged in haploid males (Werren, 1993). Our data show that the high costs of DMP 

following inbreeding far outweigh any apparently small effects of conventional 

inbreeding depression. Thus, whilst Hymenoptera may be spared some costs of 

inbreeding by virtue of their haplodiploidy, their sex determination system imposes 

unique costs through diploid male production. Due to these negative fitness effects, 

selection should act strongly on haplodiploids to avoid incestuous matings and the 

production of diploid males, a theory that has been supported by a recent study 

(Whitehorn et al., 2009a). There is some evidence to suggest that this avoidance 

behaviour occurs through a kin recognition system (Foster, 1992). 

 

Hibernation survival and colony growth in the laboratory were significantly influenced 

by maternal family line. This among-family variation has been found in a number of 

different fitness traits in bumblebees (Gerloff et al., 2003; Gerloff & Schmid-Hempel, 

2005) and is evidently an important aspect of their evolutionary ecology. The factors 

that maintain this variation in wild populations remain to be established. Mating date 

was another significant predictor of the variation in hibernation survival observed; 

queens that were mated first were more likely to survive than those mated at a later date, 

despite standardised hibernation duration and conditions. This substantiates the idea that 

individuals that are born and reproduce early in the season have a higher survival rate 

and fitness (Cushman et al., 1994; Gerloff & Schmid-Hempel, 2005).  
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We conclude that the diploid males produced following inbreeding impose large costs 

on bumblebees through their influence on a colony’s survival and productivity. We 

suggest that they act as indicators of the genetic health of the population, and therefore 

their detection could be an indication of genetic problems in bumblebees and other 

social hymenopterans. Haplodiploidy may render the social Hymenoptera less 

susceptible to inbreeding depression compared to diploid species, due to purging. 

However, our data demonstrate that the magnitude of fitness costs from DMP following 

inbreeding may well be as extreme as those expected to result from conventional forms 

of inbreeding depression in diploid species. 
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Chapter 3 -  Kin recognition and inbreeding 

reluctance in bumblebees 
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Whitehorn, P. R., Tinsley, M.C. & Goulson, D. (2009). Kin recognition and 

inbreeding reluctance in bumblebees. Apidologie 40 (6): 627-633. 

 

All authors commented on draft versions of this manuscript and the published version is 

presented here. 
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3.1    Abstract 

 

Inbreeding frequently has a costly impact on fitness, thus selection has favoured the 

evolution of kin recognition and inbreeding avoidance behaviour in many species. As 

haplodiploid Hymenoptera, bumblebees are susceptible to additional costs of inbreeding 

due to their single-locus complementary sex determination (sl-CSD) system, which 

means that incest can result in the production of costly diploid males. Here we test 

whether Bombus terrestris reproductives are able to discriminate between kin and non-

kin and whether their willingness to mate is adjusted accordingly. We found that B. 

terrestris reproductives took significantly longer to mate with siblings compared to non-

relatives. This indicates that this species exhibits kin recognition and uses this 

information to determine mating behaviour. 

 

3.2 Introduction 

 

In species that suffer from inbreeding depression, mechanisms to avoid mating with 

close relatives are expected to be selected for (Pusey & Wolf, 1996). Kin recognition is 

one such mechanism and close relatives can be identified using either environmental 

(extrinsic) or genetic (intrinsic) clues (Holmes & Sherman, 1983). Extrinsic kin 

recognition is often context based: individuals learn environmental cues, such as the 

scent of their nest environment, then identify kin as those possessing the same 

environmental cues (Holmes & Sherman, 1982). Intrinsic kin recognition is independent 

of learning and is mediated by recognition alleles: individuals bearing the same alleles 

consider one another as kin (Keller & Ross, 1998). Increasingly, the definition of kin 
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recognition is restricted only to intrinsic mechanisms, although extrinsic mechanisms, 

such as nestmate recognition, can also lead to clear kin discrimination (Barnard & 

Aldhous, 1991; Todrank & Heth, 2003).  Incest avoidance via kin discrimination has 

been reported for several insect species, including halictine bees (Smith & Ayasse, 

1987), the field cricket Gryllus bimaculatus (Simmons, 1989), the ant Iridomyrmex 

humilis (Keller & Passera, 1993) the termite Zootemopsis nevadensis (Shellman-Reeve, 

2001) and the cockroach Blattella germanica (Lihoreau et al., 2007). 

 

It might be expected that bumblebees have evolved methods of kin recognition as they 

are particularly susceptible to costs of inbreeding due to their single-locus 

complementary sex determination (sl-CSD) system (Zayed & Packer, 2005). The sex-

determining locus is polyallelic; individuals that are heterozygous develop into diploid 

females, whereas hemizygotes become haploid males. However, if individuals are 

homozygous at the sex locus they develop as diploid males. This occurs rarely in large 

outbreeding populations because many CSD alleles can be maintained by negative 

frequency dependant selection (Duchateau et al., 1994). However, genetic drift in small 

populations is expected to increase diploid male production (DMP) by reducing CSD 

allelic richness (Cook & Crozier, 1995).  

 

Bumblebee diploid males yield no genetic return for the resources invested in them. 

Bombus terrestris diploid males have smaller testes and fewer spermatozoa than haploid 

males, and hence suffer reduced fertility (Duchateau & Marien, 1995). Queens that do 

mate with diploid males may produce a viable colony containing triploid offspring, but 

the triploid queens are infertile (Ayabe et al., 2004). Additionally, as diploid males are 

produced from the first brood, the majority are on the wing too early in the season to 
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encounter virgin queens. The social nature of bumblebees predisposes them to further 

costs of DMP: diploid males are produced instead of 50% of the female workforce and 

do not contribute to colony productivity. This slows the rate of colony growth in 

Bombus atratus under laboratory conditions (Plowright & Pallett, 1979) and 

significantly reduces survival of B. terrestris colonies in the field (Whitehorn et al., 

2009b).  

 

Diploid males occur in rare and localised bumblebee species in the wild. In the Japanese 

bumblebee Bombus florilegus 28% of sampled colonies contained diploid males; 

similarly, in the UK, 5% of Bombus muscorum males were found to be diploid. In both 

cases this is thought to result from low genetic diversity, small population size and 

fragmentation (Takahashi et al., 2008; Darvill et al., 2006). Recent modelling has 

demonstrated that DMP can initiate a rapid extinction vortex (Zayed & Packer, 2005), 

which has implications for the persistence of small genetically impoverished 

populations of bumblebees. In contrast, in large populations the risk of matings between 

bees with identical sex determination locus genotype is low, so long as siblings do not 

mate. However, bumblebee nests often produce large numbers of queens and males 

simultaneously, so encounters between siblings are likely and inbreeding avoidance 

behaviour is therefore beneficial. 

 

The mating behaviour of bumblebees has been well studied in the laboratory (Djegham 

et al., 1994; Tasei et al., 1998; Sauter & Brown, 2001; Baer, 2003). By comparison, 

little is known about inbreeding avoidance behaviours. One study suggested that at least 

two bumblebee species recognise kin; when given a choice queens of Bombus frigidus 

and Bombus bifarius preferentially mated with unrelated males (Foster, 1992). Males of 
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these two species exhibit similar pre-mating behaviour known as ‘patrolling’, where 

males mark prominent objects with a pheromone and visit them sequentially to 

encounter potential mates attracted by the scent (Alford, 1975; Williams & Zervos, 

1991). In such a situation it is unlikely that reproductives will encounter both siblings 

and non-siblings at the same time and so choice experiments such as Foster’s (1992) 

perhaps do not represent the natural situation. Here we take an alternative approach to 

investigate kin recognition in B. terrestris, another species in which males exhibit 

patrolling behaviour in the wild.   

 

Bombus terrestris is an annual, primitively eusocial bumblebee species. Under natural 

conditions, queens emerge from hibernation in spring and individually found colonies. 

Once the first batch of offspring has been produced, they take over the tasks of foraging, 

brood care and nest maintenance. Towards the end of the colony cycle, usually in the 

late summer, sexuals (young queens and males) are produced and leave the nest to find 

mates. The young queens mate only once and then enter hibernation; the old queen, the 

workers and the males then die. The following spring the queens that have survived 

hibernation give rise to the next generation (Alford 1975). 

 

We present B. terrestris reproductives with either siblings or non-siblings and measure 

their propensity to mate. This may be a more realistic measure of inbreeding avoidance 

as a delayed propensity to mate in natural situations will reduce the chance of successful 

copulation.  
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3.3 Methods 

3.3.1 Experimental Protocol 

 

Eight laboratory colonies of B. terrestris, purchased from Koppert Biological Systems 

(The Netherlands) in February 2008, provided young queens and males. The colonies 

were checked each day and new sexuals that had emerged were removed and housed in 

single sex sibling groups. The sexuals were mated when between two and ten days old 

in mesh-sided flight cages (70cm x 70cm x 70cm) between 1st April and 16th April 

2008. The matings took place in the laboratory, adjacent to large windows, between 

10:00 and 15:00 so there were considerable quantities of natural light. 

 

Young queens from each colony were either offered their brothers as mates or unrelated 

males from one other randomly chosen colony. Bees were mated in groups (n = 15 to 

60), always in a 1:2 ratio of young queens to males. Only sibling groups were used, i.e. 

all males in the mating cage at any one time were brothers, and all queens were sisters. 

Mating pairs were removed from the flight cage during copulation. The mated queens 

then went into a separate study that we have published elsewhere, which required that 

we performed twice as many sibling matings as non-sibling matings. The willingness of 

queens to mate with their brothers compared to non-relatives was investigated by 

measuring the time between the release of bees into the flight cage and a copulation. All 

mating sessions were terminated after one hour. The proportions of mated and unmated 

queens were recorded for each mating batch where more than one mating occurred. 

 



 64 

3.3.2 Statistical Analyses 

 

Data were analysed in Minitab 15 (Minitab Inc., State College, PA, USA) with a 

General Linear Model. The response variable, time to mate, was box-cox transformed to 

fulfil the assumptions of normality. Mate identity (sibling vs. non-sibling), maternal 

colony, number of individuals in the cage and their interactions were included in the 

model. The model was sequentially simplified by the step-wise removal of non-

significant terms. A further General Linear Model was used to analyse an additional 

response variable, proportion of queens mated within a batch. Mate identity, maternal 

colony and number of individuals in the cage were included in the model, which was 

again sequentially simplified. For bees originating from each of the eight colonies, 

individual t-tests were carried out to determine the significance of differences between 

the time to mate for sib and non-sib matings. Tests did not assume equal variance and 

were uncorrected for multiple comparisons. Means are recorded ± their standard errors 

throughout. 

 

3.4 Results 

 

The mating behaviour of 173 young queens from eight colonies was recorded; 70 with 

non-relatives, 103 with siblings. A mean of 10.8 minutes (± 0.94) passed before a 

sibling mating occurred, compared to a mean of only 4.5 minutes (± 1.15) for a mating 

between non-relatives. Pooling the data in this way revealed a highly significant 

difference between sibling and non-sibling matings (F1,171 = 22.21, P < 0.001). Bees 

originated from eight maternal colonies; for offspring from seven of these, sibling 
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matings were notably delayed relative to unrelated matings, in one case time to mate 

with siblings and non-relatives was similar (see figure 3.1). Two-sample t-tests showed 

that these differences were significant for three out of the eight colonies (P ranged from 

0.018 to 0.024).  
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Figure 3.1: The mean time for reproductives from 8 colonies to copulate with siblings (light grey 

bars) and non-siblings (dark grey bars).  

Bars represent the least squares means and their standard errors as predicted by a GLM. The GLM 

demonstrated that significantly more time elapsed before a queen mated with a sibling compared to a non-

relative. Asterisks mark individual within-colony differences that were significant with 2-sample t-tests. 

The x-axis shows colony ID and sample size in parentheses. 

 

Maternal colony, the number of bees in the mating cage and the interaction between the 

maternal colony and the identity of the mate did not significantly influence time to mate 

(F7,152  = 0.7, P = 0.70; F5,152  = 0.73, P = 0.60; F7,152  = 0.97, P = 0.452 respectively). 

 

* 
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A mean proportion of 0.59 (± 0.06) queens mated within non sibling batches, compared 

to a mean proportion of 0.43 (± 0.05) queens within sibling batches. This difference was 

not significant (F1,22 = 3.46, P = 0.076). The proportion of mated queens was influenced 

by maternal colony (F7,23 = 4.87, P = 0.002) but not by the number of bees in the mating 

cage (F6,16 = 0.94, P = 0.497). 

 

3.5 Discussion 

 

For the first time, this study has demonstrated that B. terrestris reproductives are less 

willing to mate with their siblings than with unrelated individuals. Successful 

copulations between siblings took more than twice as long to initiate than matings 

between non-relatives. This suggests that B. terrestris has the ability to recognise kin 

and modulates its mating behaviour accordingly. Additionally, a greater proportion of 

queens mated with non-relatives, compared to siblings, but this difference was not 

significant. Variation in the reluctance to mate existed between maternal colonies but 

the trend for delayed sib-mating was evident in experiments on bees from seven of the 

eight maternal colonies tested. Among-family variation is common in bumblebees and 

has been found in a number of different fitness traits (Gerloff et al., 2003; Gerloff & 

Schmid-Hempel, 2005).  

 

A successful copulation is the result of a number of interacting factors, which can 

include male choice, female choice, male courtship behaviour, female response to this 

courtship and female reproductive status (Halliday, 1983). Several precopulatory 

behaviours occur in bumblebees. Conditions in the laboratory are too artificial for males 

to set up nuptial routes and exhibit their patrolling behaviour, but other behaviours that 
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occur once potential mates have encountered each other can be observed. Males 

approach females, inspect them with their antennae and then attempt to copulate. 

Females respond to males in three ways, either by remaining immobile, flying away, or 

exhibiting threat behaviour by raising their middle legs (Djegham et al., 1994). 

However, it is not known how differences in these behaviours influence copulation 

success (Sauter & Brown, 2001).  

 

Despite the uncertainty surrounding the role of precopulatory behaviours, it is likely that 

a successful copulation in bumblebees is ultimately the result of female choice for two 

main reasons. Firstly, the queen controls the onset of copulation as she must move her 

sting for the male to be able to insert his genitalia; queens are very choosy, often 

rejecting many males in the laboratory (Djegham et al., 1994; Duvoisin et al., 1999) as 

well as in the field (Kindl et al., 1999). Secondly, because bumblebee queens mate only 

once (Estoup et al., 1995; Schmid-Hempel & Schmid-Hempel, 2000) and males are 

capable of mating many times (Tasei et al., 1998) selection acts more strongly on 

females to choose a mate that will maximise her fitness. This suggests that the different 

propensities to mate observed in our experiment were a result of variations in female 

behaviour and B. terrestris queens have the ability to recognise siblings.  

 

Bombus terrestris colonies are almost invariably headed by a single, singly mated 

queen, ensuring high relatedness of all colony members. Queens may recognise siblings 

either because they are close kin or because they are nestmates; the former suggests 

they use intrinsic genetic cues, whereas the latter suggests extrinsic environmental cues 

are employed to determine mating reluctance. Because bumblebees are social insects it 

is possible that kin are recognised extrinsically through prior association as has been 
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found in other species (for example, Frommen et al., 2007). Alternatively, an intrinsic 

mechanism may have developed. One such mechanism is known as phenotypic 

matching in which an individual recognises kin by assessing the similarities and 

differences between its own phenotype and that of unfamiliar conspecifics (Blaustein, 

1983). This latter mechanism is thought to occur in the field cricket Gryllus bimaculatus 

where the females use their own cuticular compounds as a phenotypic template 

(Simmons, 1989). 

 

It is beyond the scope of this paper to attempt to distinguish which method of 

discrimination B. terrestris may be employing. Nevertheless, whatever the underlying 

cognitive mechanisms, the behaviour observed in this study represents a clear example 

of kin discrimination (Tang-Martinez, 2001). These findings augment those of Foster 

(1992), who found that queens of B. frigidus and B. bifarius preferentially mated with 

unrelated males. In Foster’s experiment the queens were given the choice between 

mating with a nestmate or a non-nestmate, which might suggest that queens compare 

males to see which are most different to themselves. However, in our experiment B. 

terrestris queens only ever encountered one type of male and still appeared to 

discriminate between kin and non-kin. 

 

Such kin recognition and avoidance behaviour is expected to have been strongly 

selected for in bumblebees to avoid the costs of diploid male production that result from 

a mating between siblings. This is in accordance with the model of genetic 

complementarity, which assumes that females do not always choose a male with 

intrinsically superior genes. They may instead choose males with whom they have a 

higher genetic compatibility, i.e. the viability of offspring depends on the interaction 
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between the male and female genotypes (Tregenza & Wedell, 2002). Many studies of 

genetic complementarity have focused on polyandrous species where there is the 

potential for postcopulatory female choice (Birkhead & Pizzari, 2002; Colegrave et al., 

2002). However, the majority of bumblebee species are monoandrous (Estoup et al., 

1995; Schmid-Hempel & Schmid-Hempel, 2000) and in such species there must be 

some precopulatory indication of a male’s relatedness. In the solitary wasp Philanthus 

triangulum this indication is through variation in the male’s sex pheromone, which is 

more similar within than among families (Herzner et al., 2006). In some social 

Hymenoptera, this indication has been shown to be mediated through the chemical 

composition of cuticular hydrocarbon recognition pheromones, for example in the bee 

Lasioglossum zephyrum (Smith & Wenzel, 1988), the wasp, Polistes fuscatus (Gamboa 

et al., 1996) and the fire ant Solenopsis invicta (Keller & Ross, 1998). 

 

The delayed propensity for B. terrestris to mate with siblings, demonstrated in this 

study, is likely to have been selected for as an inbreeding avoidance mechanism. This in 

turn decreases the production of costly diploid males. However, in small fragmented 

populations, mate choice is substantially reduced and sibling matings and diploid male 

production may become inevitable. This endorses the importance of habitat, and hence 

population connectivity when considering bumblebee conservation.  
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Chapter 4 -  Parasite prevalence in Bombus 

muscorum and Bombus jonellus 
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4.1 Abstract 

 

Many bumblebee species have been suffering from significant declines across their 

range in the Northern Hemisphere over the last few decades. The remaining 

populations of the rare species are becoming increasingly isolated due to habitat 

fragmentation and consequently have reduced levels of genetic diversity. The 

persistence of these populations may be threatened by inbreeding depression, which 

may result in a higher susceptibility to parasites. Here we investigate the 

relationship between genetic diversity and parasite prevalence in bumblebees, using 

the previously studied system of Bombus muscorum and Bombus jonellus in the 

Western Isles of Scotland. We recorded parasite prevalence in 17 populations of B. 

muscorum and 13 populations of B. jonellus and related the results to levels of 

heterozygosity. We found that prevalence of the tracheal mite Locustacarus 

buchneri was higher in populations of B. muscorum with lower genetic diversity but 

that there was no such relationship in the more genetically diverse B. jonellus.  

There was no relationship between the prevalence of the gut parasite Crithidia 

bombi and genetic diversity, but older bees were more likely to be infected. The 

prevalence of Nosema bombi and Apicystis bombi was too low to analyse. We also 

found that measures of individual heterozygosity were not as useful as the 

population level measures of genetic diversity at explaining variations in parasite 

incidence. This study provides important information on the parasite prevalence of 

relatively inbred and outbred bumblebee populations and species.  
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4.2 Introduction 

 

The role bumblebees have as pollinators make them a vital component of 

ecosystems and also gives them great economic value. Over recent decades many 

bumblebee species have been declining across their range in the Northern 

hemisphere, predominantly due to the intensification of agriculture and the resultant 

loss of habitats (Williams & Osborne, 2009). These declines have been particularly 

severe in the UK where 3 of the 25 native species have become extinct, 10 species 

have undergone severe range contractions and 7 species have been placed on the 

UK Biodiversity Action Plan (Goulson, 2010a). The remaining populations of the 

rarer species have become isolated in habitat patches where there is still suitable 

forage and sites for nesting. There are instances of these populations going extinct, 

despite the continuing presence of good habitat. For example, Wicken Fen in central 

England supported 14 species of Bombus in the 1920s but by 1978 only six 

remained (Williams, 1986).  

 

In order to implement the appropriate conservation strategies for bumblebees it is 

important to understand what is driving these remaining populations to extinction. 

Recent research has suggested that genetic factors might have a role; it has been 

found that rare species with fragmented populations, such as B. sylvarum, B. humilis 

and B. muscorum have a much lower genetic diversity than common, widespread 

species such as B. terrestris and B. pascuorum (Ellis et al., 2006; Darvill et al., 

2006).  Detailed study of the genetic diversity and population structure of B. 

muscorum has provided further information. B. muscorum has become rare across 

its range in the UK and is now predominantly found in the Western Isles of 
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Scotland. Darvill et al. (2006) found that the more isolated island populations of B. 

muscorum were genetically differentiated from those closer to the mainland and had 

substantially reduced genetic diversity. These studies suggest that habitat 

fragmentation and population isolation has led to inbreeding and a loss of genetic 

diversity in rare species of bumblebees. If the populations with reduced levels of 

genetic diversity also have lower fitness, inbreeding depression may be occurring. 

This might be the mechanism driving these populations towards extinction, as has 

been demonstrated in other invertebrate species (Saccheri et al., 1998; Reed et al., 

2007). 

 

One form of inbreeding depression, which may lead to an increased extinction risk, 

is higher levels of parasitism (de Castro & Bolker, 2005). Increased homozygosity 

can increase both the prevalence of parasites at the population level and 

susceptibility to parasites at the individual level (Frankham et al., 2010). At the 

population level, the more genetic diversity present, the more likely it is that some 

individuals can resist a pathogen. If this genetic diversity is lost due to inbreeding, 

pathogen epidemics may spread more efficiently in the genetically homogenous 

population. Studies in a wide range of taxa have supported this by demonstrating 

that the genetic diversity of populations is negatively correlated with pathogen 

prevalence (for example, Puurtinen et al., 2004; Pearman & Garner, 2005; Ebert et 

al., 2007).  

 

In order to establish whether a relationship between inbreeding and parasite 

susceptibility exists at the individual level, knowledge of the individual inbreeding 

co-efficient (f) is informative. This is calculated using detailed pedigree 
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information, but this is rarely available for wild populations (Marshall et al., 2002). 

As an alternative, microsatellites have been increasingly used to provide a measure 

of multi-locus heterozygosity (MLH), which is then used to infer levels of relative 

inbreeding among individuals. However, there is often a poor correlation between 

heterozygosity at neutral markers and the true inbreeding co-efficient, particularly in 

large randomly mating populations (Pemberton, 2004; Slate et al., 2004; Szulkin et 

al., 2010). Despite this, there are many examples in the literature that present 

empirical observations of correlations between MLH and fitness related traits 

(including susceptibility to parasites) and these are known as heterozygosity-fitness 

correlations (HFCs) (reviewed in Chapman et al., 2009). Whether inbreeding 

depression can be accurately quantified by measuring HFCs has been the subject of 

extensive and ongoing debate (for example, David, 1998; Balloux et al., 2004; Slate 

et al., 2004; Hansson & Westerberg, 2008; Chapman et al., 2009; Ljungqvist et al., 

2010). 

 

For HFCs to occur there has to be a correlation between the heterozygosity of 

functional loci, which have an effect on fitness, and the heterozygosity of neutral 

loci and such a correlation can result from either linkage disequilibrium (LD) or 

identity disequilibrium (ID). LD is the non-random association of alleles at two or 

more loci, which can occur particularly in recently bottle-necked populations. ID is 

the correlation of heterozygosity or homozygosity across loci and it can arise 

between any two loci if consanguineous matings occur. Under random mating, ID 

can result from genetic drift, bottlenecks and admixture (Szulkin et al., 2010). ID 

can be measured using a sample of multilocus genotypes, by quantifying the excess 

of double heterozygotes at two loci relative to the expectation under random 
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association. This gives a parameter known as g2 and is an effective way to 

determine whether neutral markers do reflect true patterns of underlying inbreeding 

(David et al., 2007; Szulkin et al., 2010). 

 

Circumstantial evidence does exist that supports the hypothesis that inbred 

populations of bumblebees are more susceptible to parasites. Firstly, the invasive 

and highly inbred B. terrestris in Tasmania has been found to support very high 

loads of ectoparasitic mites (Allen et al., 2007). Secondly, in North America, 

declining bumblebee populations have lower levels of genetic diversity and a 

significantly higher prevalence of the pathogen N. bombi compared to stable 

bumblebee populations (Cameron et al., 2011). Further support is provided by the 

theory that suggests genetically heterogeneous colonies of social insects are more 

resistant to parasitism (Sherman et al., 1988; van Baalen & Beekman, 2006). This 

assumes that different host genotypes have varying susceptibility to different 

parasite strains, meaning that a parasitic infection is not likely to spread as rapidly 

or as far through a genetically heterogeneous colony (Sherman et al., 1988; Schmid-

Hempel, 1998). Investigations with bumblebees using lab-reared colonies placed 

under field conditions have provided support for this theory. Genetically 

heterogeneous bumblebee colonies had significantly lower prevalence, load and 

species richness of a range of parasites compared to genetically homogeneous 

colonies (Liersch & Schmid-Hempel, 1998; Baer & Schmid-Hempel, 2001).  

 

This study aims to further investigate the relationship between genetic diversity and 

parasitism in bumblebees using the previously studied system of B. muscorum and 

B. jonellus in the Western Isles of Scotland. Darvill et al. (2010) collected samples 
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of these species and investigated their genetic diversity, population structure and 

dispersal ability using microsatellite markers. Both species are found throughout the 

island system and they make an interesting comparison. Bombus muscorum belongs 

to the subgenus Thoracobombus and is considered threatened. It has been placed on 

the UK Biodiversity Action Plan (UKBAP) along with three other species 

belonging to its genus. Bombus jonellus is a member of the subgenus Pyrobombus 

and has a widespread but local distribution and is not thought to be threatened 

(Benton, 2006). Darvill et al. (2010) found that the two species differed 

significantly in overall heterozygosity with B. muscorum exhibiting much lower 

genetic diversity. B. muscorum also shows markedly higher population structuring 

and isolation by distance B. jonellus (θ = 0.13 compared to θ = 0.034). B. jonellus 

has evidently retained genetic cohesion over greater distances and it was estimated 

that they are able to disperse >50km relatively frequently. In contrast, B. muscorum 

were estimated to disperse >8km only infrequently and the species also showed an 

increased frequency of population bottlenecks. These differences in dispersal 

distances suggest that B. muscorum is more susceptible to population isolation due 

to habitat fragmentation.  

 

This study quantifies the prevalence of parasitic infection in a sub-sample of B. 

muscorum and B. jonellus collected by Darvill et al. (2010). This allows us to make 

within species comparison of infection susceptibility in inbred and outbred 

populations as well as comparisons between relatively inbred and outbred species. 

As each individual bee has been typed at up to 9 microsatellite loci it is possible to 

investigate whether any HFCs arise in these species and whether inbreeding is 

affecting parasite susceptibility on an individual level. Additionally, each 
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population has a measure of expected heterozygosity and so it is also possible to 

investigate whether genetic diversity at a population level affects parasite 

prevalence. 

 

4.3 Methods 

 

During the summers of 2003 to 2005, individuals of B. muscorum and B.jonellus 

were collected from islands in the Inner and Outer Hebrides and stored in 100% 

ethanol. In a previously published study (Darvill et al., 2010), B. muscorum were 

genotyped at 8 microsatellite loci and B. jonellus were genotyped at 9 microsatellite 

loci. This gave each bee a measure of individual heterozygosity (the number of 

heterozygous loci divided by the number of genotyped loci). A measure of expected 

heterozygosity for each population was also calculated and these figures are 

published in Darvill et al. (2010) (table 4.1). 

 

For the present study, the width of the thorax was measured using electronic digital 

calipers and the bee’s age was estimated by assessing the extent of wing wear, using 

a four point scale (modified from Mueller & Wolfmueller, 1993). Before dissection 

and examination, each bee’s abdomen was separated from its thorax and rehydrated 

by placing in 70% ethanol for approximately 15 hours and then in distilled water for 

a further 2 hours, before being drained and stored at -80oC until subsequent 

dissection. Each bee was dissected in order to detect the presence of parasites 

Firstly, the abdomen was fixed dorsally to a wax tray with pins. Each bee had an 

individual wax tray to avoid contamination between samples. Micro-scissors were 

used to cut across the sternite, following the ventral curve and then either side 
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perpendicularly to the first incision. The ventral surface was then pinned back and 

insect ringer solution (9.1g NaCl; 0.52g KCl; 1.2g CaCl2.2H2O; 0.8g MgCl2.H2O; 

made to 1000ml distilled water) was pipetted over the abdomen to ‘float’ the 

contents. This was inspected under a dissecting microscope for the presence of the 

tracheal mite L. buchneri and any other macroparasites. A heterogeneous sample of 

fat body, extracted from the ventral & dorsal sides, and malpighian tubules was 

examined at 400x to determine the presence/absence of the microparasites N. bombi 

and A. bombi. The micro-scissors, forceps and pins were all sterilised with MicroSol 

3+, followed by 100% Ethanol, between each bee dissection to remove DNA 

contamination.  

 

The presence/absence of C. bombi was determined using diagnostic PCR primers. 

DNA was extracted using a method modified from Walsh et al., (1991). Bee 

abdomens were homogenised in a buffer containing 500µl sterile distilled water, 

0.025g Chelex-100 (Bio-rad), 17.5µl 1M dithiothreitol and 2.5µl proteinase K 

(20mg ml-1). Samples were incubated at 56oC for 90mins, then at 95oC for 10mins 

before being centrifuged for 5mins at 10,000g. The presence of C. bombi was then 

determined by testing whether the parasite specific microsatellite primers Cri4F-

Cri4R produced an amplification product (Schmid-Hempel & Funk, 2004). PCRs 

were run in 10µL volumes using HotStar Taq Plus PCR kits (Qiagen). Each reaction 

contained 5µl PCR Master Mix, 3µl dH2O, 0.5µl of each forward and reverse primer 

(2µM) and 1µl template DNA. PCR amplification involved denaturing at 95 oC for 5 

minutes, followed by 35 cycles of denaturing at 94 oC for 30 seconds, annealing at 

50 oC for 1 minute and extension at 72 oC for 1 minute and then a final extension 

step at 72 oC for 10 minutes. Three pairs of microsatellite bumblebee primers (B10, 
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B11 & B96; Estoup et al., 1995; Estoup et al., 1996) were used to establish the 

presence of amplifiable template within each sample and any that did not yield 

product were discounted from further analysis of C. bombi prevalence. PCR 

reactions for the bumblebee microsatellite primers were run in 10µL volumes using 

Multiplex PCR kits (Qiagen). Each reaction contained 5µl PCR Master Mix, 3µl 

dH2O, 0.2µM of each of the three primer pairs and 1µl template DNA. PCR 

amplification involved denaturing at 95 oC for 15 minutes, followed by 35 cycles of 

denaturing at 94 oC for 30 seconds, annealing at 50 oC for 90 seconds and extension 

at 72 oC for 90 seconds and then a final extension step at 72 oC for 10 minutes. All 

PCR reactions were run in a Peltier thermal cycler (DNA Engine Tetrad 2, Bio-Rad) 

with the appropriate positive and negative controls. PCR products were visualised 

on 1% agarose gels stained with 0.25mg ml-1 ethidium bromide. PCR was repeated 

on a subset of samples to ensure a consistent banding pattern. 

 

It should be noted that, in a few cases, the 100% ethanol the bees were originally 

stored in had partially evaporated and the contents of the abdomen had blackened. 

However, it was still possible to detect macroparasites through dissection and PCR 

successfully detected a C. bombi infection in a blackened gut so these bees were left 

in the final analysis. 

 

4.3.1 Statistical analyses 

 

Population level analysis 

All parasite data were analysed in R, version 2.12.0 (2010 The R Foundation for 

Statistical Computing). Binomial generalised linear mixed effect models were used 
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to investigate whether parasite prevalence (C. bombi and L. buchneri respectively) 

was influenced by the level of genetic diversity at the population level. Bombus 

muscorum and B. jonellus were analysed separately as island heterozygosity 

measures are different for the two species. Population-level heterozygosity, mean 

age, mean bee size (thorax width), mean sampling date, prevalence of the other 

species of parasite and finally island area as a proxy for bumblebee population size 

were entered as fixed effects. Sampling year was entered as a random factor. 

 

Individual level analysis 

Binomial generalised linear mixed effect models were also used to analyse 

determinants of parasitic infection on an individual level (presence or absence of C. 

bombi and L. buchneri respectively), with each bee as a replicate. Fixed effects 

included: bumblebee species, individual heterozygosity, age (entered as a co-variate 

with a four point scale), bee size (thorax width), sampling date (entered as a co-

variate, numbered continuously from June 1st through to September) and infection 

status with the other species of parasite. Island and sampling year were entered as 

random factors. 

 

Locustacarus buchneri abundance (the number of adult L. buchneri present in the 

abdomen, including uninfected bees) was analysed in a Bayesian framework using 

the MCMCglmm package in R (Hadfield, 2010). Generalised linear mixed models 

with a zero-inflated Poisson distribution were used and non-informative priors were 

set in all analyses. Prior sensitivity analysis was carried out and the final models are 

robust to variation in the values of priors. Model convergence was confirmed using 

Geweke’s diagnostic (Geweke, 1992) and visual examination of the model output. 
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Fixed effects included: bumblebee species, individual heterozygosity, age, bee size, 

sampling day and infection with the other species of parasite. Island and sampling 

year were entered as random factors. Parameter estimates reported are means from 

the posterior distribution with 95% lower and upper credible intervals (CI). L. 

buchneri infection intensity (the number of adult L. buchneri present in the 

abdomen, excluding uninfected bees) was also analysed. In this case, generalised 

linear mixed models were used with penalised quasi-likelihood. The fixed effects 

and random factors were the same as for the MCMCglmm models.  

 

All statistical tests were two-tailed and models were selected and simplified 

according to Aikaike’s Information Criterion (AIC). All two-way interactions were 

investigated, not one of which was significant and so they are not presented here.  

 

Computation of the estimate g2 

The microsatellite data were also used to calculate the parameter g2 and its standard 

error for each of the island populations for each species. The parameter was 

computed in the software RMES, provided by David et al. (2007). This software 

also tests whether g2 is significantly different from zero and thus indicates whether 

covariance in individual heterozygosity i.e. identity disequilibrium (ID), is 

occurring. 
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Figure 4.1 A map showing the location of the islands from which samples of B. muscorum and B. 

jonellus were taken (adapted from Darvill et al., 2010) 

 

4.4 Results 

 

A total of 506 B. muscorum and 360 B. jonellus workers were dissected. The B. 

muscorum samples came from 17 island populations with a mean sample size of 

29.8 (range: 20 to 41) from each island. The B. jonellus samples came from 13 

island populations with a mean sample size of 27.7 (range: 18 to 30) from each 

island. The tracheal mite L. buchneri was the only macroparasite detected in these 

samples and had an overall frequency of 32%. The parasite was present in 15 out of 
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the 17 populations sampled for B. muscorum and it was present in all populations of 

B. jonellus (table 4.1).  

 

Nosema bombi was detected at a very low overall prevalence (0.68%) and on only 

the following islands: Coll (1 infected B. jonellus), Mingulay (1 infected B. 

muscorum), Sandray (1 infected B. muscorum) and Tiree (3 infected B. muscorum). 

Apicystis bombi occurred at the same very low overall prevalence (0.68%) and was 

detected on the following islands: Barra (2 infected B. muscorum), Muck (2 infected 

B. muscorum), Muldoanich (1 infected B. muscorum) and South Uist (1 infected B. 

jonellus). Due to these low infection rates it was not possible to carry out any 

further analyses on these two parasite species. 

 

It was possible to extract DNA and test for the presence of C. bombi from a total of 

492 B. muscorum and 345 B. jonellus. The overall prevalence of C. bombi was 

18.6% and it was present in 16 out of 17 B. muscorum populations and 10 out of the 

13 B. jonellus populations (table 4.1). 
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4.4.1 Population level results 

 

Bombus muscorum  

The prevalence of C. bombi was not predicted by the overall heterozygosity of B. 

muscorum populations. (Z = -0.832, P = 0.406). Age, as measured by wing wear, and 

bee size both significantly influenced C. bombi prevalence, with populations with a 

lower mean age and smaller mean size more likely to be highly infected (Z = -2.86, P 

= 0.004 and Z = -5.14, P < 0.001 respectively). No other variable significantly 

affected the prevalence of C. bombi (table 4.2). 

 

There was, however, a significant negative correlation between the prevalence of L. 

buchneri and B. muscorum population heterozygosity (Z = -3.51, P < 0.001, figure 

4.2). There was also a significant positive correlation between island size and L. 

buchneri prevalence (Z = 3.02, P = 0.003). No other variable significantly affected the 

prevalence of L. buchneri (table 4.2). 
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Figure 4.2 Relationship between L. buchneri prevalence and heterozygosity of host population.  

Each point represents an island population. Islands with higher heterozygosity had significantly lower 

prevalence of L. buchneri (P < 0.001, table 4.2). 
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Table 4.2 Output of binomial generalised linear mixed effect models for the prevalence of C. 

bombi and L. buchneri in B. muscorum populations. Degrees of freedom are given in parentheses. 

 

  Crithidia bombi     Locustacarus bombi 
           

 

Co-
efficient 
estimate SE Z P    

Co-
efficient 
estimate SE Z P 

              
Heterozygosity -3.096 3.722 -0.832 0.406    -9.169 2.61 -3.51 <0.001 
of population    (1)        (1)  
              
Date 0.004 0.015 0.282 0.778    0.007 0.017 0.424 0.672 
    (1)        (1)  
              
Age -1.664 0.581 -2.864 0.004    -0.475 0.677 -0.702 0.483 
    (1)        (1)  
              
Bee size -3.859 0.751 -5.140 <0.001    -0.58 1.17 -0.494 0.672 
    (1)        (1)  
              
Island Area 0.003 0.001 1.862 0.068    0.005 0.002 3.023 0.003 
    (1)        (1)  
              
L. buchneri  -0.676 0.935 -0.723 0.469    - - - - 
prevalence    (1)          
              
C. bombi - - - -    -0.632 1.11 -0.571 0.568 
prevalence              

                      

 

 

Bombus jonellus  

The prevalence of C. bombi was not predicted by the overall heterozygosity of B. 

jonellus populations. (Z = -1.03, P = 0.301). Age, as measured by wing wear, and bee 

size both significantly influenced C. bombi prevalence, but with the opposite trend to 

B. muscorum: populations with a higher mean age and greater mean size were more 

likely to be highly infected (Z = 2.28, P = 0.022 and Z = 2.16, P = 0.031 respectively). 

Populations that were on average sampled earlier in the season had a higher 

prevalence of C. bombi (Z = -3.54, P < 0.001). Populations that had a higher mean 

prevalence of L. buchneri also had a greater prevalence of C. bombi (Z = 2.19, P = 
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0.028). No variable significantly influenced the overall prevalence of L. buchneri in 

B. jonellus populations (table 4.3). 

 

Table 4.3 Output of binomial generalised linear mixed effect models for the prevalence of C. 

bombi and L. buchneri in B. jonellus populations. Degrees of freedom are given in parentheses. 

 

  Crithidia bombi     Locustacarus bombi 
           

 

Co-
efficient 
estimate SE Z P    

Co-efficient 
estimate SE Z P 

              
Heterozygosity -10.364 10.023 -1.034 0.301    3.452 5.26 0.66 0.512 
of population    (1)        (1)  
              
Date -0.227 0.064 -3.535 <0.001    0.017 0.089 0.925 0.355 
    (1)        (1)  
              
Age 2.859 1.253 2.283 0.022    -0.801 0.418 -1.915 0.056 
    (1)        (1)  
              
Bee size 7.466 3.458 2.159 0.031    -0.118 1.701 -0.069 0.945 
    (1)        (1)  
              
Island Area -0.008 0.005 -1.639 0.101    -0.001 0.003 -0.289 0.772 
    (1)        (1)  
              
L. buchneri  5.842 2.666 2.19 0.028    - - - - 
prevalence    (1)          
              
C. bombi - - - -    0.092 0.939 0.098 0.922 
prevalence            (1)  
                      

 

 

4.4.2 Individual level results 

 

Crithidia bombi presence/absence 

Bombus jonellus were more frequently infected with C. bombi than B. muscorum (χ2 = 

4.77, df = 1, p = 0.029, figure 4.3) and the proportion of bees infected also increased 
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with age in both species (χ2 = 7.68, df = 1, p = 0.006, figure 4.4). Neither the 

heterozygosity of individual bees, the size of the bee, whether it was infected with L. 

buchneri or the sampling date significantly affected the likelihood of C. bombi 

infection (table 4). 
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Figure 4.3 Proportion of B. jonellus and B. muscorum infected with C. bombi and L.buchneri.   

A greater proportion of B. jonellus were infected with C. bombi and L. buchneri compared to B. 

muscorum (p = 0.029 and p = 0.001 respectively). Bars represent the mean prevalence and their 

standard errors. 
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Figure 4.4 The prevalence C. bombi infection in different age groups, with wing wear as a proxy 

for age.  

The likelihood of bees carrying C. bombi infections significantly increased with age (p = 0.006) when 

both host species were pooled. 

 

Locustacarus buchneri presence/absence 

Bombus jonellus were also more frequently infected with L. buchneri than B. 

muscorum (χ2 = 10.12, df = 1, p = 0.001, figure 4.3). Bees sampled later in the season 

were more likely to be infected (χ2 = 4.79, df = 1, p = 0.029) and infected bees were 

also significantly less likely to be infected with C. bombi (χ2 = 42.82, df = 1, p < 

0.001). Individual heterozygosity, bee age and size did not significantly predict 

whether bees were infected with L. buchneri (table 4.4). 
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Table 4.4 Output of binomial generalised linear mixed effect models for the presence/absence of 

C. bombi and L. buchneri respectively. Degrees of freedom are given in parentheses. Log likelihood 

ratio tests provide χ2 and p values for each term. 

 

  Crithidia bombi     Locustacarus bombi 
           

 

Co-
efficient 
estimate SE χ2 P    

Co-
efficient 
estimate SE χ2 P 

              

B. muscorum -0.455 0.203 4.766 0.029    -0.529 0.166 10.12 0.001 
compared to    (1)        (1)  
B. jonellus              
              

Individual 0.144 0.701 0.042 0.839    -0.106 0.547 0.037 0.848 
heterozygosity    (1)        (1)  
              

Age 0.294 0.106 7.679 0.006    0.141 0.085 2.741 0.098 
    (1)        (1)  
              

Bee Size -0.213 0.256 0.69 0.407    0.101 0.204 0.241 0.623 
    (1)        (1)  
              

Sampling date -0.006 0.009 0.417 0.518    0.024 0.009 4.791 0.029 
    (1)        (1)  
              

L. buchneri 
presence -0.006 0.024 0.073 0.788    - - - - 
   (1)          
              

C. bombi 
presence - - - -    -0.222 0.218 42.82 <0.001 
           (1)  
                      

 

 

Locustacarus buchneri abundance 

Locustacarus buchneri abundance (the number of adult mites infecting a bee, 

including those bees that were uninfected) was significantly higher in B. jonellus 

compared to B. muscorum (p = 0.024, table 4.5). The abundance of L. buchneri also 

marginally increased with age (p = 0.050). Individual heterozygosity, the size of the 

bee, whether it was infected with C. bombi and the sampling date did not significantly 

affect likelihood of L. buchneri infection (table 4.5). 
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Table 4.5 MCMCglmm output for L. buchneri abundance 

The parameter estimates shown here are with reference to B. jonellus and are on the log scale. The 

MCMC procedure for this model had a burn-in period of 5000, a total of 505,000 iterations and a 

thinning interval of 500. P-values ≤0.05 are written in bold. 

 

  
Parameter 
estimate 

Lower 
95% CI 

Upper 
95% CI P value 

     
Locustacarus 
buchneri abundance 2.111 -0.827 4.579 0.140 
Species     
        B. muscorum -0.852 -1.652 -0.142 0.024 
Heterozygosity -0.901 -2.188 0.233 0.156 
Age 0.195 0.005 0.388 0.050 
Bee size -0.065 -0.537 0.418 0.798 
Sampling date -0.005 -0.370 0.684 0.596 
C. bombi presence 0.165 -0.028 0.018 0.657 

 

 

However, when L. buchneri infection intensity was analysed (excluding all those bees 

that were uninfected) the results were different. No variable was found to significantly 

affect the load of L. buchneri within individual bees. This suggests that the difference 

in L. buchneri abundance between bumblebee species (table 4.5) is largely due to the 

higher number of uninfected B. muscorum compared to B. jonellus (table 4.6). 

 

Table 4.6 The mean number of L. buchneri infecting the bumblebee hosts. Standard errors are 

given in parentheses. 

 

  
Including uninfected 
hosts   Excluding uninfected 

hosts 
 n Mean  n Mean 
B. muscorum 506 1.75 (0.236)  139 6.35 (0.730) 
B. jonellus 360 2.53 (0.278)   139 6.55 (0.573) 
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4.4.3 Relationship between microsatellite markers and levels of inbreeding 

The parameter g2 was computed for the 17 B. muscorum populations and the 13 B. 

jonellus populations to investigate the occurrence of identity disequilibrium. In each 

B. muscorum population at least one locus was not used in the calculation as there 

were no heterozygotes at those loci in the population. All 9 loci were used in the 

calculations of g2 for B. jonellus. g2 was only significantly different from zero in one 

population: B. jonellus on Mingulay (table 4.7 & 4.8). 

 

Table 4.7 g2 estimates for B. muscorum populations. 

  

  Bombus muscorum 

  n 
No. loci 

genotyped 
No. loci used 
in g2 estimate g2 SE p 

       
Barra 50 8 5 0.0001 0.0051 0.437 
Canna 62 8 7 0.0305 0.0039 0.143 
Coll 70 8 6 -0.0151 0.0026 0.722 
Colonsay 67 8 7 -0.0104 0.0033 0.618 
Eigg 64 8 7 0.0076 0.0017 0.225 
Lunga 36 8 7 0.0285 0.0051 0.095 
Mingulay 49 8 5 0.0833 0.0061 0.378 
Monachs 44 8 6 0.0074 0.0055 0.355 
Muck 52 8 7 0.0099 0.0037 0.371 
Muldoanich 25 8 6 -0.0153 0.0136 0.515 
North Uist 50 8 7 0.0192 0.0038 0.172 
Pabbay 37 8 6 0.0337 0.0067 0.139 
Rum 42 8 7 -0.0233 0.0029 0.856 
South Uist 37 8 7 -0.0219 0.0055 0.695 
Sandray 58 8 5 -0.0419 0.0045 0.887 
Staffa 52 8 7 -0.0111 0.0025 0.693 
Tiree 119 8 6 0.0113 0.0018 0.259 
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Table 4.8 g2 estimates for B. jonellus populations. 

  Bombus jonellus 

  n 
No. loci 

genotyped 
No. loci used 
in g2 estimate g2 SE p 

       
Barra 82 9 9 -0.0074 0.0006 0.912 
Canna 44 9 9 0.0036 0.0013 0.237 
Coll 44 9 9 0.0047 0.0016 0.243 
Colonsay 28 9 9 -0.0136 0.0017 0.920 
Eigg 36 9 9 0.0012 0.0014 0.374 
Lunga 38 9 9 0.0053 0.0019 0.261 
Mingulay 32 9 9 0.0273 0.0043 0.018 
Muck 47 9 9 -0.0005 0.0011 0.563 
North Uist 50 9 9 -0.0139 0.0012 0.949 
Pabbay 36 9 9 0.0180 0.0031 0.056 
Rum 32 9 9 -0.0058 0.0012 0.811 
South Uist 42 9 9 -0.0062 0.0011 0.769 
Sandray 25 9 9 0.0003 0.0024 0.394 
Staffa 46 9 9 -0.0063 0.0012 0.729 
Tiree 56 9 9 0.0005 0.0012 0.425 

 

 

4.5 Discussion 

 

This study demonstrates that there is a relationship between the genetic diversity of 

bumblebee populations and the prevalence of at least one species of parasite. We 

found that B. muscorum populations with lower levels of heterozygosity had higher 

prevalence of the tracheal mite L. buchneri. This supports previous evidence that 

suggests low heterozygosity causes increased parasite prevalence in bumblebees. 

Firstly, high loads of ectoparasitic mites have been found on inbred bumblebees in 

Tasmania (Allen et al., 2007) and secondly, a higher prevalence of N. bombi has been 

found in bumblebee populations that have reduced genetic diversity in the US 

(Cameron et al., 2011). These findings are all in accordance with previous 

experimental work that has found genetic heterogeneity within colonies to be 



 95 

negatively correlated with parasitic infections in social insects (Baer & Schmid-

Hempel, 2001; Hughes & Boomsma, 2004; Seeley & Tarpy, 2007).  

 

Relatively little research has been conducted on L. buchneri but limited data suggest 

that heavy infections might be associated with lethargy and reduced foraging 

(Husband & Sinha, 1970). In contrast, Acarapis woodi, the tracheal mite of honey 

bees Apis mellifera, has been studied in more detail. For example, experimental work 

has found that infection with A. woodi causes a reduction in the metabolic rate of 

individual bees and this may constrain activity, particularly in cool weather (Harrison 

et al., 2001). Additionally, a review by McMullan & Brown (2009) acknowledges that 

honey bee colonies infected with tracheal mites have a greater mortality and this is 

again temperature dependent. It is certainly possible that L. buchneri inflicts similar 

costs on bumblebees. Parasitic infection may also have indirect effects on fitness 

simply by stimulating the immune system and L. buchneri infection can trigger a 

melanisation response in the host’s trachea (pers. obs.). Colonies whose workers are 

immune challenged may have lower reproductive output, an effect that is exacerbated 

by harsh environmental conditions (Moret & Schmid-Hempel, 2001; Moret & 

Schmid-Hempel, 2004). Therefore, parasitism is likely to exert fitness costs on the 

hosts and as prevalence is higher in less genetically diverse populations, it may 

increase their risk of extinction as suggested by de Castro & Bolker (2005). 

 

In contrast to the observations in B. muscorum there was no relationship between the 

prevalence of L. buchneri and the genetic diversity of B. jonellus populations. This 

may be a result of the appreciably lower range in the measures of population 

heterozygosity (only 0.019 compared to 0.228 for B. muscorum), which may mask 
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any influence that genetic diversity has on parasite prevalence. It could also result 

from the fact that B. jonellus is a more genetically diverse species than B. muscorum 

and has a greater dispersal ability, hence is more likely to avoid inbreeding depression 

(Darvill et al., 2010). In contrast to L. buchneri, there was no relationship between the 

population heterozygosity in either bumblebee species and the prevalence of C. bombi 

(but see Chapter 5 and the General Discussion).   

 

Although there was a population level relationship between genetic diversity in B. 

muscorum and prevalence of L. buchneri, there was no such relationship between 

individual heterozygosity and infection. In addition, there was no correlation between 

the individual heterozygosity in both bumblebee species and infection with C. bombi. 

This could be because inbreeding is not affecting susceptibility to parasites at an 

individual level. Another explanation is that heterozygosity at the neutral markers 

genotyped is not a good indicator of underlying inbreeding in these species. This is 

confirmed by the g2 estimates, which suggest that in all but one population there is no 

identity disequilibrium in the microsatellites and so HFCs are unlikely to arise 

(Ljungqvist et al., 2010; Szulkin et al., 2010). This is possibly due to the relatively 

small number of loci genotyped, particularly in B. muscorum where not all the loci 

were used in computation of the g2 estimates. A study by Slate & Pemberton (2002) 

concluded that in order to reliably detect HFCs a panel of ten or more microsatellite 

markers were needed.  

 

The results from this study suggest that correlations between population genetic 

diversity and fitness can indicate the occurrence of inbreeding depression but that 

genetic diversity at neutral markers does not necessarily reflect individual levels of 
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inbreeding. These findings are in agreement with those found by Vali et al. (2008), 

who investigated the extent to which microsatellites (genotyped at 10-27 loci) 

explained nucleotide genetic diversity in populations of four different mammal 

species. They found that nucleotide diversity was correlated with population genetic 

diversity but there was a very weak association between microsatellite diversity and 

nucleotide diversity at the individual level. Other studies have also found that MLH is 

an unreliable predictor of individual genetic diversity (for example, Hedrick, 2001; 

Pemberton, 2004; Slate et al., 2004). 

 

The prevalence of the four parasite species observed in this study are comparable to 

those found in studies conducted elsewhere in Europe (Korner & Schmid-Hempel, 

2005; Paxton, 2005). In the analyses of C. bombi and L. buchneri, B. jonellus had 

consistently higher infection rates compared to B. muscorum. This could reflect the 

inability of the more inbred B. muscorum to survive high levels of infection meaning 

that high parasite prevalence was not observed. However, it is perhaps more likely 

that this observation is simply due to an inter-specific difference in the parasitism 

rates of these two species, as such differences are commonly found in bumblebees 

(for example, Shykoff & Schmid-Hempel, 1991b; Korner & Schmid-Hempel, 2005). 

The reasons behind these differences remain unknown but are likely to relate to inter-

specific variation in host genetics and parasite defence, environmental factors or 

parasite virulence.  

 

On an individual level, infection with C. bombi is positively correlated with the age of 

bees in both species, as estimated by wing wear. This relationship is expected as the 

older bees are more likely to have been exposed to C. bombi during the course of their 
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lives and are therefore more likely to be infected. The trend could also relate to 

senescence of the immune system, which is known to occur under laboratory 

conditions where two key immune processes have been shown to decline with age 

(Doums et al., 2002; Moret & Schmid-Hempel, 2009). On a population level, the 

relationship appears different for B. muscorum as populations with a lower mean age 

have a higher prevalence of C. bombi. This pattern could be expected if C. bombi is 

exerting a fitness cost on its hosts, which is likely as this parasite is known to increase 

the mortality rate of food-stressed worker bees by up to 50% (Brown et al., 2000). 

Therefore, in populations of B. muscorum that have a higher overall prevalence of the 

parasite, it is mainly the younger bees that are left alive. The opposite trend is 

observed in B. jonellus: higher prevalence of C. bombi was observed in populations 

that have a greater mean age. This bumblebee species has a higher genetic diversity 

than B. muscorum and therefore may have an overall greater fitness and resistance to 

parasites. Consequently, bees may be able to survive for longer when infected with C. 

bombi and then it would be expected that the relationship between age and infection 

would be the same as that observed for the individual bees.  

 

Bee size was another significant predictor of C. bombi prevalence in both bumblebee 

species and had the same relationship as age. In B. muscorum, a higher prevalence of 

C. bombi was observed in populations that had a smaller mean size and the opposite 

was true for B. jonellus. There is no evidence in the literature to suggest that the size 

of bumblebees influences their susceptibility to C. bombi, although this does remain a 

possibility. However, this relationship is more likely to have been due to an 

underlying relationship between age and size. Indeed, a Pearson’s correlation between 

bee age and size with both species pooled revealed a significant positive relationship. 
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However, when each species was analysed separately there was no such relationship, 

which is why both variables were left in the analyses. It is likely that older bees are 

more abundant towards the end of the sampling period and previous studies have 

found that in some bumblebee species, forager size also increases throughout the 

season due to colonies producing larger workers (for example, Knee & Meddler, 

1965; Plowright & Jay, 1968). Goulson et al. (2002) argue that larger foragers might 

survive for longer. Therefore, it is possible that, on average, older bumblebees are also 

larger, which would explain why age and size both predict C. bombi prevalence.  

 

In conclusion, this study has demonstrated that low genetic diversity in B. muscorum 

populations is associated with a higher prevalence of the tracheal mite L. buchneri. 

This supports theories that suggest some parasite species can spread to higher 

prevalence in populations that are more genetically homogeneous. No such 

relationship was observed in B. jonellus, possibly due to the greater and less variable 

genetic diversity of this species. We also find that the number of microsatellites 

genotyped is not sufficient to detect any heterozygosity-fitness correlations at the 

individual level. However, the main finding does support the hypothesis that the 

persistence of small, isolated populations of bumblebees may be threatened due to 

inbreeding and the associated effects on levels of parasitic infection.  
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5.1 Abstract  

 

Inbreeding and a consequent loss of genetic diversity threaten small, isolated 

populations. One mechanism by which genetically impoverished populations may 

become extinct is through decreased immune competence and higher susceptibility to 

parasites. Here we investigate the relationship between immunity and inbreeding in 

bumblebees, using Hebridean island populations of Bombus muscorum. We sampled 

nine populations and recorded parasite prevalence and measured two aspects of 

immunity: the encapsulation response and levels of phenoloxidase. We found that 

prevalence of the gut parasite Crithidia bombi was higher in populations with lower 

genetic diversity.  Neither measure of immune activity was correlated with genetic 

diversity. However, levels of phenoloxidase declined with age and were also 

negatively correlated with parasite abundance. Our results suggest that as insect 

populations lose heterozygosity, the impact of parasitism will increase, pushing 

threatened populations closer to extinction. 

 

5.2 Introduction 

 

Genetic diversity is crucial in maintaining the fitness of populations by allowing them 

to withstand short-term environmental perturbations and evolve in response to long-

term environmental change (Frankham et al., 2010). Small, isolated populations are at 

risk from losing their genetic diversity, either over the long term, predominantly as a 

result of genetic drift (Frankham et al., 2010) or over the short term as a result of 

inbreeding (Keller & Waller, 2002). This can lead to inbreeding depression if there is 
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a loss of reproductive fitness, usually due to the increase in frequency of individuals 

homozygous for deleterious recessive alleles (Charlesworth & Charlesworth, 1999). 

In turn this may significantly increase the risk of local population extinctions 

(Frankham, 2005; O’Grady, 2006; Reed et al., 2007).  

 

One driver of extinction in genetically impoverished populations may be parasitism 

(de Castro & Bolker, 2005). Inbreeding and increased homozygosity can increase both 

the prevalence of parasites at the population level and susceptibility to parasites at the 

individual level (Frankham et al., 2010). At the population level, a loss of genetic 

diversity due to inbreeding reduces the capacity of the population to evolve in 

response to novel virulent parasite genotypes. The more genetically diverse a 

population is, the more likely it is that some individuals can resist a pathogen. Studies 

in vertebrates have supported this, showing the genetic diversity of populations from a 

wide range of taxa is negatively correlated with pathogen prevalence (for example, 

Pearman & Garner, 2005; Hedrick et al., 2001). At the individual level, lower 

heterozygosity may be associated with higher infection frequency and greater 

infection morbidity (Coltman et al., 1999; Acevedo-Whitehouse et al., 2006). 

  

The studies that have addressed the effects of inbreeding on immunity and parasitism 

in invertebrates have demonstrated that the relationship is complex and can depend on 

host sex and genotype, as well as parasite species (Stevens et al., 1997; Rantala & 

Roff, 2007; Haag et al., 2003). However, inbreeding can decrease invertebrate 

pathogen resistance at the individual level, either through the loss of specific 

resistance alleles (Spielman et al., 2004), reduced defensive behaviour (Luong et al., 

2007) or a lower efficacy of group level disease resistance (Calleri et al., 2006). At 
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the population level, parasite transmission and the probability of infection is higher in 

inbred populations of some species (Puurtinen et al., 2004; Ebert et al., 2007). 

However, correlations between heterozygosity and parasite prevalence are not 

universal (Trouve et al., 2003).  

 

It is important to understand the relationship between genetic diversity and parasitism 

in bumblebees as many species have suffered from significant population declines 

across their range, predominantly due to the loss of habitats on which they depend 

(Williams & Osborne, 2009). The remaining populations of the rare species have 

become fragmented and genetically isolated. While common bumblebee species 

exhibit little genetic differentiation between populations (Estoup et al., 1996; Widmer 

& Schmid-Hempel, 1999), rare species appear to have much lower genetic diversity 

and considerable population subdivision (Ellis et al., 2006). One example is B. 

muscorum, which is a rare and declining bumblebee species in the UK, now 

predominantly found in the Western Isles of Scotland. Isolated island populations 

have substantially reduced genetic diversity (Darvill et al., 2006). B. muscorum shows 

markedly higher population structuring and isolation by distance than the coexisting 

Bombus jonellus, possibly due to its poor dispersal ability (Darvill et al., 2010). 

Hence it is more susceptible to population isolation and inbreeding.  

 

To date, only one study has tested how inbreeding in bumblebees influences immunity 

at the individual level. Gerloff et al. (2003) found one generation of sib-mating had no 

negative impact on the encapsulation response. Nevertheless, parasite load may be 

greater in locations where inbreeding is most acute as theory suggests that genetically 

diverse colonies of social insects have a selective advantage due to higher parasite 
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resistance (Sherman et al., 1988; van Baalen & Beekman, 2006). This assumes that 

different host genotypes have varying susceptibility to different parasite strains, 

meaning that a parasitic infection is not likely to spread as rapidly or as far through a 

genetically heterogeneous colony (Sherman et al., 1988; Schmid-Hempel, 1998). 

Investigations with bumblebees using lab-reared colonies placed under field 

conditions have provided support for this theory. Genetically heterogeneous 

bumblebee colonies had significantly lower prevalence, load and species richness of a 

range of parasites compared to genetically homogeneous colonies (Liersch & Schmid-

Hempel, 1998; Baer & Schmid-Hempel, 2001).  

 

Here we aim to test the hypothesis that wild bumblebee populations that have a lower 

genetic diversity have a concomitant decrease in immunocompetence and an increase 

in parasite prevalence. We use the previously studied island populations of B. 

muscorum in the Western Isles of Scotland and measures of population genetic 

diversity are taken from Darvill et al. (2006). Immune competence was estimated by 

measuring two aspects of constitutive immunity; the encapsulation response and 

levels of the enzyme phenoloxidase (PO). The encapsulation response assay is a well 

established method of measuring an insect’s ability to respond to a foreign body and 

the synthetic implant provides a standardised challenge against which individual 

responses can be compared (König & Schmid-Hempel, 1995). PO is a key component 

of the invertebrate immune system; it is stored as the inactive precursor pro-PO and 

activated when infection is detected (Soderhall & Cerenius, 1998). Parasite 

prevalence was measured by dissecting bees and recording any parasitic infections 

present. These investigations allowed us to assess the impact of inbreeding on 

parasitism and immune parameters in wild insect populations. 
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5.3 Methods 

 

Nine Hebridean islands off the west coast of Scotland were visited between 4th August 

and 20th August 2009 (Barra, Coll, Iona, Mingulay, North Uist, South Uist, Sandray, 

Staffa, and Tiree). A total of 246 B. muscorum workers were collected, with a mean of 

27.3 (range: 23 to 30) from each island. As samples were taken in the peak season for 

bumblebees, the numbers taken were unlikely to negatively impact the fitness of 

colonies. Collected bees were stored in hair curlers (Superdrug, UK) with access to 

sugar water (50% Attracker solution in distilled water, Koppert Biological Systems, 

The Netherlands). 

 

On the day of capture, bees were subjected to an encapsulation assay using an abiotic 

implant, following the methods of König & Schmid-Hempel (1995). Each bee was 

anaesthetised with CO2, placed under a dissecting microscope and secured with pins 

so that its ventral side was exposed. A fine sterile pin was used to make an incision in 

the inter-segmental membrane between the second and the third sternite. A nylon 

implant (diameter 0.16mm, mean length 1.44 ± 0.012 mm) was inserted through this 

incision, where it would be exposed to the circulating haemolymph. Four hours later 

the bee was freeze-killed in liquid nitrogen, before being stored in a -800C freezer for 

later examination. A temperature data logger (Tinytag, Gemini data loggers, UK) 

recorded the ambient temperature during each assay and a mean was calculated for 

each four hour implant period. 

 

Before dissection and examination each bee’s abdomen was separated from its thorax 

and defrosted on ice. The implant was dissected out and mounted onto a slide using 
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Eukitt® (Electron Microscopy Sciences, USA). The degree of encapsulation was then 

measured by viewing the implant on a light table, with constant background 

illumination. A picture of the implant was taken and the mean grey value calculated 

using Image J software (U. S. National Institutes of Health, USA). This value was 

then subtracted from a control value (the mean grey value for an implant that had not 

been placed in a bee) to give a value for the encapsulation response (König & 

Schmid-Hempel, 1995). 

  

The abdomen was inspected for the presence of the tracheal mite L. buchneri and any 

other macroparasites. The gut (excluding the honey sac) was then removed and 

homogenised in 200µl of insect ringer solution (9.1g NaCl; 0.52g KCl; 1.2g 

CaCl2.2H2O; 0.8g MgCl2.H2O; made to 1000ml with distilled water). 10µl of 

homogenate was examined at x400 magnification to determine the presence/absence 

of the microparasites C. bombi, N. bombi and A. bombi. If present, a further sample 

was examined on a haemocytometer and the number of cells in the two 0.1µl grids 

was counted. The intensity of infection was recorded as the mean number of cells in 

0.1µl of gut homogenate. 

 

The width of the thorax was measured using electronic digital calipers and the bee’s 

age was estimated by assessing the extent of wing wear, using a four point scale 

(modified from Mueller & Wolfmueller, 1993). The phenoloxidase (PO) activity 

assay was adapted from Brown et al., (2003a). The thoraces were homogenised in 

300µl phosphate buffer saline (PBS: 8.74g NaCl; 1.78g Na2HPO4. 2H2O; 1000ml 

distilled water; pH 6.5) before being centrifuged at 15.7 G (4oC for 10mins). The 

supernatant was used to measure the concentration of the active PO as well as the total 
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PO (proPO plus the active PO). Reaction mixtures for the active PO measurements 

contained 20µl of the thorax supernatant, 140µl distilled water, 20µl PBS and 20µl L-

DOPA solution (4mg ml-1 distilled water). For the total PO measurements, reaction 

mixtures contained 20µl of the thorax supernatant, 120µl distilled water, 20µl PBS, 

20µl L-DOPA solution and 20µl bovine α-chymotrypsin solution (Sigma, C4129; 

2.1mg ml-1 distilled water) and were incubated for five minutes at room temperature. 

The reaction was allowed to proceed at 30 oC for 40 minutes in a microplate reader 

(Versamax, Molecular Devices, USA). Absorbance readings were taken every 10 

seconds at 480nm and analysed using SOFTmaxPRO 4.0 software (Molecular 

Devices, USA). Enzyme activity was measured as the slope (Vmax value) of the 

reaction curve during the linear phase of the reaction. Eight replicate assays were 

performed on each bee, four of total PO (including chymotrypsin) and four of active 

PO (without chymotrypsin). All measures of PO were corrected for bee size as 

approximated by the thorax width cubed. 

 

5.3.1 Statistical analyses 

Data were analysed in R, version 2.7.2 (2008 The R Foundation for Statistical 

Computing). Conservative population-level analyses were first carried out using each 

population as a replicate and employing Pearson’s correlations to investigate 

relationships between measures of genetic diversity, effective population size and 

parasite prevalence. The measures of genetic diversity (heterozygosity and allelic 

richness) were taken from Darvill et al., (2006) and were based on 9 microsatellite 

loci, of which one was monomorphic and a second almost so. Effective population 

size estimates were computed using Colony version 2.0 (Wang, 2009; Jones & Wang, 

2010). In-depth individual based analyses followed and as causal relationships 
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between variables are unknown a series of models were used, exchanging the 

dependent variable to explore all relationships. Population-level heterozygosity was 

used in individual analyses as a number of studies have shown it is a more accurate 

predictor of heterozygosity than using individual measures based on a relatively small 

number of loci (Pemberton, 2004).  

 

Binomial generalised linear models were used to investigate determinants of parasite 

prevalence (C. bombi and L. buchneri respectively). Due to overdispersion in the L. 

buchneri prevalence data, a quasibinomial model was used. Zero-inflated negative 

binomial models (ZINB) were used to investigate the variables influencing parasite 

abundance (both the number of C. bombi cells per 0.1µl gut homogenate and the 

number of adult L. buchneri present in the abdomen). General linear models were 

used to investigate the variables influencing both the levels of phenoloxidase and the 

encapsulation response. Both these response variables were Box-Cox transformed to 

fulfil the assumptions of normality. In all models, island heterozygosity, population 

size, individual thorax width, wing wear, phenoloxidase (total PO divided by thorax 

width cubed) and the load of the other parasite were entered as co-variates. All 

statistical tests were two-tailed and all two-way interactions were investigated. 

Models were selected and simplified according to Aikaike Information Criterion 

(AIC). Only significant interactions are presented here. Means are recorded ± their 

standard errors throughout.  
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5.4 Results 

 

Three species of parasite were detected; the gut trypanosome C. bombi, the tracheal 

mite L. buchneri and a conopid fly Physocephala sp.. C. bombi was detected at very 

high frequency in all island populations: prevalence ranged from 77% to 100%. L. 

buchneri was also detected in all populations, with a prevalence ranging from 3% to 

53% (table 5.1). Larvae of Physocephala sp. were detected at very low prevalence 

(3%) and on only two islands (Staffa = 2 infected bees, Iona = 6 infected bees) and no 

further analysis was carried out for this parasite. No Nosema bombi or Apicystis 

bombi were detected. 
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5.4.1 Population level results 

Pearson correlations revealed general relationships between measures of host genetic 

diversity and parasite prevalence. There was a negative relationship between 

heterozygosity and the prevalence of both parasites; this correlation was only significant 

in the case of C. bombi (L. buchneri: r = -0.338, p = 0.374; C. bombi: r = -0.67, p = 

0.048, figure 5.1). Heterozygosity and allelic richness were tightly correlated (r = 0.815, 

p = 0.007) and heterozygosity had better explanatory power in the analyses so was used 

in subsequent tests as the measure of genetic diversity. As effective population size had 

no correlation with parasite prevalence it was excluded from the subsequent in-depth 

analysis of parasite prevalence. 
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Figure 5.1 Relationship between C. bombi prevalence and heterozygosity of host population.  

Each point represents an island population. Islands with higher heterozygosity had significantly lower 

prevalence of C. bombi (P = 0.003, table 5.2). 
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The negative correlation between C. bombi prevalence and host population 

heterozygosity remained significant in the detailed analysis that took into account other 

explanatory variables (Z = -2.99, P = 0.003). Age, as measured by wing wear, also 

significantly influenced C. bombi prevalence, with populations with a greater mean age 

more likely to be highly infected (Z = 2.02, P = 0.043). No other variable significantly 

affected the prevalence of C. bombi (table 5.2). No variable significantly affected the 

prevalence of L. bombi (table 5.2). 

 

Table 5.2 Output of binomial GLM and quasibinomial GLM for prevalence of C. bombi and L. 

buchneri respectively. Degrees of freedom are given in parentheses. 

  Crithidia bombi     Locustacarus buchneri 
           

 

Co-
efficient 
estimate SE Z P    

Co-
efficient 
estimate SE T P 

              

Heterozygosity -12.65 4.22 -2.99 0.003    -9.01 5.17 -1.74 0.132 
of population    (1)        (1)  
              

Date 0.048 0.052 0.815 0.415    0.053 0.051 1.04 0.348 
    (1)        (1)  
              

Age 1.37 0.679 2.02 0.043    -0.156 1.83 -0.085 0.940 
    (1)        (1)  
              

Bee size -2.81 2.90 -0.697 0.334    -2.36 2.08 -1.13 0.320 
    (1)        (1)  
              

Encapsulation -0.089 0.052 -1.72 0.086    0.014 0.081 0.171 0.875 
    (1)        (1)  
              

Phenoloxidase -20.49 261.56 -0.078 0.938    -48.67 29.67 -1.64 0.152 
    (1)        (1)  
              

L. buchneri  -6.91 4.73 -1.46 0.145    - - - - 
prevalence    (1)          
              

C. bombi - - - -    0.587 27.86 0.021 0.987 
prevalence            (1)  
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5.4.2 Trends across individuals in parasite abundance 

Here we use the parameter abundance to represent the number of parasites infecting a 

bee, including those bees that were uninfected. Crithidia bombi abundance was 

significantly positively correlated with both heterozygosity in the local host population 

and host population size, while it was negatively correlated with phenoloxidase levels 

(table 5.3, figure 5.2). C. bombi abundance was positively correlated with L. buchneri 

abundance and this effect was amplified in bees that also had high levels of PO (there 

was a significant positive interaction between the two factors). There was also a 

significant interaction between the effects of L. buchneri abundance and bee size: large 

bees with a high L. buchneri load had lower C. bombi loads than expected. Age and size 

also interacted with C. bombi abundance, with older, larger bees having lower parasite 

loads (table 5.3). Locustacarus buchneri abundance, in contrast, was only significantly 

predicted by levels of PO (table 5.3), with higher infection intensities observed in bees 

with lower levels of PO. 
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Figure 5.2 The relationship between C. bombi abundance and heterozygosity of host population.  

Bees from populations with higher heterozygosity had higher parasite abundance (P = 0.001, table 5.3). 
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5.4.3 Trends across individuals in immune parameters 

A total of 233 nylon implants were successfully dissected out of the bees. The 

encapsulation response showed large variation and the degree of greyness on the 

implants ranged from 0.73 units to 83.73 units, with a mean of 25.50 ± 1.05 units. This 

melanisation did not show any correlation with the length of the implant (r = 0.032, p = 

0.616) nor with the ambient temperature during the four hour assay (r = 0.066, p = 

0.298). The encapsulation response had no relationship with population level 

heterozygosity but was significantly predicted by levels of phenoloxidase; bees with 

higher levels of PO showed greater encapsulation responses. The population size and 

date also significantly influenced the encapsulation response; smaller populations had 

lower responses and the response also declined over the sampling period (table 5.4). 
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Table 5.4 Output for General Linear Models for the encapsulation response and levels of total 

phenoloxidase. Degrees of freedom are given in parentheses. 

  Encapsulation   Phenoloxidase 
      

 F P  F P 
      

Heterozygosity 1.41 0.236  28.07 < 0.001 
of population (1, 226)   (1, 222)  
      

Population 
size 5.23 0.023  0.25 0.62 
 (1, 226)   (1, 221)  
      

Date 10.35 0.001  4.07 0.045 
 (1, 226)   (1, 222)  
      

Age 2.66 0.104  5.03 0.002 
 (1, 226)   (1, 222)  
      

Bee size 0.234 0.629  11.26 < 0.001 
 (1, 225)   (1, 222)  
      

C. bombi load 0.475 0.491  6.14 0.014 
 (1, 225)   (1, 222)  
      

L. bombi load 0.009 0.922  32.38 < 0.001 
 (1, 224)   (1, 222)  
      

Encapsulation - -  4.17 0.042 
    (1, 222)  
      

Phenoloxidase 4.23 0.041  - - 
 (1, 226)     
            

 

 

Total and active phenoloxidase showed a strong positive correlation (r = 0.816, p < 

0.0001) so only total PO was used in all analyses. Levels of total phenoloxidase, in 

contrast to the encapsulation response, were significantly predicted by a large number of 

variables. Lower levels of PO were found in bees from populations with higher 

heterozygosity (table 5.4). Levels of PO were also found to decline with age (figure 

5.3). Additionally, larger bees were found to have higher levels of volume-corrected 

PO. As expected from previous analyses, bees with higher infection intensities of C. 

bombi and L. buchneri had lower levels of PO (figures 5.4 & 5.5).  
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Figure 5.3 Mean levels of PO for each age group, with wing wear as a proxy for age. 

Bars represent the least square means and their standard errors as predicted from the GLM. PO was found 

to significantly decline with age (p = 0.002, table 5.4). 
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Figure 5.4 The relationship between phenoloxidase and C. bombi abundance. 

Levels of phenoloxidase significantly declined with increasing C. bombi abundance (P = 0.014, table 5.4). 
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Figure 5.5 The relationship between phenoloxidase and L. buchneri abundance. 

Levels of phenoloxidase significantly declined with increasing L. buchneri abundance (P < 0.001, table 

5.4). 

 

5.5 Discussion 

 

This study is the first to demonstrate a relationship between the genetic diversity of 

natural bee populations and the prevalence of parasites. Bombus muscorum populations 

with lower levels of heterozygosity had higher prevalence of the gut parasite C. bombi. 

This field based study using wild bumblebee populations supports previous laboratory 

and experimental work that found genetic heterogeneity within colonies to be negatively 

correlated with parasitic infections in social insects (Baer & Schmid-Hempel, 2001; 

Hughes & Boomsma, 2004; Seeley & Tarpy, 2007). Additionally, high loads of the 

ectoparasitic mite have been found on the invasive B. terrestris in Tasmania, which is 

inbred due to small numbers of founding queens (Allen et al., 2007). 

 



 120 

There are two mechanisms that might result in low heterozygosity causing increased 

parasite prevalence. Inbred individuals may have low immune competence, resulting in 

greater susceptibility to infection and, secondly, parasite infections may be able to 

spread faster through populations with lower genetic diversity. We measured two 

immune system parameters, phenoloxidase levels and the encapsulation response. We 

found no evidence to suggest that bees from less heterozygous populations had inferior 

immune activity. However, it is possible that other immune system components may 

suffer negatively from inbreeding. Our results are consistent with the theory that 

population genetic homogeneity leads to higher parasite prevalence (Sherman et al., 

1988; Schmid-Hempel, 1998). The theory assumes that host genotypes differ in their 

ability to resist different parasite strains, which is certainly true for C. bombi as several 

studies have demonstrated a strong genetic component to the susceptibility of 

bumblebees to this parasite using cross infection experiments, genetic analysis and QTL 

mapping (Imhoof & Schmid-Hempel, 1998; Schmid-Hempel et al., 1999; Wilfert et al., 

2007).  

 

Higher parasite prevalence in more genetically depauperate populations has been found 

in a number of other species, particularly vertebrates, for example Whiteman et al. 

(2006). This relationship has not been so commonly studied in invertebrates but 

experimental work has shown that a lower genetic diversity increases the probability of 

parasitic infection in Daphnia magna and the freshwater snail Lymnaea stagnalis 

(Puurtinen et al., 2004; Ebert et al., 2007). Thus parasitism may be a mechanism that 

increases the risk of extinction in small, isolated and inbred populations (de Castro & 

Bolker, 2005). This is particularly relevant in the case of bumblebees due to their recent 

population declines in Europe, North America, Japan and China (Williams & Osborne, 
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2009). Populations of rare species are becoming fragmented and isolated, which has led 

to a decline in their genetic diversity (Ellis et al., 2006). 

 

It is likely that higher prevalence of bumblebee parasites reduces fitness and increases 

mortality in inbred populations. Crithidia bombi increases the mortality rate of food-

stressed worker bees by up to 50% (Brown et al., 2000) and reduces worker foraging 

efficiency (Otterstatter et al., 2005). Infection also reduces the fitness of colony-

founding queens by 40% (Brown et al., 2003b; Yourth et al., 2008), which could have a 

severe impact on declining populations. Relatively little research has been conducted on 

L. buchneri but limited data suggest that heavy infections might be associated with 

lethargy and reduced foraging (Husband & Sinha, 1970). Parasitic infection may also 

have indirect effects on fitness simply by stimulating the immune system; C. bombi 

infection elicits PO production (Brown et al., 2003a) and L. buchneri infection triggers 

a melanisation response by the host (pers. obs.). Colonies whose workers are immune 

challenged may have lower reproductive output, an effect exacerbated by harsh 

environmental conditions (Moret & Schmid-Hempel, 2001; Moret & Schmid-Hempel, 

2004).  

 

Interestingly, whilst bees in inbred populations were more likely to be infected with C. 

bombi, these populations also had lower mean parasite abundance. This could reflect the 

inability of inbred bees to survive high levels of infection meaning that high spores 

loads were not observed. A small but significant positive correlation was observed 

between the parasite load of C. bombi and L. buchneri. This may suggest that some 

individual bees are more generally susceptible to parasitic infection or that the two 

parasite species act synergistically.  
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Levels of PO were shown to decline with increasing bee age. A decline with age in both 

the encapsulation response and PO has been reported for bumblebees under laboratory 

conditions (Doums et al., 2002; Moret & Schmid-Hempel, 2009) but this is the first 

study to suggest such immune senescence occurs in the wild. Levels of PO were also 

negatively correlated with the load of both parasite species. This is in agreement with a 

study by Siva-Jothy et al. (2001), who found that PO levels became negatively 

correlated with gut parasite burden in a damselfly, after an acute immune challenge with 

a nylon implant. This suggests a similar trade-off may be occurring in bumblebees; 

those infected with C. bombi may be unable to upregulate PO when subjected to the 

nylon implant we inserted. An alternative explanation for the negative correlation 

between PO and parasite load would be that more intense infections are able to establish 

in bees with lower immune capacity (Nigam et al., 1997). A negative correlation 

between heterozygosity and PO was also observed, but it seems likely this is due to the 

tight correlation between PO and C. bombi abundance. Levels of PO were positively 

correlated with the encapsulation response. As the enzyme was measured after the 

implant had been inserted, the correlation reflects the involvement of PO in the immune 

cascade that results in encapsulation (Soderhall & Cerenius, 1998).  

 

In conclusion, this study has demonstrated that low genetic diversity in B. muscorum 

populations is associated with a higher prevalence of parasites, although we detected no 

associated loss of immune competence. This supports theories that suggest population 

genetic homogeneity enables parasites to spread to higher prevalence. Inbreeding 

negatively affects a range of fitness traits in insects; our current data suggest that 

elevated parasitism may pose an additional threat to isolated populations. 
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6.1 Abstract 

 

The use of commercial bumblebees for crop pollination has been implicated in the 

decline of wild bumblebees through the spread of pathogens. This study investigates 

whether diseases from commercial bumblebees threaten native species in the UK. We 

sampled bumblebees from ten soft fruit farms: five that deploy commercial Bombus 

terrestris and five that do not. Each farm was visited monthly throughout the summer 

and workers of B. terrestris, Bombus pratorum, Bombus pascuorum and Bombus 

lapidarius were captured. The faeces of these bees were inspected for the gut 

microparasites Crithidia bombi, Nosema bombi and Apicystis bombi. The prevalence of 

A. bombi and N. bombi was too low to analyse. The prevalence and abundance of C. 

bombi was significantly different among bumblebee species. Overall, the prevalence of 

C. bombi was lower on farms deploying commercial bumblebees. However, C. bombi 

prevalence in B. terrestris rose sharply on commercial farms at the end of the season, 

suggesting that the high density of commercial bees increases parasite transmission. 

However, we found no evidence of pathogen spillover to wild species. This study 

provides an important insight into interactions between native and commercial 

bumblebees and their parasites in Europe.  

 

6.2 Introduction 

 

The commercial use of bumblebees as pollinators for agricultural crops has been 

common practise since the 1980s when techniques for mass rearing bumblebees were 

developed (Velthuis & van Doorn, 2006). The majority are used for greenhouse 
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tomatoes, but large numbers are also used for the pollination of various cucurbits and 

soft fruits (Velthuis & van Doorn, 2006; Stanghellini et al., 1997; Stubbs & Drummond, 

2001). As bumblebees are highly efficient pollinators, they can provide economic 

benefits to fruit growers through increased yield (Serrano & Guerra-Sanz, 2006; Lye et 

al., 2011). However, their use does not come without risk. Commercially produced 

bumblebees pose three main threats to native bumblebee fauna; competition for 

resources (Ings et al., 2006; Inoue et al., 2008; Inoue et al., 2010); hybridisation with 

native subspecies (Kondo et al., 2009) and finally, the spread of parasites (Colla et al., 

2006). It is vital to understand the relevance of these threats to bumblebees as 

populations of many species have been declining over recent decades (Williams & 

Osborne, 2009; Cameron et al., 2011). These declines have been predominantly 

attributed to the intensification of agriculture and the associated loss of habitats on 

which bumblebees depend (Goulson et al., 2008; Williams & Osborne, 2009).  

 

Recent work from North America suggests that diseases from commercial bumblebees 

may pose a significant additional threat to native species (Winter et al., 2006; Colla et 

al., 2006; Cameron et al., 2011) and this threat can take two forms. Firstly, the use of 

commercial bumblebees, frequently imported from foreign countries, could introduce a 

novel pathogen or pathogen genotype, which is virulent in wild populations (Goka et 

al., 2000; Goka et al., 2006). Secondly, if the unusually high densities of bumblebees 

associated with commercial use elevate disease prevalence, pathogens may spill over to 

cause increased infection rates in wild bumblebee populations (Otterstatter & Thomson, 

2008). Such pathogen spillover can occur even if the commercial bees arrive uninfected 

if they contract and amplify local pathogens. The potential exists for both processes to 

occur when commercial bumblebees are deployed as they regularly forage on wild 
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flowers adjacent to the crop (Morandin et al., 2001; Whittington et al., 2004). 

Transmission of intestinal parasites can then occur when infected and uninfected 

individuals forage on the same flower (Durrer & Schmid-Hempel, 1994). Infection with 

intestinal parasites such as Crithidia bombi and Nosema bombi can substantially reduce 

the fitness of individual bumblebees and the reproductive output of colonies (Brown et 

al., 2003; Otti & Schmid-Hempel, 2008). 

 

The introduction of novel pathogens can potentially have severe consequences. In North 

America, the accidental introduction of the gut parasite N. bombi with commercial 

bumblebees is thought by many to be responsible for the dramatic decline of seven 

species of native bumblebees since the 1990s (Winter et al., 2006; Cameron et al., 

2011), although direct evidence is lacking (Brown, 2011). Within Europe, this may be 

considered less of a threat as the source and destination locations of commercial bees 

contain the same parasite species. However, the introduction of novel pathogen strains 

remains a risk. For example, the gut trypanosome C. bombi is known to consist of a 

large number of different strains (Schmid-Hempel & Funk, 2004). Higher mortality has 

been found when bumblebees are infected with a C. bombi strain from a distant location 

compared to infection from a local source (Imhoof & Schmid-Hempel, 1998). Thus, the 

importation of bumblebees from abroad could potentially introduce novel parasite 

strains to which the local populations are more susceptible.  

 

Pathogen spillover occurs when a heavily infested host reservoir population transmits a 

pathogen to a nearby susceptible population (Daszak et al., 2000). In the case of the 

commercial use of bumblebees, the reservoir population consists of the imported 

colonies and the susceptible population is the local natural bumblebee fauna. The 
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pathogen may already exist within the susceptible population but spillover occurs if the 

commercial bees maintain higher parasite loads, which is likely due to the unnaturally 

high densities of commercial colonies within greenhouses or polytunnels. Pathogen 

spillover from commercial to wild bees has been shown to occur in Canada. The 

prevalence of parasites was compared between sites close to glasshouses using 

commercial bumblebees and sites over 50km from any commercial greenhouse. It was 

found that C. bombi was present at significantly higher prevalence at the sites near 

glasshouses. Additionally, bees foraging closest to the greenhouse had more intense 

infections (Colla et al., 2006; Otterstatter & Thomson, 2008). It should be noted that 

pathogen spillover can occur even if the commercial bees are free of disease in the 

factory; high densities of bumblebees in glasshouses provide suitable conditions for 

rapid spread of any pathogen with which they come into contact. 

 

Despite studies in North America, no comparable research into the potential threat of 

pathogens and parasites from commercial bumblebees has been published in Europe and 

this paper aims to investigate whether such a threat exists.  We focus on the use of 

commercial bumblebees for the pollination of soft fruit where nest boxes are placed in 

open ended polytunnels and open field situations. The spread of pathogens to wild 

bumblebees is of particular concern in such situations as there is no containment of the 

commercial bees. We investigate this using soft fruit farms in the UK as a study system, 

where there is undoubtedly the potential for commercial bumblebees to pose a threat as 

approximately 60,000 B. terrestris nests are currently imported from mainland Europe 

each year (Goulson, 2010b). We compare the prevalence and abundance of pathogens in 

bumblebees on farms that do deploy commercial bumblebees and on farms that do not. 

If commercial bumblebees are acting as a source of infection, we would assume there to 
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be an elevated prevalence of infection among foraging bumblebees on the farms where 

they are deployed. 

 

6.3 Methods 

 

Ten soft fruit farms in East and Central Scotland were selected for this study (see table 

6.1). Five farms deployed commercially reared B. terrestris to aid pollination (hereafter 

referred to as “commercial farms” and five did not (“wild farms”). Wild farms were 

located at least 4 km from a farm that used commercial bumblebees to minimise the 

presence of any foraging commercial bees.  The foraging range of bumblebees is 

difficult to measure and estimates vary, but most agree that B. terrestris rarely forage 

more than 1.5 km from their nest (Darvill et al., 2004; Knight et al., 2005; Osborne et 

al., 2008; Wolf & Moritz, 2008). Sampling took place at each farm for one day in May, 

June, July and August. Worker bumblebees of the species B. terrestris, B. pascuorum, 

B. pratorum and B. lapidarius were collected using sweep nets. Bees were collected 

either directly from the raspberry or strawberry crop or from wildflowers growing 

within 10 metres of the crop. No attempt was made to distinguish between the 

morphologically similar B. terrestris, B. lucorum, B. magnus and B. cryptarum and this 

species group is referred to as simply B. terrestris. On the commercial farms this group 

includes the commercial bumblebees. Commercial bumblebees were also sampled 

directly from their colonies on one day in May and June; at this time the nestboxes had 

been open and the bees foraging for varying periods of time. Bees were held 

individually in clear sampling tubes with ventilation holes in the lids and were left until 

they had defecated. The faeces were collected into microcapillary tubes, which were 

then sealed at each end and stored in a chilled box. Bees were released at the end of the 
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sampling period unharmed. The faeces were later inspected at x400 magnification to 

detect the presence of C. bombi, N. bombi and A. bombi. No attempt was made to 

distinguish between C. bombi and the newly discovered C. expoeki (Schmid-Hempel & 

Tognazzo, 2010). If present, the intensity of infection was recorded using a 

haemocytometer: the number of cells in a 0.1µl grid was counted. 

 

Table 6.1 Information on the ten farms from which samples were collected. 

Farm name Longitude Latitude Farm type Ha soft fruit 

No. nestboxes 
imported per 
year 

Allanhill 2° 46.8’ W 56° 19.2’ N Commercial 45 300 
Blacketyside 2° 59.2’ W 56° 12.7’ N Commercial 40 200 
Broadslap 3° 36.5’ W 56° 19.7’ N Commercial 8 6 
SCRI 3° 04.2’ W 56° 27.4’ N Commercial 18.5 6 
Seaton 2° 33.1’ W 56° 34.2’ N Commercial 40 350 
Briarlands 4° 02.6’ W 56° 10.1’ N Wild 0.5 - 
Kincreich 2° 55.2’ W 56° 35.3’ N Wild 6 - 
Mill of Montague 3° 19.2’ W 56° 26.2’ N Wild 6 - 
Milton of Ruthven 3° 09.6’ W 56° 38.5’ N Wild 40 - 
Newmills 3° 18.0’ W 56° 30.4’ N Wild 6 - 
  

 

6.3.1 Statistical analyses 

Data were analysed in R, version 2.12.0 (2010 The R Foundation for Statistical 

Computing). Chi-squared tests established whether differences existed between the 

proportion of infected bees in different species.  Binomial generalised linear mixed 

effect models were used to analyse determinants of C. bombi prevalence and each 

bumblebee species was analysed separately. The residuals were tested for 

autocorrelation using the Durbin-Watson statistic but this was not detected. Crithidia 

bombi abundance (the number of C. bombi cells per 0.1µl faeces, including uninfected 

bees) was analysed in a Bayesian framework using the MCMCglmm package in R 
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(Hadfield, 2010). Generalised linear mixed models with a zero-inflated poisson 

distribution were used and non-informative priors were set in all analyses. Prior 

sensitivity analysis was carried out and the final models are robust to variation in the 

values of priors. Model convergence was confirmed using Geweke’s diagnostic 

(Geweke, 1992) and visual examination of the model output. Parameter estimates 

reported are means from the posterior distribution with 95% lower and upper credible 

intervals (CI). A binomial generalised linear mixed effect model was used to investigate 

the difference in prevalence of N. bombi between the treatments. Prevalence of infection 

was too low to allow bumblebee species to be analysed separately for this parasite. In 

all the mixed effect models, sampling month (entered as a covariate 1, 2, 3 or 4), 

treatment (presence or absence of commercial bumblebees) and bumblebee species were 

entered as fixed effects and the individual farms were entered as a random effect. Means 

are recorded ± their standard errors throughout. 

 

6.4 Results 

 

A total of 946 worker bumblebees was collected from the ten farms and screened for 

pathogens over the four month sampling period. Additionally, 103 commercial 

bumblebee workers were collected directly from their nestboxes in May and June. All 

three parasite species were detected and the overall prevalence in the bees collected 

foraging was: C. bombi 39.22%; N. bombi 2.01% and A. bombi 0.74%. The number of 

bees infected with A. bombi was too small to allow further analyses on this parasite.  

 

 

 



 132 

 

6.4.1 Crithidia bombi prevalence 

 

The proportion of bees infected differed significantly across the different species, being 

highest in B. pratorum and lowest in B. pascuorum (χ2 = 53.09, df = 3, p < 0.001, figure 

6.1, table 6.2). The prevalence of C. bombi infection in commercial bumblebees 

collected directly from their nestbox in May and June was 35.92 ± 4.75%, which is 

similar to the prevalence in B. terrestris collected from commercial farms (28.57 ± 

5.66%; χ2 = 1.09, df = 1, p = 0.297) and wild farms (47.73 ± 5.36%; χ2 = 2.73, df = 1, p 

= 0.099) in May and June. 
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Figure 6.1 Prevalence of C.bombi in the four bumblebee species.  

The proportion of bees infected was significantly different among the species (χ2 = 53.09, df = 3, p < 

0.001). Bars represent the mean prevalence and their standard errors. 
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Bombus terrestris 

Averaging across the whole season, the proportion of B. terrestris infected with C. 

bombi was significantly higher on the wild farms compared to the commercial farms (χ2 

= 17.95, df = 1, p < 0.001). There was also a significant interaction between the 

treatment and the sampling month (χ2 = 19.07, df = 1, p < 0.001): month significantly 

predicted C. bombi prevalence on commercial farms due to the marked increase in 

August, whilst prevalence on wild farms did not change significantly over time (figure 

6.2).         
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Figure 6.2 Prevalence of C. bombi in B. terrestris over the sampling period in the two farm types.  

Prevalence on commercial farms was significantly affected  by month due the marked increase in August 

(Z = 4.75, p < 0.001). No significant change in prevalence occurred on wild farms (Z = 0.976, p = 0.329). 

There was no difference in the prevalence of C. bombi in commercial bees collected from nest boxes and 

in foraging B. terrestris collected on commercial farms (χ2 = 1.09, df = 1, p = 0.297). Bars represent the 

mean prevalence and their standard errors. 
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Bombus pratorum 

The prevalence of C. bombi was significantly higher on wild farms than on commercial 

farms (χ2 = 6.33, df = 1, p = 0.012, figure 6.3) and also significantly increased over the 

sampling period (χ2 = 30.27, df = 1, p < 0.001). There was no interaction between the 

treatment and month (χ2 = 0.887, df = 1, p = 0.346), indicating that this increase 

occurred at a similar rate on both farm types. 
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Figure 6.3 Prevalence of C. bombi in B. pratorum over the sampling period in the two farm types.  

Prevalence was higher in wild farms (p = 0.012) and significantly increased over time (p < 0.001). Bars 

represent the mean prevalence and their standard errors. 

 

Bombus pascuorum and Bombus lapidarius 

Similar results were obtained for both species and as so few workers were collected in 

May, this month was excluded from the analysis of both. The prevalence of C. bombi in 

B. pascuorum and B. lapidarius was not significantly different in each farm type (χ2 = 

0.038, df = 1, p = 0.847 and χ2 = 0.473, df = 1, p = 0.492 respectively) and did not 
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significantly change over time (χ2 = 1.52, df = 1, p = 0.217 and χ2 = 1.26, df = 1, p = 

0.262 respectively). Temporal patterns were similar on commercial and wild farms: 

there was no significant interaction between month and treatment (χ2 = 2.46, df = 1, p = 

0.117 and χ2 = 2.20, df = 1, p = 0.138). 

 

6.4.2 Crithidia bombi abundance 

 

Considering the load of infection in each individual bee, C. bombi abundance for all 

bumblebee species did not differ significantly between the two treatments and did not 

change significantly over time (table 6.3). There was also no significant interaction 

between these two variables. The abundance was, however, significantly different 

between the four bumblebee species (figure 6.4). 

 

Table 6.3 MCMCglmm output for C. bombi abundance.  

The parameter estimates shown here are with reference to B. terrestris and the commercial treatment and 

are on the log scale. The MCMC procedure for this model has a burn-in period of 5000, a total of 50,5000 

iterations and a thinning interval of 500. P-values <0.05 are written in bold. 

 

  
Parameter 
estimate 

Lower 
95% CI 

Upper 
95% CI P value 

     

Crithidia bombi 
abundance 4.770 3.001 6.562 <0.001 
Species     
       B. lapidarius 1.094 0.121 1.903 0.022 
       B. pascuorum -3.025 -4.321 -1.741 <0.001 
       B. pratorum -1.040 -1.629 -0.416 <0.001 
Month -0.005 -0.487 0.445 0.980 
Treatment 1.697 -0.459 4.129 0.110 
Month*Treatment -0.609 -1.258 0.025 0.064 
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Figure 6.4 Mean C. bombi abundance for the four bumblebee species.  

All species comparisons were significant: B. lapidarius had a significantly greater mean load than all the 

other species (B. pascuorum: p < 0.001; B. pratorum: p < 0.001; B. terrestris: p = 0.022). B. terrestris had 

a significantly greater mean load than B. pascuorum and B. pratorum (p < 0.001 and p < 0.001 

respectively). B. pratorum had a significantly higher mean load than B. pascuorum (p = 0.004). Bars 

represent the mean abundance and their standard errors 

 

6.4.3 Nosema bombi  

 

When all bumblebee species were pooled, a greater proportion was infected with N. 

bombi on commercial farms (2.95 ± 0.97%) compared to wild farms (1.15 ± 0.54%). 

However, this difference was not significant (χ2 = 3.09, df = 1, p = 0.079). Due to the 

small number of bees infected (n = 19) it was not possible to analyse species separately. 

However, this comparison could be confounded by an uneven distribution of species 

infected in the two treatments: only B. terrestris were found to be infected on wild 
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farms whilst a few individuals of all four bumblebee species were infected on 

commercial farms. Additionally, two of 103 commercial bumblebees collected directly 

from their nestboxes were infected with N. bombi.  

 

6.5 Discussion 

 

The decline of insect pollinators is of universal concern due to the ecological and 

economic benefits they provide. The global trade in commercial bumblebees may have 

contributed to this decline, partially through the spread of pathogens and parasites 

(Colla et al., 2006; Brown et al., 2011; Cameron et al., 2011). However, the impact of 

commercial pollination practises is likely to differ depending on location and ecological 

circumstances. This paper offers the first insight into the potential impacts of 

commercial bumblebees on parasite dynamics in European bumblebee populations.  

 

No evidence for the spread of pathogens from commercial bees to other bumblebee 

species was found: parasitic infection in wild bumblebee species was no higher at 

commercial farms compared to wild farms (and was lower in one wild bumblebee 

species). This contrasts markedly with the situation in Canada, where commercial 

bumblebees used in glasshouses acted as a source of infection to wild bumblebees in the 

surrounding area (Colla et al., 2006; Otterstatter & Thomson, 2008). Overall, we found 

a lower prevalence of C. bombi in B. terrestris on commercial farms compared to wild 

farms, particularly early in the season. This could be a dilution effect caused by the new 

arrival of large numbers of uninfected commercial bumblebees. Our study did not 

investigate whether parasites were present in commercial nest boxes when they arrived 

from the suppliers; hence we cannot discern whether the infections observed in 
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commercial bees were contracted largely or exclusively whilst bees were foraging on 

farms following deployment. However, previous studies have found commercial bees to 

arrive from the supplier infected with parasites (Goka et al., 2000; Colla et al., 2006 and 

references therein). 

 

Interestingly, the prevalence of C. bombi increased through the season in B. terrestris 

on commercial farms, whilst it remained approximately constant on wild farms. This 

was driven by a marked increase in infection rate at the end of the season in August. 

Although both wild and commercial B. terrestris (and also B. lucorum, B. magnus and 

B. cryptarum) would have been sampled on commercial farms, the majority are likely to 

have been commercial bees due to the close proximity of their nest boxes. One possible 

explanation for this pattern is an increased rate of density dependent transmission of C. 

bombi due to the elevated bumblebee population on commercial farms. Greater 

transmission rates would then amplify the prevalence of this parasite. Alternatively, 

commercial bumblebees may have higher susceptibility to C. bombi than local B. 

terrestris. Genetic variation exists in B. terrestris for C. bombi susceptibility (Wilfert et 

al., 2007), thus it is possible that commercial B. terrestris could be poorly adapted to 

defend against local C. bombi genotypes. This effect may be intensified as commercial 

B. terrestris have undergone selection in a factory environment for several generations, 

which might have altered immune investment. The significantly higher prevalence of C. 

bombi on commercial farms by the end of the season does suggest that pathogen 

spillover is a threat as there is a possibility that wild bumblebees, including newly 

emerged queens, may become infected by contact with commercial bees. Such infection 

of queens would cause fitness losses as C. bombi is known to substantially reduce their 

colony founding success (Brown et al., 2003b). However, recent research suggests that 
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queens may be more resistant to C. bombi than workers, which would lessen the impact 

of any epidemic (Ulrich et al., 2011). Further research into the rates of interspecific 

transmission by the strains of C. bombi infecting wild and commercial bumblebees 

would be required to assess the risks of these late-season epidemics spreading to other 

species in the surrounding areas. 

 

The overall mean prevalence of C. bombi was similar to that in central Europe and was 

also significantly different among bumblebee species (Shykoff & Schmid-Hempel, 

1991b). Bombus pratorum suffered from the highest rate of infection, particularly at the 

end of the sampling period. This species emerges early from hibernation in the spring 

throughout the UK and nests can produce reproductives as early as April (Goulson, 

20010a). Therefore, individuals still on the wing by the end of the summer are highly 

likely to be infected as they would have had a long period of exposure to C. bombi.  The 

intensity of infection with C. bombi also varied significantly across bumblebee species 

but interestingly shows a different pattern to the prevalence of infection. B. lapidarius 

was found to suffer from considerably higher parasite loads than all three other 

bumblebee species and B. terrestris had significantly higher loads than B. pascuorum 

and B. pratorum. The reasons behind these differences remain unknown but it may 

relate to inter-specific differences in host genetics and parasite defence, environmental 

factors or parasite virulence.  

 

The proportion of bees infected with N. bombi was too low in this study to allow an in-

depth analysis. To obtain a good picture of the infection dynamics of this parasite 

species, results from more than one season would be required as the prevalence of N. 

bombi is known to vary spatially, temporally and across species by substantial amounts 



 141 

(Paxton, 2005; Larsson, 2007). N. bombi appears to be a rare pathogen in this habitat 

and consequently may only have a small impact on the bumblebee populations in the 

area. Our dataset is too small to make any conclusions but it is interesting to note that 

the prevalence of this parasite was higher on the commercial farms, although this 

difference was not significant. Previous authors have thought that the presence of 

commercial bumblebees can possibly amplify the prevalence of N. bombi (Colla et al., 

2006; Cameron et al., 2011). This is potentially concerning as bumblebees infected with 

N. bombi have substantially reduced fitness (Otti & Schmid-Hempel, 2008; Rutrecht & 

Brown, 2009). 

 

This study assesses one aspect of the dangers associated with the use of commercial 

bumblebees for pollination services. We have shown that the presence of commercial B. 

terrestris amplifies the prevalence of C. bombi by the end of the season, which 

represents a potential threat in terms of pathogen spillover. But we find no evidence that 

this threat is being realised in terms of transmission to wild bumblebees; our data 

suggest that this late-season epidemic may remain within the commercial bees. 

However, more research over a larger temporal and spatial scale is needed before any 

generalisations on the disease risks posed by commercial bees can be made. Indeed, 

much is still to be understood about bumblebee diseases, particularly viruses. For 

example, deformed wing virus (DWV) is a honey bee pathogen that has been found to 

infect bumblebees and has a seriously detrimental effect on fitness (Genersch et al., 

2006). A potential transmission route for this virus could be through commercial 

bumblebees as honeybee pollen is used in the rearing process (Velthuis & van Doorn, 

2006). Further research is also needed into the other detrimental ecological 

consequences associated with commercial bumblebees, such as hybridisation with 
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native subspecies and competition for resources. Due to the uncertainties surrounding 

these potential costs, it would be preferable to develop viable alternatives where 

possible and thus reduce the need for commercial bumblebees. For example, sowing 

wild flower mixes can boost natural pollinator populations (Carvell et al., 2007), which 

in turn may benefit soft fruit pollination.  
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Chapter 7 -  General Discussion
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Habitat fragmentation and invasive species threaten global biodiversity and have been 

responsible for the decline and extinction of many populations and species. Bumblebees 

are one example of a taxon subject to such threats and, as valuable pollinators, there is a 

pressing need to conserve them. Although advances are continually being made towards 

this end (for example, Carvell et al., 2007; Goulson et al., 2011), there is still much to 

be learnt about their evolutionary ecology that would help inform conservation 

decisions. Specifically, it is known that rare species and isolated populations of 

bumblebees are losing their genetic diversity (Darvill et al., 2006; Ellis et al., 2006), but 

it is not known whether they are suffering from inbreeding depression. Additionally, 

little is understood about the effects of parasites and pathogens on inbred populations 

and whether they might increase the risk of extinction. This thesis contributes to our 

knowledge of these particular issues and provides a greater understanding of the factors 

that might be pushing threatened pollinators towards extinction. 

 

As haplodiploid Hymenoptera, it has been previously assumed that bumblebees may 

suffer less inbreeding depression than diplodiploid organisms, as deleterious recessive 

mutations were thought to be purged through haploid males (Werren, 1993). However, 

their haplodiploidy may in fact exacerbate the costs of inbreeding as their single-locus 

complementary sex determination system (sl-CSD) can result in the production of 

sterile or inviable diploid males (Cook & Crozier, 1995). This diploid male production 

(DMP) has been found to occur in wild populations of threatened bumblebees (Darvill 

et al., 2006; Takahashi et al., 2008) and so it is important to establish its costs. Previous 

studies have only considered the costs associated with diploid males under laboratory 

conditions and have produced contrasting results (Duchateau et al., 1994; Plowright & 
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Pallett, 1979). The study presented in Chapter 2 of this thesis is the first to investigate 

the cost of DMP to bumblebee colonies under field conditions. 

 

We demonstrated that DMP in B. terrestris does impose severe costs through its 

influence on colony productivity and survival. Diploid male colonies had a significantly 

slower growth rate in the laboratory, augmenting the results of Plowright & Pallet 

(1979). This slower growth results from an effectively smaller workforce as diploid 

males are idle within the colony and are produced instead of industrious female 

workers. Additionally, we found that diploid male colonies produced significantly fewer 

offspring overall, which represents a substantial fitness cost as the number of 

reproductives reared by a colony is highly correlated with the number of workers 

(Gerloff & Schmid-Hempel, 2005; Muller & Schmid-Hempel, 1992). Finally, colony 

survival in the field was severely impeded by DMP: queens survived only one third of 

the time of those in outbred colonies, presumably dying of starvation due to the lack of 

foraging workers.  

 

As well as the costs identified in Chapter 2, it is known that diploid males impose a 

genetic load on populations as they yield little or no reproductive return for the 

resources invested in them. Although bumblebee diploid males can sometimes mate and 

triploid individuals have been observed in the wild (Takahashi et al., 2008; Darvill, 

2007), diploid males do have reduced fertility (Duchateau & Marien, 1995) and 

triploids are invariably infertile (Ayabe et al., 2004). Because diploid males represent 

such substantial fitness costs for bumblebees, their frequency of occurrence would make 

a good indicator of the genetic health of wild populations, as suggested by Zayed et al. 

(2004). A high frequency would suggest that the population is suffering from a loss of 
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genetic diversity and may even be at risk of extinction (Zayed & Packer, 2005). Such 

information is essential when deciding where to focus and prioritise conservation effort. 

 

There would be large fitness benefits for bumblebees in avoiding the production of 

diploid males where possible. Such avoidance could be achieved if bumblebees had 

evolved some method of kin recognition. Even in large populations, where matings 

between individuals with identical sex determination genotypes is unlikely, a 

mechanism of kin recognition would be useful. This is because bumblebee nests often 

produce large numbers of males and new queens simultaneously, which makes 

encounters between siblings highly probable. Data presented in this thesis suggests that 

B. terrestris reproductives do indeed discriminate between kin and non-kin, being less 

willing to mate with their siblings than with non relatives (Chapter 3). Indeed, matings 

between siblings took more than twice as long to initiate under laboratory conditions 

than between non-relatives; under natural conditions this delay would reduce the chance 

of a successful copulation. Prior to this study, very little was known about inbreeding 

avoidance behaviour in bumblebees. However, research by Foster (1992) on two 

American bumblebee species, Bombus frigidus and Bombus bifaricus, found that queens 

preferred to mate with unrelated males in choice experiments. Our study supports this 

finding and additionally demonstrates that queens appear to discriminate between kin 

and non-kin even when not given a choice and only encountering one type of male. 

 

Unfortunately we were unable to establish what cues bumblebees use for kin 

discrimination. As bumblebees are social insects they may simply use extrinsic cues, 

such as scent of the nest environment, which would only enable them to discriminate 

between their siblings and other individuals. However, it has been found that some 
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insects are able to employ more sophisticated intrinsic methods of kin recognition. For 

example, kin discrimination in some social Hymenoptera is mediated through the 

chemical composition of cuticular hydrocarbon recognition pheromones (e.g. Gamboa 

et al., 1996; Keller & Ross, 1998). It is thought that in at least one species of wasp, 

Polistes fuscatus, this enables them to recognise non-nestmate kin, which are more 

distantly related than siblings (Gamboa, 2004). Further experimentation to find out 

whether bumblebees can recognise kin that have not been reared in the same nest 

environment would be interesting, and would demonstrate whether or not they are 

capable of intrinsic kin recognition. In small, inbred populations, mating with relatives 

becomes inevitable, but it would still be an advantage to recognise more closely related 

kin. This would reduce the chance of a matched mating, and therefore also reduce the 

chance of producing costly diploid males. 

 

The study detailed in Chapter 2 investigated the effects of only one generation of sib-

mating on aspects of colony fitness. This may explain why no difference in the fitness 

of outbred colonies and inbred colonies that did not produce diploid males was found. 

Just one study has investigated the fitness of bumblebees over successive generations of 

inbreeding (Beekman et al. 1999), and found that such continuous inbreeding resulted 

in a decline in queen fertility and colony size under laboratory conditions. If logistics 

allowed, a useful extension to the work presented in this thesis would be to continue the 

inbreeding for a greater number of generations and investigate all aspects of fitness, 

including parasite susceptibility. As it stands, one generation of sib-mating does not 

accurately represent natural situations, where small population size and limited gene 

flow inevitably results in consanguineous matings over a number of generations. 

However, previous genetic studies of the bumblebee populations in the Western Isles of 
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Scotland have shown that they provide an interesting study system for the investigation 

of the effects of inbreeding in natural, unmanipulated populations. 

 

Darvill et al. (2006 & 2010) investigated the genetic diversity, population structure and 

dispersal ability of B. muscorum and B. jonellus from a number of Hebridean islands. 

The studies showed that more isolated populations of B. muscorum had significantly 

lower levels of heterozygosity, and that this species as a whole was substantially more 

inbred and had lower dispersal abilities than B. jonellus. Quantifying the prevalence of 

parasitic infection in these two species has allowed us to make comparisons of infection 

incidence in relatively inbred and outbred populations as well as inbred and outbred 

species (Chapter 4). The results of this investigation revealed a relationship between 

heterozygosity and parasitism: the more inbred populations of B. muscorum had higher 

prevalence of the tracheal mite L. buchneri. However, there was no apparent 

relationship between population genetic diversity of B. muscorum and C. bombi 

prevalence. This latter parasite species is known to vary in prevalence substantially 

across host species, localities and times of year (Shykoff & Schmid-Hempel, 1991b; 

Korner & Schmid-Hempel, 2005). The bees analysed in Chapter 4 had been collected 

by Darvill et al. (2006 & 2010) over multiple years and throughout the summer season 

from June to September. Although these variables were accounted for in the statistical 

analyses, they could have masked any effect of genetic diversity on C. bombi 

prevalence. 

 

There was also no apparent relationship between genetic diversity and parasite 

prevalence in the more outbred bumblebee species, B. jonellus. This may have been 

because the measures of population heterozygosity fell within a considerably smaller 
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range than for B. muscorum  (a range of only 0.019 compared to 0.228), potentially 

masking any influence that genetic diversity has on parasite prevalence. This could also 

result from the fact that B. jonellus is a more genetically diverse species than B. 

muscorum and has a greater dispersal ability (Darvill et al., 2010). This may enable it to 

avoid inbreeding depression and hence the associated costs such as increased parasite 

prevalence. Interestingly, B. jonellus had higher infection rates of both C. bombi and L. 

buchneri than B. muscorum. It is possible that the more inbred B. muscorum individuals 

have a lower fitness and are therefore unable to survive high levels of infection, 

meaning that high parasite prevalence were not observed in this species. However, it is 

more likely that this observation is unrelated to genetic diversity and instead due to an 

inter-specific difference in the parasitism rates of these two species. This could result 

from variation in host genetics and parasite defence, environmental factors or parasite 

virulence. Such differences are commonly found across bumblebee species (e.g. 

Shykoff & Schmid-Hempel, 1991b; Korner & Schmid-Hempel, 2005), although the 

reasons for them remain unknown. There are clear opportunities for further research in 

this area; for example, it would be interesting to investigate the susceptibility of B. 

muscorum and B. jonellus workers to C. bombi under standardised laboratory 

conditions. 

 

The striking relationship between population genetic diversity and L. buchneri 

prevalence in B. muscorum prompted a more detailed investigation into this bumblebee 

species (Chapter 5). This study focused on nine island populations and sampled bees 

over a period of 16 days in August 2009. The short time frame limited variation in 

parasite prevalence that might occur due to time of year. The study found that C. bombi 

prevalence was higher in populations with lower genetic diversity, therefore suggesting 
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that more inbred populations do have higher parasite prevalence; confirmation of the 

conclusions of Chapter 4. There was also a negative relationship between 

heterozygosity and prevalence of L. buchneri but, unlike the results in Chapter 4, this 

was not significant. This could have been because fewer island populations were 

sampled, and covered a smaller range in measures of population heterozygosity (a range 

of 0.187 compared to a range of 0.228 in Chapter 4).  

 

The variation in parasite prevalence among islands could conceivably result from 

factors other than the genetic diversity of the bumblebee populations. The most obvious 

are environmental factors, but unfortunately it was beyond the scope of this study to 

measure these. It is possible that a less favourable environment, for example one with 

higher levels of rainfall, could impact the health and immunity of bumblebees and 

render them more susceptible to parasites. However, it is unlikely that such 

environmental factors are sufficiently variable across the Hebridean islands to produce 

the marked differences observed in parasite prevalence. Alternatively, flower abundance 

may have differed among the islands and, as at least one species of bumblebee parasite 

is transmitted on flowers (Durrer & Schmid-Hempel, 1994), this in turn may have 

affected parasite abundance. It would be constructive to conduct a follow-up study to 

investigate whether a positive relationship exists between parasite abundance and 

flower abundance on these Hebridean islands. 

 

One striking difference between the two parts of this thesis that investigate parasitism in 

B. muscorum in the Hebrides (Chapters 4 & 5), is the difference between the prevalence 

of C. bombi. In Chapter 4 the overall prevalence observed was 15.9% but in Chapter 5 it 

was 89.8%. Although inter-annual differences in rates of parasitism in bumblebees are 
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frequently found (for example, Paxton, 2005), a difference of this magnitude is rare. 

Different detection techniques were used in the two investigations: In Chapter 5, C. 

bombi was detected through microscopic examination of the hind gut, while in Chapter 

4 diagnostic PCR was used. However, it is unlikely that these techniques would have 

resulted in the observed prevalence differences. PCR is a more sensitive method 

(Schmid-Hempel & Funk, 2004), and it would perhaps be expected to detect a higher 

prevalence than dissection, but in fact the opposite was observed. Another possibility is 

that the condition of the bee specimens affected the reliability of the detection rates of 

C. bombi. The bee specimens dissected in Chapter 4 had been collected between 2003 

and 2005 and stored in 100% ethanol. Despite this, in some cases, the ethanol had 

evaporated and the contents of the bee abdomens had blackened. Although tracheal 

mites were still in evidence, it is possible that in a small proportion of bees the gut had 

degraded to a degree where PCR was no longer able to detect C. bombi DNA. By 

contrast, the bees sampled for Chapter 5 were fresh frozen shortly after being caught 

and then only defrosted for dissection. It is unlikely any C. bombi cells in the hindgut 

would have degraded in this time, ensuring a high detection rate. Ideally, identical 

sampling and specimen storing methods would have been used for both studies. 

 

Despite the limitations to the investigations in Chapters 4 and 5, the results support the 

theory that population genetic homogeneity leads to higher parasite prevalence 

(Sherman et al., 1988; Schmid-Hempel, 1998). The results are also supported by other 

circumstantial evidence in bumblebees (Allen et al., 2007; Cameron et al., 2011) as well 

as in many other species, particularly vertebrates (for example, Whiteman et al., 2006). 

This thesis investigates how inbreeding impacts parasitism in real island populations 

and provides a proxy to understand the impacts of inbreeding in fragmented habitat 
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islands on the mainland. The results suggest that if bumblebee populations become 

sufficiently isolated, causing a lack of gene flow and a subsequent loss of genetic 

diversity, they may suffer from higher levels of parasitism. Such a cost associated with 

inbreeding may push threatened populations closer to extinction.  However, much is 

still to be understood, for example it is not known how large or connected habitat 

fragments need to be to maintain genetic diversity and only poor estimates of the actual 

sizes of most isolated populations exist. Such information is crucial to conservation 

efforts and research into these issues would be invaluable. 

 

The isolation of populations is a contemporary problem globally, caused by the 

fragmentation of habitats and changing climatic conditions. The ranges of many 

different species are now subdivided into habitat islands between which there is limited 

migration. This has been shown to result in inbreeding in a wide range of taxa other 

than bumblebees - for example termites in tropical rainforests (Dupont et al., 2009) and 

European tree frogs (Andersen et al., 2004). As such population fragmentation and 

isolation increases the risk of species extinctions (Fahrig, 2003), restoring habitat 

connectivity is key to slowing the loss of biodiversity. Conservation management is 

increasingly addressing this through the creation of habitat corridors and connections 

between protected areas (Worboys et al., 2009; Gilbert-Norton et al., 2010). For 

bumblebees and other insect pollinators, agri-environment schemes and urban gardens 

are going some way to achieving this and improving habitat availability (Carvell et al., 

2007; Osborne et al., 2008). 

 

The final part of this thesis investigated the potential threat of pathogen spread from 

commercial to wild bumblebees (Chapter 6). This is an important and timely area of 
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research as recent work in North America has suggested that diseases from commercial 

bumblebees may pose a significant threat to native species (Winter et al., 2006; Colla et 

al., 2006; Cameron et al., 2011). No comparable work has been undertaken in Europe, 

despite the widespread usage of commercial bumblebees. The results presented in this 

thesis contrast with those of the North American studies as we found that parasitic 

infection in wild bumblebee species was no higher at farms that deployed commercial 

bumblebees than at farms that did not. This suggests that pathogen spillover may not be 

a substantial threat to wild bumblebees species in the UK. However, care should be 

taken when interpreting these results as they are based on pathogen prevalence from just 

one year and on a relatively small spatial scale. As bumblebee parasite prevalence is 

known to vary spatially and temporally (Shykoff & Schmid-Hempel, 1991b; Paxton, 

2005), the experiment would ideally be repeated over a longer time-scale and over a 

larger area to account for such limitations. 

  

Although no direct evidence for pathogen spillover was found, the prevalence of one 

species of parasite, C. bombi, increased through the season in B. terrestris on 

commercial farms, whilst it remained approximately constant on wild farms. This was 

driven by a marked increase in infection rate at the end of the season in August, which 

could have resulted from an increased rate of density-dependent transmission of C. 

bombi on commercial farms. This high prevalence does suggest that pathogen spillover 

is a potential threat, as there is a possibility that wild bumblebees - including newly 

emerged queens - may become infected by contact with commercial bees. Further study, 

including quantification of the infection rates of queens, is needed before any 

conclusions can be drawn. Additional investigation into the genetic diversity of 

commercial bumblebees and their resistance to parasites would also be valuable in 
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gaining a greater understanding of this issue. Despite the lack of direct evidence for 

pathogen spillover, the precautionary principle suggests that we should not interpret 

these results as an indication that the impact of commercial bumblebees is lower here 

than in other countries. Regulations should be imposed that ensure the commercial nest 

boxes imported to the UK are adequately screened for parasites. Techniques that would 

facilitate such screening include a recently developed multiplex PCR for the molecular 

detection of C. bombi and A. bombi simultaneously (Meeus et al., 2010a) and a 

multiplex PCR with broad range primers to detect honeybee viruses in bumblebees 

(Meeus et al., 2010b).  

 

In conclusion, the work presented in this thesis demonstrates that inbreeding in 

bumblebees is particularly costly due to the production of diploid males but that 

bumblebees may be able to avoid their production through kin discrimination. We 

suggest that the detection of diploid males could be an informative tool in 

hymenopteran conservation as they can act as indicators of the genetic health of 

populations. If bumblebee populations do become inbred and lose genetic diversity, we 

have found that they may be pushed further towards extinction through increased 

parasitism. The potential exists for this pressure to be exacerbated through the use of 

commercial bumblebees and an associated higher parasite prevalence. Therefore, 

preventing population fragmentation and isolation is key for the conservation of 

bumblebees. This can be achieved through the creation of suitable flower rich habitats 

and by ensuring connectivity between habitat patches. 
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