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Abstract 

Aquaculture is an essential developing sector for world food production 

however one of the major bottlenecks for the sustainability of the aquaculture industry 

is the ability to control fish reproduction in captivity and to produce high quality seeds.  

European sea bass is a one of most commercially important species for the European 

fish farming industry. If broodstock management under captivity is well established, 

problems remain in hatcheries where survival can be low and deformity prevalence high 

as well as in on growing sites where fish reach puberty early especially with skewed sex 

ratio towards males. Sea bass displays strong seasonality in its physiology and is 

therefore an excellent candidate for the study of the photo-neuroendocrine control of 

reproduction and growth. The overall aims of this thesis were to better understand the 

molecular and endocrine drivers that control the Brain-Pituitary-Gonad axis in repeat 

spawner sea bass, and expand our knowledge of sea bass light and temperature 

regulation of melatonin production. First, this PhD project investigated the seasonal 

expression of kisspeptin, GnRH and gonadotropin genes in relation to the gonadal 

development throughout a reproductive cycle in male repeat spawning sea bass 

(Chapter 3). A partial sequence for the receptor kissr4 was isolated and described 

showing similarity to all other teleost species sequences available to date. QPCR 

molecular assays were validated to mesure the expression of a suite of genes along the 

BPG axis including kisspeptin related genes (Kiss1 and Kiss2 and its receptor kissr4) 

over a full reproductive cycle (12 months) in adult male European sea bass. Brain 

Kisspeptin mRNA expression levels (kiss1, 2 and kissr4) showed clear seasonal profiles 

and correlated well to other BPG markers (GnRHs, fshβ and lhβ), supporting a possible 

involvement of kisspeptin genes in the seasonal control of reproduction in repeat 
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spawning sea bass. Moreover, clear seasonal patterns were observed for expression of 

the genes encoding for pituitary mRNA expression of lhβ and fshβ, with a significant 

correlation between expression of both subunits and GSI and steroids levels. However, 

no clear seasonal profiles in brain GnRHs gene expression were observed with the 

exception to some peaks in GnRH1 and GnRH2. The second part of this PhD project 

investigated the potential direct effect of the two kisspeptin core peptides (kiss1 and 

kiss2) on the pituitary gonadotropin gene expression (Chapter 4). The aim of this work 

was to better understand the mechanism by which kisspeptin acts on the BPG axis. This 

was done by testing the kisspeptin decapeptide core sequences on the lhβ and fshβ 

transcript expression in primary culture of sea bass pituitary cells using QPCR 

technique. The findings, as a whole, provided evidence that kisspeptin can act directly 

on the pituitary gonadotroph cells and modulate fshß and lhß mRNA expression in sea 

bass although effects were limited and not uniform. Of note, kissr4 gene expression was 

also detected in the sea bass pituitary. The third part of this PhD project focused on the 

effects of environmental signals (photoperiod and temperature) on melatonin 

production (Chapter 5). Environmental manipulation is routinely used in the 

aquaculture industry with the purpose of enhancing growth and manipulating the timing 

of reproduction in seasonal fish species like sea bass. Melatonin, known as the light 

perception and time keeping hormone, has been suggested to play key roles in the 

synchronisation of most physiological functions in vertebrates, although the 

mechanisms by which melatonin controls reproduction, growth and behaviour are still 

not fully understood in fish. The studies performed aimed .to determine the synergistic 

effects of both temperature and photoperiod on the daily phase and amplitudinal 

changes in melatonin production through both in vivo and in vitro trials. The results 
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confirmed the diel melatonin rhythm in sea bass as previously reported in many teleost 

species with “high at night” and “low at day” melatonin profiles. Temperature showed 

clear effects on the amplitude of the melatonin production under both in vivo and in 

vitro conditions for both long day and short day photoperiods. Furthermore, no 

endogenous melatonin production was found under constant darkness in both in vivo 

and in vitro conditions. These results suggested a lack of intrapineal (or located 

elsewhere such as retina and/or deep brain) oscillators in sea bass, contrasting with 

previous reports. These results further enhance our knowledge of light perception and 

circadian rhythmicity in sea bass, while the circadian system remains to be 

characterised in sea bass and teleosts as a whole. 

Overall, this doctoral work broadened our understanding on the 

photoneuroendocrine control of reproduction in a seasonal fish species, sea bass. New 

knowledge gained and tools developed from this work should help to develop/optimise 

husbandry techniques for the sea bass farming industry with the view to increase 

production and profitability and thus promoting the sustainable expansion of the sea 

bass aquaculture in Europe. It has also the potential to help the fishery sector in the 

modelling of wild sea bass populations.    
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1. General Introduction 

1.1. Overview of sea bass life history and commercial exploitation  
 
1.1.1.Taxonomy of European sea bass 

European sea bass (Dicentrarchus labrax) belongs to the family Moronidae within 

the order of the Perciformes which contains about 40 % of all bony species (Nelson, 

2006). The Perciformes order includes 18 sub-orders, the largest of which is sub-order 

Percoidei with its three superfamilies Percoidea, Cirrhitoidea and Cepoloidea. The 

super family Percoidea itself is the largest amongst the three with sixty nine families 

including the family Moronidae (temperate basses). European sea bass represents a 

major fisheries and aquaculture species in the Mediterranean, the European Atlantic 

coasts and North Africa (Pickett & Pawson 1994; Kuhl et al., 2010). The taxonomy of 

this species may be detailed as follow (Integrated Taxonomic Information System, 

www.itis.gov, 2006): 

Kingdom: Animalia 

   Phylum: Chordata 

     Subphylum: Vertebrata 

       Class: Actinopterygii 

         Order: Perciformes 

           Suborder: Percoidei 

              Superfamily: Percoidea 

                 Family: Moronidae (temperate basses) 

                   Genus: Dicentrarchus 

                     Species: D. labrax 
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1.1.2. Life cycle  

Like many fish at higher latitudes, the European sea bass life cycle has a 

seasonal pattern, with annual batch spawning typically occurring during winter months 

from December to March in the Mediterranean sea, under low temperature (12-14 °C) 

and short day length (Barnabé 1980; Carrillo et al., 1995), while spawning can be up to 

June in the Atlantic Ocean (Haffray et al., 2007). Male spermiation lasts longer than 

spawning in females (Prat et al., 1999).  The female produces 200,000 eggs per kg body 

weight on average. Eggs are spherical with diameter ranging between 1.2 and 1.4 mm 

(Haffray et al., 2007). For the aquaculture industry, the egg quality is a key factor to 

obtain high survival rates. Many researches have focused on the many factors which 

control the egg quality: nutrition, fatty acid content, egg size, buoyancy, regular shape 

of vitellus, regular cell divisions, hatching rates and the biochemical composition 

(Bromage et al., 1992; Carrillo et al., 1995; Bruce et al., 1999). The newly hatched 

larva is pelagic and measures 3.3 – 4.0 mm long. The larval stage extends between day 

6 and day 80 (Marino et al., 1993). By day 90 a definite sea bass juvenile morphology 

is fulfilled. Often in the culture industry, this is the stage when the transport from 

hatchery tanks to on-growing facilities is possible. In the wild, bass under 30 cm spend 

most of the year in or near estuaries close inshore and move into deeper water as they 

grow (Pickett & Pawson 1994). An adult sea bass is classified as carnivorous in the 

wild, feeding on molluscs, shrimps, worms and fish. It may reach 1 m in length or more 

and 15 kg in total weight. Adult sea bass are commonly found in estuarine and costal 

zones in summer, while it returns back in winter to deeper warm open water where it 

can be found to a depth up to 100 m (Tortonese, 1984; Pickett & Pawson 1994). In most 

teleosts, gonadal differentiation progresses down a distinct developmental pathway to 
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yield a direct and complete differentiation into a female or male phenotype which 

remains throughout the lifetime of the species. Such species are labelled gonochoristic 

(Nakamura et al., 1998; Penman & Piferrer, 2008). Such a gender system is found in 

sea bass with females growing faster and attaining larger size than males (Carrillo et al., 

1995; Saillant et al., 2001). Under natural conditions in the Mediterranean sea, sea bass 

males reach sexual maturation at the age of 2 years, while females attain maturation at 3 

years of age (Zanuy et al., 2001). 

 

1.1.3. Geographical distribution and Commercial exploitation of sea bass 

Sea bass mainly inhabits littoral zones where food is abundant. It is usually 

found along rocky coasts from the North-eastern Atlantic close to Norway (60 °N) 

south to Western Sahara along the coasts of Senegal (30 °N) and is distributed, as well, 

throughout the Mediterranean and Black seas (Haffray et al., 2007; EFSA, 2008). The 

species is eurythermal and euryhaline, able to live in a temperature ranging from 2 to 32 

°C and in fresh as well as saline water up to 50 ppm (EFSA, 2008). A map showing the 

global distribution of wild sea bass is shown in Figure 1.1.  

 

Figure 1.1. Global distribution of European sea bass 

(http://en.wikipedia.org/wiki/File:Dicentrarchus_labrax_map.png) 
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From an economical point of view, sea bass is a fish with high commercial 

value both from capture from wild stocks and from aquaculture production. The fish has 

been introduced for aquaculture purpose in many countries, e.g.  Iceland, Israel, Oman 

and the United Arab Emirates (Haffray et al., 2007; EFSA, 2008). In the year 2009, the 

wild capture of sea bass exceeded 11,900 tonnes (FAO, 2011). Regarding aquaculture 

production, France and Italy were the pioneers of reliable mass production of sea bass 

in the late 1960s and by the late 1970s these techniques had been dispersed and 

developed in most Mediterranean countries (FAO, 2011). European sea bass was one of 

the first marine non-salmonid species to be commercially cultured in Europe and at 

present is a very important cultured species. The aquaculture production (mainly from 

cage farming), harvested in 2009 was 113,653 tonnes, valued at US$ 673,946,000 

(FAO, 2011). The most significant producers in the Mediterranean are Greece, Turkey, 

Italy and Spain (FAO, 2011) as shown in Figure 1.2.  
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Figure 1.2. Marine Aquaculture production of the most significant producer countries 

European sea bass in the Mediterranean from 1995-2009 (FAO, 2011) 
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Accumulation of scientific knowledge on the biology, reproduction, and 

nutrition of sea bass in addition to the large economical investments in sea bass farming 

have raised the sea bass production considerably in the past two decades (Zanuy et al., 

2001). Despite the large industrial production of European sea bass, problems persist 

which negatively affect its productivity and profitability under farming conditions, 

which still need to be solved. In many farms located in the Mediterranean sea, the 

majority of larval and juvenile sea bass are reared at 19-22 °C instead of the more 

typical spawning temperature (~ 14 °C). This results in a male-biased sex ratio which 

can be as high as 100 % due to the temperature sensitive sex determination mechanism 

present in the species (Piferrer et al., 2005). Sea bass show a clear sex-dimorphism in 

growth, with females growing faster and attaining larger size than males (Carrillo et al., 

1995; Saillant et al., 2001). Females reach puberty at 3 years of age, one year after 

attaining marketable size, while puberty in males usually appears in the second year of 

life at the same time of harvesting (Zanuy et al., 2001). In males, puberty is associated 

with growth rate delay and causes a limitation in the production as males must be 

harvested at smaller size or kept for longer time than females. Precocious maturation 

can also be observed in male sea bass, under intensive culture conditions where a 

considerable proportion of males mature precociously (20-30 %) around the first year of 

age (Carrillo et al., 1999; Zanuy et al., 2001). Therefore, the prevention of maturation 

prior to the attainment of suitable harvest size during on-growing has been identified as 

a principal production bottleneck. Different strategies have been taken to overcome 

culture problems, based on clarifying the environmental and endogenous regulation of 

sea bass reproduction and puberty. The use of photoperiod manipulations was 

successful in the prevention or delay of male first maturation (Rodriguez et al., 2001; 



Rania Ismail           Chapter 1: General Introduction                        

 

7 

 

Begtashi et al., 2004; Felip et al., 2008). The components and the mechanisms 

implicated in sex determination and differentiation in European sea bass including 

genetic, endocrine and environmental factors are matter of investigation to solve the 

culture problems ( see review by Piferrer et al., 2005).  

 

1.2. Environmental control of physiology in fish 

Most of the main physiological and behavioural functions in all living 

organisms are entrained by environmental fluctuations such as daily and seasonal 

changes in day length, temperature, salinity, rainfall and food availability (Gerkema, 

1992). Circadian rhythms (cycling on approximately 24 hours) play a crucial role in the 

molecular and neuroendocrine regulation of physiology and behaviour such as seasonal 

reproduction, feeding, locomotor activity and migration in fish (Gerkema, 1992; 

Boujard & Leatherland, 1992; Foster & Kreitzman, 2005).  

 

1.2.1. Photoperiod  

There are a number of important environmental factors showing daily and 

annual variations like temperature, rainfall, lunar phase and food supplies that could 

entrain the biological rhythms of living organisms. But in temperate animals like sea 

bass, the seasonally changing pattern of day length (photoperiod) remains the most 

reliable and important signal for timing of many physiological events especially 

reproduction, as photoperiod represents the most predictable environmental signal being 

constant from year to year and reflecting seasonality (Migaud et al., 2010).  

Photoperiod manipulations are commonly used in the culture of temperate fish 

species to enhance growth performances, suppress or delay puberty and manipulate 

spawning windows. Both the daily and annual rhythms of key hormones seem to be of 
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critical importance to attain normal spawning at the appropriate time of the year for the 

optimal survival of the progeny (Migaud et al., 2010; Taranger et al., 2010). In Atlantic 

salmon (Salmon salar), photoperiodic regimes are used throughout the production cycle 

to alter the timing of spawning (Bromage et al., 2001; Pankhurst & Porter, 2003) or 

smoltification (Duston & Saunders, 1992; Berrill et al., 2003), or to suppress early 

maturation (Taranger et al., 1998; Endal et al., 2000). Importantly, the manipulation of 

these physiological events is restricted to `windows of opportunity` during which 

photoperiod is acting as the main environmental cue (Bromage et al., 2001; Migaud et 

al., 2010). As such, the transition from a short (winter) to long (summer) day 

photoperiod is the signal used to entrain sexual development in Atlantic salmon while a 

long to short photoperiod shift is the main driver of smoltification. In other salmonid 

species such as masu salmon (Oncorhynchus masou) male testicular maturation can be 

accelerated by short days (8 Light (L): 16 Dark (D)) and delayed by long days (16L: 

8D) (Amano et al., 2000). These regulatory signals differ between temperate species, 

reflecting their different life cycle strategies. In Atlantic cod (Gadus morhua), it is the 

decreasing daylength that initiates reproduction and therefore the shift from long to 

short photoperiod is used to entrain sexual maturation (Davie et al., 2007a). These 

authors proposed that the window of opportunity is opened by decreasing photoperiod 

whereas the use of continuous illumination (LL) closes that window.  

In European sea bass, as reproduction is in winter and decreasing photoperiod is 

the environmental signal to recruit fish into sexual maturation (Rodriguez et al., 2001), 

using extended photoperiod (application of simulated natural photoperiod of complete 

one year for 18 months instead of 12 months) can advance the onset of puberty in male 

sea bass (Rodriguez et al., 2001) while constant long photoperiod (Rodriguez et al., 
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2001) or LL (Begtashi et al., 2004, Felip et al., 2008) reduce or fully arrest maturation 

(Bayarri et al., 2009). Applications of long photoperiod (18L: 6D) for two years on 

immature male sea bass delay timing of first spermiation and enhance growth (Carrillo 

et al., 2010). Also under LL the gene expression of the of pituitary gonadotropin 

subunits is altered by the light regime during the sexual maturation of male sea bass 

(Rodriguez et al., 2005; Felip et al., 2008). In mature female sea bass, short days (9L: 

15D) advanced the spawning time while long days (15L: 9D) delayed maturation and 

spawning time without any adverse effects on the brood stock fecundity or egg and fry 

quality and survival (Carrillo et al., 1989; Zanuy et al., 1995 ; Prat et al., 1999). Falcon 

et al. (2010) summarised the effects of photoperiod on entraining the existing 

endogenous rhythms of reproductive hormones that affect spawning time and gonadal 

development in sea bass. The critical photo-sensitive period at which decreasing 

photoperiod occurs (photolabile period) is from August to October (Carrillo et al., 

2009). The specific change on the direction of the photoperiod is critical for entraining 

the existing endogenous rhythms of reproduction (Carrillo et al., 1993; 1995); it also 

affects the daily rhythms of plasma melatonin (Bayarri et al., 2010) and of LH and 11-

Ketotestosterone (11-KT) (Bayarri et al., 2009). The annual rhythms of gonadotropin 

expression and plasma levels of sex steroids were also affected by the photoperiod 

(Rodriguez et al., 2005). However, LL superimposition over the natural autumnal 

decreasing photoperiod is very effective in suppressing the daily melatonin rhythms 

(Bayarri et al., 2010), altering the phase of LH daily plasma levels pattern (Bayarri et 

al., 2009) and provoking a significant depletion of mRNA levels of the gonadotropin 

sub-units and a significant reduction of plasma levels of 11-KT during the spawning 

time (Rodriguez et al., 2005) (Fig. 1.3). The presence of daily or annual hormonal 
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rhythms thus seems critical to develop and maintain the reproductive function in fish 

(Falcon et al., 2010). These studies clearly demonstrate that photoperiod plays 

important roles in the entrainment and control of maturation and growth performance in 

temperate species. Although the amplitude of seasonal variations can be weak in 

tropical and subtropical latitudes, photoperiod remains a key signal.      
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Figure 1.3. Effects of constant photoperiods on the rhythms of reproductive hormones 

that affect spawning time and gonadal development in sea bass. Numbers refer to the 

references from which the present figure is constructed, (1, Carrillo et al., 2009),(2, 

Carrillo et al., 1993; 1995), (3, Bayarri et al., 2010), (4, Bayarri et al., 2009),(5, 

Rodriguez et al., 2005). Discontinuous line indicates the absence or the alteration of the 

daily rhythms (From Falcon et al., 2010) 
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1.2.2 Temperature 

In temperate regions, temperature is also an important cue in regulating 

reproductive cycles in many springs spawning species (Migaud et al., 2010). In sea bass 

(Zanuy et al., 1986; Prat et al., 1999), striped bass Morone saxatilis (Clark et al., 2005) 

and Eurasian perch Perca fluviatilis (Migaud et al., 2004) the combined reduction in 

day-length associated with decreasing water temperature are suspected to be required 

for maturation initiation and successful spawning. In tropical and sub-tropical species 

temperature has a proximate role in gonadal development, whereas thermal 

manipulations can be used in controlling spawning time (Bromage et al., 2001). 

Maturation and spawning of carps and other cyprinids, and many other tropical and sub-

tropical species, are cued by temperature (Bromage et al., 2001). In a study performed 

in Nile tilapia, Oreochromis niloticus,  temperatures above 20 ºC were required for 

reproduction stimulation, while high temperature (above 30 ºC) affected spawning 

activity, egg quality and hatching success (Rana, 1988). In salmonids, temperature 

plays only a modulating role by affecting the metabolic processes of gametogenesis 

(e.g. cellular metabolism, gene expression and protein activity) (Bromage et al., 2001; 

Wang et al., 2010), while photoperiod is the only proximate factor to drive the 

reproductive cycle (Wang et al., 2010). 

 

1.2.3. Food availability 

Food availability is one of the important environmental factors that affect the 

organism’s survival and ability to successfully initiate a reproductive cycle following 

the correct environmental signal within the right time. As in mammals, thresholds for 

factors like growth rate and energy storage must be surpassed to permit the 

development of sexual maturation as has been observed in salmonids (Thorpe et al., 
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1998; Taranger et al., 1999), whereas individuals assess themselves on the basis of 

whole body lipid. Feeding larger rations or high energy diets is known to increase 

fecundity (Shearer & Swanson, 2000), while feed deprivation reduce both fecundity and 

maturation rates (Bromage et al., 1992). Different animals developed several systems to 

adapt feeding time with different physiological variables and behavioural activities 

(Boulos & Terman, 1980). Furthermore, endocrine signals like growth hormone, 

insulin-like growth factor, leptin and thyroid hormone have significant roles in 

conveying growth and energetic information to the Brain-Pituitary-Gonadal axis (BPG) 

to interact  with gonadotropin regulation (Migaud et al., 2010),  as gonadotropins are 

central to the BPG axis (Zohar et al., 2010).  

 

1.2.4. Other factors 

Other environmental factors, such as salinity, lunar/tidal cycles, water quality, 

rainfall, current and stress, that do not act as proximate cues can nonetheless contribute 

and impact on growth and reproductive performance in fish (Ross, 2000; Pankhurst & 

Porter, 2003). In seasonal species these factors can be involved in the timing and 

synchronizing of the final stage of reproductive development and spawning time 

(Pankhurst & Porter, 2003). 

 

1.3. The circadian axis: How light entrains physiology? 

The daily and annual response of the organism to the environmental variations 

can be just passive in some cases, while in most cases these rhythms are driven through 

internal clocks entrained to a 24 hours (circadian rhythms) or annual (cicannual 

rhythms) cycle. A circadian light system consists of all the different components 

(structures and pathways) by which light enters the organism and is transformed into a 
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biological time signal (Foster & Hankins, 2002). Melatonin is one of the most important 

output signals of vertebrate circadian system which is mainly produced by the pineal 

organ (Falcon et al., 2007). The daily pattern of pineal melatonin secretion is conserved 

across a range of vertebrates, in which the melatonin is produced and released into the 

blood circulation and cerebrospinal fluid (CSF) at night (Tricoire et al., 2002).  

It is important to consider that the organization of the circadian system has 

evolved across vertebrates. Mammals have the most complex and evolved form of 

organisation, where the photic information is perceived through the eye and transmitted 

through a retino-hypothalamic tract (RHT) to the suprachiasmatic nuclei of the 

hypothalamus (SCN) in the brain where the mammalian master clock is present 

(Simonneaux & Ribelayga, 2003).  In response to the light/ dark signals perceived by 

the eyes, the master clock in the SCN stimulates and entrains the appropriate 

mechanisms and peripheral oscillators that will regulate melatonin synthesis from the 

pineal (Jin et al., 1999; Taghert, 2001; Foster & Hankins, 2002; Schomerus & Korf, 

2005). In the mammalian model the pineal gland lost its direct photosensitivity and is 

enslaved to the master oscillator. The circulating melatonin can both act as a feedback 

mechanism to the SCN as well as act on the pars tuberalis of the pituitary and other 

brain areas to modulate seasonal neuroendocrine functions (Falcon et al., 2007). Figure 

1.4 a (i) presents a simple schematic diagram of the mammalian photoperiodic and 

circadian control of neuroendocrine functions. 

In teleosts, the structure and function of the circadian system is less clear with 

there being extensive evidence highlighting the complexity of the light perception 

system which includes a range of potential photoreceptive structures (e.g. retina, pineal 

gland and deep brain photoreceptors), which convey information both centrally to the 
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brain and peripherally around the animals physiology by a range of neuroendocrine 

signals. The circadian axis in fish has been described as being decentralized, as all 

studied fish species to date have shown independent (directly photosensitive) light 

perception components (retina, pineal gland), while in mammals both pineal gland and 

retina form part of a centralized light entrainment organization (Falcon et al., 1989; 

Falcon et al., 1992; Falcon, 1999; Falcon et al., 2007). There is a strong indication that 

the control of the pineal activity has changed dramatically during phylogeny, probably 

as a response to 500 million years of evolution to the diverse environments occupied by 

vertebrates during that time (Mayer et al. 1997; Falcon, 1999). Different specialized 

structures (e.g. pineal complex, retina, parietal eye, deep brain) and pathways would 

have thus evolved in vertebrates, although the main basic components e.g. the non-

visual photoreceptors are likely to be conserved (Menaker et al. 1997; Foster & 

Hankins 2002; Klein, 2004) (Fig. 1.4 a-ii). The photoneuroendocrine regulation in fish 

is described in Falcon et al. (2007) as light impacts on photoreceptor cells of both 

pineal organ and retina, enabling synchronisation of their internal molecular clocks. 

Furthermore, light might also impact on other possible photosensitive and circadian 

structures in the ventral diencephalon (POA and hypothalamic area; and peripheral 

organs). In response to the photoperiodic information, the retina and the pineal organ 

produce two types of rhythmic information: a) The neural information from the retina 

and pineal organ reach the ventral diencephalon through the RHT and the pineal tracts: 

this information provides an indication of day length, as well as of subtle variations in 

ambient illumination. b) The hormonal information is relayed by melatonin, the 

production of which reflects day length and season. In the retina, melatonin is an 

autocrine and/or paracrine factor, which is metabolised locally. Pineal melatonin is 
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released into the cerebrospinal fluid (CSF) and blood, and acts on specific targets 

through melatonin receptors. In the hypothalamus, melatonin might contribute to 

synchronising the activities of circadian oscillatory units [SCN and others] (Falcon et 

al., 2007) (Fig. 1.4 b). 
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Figure 1.4. Photoperiodic and circadian control of neuroendocrine functions.  

(a) Fish versus mammals. In mammals (i) a linear flow leads to the rhythmic production of melatonin. Nonvisual 

information from the retina reaches the SCN of the hypothalamus through the retinohypothalamic tract (blue arrow). 

The periodic signals enable synchronizing of the circadian activity of the SCN clocks, which, in turn, impact on the 

pineal gland through a multisynaptic pathway (blue arrows), thus controlling cyclical melatonin secretion. Melatonin 

feeds back to the SCN and acts on the pars tuberalis of the pituitary and other brain areas to modulate seasonal 

neuroendocrine functions. The situation is more complex in fish (ii): the photoneuroendocrine system seems to be 

organized as a network of independent and interconnected light-sensitive oscillatory units in the retina, the pineal 

and, perhaps, in the brain. The dashed blue arrow indicates a hypothetical connection. ‘?’ in the brain indicates the 

hypothetical presence of brain circadian oscillators. (b) Photoneuroendocrine regulation in fish. Light (yellow 

arrows) impacts on photoreceptor cells of the pineal organ and retina, enabling synchronization of their internal 

molecular clocks. Light might also impact on other possible photosensitive and circadian structures in the ventral 

diencephalon (POA and hypothalamic area; yellow arrow with ‘??’) and peripheral organs. In response to the 

photoperiodic information, the retina and the pineal organ elaborate two types of rhythmic information. The neural 

information (blue arrows) from the retina and pineal organ reach the ventral diencephalon through the 

retinohypothalamic and the pineal tracts, respectively. This information provides an indication of day length, as well 

as of subtle variations in ambient illumination. The hormonal information is relayed by melatonin (red arrows), the 

production of which reflects day length and season. In the retina, melatonin is an autocrine and/or paracrine factor, 

which is metabolized locally. Pineal melatonin is released into the cerebrospinal fluid and blood, and acts on specific 

targets through melatonin receptors (red filled circles). In the hypothalamus, melatonin might contribute to 

synchronizing the activities of circadian oscillatory units [SCN and others (depicted by ‘?’)] and modulating the 

production of pituitary gland releasing factors. Melatonin receptors have been identified in areas that impact on 

pituitary function, including the POA, which also receives nervous input from both the pineal organ and the retina. 

Melatonin impacts on the pituitary gland itself to modulate the production of hormones. Taken from Falcon et al. 

(2007)  
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1.3.1. Melatonin synthesis and regulation 

Melatonin was found in the earliest life forms and is present in all organisms 

studied to date, ranging from bacteria to humans (Conti et al., 2002; Tan et al., 2003). 

Melatonin was found to be produced mainly by the pineal gland and retina (described 

below) but also by many other organs and tissues including the gastrointestinal tract 

(Bubenik & Pang, 1997), skin (Slominski et al., 2005), lymphocytes (Carrillo-Vico et 

al., 2004) and bone marrow (Conti et al., 2000), suggesting that melatonin is involved 

in a range of physiological processes. In mammals and humans, melatonin acts as a 

sleep regulator and was reported to have a role in sleep initiation (Shochat et al., 1997; 

Zisapel, 2007; Pandi-Perumal et al., 2008). Melatonin has been described to have other 

roles: it can act as a dopamine release inhibitor from hypothalamus and retina (Zisapel, 

2001), it can be involved in the aging process (Reiter et al., 1998), and it can regulate 

blood pressure (Cavallo et al., 2004; Grossman et al., 2006) and immune response 

(Carrillo-Vico et al., 2006) among other roles.  

Melatonin secretion reflects the length of the day throughout the seasons; hence 

it is described as a “zeitgeber” or the biological time keeping hormone which entrains 

circadian (daily) and circannual (seasonal) rhythms in vertebrates (Menaker et al., 

1997; Falcon et al., 2006) although direct evidence is scarce in fish. Melatonin 

represents the main hormonal output of the pineal organ in response to photoperiodic 

changes and it is involved in the control of daily and seasonal biological rhythms. Daily 

rhythms include locomotor activity, rest, food intake, vertical migration and shoaling, 

skin pigmentation, osmoregulation and metabolism, whereas seasonal processes include 

growth, reproduction and smoltification for migrating salmonids (Falcon et al., 2007). 
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1.3.1.1. The pineal gland 

The pineal complex in teleosts is part of the central nervous system that is 

formed as an invagination of the diencephalon. In fish, it consists of the pineal and 

parapineal organs; the parapineal organ remains rudimentary, while the pineal organ 

grows to form a large rounded body located dorsally to the forebrain below the “pineal 

window” of the skull where light can penetrate (Ekstrom & Meissl, 1997; 2003). The 

pineal organ is often differentiated into proximal slender pineal stalk attached to the 

diencephalon and a distal expanded end-vesicle (Ekstrom & Meissl, 1997). The wall of 

the pineal organ is formed by unistratified epithelium cells. The pineal epithelium of 

teleost fish is made of photoreceptor cells, neurons, and ependymal interstitial cells; the 

photoreceptors produce melatonin that is released into the CSF and blood circulation 

(Ekstrom & Meissl, 1997; Falcon, 1999). The photoreceptor cells establish synaptic 

contacts with neurons (ganglion cells) that send their axons to the brain. Therefore, the 

signals that are transmitted to the brain reflect the response of the photoreceptor cells 

(Ekstrom & Meissl 1997; Falcon et al., 2010). In most vertebrates, the melatonin 

synthesised by the pineal organ is regulated by light intensity and reaches its highest 

levels in complete darkness. Pinealectomy studies have confirmed that the pineal gland 

is the main source of circulating melatonin found at night in the blood although it has 

been suggested that melatonin produced in other tissues or organs such as the eyes or 

even the gut (Bubenik & Pang, 1997) could also enter the blood stream (Porter et al. 

1996; Ekstrom & Meissl, 1997, 2003; Migaud et al., 2006; Falcon et al., 2010). 
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1.3.1.2. The retina 

The teleost eye has evolved and specialised according to the surrounding 

environments (Kusmic & Gualtieri, 2000). The fish eyes have visual and non-visual 

photoreceptors with the ability of circadian entrainment and production of melatonin 

(Falcon et al., 2003; Foster & Bellingham, 2004). In most vertebrates retinal melatonin 

is produced in parallel with that of the pineal mainly at night following the cell 

depolarization (Falcon et al., 1999; Falcon et al., 2007). However, teleost fish show 

different patterns of retinal melatonin production with zebrafish (Danio rerio) and 

goldfish (Carassius auratus) displaying a nocturnal melatonin pattern (Cahill, 1996; 

Iigo et al., 1997a), while other fish species either do not show any rhythm or show 

peaks at different times of the L/D cycle (Iigo et al., 1997b; Besseau et al., 2006), as in 

the case of European sea bass, in which the phase of retinal melatonin rhythm changed 

between different seasons (Garcia-Allegue et al., 2001).  

In fish and other non-mammalian vertebrates, it has been suggested that retinal 

melatonin is not released into the blood circulation due to strong melatonin deacetylase 

activity (Grace et al., 1991). Retinal melatonin has been suggested to serve local 

functions, including modulation of neurotransmitter release, retinomotor movement, 

neuronal electrical activity and act as a local antioxidant (Besseau et al., 2006; Ping et 

al., 2008). The relationship between pineal and retinal melatonin, as part of the 

circadian system in different fish species, has been studied by Migaud et al. (2007). 

They proposed at least three different types of organisation:  1) salmonids with a 

“decentralized” system in which the pineal gland responds directly to light, 

independently of the eyes; 2) sea bass and cod in which both the eyes and the pineal 

gland are required to sustain full night-time melatonin production; and 3) tilapia and 
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catfish in which the pineal gland would not be light sensitive (or only slightly) and the 

eyes are required to perceive light and inhibit melatonin synthesis during the day. 

 

1.3.2. Melatonin biosynthesis and diel profile 

Melatonin is synthesised by photoreceptor cells in the pineal by taking up 

tryptophan and converting it to serotonin (5-hydroxytryptamine) via two enzymatic 

steps (Fig. 1.5): the first step is hydroxylation of tryptophan by means of tryptophan 

hydroxilase (TPHO) producing 5-hydroxytryptophan, which is then decarboxylated by 

means of the aromatic amino-acid decarboxylase forming serotonin. Melatonin is then 

synthesized from serotonin through another two steps; first, serotonin is N-acetylated by 

arylalkylamine N-acetyltransferase (AANAT) into N-acetylserotonin which is then 

converted into melatonin by the action of hydroxyindole-O-methyltransferase (HIOMT) 

(Falcon et al., 1999; Falcon et al., 2007; Falcon et al., 2010). The HIOMT and AANAT 

enzymes have been studied in a range of vertebrates as both enzymes are controlling 

melatonin synthesis. AANAT is found in all vertebrates and is known to be the 

melatonin rate-limiting enzyme (Klein et al., 1997; 2002). In mammals, birds and 

anurans, only one type of AANAT has been found, while for all studied teleosts two 

AANAT genes are present, probably attributed to genome duplication in early evolution 

of the teleost lineage (Falcon et al., 2007; Coon & Klein, 2006). The AANAT activity 

increases at night with elevation in melatonin production, while the daylight produces a 

proteasomal degradation of the enzyme reflecting termination of melatonin production 

(Ekstrom & Meissl 1997; Falcon et al., 2010) (Fig. 1.5). On the other hand HIOMT 

enzyme activity does not show any rhythmic changes and remains steady throughout 

the LD cycle (Klein et al., 2002). The HIOMT was suggested to be involved in seasonal 

rather than daily rhythmic oscillations in melatonin production (Ribelayga et al., 2002).  
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As explained above, the AANAT enzyme in fish has two forms (AANAT-1 and 

AANAT-2). These forms display tissue specific distribution: AANAT-1 is more 

expressed in retina and brain, while AANAT-2 is more specific to the pineal in fish 

(Falcon et al., 2003; Coon & Klein, 2006). Recent findings in teleosts suggested the 

presence of two AANAT-1 forms (1a and 1b) (Coon et al., 1999; Coon & Klein, 2006, 

Falcon et al., 2010). At night, photoreceptor depolarization allows accumulation of 

cyclic AMP (cAMP) and Ca2+ entry. Both actions regulate AANAT-2 amount and 

activity at the cellular level through AANAT-2 protein phosphorylation (Falcon et al., 

1999 & 2010) and lead to rising melatonin levels. This mechanism is reversed by light, 

as the light triggers hyperpolarization of photoreceptors and causes proteasomal 

proteolysis, leading to AANAT-2 degradation and less melatonin secretion (Falcon et 

al., 2001&2010), while a minor part of the pineal AANAT-2 protein pool is photo-

stable (Falcon et al., 2010). Contrasting to AANAT-2 protein and AANAT-2 enzyme 

activity, Aanat2 mRNA is not light sensitive (Coon et al., 1999), and Aanat2 gene 

expression is controlled by the clock machinery (Appelbaum et al., 2006). 
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Figure 1.5. Melatonin pathway is shown on the left; changes in pineal levels of the 

compounds and enzymes are shown on the right (From Klein et al., 2002)  

 

Although a melatonin production rhythm is conserved across all vertebrates 

(high at night and low during the day), three variant profiles have been identified (Fig. 

1.6). The A-type is characterised by a delay of melatonin rise after the start of the dark 

phase, showing the peak towards the end of the dark phase (Reiter, 1988). This peak 

type was found in mouse and Syrian hamster as well as in gadoid species (Atlantic cod 

and haddock) (Reiter, 1988; Porter et al., 2001; Davie et al., 2007b). The B-type profile 

is characterised by a distinct peak in the middle of the dark phase as found in human 

and tilapia (Reiter, 1988; Nikaido et al., 2009). The third profile is the C-type; it is the 
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most common profile in vertebrates, where melatonin rises immediately following the 

onset of the dark phase to the maximum, which remains high and then falls rapidly to 

the basal level once the light phase starts. This profile is found in salmonids as well as 

other vertebrates (Randall et al., 1995; Reiter, 1988).  

Although pineal melatonin production is regulated by light intensity in teleosts, 

the spectral content of the light can also have an impact by modulating the amount of 

light reaching the pineal photoreceptors depending on the light transmittance properties 

of the cranial bones (Falcon et al., 2010). The spectral quantity (light intensity) and 

quality (spectral content) that penetrate the pineal window varies from one species to 

another (Migaud et al., 2006). Both light intensity and spectral content are subjected to 

daily variations depending on the time of the day, weather conditions and moon phase 

(Falcon et al., 2010). Some other internal factors can play a role in the control of 

melatonin production (Falcon et al., 2007). Temperature can also modulate melatonin 

production, as temperature acts directly on the pineal organ and regulates AANAT-2 

activity as shown in previous studies (Coon et al., 1999; Falcon et al., 1999; Benyassi et 

al., 2000; Zachmann et al., 1992). Rainbow trout, Oncorhyncus mykiss, showed an 

optimal temperature of 12 ºC for pineal AANAT-2 physiological activity (Benyassi et 

al., 2000), whereas AANAT-2 recorded its highest activity at 20 ºC in pike, Esox lucius 

(Coon et al., 1999).    
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Figure 1.6. Schematic representation of the different melatonin profiles recorded in 

vertebrates. Examples of species which express such pattern of plasma melatonin for 

each profile are listed. Horizontal black bar denotes subjective dark period (adapted 

from Reiter, 1988; Falcon et al., 2010) 

 

Time of the day (hours) 

Melatonin  
Levels 

Description of rhythm 

Type A: Discrete peak in late dark phase             
               Species: Syrian Hamster 
               Mongolian Gerbil 
                House mouse 
               Cod 
                Haddock 

Type B: Discrete peak in mid dark phase 
              Species: Albino Rat 
              Eastern Chipmunk 
              Turkish Hamster 
              Human 
              Nile Tilapia 

Type C: Prolonged peak through the 
majority of   the dark phase  

            Species: White-foot mouse 
            Djungarian Hamster 
            Domestic cat 
            Sheep 
            Atlantic salmon 
            Rainbow trout 

14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00
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The enzymatic activity showed the same response to the temperature when measured 

from either cultured pineal organ homogenates or the recombinant AANAT-2 (Benyassi 

et al., 2000). It is therefore thought that the control of melatonin synthesis by the pineal 

in fish is more complex than first thought and will depend on a multitude of variables 

including environmental factors, of which light intensity and temperature are the best 

known, and physiological factors (age, size, reproductive status, stress ...).  

Circadian melatonin production in sea bass showed the classical pattern 

observed in teleost fish: under natural photoperiod, melatonin level was high during 

night and low during the day (Sanchez-Vasquez et al., 1997; Gracia-Allegue et al., 

2001; Bayarri et al., 2010), with type A profile in which the melatonin peak occurred in  

late dark phase (Migaud et al., 2007).The annual rhythms of melatonin profiles appear 

to be with large differences in nocturnal melatonin levels (plasma levels from 144 

pg/ml in summer to 23 pg/ml in autumn) (Garcia-Allegue et al., 2001). Circadian 

melatonin rhythm in sea bass has been shown to persist in vitro under constant darkness 

(Bayarri et al., 2004a), while under continuous light, plasma melatonin showed no 

elevation during the subjective night (Bayarri et al., 2010). In contrast, no persistency 

of the intrapineal oscillators was found in vivo under continuous darkness (DD) 

conditions; melatonin was high without any significant variation after two days of DD 

application (Iigo et al., 1997b). Confirmation of the presence or absence of intrapineal 

oscillators in such seasonal species like sea bass has become important for better 

understanding the regulatory mechanisms of melatonin production 

 

1.3.3. Melatonin receptors  

The first melatonin receptor was cloned from Xenopus dermal melanophores 

(Ebisawa et al., 1994). Thereafter many studies have been conducted and led to the 
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identification of many receptor subtypes in vertebrates by using both cloning and 

radioligand techniques. Two mammalian subtypes of G protein coupled melatonin 

receptors (MT1 and MT2) have been identified (Reppert et al., 1994; Dubocovich & 

Markowska, 2005). The MT2 receptor has lower affinity for 125I-melatonin while the 

MT1 receptor shows high affinity for 125I-melatonin. A third low affinity mammalian 

melatonin receptor (MT3) has been characterized as the enzyme quinine reductase 2, 

which belongs to a group of reductases involved in the protection against oxidative 

stress (Barrett et al., 2003; Mailliet et al., 2005). The Mel1c subtype is another high 

affinity melatonin receptor, which has been identified only in non-mammalian 

vertebrates (amphibians, birds and fish) (Sugden et al., 1997; Dubocovich et al., 1998; 

Barrett et al., 2003; Sauzet et al., 2008). Few studies have been conducted on fish 

melatonin receptors; full length sequences of melatonin receptor have been reported in 

rainbow trout (MT1), pike (MT2) (Gaildrat & Falcon, 2000), and golden rabbitfish 

(Siganus guttatus) (MT1 and Mel1c) (Park et al., 2007 a, b). In European sea bass three 

melatonin receptors have been cloned belonging to the MT1, MT2 and Mel1c subtypes 

(Sauzet et al., 2008). Melatonin receptors display a wide distribution in fish and are 

associated with areas that receive or integrate information from sensory organs 

(olfactive bulbs, telencephalon, diencephalon, optic tectum and cerebellum) and are 

mostly incorporated in areas receiving input from the retina and pineal (Ekstrom & 

Meissl, 1997; Falcon et al, 2010). Melatonin receptors are also present in the preoptic 

area (POA) and pituitary gland of pike, rainbow trout and sea bass (Gaildrat et al., 

2002; Falcon et al., 2003; Sauzet et al., 2008). Furthermore, melatonin receptors and 

125I binding sites have been detected in different peripheral tissues (kidney, gills, 
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intestine and gonads) (Kulczykowska et al., 2006; Park et al., 2006; Sauzet et al., 

2008). 

1.3.4. Melatonin and hypothalamic interaction  

In mammals, melatonin receptors show a high density in both the supra 

chiasmatic nucleus (SCN) and the pars tuberalis (PT) of the adenohypophysis in the 

pituitary, and interact with the molecular clocks (Korf & von Gall, 2006). In fish, 

photoperiodic and circadian systems are less clear and no SCN-like structure has been 

identified as yet in the brain (Migaud et al., 2010). Melatonin function in the central 

nervous system is still to be found in teleosts (Falcon et al., 2007). It has been 

suggested that melatonin action is mediated through the hypothalamic-pituitary axis in 

fish (Falcon et al., 2007, 2010). Melatonin hormonal signal would also act on the 

diencephalic areas, the rostral POA, lateral tuberal nucleus (LTN) and ventromedial 

thalamic nucleus (VTN) as shown through receptor expression studies (Ekstrom & 

Vanecek, 1992; Sebert et al., 2008). The POA receives nervous information from both 

the retina and pineal organ (Ekstrom & Meissl, 1997). The POA and hypothalamic 

neurons convey dopamine and releasing factors that control pituitary cell activity 

including pituitary adenylate cyclase activating peptide (PACAP), growth hormone-

releasing hormone (GHRH), neuropeptide Y (NPY), and gonadotropin-releasing 

hormones (GnRHs) (Batten et al., 1999; Montero et al., 2000; Gonzalez-Martinez et al., 

2002 a&b). It is also suggested that melatonin might regulate photoneuroendocrine 

functions by targeting the pituitary gland itself, as the photic information can reach the 

pituitary directly via melatonin hormone signal and pituitary melatonin receptors 

(Falcon et al., 2010). The actions of melatonin at the brain and pituitary levels remain to 
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be found in fish and can be considered as the missing link between light perception 

regulating melatonin production and circadian / circannual control of physiology.  

1.3.5. Evidence for melatonin effects on physiology  

The effects of photoperiod on the timing of reproduction are well investigated 

and provide clear evidence that melatonin is involved in this process (Bromage et al., 

2001). The clear definition for melatonin role in reproductive axis was studied by two 

main approaches; the first is the pinealectomy (PNX); for female rainbow trout pineal 

removal at the summer solstice resulted in a spawning delay comparing to the controls 

(Randall et al., 1995) suggesting the importance of pineal for the entrainment of final 

stage of reproduction, via the decreasing day length and increased daily duration of 

melatonin secretion (Bromage et al., 2001). While PNX failed to influence the timing of 

early maturation in male Atlantic salmon (Mayer, 2000), pinealectomized and 

opthalectomized ayu (Plecoglossus altivelis) were sexually mature under short day 

photoperiod, while those under long day did not show maturity (Masuda et al., 2005).  

The second approach to define melatonin’s role in reproduction is the direct 

effect of melatonin administration. Intraperitoneal injection elicited significant 

elevations in plasma LH levels during the late-light phase of the day-night in Atlantic 

croaker, Micropogonias undulates with fully developed gonads, In this case, the 

stimulatory effect of melatonin was dose-dependent over a range of 5–500 ng g−1 body 

mass (Khan & Thomas, 1996). In addition, low concentrations (0.2 ng ml−1) of 

melatonin stimulated in vitro LH release from pituitary fragments of fish with fully 

developed gonads, suggesting that melatonin can also stimulate gonadotropin secretion 

directly at the pituitary level; melatonin injection (1 or 10 ng/g body weight) into the 

third ventricle in the preoptic anterior hypothalamic area of croaker with fully 
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developed gonads resulted in an elevation in plasma LH concentrations.  In addition, 

low concentrations (0.2 ng ml−1) of melatonin stimulated in vitro LH release from 

pituitary cells of fish with fully developed gonads, suggesting that melatonin can also 

acts both at POA/hypothalamus and pituitary levels (Khan & Thomas, 1996). This was 

recently confirmed in the European eel, Anguilla anguilla, where melatonin implants 

induced a decrease of gonadotropin (lhβ and fshβ) mRNA gene expression in the 

pituitary as well as a reduction of plasma sex steroid levels (11-KT) whereas the 

treatment increased brain tyrosine hydroxylase (TH) which is the rate limiting enzyme 

of dopamine production, leading then to a stimulation of the dopaminergic system in the 

POA (Sebert et al., 2008). The same authors have proposed that one route for 

melatonin’s action is thought to be the dopaminergic system. Interestingly, a similar 

pathway (i.e. melatonin’s action via the dopaminergic system) has been proposed in 

mammals where it was suggested that melatonin can stimulate dopaminergic neurons 

that then inhibit GnRH and kisspeptin signalling via RFRP (RFamide-Related Peptide) 

expression (Smith et al., 2008a). However, in other species such as mature female 

common carp (Cyprinus carpio), melatonin administration reduced the dopamine levels 

in the hypothalamus and led to an increase in LH secretion (Popek et al., 2005; 2006). 

In an in vitro study Ribelayga et al. (2004) demonstrated that an isolated goldfish retina 

cultured in continuous darkness, clearly exhibited a circadian rhythm of endogenous 

dopamine with high values during the subjective day, while this circadian rhythm was 

abolished by continuous presence of melatonin (with low values equal to the night-time 

value) or the melatonin antagonist luzindole (but the values were high and equal to the 

daytime values). The effects of melatonin on other physiological processes in fish were 

also investigated. As such, fish growth rate was shown to be affected by melatonin 
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levels in circulation as for the control of food intake and other behavioural rhythms 

(Falcon et al., 2010). However, again, in vivo melatonin studies have given 

contradictory results with respect to feeding and growth (Falcon et al., 2010). In vitro 

melatonin administration appeared to stimulate growth hormone (GH) production and 

inhibit prolactin (PRL) release from trout cultured pituitary cells (Falcon et al., 2003). 

Melatonin has been found to have different effects on behavioural responses. Melatonin 

administration was shown to have a different action on locomotors activity depending 

on the lighting conditions and species life cycle (Lopez-Olmeda et al., 2006). Melatonin 

decreased the locomotor activity in sea bass (Herrero et al., 2007) and zebrafish 

(Lopez-Olmeda et al., 2006). Melatonin was also found to promote a sleep- like state 

and influence aging in zebrafish (Zhdanova et al., 2001; 2008). 

Overall, all these results point towards one main conclusion: there is no strong case to 

argue that the photoneuroendocrine system (PNES) in fish is as melatonin-dependent as 

is the case in mammals. Rather than being a direct driving force for the Brain-Pituitary-

Gonad (BPG) axis, melatonin appears to play a more detached regulatory role 

integrating timing messages with numerous discrete processes. As such, other driving 

processes must be at work. 
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1.4. Neuroendocrine control of reproduction 

In teleosts, it is the neuroendocrine BPG axis that acts as the master regulator of 

puberty and adult reproductive cycles (Zohar et al., 2010). This axis is organised around 

a series of hormones that are produced, released into the blood circulation and act on 

target tissues within the brain, pituitary, liver and gonads to initiate and control sexual 

development (Zohar et al., 2010). It is organised around: 1) the hypothalamus of the 

brain which releases neuropeptides and neurotransmitters which innervate and influence 

directly 2) the pituitary (gonadotroph cells), which synthesises and releases 

gonadotropins (follicle stimulating hormone, FSH; luteinising hormone, LH) which are 

transferred through the bloodstream and stimulate 3) the gonads steroidogenic cells 

(sertoli cells in testes and follicular cells in ovary) to produce sex steroids (androgens, 

oestrogens and progestagens) necessary for gametogenesis and positive/negative 

feedback regulation of reproduction (Fig.1.7). All three major regulators of the BPG 

axis integrate with growth/energy pathways (e.g. leptin, growth hormone, Igf1) to 

regulate reproductive processes in synchrony with life stage and the surrounding 

environment to ensure spawning in favourable conditions (Migaud et al., 2010).  
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Figure 1.7. Schematic representation of regulatory pathways in the BPG axis during 

puberty in teleosts (adapted from Migaud et al., 2010; Taranger et al., 2010) 
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1.4.1. Gonadotropin Releasing Hormone (GnRH) Neuropeptide 

The Gonadotropin releasing hormone (GnRH) is a neuropeptide produced in the 

brain (hypothalamus), which was discovered more than 30 years ago and is known to 

regulate the reproductive activity by stimulating pituitary gonadotropin secretion in 

vertebrates (Zohar et al., 2010). GnRH is expressed and produced very early in 

development in olfactory neurons and migrates to three or four brain regions: the 

preoptic area (POA), the midbrain and the terminal nerve as well as some other areas in 

the forebrain (Yamamoto, 2003; Sherwood & Adams, 2005; Cariboni et al., 2007). 

Many studies have investigated the characterisation of the teleost GnRH system 

(identification, localisation, pharmacology) and it has emerged to be more complex and 

diverse than first thought. To date, 24 forms of GnRH have been discovered in 

vertebrates, protochordates and invertebrates, with eight GnRH forms being found in 

teleost brains (Lethimonier et al., 2004; Kah et al., 2007; Van Der Kraak, 2009) (see 

Tables 1.1 and 1.2). The GnRH forms are usually named after the species from which 

they were first isolated. Fish share two forms of GnRH with other vertebrates; 

mammalian GnRH (GnRH I) and chicken GnRH (GnRH 2) (Pawson & McNeilly, 

2005; Sherwood & Adams, 2005).  Based on phylogenetic analysis of sequences and 

associated sites of expression, teleost GnRHs variants have been segregated into three 

clades named GnRH1, GnRH2 and GnRH3 (White & Fernald, 1998; Lethimonier et al., 

2004; Kim et al., 2011). Teleost brains express at least two GnRH forms; the existence 

of three GnRH forms was confirmed in perciformes (Gothilf et al., 1996, Okuzawa et 

al., 1997, Weber et al., 1997; Holland et al., 2001, Zamora et al., 2002; Zohar et al., 

2010) and there is now evidence on the existent of the three different GnRH forms in 

many teleost orders (Zohar et al., 2010).The diversity of GnRH forms in teleosts is 
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suggested to be due to at least two genomic duplication events (Sherwood & Adams, 

2005). In the European sea bass, these three forms are also identified as sea bream 

GnRH, sbGnRH (GnRH1);  chicken GnRH-II, cGnRH-II (GnRH2) and salmon GnRH, 

sGnRH (GnRH3) (Zmora et al., 2002; Gonzalez-Martinez et al., 2001; 2002 a&b). The 

first branch of GnRH forms, GnRH1, has been suggested to be the major 

hypophysiotropic hormone in perciformes (Powell et al., 1994; Holland et al., 1998; 

Gonzalez-Martinez et al., 2002a; 2004 a, b) whereas the significance of the GnRH2 and 

GnRH3 remains unclear. The three GnRH forms have differential expression patterns 

with GnRH1 expressed mainly in the POA cells, GnRH2 in the olfactory bulbs and 

GnRH3 in the mid brain tagmentum (White et al., 1995 ; Senthilkumaran et al., 1999; 

Amano et al., 2002; Andersson et al, 2001; Gothilf et al., 1996 ; Gonzalez-Martinez et 

al., 2002a; 2004a). 

Table 1.1. Structure of the 24 known GnRH variants taking mGnRH as the reference 

(Kah et al., 2007). 
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Table 1.2. Summary of the eight variants of GnRH identified in teleosts (Van Der 

Kraak, 2009). 

 

Immunohistochemistry and in situ hybridization studies have been performed to 

investigate the spatial distribution of the three GnRH variants in the European sea bass 

brain; only one form (GnRH1) appears to be expressed in neurons located in the POA 

and projecting to the pituitary, thus it must be involved in the regulation of 

gonadotropin secretion in the pituitary and represents the main hypophysiotrophic 

hormone (Gonzalez-Martinez et al., 2001; 2002a; Zmora et al., 2002). GnRH2 

immunoreactivity was only detected in large synencephalic cells which are the motor 

and sensorymotor brain areas and did not project to the pituitary, while GnRH3 fibers 

were detected in forebrain, optic tectum, and mid brain tagmentum (Gonzalez-Martinez 

et al., 2002). GnRH3 immunoreactive nerve fibres have been seen to innervate the 

pituitary of the sea bass although at a lesser extent than GnRH1 (Gonzalez-Martinez et 

al., 2002a; 2004a). The organization of the GnRH system in sea bass is presented in 

Figure 1.8.  While GnRH1 is clearly involved in the gonadotropin secretion (Kah et al., 
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2007) GnRH2 and GnRH3 functions are largely unknown. GnRH2 has been associated 

with sexual behaviour (Kauffmann et al., 2005; Millar, 2005) and it has more recently 

been specifically linked to pineal-specific melatonin signalling in Sea bass (Servili et 

al., 2010). Both GnRH2 and GnRH3 influence reproductive and probably other 

behavioural functions through neuromodulatory actions in the central nervous system 

(Hofmann, 2006; Oka, 2009). Possible sex specific roles of both GnRH2 and GnRH3 

are porposed by Hofmann, 2006, in which GnRH2 influences reproductive behaviour 

and food intake in female mammals, while GnRH3, as it is presents only in teleosts, 

could be involved in teleost male reproductive behaviour and possibility of acting as 

neuromodulator (Fig. 1.9). Clearly further studies are required to get clearer definitions 

of the GnRH system in fish. 

 

 

 

 

 

 
Figure 1.8. Organization of the GnRH system in the sea bass brain: sagittal drawing of 
sea bass brain summarizing the distribution of GnRH1 (sbGnRH) (green circles), 
GnRH2 (cGnRH-II) (blue stars) and GnRH3 (sGnRH) (red triangles). Hypot, 
Hypothalamus; MO, Medulla oblongata; OB, olfactory bulbs; Pit, pituitary; POA, 
preoptic area; SC, spinal cord; Syn, synencephalon; Tel, telencephalon (From 
Gonzalez-Martinez et al., 2002a). 
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In addition to the brain, GnRH mRNA was found to be expressed in the gonads 

of many fish species including goldfish (Lin & Peter 1996), sockeye salmon 

(Oncorhychus nerka) (Von Schalburg & Sherwood,1999), seabream (Sparus aurata) 

(Nabissi et al., 2000), African catfish, Clarias gariepinus (Bogerd et al., 2002), rainbow 

trout (Uzbekova et al., 2001&2002), spotted green pufferfish, Tetraodon nigroviridis 

(Ikemoto & Park 2005) and Perjerrey, Odontesthes bonariensis (Guilgur el al., 2009). 

GnRH has also been localised in other regions including retina, trigeminal ganglion and 

trunk (Abraham et al., 2008; Zohar et al., 2010). The functional significance of this 

peripheral expression is yet to be investigated.  

 

 

 

 

 

 

 

Figure 1.9. Three GnRH subtypes influence reproductive behaviour through hormonal 

and neuromodulatory pathways. GnRH1, which is thought to mainly control gonadal 

maturation through gonadotropin release from the pituitary, probably also, has 

neuromodulatory functions throughout the brain. Both GnRH2 and GnRH3 influence 

reproductive and probably other behavioural functions through neuromodulatory 

actions in the central nervous system (From Hofmann, 2006). 
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1.4.1.1 GnRH gene structure and regulation  

The isolation, cloning and sequencing of the genes encoding for the various 

GnRHs from a variety of vertebrates has shown their conserved organisation among the 

different forms (Okubo & Nagahama 2008). The GnRH encoding genes consist of three 

introns and four exons (Okubo & Nagahama 2008; Zohar et al., 2010). The second, 

third and parts of the fourth exons represent the encoding region of the GnRH and are 

called prepro-GnRH, which consists of a signal peptide of 21-23 amino acids that 

allows the protein to be transferred to the endoplasmic reticulum, a core sequence of 

GnRH (10 amino acids), a proteolytic cleavage site (Gly-Lys-Arg) and a GnRH 

associated peptide (GAP, 40-60 amino acids) (Okubo & Nagahama 2008). The signal 

peptide, GnRH decapeptide, proteolytic cleavage site and N-terminal region of GAP are 

encoded in exon 2, the main sequence and C-terminal parts of GAP are encoded in exon 

3 and 4, while the 5΄ and 3΄ UTR are encoded in exon 1 and 4, respectively (Okubo & 

Nagahama, 2008; Zohar et al., 2010) (Fig.1.10). The second GnRH exon shows the 

most conserved sequence; while the other exons show higher variability, the signal 

peptides and the GnRH decapeptide are well conserved, whereas the GAPs show less 

homology (Zohar et al., 2010). In sea bass the GAP sequence of the of the three GnRHs 

precursors  showed only 42 % identity with each other but 88-90 % identity with the 

corresponding sequences in other fish (Zmora et al., 2002). The regulation of GnRH 

gene expression through the promoter region has been studied in many animal models 

(Kitahashi et al., 2005; Sherwood & Adams, 2005). GnRH expression has been found 

to be regulated at the post-transcriptional level as the mRNA expression level has not 

been correlated to pre-pubertal transcriptional levels. The surge in GnRH transcript 

level and its receptors are commonly observed at puberty and used as a way to study the 
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1 2 3 4 

GAP Cleavage site GnRH Signal peptide UTR 

mechanisms regulating the release of gonadotropin and onset of puberty in many 

vertebrates including fish (Gore, 2002; Nocillado et al., 2007; Mohamed et al., 2007).  

 

 

 

 

Figure 1.10. Schematic diagram illustrating the structural organization of the 

gonadotropin-releasing hormone (GnRH) gene in vertebrates. It is composed of four 

exons and three introns. Boxes represent exons and horizontal lines adjacent to exons 

represent introns. The exon number is shown. GnRH is encoded as part of a precursor 

polypeptide designated prepro-GnRH, which consists of a signal peptide, the GnRH 

decapeptide, a cleavage site (Gly-Lys-Arg) and the GnRH-associated peptide (GAP). 

UTR = untranslated region (adapted from Okubo & Nagahama, 2008). 

 

1.4.1.2. GnRH receptors  

The actions of GnRH subtypes in all vertebrates are mediated through binding to 

several subtypes of GnRH receptors which belong to the G protein-coupled receptor 

superfamily. These receptors show three main functional domains: an N-terminal 

extracellular domain, seven α-helical transmembrane (Tms) domains connected by 

hydrophilic intra- and extracellular loops and a C-terminal cytoplasmic domain 

(Lethimonier et al., 2004; Millar, 2005). To date three classes (type 1, 2 and 3) of 

GnRH receptors have been identified: type 1 receptors (GnRHr1) are found in 

mammals and fish, type 2 receptors (GnRHr2) are found in human and amphibians and 

the third receptor branch type 3 (GnRHr3) in teleosts, mainly perciform species (Van 
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Der Kraak, 2009). More than one receptor of each GnRH receptor subtype has been 

identified in the studied fish species due to genome duplication (Lethimonier et al., 

2004; Van Der Kraak, 2009). There have been five GnRH receptors reported in 

pufferfish (Fugu ruprides) and masou salmon compared to four distinct GnRH 

receptors in the zebrafish (Kah et al., 2007).  The first cloned GnRH receptor in 

European sea bass has been found to be expressed in the brain and pituitary suggesting 

its role in mediating gonadotrophin release (Gonzalez-Martinez et al., 2004b). 

Thereafter, four additional European sea bass cDNAs encoding GnRH receptors have 

been reported. They are subdivided into two GnRHR1 (A and B) and three GnRHR2 

(A, B and C) subtypes (Moncaut et al., 2005). The multiplicity of GnRH receptors 

makes it difficult to conclude as to which receptor subtypes are involved in LH and 

FSH release (Van Der Kraak, 2009) as for example, in Nile tilapia three forms of GnRH 

receptors were identified in a single gonadotrope cell type (Parhar et al., 2005). In 

addition to the brain and pituitary, GnRH receptors are expressed in gonads, eye, 

olfactory epithelium, kidney and gills (Moncaut et al., 2005) (Table 1.3). All the 

European sea bass GnRH receptors mRNAs are expressed in the anterior and mid brain, 

while four of them (GnRHR1A, GnRHR1B, GnRHR2A and GnRHR2C) are also 

expressed in the pituitary gland. These receptors showed a differential expression in the 

gonads, eye, olfactory epithelium, kidney and gills (Moncaut et al., 2005). Clearly there 

is much work still to be done to characterize the functional responses mediated by 

different GnRH receptors in the brain and pituitary of teleosts. 
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Table 1.3. Pharmalogical characterization, tissue distribution and classification of known GnRH receptors. Asterisk (*) indicates receptor 
subtype showing a higher cGnRH-II sensitivity in the species of interest (From Lethimonier et al., 2004) 

species Reference Receptor 
Abbreviation 

GnRH-R 
type 

Ligand selectivity Tissue distribution 

Anguilliformes 
  Eel 
 
Cypriniformes 
  Goldfish 
 
 
 
 
Beloniformes 
  Medaka 
 
 
 
Siluriformes 
  Catfish 
 
Salmoniformes 
  Rainbow trout 
 
Perciformes 
  Sea bass 
 
  
 
Seriola dumerilli 
  Striped bass 
  Astatotilapia 

Okubo et al.  
(2000 a,b) 
 
Illing et al. (1999) 
 
 
 
 
 
Okubo et al. (2001) 
 
 
 
 
Tensen et al. (1997) 
Bogerd et al. (2002) 
 
Madigou et al. 
(2000) 
 
Gonzalez-Martinez 
et al. (2002c), 
Moncaut et al.(2005) 
 
 
Alok et al. (2000) 
Robinson et al. 
(2001) 

 
 
 
GfA 
GfB 
 
 
 
 
GnRH-R1 
 
GnRH-R2 
 
 
cfGnRH-R1 
cfGnRH-R2 
 
rtGnRH-R 
 
GnRHR1A 
GnRHR1B 
GnRHR2A 
GnRHR2B 
GnRHR2C 
 
stbGnRH-R 
GnRH-R1 
GnRH-R2 

II 
 
 
II 
 
 
 
 
 
I 
 
II 
 
 
II 
II 
 
II 
 
I 
I 
II 
II 
II 
 
II 
II 
I 

ND 
 
 
GfA*: 
cGnRH-II>sGnRH>mGnRH>sbGnRH 
GfB:  
cGnRH-II>sGnRH>mGnRH>sbGnRH 
 
 
GnRH-R1: 
cGnRHI>=sGnRH=mGnRH=mdGnRH 
GnRH-R2*: 
cGnRHII>sGnRH>mGnRH>mdGnRH 
 
cGnRHII>cfGnRH 
cGnRH-II>cfGnRH=mGnRH 
 
ND 
 
ND 
ND 
ND 
ND 
ND 
 
cGnRH-II>mGnRHa>=sGnRH>sbGnRH 
cGnRH-II>sGnRH=mGnRH>sbGnRH 
ND 

Pituitary>brain>testis>eye> 
olfactory epithelium 
 
Brain (but only GfA is expressed in 
ventral telencephalon)> pituitary 
(proximal pars details)> ovary 
(interstitial cells and theca-granulsa 
cell layers) = liver 
 
ND 
 
ND 
 
Pituitary>brain>cerebellum>testis 
Brain>ovary>heart>testis>cerebellu
m>pituitary 
 
Brain>testis>ovary>retina>pituitary 
 
 
Pituitary>brain> gonad>retina> 
olfactory epithelium 
 
 
Pituitary>brain>ovary 
Brain>testis>kidney>retina>muscle>
pituitary 
 
ND 
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1.4.1.3. Seasonal fluctuation in GnRH during the reproductive cycle 

Changes in the expression of GnRHs in relation to the reproductive cycle have 

been reported in both males and females in several fish species. For example the 

pituitary content of both GnRH1 and GnRH2 increased during the gonadal 

recrudescence and peaked around the time of spawning in maturing male and female 

striped bass (Holland et al., 2001). Similarly, in female red seabream Pagrus major, the 

level of GnRH1 mRNA in the brain increased in conjunction with active vitellogenesis, 

with peak levels obtained during spawning before levels decreased again during the 

ovarian regression (Okuzawa et al., 2003).  In female Pejerrey, the levels of GnRH1 

mRNA in brain varied with different ovarian status (Guilgur el al., 2009). Equally, in 

male barfin flounder (Verasper moseri) brains, GnRH1 mRNA expression increased in 

parallel with increasing GSI values, with GnRH1 expression levels peaking at 

spermiation, while the two other forms (GnRH2 and GnRH3) did not show changes 

with spermatogenesis (Amano et al., 2004). In grass puffer (Takifugu niphobles), 

GnRH1 mRNA  were substantially elevated during the spawning time in both male and 

females, with strong positive correlation between GnRH1 and plasma E2 and T levels 

(Shahjahan et al., 2010a). For the European sea bass, pituitary levels of GnRH1 and 

GnRH3 mRNAs have been seen to increase along with the GnRH receptor (GnRHR2A) 

and follicle stimulating hormone gene expression during sexual differentiation (Moles 

et al., 2007). Furthermore, Mateos et al. (2002) demonstrated that GnRH analogue 

injection increased mRNA levels of the common α and lhβ gonadotropin subunits but 

not fshβ subunit. 
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1.4.2. Pituitary Gonadotropins 

In the pituitary of fish, as in other vertebrates, gonadotroph cells (FSH/LH 

synthesising cells) are located in the anterior lobe (pars distalis). These cells are 

innervated (directly or indirectly depending on the fish species) by neurosecretory 

fibres (i.e. GnRH neurons & dopaminergic neurons) which release neurohormones that 

originate from the hypothalamus of the brain (Zohar et al., 2010). It is well known that 

pituitary gonadotropins play a key role in the regulation of sex steroid hormones 

produced by steroidogenic gonadal cells and the production of gametes in both male 

and female teleosts. There are two main forms of gonadotropins in teleosts as in most 

other vertebrates (Yaron et al., 2003; Weltzien et al., 2004): follicle stimulating 

hormone (FSH, also referred to as GTH I) and luteinising hormone (LH, also referred to 

as GTH II). These have been shown to share a common α subunit and a hormone- 

specific β subunit (Yaron et al., 2003). The action of these hormones is carried out 

through specific membrane receptors (G-protein coupled receptors) present in the cell 

membranes of the target tissue. Once the membrane receptors are activated, a cyclic 

AMP secondary messenger system will pass information to the interior of the cell 

(Swanson et al., 2003; Yaron et al., 2003). Both female and male steroidogenic cells in 

the gonads are the main target for LH and FSH where they stimulate steroid production. 

FSH is commonly found to be the main driver for vitellogenin synthesis by the liver and 

incorporation into the oocytes, through the process known as vitellogenesis, while LH 

appears to be playing a more important role in male spermiation and final oocyte 

maturation in female fish (Swanson et al., 2003; Yaron et al., 2003; Weltzien et al., 

2004). Expression of pituitary gonadotropin β subunits during puberty has been 

investigated in a number of fish species. In females which are single batch spawners 

such as rainbow trout, gonadotropic regulation of gametogenesis is generally 
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characterised by an elevation in FSH during early oocyte growth and vitellogenesis 

whereas LH is associated with final oocyte maturation and ovulation (Gomez et al., 

1999; Hassin et al., 1999). Alternatively in multiple batch spawners such as Atlantic 

halibut (Hippoglossus hippoglossus), gilthead sea bream, goldfish and Japanese 

flounder (Paralichthys olivaceus), the expression of pituitary gonadotropin subunits has 

been seen to increase simultaneously (Sohn et al., 1999; Kajimura et al., 2001; 

Weltzien et al., 2003a, b; Meiri et al., 2004) as the oocytes are developing at different 

rates. In European sea bass males, fsh mRNA levels increase continuously with gonadal 

growth suggesting an important role in the spermatogenesis, while lh mRNA levels and 

release was maximum during late gametogenesis and spawning (Mateos et al., 2003; 

Moles et al., 2007, Carrillo et al., 2010), as the LH release was more involved with later 

stages of gonadal development than with sex differentiation (Rodriguez et al., 2000). 

The mRNA expression of the three gonadotropin (common α , lhβ and fshβ) subunits in 

the pituitary of mature male sea bass increased in parallel  with the GSI and declined 

sharply at post spermiation (Mateos et al., 2003). In addition to the seasonal profile of 

LH levels, daily rhythms of both pituitary content and plasma LH were observed in 

pubertal sea bass (95 % males), these rhythms exhibit nocturnal peaks and were 

negatively correlated with the daily pituitary GnRH1 content (Bayarri et al., 2004b).  

Two gonadotropin receptors (fshr and lhr) have been described in several teleost 

groups (Taranger et al., 2010), including the European sea bass (Rocha et al., 2007, 

2009). Changes in expression profiles of both receptors in gonads during the seasonal 

reproductive cycle and pubertal development are different according to the species 

(Taranger et al., 2010). In the Nile tilapia, zebrafish and Atlantic cod the fshr and lhr 

gonadal mRNA expression is mainly associated with different phases of oocyte 

development with fshr mostly expressed during vitellogenesis and lhr elevating during 
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final oocyte maturation (Hirai et al., 2002; Kwok et al., 2005; Mittelholzer et al., 2009). 

In sea bass, Rocha et al. (2009) analysed the expression profile of the two receptors for 

the reproductive cycle in both male and female gonads. The expression of fshr was 

connected with early stages of gonadal development, but also with 

spermiation/ovulation during spawning, while the peaks of lhr expression were 

observed only in the final stage of gamete maturation in both sexes.  

 

1.4.3. Sex steroids and feedback mechanisms  

Gonads represent the last step of the reproductive cascade and serve two main 

functions: the development of germ cells (oogenesis and spermatogenesis) and the 

production of steroids and growth factors. Steroids are involved in the stimulatory and 

regulatory effects of these processes, not only at the gonadal level (paracrine) but also 

as feedback to the brain and pituitary level (endocrine). Steroids are also important for 

the control of sexual behaviour (Zohar et al., 2010). There are three main types of 

steroids: androgens, oestrogens and progestagens. Androgens including testosterone (T) 

and 11-Ketotestosterone (11KT), produced in the Leydig cells within the testis, are the 

dominant sex steroids involved in spermatogenesis in male teleosts (Kime, 1993; Borg, 

1994; Weltzien et al., 2004). Oestrogens are considered as female hormones but are 

also found in male teleosts, and it has been suggested that they have an important role 

in regulating gene expression in the testis (Schulz et al., 2010). Progestagens have been 

shown to play a major role during advanced stages of gametogenesis in both male and 

female teleosts. In females, progestagens such as 17α, 20β-dihydroxy-4-pregnen-3-one 

(also called DHP) have been found to play an important role in final oocyte maturation, 

namely germinal vesicle breakdown (GVBD) (Nagahama et al., 1987; Nagahama, 

1994) which is an essential process prior to ovulation. In male rainbow trout, high 
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plasma levels of DHP have been found during spermiation (Ueda et al., 1984) and it is 

thought to be involved in the acquisition of sperm motility (essential for fertilisation) by 

increasing the pH of the sperm duct thus increasing cAMP in sperm and facilitating 

motility (Miura et al., 1991). Furthermore precocious spermiation can be induced by an 

injection of DHP (Nagahama et al., 1994). As well as their role in gametogenesis and 

secondary sexual characteristics, sex steroids are of prime importance in the feedback 

control of reproductive development and provide an indicator to the brain and pituitary 

as to the reproductive state of the animal (Zohar et al., 2010). Both the brain and 

pituitary have been found to contain high densities of estrogen and androgen receptors 

(Navas et al., 1995; Blazquez & Piferrer, 2005). Whether feedback is positive or 

negative depends on the physiological status of the individual and the species itself 

(Zohar et al., 2010). Seasonal profiles of gonadal steriods were studied in both adult 

males and female sea bass by Prat et al., (1990); in females: 17α, 20β-dihydroxy-4-

pregnen-3-one levels were low throughout the year, even during the spawning, while 

plasma testosterone and oestradiol increased significantly in advance gametogenesis 

period with further increase during the spawning time in parallel with the gonadal 

growth. In males, both plasma T and 11-KT increased with spermatogenesis and 

reached their peaks during the spawning. For pubertal male and female sea bass, similar 

profiles to the adults were observed, in which gonadogenesis was in parallel with the 

high increase in plasma sex steroids during spermatogenesis and vitellogenesis, 

remaining elevated during most of the maturation period (Rodriguez et al., 2000, 2004 

&2005; Rocha et al., 2009). 
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1.4.4. Other Brain neuropeptide and neurotransmitters regulating reproduction 

Originally it was believed that GnRH was acting as the top of the BPG axis to 

control the endogenous reproductive cascade however, recent research in mammals has 

brought to light the importance of a number of upstream signal peptides that regulate 

GnRH expression (kisspeptin & neurokinin B) or neurotransmitters that work in 

association with GnRH actions to regulate gonadotropin synthesis e.g. dopamine (DA), 

neuropeptide Y (NPY) and gamma aminobutyric acid (GABA) (Vidal et al., 2004; Van 

Der Kraak, 2009; Zohar et al., 2010). Dopamine (DA) is known to play an inhibitory 

role in the neuroendocrine regulation of reproduction in a number of fish species (Van 

Der Kraak, 2009). Neuroanatomical investigations in the goldfish and European eel, 

have shown that inhibitory DA neurons which originate in the brain project directly into 

the pituitary where gonadotroph cells are located and exert inhibitory effects on 

gonadotrophin production (Chang et al., 1990; Vidal et al., 2004). This 

hypophysiotropic DA activity has been shown to vary with reproductive stage (Saligaut 

et al., 1999) and is controlled by endogenous factors such as sex steroid feedback 

(Weltzien et al., 2006) as well as environmental cues (Sebert et al., 2008). GABA is a 

neurotransmitter which has been shown to have stimulatory effects on gonadotropin 

secretion in fish. It stimulates LH release from the pituitary (see Popesku et al., 2008). 

In vivo studies showed that administration of GABA or GABA agonists increased 

plasma LH in goldfish (Martyniuk et al., 2007). Initial research demonstrated the 

abundance of GABA immunoreactive fibres in the goldfish pituitary (Kah et al., 1987) 

and this led to the discovery of its role in the stimulation of LH secretion including 

GnRH release and inhibition of dopamine in this species (Kah et al., 1992; Sloley et al., 

1992). It has been hypothesised that gonadotropic stimulation by GABA can be 

mediated through GnRH following in vitro work on the goldfish pituitary where GABA 
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was seen to cause a dose-dependent in GnRH release (Kah et al., 1992). In the rainbow 

trout, GABA has been seen to stimulate both basal and GnRH-induced gonadotropin 

secretion from pituitary cells (Mananos et al., 1999). Sex, reproductive stage and 

ultimately sex steroids have all been shown to affect the stimulatory action of GABA on 

gonadotropin secretion in fish (Trudeau, 1997). NPY is a neuropeptide that stimulates 

LH release in some studied fish including sea bass (Cerda-Reveter et al., 1999). NPY 

elevates the expression of lhβ but not fshβ in Nile tilapia (Yaron et al., 2003). There is 

evidence that the action of NPY is associated with feeding control and reproductive 

status in fish with, for example, the positive energetic status in European sea bass 

suppressed the ability of NPY to stimulate LH secretion (Cerda-Reveter et al., 1999). In 

goldfish, studies have revealed that NPY stimulates growth hormone and gonadotropin 

release (Kah et al., 1989; Peng et al., 1993) which could therefore suggest a link 

between feeding, growth and control of the reproductive axis (Zohar et al., 2010). 

Kisspeptin is neuropeptide identified recently as key upstream regulators for the 

initiation of puberty and regulator in seasonal breeding in mammals (Smith & Clarke, 

2007). Research in teleosts is somewhat behind that in mammals, however, there have 

been a number of advances in our understanding of the kisspeptin system in particular 

as a new actor in neuroendocrinology. A review focusing on the details of kisspeptin: 

identification, structure, and some previous research in mammals and fish will be given 

in the next section of this chapter.  
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1.5. Kisspeptin: a new signal peptide involved in the control of reproduction  

Kisspeptins are a family of neuropeptides originally named metastin when they 

were identified in cancer studies and reported to be highly expressed in metastasis-

suppressed tumour cells (Lee et al., 1996). In humans the KISS1  precursor has 145 

amino acids that is cleaved to yield a family of four biologically active peptides 

comprising 54, 14, 13 and 10 amino acids respectively, which are all able to bind and 

activate the KISS1R (formerly named GPR54)  receptor (Ohtaki et al., 2001). Figure 

(1.11) shows the structural features and complete amino acid sequence of human 

kisspeptin. 

 

1.5.1. Mammalian Kisspeptin  

In 2003, two independent laboratories discovered that mutations in Kiss1r in 

mice and men were involved with hypogonadotropic hypogonadism in which the 

individual fails to undergo puberty and has immature sexual characteristics (Seminara 

et al., 2003; de Roux et al., 2003). From this time KISS1/KISS1R has been suggested to 

be a key factor in the regulation of reproduction and initiation of puberty (Seminara, 

2005; Murphy 2005; Dungang et al, 2006). Studies carried out on rats indicated that 

metastin and kisspeptin-10 have the ability to stimulate the synthesis and release of LH 

and FSH hormones when administrated centrally or peripherally (Gottsch et al., 2004; 

Matsui et al., 2004; Messager et al., 2005). This is true for male monkeys as well 

(Shahab et al., 2005) (Table 1.4). 
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Figure 1.11: Structural features of human kisspeptin, generated by cleavage from a 

common precursor, the prepro-kisspeptin. Prepro-kisspeptin (KISS1 gene) is 145 

amino-acid protein that contains central 54 amino acid region, flanked by two 

consensus cleavage sites which give rise to metastin or kisspeptin-54. Further cleavage 

of metastin generates low molecular weight kisspeptins: kp-14, kp-13 and kp-10 (From 

Tena- Sempere, 2006). 
 

Similar effects were obtained in male humans when kisspeptin-54 was 

administrated peripherally (Dhillo et al., 2005). Kisspeptin was found to be equally 

effective when administrated as a full length peptide or decapeptide kiss-10 (Gottsch et 

al., 2004). KISS1/KISS1R signalling amplification takes place during pubertal 

maturation and could be the proximate event that stimulates GnRH neurons and 

activates the neuroendocrine events leading to puberty onset. Expression analysis of 

Kiss1 and Kiss1r mRNA showed marked increase coinciding with the onset of puberty 

in both male and female rats (Navarro et al., 2004). Likewise hypothalamic Kiss1 

mRNA levels increased in male monkeys during puberty (Shahab et al., 2005).  

The mechanism of how kisspeptins are able to control the gonadotrophic axis 

has also been a matter of intensive studies. Research has been conducted to demonstrate 
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whether kisspeptins are able to act on GnRH neurons and to stimulate GnRH secretion. 

Studies showing that the stimulatory effect of kisspeptins is blocked in the presence of 

GnRH antagonists proposed that kisspeptin effects on gonadotropins are GnRH 

dependent (Gottsch et al., 2004, Irwige et al., 2004, Matsui et al., 2004; Shahab et al., 

2005). Using in situ hybridisation, studies have shown that mammalian GnRH neurons 

are potential targets for kisspeptins, as double-label in situ hybridisation studies in rat 

indicated that >75 % of GnRH neurons co-express Kiss1r mRNA (Irwige et al., 2004). 

Furthermore, the brain localisation of rodent Kiss1 expression revealed that there are 

two populations of Kiss1 expressing cells both located in the hypothalamus: the two 

populations have different regulation potentialities by sex steroids feedback 

(Franceschini et al., 2006; Roa et al., 2008). Recently, the kisspeptin system has been 

proposed to have other reproductive functions such as metabolic control of fertility 

(Castellano et al., 2009) and environmental control of reproductive ability (Roa et al., 

2008). Correlations between kisspeptin expression, sexual development and 

photoperiod have been proved in seasonal mammals through a number of studies (Revel 

et al., 2006a; Greives et al., 2007; Mason et al., 2007). For example, changes in 

photoperiod from long to short day in the Syrian hamster, a spring breeder, inhibit 

sexual development and result in down regulation of Kiss1 expression (Revel et al. 

2006a; 2006b, Greives et al., 2007). Similar results were obtained in Soay sheep, an 

autumn breeder, when transferred from a short to long day photoperiod (Wagner et al., 

2007). Kisspeptins have also been found to be involved in the cardiovascular system in 

human (Mead et al., 2007) and were found in adipose tissue (Brown et al., 2008). 
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Table 1.4. Studies carried on kisspeptin administration for different animals and human 

(From Seminara, 2005). 
 Animal Sex Age Formulation Dose Route Time point Outcome 
Mouse M Adult m metastin 1–52 

h metastin 45–54 
h metastin 45–54 

1 nmol 
1 nmol 
1 fmol–5 nmol 

ICV 
ICV  
ICV 

30 min 
30 min 
30 min 

↑LH 
↑LH  
↑LH 

Rat M  
 
 
 
F 

Prepub (30 days) 
 
Prepub (25 days) 
 
Adult (75 days) 

m metastin 43–52  
 
m metastin 43–52  
 
m metastin 43–52 
 
 
m metastin 43–52 

1 nmol  
 
1 nmol  
 
1 nmol  
 
 
1 nmol 
 

ICV 
 
ICV  
 
ICV  
 
 
ICV 

15 min  
60 min 
15 min  
60 min  
15 min 
60 min 
 
0–180min 

↑LH, ↓Prl 
↑LH, ↓Prl 
↑LH, ↓Prl 
↑LH, ↓Prl 
↑LH, ↔Prl 
↑LH, ↔Prl 
 
↑LH 

Rat M Adult  (10 weeks) “h metastin” 100 nmol/kg SC 1–4 h ↑LH, ↑FSH 

 F Immature  
(25 days) 

“h metastin” 6.7 nmol SC 0–4 h ↑LH, ↑FSH 

 F Rx PMSG  
(23 days) 

“h metastin” 6.7 nmol SC 0–4 h ↑LH, ↑FSH 

Rat M   “kisspeptin 10” 0.1, 0.3, 1, or 3 
nmol 
 
 
3nmol 
 
 
10, 30, and 100 
nmol 
 
10, 30, and 100 
nmol 

ICV 
 
 
 
ICV 
 
 
IP 
 
 
IP 

60 min 
 
 
 
10 min 
20 min 
60 min 
20min 
 
 
60 min 
 
 

↑LH (sig 1 and 3 
nmol) 
↑FSH (sig 1 nmol), 
↑T 
↑LH, ↔FSH, ↔T 
↑LH, ↔FSH, ↑T 
↑LH, ↑FSH, ↑T 
↑LH (sig 100 nmol) 
↔FSH, ↔T 
↔LH, ↔FSH 
↑T (sig 30 and 100 
nmol) 

Rat M Pubertal (45d) m metastin 43–52 1 nmol–10 pmol 
1 nmol 
 
7.5 nmol 
 
 
7.5 nmol 

ICV 
 
 
IP 
 
 
IV 

15 min 
60 min 
 
15 min 
30 min 
60 min 
q 15min x 4h 

↑LH 
↑LH, ↑T (10X)(1 
nmol) 
↑LH 
↑LH 
↔LH 
↑LH max at 15-30 
min 

Rat  F  Immature m metastin 43–52 1 nmol ICV bid Days 26–31  
Day 31 

Rx grp: 74% vag 
opening  
↑uterus wt, LH, E2 

Rat M  Adult m metastin 1–52  ICV x1 1h ↑LH, ↔FSH 

Monkey 
 
 
 
Ewes 
 
Humans 

M 
 
 
 
F  
 
M 

Juvenile 
17–23mol 
 
 
 
 
Adult 

h metastin 45–54 
 
 
 
h metastin 45–54  
 
h metastin 1–54 

30 µg  
100  µg 
100 µg 
 
 50 nmol over  
 
4pmol/kg/min 

ICV 
ICV 
IV  
 
ICV 
 
IV 

0–4 h 
0–4 h 
0–4 h 
 
4 h q 15 min x 
4 h 
90 min 

↑LH 
↑LH 
↑LH 
 
↑LH 
 
↑LH, ↑FSH, ↑T 
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1.5.2. Kisspeptin in fish  

  The fish kisspeptin was first identified in tilapia in 2004 by Parhar et al. (2004) 

who reported the co-localisation of the receptor kissr4 (teleost kisspeptin receptor 

multiplicity is explained further below) in tilapia brain neurons and suggested an 

intimate physical association of kissr4 with the GnRH system. This initital work has led 

to a concerted research effort in recent years to isolate and describe the kisspeptin 

system within a diverse range of teleost species. While only one signal peptide 

kisspeptin 1 (KISS1) and receptor (KISSR1, formerly referred to as G-coupled protein 

receptor 54 (GPR54) are present in mammals, in silico analysis of the sequenced teleost 

genomes supported by functional analysis studies have revealed two forms of both the 

signal peptide (Kiss1 & Kiss2) and receptor (Kissr2 & Kissr4) in fish as in non-

placental mammals (Felip et al., 2009; Lee et al., 2009, Akazome et al., 2010). Of the 

receptors kissr4 has been the most common isolated isoform reported in cobia 

(Rachycentron canadum) (Mohamed et al., 2007), grey mullet (Mugil cephalus) 

(Nocillado et al., 2007), fathead minnow (Pimephales promelas) (Filby et al., 2008), 

goldfish (Li et al., 2009) and Senegalese sole (Solea senegalensis) (Mechaly et al., 

2009). The second isofrom, kissr2, has been identified in zebrafish (Biran et al., 2008), 

medaka (Oryzias latipes) (Lee et al., 2009) and goldfish (Li et al., 2009). Kissr4 

appeared to be fish-specific and showed homologies between fish species while kissr2 

corresponds to the mammalian sequence (Akazome et al., 2010). 

Isolation and identification of kiss1 gene in fish were first done species which 

have full genome sequence available like zebrafish and medaka. Van Aerle et al. (2008) 

were the first to identify the kiss1 gene in zebrafish. Recently, two forms of kisspeptins, 

kiss1 and kiss2, have been identified in several fish species including medaka (Kanda et 

al., 2008; Kitahashi et al., 2009), zebrafish (Kitahashi et al., 2009), European sea bass 
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(Felip et al., 2009) and goldfish (Li et al., 2009). Both kisspeptin signal peptides have 

been shown to be highly effective in activating kisspeptin receptors although showing 

different potencies (Lee et al., 2009). The two kiss genes were suggested to be gene 

duplication in early vertebrate evolution, with the kiss2 gene perhaps being lost in the 

mammalian linage (Felip et al., 2009). It is believed that kisspeptin performs similar 

roles in fish as have been reported in mammals. For example, kiss1 has been associated 

with the onset of puberty in male Zebrafish (Biran et al., 2008), while kiss1 expressing 

neurons were significantly higher in mature than immature medaka (Kanda et al., 

2008). In grass puffer brain kiss2 expression peaked during spawning in both males and 

females (Shahjahan et al., 2010b), while in male chub mackerel (Scomber japonicus) 

kiss1 brain expression gradually decreased during spermatogenesis and kiss2 increased 

during the late spermatogenesis stages and declined during spermiation (Selvaraj et al., 

2010).  Kisspeptin in fish has been shown to posses similar GnRH regulatory abilities 

as described in mammals (Elizur, 2009) as well as being susceptible to sex steroid 

feedback (Kanda et al., 2008).  

Studies on kissr4 temporal expression in fish species such as the female grey 

mullet (Nocillado et al., 2007) have shown high levels of kissr4 gene expression in the 

brain during early puberty correlated with high expression levels of the three main 

GnRH types. Similar results have been found in zebrafish (van Aerle et al., 2008) and 

Nile tilapia (Parhar et al., 2004; Martinez-Chavez et al., 2008), where expression levels 

of kissr4 in the brain have been found to increase during the onset of puberty. These 

findings have led a number of authors to suggest an important role played by the 

kisspeptin system in the activation of the BPG axis in fish.   

To confirm a potential conserved role of kisspeptin in fish as demonstrated in 

mammals, the biological effects of kisspeptins were studeied by administration of the 
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core decapeptide of kiss1 and kiss2. In mature female goldfish, intraperitoneal injection 

of Kiss1 (10) significantly increased serum LH level within 2h post injection, while 

Kiss2 (10) injection showed no effects on serum LH levels (Li et al., 2009). This result 

suggested kiss1 to be the active kisspeptin form acting on brain-pituitary axis. However, 

contradictory results were observed in other teleost species. Indeed, in mature zebrafish 

female, intraperitoneal administration of both Kiss1 and Kiss2 resulted in increases in 

pituitary fshβ and lhβ mRNA expression 12 h post injection but did not alter GnRH2 

and GnRH3 mRNA expression (Kitahashi et al., 2009). Furthermore, the Kiss2 form 

was shown to be more potent than Kiss1 at stimulating lhβ mRNA expression. In sea 

bass, intramuscular administration of Kiss2 to prepubertal fish elicited a four- and two-

fold increase in serum LH and FSH, respectively (Felip et al., 2009). However, while 

kiss1 injection also elicited a two-fold increase in serum LH, it had no effect on 

circulating FSH (Felip et al., 2009). These results support previous suggestions that 

Kiss2 is more potent than Kiss1 for the stimulation of gonadotropin secretion. The 

direct action of kisspeptin- 10 on goldfish pituitary was tested in vitro. Results showed 

a significant increase above basal levels in LH, prolactin and growth hormone in 

pituitary cells incubated for 30-min with kisspeptin-10, suggesting that kisspeptin could 

act directly at the pituitary level (Yang et al., 2010). Recent studies based on in situ 

hybridization and immunohistochemistry techniques for distribution of kisspeptin 

neurones have shown interesting anatomical patterns in sea bass (Escobar et al., 2010) 

and zebrafish (Servili et al., 2011). In sea bass, cells expressing kiss1 mRNAs were in 

the habenular region and preoptic area while kiss2 mRNAs were found in the dorsal, 

lateral and ventral hypothalamus while GNRH1 neurons were shown to express kissr4 

receptors suggesting a close association with GnRH signalling (Escobar et al., 2010).  
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In zebra fish, localisation showed two separated neuronal systems, with kiss2 

expressed in cells mostly in the mediobasal hypothalamus and kiss1 neurons localised 

in the habenular region (Servili et al., 2011). They also concluded that the kiss2 gene is 

likely involved in the control of reproductive function, through interaction with the 

GnRH, while kiss1 is possibly involved in the perception of metabolic and 

environmental signals (Servili et al., 2011). Taken together, the results obtained in fish 

suggest the significance of the kisspeptin system in the puberty and reproduction 

control as in mammals. This research area is attracting increasing attention due to its 

role as tool to understand how various regulatory signals are integrated to entrain the 

BPG axis. A schematic representation of the main factors controlling gonadotropin 

release in fish is presented in Figure 1.12. 
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Figure 1.12. Schematic representation of the main circuits controlling gonadotropin release in 

fish. GnRH and dopamine (in some but not all species), respectively, stimulate and inhibit 

LH/FSH release directly at the gonadotrophs. These effects are modulated by GABA neurons 

acting to increase GnRH secretion and dopamine inhibition. Sex steroids modulate the activity 

of those circuits directly on dopamine and GABA neurons and indirectly, possibly through 

KiSS neurons, on GnRH circuits. Whether KiSS neurons also integrate photoperiodic 

information and nutritional status of the animals remains a hypothesis indicated by the question 

marks (From Zohar et al., 2010). 
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1.6. Aims of the thesis  

As is clear from the introduction, seasonality is a remarkable feature in 

temperate fish behaviour, particularly with regards to reproduction and spawning. There 

are many environmental and endocrine pathways related to biological rhythms and 

reproduction fairly well known in higher vertebrates. It is well understood that 

transduction of the photoperiodic information has a rhythmic effect on the hormonal 

cascade at the brain–hypothalamus–gonad axis. The acquisition of both the daily and 

annual rhythms of key hormones seems of critical importance to attain normal 

spawning at the most appropriate time of the year and maintain the reproductive 

function in fish. However, more work needs to be done in teleost research to improve 

our knowledge especially regarding the entrainment by light and its mediatory effects 

on reproduction. Although melatonin may not be directly initiating the reproduction, it 

is clear that it is playing a significant role in co-ordinating the reproductive 

development, as it is known as a time keeping molecule, through different suggested 

mechanisms with different species. However, this last aspect remains to be clarified. 

The rhythmic production of melatonin itself is affected by other environmental factors: 

in addition to light, temperature also has a significant effect, as possibly does an internal 

time keeping system (circadian clock). This clock rhythm was clear in some in vitro 

studies for the pineal gland with ability of self – sustaining melatonin rhythm in the 

absence of light; however a clear understanding of these endogenous rhythms is still 

lacking. The role of kisspeptin has recently come to light in fishes. It is suggested that 

the kisspeptin system in fish has the same functional role as in mammals in controlling 

reproduction and puberty. Furthermore it is thought it may act as part of the missing 

link between the environmental and neuroendocrine control of reproduction. Although 

mammalian kisspeptins primarily act at the level of hypothalamic GnRH neurons with 
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the possibility of kisspeptin to be a hypophysiotropic factor, it is not confirmed yet in 

the fish how kisspeptin interacts with the GnRH or even if it has a direct effect at the 

pituitary level. Clearly further research is needed in this field to discover how kisspeptin 

acts on the BPG axis in order to solve problems related to reproduction in farmed fish. 

In summary, more detailed scientific knowledge is required regarding the 

photoneuroendocrine control of reproduction in a temperate seasonal fish like European 

sea bass to improve the sustainability and profitability of the aquaculture industry and 

ensure a higher quality product. The overall aim of this thesis to study aspects of two 

interesting and highly important areas which are believed to be closely interlinked: the 

kisspeptin system and the endogenous melatonin production with regards to the 

interaction of light and temperature factors. 

The specific objectives of this thesis were as follows:  

 1. To study the seasonal expression of kisspeptin, GnRH and gonadotropin 

genes in relation to the gonadal development throughout a reproductive cycle 

in male repeat spawning sea bass (Chapter 3).  

 2. To test the direct effect of two kisspeptin forms (kiss1 and kiss2) on the 

pituitary gonadotropin gene expression (Chapter 4). 

 3. To enhance the knowledge of the light perception and rhythmicity of sea bass 

with regards to melatonin production under the effects of both photoperiod 

and temperature (Chapter 5). 
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2. GENERAL MATERIALS AND METHODS  

Below is a description of some of the general methodologies employed during 

the course of the PhD, accompanied by specific description of the endocrine and 

molecular assays employed during the course of this work. 

 

2.1. Experimental procedure  

2.1.1. Fish stock and rearing conditions  

European sea bass were obtained from Machrihanish Environmental Research 

Laboratories of the Institute of Aquaculture (MERL, University of Stirling facilities, 

UK, Scotland 55º 44´ N, 5º 44´ W).  Fish were produced in the facilities from larvae 

supplied by Llyn Aquaculture Ltd, UK. Fish were reared under natural photoperiod and 

temperature regimes and natural temperature regimes, in flow through system with 

stocking density of approximately 180 fish/tank (9.4m circumference, and water depth 

of 1.5 m). Fish were fed to satiation twice per day with commercial fish food formula 

(Atlantic HE 50C+ 35A/25C, Skretting, Invergordon, UK).   

 

2.1.2. Measurement of fish growth. 

To record fish size, individuals were anaesthetised using 1:10,000 2-

phenoxyethanol (Sigma-Aldrich, UK), blotted with soft tissue paper and weighed 

individually to the nearest ± 0.1g on a Mettler PM 6000 balance (Mettler Toledo, UK) 

before recording total length to the nearest mm. Fish were then transferred into a 

recovery tank with adequate aeration for recovery from anaesthesia. Fish were left at 

least two weeks prior to the next sampling.  
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2.1.3. Fish sacrifice  

For tissue and organ sampling, fish were killed by lethal dose (1mL/L) of 

anaesthesia (2-phenoxyethanol, Sigma) followed by decapitation. All experimental fish 

were treated in accordance with the Animal Scientific Procedures (Act 1986, UK). 

 

2.1.4. Blood sampling  

Blood samples were withdrawn from the caudal dorsal aorta by using 2 ml 

syringes, with 21G hypodermic needles (Terumo Europe N.V., Belgium). Syringes 

were flushed with 560 unit/ml heparin ammonium salt (Sigma-Aldrich Co Ltd, UK). 

Collected blood samples were expelled into clean 1.5 ml eppendorf tubes and kept on 

ice until sampling was completed. Blood samples were centrifuged at 1200 g for 15 

minutes at 4 ºC, and then the plasma was separated into clean tubes and stored in -70 ºC 

until time of analysis. For the blood samples taken during darkness, fish were removed 

from their tanks and anaesthetised in a light proof container before sampling under the 

illumination of a dim red light (~0.2 lux). 

 

2.1.5. Fish identification  

Passive integrated transponder tags (PIT tag, AVID, Norco, USA) were 

individually inserted intramuscularly in fish used for the in vivo melatonin trial (section 

5.2.2). These tags were inserted subcutaneously through a 5 mm incision, just 2 cm 

below the first fin ray of dorsal fin. After the insertion of each tag, the incision was 

coated with a 3:1 mixture of orahesive powder (Squibb and Sons Ltd, Hounslow, UK) 

and cicatrin antibiotic (The Wellcome Foundation Ltd, Middlesex, UK). No mortalities 

were observed following the tagging procedure. When required, the tags were read by 

passing an extended range reader within 10 cm around the inserted tag. 
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2.1.6. Histology preparation  

Gonads were collected from sacrificed fish and cut into 2 cm pieces. Samples 

were fixed in 10 % neutral buffered formalin (6.5 g disodium hydrogen phosphate 

(VWR International ltd, Poole, UK), 3.5 g sodium dihydrogen phosphate (VWR), 100 

ml of 40 % formaldehyde (VWR) and 900 ml deionised water) and stored for later 

analysis. 

 

2.1.6.1. Histological analysis  

Embedding and sectioning  

Fixed samples were trimmed and placed individually into cassettes that were 

then placed in an automated tissue processor (Shandon citadel 2000, Thermo Shandon 

Cheshire, UK) which then dehydrated, cleared and impregnated each sample with 

paraffin wax as follows:  

1. 50 % methylated spirit        30 min 

2. 80 % methylated spirit        90 min 

3. 100 % methylated spirit       90 min(x3) 

4. Chloroform                          50 min(x2) 

5. Molten wax                       105 min  

6. Molten wax                       90 min (x2) 

Samples were then embedded using a histoembedder (Leica UK Ltd, Milton 

Keyes, and UK). After hardening the wax blocks were trimmed, before three serial 

sections of 5µm thickness were sliced using a rotary microtome (Leica UK Ltd, Milton 

Keyes, and UK) and placed on glass slides. 
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Staining  

The sections were stained with Mayer’s haematoxylin and eosin Y using 

modification of the procedure of Bancroft and Stevens (1991), as follows:  

1. Xylene                    3 min then 2 min 

2. Absolute ethanol  2 min   

3. Methylated spirit            1 min 

4. Wash in water                30 sec 

5. Haematoxylin                   5 min 

6. Wash in water              30 sec 

7. 1 % acid alcohol                3 quick dips 

8. Wash in water                   30 sec 

9. Scott’s tap water               1 min 

10. Wash in water                   30 sec 

11. Eosin Y                             5 min 

12. Wash in water                   30 sec 

13. Methylated spirit               1 min 

14. Absolute alcohol                2 min then 1 min 

15. Xylene                                5 min  

Slides were kept in xylene until cover-slipping and mounted using Pertex. Identification 

and characterization of the different germ cell types was carried out according to 

Rodriguez et al. (2001). 
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2.2. Hormone Analysis  

2.2.1. Radioimmunoassay 

Plasma levels of testosterone, 11-Ketotestosterone and melatonin as well as in 

vitro pineal culture media melatonin were measured by radioimmunoassay. The first 

radioimmunoassay (RIA) was developed by Yalow and Berson (1960) to measure the 

insulin level in humans. Later on, RIA became an important tool for the measurement 

of small concentrations of many important biological compounds. An RIA is based on 

the reaction between an antigen and a specific antibody to form the antigen-antibody 

complex. After a prolonged incubation time the reaction will reach equilibrium between 

free or unbound antigen and antibody and bound antigen/antibody complex. The 

technique is dependent on determining the proportion of the total amount of antigen 

(free and bound) that is present in bound fraction. In order to calculate the amount of 

antigen, known amounts of both antibody and labelled antigen are added. When 

equilibrium is reached the labelled and unlabelled antigen would have bound to the 

antibody in the same ratio as that in which they were present originally. Once the 

reaction has reached equilibrium, charcoal is used to separate the bound complex from 

the unbound material before the supernatant is taken to measure the radioactivity in the 

unbound material using a scintillation counter. The amount of radioactivity is inversely 

related to the unknown antigen amount which is calculated using a known standard 

curve as reference. 
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2.2.2. Melatonin assay  

Melatonin present in both blood plasma and culture medium of pineal gland was 

measured using a direct radioimmunoassay adapted from Randall et al. (1995) as 

follows: 

 

Assay buffer 

Fresh buffer was made in the morning of the same day of the assay and 

refrigerated to 4 ºC before use. The following chemicals were dissolved at 50 ºC for 30 

minutes in 150ml nanopure water:  

2.688 g tricine [N-tris (hydroxymethyl) methylglycine] (Sigma-Aldrich, 

UK)  

1.350 g sodium chloride (BDH, Poole, England UK) 

0.150 g gelatine (BDH, Poole, England UK) 

 

Radiolabel  

A primary stock of melatonin [O-methyl-3H] (NET801250UC, Perkin Elmer, 

Cambridge, UK ) was supplied with a specific activity of 70-85 Ci/mmol. This primary 

stock was used to create a stock A by diluting 20 µl in 2 ml absolute ethanol (Fisher 

Scientific, Leicestershire, UK). This was stored at –20˚C in 20 ml high performance 

glass vials (Perkin Elmer Life Sciences, Cambridge, UK). A fresh working stock was 

then made for each assay from the stock A. Approximately 20 µl from stock A was 

diluted in 20 ml of buffer to give an approximate activity of 4000 disintegrations per 

minute (dpm)/100 µl of radiolabel.  
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Antibody  

Frozen dried sheep anti-melatonin antiserum (Stockgrand Ltd, University of 

Surrey, Surrey, UK) was reconstituted in 4 ml of assay buffer. This was then aliquoted 

in 100 µl and 200 µl volumes into stoppered 3 ml polystyrene tubes and kept at –20 ºC 

until used. The working solution was used by reconstituting one 200 µl aliquot in 40 ml 

of fresh assay buffer.  

 

Standards 

A stock solution of 1 mg/ml of melatonin, N-acetyl-5-methoxytryptamine 

(Sigma-Aldrich, UK), was prepared by dissolving 10 mg of melatonin in 10 ml of 

absolute ethanol and was stored in a high performance glass vial at –20 ºC until 

required. For each assay, two working solutions of 1 ng/ml and 2 ng/ml of standard 

were prepared from the primary stock by diluting aliquots in assay buffer; these were 

then used to create a standard curve. The standard curve was prepared to have 

concentrations ranging from 500 pg per tube to 0 pg melatonin per tube in duplicate 

tubes. In the first tube pair 250 µl of the 2 ng/ml standard were placed (i.e. 500 pg per 

tube standard) followed by 250 µl of the 1 ng/ml standard in the second tube pair (i.e. 

250 pg per tube standard) and thereafter a 1:1 serial dilution was performed with fresh 

assay buffer to produce a range of paired standards from 500 pg per tube to 1.95 pg per 

tube, an additional pair of tubes was included with just assay buffer (i.e. 0 pg per tube). 

 

Assay protocol 

All standards and samples were assayed in duplicate according to the following 

scheme:  
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1. Prepare a series of melatonin standards in 3 ml polypropylene tubes (LP3P) (Thermo 

life science, UK) to give a range of dilutions from 0-500 pg / 250 µl. Then add a further 

250 µl of assay buffer to these tubes.  

2. Add 700 µl of buffer to two tubes which are used to calculate the non-specific 

binding (NSB) and add 500 µl of sample to sample tubes.  

3. Add 200 µl of antibody to all tubes except the NSB’s, vortex and incubate at 20 ºC 

for 30 minutes.  

4. Add 100 µl of labelled melatonin to all tubes, vortex and incubate at 4 ºC for 18 hr.  

5. On the second day after overnight incubation, dissolve 0.48 g of dextran coated 

charcoal (Sigma-Aldrich UK) in 50 ml of assay buffer and stir on ice for 30 minutes. 

Then add 500 µl of this charcoal suspension to each tube, vortex and incubate at 4 ºC 

for 15 minutes.  

6. Centrifuge at 1730 xG for 15 minutes at 4 ºC.  

7. Transfer 1 ml of supernatant to 6 ml polyethylene scintillation vials (Perkin Elmer 

Life Sciences, Cambridge, UK) and add 4 ml of scintillation fluid (Ultima Gold, Perkin 

Elmer Life Sciences, Cambridge, UK).  

8. Place 4 ml of scintillation fluid into 3 extra vials. Into 2 of these extras, place 100 µl 

of tritiated melatonin from the previously made stock to calculate total radioactivity. 

Use the final vial to calculate background radioactivity (blank).  

9. Vortex all vials and count the radioactivity for 10 minutes in a scintillation counter 

(Packard 1900 TR Liquid Scintillation Analyzer, Canberra Packard Ltd).  

The unknown samples dpm values were compared to the standard curve dpm values 

and hence converted to pg melatonin per tube using Riasmart software. This value was 

subsequently converted to pg/ml plasma in an Excel spreadsheet using the following 

formula:  
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[(pg per tube/1000) x1300] x 2= pg /ml of melatonin in plasma 

When measuring melatonin concentration in pineal culture media, the same protocol 

was followed but media samples were diluted (1:10 day sample, 1:20 night samples) in 

assay buffer to a final volume of 500 µl. 

 

Quality Control & Validation  

Aliquots of known melatonin concentration, (50 pg/tube of N-acetyl-5-

methoxytryptamine), were stored at –70 ºC, and used to check the reproducibility of 

measurements both within and between assays  Intra- assay coefficient of variation was 

8.25 % (n=5) and inter-assay coefficient variation was 8.81 % (n= 20). The assay had 

previously been validated for use in sea bass by Vera et al. (2010). 

 

2.2.3. Testosterone Assay 

Plasma samples were analysed for testosterone using a protocol adapted from 

Duston and Bromage (1987) as follows: 

Steroid extraction  

Prior to RIA analysis, steroid extraction from plasma samples was required. Steroid 

was extracted using organic phase solvent (ethyl acetate) as follows:  

1. Add 200µl of plasma samples to 3 ml polypropylene tubes (LP3P) 

2. Add 1 ml ethyl acetate to each tube and cap the tube 

3. Spin tubes in rotary mixer for 1 hour  

4. Centrifuge tubes at 770 xG, for 10 minutes at 4 ºC 

Extracted samples can be then stored at 4 ºC until assay. 
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Assay Buffer  

Buffer was made fresh for every assay by dissolving the following chemicals in 

250 ml of nanopure water at 50 ºC for 30 minutes and was then refrigerated to 4 ºC 

before use:  

4.44 g disodium hydrogen phosphate  

2.91 g sodium dihydrogen phosphate  

2.25 g sodium chloride  

0.25 g gelatine  

 

Radiolabel  

A primary stock of tritiated testosterone, ([1, 2, 6, 7-3H] testosterone) 

(Amersham, UK), was supplied in 250 µCi quantities with a specific activity of 70-105 

Ci/mmol. An intermediate stock (stock A) was made by diluting 20 µl from the primary 

stock in 2 ml absolute ethanol and stored at –20 ºC in 20 ml glass vials. A fresh working 

solution was then made for each assay from stock (A) by diluting 50 µl of stock (A) in 

10 ml of assay buffer to give an approximate activity of 15,000 dpm/100 µl.  

 

Antibody  

Anti-testosterone antiserum (CER group, Marloie, Belgium) was reconstituted 

in 10 ml of nanopure water.  

 

Standards  

A stock of standard solution of 100 ng/ml of testosterone was prepared by 

dissolving 1 mg testosterone (Sigma-Aldrich, UK) in 10 ml of absolute ethanol and 

stored in glass vial at –20 ºC until required. A working solution (10 ng/ml) was 

prepared by diluting 100 µl of stock solution in 0.9 ml of absolute ethanol and used to 
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prepare a standard serial dilution curve ranging from 1000 pg per tube to 1.95 pg per 

tube in 100 µl absolute ethanol. The 1000 pg per tube standard was prepared from 100 

µl of standard working solution, then all subsequent standards being prepared from a 

series of 1:1 serial dilutions as outlined in Table 2.1. 

 

Assay protocol  

1.  Add 200 µl of sample extract into duplicate 3 ml polypropylene tube.  

2. Prepare standard curve, as described in Table 2.1, in 3 ml polypropylene tubes and 

include 4 tubes containing only 100 µl absolute ethanol which are used to calculate the 

zero testosterone level and  non-specific binding (NSB’s).  

3. Dry down all tubes in a rotary vacuum evaporator (mivac quattro concentrator, 

Genovac ltd, Ipswich, UK) at less than 35 ºC for approximately 45 minutes, and then 

cool the tubes at 4 ºC.  

4. Add 100 µl of antibody solution to all tubes, except the NSB’s (tubes 23&24) to 

which add 100 µl of assay buffer).  

5. Add 100 µl of tritiated -Testosterone solution to all tubes, vortex and incubate at 4 ºC 

for 18 hr.  

6. Dissolve 0.48 g of dextran coated charcoal in 100 ml of assay buffer and stir on ice 

for 30 minutes, then add 500 µl of the charcoal suspension to each tube, vortex and 

incubate at 4 ºC for 15 minutes.  

7. Centrifuge at 1200 xG at 4 ºC for 15 minutes   

8. Transfer 400 µl of supernatant to 6 ml polyethylene scintillation vials and add 4 ml of 

scintillation fluid (Ultima Gold).  
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9. Place 4 ml of scintillation fluid into 3 extra vials. Into 2 of these extras, place 100 µl 

of tritiated melatonin to calculate total radioactivity. Use the remained vial to calculate 

background radioactivity (blank).  

10. Vortex all vials and count the radioactivity for 5 minutes in a scintillation counter.  

 

Table 2.1. Standards of testosterone (T) and 11-ketotestosterone (11-KT), all standards 

were produced in duplicate of 100 µl of working solution with subsequent being 

prepared from a series of 1:1 serial dilutions. 

Tube No. Standard 



+ ethanol 



T (ng) 

 

11-KT (ng) 

 1&2 100 None 1000 3000 

3&4 100 100 500 1500 

5&6 100 of 3&4 100 250 750 

7&8 100 of 5&6 100 125 375 

9&10 100 of 7&8 100 62.5 187.5 

11&12 100 of 9&10  100 31.3 93.75 

13&14 100 of 100 15.6 46.9 

15&16 100 of 100 7.8 23.4 

17&18 100 of 100 3.9 11.7 

19&20 100  of 
17&18  100 

1.95 
(remove 100µl 

from  each) 

5.9 
(remove 100µl 

from  each) 
21&22 None  100 0 0 

23&24 None  100 NSB NSB 

 

 

Results calculation  

The unknown samples were compared to the standard curve dpm values and 

converted to pg testosterone per tube using Riasmart software. Then these values were 

converted to pg/ml testosterone in plasma using the following formulae:  















 700

400
tubeperpg pg of testosterone per 200 μl of extracts   (1) 
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













 51200

200
)1(  pg ml-1 of testosterone in plasma    (2) 

 

Quality control and validation 

Testosterone line standard, made up from known concentration (94 pg/ml), was 

stored in absolute ethanol at -20 ºC and was used as quality control in the same assay 

and between assays. The intra-assay coefficient of variation was 6.22 % (n=4) and the 

inter-assay coefficient of variation was 9.06 % (n=8). 

 

2.2.4. 11-KT Radioimmunoassay  

The radiolabel, antibody and analysis procedure of 11- ketotestosterone 

radioimmunoassay were kindly provided by Dr. Alexis Fostier (Department of Animal 

Physiology and Livestock Systems, Rennes Research Centre, France). Plasma samples 

were extracted by the same procedure used for testosterone; and levels of 11-

ketotestosterone were measured by RIA according to Fostier et al. (1982). 

  

Assay Buffer 

Buffer was made fresh for every assay by dissolving the following chemicals in 

250 ml of nanopure water at 50 ºC for 30 minutes before transferring to a refrigerator to 

cool to 4 ºC prior to use:  

250 ml nanopure water 

3.55 g disodium hydrogen phosphate 

3.45 g sodium dihydrogen phosphate 

2.25 g sodium chloride 

0.25 g gelatine 
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Radiolabel  

A primary stock of tritiated 11-Ketotestosterone was supplied with a specific 

activity of 84 Ci/mmol. An intermediate stock (stock A) was made by diluting 20 µl 

from the primary stock in 2 ml absolute ethanol and stored at –20 ºC in 20 ml glass 

vials. A fresh working solution was then made for each assay from the stock (A) by 

diluting 200 l of stock (A) in to 20 ml assay buffer to give an approximate activity of 

15,000 dpm/100 µl.  

 

Antibody 

Antibody supplied in 500 l volumes was diluted 1:150 to make the working 

solution. 100 l of working solution was added to all tubes except the NSB as outlined 

below.   

 

Standards  

Reference standards were prepared from a serial dilution (1:1) of the stock 

standard in absolute ethanol to have standard curve ranging from 3000 to 0 ng of 11-

Ketotestosterone (Table 2.1).  

 

Assay protocol  

The same protocol for testosterone RIA was used in 11- ketotestosterone 

determination. 

 

Quality control and validation  

The sensitivity of the assay, i.e. the minimum amount of 11-Ketotestosterone 

statistically distinguishable from zero, was 5.9 pg. quality control tubes with content of 
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1500 pg 11-KT standard  approximately  were used to check the reproducibility of the 

measurements both within and between assays. The intar-assay coefficient of variation 

was 8.71 % (n=4) and the inter-assay coefficient of variation was 7.87 % (n=8). Serial 

dilutions of pooled sea bass plasma were used to obtain and inhibition curve (Figure 

2.1). When plotted against the standard curve it was observed that the curve was 

parallel to the standard curve and no statistical difference in the gradient was found 

(ANOVA), indicating that the samples were immunologically similar to the standards.   

LN defined dose

1 2 3 4 5 6 7 8 9

LO
G

IT
 %

 m
ax

im
um

 b
in

di
ng

-6

-4

-2

0

2

4
11KT standard
Pooled seabass plasma sample

plasma y=1.21x + 5.26
r2 = 0.994

Std  y=1.20x + 5.24
r2 = 0.997

 

Figure 2.1 Parallelism of an inhibition curve obtained from serial dilution (1:10) of 

pooled plasma extract of male sea bass and standard.  Each point represents the mean of 

duplicate measurements. The curve has been linearised using the logit transformation, 

with the x-axis denotes the natural log of 11- ketotestosterone content in standard. 
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2.3. Quantitative real time PCR 

In experiments where gene expression activity was measured, quantitative real 

time PCR assays were established based around SYBR green chemistry using the 

methods outlined below. 

 

2.3.1. Total RNA extraction  

Total RNA was extracted from all tissues with the same method: fish were 

sacrificed by lethal dose of anaesthesia followed by decapitation, with brains and 

pituitaries being quickly removed and placed in DNAse, RNAase free cryo vials (Alpha 

laboratories, UK) then frozen over liquid nitrogen vapour before being transferred to a -

70 ºC freezer for later total RNA extraction. For other organs, about 100- 200 mg of 

tissue was dissected and immediately frozen over liquid nitrogen vapour and then stored 

in -70 ºC freezer. Thereafter the stored samples were homogenised on ice in RNA 

extraction buffer TRI Reagent® (Sigma-Aldrich, UK) (1 ml per 100 mg of tissue) using 

a rotating probe homogeniser (Ultra-Turrax®). To avoid contamination between 

samples, rotating probe and tweezers were washed between samples by ethanol 

followed by two washes of distilled water. Homogenate samples were centrifuged at 

12,000 xG for 10 minutes at 4 ºC in order to remove the insoluble material 

(extracellular membranes, polysaccharides, and high molecular weight DNA). Then, 

each ml of clear supernatant was transferred into a clean (DNase and RNaase free) 1.5 

ml tube and samples were incubated for 5 minutes at room temperature to ensure 

complete dissociation of nucleoprotein complexes. After incubation 0.2 ml of 

chloroform (Sigma-Aldrich, UK) was added per ml of homogenised sample, the tubes 

were then mixed with a vortex mixer for 10 seconds, incubated at room temperature for 

10 minutes, then centrifuged at 12,000 xG for 15 minutes at 4 ºC. The colourless upper 
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aqueous phase containing RNA was transferred to a fresh 1.5 ml tube and 0.5 ml of 

isopropanol (Sigma-Aldrich, UK) added to each tube and mixed well by inverting the 

tubes. The mixture was then incubated for 10 minutes at room temperature, then 

centrifuged at 12,000 xG for 10 minutes at 4 ºC. Consequently, the RNA precipitated as 

a pellet on the side and bottom of the tube, the supernatant was discarded and the pellet 

was washed with 1 ml of 75 % ethanol (Sigma-Aldrich, UK) and then centrifuged at 

7,500 xG for 5 minutes at 4 ºC. This washing step was repeated twice. RNA pellets 

were air dried from ethanol for 10-15 minutes and pellets were reconstituted in 50 µl or 

more MiliQ water according to the pellet size. Samples were stored at -70 ºC until 

quality check and cDNA synthesis. 

 

2.3.2. RNA quality check 

RNA quality checks were performed with a Nanodrop spectrophotometer 

(Labtech Int., UK) to evaluate the absorbance ratio at 260/280 and electrophoresis to 

check for RNA degradation: a sample with an absorbance ratio at 260/280 >1.8 

indicates a high level of purity, not contaminated by protein (McKenna et al., 2000). 

RNA samples were checked for degradation by running 2 µg of denatured total RNA by 

electrophoresis, on an agarose gel. Each RNA sample was mixed with 4 µl loading dye, 

10 µl formamide and made up to 20 µl total volume with DNA/RNA free water, then 

RNA samples were incubated at 65 ºC for 30 minutes after which samples were 

incubated on ice for 1 minute. After that samples were loaded in a 1 % agarose gel with 

Ethidium bromide (nucleic acid stain) (50 µg /100 ml agarose)  and run for 45 minutes 

at 100 V and then the gel was visualized on a UV transilluminator (In Genius bio 

imaging, SYNGENE, UK). The total RNA quality was subjectively assessed based on 



Rania Ismail                                                 Chapter2: General Materials & Methods 

 

 79 

the integrity of the rRNA bands (18s and 28s) as they appeared after separation by gel 

electrophoresis (Figure 2.2). 

 

 

 

 

 

 

 

Figure 2.2. Typical total RNA quality showing rRNA 18s and 28s sharp bands after 

separation by gel electrophoresis. 

 

2.3.3. DNAse treatment 

After the extraction of the RNA and quality checks, samples were treated to 

remove any contaminating DNA and the DNAse and divalent cations from RNA 

preparations; this was done by using a commercial DNase treatment kit (DNA-free, 

Applied Biosystems, UK). The treatment was performed by adding 0.1 volume of 10x 

DNase1 buffer and 1 µl of rDNase enzyme to 10 µg of total RNA in a total reaction 

volume of 50 µl. Each sample tube was mixed gently and incubated at 37 ºC for 30 

minutes. After incubation 5 µl of re-suspended DNase inactivation reagent was added 

and mixed well, incubated 2 minutes at room temperature, centrifuged at 10,000 xG for 

1.5 minute. The total RNA supernatant was then transferred to fresh tube. 
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2.3.4. Synthesis of sea bass cDNA 

Complementary DNA (cDNA) is typically generated from RNA by the action of 

reverse transcriptase, which reverse transcribes a single strand of total RNA into single- 

stranded cDNA (Krebs et al., 2011). cDNA was prepared using a High-Capacity cDNA 

Reverse Transcription kit (Applied Biosystems) as follows: 1 µg of total RNA was 

mixed with master mix containing 2 µl of 10x RT buffer, 100 mM dNTPs mix, and 2 µl 

10 x RT Random Primer and 4.2 µl of nuclease-free water in a final reaction volume of 

20 µl. Tubes were centrifuged briefly to concentrate the contents at the base of the tube 

and loaded into a thermal cycler (T gradient thermocycler, Whatman Biometra, 

Goettingen , Germany)  set on a program of 10 min at 25 ºC, then 120 min at 37 ºC 

followed by an inactivation step at 85 ºC  for 5 min. cDNA samples were then stored at 

-20 ºC. 

 

2.3.5. Cloning  

To aid sequence identification and prepare stable QPCR standards PCR products 

(see 2.3.7) were routinely cloned into a plasmid vector (PGEM®-T easy vector, 

Promega, UK). Prior to cloning an aliquot of the target, the PCR product was checked 

for size and purity (i.e. single product) by gel electrophoresis and the remaining PCR 

product was then purified using a PCR purification kit (Illustra®, GE Healthcare), 

according to the manufacturer’s instructions, to remove excess primers, dNTPs and 

enzymes. Then the purified PCR product concentration was measured using Nanodrop 

spectrophotometer. The amount of PCR product to be used as insert was calculated to 

give a ratio of 1:3 vector to insert. The ligation of PCR product was performed 

according to the Promega kit manual, and then gently mixed with pipetting and 

incubated at room temperature for 1 hour. The plasmid containing the ligated PCR 
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product was then transformed into 50µl of JM109 High-Efficiency competent cells by 

heat shock for 45-50 seconds at 42 ºC, then tubes were immediately returned to ice for 2 

minutes. 950 µl of SOC medium (provided with the kit) were then added and the 

mixture was incubated at 37 ºC for 1.5 hours on a shaker mixer (~ 150 rpm). The 

mixture was then spread on preheated LB agar plates and incubated overnight at 37 ºC. 

The LB agar plates contained ampicillin (100 µg/ml), Kanamycin (50 µg/ml), X-gal 

(40mg/ml in dimethyleformamide) and IPTG (40µl of 100 mM for each plate) in 

accordance with the kit guidelines. On the following day, the white colonies only were 

selected as these colonies originated from cells that contained plasmids with ampicillin 

and kanamicin resistance genes but furthermore the white colour indicated a successful 

ligation of PCR product due to the disruption of the reaction of LacZα with X-gal. The 

white colonies were picked and grown overnight in 4 ml of LB containing ampicillin 

(100µg/ml). The plasmid-vector was purified using PureLink Quick plasmid Miniprep 

kit (Invitrogen, UK) following the kit instructions. The column was eluted with 50 µl of 

MilliQ water, and the plasmid was digested with EcoR1 restriction enzyme, which cut 

the vector before and after the cloning site. The size of the insert was checked by gel 

electrophoresis for the EcoR1 treated plasmid. 

 

2.3.6. Sequence analysis  

The sequence analysis was performed using a Beckman 8800 auto sequencer 

(Beckman Coulter, UK) following amplification of the cloned insert using a sequencing 

reaction kit (GenomeLab DTCS Quick Start Kit). The initial amplification reaction 

contained the recommended amount of the purified plasmid, 2 µl of sequencing 

mastermix, 1 µl of M13F or M13R (4µM) primer in a final volume of 5µl. The tubes 

were placed in a thermo cycler with the following cycling program: 30 cycles of 96 ºC 
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for 20 sec, 50 ºC for sec, and 60 ºC for 4 min. After PCR amplification 15 µl of MilliQ 

water were added for each reaction tube, mixed and transferred into 1.5 ml tubes. Then 

reaction was stopped by adding 5 µl of stop/glycogen solution consisting of 2 µl of 100 

mM EDTA (pH 8.0), 2 µl of 3M Sodium acetate (pH 5.2) and 1 µl of glycogen 

(supplied with the kit). DNA precipitation was preformed by adding 60 µl of cold 

(chilled in -20°C freezer) 95 % ethanol, which was then mixed before centrifugation at 

14,000 xG for 15 min. The resulting pellet was rinsed with 150 µl of cold 70 % ethanol 

with the last wash being removed by pipette and the pellet being left to air dry at room 

temperature for approximately 15 minutes. After that each sample was re-suspended in 

30 µl of sample loading solution (supplied with the sequencing kit) and loaded to the 

sequencing plate. 

Lasergene SEQman software (DNASTAR, USA) was used for editing and to assemble 

the DNA sequence results. The identity of the sequenced cloned PCR products were 

verified to be 100 % overlapping using BLAST search. 

 

2.3.7. Quantitative PCR (QPCR) 

  All cDNA used in quantitative PCR (QPCR) assays was synthesised using the 

methods described above. Genes measured included the three different GnRH forms 

(GnRH1, GnRH2 and GnRH3), two kisspeptin forms (kiss1 and kiss2) and kisspeptin 

receptor (Kissr4), as well as fshβ and lhβ gene expression. The gene, elongation factor 1 

alpha (ef1α) was used in all cases as a housekeeping reference gene, as it is stable 

across different stages of development (Mitter et al., 2009). For all target genes, two 

primer pairs were designed: one was used to generate a large fragment which was 

cloned and acted as the assay standard and a second primer pair (smaller) was designed 

within this fragment and used for the QPCR assay itself. For GnRH2 and GnRH3, due 
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to the small size of the sequence, the same primer pair was used to create the cloned 

standard as well as for the QPCR assay. Primers for the target genes and for the 

reference gene as well as accession numbers for each target are listed in Chapter 3, 

Table 3.1. QPCR reactions contained 1µl of each forward and reverse primers (7 

pmol/µl), 5µl cDNA, 10 µl SYBR-green QPCR mix ((ABsolute TM QPCR SYBR Green 

Mix, ABgene, UK (consisting of  Thermo-StartTM DNA polymerase, a proprietary 

reaction buffer, dNTP’s and SYBR Green I with 3 mM of MgCl2 ) and 3 µl of MilliQ 

water in a final reaction volume of 20 µl. Reactions were run in a Quantica 

thermocycler (Techne, Quantica, Cambridge, UK); annealing temperature and product 

length for each gene are shown in Chapter 3, Table 3.1. The QPCR cycling program 

was the same for all reactions: first there was a “hotstart” enzyme activation for 15 min 

at 95 ºC, followed by 45 cycles of 20 sec denaturation at 95 ºC, 20 sec annealing, 30 sec 

extension at 72 ºC, which was then followed by a melt curve temperature ramp from 70 

to 90 ºC with fluorescence being measured every 0.5 ºC. 

The copy numbers of each gene were automatically calculated using the 

Quantica software by a comparison to the created standard curve constructed from the 

results of a parallel set of reactions containing a serially diluted linearised plasmid with 

the insert fragment of target gene sequence. The standard for each assay was prepared 

by cutting the previously sequenced, cloned and purified plasmid containing the ligated 

target gene fragment at a single site, producing linearised plasmid. The restriction 

enzyme was selected following examination of the manufacturer’s supplied vector map, 

as well as checking the inserted target gene sequence using SeqBuilder (DNASTAR, 

USA) to make sure that the inserted sequences lacked a restriction site for the selected 

enzyme. The restriction digestion was performed by adding 500 ng of plasmid to 1 µl of 

10X specific enzyme (e.g. HindIII, BamH1, 0.2 µl of the specific restriction enzyme 
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and completed with water to a final reaction volume of 10 µl. The reaction was then 

incubated at 37 ºC for 2 hours followed by 10 minutes of deactivation at 70 ºC. After 

that, 2 µl of the reaction was checked by electrophoresis on 1 % agarose gel. After the 

linearization of the plasmid, the DNA concentration in the digest was measured by the 

Nanodrop spectrophotometer. The preparation of plasmid-based standards for each 

target gene was calculated using the supplier’s guidance notes (Applied Biosystems, 

2003). In short, the first stock standard was calculated to be 108 copies/ 5 µl in a final 

volume of 1ml. This was made by adding the calculated amount of linear plasmid to λ-

TE buffer. After this, serial dilutions were prepared from the 108 stock ranging from 107 

to 10 copies per 5 µl in 1 ml λ-TE buffer total volume. The λ-TE buffer consisted of a 

mixture 10 mM Tris, pH 8.0 (Sigma-Aldrich, UK), 100 mM EDTA (Sigma-Aldrich, 

UK) and 50 pg / µl of λDNA (Sigma-Aldrich, UK). The λDNA is included within the 

buffer to saturate the storage tubes binding potential to free DNA and thus ensure the 

copy number of the target plasmid remained constant.  

Following their preparation, a test assay was run including all plasmid 

standards, in parallel to a limited range of sample cDNA at different dilution rates. This 

assay helped in each case to identify the detection range and amplification efficiency of 

the assay. It also identified the three standards to be selected for subsequent gene 

expression quantification. Subsequently, each QPCR plate was prepared, including, in 

duplicate, three standards, non-template controls (MilliQ water) and four internal 

control samples (four random cDNA samples which were included in every plate to 

adjust for inter-assay variation) with the remainder of the plate being filled with 

unknown samples.  
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2.3.7.1 Gene copy number determination and quality assurance.  

Gene copy number in each reaction was automatically calculated by the 

Quantica software compared to internal standards. QPCR efficiency was calculated by 

Quantica software for each plate run, with in all cases the efficiency being greater than 

90 % (Figure 2.3 A). The Quantica software automatically determined the threshold 

fluorescence for crossing point determination (cp value) based on 3 times standard 

deviations above the mean “noise” fluorescence from the first 10 cycles (Figure 2.3 B). 

Following 45 amplification cycles the assay incorporated a melt curve analysis to 

determine the temperature at which the PCR product dissociated and thus the 

fluorescence dropped to background levels (Figure 2.4 A). The Quantica software then 

plotted this dissociation curve as a negative derivative of the fluorescence vs 

temperature (Figure 2.4 B). If the peaks (i.e. melting temperature) of all samples and 

standards were at the same temperature this indicated that the primer pairs used for the 

QPCR were highly specific and producing a single product. If however additional 

and/or shifted peaks were detected this would be an indication of primer dimers, 

mispriming or some form of contamination and the assay would have to be redesigned 

or the sample set repeated to remove this ambiguity. 
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Figure 2.3. A. standard curve prepared from serial dilution of known amount of 

linearised plasmid containing the ligated target gene. B. log plot amplification curve: 

the red horizontal line is the threshold of fluorescence at which threshold cycles are 

crossing (red points), the blue horizontal line is the noise threshold. The samples are 

shown in green, standards are in red, and the non template controls are in blue. 

A 

   B 
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Figure 2.4. Melt curve analysis of a typical QPCR assay: A dissociation peak shown as 

fluorescence vs temperature; B negative derivative of fluorescence vs temperature. The 

red horizontal line is the automatic threshold which determines the area of the peak. 

Samples are in green colour, standards in red and non template controls are in blue 

lines.     
 

A 

B 
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2.4. Pineal culture protocol 

In Chapter 5 the nonvisual light perception of the sea bass pineal gland was 

examined ex vivo using the following culture technique. Fish were killed between 12:00 

and 16:00 and pineal glands removed after opening the skull dorsally around the pineal 

window and extracting the intact gland under the dissecting microscope. After removal, 

pineal glands were washed with culture medium before being held in sterile media prior 

to being installed in the culture system. The pineal culture system consisted of a 

continuous flow through system regulated by a peristaltic pump at a flow rate of 1.5 ml 

of culture medium/hour and a fraction collector automatically collecting samples every 

hour after passing through the culture chambers. The system was previously described 

by Migaud et al. (2006) (Figure 2.5). RPMI culture media (Sigma-Aldrich, UK) were 

dissolved in 1 liter of distilled water, along with 4.77 g/L HEPES sodium salt (Sigma-

Aldrich, UK) with the pH adjusted to 7.4 using 2M Hydrochloric Acid. Penicillin–

streptomycin (10 mg/L) (Sigma -Aldrich, UK) and Fungizone (5 mg/mL) (Sigma-

Aldrich, UK) were added to the culture media to avoid bacterial and fungal 

development, and then culture media was filter sterilised through 0.2µm filter paper 

into sterile flasks and stored in a fridge. It was replaced daily. The pineal gland was 

placed in an individual culture chamber within the isolated culture cabinet that allowed 

a full control of temperature and light (intensity, spectrum and photoperiod). Media 

samples from each individual culture chamber were collected by an automatic fraction 

collector with the samples being removed daily and frozen in an ultracold freezer (-

70°C) for later analysis. 
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Figure 2.5.  Ex vivo pineal gland culture system (Taken from Migaud et al., 2006). 
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2.5. Pituitary cell culture 

In Chapter 4 the responsiveness of isolated pituitary gonadoroph cells to 

synthetic stimulation was examined using the following culture methodology adapted 

from Chang et al. (1990). 

 

Dispersion medium (DM) preparation: 

  Ca2+ and Mg 2+  free dispersion medium was prepared from 25 % of 1x culture 

medium (L-15+L-glutamax, Gibco, Invitrogen), 75 % of 1x Hank’s Balanced Salt 

(HBSS) (Gibco, Invitrogen), 25 mM Hepes (Gibco, Invitrogen), 0.5 % bovine serum 

albumin (BSA) (Sigma-Aldrich, UK). All the ingredients were mixed and the pH 

adjusted to 7.4 with 1 M NaOH (Sigma-Aldrich, UK). The medium was filtered through 

0.2 µm filter, and sterility checked using tryptone soya broth (TSB) (BD biosciences, 

UK) for 2-3 days in 22˚C and 37˚C incubators including negative controls. The sterile 

medium was then stored in the fridge until use. On the sampling day, antibiotics 

(Sigma-Aldrich, UK) were added to the dispersion medium as follow: 

Penicillin/streptomycin (100 IU/ml of medium) (Gibco, Invitrogen), Kanamycin (100 

IU/ ml of medium) (Gibco, Invitrogen) and 2.5 mg/L Amphotericin B (Sigma-, Aldrich, 

UK) as recommended by manufacturers. 

 

Culture medium (CM) preparation:  

The culture medium was made up from one liter of 1xL-15+L-glutamax, 25 mM 

Hepes and 0.1 % bovine serum albumin (BSA). All the ingredients were mixed and the 

pH was adjusted to 7.4 with 1 M NaOH and sterility checked as previously described. 

On the sampling day, 10 % of sterile FBS (Foetal bovine serum) and antibiotics 
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(Penicillin/streptomycin (100 IU/ml of medium), Kanamycin (100 IU/ ml of medium) 

and 2.5 mg/L Amphotericin B) were added as for the dispersion medium. 

 

Primary cell culture procedure:  

 European sea bass pituitaries were removed using sterile dissecting instrument, 

kept in ice-cold dispersion medium in 50 ml Falcon tubes and washed in a Petri dish 

with dispersion media several times under sterile conditions. The DM was then 

decanted and pituitaries were cut into very small fragments using a scalpel in the 

laminar flow cabinet. Cells were enzymatically dispersed using trypsin/DNAse II 

(method modified from Chang et al., 1990). Pituitary fragments were exposed to DM 

with 0.25 % trypsin for 40 minutes at room temperature, followed by washing with 

DM. Then a second treatment of trypsin was done for 40-50 minutes followed by 

DNAse II (0.1 mg /10ml) treatment for 10 minutes. Fragments were then mechanically 

dispersed by gentle suction and extrusion using a plastic transfer pipette to separate 

cells. Dispersed cells were harvested by centrifugation at 200 xG for 15 minutes and 

cells were reconstituted in 5 ml of culture medium containing 10 % foetal bovine 

serum. The count and viability of cells were calculated by using 100 µl of cell 

suspension + 100 µl of Trypan Blue dye (0.4% solution, Sigma, UK). Trypan Blue dye 

is an exclusion dye, viable cells remaining unstained, and enables estimation of overall 

culture viability. Counting was carried out using a standard Neubauer haemocytometer 

(0.1mm) and inverted microscope (IMT-2, Olympus). 

 The cell number per ml was estimated as the average count per 1 mm2 square x 

dilution factor (dilution with trypan blue) x 104. Percentage of viability was estimated 

as total viable cells (unstained) / total cells x100. The cell dispersion method yielded 

viability of 95-97 %. Dispersed cells were cultured on 12-well culture plates (Nunclon 
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delta, Thermo scientific) in culture medium containing 10 % foetal bovine serum. The 

plates were sealed with parafilm and incubated statically at 22 ˚C for 72 hours in an 

incubator for complete cell attachment; cultured cells were checked every day under an 

IMT-2, Olympus inverted microscope for viability and attachment percent (Fig. 2.6). 

After complete attachment, the culture medium was changed with fresh serum free 

culture medium as negative control or containing the treatment dose. All treatments and 

controls were performed in quadruplicate (four biological replicates). After incubation, 

the culture medium was removed and the cells were washed twice using 1 ml / well 

phosphate buffered saline 1x (PBS) (Gibco, Invitrogen), and RNA extracted from the 

wells using 1 ml / well of TRI Reagent® (Sigma-Aldrich, UK). Cells were scraped and 

moved with the TRI reagent into a clean (DNase and RNaase free) 1.5 ml tube, then 

cells were mixed well with the TRI Reagent by pipetting up and down in the tube. Then 

samples were stored in -70 °C freezer for later analysis using the RNA extraction 

protocol described in 2.3.1.    

 

 

 

 

 

 

 

 

 

Figure 2.6.  Sea bass pituitary cell after complete attachment (72 hours of incubation). 

(A) x 40 magnification, (B) x 100 magnification photographs were taken using IMT-2, 

Olympus inverted microscope with green filter. 

 

A 
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2.6. Data and Statistical analysis 

Statistical analysis was performed with MINITAB ® version 16.0 (Minitab Ltd., 

Coventry, UK). Normality and homogeneity of variance were tested using 

Kolmogorov-Smirnov and Bartlett’s tests test and data was transformed when needed. 

In Chapter 3, the temporal variations in gene expression, plasma steroid levels and GSI 

were compared using a one way ANOVA followed by Tukey’s multiple comparisons 

post hoc test to identify significant differences. Correlations between all measured 

parameters were tested using Pearson’s product method then the specific association 

with fshβ and lhβ and Kiss1/2/r4 GnRH2, GnRH3 & GnRH1 was explored using 

stepwise multiple regressions. In Chapter 4, for the incubation time experiment, 

differences between treatments and the control were analyzed using T- test for each 

time point, while in the second trial a one -way ANOVA was used followed by Tukey’s 

test, while the comparisons between the two sampling times in the third experiment 

were analysed using two-way ANOVA. In Chapter 5, comparisons between different 

plasma melatonin levels at different temperatures and photoperiod (long day and short 

day) under in vivo and in vitro conditions were tested using two-way ANOVA followed 

by Tukey’s test for mean comparisons.  The melatonin levels under DD were tested by 

one- way ANOVA followed by Tukey’s test for mean comparisons. In all cases data are 

expressed as mean ± S.E.M values. In all cases a p value  0.05 was considered to be 

statistically significant. 
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CHAPTER 3 

 

KISSPEPTIN AND SEASONAL CONTROL OF REPRODUCTION 

IN MALE EUROPEAN SEA BASS (DICENTRARCHUS LABRAX) 
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3.1. INTRODUCTION  

In vertebrates, reproduction is regulated by a complex network of endocrine, 

paracrine and autocrine regulatory signals along the Brain-Pituitary-Gonadal (BPG) 

axis (Weltzien et al., 2004; Zohar et al., 2010). This axis is entrained by external cues, 

mainly photoperiod and temperature in temperate organisms (Bromage et al., 2001; 

Pankhurst & Porter, 2003; Migaud et al., 2010). The BPG axis is organised around; 1) 

the hypothalamus of the brain which, releases neuropeptides (gonadotropin releasing 

hormones, GnRHs) and neurotransmitters, which stimulate 2) the pituitary 

(gonadotroph cells), which synthesises and releases gonadotropins (follicle stimulating 

hormone, FSH and luteinising hormone, LH) which are transferred through the 

bloodstream and stimulate 3) the gonads to produce sex steroids (androgens, oestrogens 

and progestagens) that control gametogenesis and positive/negative feedback regulation 

of reproduction (Zohar et al., 2010).  

At the level of the brain (hypothalamus), the activation of the GnRH neurons 

and subsequent release of GnRH into the pituitary has traditionally been described as 

the starting point of the BPG axis controlling the onset of puberty in fish. Many studies 

have focused on the characterisation of this GnRH system (identification, localisation, 

pharmacology) in a range of teleosts and it has emerged to be more complex and 

diverse than first thought, with up to 24 distinct forms of GnRH identified in a variety 

of species ranging from invertebrates to humans, including eight variants isolated from 

fish brains (Kah et al., 2007). Based on phylogenetic analysis of sequences and 

associated sites of expression, variants have been segregated into three branches named 

GnRH1, 2 and 3 (Kim et al. 2011). In the European sea bass, these three forms have 

previously been referred to as sea bream GnRH, sbGnRH (GnRH1), chicken GnRH-II, 

cGnRH-II (GnRH2) and salmon GnRH, sGnRH (GnRH3) (Zmora et al., 2002; 
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Gonzalez-Martinezet al., 2001; 2002). GnRH1 has been suggested to be the major 

hypophysiotropic hormone in sea bass (Gonzalez-Martinezet al., 2002; 2004 a& 

b).whereas the significance of the GnRH2 and GnRH3 remains unclear. GnRH3 

immunoreactive nerve fibres have been shown to innervate the pituitary of the sea bass 

although to a lesser extent than GnRH1 (Gonzalez-Martinezet al., 2002; 2004a). Both 

GnRH1 and GnRH3 mRNAs have been shown in the European sea bass to increase 

along with the GnRH-R (GnRH receptor) and fshβ gene expression during sexual 

differentiation in both males and females (Moles et al., 2007). 

Recent research in mammals has brought to light the importance of a number of 

other upstream signal peptides that regulate GnRH expression (e.g. kisspeptin & 

neurokinin B) or neurotransmitters that work in association with GnRH’s actions to 

regulate gonadotropin synthesis e.g. dopamine, neuropeptide Y (NPY) and gamma 

aminobutyric acid (GABA) (Mananos et al., 1999; Vidal et al., 2004; Zohar et al., 

2010). Kisspeptins which are peptides encoded by the KISS1 gene, belonging to the 

RFamide family are ligands for the receptor Kiss1r (previously called GPR54) (Lee et 

al., 1999; Kotani et al., 2001; Muir et al., 2001). The KISS1 gene was initially identified 

as a metastasis suppressor in malignant melanoma cells (Lee et al., 1996). KISS1R gene 

mutations were shown to impair reproductive function in human (de Roux et al., 2003; 

Seminara et al., 2003), and the targeted Kiss1r deletion cause serious retardation of 

mouse gonadal growth and fertility (Funes et al., 2003), suggesting that kisspeptin 

system plays a crucial role in mammalian reproduction. Studies demonstrated that the 

Kisspeptin system responds to internal (sex steroids and metabolic factors) and external 

factors (environmental signals) and regulate GnRH neurons in mammals. When 

exogenous kisspeptin was administered to mammals, it elicited rapid increases in 

plasma FSH and LH levels (Gottsch et al., 2004; Irwig et al., 2004; Dhillo et al., 2005; 
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Navarro et al., 2005a). It is believed that kisspeptin roles have been conserved in fish 

and as such it has been associated with the onset of puberty (Filby et al., 2008; 

Martinez-Chavez et al., 2008). Furthermore kisspeptin was shown to have similar 

GnRH regulatory abilities in fish (Elizur, 2009) as well as being susceptible to sex 

steroid feedback (Kanda et al., 2008).  

While only one signal peptide kisspeptin 1 (KISS1) and receptor (KISSR1, 

formerly referred to as G-coupled protein receptor 54 (GPR54) are present in mammals, 

in silico analysis of the sequenced teleost genomes supported by functional analysis 

studies have revealed two forms of both the signal peptide (Kiss1 & Kiss2) and receptor 

(Kissr2 & Kissr4) in fish as in non-placental mammals (Felip et al., 2009; Lee et al., 

2009, Akazome et al., 2010). While both kisspeptin genes are expressed in zebrafish 

(Biran et al., 2008; van Aerle et al., 2008), medaka (Kanda et al., 2008), goldfish (Li et 

al., 2009) and sea bass (Felip et al., 2009), only kiss2 gene was found in the green 

spotted puffer fish, Tetraodon nigroviridis, the stickleback, Gasterosteus aculeatus as 

well as fugu, Fugu rubripe (Felip et al., 2009; Akazome et al., 2010). With regards to 

the kiss receptor, 4 different subtypes of kissr (1-4) have been described in vertebrates; 

only kissr4 and kissr2 have been reported in teleosts (Akazoma et al., 2010). Kissr4 has 

been reported in many teleosts and as such could be considered to be the most 

predominant and functionally active form (Akazome et al., 2010) as the two forms 

(kissr4 and kissr2) have been identified in only a few fish species including zebrafish 

(Biran et al., 2008) and goldfish (Li et al., 2009) and medaka (Lee et al., 2009). 

Mammalian Kiss1 is suggested to be key regulator for BPG axis and in teleosts 

its ortholog is named kiss1, however, its regulatory role is unclear (Kanda et al., 2008; 

Felip et al., 2009& Li et al., 2009). Kiss2 was shown to be more potent than kiss1 to 

increase pituitary lhβ and fshβ mRNA expression when injected intraperitonealy to 
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mature female zebrafish (Kitahashi et al., 2009). Similarly, intramuscularly injection of 

kiss2 to pre-pubertal and adult male sea bass was more potent in increasing FSH and 

LH over basal levels than kiss1 (Felip et al., 2009). However, in the goldfish female, 

intraperitoneal administration of kiss1, but not kiss2, induced an increase in circulating 

LH (Li et al., 2009). The hypophysiotropic actions of kiss1 was also confirmed in vitro 

on primary pituitary cell culture from goldfish (Yang et al., 2010) and results also 

showed that kiss1 could stimulate prolactine and growth hormone secretion and gene 

expression in goldfish pituitaries (Yang et al., 2010).  

Studies of kisspeptin receptor temporal expression in fish species such as the 

female grey mullet (Nocillado et al., 2007) have shown high levels of kissr4 gene 

expression in the brain during the onset of puberty at the same time with high 

expression levels of the three GnRH types. Similar results have been found in zebrafish 

(van Aerle et al., 2008), Nile tilapia (Parhar et al., 2004; Martinez-Chavez et al., 2008), 

fathead minnow (Filby et al., 2008), and zebrafish (Kitahashi et al., 2009). These 

findings have led a number of authors to suggest an important role played by the 

kisspeptin system in the activation of the BPG axis in fish. However, despite the recent 

findings obtained in fish, the role played by kisspeptin and its mode of action in the 

neuroendocrine regulation of reproduction is still not clearly defined especially in 

commercially important seasonal species like European sea bass. Furthermore, studies 

in fish have focused to date on the role played by kisspeptins during first reproduction 

(puberty) and not broodstock repeat spawning. Therefore, the aim of this study was to 

correlate the seasonal expression of kisspeptin genes in the brain throughout a 

reproductive cycle in male repeat spawning sea bass with GnRHs (GnRH 1, 2 and 3), 

gonadotropins (fshβ, lhβ) gene expression and gonadal development (gonadosomatic 

index, sex steroid, histology).  
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3.2. MATERIALS AND METHODS  

3.2.1. Source of the animals and sample collection  

Male sea bass (total body weight: 736.78 ± 222.94 g, standard length: 37.61 ± 

3.57 cm) were obtained from Machrihanish Marine Environmental Research Laboratory 

(Scotland, 55º 44´ N, 5º 44´ W). All fish were reared under simulated natural 

photoperiod and ambient temperature and fed to satiation twice per day with a 

commercial fish food formula (Atlantic HE 50C+ 35A/25C, Skretting, Invergordon, 

UK). Every month 10-15 fish were randomly selected, anesthetized with 1:10000 2-

phenoxyethanol (Sigma-Aldrich Co. Ltd., Poole, UK), their body weight (± 0.1 g) and 

standard length (± 1 mm) were measured and blood was withdrawn from the caudal 

peduncle using heparinised syringes. Fish were dissected, pituitary and brain were snap-

frozen in liquid nitrogen and stored in -70 ºC for later total RNA extraction and gonads 

were fixed in 10 % buffered formalin for histological observation. Gonadosomatic 

index (GSI) were calculated as GSI= (gonad weight/ total body weight) x100. Blood 

was centrifuged at 1200 x g for 15 minutes and plasma stored at -70 ºC for later 

hormonal analysis. 
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3.2.2. RNA extraction and cDNA synthesis  

Total RNA from individual brains and pituitaries were extracted with TRIZOL 

reagent (Applied biosystems) following the manufacturer’s protocol, RNA quality and 

concentration were measured with a ND-1000 Nanodrop spectrophotometer (Labtech 

Int., East Sussex, UK) before running 1µg of total RNA in a 1 % agarose denaturating 

gel to check for ribosomal RNA of good quality. All RNA samples were DNase treated 

using Ambion DNA-free kit (Applied biosystems, Warrington, UK), cDNA was then 

synthesised with  1µg of total RNA and reverse transcribed in 20 µl reaction containing  

2 µl of 10X RT Random primer, 50 U of MultiScribe TM Reverse Transcriptase, 2µl 

10X buffer and 4mM dNTP mix (High capacity cDNA reverse transcription kit,Applied 

Biosystems/Ambion, Warrington, UK) and placed in a thermocycler (T gradient 

thermocycler, Whatman Biometra, Goettingen, Germany) using thermal cycling 

conditions of 25 ºC for 10 mins, 37 ºC for 120 mins, 85 ºC for 5 mins. Samples were 

then diluted using MilliQ water and then stored in -20 ºC untill assayed by QPCR. 

 

3.2.3. Primer design and Molecular cloning  

Partial cDNA sequences for target genes were generated using primers (Eurofins 

MWG Operon, Edersberg, Germany) designed using PrimerSelect ver.6.1 program 

(DNASTAR) (Table 3.1). For sea bass kissr4 partial sequence primers were designed 

based on the conserved regions of open-reading frames (ORF) of tilapia, cobia and grey 

mullet Kissr4 (Accession numbers BAD34454, ABG82165 and ABG76790, 

respectively) sequences available from GenBank. For the other target genes, primers 

were designed based on previously published sequences for European sea bass. Sea 

bass Elongation factor -1 alpha (ef1α) (GenBank accession number: FJ008915) was 

selected as the house- keeping gene for normalization of the real time PCR 

quantification as recommend by Mitter et al. (2009). The primers for GnRH2 and 
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GnRH3 were designed within the second exon, as this region contains the GnRH 

decapeptide and is thus present in all potential alternative splice variants for both genes 

(Zamora et al., 2002). PCR reactions were performed using 2.5 µl 10x reaction buffer, 1 

mM MgCl2, 100 µM dNTPs, 0.4 µM forward and reverse primers, 1 unit of Taq DNA 

polymerase (Thermo Scientific) and 1 µl of synthesized cDNA (1:10 dilution). Thermal 

cycling consisted of initial denaturation at 94 ºC for 3 mins followed by 35 cycles at 94 

ºC for 30 S, X ºC for 30 S, and 72 ºC for 1 minute, with final extension at 72 ºC for 4 

mins.  The annealing temperature (X ºC) for each primer pair is given in Table 3.1. 

Prior to cloning the PCR product was checked on 1 % agarose gel (should give a single 

product) and the PCR product was then purified using Wizard® SV Gel and PCR Clean-

Up System (Promega Corporation, Madison, USA) and cloned into a pGEM-T Easy 

vector (Promega, Southampton, UK). The inserted fragment was then sequenced using 

CEQ-8800 Backman sequencer (Coulter Inc., Fullerton, USA) with  the identity of the 

cloned PCR product verified (100% overlapping) using BLAST 

(http://www.ncbi.nlm.nih.gov/BLAST/).  

 

3.2.4. Sequence analysis  

Sequence analysis was performed using Lasergene SEQman software 

(DNASTAR) to edit and assemble DNA sequences. Crustal W (Thompson et al., 2000) 

was used to generate multiple alignments of deduced protein sequences. MEGA (ver. 4) 

was used (Tamura el al., 2007) to deduce and bootstrap phylogenetic trees using the 

neighbour joining method (Saitou & Nei, 1987). 
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3.2.5. Quantitative RT- PCR (QPCR) assays 

For all target genes quantitative PCR assays were established including a serial 

dilution of cloned standards which allowed absolute quantification of transcript 

concentration. Genes measured in the brain include the three different GnRH forms 

(GnRH1, GnRH2 and GnRH3), two kisspeptin forms (kiss1 and kiss2) and kisspeptin 

receptor (kissr4), while fshβ and lhβ as well as kissr4 gene expression was measured in 

the pituitary. Housekeeping gene Elongation factor-1α (ef1α) expression was also 

measured in both tissues. For all target genes apart from GnRH2 and GnRH3, two 

primer pairs were designed: one was used to generate a large fragment which was 

cloned and acted as the assay standard and a second primer pair (smaller) was designed 

within this fragment and used for the QPCR assay itself. For GnRH2 and GnRH3, due 

to the small size of the sequence, the same primer pair was used to create the cloned 

standard as well as for the QPCR assay. Cloning and sequencing of target genes were 

performed as described in 2.3.5 and 2.3.6. Total RNA was extracted from sea bass male 

brains and pituitaries as described in 2.3.1 and cDNA generated. The qRT-PCR was 

performed using 1 µl (70 nM) of each forward and reverse primers (Table 3.1), 5µl 

diluted cDNA (1:4 for brains and  1:10 for pituitaries), 10 µl of 2X SYBR-green QPCR 

mix (ABsolute TM QPCR SYBR Green Mix, ABgene, UK, consisting of  Thermo-

StartTM DNA polymerase, a proprietary reaction buffer, dNTP’s and SYBR Green I 

with 3 mM of MgCl2 ) and 3 µl of MiliQ water in a final volume of 20 µl reaction. The 

reactions were run using a thermocycler (Techne, Quantica, Cambridge, UK). The 

thermocycler program was 95 ºC for 15 mins (activation) followed by 45 cycles of 95 

ºC (15 s), the annealing temperature for primers (15 s) and 72 ºC for extension (30 s), 

ending the program by a temperature ramp from 65 ºC  to 90 ºC  for melt curve 

analysis. Standard curves for each target gene were generated by 10- fold serial 
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dilutions of known concentrations of the plasmids containing the target transcripts. As 

part of the validation of the QPCR assays, the detection range, linearity and 

amplification efficiency of each primer pair were checked (Table 3.2). In each assay 

samples were run together with non template controls and internal controls used to 

correct the expression level between plates. All samples and standards were run in 

duplicate. Correlation coefficients (r2) of the standard curves were ranged between 

0.994 and 1.000. Gene copy number in each reaction was automatically calculated by 

the quantica software relative to a standard curve. Transcript levels of each target gene 

in brains and pituitaries were normalized against the reference gene and calculated as 

absolute copy numbers per µg of total RNA. 
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Table 3.1. List of primers used for cDNA cloning and quantitative real-time PCR 

standards with Gene Bank accession number, sequence, predicted amplicon size, and 

melting temperature (TM) of studied genes.   

 

Primer name 
Gene Bank 
accession 

No. 
Nucleotide sequence Product 

size Tm (ºC) 

kissr4F 5´-TATGAGTGGAGACCGCTGTTA-3´ 
kissr4R 5´-CTATGGGGTTGACAGAGGAGTTG-3´ 

557 
 

62 
 

kissr4qPCRF 5´-ATCGTTCTCCTCTTCGCTGTCTGC-3´ 
kissr4qPCRR 

 

5´-TAGTTGGGCCGGTAGTTTGGGTAG-3´ 
86 

 
61 

 
kiss1F 5´-ACGATGCCCCGACTCATTGT-3´ 
kiss1R 5´-TTACACTTTTCTTTTCCCACTCTGAA-

3´ 

407 
 

58 
 

kiss1qpCRF 5´-GCATCAATACTGGCATCAGCAAAGA-
3´ 

kiss1qPCRR 

 
 

FJ008914 
 

5´-TCAACCATTCTGACCTGGGAAACTT-3´ 

94 
 

59 
 

kiss2F 5´-TCTCTGCGCTCAGGAGGAGGACTG-3´ 
kiss2R 5´-TGTTGACTTTTCACCAATGGGACACA-

3´ 

303 
 

60 
 

kiss2qPCRF 5´-GGGAGGATTCCAGCCCGTGTTTCT-3´ 
kiss2qPCRR 

 
 

FJ008915 
 

5´-GAGGCCGAACGGGTTGAAGTTGAA-3´ 
104 

 
61 

 
GnRH1F 5´-ATGGCTGCACAAACCTTC-3´ 
GnRH1R 5´-TGATTCCTCTGCACAACCTAA-3´ 

217 
 

59 
 

GnRH1qPCRF 5´-ACGCTGCTGGGGACACTGC-3´ 
GnRH1qpcrR 

 
 

AF224279 
 5´-GGAAGCTCCCGACTATCTGATTG-3´ 

127 
 

61 
 

GnRH3 F 5´-GGTGCGGGTGTTGTTGTTGGCG-3´ 
GnRH3R 

AF224280 
 5´-TGGTTGCCTCTAGCTCTCCCACACT-3´ 

110 
 

65 
 

GnRH2F 5´-TGGGCTGCTTCTATGTGT-3´ 
GnRH2R 

AF2242281 
 5´-CCAGCTCCCTCTTGCCTC-3´ 

86 
 

68 
 

lhβF 5´-GATGTTCCCCTTGGTGTTGAGTTT-3´ 
lhβR 5´-TGGGTATTTTATTTGCACAGAGAA-3´ 

550 
 

56 
 

lhβFqPCRF 5´-TTGAGCTTCCTGACTGTCCA-3´ 
lhβRqPCRR 

 
 

AF543315 
 5´-GCAGGCTCTCGAAGGTACAG-3´ 

117 
 

61 
 

fshβF 5´-GTCATCCCACCAACATCAG-3´ 
fshβR 5´-TATGTCTCCAGGAAAGCG-3´ 

275 
 

53 
 

fshβqPCRF 5´-ACCAACATCAGCATCCAAGTG-3´ 
fshβqPCRR 

 
 

AF543314 
 5´-TTCTCTGTTCAGGCCTCTCATAGT-3´ 

127 
 

59 
 

ef1αF 5´-AGGCTGACTGCGCTGTGCTGAT-3´ 
ef1αR 5´-ACCTGGGCGTTGAAGTTGTCTGCT-3´ 

708 
 

61 
 

ef1α qPCRF 5´-CTGTGCTGATCGTTGCTGCTGGTGTT-
3´ 

ef1α qPCRR 

 
 

AJ866727 
 

5´-CGTGCTCGCGGGTCTGTCC-3´ 

75 
 

63 
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Table 3.2. Details on validation assays for QPCR of GnRH1, GnRH2, GnRH3, kissr4, kiss1, kiss2 , lhβ, fshβ and ef1α. Details include the 

quantification cycle (CQ) number of non-template controls (NTC), specifics of the standard curve including slope and Y intercept, QPCR 

efficiency calculated from the slope and r2 value and the dynamic range including CQ variation at the lower limit.

Assay Cq NTC 
(mean ± SD) Slope Y 

intercept Efficiency (%) r2 Linear 
range 

Lower limit Cq variation 
(coefficient of variation, %) 

GnRH1 37.80 ± 0.96 -3.426 37.65 97.9 0.99 10-108 0.48 

GnRH2 30.93± 0.35 -3.166 33.51 93 99 102-108 0.44 

GnRH3 29.34± 0.30 -3.361 35.89 98 1 102-108 1.80 

kissr4 32.33± 0.37 -3.211 35.88 97.5 0.99 10-108 0.43 

kiss1 35.29± 0.70 -3.364 37.26 99 1 10-108 0.21 

kiss2 33.67 ± 0.20 -3.351 36.48 99.5 0.99 10-108 1.75 

fshβ 33.25±0.30 -3.32 36.75 99.9 0.99 10-108 1.74 

lhβ 30.72±0.37 -3.305 36.72 99.6 0.99 10-108 0.83 

ef1α 33.58±0.10 -3.162 35.89 96.4 0.99 10-108 1.16 
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3.2.6. Histological preparation and analysis  

Testis samples were dehydrated and embedded in wax using an automated tissue 

processor (Thermo Fisher, Cheshire, UK). Samples were then embedding using a 

histoembedder (Leica UK.Ltd, Milton Keyes, and UK). Sections were cut at 5 m using 

a rotary microtome (Leica UK.Ltd, Milton Keyes, and UK), stained using Mayers 

haematoxylin and eosin Y and examined under a light microscope to determine 

developmental stages according to Rodriguez et al. (2001). 

 

3.2.7. Steroids analyses 

The level of plasma Testosterone (T) and 11-ketotestosterone (11-KT) was 

measured by direct radioimmunoassay (RIA) according to Duston and Bromage (1987). 

For testosterone, tritiated T label (Amersham, UK) and anti-testosterone antisera (CER 

group, Marloie, Belgium) were used, the intra-assay and inter-assay coefficient of 

variation were 6.2 % (n=4) and the 9.1 % (n=8) respectively. The 11-Ketotestosterone 

RIA assay has been validated for sea bass prior to the analyses by confirming the 

parallelism between serial dilutions of plasma samples to the standard curve. Radiolabel 

and antibody were kindly provided by Dr. Alexis Fostier (Department of Animal 

Physiology and Livestock Systems, Rennes Research Centre, France), and levels of 11-

ketotestosterone were measured by RIA according to Fostier et al. (1982). The intra-

assay and inter-assay coefficient of variation for the 11-KT analyses were 8.7 % (n=4) 

and 7.9 % (n=8) respectively. All standards and samples were assayed in duplicate. 
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3.2.8. Statistical analyses 

Statistical analysis was performed with MINITAB ® version 16.0 (Minitab Ltd., 

Coventry, UK). Normality and homogeneity of variance were tested using 

Kolmogorov-Smirnov test and data was transformed when needed. Temporal variations 

within gene expression, plasma steroid levels and GSI were compared using a one way 

ANOVA followed by Tukey’s post-hoc tests to identify significant differences. 

Significant differences were determined at p  0.05. Correlations between all measured 

parameters were tested using Pearson’s product method then the specific association 

with fshβ and lhβ and Kiss1/2/r4 GnRH2, GnRH3 & GnRH1was explored using 

stepwise multiple regressions. In all cases data are expressed as mean ± S.E.M values. 

 

3.3. RESULTS 

3.3.1. Isolation of sea bass Kissr4 partial cDNA and structural analysis 

The primer pair of Kissr4 produced a 556 bp fragment from sea bass brain 

cDNA samples (Fig. 3.1). This partial sequence covers almost 50 % of the target genes 

cds and includes sections of five of the receptor’s seven trans-membrane domains when 

compared to other species Kissr4 (Fig. 3.1). Phylogenetic analysis of the deduced 

amino acid sequence (185 aa) showed the partial fragment grouped within the Kissr4 

cluster with greatest identity (> 90 %) with orange-spotted grouper (Epinephelus 

coioides), Nile tilapia, grey mullet, cobia, bluefin tuna (Thunnus maccoyii) and Atlantic 

cod kissr4 sequences (Fig. 3.2).  
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(A) 
2     ATG AGT GGA GAC CGC TGT TAC GTC ACA GTC TAC CCC CTG AAA TCT   46 
1      M   S   G   D   R   C   Y   V   T   V   Y   P   L   K   S    15 
 
47    CTC CGC CAC CGC ACC CCG AAA GTA GCC ATG ATT GTC AGC ATC TGC   91 
16     L   R   H   R   T   P   K   V   A   M   I   V   S   I   C    30 
 
92    ATT TGG ATT GGC TCC TTC ACC CTG TCC ACC CCG ATT TTA ATG TAC   136 
31     I   W   I   G   S   F   T   L   S   T   P   I   L   M   Y    45 
 
137   CAG CGT ATA GAG GAG GGT TAC TGG TAC GGC CCG AGG CAG TAC TGC   181 
46     Q   R   I   E   E   G   Y   W   Y   G   P   R   Q   Y   C    60 
 
182   ATG GAG AGA TTC CCC TCT AAG ACA CAT GAG AGG GCT TTC ATC CTC   226 
61     M   E   R   F   P   S   K   T   H   E   R   A   F   I   L    75 
 
227   TAC CAG TTT ATT GCT GCA TAT CTG CTG CCT GTC CTC ACT ATT TCC   271 
76     Y   Q   F   I   A   A   Y   L   L   P   V   L   T   I   S    90 
 
272   TTT TGC TAC ACT CTG ATG GTG AAG AGG GTG GGC CAA CCC ACT GTA   316 
91     F   C   Y   T   L   M   V   K   R   V   G   Q   P   T   V    105 
 
317   GAG CCT GTA GAC AAC AAC TAT CAG GTC AAC CTC CTG TCT GAA AGA   361 
106    E   P   V   D   N   N   Y   Q   V   N   L   L   S   E   R    120 
 
362   ACC ATC AGT ATC AGG AGC AAA GTC TCC AAG ATG GTG GTA GTA ATC   406 
121    T   I   S   I   R   S   K   V   S   K   M   V   V   V   I    135 
 
407   GTT CTC CTC TTC GCT GTC TGC TGG GGT CCC ATC CaG ATC TTC GCT   451 
136    V   L   L   F   A   V   C   W   G   P   I   Q   I   F   A    150 
 
452   CTC TTT CAG TCT TTC TAC CCA AAC TAC CGG CCC AAC TAC GCC ACA   496 
151    L   F   Q   S   F   Y   P   N   Y   R   P   N   Y   A   T    165 
 
497   TAC AAG ATC AAG ACG TGG GCC AAC TGC ATG TCC TAC GCC AAC TCC   541 
166    Y   K   I   K   T   W   A   N   C   M   S   Y   A   N   S    180 
 
542   TCT GTC AAC CCC ATA   556 
181    S   V   N   P   I   
 

(B) 
Sea bass        ----------------------------------------------------------------------------------------------------  
Zebrafish (r4)  MFSGED-WNSSE--LLNGSFRNS---------SMEDSEDGEHPFLTDAWLVPLFFSLIMLVGLIGNSLVIYVISKHRQMRTATNFYIANLAATDIIFLLC  
Cobia           MYSTKELWNSTEQVWINGSGTNFSLGRR---GNDEEEEGQQHPFLTDAWLVPLFFSLIMLVGLVGNSRVIYVISKHRQMRTATNFYIANLAATDIIFLVC  
Tilapia         MYSSEELWNSTEQVWINGSGTNFSLGRH---EDDEEEEGDKHPFFTDAWLVPLFFSLIMLVGLVGNSLVIYVISKHRQMRTATNFYIANLAATDIIFLVC  
Mullet          MHSSEEPWNSSEHVWVNGSEANFSLGRRRVDEEKEEEEGGQHPFLTDAWLVPLFFSLIMLVGLVGNSLVIYVISKHRQMRTATNFYIANLAATDIIFLVC  
Sole            MYSSKEPWNSTDRVWINGSRVNVSLERHG--DSDEEDEGDQHPFLTDAWLVPLFFSLIMLVGLVGNSLVIYVISKHRQMRTATNFYIANLAATDIIFLVC  
Zebrafish (r2)  MAETNSTGDAAEHIMCNYDANIYQCN------QTDLMRFQSPVPLTDTWLVPLFFTLIMFVGLVGNLIVIYVVIKNQQMKTVTNLYIVNLATTDILFLVC  
 
 
Sea bass        -----------------------------------------MSGDRCYVTVYPLKSLRHRTPKVAMIVSICIWIGSFXLSTPILMYQRIEEGYWYGPRQY  
Zebrafish (r4)  CVPFTATLYPLPGWIFGDFMCKFVAFLQQVTVQATCITLTAMSGDRCYVTVYPLKSLHHRTPRVAMIVSICIWIGSFILSIPIFLYQRLEDGYWYGPRKY  
Cobia           CVPFTATLYPLPGWIFGNFMCKFVAFLQQVTVQATCITLTAMSGDRCYVTVYPLKSLRHRTPRVAMIVSVCIWIGSFILSTPILMYQRIEEGYWYGPRQY  
Tilapia         CVPFTATLYPLPGWIFGNFMCKFVAFLQQVTVQATCITLTAMSGDRCYVTVYPLKSLRHRTPKVAMIVSICIWIGSFVLSTPILMYQRIEEGYWYGPRQY  
Mullet          CVPFTATLYPLPGWIFGNFMCKFVAFLQQVTVQATCITLTAMSGDRCYVTVYPLKSLRHRTPKVAMIVSVCIWIGSFILSTPILMYQRIEEGYWYGPRQY  
Sole            CVPFTATLYPLPGWIFGNFMCKFVAFLQQVTVQATCITLTAMSGDRCYVTVYPLKSLRHRTPRVAMIVSLCIWIGSFILSTPILMYQRIEDGYWYGPRQY  
Zebrafish (r2)  CVPFTATVYVLPSWIFGDFMCRLVNYLQQVTAQATCITLSAMSVDRFYVTVYPLQSLHHRTPQMALSVCTTIWICSSLLSVPIALYQHTESSYWFGPQTY  
 
 
Sea bass        CMERFPSKTHERAFILYQFIAAYLLPVLTISFCYTLMVKRVGQPTVEPVDNNYQVNLLS--ERTISIRSKVSKMVVVIVLLFAVCWGPIQIFALFQSFYP  
Zebrafish (r4)  CMERFPSKTHEKAFILYQFIAVYLLPVITISFCYSFMLKRVGQASVEPVDNNHQVHLLS--ERTISIRSKISKMVVVIVVLFTICWGPIQIFVLFQSFYP  
Cobia           CMERFPSKTHERAFILYQFIAAYLLPVLTISFCYTLMVKRVGQPTVEPVDNNYQVNLLS--ERTISIRSKVSKMVVVIVLLFAVCWGPIQIFALFQSFYP  
Tilapia         CMERFPSKTHERAFILYQFIAAYLLPVLTISFCYTLMVKRVGQPTVEPVDNNYQVNLLS--ERTISIRSKVSKMVVVIVLLFAICWGPIQIFVLFQSFYP  
Mullet          CMERFPSKTHERAFILYQFIAAYLLPVLTITFCYTLMVKRVGQPTVEPVDNNYQVNLLS--ERTISIRSKVSKMVVVIVLLFAVCWGPIQIFVLFQSFYP  
Sole            CMERFPSKTHEQAFILYQFIAAYLLPVLTISFCYTLMVKRVGQPTVEPVDNNYQVNLLS--ERTISIRSKVSKMVVVIVLLFTICWGPIQIFVLFQSFHP  
Zebrafish (r2)  CTETFPSVIHKRVYLLYSFLAVYLLPLITICMCYTFMLKRMAQATVQPVQGCNQISLQTSSERAEAVRSRVSRMVVVMVLLFLLCWGPIQILILLQAFCA  
 
 
Sea bass        N-YRPNYATYKIKTWANCMSYANSSVNPI------------------------------------------------------  
Zebrafish (r4)  N-FKANYATYKIKTWANCMSYANSSINPIVYGFMGASFRKSFRKTFPFLFRHKVRDSSVASRTANAEIKL-------------  
Cobia           N-YQHNYATYKIKTWANCMSYANSSVNPIVYGFMGASFQKSFRKTFPFLFKHKVRDSSMASRTANAEIKFVAAEEGNNNNAMN  
Tilapia         N-YQPNYATYKIKTWANCMSYANSSVNPIVYGFMGASFQKSFRKTFPFLFKHKVRDSSMASRTANAEIKFVAAEEGNNNNAVN  
Mullet          N-YQPNYATYKIKTWANCMSYANSSVNPIVYGFMGASFQKSFRKTFPFLFKHKVRDSSMASRTANAEIKFVAAEEGNNNNAVN  
Sole            N-YRPNYVTYKIKTWANCMSYANSSVNPIVYGFMGASFQKSFRKTFPFLFKHKVRDSSMASRTANAEIKFVAAEEGNNNNAMN  
Zebrafish (r2)  EDVSRSYTLYKLKIWAHGMSYSNSSINPVIYAFMGANFRKAFRSVCPLIFK---RRSTEPLATYNREMNFLSS----------  
  

 
Figure 3.1. A) Nucleotide and deduced amino acid sequence of European sea bass 
Kissr4 partial cDNA fragment. Predicted transmembrane domains as defined in tilapia 
by Parhar et al. (2004) are underlined. B) Alignment of the deduced protein sequence 
for European sea bass, cobia, tilapia, grey mullet, Senegalese sole, zebrafish kissr2, 
zebra fish kissr4. The conserved amino acid residues are shaded. Predicted 
transmembrane domains as defined by Parhar et al. (2004) are boxed. 
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Figure 3.2. Phylogenetic tree analysis of Kissr4 sequences in vertebrates. The evolutionary 

history was inferred using the Neighbor-Joining method (Saitou & Nei, 1987). The percentage 

of replicate trees in which the associated taxa clustered together in the bootstrap test (500 

replicates) is shown next to the branches (Felsenstein, 1985). The evolutionary distances were 

computed using the Maximum Composite Likelihood method (Tamura et al., 2004) and are in 

the units of the number of base substitutions per site. Phylogenetic analyses were conducted in 

MEGA4 (Tamura et al., 2007). Accession numbers: Human KISSR1 (AAK83235), Mouse 

Kissr1 (AAK83236), Rat Kissr1 (AAD19664), Bullfrog kissr3 (ACD44939), Tilapia kissr4 

(BAD34454), ZebraFish kissr4 (kissra) (ABV44612), Zebrafish kissr2 (kissrb) (ABV44613), 

Cobia kissr4 (ABG82165), Atlantic croaker kissr4 (ABC75101), Grey mullet kissr4 

(ABG76790), Senegalese sole Kissr4 (ABW96362), Orange-spotted grouper kissr4 

(ACT65994), gold fish kissra (ACK77792), gold fish kissr2 (kissrb) (ACK77793), Bluefin tuna 

kissr4 (ACT78954), Xenopus kissr1 (GPR54-1a) (EU853678) kissr3 (GPR54-2) (EU853680). 
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3.3.2. Gonadal development  

Testicular development of adult male sea bass throughout an annual 

reproductive cycle was characterised histologically (Fig. 3.3). In July, August and 

September, the testes were in post-spermiation stage characterised by the presence of 

necrotic tissue and residual sperm in the lumen. In October, the presence of 

spermatogonia A and B as well as other cysts containing primary spermatocytes 

indicated the start of spermatogenesis. From November till March, the testis was in 

spermatogenesis with cysts containing primary and secondary spermatocytes, 

spermatids and spermatozoa. Full spermiation stage, characterised by cysts 

predominantly containing spermatozoa with some other cysts containing primary and 

secondary spermatocytes and spermatids, was observed from April to June (Fig. 3.4). 

Sea bass male gonads were smallest (i.e. lowest GSI) during July and August (0.5 %) 

then, GSI increased gradually in September and reached a peak in March (1.8 ± 0.3 %) 

and remained high in April and May. Thereafter, GSI dropped again to basal values in 

June (spent stage) (0.6 ± 0.9 %), GSI mean values for each month are represented in 

Figure 3.5.  
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Figure 3.3.  Gonadal development stage proportion of male sea bass sampled each 

month, during the annual reproductive cycle. Numbers above bars indicate the number 

of males sampled at each time point. 
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Figure 3.4. Testicular sections corresponding to the four representative stages of 

gonadal development during reproductive cycle of male sea bass. (A) Early 

spermatogenesis, lobules contain spermatogonia (sg) and primary spermatocytes (sc1) 

X40; (B) full-spermatogenesis, lobules contain cysts with primary spermatocytes (sc1) 

and secondary spermatocytes (sc2), spermatids (st) and spermatozoa (sz)X 20; (C) full-

spermiation, lumen contains predominantly spermatozoa (sz) X20; (D) post-spermiation 

stage (spent), showing necrotic tissue with picnotic nucleus (black arrow) with residual 

spermatozoa (sz)X 20. Bars, 10 µm. 
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Figure 3.5.  Changes in the gonadosomatic index (GSI, %) of male sea bass during the 

annual reproductive cycle (Mean ± SEM, n= 10-15/month). Superscripts denote 

significant differences between months. 
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3.3.3. Plasma steroids  

The plasma testosterone (T) levels showed very low levels in July (<0.1 ng/ml, 

spent stage) and increased significantly to reach a peak in October (spermatogenesis) 

(0.97 ± 0.08 pg/ml). Thereafter, T levels showed a second peak in February-March 

(1.56 ± 0.22 pg/ml) and then decreased again sharply to basal levels in April (spawning) 

(Fig. 3.6 A). The plasma levels of 11- ketotestosterone (11-KT) were basal in July (<1 

ng/ml). 11-KT levels then gradually increased to reach a peak in October (7.83 ± 0.77 

ng/ml) before slightly decreasing in the following months and then increased again to 

reach the maximum in March (15.55 ± 1.98 ng/ml). Levels then dropped to basal levels 

in June (Fig. 3.6 B). 
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Figure 3.6. Monthly changes (Mean ± SEM, n= 10-15/month) in plasma levels of 

Testosterone (A) and 11-ketotestosterone (B) during the annual reproductive cycle. 

Superscripts denote significant differences between months. 
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3.3.4. Temporal expression of GnRH genes in the brain 

Overall the variation of expression of GnRH1 (Sea bream GnRH) was low (<4 

fold difference between highest and lowest levels) and a clear seasonal pattern in 

expression was not apparent. However expression in September (spermatogenesis 

onset), January (spermatogenesis) and May (full spermiation) (>10,000 copies/µg total 

RNA) was significantly higher than in June (3,000 copies/µg total RNA) (Fig. 3.7 A). 

For GnRH2 (Chicken GnRHII) expression profile showed a significant peak in March 

(spermatogenesis) (~2.5 fold) from basal expression levels in September and October 

(Fig. 3.7 B). However, for GnRH3 (salmon GnRH) gene expression remained steady 

throughout the annual cycle (Fig. 3.7 C). Mean expression levels of GnRH1 were up to 

5 times lower than for GnRH2 and GnRH3. By comparing the expression levels of 

GnRHs for the four developmental stages, GnRH1 expression levels during  

spermatogenesis and spawning stages are significantly higher than expression level 

during spent stage (Fig. 3.10 A), while GnRH2 and GnRH 3 expression levels did not 

vary significantly when compared between developmental stages (Fig. 3.10 B&C). 

 

3.3.5. Temporal expression of kisspeptin genes in the brain 

Expression of kissr4 in the brain showed the first peak in September 

(spent/begaining of spermatogenesis) with significant differences from the lowest levels 

in whole reproductive cycle (August), then expression levels increased gradually and 

reached a peak in January (full spermatogenesis) (140,000 copies/µg of total RNA, a 

~3.5 fold increase from basal levels observed in June and August) (Fig. 3.8 A). When 

the expression was considered in relation to developmental stage, kissr4 expression 

peaked in the spermatogenesis stage with the expression being lowest in the spent stage 

(Fig. 3.10 D). Expression of kiss1 was the lowest in October-November and then 
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increased to have the first significant rise in January (spermatogenesis), then the 

expression increased gradually to reach peak expression levels in March-May (full 

spermiation) (~3 fold increase when compared to the minimum expression). kiss1 

expression then decreased sharply in June to similar levels as in July-December (start of 

the study) (Fig. 3.8 B).  Comparing the expression levels of kiss1 in the four 

developmental stages, spermiating males have significantly higher expression levels 

than early spermatogenesis stage (Fig. 3.10 E). kiss2 expression showed a similar 

profile to that seen for kiss1, the first significant rise in January (spermatogenesis), then 

a significant peak  appeared in March (~2 fold increase) and then a gradual decrease to 

basal levels in June (Fig. 3.8 C). No significant differences were found for kiss2 

expression levels between the four identified developmental stages (Fig. 3.10 F). 

 

3.3.6. Temporal expression of fshβ, lhβ and kissr4 in the pituitary 

Both fshβ and lhβ gene expression had the lowest expression levels in June and 

July (spent stage), then a transient but significant elevation of fshβ expression was 

observed by August and September, then both fshβ and lhβ mRNA expression increased 

sharply between November and January (~3 fold increase in both cases when compared 

to basal levels seen at the start of the study) (Fig. 3.9 A& B). Thereafter fshβ remained 

elevated before returning to basal levels in June (Fig. 3.9 A), while lhβ mRNA 

expression declined more gradually to reach its lowest expression levels in June (Fig. 

3.9 B). The absolute fshβ mRNA levels were found to be consistently lower than those 

of lhβ during the whole annual cycle. The fshβ mRNA expression level for 

spermatogenesis stage was significantly higher than those for early spermatogenesis and 

spent stages, with no significant diffrences to the spermiating stage expression levels 

(Fig. 3.10 G). When developmental stages were compared for lhβ mRNA expression, 

no significant differences were observed between early spermatogenesis, 
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spermatogenesis and spermiating stages, while the spent stage was significantly lower 

than the expression levels for spermatogenesis and spermiating stages (Fig. 3.10 H). 

kissr4 mRNA expression was detected in the pituitary during the whole reproductive 

cycle with very low levels of expression, except for the October samples, in which 

expression level was significantly higher (32003.32± 26430 copies/µg total RNA) 

compared to the rest of annual cycle (mean = 338.55 ± 36.8 copies/µg total RNA) 

(P<0.05) (Fig. 3.9 C). The kissr4 expression was significantly higher in the early 

spermatogenesis stage than the other developmental stages (Fig. 3.10 I). 
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Figure 3.7. Absolute copy numbers of GnRH1 (A), GnRH2 (B) and GnRH3 (C) genes 

in the brain of male sea bass during the annual reproductive cycle (mean ± SEM, n= 

6/month). Superscripts denote significant differences between months. 
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Figure 3.8. Absolute copy numbers of kissr4 (A),  kiss1 (B) and kiss2 (C) gene in the 

brain of male sea bass during the annual reproductive cycle (mean ± SEM, n= 6/month). 

Superscripts denote significant differences between months. 
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Figure 3.9. Absolute copy numbers of fshβ (A), lhβ (B) and kissr4 (C) genes in the 

pituitary of male sea bass during the annual reproductive cycle (mean ± SEM, n= 

6/month). Superscripts denote significant differences between months.   
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Figure 3.10. Mean absolute copy numbers of GnRH1 (A), GnRH2 (B), GnRH3 (C), kissr4 

(D), kiss1 (E), kiss2 (F) genes in the brain and fshβ (G), lhβ (H) and kissr4 (I) in the 

pituitary of European sea bass based on gonadal staging. Values are mean ± SEM. 

Superscripts denote significant differences between gonadal stages, ESP, early 

spermatogenesis; SP, spermatogenesis; SPM, spermiating; SPT, spent.  
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(I) in the pituitary of European sea bass based on gonadal staging. Values are mean ± 

SEM. Superscripts denote significant differences between gonadal stages, ESP, early 
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3.3.7 Correlation analysis of gene expression levels. 

To explore the potential relationship between gene expression and the measured 

endocrine and physiological changes a full factorial correlation matrix was created 

(Table 3.3). In total of 27 significant correlations were identified, however it must be 

acknowledge that the data set was not subjected to a multiple comparison correction, 

e.g. Bonferroni which may remove some of these correlations as false positive result, 

notwithstanding this, Kiss1 & Kiss2 show a strong positive correlation (Fig. 3.11) 

neither showed a significant association with their receptor (Kissr4). With regards to the 

different GnRH isoforms, GnRH1 correlated with kissr4 while GnRH2 correlated with 

Kiss2 (Fig. 3.11). However, GnRH3 showed no significant correlation with any 

measured parameter except GSI. Both fshβ and lhβ correlated with most parameters 

thus a stepwise (backwards) multiple regression was tested which identified the main 

contributing parameters. In both cases Kissr4 and Kiss1 were the only parameters that 

contributed significantly to the model which accounted for >85 % of the variation in 

fshβ/lhβ expression: 

fshβ = 3635971 + 117.28(kissr4) + 3622.9(kiss1) 

p = 0.0002, r2 = 85.29 

lhβ = 1.157e7 + 461.99(kissr4) + 7765.6(kiss1) 

p = <0.0001, r2 = 87.69 

When the data are plotted in three dimensions they display three distinct groups 

(April/May, Jan/Feb/Mar and all other months) of expression (Fig. 3.12). 
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Table 3.3. Correlation matrix of all possible linear regressions for all measured parameters over the course of the experiment. 
 
 Kiss 1 Kiss 2 Kiss r4 sbGnRH cGnRHII sGnRH FSH LH T 11KT GSI 

Kiss 1            

Kiss 2 r2 = 0.52 
p = 0.0081 

          

Kiss r4 n.s. n.s          

sbGnRH n.s. n.s. r2 = 0.398 
p = 0.0279 

        

cGnRHII n.s. r2 = 0.52 
p = 0.0072 

n.s. n.s.        

sGnRH n.s. n.s. n.s. n.s. n.s.       

FSH r2 = 0.54 
p = 0.06 

r2 = 0.39 
p = 0.0297 

r2 = 0.51 
p = 0.0093 

r2 = 0.38 
p = 0.03 

n.s. n.s.      

LH r2 = 0.36 
p = 0.045 

r2 = 0.34 
p = 0.056 

r2 = 0.72 
p = 0.0017 

r2 = 0.39 
p = 0.047 

n.s. n.s. r2 = 0.9215 
p = 
<0.0001 

    

T n.s. r2 = 0.39 
p = 0.03 

r2 = 0.45 
p = 0.0169 

n.s. n.s. n.s. n.s. r2 = 0.26 
p = 0.032 

   

11KT r2 = 0.30 
p = 0.0631 

r2 = 0.65 
p = 0.0015 

n.s. n.s n.s. n.s. r2 = 0.27 
p = 0.084 

r2 = 0.335 
p = 0.0624 

r2 = 0.65 
p = 0.022 

  

GSI r2 = 0.69 
p =0.0009 

r2 = 0.72 
p =0.0005 

n.s. r2 = 0.3 
p =0.065 

r2 = 0.3 
p =0.065 

n.s. r2 = 0.46 
p =0.015 

r2 = 0.37 
p =0.0348 

n.s. r2 = 0.54 
0.0068 
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Figure 3.11. Linear regression of monthly mean kiss1 v.s kiss2, kissr4 vs. sbGnRH and 

kiss2 vs. cGnRHII expression. 
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Figure 3.12. Three dimensional plot of monthly mean fshβ (top) and lhβ (bottom) 

expression with respect to kiss1 and kissr4 expression. 
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3.4. DISCUSSION  

In the present study we profiled mRNA expression of kiss1, kiss2 and kissr4 in 

the brain of repeat spawning male sea bass through a complete annual reproductive 

cycle along with GnRH (1,2,3) expression in the brain, fshβ , lhβ and kissr4 expression 

in the pituitary, plasma sex steroids and testes development. Kisspeptin mRNA 

expression levels (kiss1, 2 and kissr4) in the brain significantly increased towards the 

end of the annual reproductive cycle (late spermatogenesis to spermiation) and in some 

cases correlated with other BPG markers (GnRHs, fshβ and lhβ). These results suggest a 

possible involvement of kisspeptin genes in the seasonal control of reproduction in 

repeat spawning sea bass. 

European sea bass gonadal development and associated sex steroid profiles have 

been well characterised and show clearly that male spermiation usually takes place from 

December to March with a peak in GSI in February (Prat et al., 1990; Navas et al., 

1998; Mananos et al., 1997) in the Mediterranean area. In the present study, 

spermiation was observed in March-June and GSI peaked from March to May. 

Accordingly, plasma testosterone (T) and 11 ketotestosterone (11-KT) levels peaked in 

February-March and then returned to basal levels. The shifted reproductive cycles 

observed in this study compared to Mediterranean stocks are in line with previous 

reports from British waters (Pawson & Pickett, 1996) and are most likely due to subtle 

shifts in the ambient temperature/photoperiod profiles in higher geographic latitudes 

(Bruslé & Roblin, 1984). 

Gene expression analyses performed in the present study confirmed that all 

three forms of GnRH (GnRH1, GnRH2 and GnRH3) are expressed in the brain of male 

sea bass. However, GnRH3 showed no significant variation while both GnRH1 and 

GnRH2 showed significant changes in expression during the annual cycle with peak 
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levels in September, January and May (GnRH1) and March (GnRH2) when GSI and sex 

steroid plasma levels peaked and most individuals examined were spermiating. The 

subsequent correlation analysis helped to clarify the potential roles of the different 

isoforms, however it must be acknowledged that correlation does not, in itself, imply 

causation and the identified associations must be specifically tested. GnRH1 correlated 

with kissr4, fshβ, lhβ as well as GSI while GnRH2 correlated with kiss2 and GSI while 

GnRH3 showed no significant correlation with any other parameter. The weak 

correlation with GSI for both GnRH1 and GnRH2 implies changes in GnRH signalling 

with developmental state, as has been shown in pituitary GnRHs levels of first time 

spawning male sea bass (Rodriguez et al., 2000) as well as in brain and pituitaries of 

male and female viviparous grass rockfish Sebastes rastrelliger (Collins et al., 2001). 

Otherwise the association of GnRH1 with kissr4 and the GTH’s suggest that of the 

three, GnRH1 (sbGnRH) plays a more active role in the reproductive cycle. This 

compliments previous reports that proposed it to be the main hypophysiotropic form in 

European sea bass (Gonzalez-Martinez et al., 2002; 2004a,b; Fornies et al., 2003) and 

other species including barfin flounder (Amano et al., 2004), grass puffer (Shajahan et 

al., 2010a), and red seabream (Okuzawa et al., 2003). The GnRH2 correlation with 

Kiss2 is unexpected as while GnRH2 has been associated with sexual behaviour 

(Kauffmann et al., 2005; Millar, 2005) it has more recently been specifically linked to 

pineal-specific melatonin signalling in sea bass (Servili et al., 2010). It is proposed that 

future work should at least consider both GnRH forms to further decipher their precise 

roles.  

The lack of significant variation in expression of the GnRHs as measured could 

be due to alternative splicing of the GnRHs. The assays for both GnRH2 and GnRH3 

used primers which were designed on the second exon of these genes, as this region 
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contains the GnRH decapeptide and thus should be present in all splice variants. Pilot 

work on both genes using primers outwith this region identified at least two forms in 

both genes which agrees with the work of Zamora et al., (2002) who reported two 

transcripts for GnRH2 and GnRH3 in sea bass brain. Alternative splicing can led to the 

production of different proteins from a single pre-RNA (nuclear messenger RNA 

precursors) or can function as an on/off switch during development (Maniaties, 1991). 

In rainbow trout brains, two transcripts were found for GnRH2 but only the mRNA 

expression of the long variant was related to a specific stage of sexual maturation (Gray 

et al., 2002). It has also been shown that GnRH expression in gonads can be 

alternatively spliced in relation to the sex, and stage of development in both rainbow 

trout and sea bream (Nabissi et al., 2000; Uzbekova et al., 2001&2002).  

In the present study the genes encoding for pituitary lhβ and fshβ were 

expressed throughout the year, with lower expression of fshβ relative to lhβ. A 

significant correlation between both GTHs and GSI was observed which was explained 

by a clear rise in the mRNA expression levels of the two genes during spermatogenesis 

with peak levels in January and high levels maintained through to May corresponding 

to the spermiation period when the testis were at their largest. Such a correlation to 

gonadal development has previously been reported in European sea bass (Mateos et al., 

2003), perjerrey (Miranda et al., 2007) and male Senegalese sole (Cerda et al., 2008). 

fshβ expression showed a transient but significant elevation by the end of the spent 

stage and just prior to the spermatogenesis onset; this elevation was found in FSH levels 

in sea bass plasma as well and can be linked to spermatogonial proliferation (Moles et 

al., 2011) as in other teleosts (Schulz et al., 2010).  This increase of fshβ expression 

coincided with the first significant peaks of GnRH1, kissr4 mRNA and was just prior to 

the first peaks of plasma 11KT, T and the significant peak of pituitary kissr4, 
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suggesting a likely regulation of GnRH1, kissr4 and fshβ during the onset of the 

gametogenesis period (September-October) of sea bass. In an attempt to explore the 

drivers of both fshβ and lhβ expression a stepwise multiple regression was performed 

which considered the potential association with kiss1/2/r4 and GnRH1, GnRH2 as well 

as GnRH3. In both cases the variation in fshβ and lhβ expression was explained by kiss1 

and kissr4 expression alone. As discussed further below it has been commonly 

suggested that kiss2 was the most functionally important in fish due to its greater 

potency in eliciting a LH response (Felip et al., 2009), however the present results 

suggest that their roles are potentially not as clear cut. For some studied mammals, the 

administration of the core sequence of kissspeptin decapeptide (Kp-10) in vivo 

stimulates both LH and FSH release, when given centrally or peripherally as in mouse 

(Gottsch et al., 2004; Messager et al.; 2005), and stimulates both LH and FSH release 

in male and female rat (Matsui et al., 2004). The LH and testosterone releasing effect of 

kisspeptin has also been proven in human males when kisspeptin-54 was peripherally 

administrated (Dhillo et al., 2005). Furthermore, kisspeptin has been shown to be 

ineffective in directly stimulating LH release in ovariectomized hypothalamo-pituitary-

disconnected sheep (Smith et al., 2008b), and for the GnRH antagonist pre-treated male 

rats (Matsui et al., 2004), supporting the hypothesis that kisspeptin induces the 

secretion of hypothalamic GnRH, which in turn elicits gonadotropin release.  In 

teleosts, the decapeptide of kiss2 has shown effect on the regulation of both FSH and 

LH synthesis and release, while kiss1 was less effective on the pituitary gonadotropins 

in European sea bass (Felip et al., 2009) and zebrafish (Kitahashi et al., 2009). Under in 

vitro conditions the core decapeptide of kiss1 (kp-10) induced gene expression and the 

subsequent secretion of luteinizing hormone (LH), prolactin (PRL) and growth 

hormone (GH) in goldfish pituitary (Yang et al., 2010). Clearly further work is required 
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to define the specific roles of both kisspeptin peptides in fish. For pituitary kissr4, 

mRNA was very low during all the cycle but it showed significantly high levels in 

October and for early spermatogenesis stage in the with kissr4 in the brain,  As far the 

authors know it is  the first time that temporal expression of kissr4 to be done using 

QPCR. 

The main objective of the current study was to profile kisspeptin gene 

expression in repeat spawner male sea bass. While full sequences for both kisspeptin 

signal peptides were available at the start of the study (Felip et al., 2009), no kisspeptin 

receptor sequence had been reported in sea bass to date. In the present study, a partial 

kissr4 cDNA sequence was isolated in sea bass. It contained an open reading frame of 

556 bp resulting in a predicted protein of 185 amino acid peptide. Phylogenetic analyses 

confirmed the identity of the genes as being kissr4 with high similarity (>90 %) with 

other teleost kissr4 sequences such as Nile tilapia (Parhar et al., 2004), grey mullet 

(Nocillado et al., 2007), cobia (Mohammed et al., 2007) and Atlantic halibut (Mechaly 

et al., 2009). Most of the fish Kissr4 sequences cluster in a tight group while zebrafish 

kissrb and goldfish kissrb are located on a separate branch (Kissr2) as for mammalian 

kiss1r (kissr1) (Akazome et al., 2010). In some fish species two distinct subtypes of 

kisspeptin receptor have been reported (Kissr2 and Kissr4 paralogs) as in zebrafish 

(Biran et al., 2008), medaka (Lee et al., 2009) and goldfish (Li et al., 2009), while only 

one form has been found in mammals (Akazome et al., 2010). In fish species that 

belong to Pleuronectiformes, Tetraodontiformes and Acanthopterygian, only one 

kisspeptin receptor was found so far suggesting the loss of one kissr form (Mechaly et 

al., 2010). Studies failed to detect a kissr2 in some fish species as Senegalese sole 

(Mechaly et al., 2009) and Atlantic halibut (Mechaly et al., 2010).  
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In the present study, the expression of kisspeptin receptor (kissr4) and the two 

known ligands (kiss1 and kiss2) have been profiled during an annual reproductive cycle. 

Kissr4 expression level increased just prior the spermatogenesis (September) and have 

its peak during spermatogenesis (January) and declined towards the end of the 

spermiation window (April). However, kiss1 and kiss2 expression in the brain started to 

increase in January to reach peak expression levels during spermiation in March (kiss2) 

and April (kiss1). These results came as a surprise given the suggested stimulating role 

of kisspeptin on GnRH neurons (Irwig et al., 2004, Parhar et al., 2004, Servili et al., 

2011). In the present study, kissr4 expression level increased during spermatogenesis 

stage similar to the peak of  kissr4 in the brain of male fathead minnow (Filby et al., 

2008) in male fathead minnow shown during early spermatogenesis, which then 

declined during the advanced stage of spermatogenesis (Filby et al., 2008). Similarly, in 

male and female grass puffer brain kissr4 expression peaked during spawning 

(Shahjahan et al., 2010b). The present positive correlation between GnRH1 and kissr4 

expression and the peaking of both in the same month is in good agreement with the 

findings of Zebrafish (Kitashi et al., 2009), cobia (Mohammed et al., 2007) and grey 

mullet (Nocillado et al., 2007). Localisation work helps clarify this relationship as it has 

been shown that the great majority of GnRH1 neurons have been found to express 

kissr1 in adult rat (Irwig et al., 2004) or mouse (Han et al., 2005) while the same 

neurons in tilapia express kissr4 (Parhar et al., 2004) and most recently this has also 

been reported in European sea bass (Escobar et al., 2010). 

To date there have been contrasting results on the expression of kisspeptins 

during reproduction. Similar results to the present findings were found in grass puffer in 

which brain kiss2 expression peaked during spawning in both males and females 

(Shahjahan et al., 2010b). Furthermore, the number of brain nucleus ventralis tuberis 
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(NVT) kiss1 expressing neurons was significantly higher in mature than immature 

medaka (Kanda et al., 2008). However in male chub mackerel, kiss1 brain expression 

gradually decreased during spermatogenesis, while kiss2 increased during the late 

spermatogenesis stages and declined during spermiation (Selvaraj et al., 2010). The 

contrasting results obtained between studies might be related to as yet undefined species 

differences and divergent reproductive strategies e.g. timing of sexual differentiation 

(late in sea bass compared to most other fish species), age at puberty (early in male sea 

bass), spawning pattern ovarian organisation (group-synchronous in sea bass [Prat et 

al., 1990] vs. asynchronous in chub mackerel [Shiraishi et al., 2008]) among others. 

Other factors could also explain differences seen such as fish reproductive state when 

samples were performed (first reproductive cycle in most previous studies vs. repeat 

spawning in the present study) and evolutionary differences in functional kisspeptin 

forms which are, in most species, not known yet. For all these reasons, direct 

comparisons between species to unravel the role played by the kisspeptin system in fish 

reproduction are not straightforward.  

In the present study kiss2 expression in the brain was correlated with high 

steroid levels, suggestive of an involvement of kiss2 genes in gonadal steroid positive 

feed back control of reproduction. The relation between the kisspeptin system and sex 

steroids has been studied in some mammals as Kiss1 neurons are suggested to be sex-

steroid sensitive neurons that can receive and then transmit steroid feedback to the 

GnRH neurons (Kauffmann, 2010). In rodents, Kiss1 neurons have been found to 

express both estrogen and androgen receptors, which explains how gonadal steroids can 

have both stimulatory and inhibitory effects on Kiss-1 expression (Smith et al., 2005; 

Kauffmann et al., 2007). Furthermore in sheep, both positive and negative feedback of 

sex steroids are mediated by kisspeptin neurons (Estrada et al., 2006). Clarkson et al. 
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(2010) proposed that Kiss1 neural sensitivity to estrogen not only provides a critical 

estradiol-dependent amplification mechanism to activate GnRH neurons and complete 

the puberty onset, but also then subsequently facilitates the regular preovulatory GnRH 

/LH surge in adult females. Similarly for teleosts, in the female medaka, kiss1 neurones 

of the nucleus ventral tuberies (NVT) were found to be involved in the positive 

feedback effect of ovarian estrogens, as the NVT neurons were found to express 

estrogen receptor-α in medaka (Kanda et al., 2008; Mitani et al., 2010). Recent work in 

female zebrafish has similarly shown that kiss2 neurons of the ventral hypothalamus are 

estrogen sensitive (Servili et al., 2011), with an estradiol treatment causing a significant 

increase in both kiss1 and kiss2 mRNA expression in the brain of juvenile zebrafish 

(Servili et al., 2011). It is clear from the above results in mammals and teleosts that at 

least in females, steroids regulate the kisspeptin signalling, however the role of 

androgens in male puberty and reproductive cycling is far less clear (Clarkson et al., 

2010). The current results suggest that such a relationship may well exist, thus the 

potential for androgen regulation in males reproductive physiology should perhaps be 

explored in greater detail. 

In conclusion, the present study revealed that mRNA expression of the two kiss 

genes (kiss1, kiss2) and their receptor kissr4 showed clear seasonal profiles and 

correlated well to other BPG markers (GnRHs, fshβ and lhβ), suggesting their  possible 

involvement of kisspeptin genes in the seasonal control of reproduction in repeat 

spawning male sea bass. 

 



Rania Ismail           Chapter 4: Kisspeptin effects on lhβ & fshβ mRNA expression levels  

 

 136 

 

 

 

 

 

 

 

CHAPTER 4 

KISSPEPTIN EFFECTS ON LHB AND FSHB mRNA EXPRESSION 

LEVELS BY SEA BASS, DICENTRARCHUS LABRAX, 

GONADOTROPH CELLS 



Rania Ismail           Chapter 4: Kisspeptin effects on lhβ & fshβ mRNA expression levels  

 

 137 

4.1. INTRODUCTION 

Reproduction in fish, as in all vertebrates, is controlled by a suite of 

neuropeptides and hormonal signals at the brain-pituitary-gonadal axis (BPG) (Zohar et 

al., 2010) that respond to environmental changes and initiate/regulate the 

gametogenesis process. Among these, gonadotropin releasing hormones (GnRHs) 

produced by discrete neurons in the brain, gonadotropins synthesised by gonadotroph 

cells in the pars distalis of the pituitary and sex steroids synthesised by gonads play 

pivotal roles. Unlike mammals, fish GnRH neurons innervate the anterior pituitary and 

create a physical and functional connection between the brain and pituitary (Yamamoto 

et al., 1998; Gonzalez-Martinez et al., 2002a). The functional role of GnRH on pituitary 

gonadotropin release has been demonstrated in many teleost species including the 

striped sea bass, Morone saxatilis (Hassin et al., 1998), the European sea bass (Mateos 

et al., 2002; Fornies et al., 2003) and the common carp  (Kandel-kfir et al., 2002). 

Recent research has brought to light the importance of a number of upstream 

neuropeptides that regulate GnRH expression and neurotransmitters that work in 

association with GnRH‘s actions to regulate gonadotropin synthesis (Vidal et al., 2004; 

Zohar et al., 2010).  

The neuropeptide Kisspeptin as a regulator of GnRH function controlling 

puberty and sexual maturation at the hypothalamus level has been the object of many 

studies over recent years particularly in mammalian model species. Studies suggested 

that kisspeptin, namely the signal peptide Kiss1 and its receptor Kissr (formerly 

referred to as G-coupled protein receptor 54. GPR54), are key factors in the regulation 

of reproduction and initiation of puberty (Seminara, 2005; Murphy 2005; Dungang et 

al., 2006). Studies carried out on laboratory animals indicated that kisspeptin-10 

(derivative of Kiss1) has the ability to stimulate the synthesis and release of LH and 
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FSH hormones from the pituitary when administrated centrally or peripherally (Gottsch 

et al., 2004; Matsui et al., 2004; Navarro et al., 2005a and Shahab et al., 2005). 

Importantly, kisspeptin was found to be equally effective when administrated as a full 

length peptide or decapeptide Kiss-10 (Gottsch et al., 2004). In mammals, kisspeptin 

clearly stimulate the synthesis of gonadotropins from the pituitary although this 

stimulation appears to be mediated through GnRH neurons in the preoptic area of the 

hypothalamus (Roa et al., 2009). This indirect role is supported by many authors. A 

direct innervation of Kiss1 nerve fibers and Kissr1 mRNA was demonstrated within 

GnRH neurons (Roseweir & Millar, 2009). Kisspeptin was shown to trigger GnRH 

secretion in rat hypothalamus when applied in vivo (Messager et al., 2005) and in vitro 

as well (Nazian, 2006; Quaynor et al., 2007). Both FSH and LH were secreted in 

response to in vivo kisspeptin treatments while this secretion was inhibited when GnRH 

antagonists were used (Matsui et al., 2004; Irwig et al., 2004). Although mammals 

express only one signal peptide kisspeptin (KISS1) and receptor (KISSR1) as for some 

teleost species, in other fish two forms of both the signal peptide (kiss1 & kiss2) and 

receptor (kissr2 & kissr4) have been found (Felip et al., 2009; Lee et al., 2009; 

Akazome et al., 2010). Most of the work done in teleosts focused mainly on the 

kisspeptin receptor (Kissr) as it is well conserved across fish species as compared to the 

signal peptides. Results suggested a conserved role played by kisspeptin in fish as 

reported in mammals with an association to the onset of puberty (Filby et al., 2008; 

Martinez-Chavez et al., 2008), similar GnRH regulatory abilities (Elizur, 2009) as well 

as being responsive to sex steroid feedbacks (Kanda et al., 2008). However, as it was 

found with the GnRH system, the kisspeptin system has emerged to be more complex 

and diverse than first thought with potentially multiple roles played (by several gene 
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variants) at different levels of the BPG axis for the control of reproduction as well as 

other functions.  

Although the hypothalamus appears to be the primary site of kisspeptin action 

for the regulation of reproduction, kisspeptin could also act directly at the pituitary or 

gonadal levels as suggested by previous published work. Indeed, Kissr mRNA 

expression in the pituitary gland of rat (Richard et al., 2008; Gutiérrez-Pascual et al., 

2007), in addition to the release of kisspeptin in ovine hypophyseal portal blood, are 

rising the possibility that role of kisspeptin as a hypophysiotropic neuromodulator in the 

pituitary (Smith et al., 2008b). However, contrasting results have been obtained in 

mammals when kisspeptin was applied in vitro to pituitary cells. In rat and bovine for 

example, kisspeptin has direct stimulatory actions on LH when applied to pituitary cells 

(Gutiérrez-Pascual et al., 2007; Suzuki et al., 2008). However, in other studies, 

kisspeptin was ineffective as it failed to elicit basal FSH release directly at the pituitary 

level in adult rat pituitary cells (Navarro et al., 2005b), or pituitary fragment 

(Thompson et al., 2004). Kisspeptin treatment on pituitary cells was also shown to 

stimulate growth hormone (GH) and prolactin (PRL) in bovine anterior pituitary 

(Kadokawa et al., 2008), and growth hormone (GH) in cultured rat pituitary cells 

(Gutiérrez-Pascual et al., 2007). The direct action of kisspeptin on the pituitary in fish is 

scarce and gave contradictory results. In goldfish pituitary cell culture, no effects of 

kisspeptin on LH contents were found by Li et al. (2009) whereas Yang et al. (2010) 

showed a stimulation of LH, PRL and GH mRNA following incubation with 

decapeptide kiss10. In European sea bass, an in vivo study has shown that kiss10 

peptide injection for both kiss1 and kiss2 increased the secretion of plasma LH and FSH 

with more potency for kiss2 (Felip et al., 2009).  
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The aim of this study was to examine the potential direct action of the kisspeptin 

forms (Kiss1 and Kiss2) on gonadotropin (lhβ and fshβ) gene expression in male 

European sea bass pituitary cells in culture. This was done by testing the kisspeptin 

decapeptide derivatives on the lhβ and fshβ transcript expression in primary culture of 

sea bass pituitary cells using quantitative RT-PCR technique. Three experiments were 

performed to test incubation doses, time course and fish stage of development. 

 

4.2. MATERIALS AND METHODS  

4.2.1. Animals and sampling  

In experiment 1, one year old mixed sex sea bass originating from stock 

available at Machrihanish Environmental Research Laboratories (MERL, University of 

Stirling facilities, 55º 44´ N, 5º 44´ W) were used. Fish were produced in the facilities 

from larvae supplied by Llyn Aquaculture Ltd, Ireland, and reared under a constant 

regime of 12L: 12D photoperiod and temperature of 14 ºC and fed to satiation twice per 

day. For experiments 2 and 3, adult sea bass males were also obtained from MERL, but 

fish were reared under a natural photoperiod and temperature regime and fed to 

satiation twice per day with a commertial fish food formula (Atlantic HE 50E+ 

35A/25C, Skertting, Invergordon,UK). When fish reached the targeted gonadal 

developmental stage, fish were transferred to recirculating marine facilities on the 

University of Stirling campus at least 1 week prior to sampling. Sampling consisted of 

sacrificing fish by a lethal dose of anaesthesia (2-phenoxyethanol, Sigma-Aldrich Co. 

Ltd., Poole, UK) and dissecting the pituitary using a sterile dissecting set. Pituitaries 

were immediately placed in dispersion medium kept on ice and brought back to the 

laboratory. Body weight and standard length were recorded. All trials were carried out 

in accordance with the UK Home Office Animal Scientific Procedures, Act 1986.   



Rania Ismail           Chapter 4: Kisspeptin effects on lhβ & fshβ mRNA expression levels  

 

 141 

4.2.2. Hormones and chemicals  

To test for the pituitary actions of two kisspeptin encoded genes in sea bass, the 

decapeptides (10 amino acid core sequence) were produced by Peptide Synthetics 

(Fareham, United Kingdom) using the standard procedures for solid phase peptide 

synthesis with purity of >95 % determined by HPLC analysis. The amino acid 

sequences were sbKiss1 NH2-YNLNSFGLRY-CONH2 and sbKiss2 NH2-

FNFNPFGLRF- CONH2 according to the published sequence in Felip et al. (2009). 

Newly synthesised peptides were named sbkiss1 and sbkiss2. Both peptides were 

dissolved in 100 % sterile DMSO (Dimethyl Sulfoxide) (final DMSO concentration < 

0.1%) to make stock concentration of 1µM. For testing different doses of both 

kisspeptin forms, the prepared stock diluted with culture media to have final 

concentrations of 10 nM, 100 nM and 1000 nM.  Forskolin (Planta natural products, 

Austria) was prepared at 10 µm by dissolving in sterile DMSO and diluting with culture 

media. Forskolin was selected as a positive control because it is commonly used to raise 

levels cyclic AMP (cAMP), which is an important signal carrier for biological response 

of cells to hormones and other extracellular signals as previously described (Evans et 

al., 1985; Ding et al., 2001). 

 

4.2.3. Experiment 1: Incubation time trial  

 To test the effect of the duration of incubation, 28 sea bass (weight of 333.5 ± 

18.1 g, length of 30.2 ± 0.5 cm and GSI of 0.4 ± 0.1 %) pituitaries were collected from 

the immature mixed sex population in June 2010, Cells were dispersed and cultured as 

described in Chapter 2 and incubated at a density of 4 x 105 cells/well (2 ml), and then 

left for 72 hours to attach to the plates in the dark in an incubator at 22 ºC. After 

attachment, doses of 100 nM of decapeptide 10 for sbkiss1 or sbkiss2 were tested in 
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quadruplicate wells (4 wells/incubation times) with untreated wells kept as controls for 

each tested time. Five incubation times were tested: 1, 3, 6, 12 and 24 hours.  

 

4.2.4. Experiment 2: Dose-response trial 

To test the dose response effects, pituitaries were collected from mature male 

sea bass (weight of 580.3 ± 25.6 g, length of 34.6 ± 0.4 cm and GSI of 1.8 ± 1.2 %) in 

March 2010. Fish were at the spermiation stage with high plasma steroid levels (see 

Chapter 3). Cells were dispersed and incubated at a density of 7.5 x 105 cells/well (2 ml) 

and then left for 72 hours to attach to the plates. After attachment, 3 doses of 

decapeptide 10 for sbkiss1 or sbkiss2 were tested (10, 100, 1000 nM) together with 10 

µM forskolin as positive controls with untreated wells kept as negative controls. 

Samples (medium and cells) were collected after 24 and 48 hours of incubation The 

incubation times for this trial were chosen independently from (prior to) the results of 

the first experiment. 

 

4.2.5. Experiment 3: Gonadal development stage trial  

To test the effect of stage of development, pituitaries were collected from 

mature male sea bass in March (full spermiation with high plasma steroid levels) 

(weight of 580.3 ± 25.6 g, length of 34.6 ± 0.4 cm and GSI of 1.8 ± 1.2 %) and in 

August (spent stage with low plasma steroid levels) (weight of 772.8 ± 60.0 g, length of 

38.9 ± 0.6 cm and GSI of 0.8± 0.1 %). Cells were dispersed and incubated at a density 

of 7.5 x 105 cells/well (2 ml) and then left for 72 hours to attach to the plates. After 

attachment, 2 doses of decapeptide 10 for both sbkiss1or sbkiss2 were tested (10 and 

1000 nM), together with 10 µM forskolin as positive controls. Samples were collected 

after 24 hours incubation. Due to limited number of wells and the replicates needed for 
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each dose or time and based on results obtained in experiments 1 and 2, only two doses 

of each kisspeptin for only one incubation time were used.  

 

4.2.6. RNA extraction and quantitative RT-PCR  

 After incubation, the culture medium was removed and the cells were washed 

twice using 1 ml/well phosphate buffered saline 1x (PBS) (Gibco, Invitrogen). RNAs 

from individual wells were collected by adding 1 ml of TRI reagent/ well and scraping 

out the cells which was transferred into a clean Eppendorf tube (DNAse and RNAse 

free) (Axygen, Fisher Scientific,UK). Samples were frozen at -70 ºC for later 

extraction. Total RNA extraction was performed as described in Chapter 2 (section 

2.3.1), RNA quality was checked and cDNA was synthesised as described in Chapter 2 

(sections 2.3.2 and 2.3.4) using 1 µg of total RNA, cDNA samples were diluted 1:10 

with MiliQ water RT-QPCR validation and assay of lh and fsh genes were performed as 

described in Chapter 2. Absolute copy numbers were normalized against sea bass ef1α 

as a reference gene using the same specific primers (Table 3.1). 

 

4.2.7. Data analysis and statistics 

 Pituitary hormone transcripts were expressed in absolute copy number of target 

genes. Data were routinely normalized with ef1α mRNA in the same sample to control 

the potential variation in cell number between wells, as no significant differences were 

noted for ef1α mRNA expression in the experiments. Normalized data were 

transformed as a percentage of the control group within the same trial for the graph 

presentation. In all experiments, data were presented as mean ± SEM of four wells for 

individual treatments. Normality of variances and homogeneity were tested using the 

Kolmogorov-Smirnov test and when appropriate, data were transformed using the 
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natural logarithm. For the incubation time experiment, differences between treatments 

(including control) were analyzed using a T- test each time, followed by Tukey’s 

multiple comparisons post-hoc test to compare between the different sampling times for 

both control and treated samples. In experiment 2 (the dose-response trials) data were 

analyzed by one-way ANOVA followed by Tukey’s multiple comparisons post-hoc 

test. The comparisons between the two sampling times in experiment 3 were done using 

two-way ANOVA. When significant interaction was found, inspection of mean values 

was done using one-way ANOVA for each sampling time. For all tests, significance 

was set at P < 0.05. All analyses were performed with MINITAB ® version 16.0 

(Minitab Ltd., Coventry, UK).  
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4.3. Results  

4.3.1 Experiment 1: Effects of incubation time on sbkiss1 and sbkiss2 stimulation 

of fshβ and lhβ mRNA levels in pituitary cells.  

 In this trial, the effect of different incubation durations (1, 3, 6, 12 and 24 hours) 

with a single dose of 100 nM of either sbkiss1 or sbkiss2 was tested. The results 

showed no significant effect of sbkiss1 on fshβ and lhβ expression levels when 

incubated with the pituitary cells for one or three hours (Fig. 4.1 A, B, C and D). After 

6 hours, fshβ but not lhβ mRNA expression appeared to increase in pituitary cells 

incubated with sbkiss1 but with no significant diffrence when compared to the control. 

There was a significant effect after 12 hours of incubation for both fshβ and lhβ (60 and 

40 % increase, respectively). After 24 hours of incubation, while lhβ mRNA was still 

significantly higher (10 %) in the exposed cells than in the control, no significant 

difference was seen in fshβ. While fshβ mRNA remained relatively steady throughout 

the incubation period (80-120 x 104 copy number/µg total RNA) in both treated and 

non-treated cells, lhβ mRNA decreased significantly over time from 490 x 104  copies 

/µg total RNA at the first hour sampling to 172 x 104  copies /µg total RNA after 24 

hours of incubation (Fig. 4.1 A&C).  

 When pituitary cells were exposed to sbkiss2, a significant increase was 

observed in fshβ mRNA after only 1 hour of incubation (30 %) although the effect was 

not sustained thereafter, as no significant differences were seen after 3 and 6 hrs of 

incubation (Fig. 4.2 A, B, C and D). Another significant surge in fshβ was then 

measured at 12 hours (100 % increase, Fig 4.2B). No difference could then be found at 

24 hrs. Similarly, a significant increase at 12 hrs was measured for lhβ mRNA (70 % 

increase, Fig. 4.2D). However, no other differences were observed throughout the 

incubation period. During the whole experimental period fshβ mRNA remained 
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relatively steady throughout the incubation except for the samplling points of 6 and 12 

hours comparing to the sampling point for first and third hours (Fig. 4.2 A). While, as 

seen for the sbkiss1 results, lhβ decreased significantly over time in both treated 

(sbkiss2) and non-treated (control) cells (Fig. 4.2 C).  
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Figure 4.1. Time course effect of sbkiss1 (100 nM) on fshβ (A&B) and lhβ (C&D) 

mRNA in dispersed pituitary cell cultures taken from mixed sex immature sea bass. 

Cells were treated with sbkiss1 and harvested after 1, 3, 6, 12 or 24 hrs of incubation. 

Data are presented as absolute copy numbers (A&C) or relative values to control 

(B&D). Data are expressed as the mean ± SEM (n = 4). Asterisks denote significant 

differences between the treatment and its control for the same incubation time, while   

superscripts denote significant differences between the expression levels at different 

time points for both control and treated wells. 
 

  * 

  A 

  B 

C 

D 

* 

* 

* 

* 

c 

a 

ab 
a 

b 

a a 
ab 

d c 

* 
ab 

ab ab ab 

ab b 
ab ab 

a 
ab 



Rania Ismail           Chapter 4: Kisspeptin effects on lhβ & fshβ mRNA expression levels  

 

 148 

0
20
40
60
80

100
120
140
160
180
200

1hr 3hr 6hr 12hr 24hr

fs
h

 β
 c

op
y 

N
ox

10
4

/µ
g 

to
ta

l R
N

A
 

Duration of treatment

Control 
Kiss2

 

0

100

200

300

400

500

600

1hr 3hr 6hr 12hr 24 hr 

lh
β 

C
op

y 
N

ox
10

4
/µ

g 
to

ta
l R

N
A

 

Duration of treatment

Control
Kiss2

 

0
20
40
60
80

100
120
140
160
180
200
220

1hr 3hr 6hr 12hr 24hr

fs
hβ

 m
R

N
A

 (
%

C
tr

l)

Duration of treatment

Control 
Kiss2

 

0
20
40
60
80

100
120
140
160
180
200

1hr 3hr 6hr 12hr 24 hr 

lh
β 

m
R

N
A

 (
%

C
tr

l)

Duration of treatment

Control
Kiss2

 

 

Figure 4.2. Time course effect of sbkiss2 (100 nM) on fshβ (A&B) and lhβ (C&D) 

mRNA in dispersed pituitary cell cultures taken from mixed sex immature sea bass. 

Cells were treated with sbkiss2 and harvested after 1, 3, 6, 12 or 24 hrs of incubation. 

Data are presented as absolute copy numbers (A&C) or relative values to control 

(B&D). Data are expressed as the mean ± SEM (n = 4). Asterisks denote the significant 

differences between the treatment and its control for the same incubation time while   

superscripts denote significant differences between the expression levels at different 

time points for both control and treated wells. 
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4.3.2. Experiment 2: Dose-response effects of sbkiss1 and sbkiss2 on fshβ and lhβ 

mRNA levels. 

Dose- response effects of sbkiss1 and sbkiss2 core sequences on the levels of 

fshβ and lhβ mRNA were examined in March, when both steriods levels and pituitary 

fshβ and lhβ mRNA were the highest (Chapter3) to check the responsiveness to 

different doses of both sbkiss1 and sbkiss2. Male pituitary cells were exposed to 

increasing concentrations (10, 100 and 1000 nM) of sea bass kisspeptin -10. After 24 

hours of incubation, no significant effects of sbkiss1 or sbkiss2 on fshβ mRNA 

expression levels were observed when compared to controls (Fig. 4.3.A and C). 

However, relative expression to controls showed a significant decrease in lhβ when 

kisspeptide concentrations (both kiss 1 and 2) were increased from 10 to 100 nM for 

sbkiss1 and 10 to 1000 for sbkiss2 (Fig. 4.3 B and D). lhβ mRNA levels appeared to 

increase in cells treated with both peptides although it was significant only for sbkiss1 

(60 % increase, Fig. 4.3B). Forskolin appeared to have no effects on both fshβ and lhβ 

mRNA expression relative to controls (except a slight decrease in lhβ in cells treated 

with sbkiss1, Fig. 4.3 B). After 48 hours, significant differences in fshβ mRNA levels 

were measured in cells treated with 10 and 100 nM of sbkiss1, while no significant 

differences were found for 1000 nM of dose (Fig. 4.4A). No significant effects of 

sbkiss2 on fshβ mRNA was observed (Fig. 4.4C). However, when cells were exposed to 

sbkiss1, significant differences in lhβ expression were measured between cells treated 

with either 10 or 100 nM of sbkiss2 and 1000 nM (Fig. 4.4B) although no significant 

differences to controls were seen. For the three doses of sbKiss2, no significant 

differences with the controls could be seen in lhβ mRNA levels (Fig. 4.4D). Forskolin 

did not have any effect on either gonadotropin gene expression after 48 hrs of 

incubation. 
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Figure 4.3. Dose-response effects of sbkiss1 (A&B) and sbkiss2 (C&D) on fshβ (A&C) 

and lhβ (B&D) mRNA in cells harvested after 24 hours of incubation. Male sea bass 

pituitary cells were collected in March and plated at density of 7.5 x 105 cells /well/2ml. 

Cells were treated with sbkiss1 or sbkiss2 (10, 100 and 1000 nM) and 10 µm forskolin 

for 24 hrs of incubation. Data are presented as relative values to control. Data are 

expressed as the mean ± SEM (n = 4). Superscripts denote significant differences 

between treatments (doses). 
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Figure 4.4. Dose-response effects of sbkiss1 (A&B) and sbkiss2 (C&D) on fshβ (A&C) 

and lhβ (B&D) mRNA in cells harvested after 48 hours of incubation. Male sea bass 

pituitary cells were collected in March and plated at density of 7.5 x 105 cells /well/2ml. 

Cells were treated with sbkiss1 or sbkiss2 (10, 100 and 1000 nM) and 10µm forskolin 

for 48 hr of incubation. Data are presented as relative values to control. Data are 

expressed as the mean ± SEM (n = 4). Superscripts denote significant differences 

between treatments (doses). 
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4.3.3. Experiment 3: Changes in the fshβ and lhβ mRNAs in cells treated with 

sbkiss1 and sbkiss2 in relation gonadal developmental stage 

Direct effects of sbkiss1 and sbkiss2 on fshβ and lhβ mRNAs were examined 

using primary pituitary cell cultures from sea bass sampled at two different periods of 

their reproductive cycle (March and August 2010). The cells were treated with either 

sbkiss1 or sbkiss2 at two different concentrations (10 or 1000 nM) or forskolin (10 µM) 

as a positive control. After 24 hrs of incubation, no significant effects of sbkiss1 at 10 

or 1000 nM were found on the fshβ mRNA expression levels from the March or August 

sampling. The effects of forskolin appeared to differ between sampling times with no 

significant effect in March and a significant decrease relative to untreated cells in 

August (Fig. 4.5). When comparing sampling times using two-way ANOVA, a 

significant difference was observed btween March and August (p< 0.05, F= 166.16), 

with no significant effect of the sbkiss1 dose, while there was a significant interaction 

of time and dose (p< 0.05, F= 4.93). In sbkiss2 treated cells, no significant differences 

between treatments were measured in the cells sampled in March (Fig. 4.6 A, B). In 

cells sampled in August, a significant decrease in fshβ mRNA was measured when cells 

were exposed to a dose of 10 nM of sbkiss2 or forskolin (approx. 30 % decrease); 

however, no difference relative to control was observed when the dose was increased to 

1000 nM (Fig. 4.6 A, B). A significant difference was observed between March and 

August (p< 0.05, F= 195.6) with no significant effect of the sbkiss2 dose (p = 0.10, F= 

2.27) and no significant dose/time of sampling interaction (p = 0.26, F= 1.4) was found 

in kiss2 treated cells when two-way ANOVA was applied. The  fshβ mRNA levels in 

both treated and control cells measured in August were significantly lower (ranging 

from 100 to 200 x 104 copy numbers/µg total RNA) than in March (ranging from 300 to 
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500 x104 copy numbers/µg total RNA) when both negative controls were compared 

(Figs. 4.5 A and 4.6 A).  

lhβ mRNA expression results in treated cells differed from fshβ (Figs. 4.7 and 

4.8). No significant changes in lhβ mRNA levels were observed between treated 

(sbkiss1 or sbkiss2) and control cells harvested in August. However, a significant 

increase in lhβ mRNA was seen in cells harvested in March and treated with 10 nM of 

sbkiss1 (60 % increase) (Fig. 4.7 A, B). When the dose was increased to 1000 nM, 

levels significantly decreased relative to controls and 10 nM (40 and 100 %, 

respectively) as shown in Figure 4.7 B. Similar effects were observed when cells were 

treated with sbkiss2, although the increase in lhβ mRNA in the 10 nM treated cells and 

decrease in the 1000 nM treated cells were not significant compared to the untreated 

control wells (Fig. 4.8 A, B). For the sbkiss1 treated wells, no significant differences 

were observed for lhβ mRNA between March and August levels (p = 0.25, F= 1.37), 

while the doses were significant (p< 0.05, F= 12.25), with significant interaction for 

both time and dose (p< 0.05, F= 14.28) when two-way ANOVA was applied. When lhβ 

mRNA expression levels for the sbkiss2 treated cells were analysed by two-way 

ANOVA, no significant diffrences were observed for lhβ mRNA between March and 

August levels (p = 0.057, F= 4.00), while the doses were significant (p< 0.05, F= 7.40) 

and significant dose by time of sampling interaction was found (p< 0.05, F= 5.76). 

Finally, overall, irrespective of treatments, higher absolute expression levels were 

observed in lhβ (200-1100 x 104 and 500-600 x 104 copy numbers/µg total RNA, 

respectively for March and August) (Figs. 4.7 and 4.8) compared to fshβ (300-500 and 

100-200 x 104 copy numbers/µg total RNA, respectively for March and August) (Figs. 

4.5 and 4.6).  
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Figure 4.5. Effect of sbkiss1 on fshβ mRNA in cells harvested at two sampling points 

(March & August). Cells were treated withsb kiss1 (10 and 1000 nM) and 10µm 

forskolin for 24 hr of incubation. Data are presented as absolute copy numbers (A) or 

relative values to control (B). Data are expressed as the mean ± SEM (n = 4). 

Superscripts denote significant differences between treatments (doses). 
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Figure 4.6. Effect of sbkiss2 on fshβ mRNA in cells harvested at two sampling points 

(March & August). Cells were treated with sbkiss2 (10 and 1000 nM) and 10µm 

forskolin for 24 hr of incubation. Data are presented as absolute copy numbers (A) or 

relative values to control (B). Data are expressed as the mean ± SEM (n = 4). 

Superscripts denote significant differences between treatments (doses). 
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Figure 4.7. Effect of sbkiss1 on lhβ mRNA in cells harvested at two sampling points 

(March & August). Cells were treated with sbkiss1 (10 and 1000 nM) and 10µm 

forskolin for 24 hr of incubation. Data are presented as absolute copy numbers (A) or 

relative values to control (B). Data are expressed as the mean ± SEM (n = 4). 

Superscripts denote significant differences between treatments (doses). 
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Figure 4.8. Effect of sbkiss2 on lhβ mRNA in cells harvested at two sampling points 

(March & August). Cells were treated with sbkiss2 (10 and 1000 nM) and 10µm 

forskolin for 24 hr of incubation. Data are presented as absolute copy numbers (A) or 

relative values to control (B). Data are expressed as the mean ± SEM (n = 4). 

Superscripts denote significant differences between treatments (doses) 
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4.4. DISCUSSION  

 The role of kisspeptin and its receptor has recently started to be investigated in 

fish with the aim to confirm its action on the reproductive function in fish, as shown in 

mammals. However, the long evolution time in fish and adaptation to a vast range of 

environments has resulted in a large diversity of reproductive strategies and several 

gene variants, due to genome duplication events, involved in the control of reproduction 

through the BPG axis. Studies have focused on several fish species so far including data 

rich model species (e.g. zebrafish), but sea bass and tilapia have also been at the 

forefront of the kisspeptin research due to the commercial importance of controlling 

their reproductive cycles. However, although progress has been made, notably with the 

cloning of two kisspeptin signal peptides in sea bass (Felip et al., 2009), the co-

localisation of kissr4 (cited as kiss1r) in tilapia (Parhar et al., 2004) and both the 

receptors and kispeptin in sea bass (Escober et al., 2010)  and zebrafish (Servili et al., 

2011) with the GnRH neurons, and the profiling of kisspeptin receptor expression 

during ontogeny (Mohamed et al., 2007) and puberty (Martinez-Chavez et al., 2008; 

Filpy et al., 2008), the mode of action of kisspeptins at the BPG level remains 

unknown. Most studies have focused on the kisspeptin-GnRH interaction at the brain 

level based on mammalian discoveries. If a direct connection appears to be conserved in 

fish as seen in mammals, this is based on indirect evidence showing either a correlation 

between kisspeptin and gonadotropin expression (both circulating protein levels and 

gene expression) or sex steroids (see Chapter 3). Studies carried out on mammalian 

species, including humans, indicated that kisspeptin or its derivative decapeptide 

sequence (kisspeptin-10) have the ability to stimulate release of LH and FSH hormones 

when administrated centrally or peripherally (Gottsch et al., 2004; Messager et al., 

2005; Navarro et al., 2005a; Shahab et al., 2005; Dhillo et al., 2005) in a dose-



Rania Ismail           Chapter 4: Kisspeptin effects on lhβ & fshβ mRNA expression levels  

 

 159 

dependent manner. Only a few studies looked at the direct effects of kisspeptin on 

GnRH expression due to the lack of specific assays in most species and the multitude of 

forms (3 types and 8 GnRH gene variants) found so far in fish. It has therefore been 

difficult until now to ascertain if the gonadotropin surge in response to kisspeptin 

stimulation was operating through GnRH neurons that are well known for their 

hypophysiotropic action, or directly at the pituitary cell level. Infusion of kisspeptin into 

the third ventricle of sheep was shown to induce the release of GnRH into the 

cerebrospinal fluid (Messager et al., 2005). Thus, it is strongly suggested that kisspeptin 

acts directly on GnRH neurons in the hypothalamus, where kisspeptin elicits GnRH 

secretion, which in turn activate LH and FSH secretion from the pituitary. However, as 

suggested in mammals (Richard et al., 2009), kisspeptin could also have a direct 

hypophysiotropic effect on gonadotropin producing cells in the pituitary. The direct 

effect of kisspeptin on pituitary gonadotropin cells has revealed contrasting results so 

far in mammals, with in some cases stimulatory effects (Gutiérrez-Pascual et al., 2007; 

Suzuki et al., 2008) or no effects (Matsui et al., 2004; Navarro et al., 2005a). 

Irrespective of these findings, high kisspeptin signal peptide and receptor expression 

has been shown in human and rat pituitaries (Ohtaki et al., 2001; Gutiérrez-Pascual et 

al., 2007; Richard et al., 2008) as well as fish like tilapia (Martinez-Chavez et al., 

2008), fathead minnow (Filby et al., 2008); grey mullet (Nocillado et al., 2007); grass 

puffer (Shahjahan et al., 2010) and goldfish (Yang et al., 2010). This could suggest a 

direct involvement of kisspeptin in the pituitary. The present study therefore aimed to 

test the effects of the two kisspeptin signal peptides identified in sea bass on 

gonadotropin mRNA expression in pituitary gonadotroph cells. The work first studied 

the duration of incubation, the second the dose response and finally the time of 

harvesting the pituitary cells corresponding to different reproductive status. 
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 The results showed that sbkiss1 and sbkiss2 have a stimulatory effect on lhβ and 

fshβ subunits mRNA expression after 12 hours of incubation. Similar results were 

previously reported from a study on goldfish pituitary cells where short term incubation 

with 100 nM kiss10 failed to show an effect on lhβ gene expression while an elevation 

in mRNA level was observed after 24 hours of incubation, compared to a short- term 

(30 minutes) rise in LH in the culture medium (Yang et al., 2010). When the same 

decapeptides (sbkiss1 and sbkiss2) were injected into prepubertal sea bass in vivo, it 

resulted in increased plasma LH levels only 2 hours post-injection, with great potency 

of sbkiss2 (Felip et al., 2009), while FSH plasma levels increased 1 and 2 hour post-

injection respectively in response to sbkiss-2 and sbkiss1 (Felip et al., 2009).  

The study then looked at the dose response of sbskiss1 and sbskiss2 on fshß and 

lhß mRNA expression. After 24 hours of incubation, no effects of either peptide were 

seen for any dose on the fshß mRNA levels, however a dose response of both peptides 

was observed for lhß, with a significant increase in cells treated with 10 nM relative to 

untreated cells and decreases in cells treated with increased doses (100 and 1000 nM). 

These results clearly showed the importance of the peptide concentration when 

performing such in vitro experiments. However, results obtained after 48 hours of 

incubation differed as a reverse dose response was observed for lhß with increased 

mRNA expression in cells treated with the highest dose (1000 nM) compared to 10 and 

100 nM doses. Similar results were obtained in goldfish where lhß mRNA levels 

increased only in response to the highest dose of kiss10 (1000 nM) after 24 hours of 

incubation (Yang et al., 2010). Furthermore, LH secretion levels from bovine anterior 

pituitary cells in culture was shown to increase in response to increasing kiss1 doses 

(Suzuki et al., 2008) as in rat pituitary cells (Gutiérrez-Pascual et al., 2007). The 

contrasting results observed between 24 and 48 hours of incubation suggest that the 
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prolonged treatment duration can either reduce the magnitude of stimulation in a time-

dependent manner or completely abolish the stimulatory effect found in the low doses. 

These results raise the possibility that the kissr4 expressed in sea bass pituitary may be 

able to receptor desensitization (decline in receptor response) by time. Furthermore, 

differences seen between the incubation duration and dose-response trials could come 

from the differences in reproductive status of the fish sampled as shown by GSI values 

(immature with GSI<0.5 % and mature with GSI >1.7 % in trials 1 and 2, respectively). 

Due to these differences in the reproductive stages, the incubation times used in second 

trial were tested independently from the results obtained in the first trail. Indeed, 

pituitary cells sensitivity to kisspeptin could vary with the reproductive status of the fish 

depending on the availability of kisspeptin receptors in pituitary cells. In bovine 

cultured pituitary cells, kisspeptin -10 showed different stimulatory effects for growth 

hormone production depending on age and pubertal stage (Kadokawa et al., 2008), and 

for LH release as well (Suzuki et al., 2008). Unfortunately, kisspeptin receptor 

expression was not assessed in this trial. However, irrespective of these, these results 

suggest that kisspeptin could act directly on pituitary cells and modulate gonadotropin 

expression.  

In the view of the results obtained, a final trial tested the effect of reproductive status on 

pituitary cell responsiveness to kisspeptin. Two batches of fish were compared, sampled 

in March and August, corresponding to spermatogenic and spent stages respectively.  

Interestingly, fshß mRNA levels differed between sampling times with higher 

expression in fish at the spermatogenesis stage (sampled in March) than spent stage 

(sampled in August) as previously described in Chapter 3. These results agree with the 

well known role of fshβ in the spermatogenesis process (Schulz et al., 2010). However, 

no such effect was seen for lhß expression between stages of development despite the 
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role played by LH on spermiogenesis. It is clear that gonadotropins release and gene 

expression are related to the gonadal stage, and the response of the pituitary cells as 

well. In masu salmon, the effect of sGnRH treatment on lhβ and fshβ genes expression 

was different between male and female and gonadal stage (Ando et al., 2004). The 

present results suggest that the response to kisspeptin in the pituitary level is affected by 

the reproductive state of the fish. However, more comparisons to other times of the year 

are needed to assess more accurately the response of the gonadotropins for different 

developmental stages.  More work is needed to test the effect of both kisspeptin forms 

on the mRNA expression and LH and FSH release in sea bass pituitary cell culture, as 

that the effect of kisspeptins on the gonadotropins subunits mRNA may be dependent 

on the sex, gonadal state, incubation times and different doses.  The present study is a 

preliminary approach; different developmental stages, doses, males in two trials and 

mixed sex in the third one have been used; however, more justification for the 

experimental protocols is needed to discriminate the real action of kisspeptins.  

Throughout the present studies, the use of forskolin as a positive control was 

unsuccessful as it did not promote fshß and lhß mRNA expression. This came as a 

surprise as forskolin is a well known agent that increases intracellular levels of cAMP 

and stimulates pituitary cells to express gonadotropin genes and release hormones such 

as LH and also GH as shown in rat pituitary cells (Evans et al., 1985; Voss et al., 2001). 

The use of 10 µM forskolin activated directly the adenylate cyclise and the growth 

hormone mRNA to 163 % in rat pituitary cell line after 2 days (Voss et al., 2001). In 

goldfish, using 5 µM forskolin as positive control in primary pituitary cells was 

sufficient to increase the expression levels of lhβ, gh and prl mRNA after 24 hours 

(Yang et al., 2010). In the present study, the forskolin dose used was 10 µM which was 
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higher than that used in the primary cell culture in goldfish and could be a 

superaphysiological level.   

In conclusion, the results obtained in the present study clearly showed that 

kisspeptin can act directly at the pituitary level and modulate fshß and lhß mRNA 

expression in sea bass although the effects were limited ( two-fold change in mRNA at 

most). The present findings support suggestions made in mammals according to which 

kisspeptin could act directly on the pituitary to regulate gonadotropin synthesis. 

However, many factors such as exposure time (duration of incubation), peptide dose 

and reproductive status of the fish sampled can impact on the responsiveness of the 

pituitary cells to kisspeptin. Further studies are needed to confirm these results in sea 

bass and other species and better understand the variability seen especially in relation to 

kisspeptin receptor expression.  
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5.1. INTRODUCTION  

Melatonin, produced by the pineal gland, is known as the biological time keeping 

hormone in vertebrates and it displays circadian and circannual rhythms (Falcon et al., 

2010). Melatonin has been suggested to play an important role in synchronising most 

physiological processes in vertebrates. However, if direct evidences are available in 

mammals (Arendt, 1998), the mechanisms by which melatonin control reproduction, 

growth and behaviour (locomotor, feeding, shoaling, and migration) in fish and birds 

remains unclear (Gwinner et al., 1997; Mayer et al., 1997; Falcon et al., 2007). 

Melatonin rhythms are clearly under the control of external (environmental) and 

internal (clocks) signals. A better understanding of these key conserved mechanisms in 

fish would help unravel the environmental control of seasonal physiology in fish and 

develop protocols for aquaculture. 

The production of melatonin by the pineal gland exhibits a distinct diel rhythm 

with elevated levels during the hours of darkness and low basal levels during the day 

(Falcon et al., 2010). In all vertebrates, elevated melatonin production accurately 

reflects the length of the light: dark cycle (Ekstrom and Meissl, 2003), however, unlike 

mammals, the pineal gland in fish appears to be directly photosensitive (Max and 

Menaker, 1992; Falcon et al., 2010). Arylalkylamine N-acetyltransferase (AANAT) and 

hydroxyindole-O-methyltransferase (HIOMT) are known as the rate limiting enzymes 

of melatonin production as they catalyse the formation of N-acetylserotonin, and then 

the conversion of N-acetylserotonin into melatonin (Falcón et al., 2007). Light inhibits 

AANAT activity and melatonin release (Falcon et al., 2010). At night, photoreceptor 

depolarization allows calcium (Ca2+) entry (through voltage-gated Ca2+ channels) and 

cyclic AMP (cAMP) accumulation (Falcón, 1999). Both contribute to increase AANAT 
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amount and activity through phosphorylation of the AANAT protein. This process is 

reversed by illumination, which induces sequentially photoreceptor hyperpolarization, 

dephosphorylation and degradation of AANAT through proteasomal proteolysis, 

resulting in a drop of melatonin production (Falcón et al., 2010). Interestingly, the 

organization of the circadian system that controls melatonin production has changed 

dramatically in the course of vertebrate evolution (Migaud et al., 2010). In mammals, 

photoentrainment is exclusively mediated by retinal photoreceptors and as such pineal 

photoreceptors have lost their direct light sensory abilities (Ekstrom and Meissl, 2003). 

In fish, differential photic regulation of pineal melatonin synthesis have been suggested 

with at least three different organisations:  1) salmonids with a “decentralized” system 

in which the pineal gland responds directly to light independently of the eyes; 2) 

seabass and cod in which both the eyes and the pineal gland are required to sustain full 

night-time melatonin production and 3) tilapia and catfish in which the pineal gland is 

not light sensitive (or only slightly) and the eyes required to perceive light and inhibit 

melatonin synthesis during the day (Migaud et al., 2007). These have been shaped 

through the 500 million years of evolution to diverse environments occupied by fish. 

Other external signals than light have been shown to regulate melatonin 

production, mainly temperature and salinity but also feeding (Ceinos et al., 2008). In 

many of investigated fish species, photoperiod clearly controls the duration of 

melatonin production while ambient temperatures can dictate the amplitude (Falcon, 

1999; Garcia-Allegue et al., 2001). In the pike, temperature had no effect on the phase 

and period of the circadian melatonin rhythm but it had an impact on the amount of 

melatonin synthesized (Falcón et al., 1994). As fish are ectotherms, they are directly 

influenced by the external temperature, which fluctuates on a daily and seasonal basis. 
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However, temperature effects depend on the fish species. In the white sucker, 

Catostomus commersoni, low temperature stimulates the nocturnal melatonin surge 

while high temperature inhibits it (Zachman et al., 1992). In contrast, in pike, high 

summer water temperatures stimulate melatonin produced at night while low winter 

temperatures inhibit the nocturnal surge (Falcon et al., 1994). Furthermore, there is an 

optimum temperature for melatonin biosynthesis above or under which melatonin 

production is suppressed as found in rainbow trout (12 °C, Iigo et al., 2007). The 

mechanisms by which temperature acts on melatonin secretion are not fully understood.  

It has been suggested that such effects would be mediated through direct 

temperature regulation of AANAT2 enzymatic activity although this might be species-

specific (Coon et al., 1999; Falcon, 1999; Benyassi et al., 2000). Interestingly, a good 

correlation between the peak of AANAT response and preferred physiological 

temperature was found in rainbow trout (12 °C), pike (20 °C), seabream (27 °C) and 

zebrafish (30 °C) (Falcon et al., 1994). Furthermore, the same response curves were 

obtained when AANAT2 activities were measured from cultured pineal gland or 

recombinant AANAT2 enzymes which indicate that the response to temperature is an 

intrinsic property of the enzyme itself. Thus, the concurrent action of photoperiod, that 

determines the duration of the melatonin signal, and of temperature, that determines its 

amplitude, provide accurate definitions of both the daily and annual cycles. In addition, 

salinity was recently shown to act on pineal melatonin production (Lopez-Olmeda et 

al., 2009). In this study, plasma melatonin was reported to be higher in sea bass reared 

in full strength seawater as compared to freshwater while the density of melatonin 

binding sites (receptors) in the brain was higher in fish reared in freshwater. These 

results suggest that salinity could also play a role in the entrainment of seasonal events 
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such as migration in fish.  

In most cases, daily and annual rhythms are also driven by internal clock 

mechanisms that free-run with a period close to 24h (circadian) or a year (circannual) 

when exposed to constant conditions. Circadian rhythmicity is a very conserved feature 

observed from photosynthetic prokaryotes to mammals (Menaker et al., 1997; Ekstrom 

and Meissl, 2003). Clocks are key components of the circadian system together with 

photoreceptors involved in light perception. In teleosts, the circadian organization and 

clock controlled rhythms are poorly understood with studies mainly performed on 

model species such as zebrafish (Lopez-Olmeda et al., 2006; Dekens and Whitmore, 

2008). However, intrapineal oscillators, capable of self-sustaining melatonin rhythms in 

vitro in the absence of light stimuli, have been found in numerous species including 

pike (Falcon et al., 1989), goldfish (Iigo et al., 1991; Kezuka et al., 1989), white sucker 

(Zachmann et al., 1992), zebrafish (Cahill, 1996; Cahill, 2002; Vallone et al., 2005), 

golden rabbitfish (Takemura et al., 2006), ayu (Iigo et al., 2004), Nile tilapia (Martinez-

Chavez et al., 2008) and sea bass (Bayarri et al., 2004; Ron, 2004). The role played by 

these oscillators in the timing of seasonal events remains to be found. 

European sea bass is a temperate species that displays strong seasonality in its 

physiology and behaviour (feeding habits, reproduction, and migration). Interestingly, 

sea bass has a dual feeding behaviour being diurnal during the summer and nocturnal 

during the winter (Sanchez-Vasquez et al., 1998). In addition, sea bass can undergo 

seasonal migrations in both the Mediterranean and Atlantic seas from the open sea 

during Autumn/winter where fish mature and spawn to estuaries and lagoons in spring 

and summer where food is more abundant (Lopez Olmeda et al., 2009). Over the last 

decade, sea bass, as for other warm-water fish species (red mullet and tuna), is 
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becoming more commonplace in Northern parts of Europe (Scotland and also Norway) 

with established breeding populations (Henderson, 2007). This is thought to be 

associated with the climate change which resulted in a 0.7 °C rise in the North Sea over 

the last decade (Hiddink & Hofstede, 2008). However, the mechanisms controlling 

these changes in behaviour in relation to the external environment are not understood 

yet and it is very likely that these changes are mediated through melatonin. So far, 

studies carried out on sea bass melatonin system have shown: 1) a classical daily 

melatonin profile in vivo with low levels during day time and higher levels at night 

(Sanchez-Vazquez et al., 1997; Gracia-Allegue et al., 2001); 2) that both pineal and 

eyes are needed to sustain daily circulating melatonin rhythms (Bayarri et al., 2003, 

Migaud et al., 2007); 3) inverse plasma and ocular melatonin daily rhythm profiles with 

high melatonin levels in the retina during the day (Sanchez-Vazques et al., 1997; Iigo et 

al., 1997); and 4) seasonal melatonin profiles with large differences in nocturnal 

melatonin levels (plasma levels from 144 pg/ml in summer to 23 pg/ml in autumn) 

(Garcia-Allegue et al., 2001). In addition, in vitro studies have suggested that the sea 

bass pineal gland is directly photosensitive and has intrapineal oscillators regulating 

melatonin production (Bayarri et al., 2004; Ron, 2004), although only four out of seven 

pineal glands showed significant circadian rhythm under continuous darkness in the 

study of Bayarri et al. (2004).  

All the above make sea bass an interesting species for the study of external and 

internal regulatory mechanisms of melatonin production. The aims of this study were: 

1) to investigate the effects of both photoperiod and temperature on melatonin daily 

rhythms by combining both in vivo and in vitro conditions for the first time to enhance 

the knowledge of the light perception and rhythmicity in sea bass; and 2) study/confirm 
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the presence or absence of intrapineal oscillators in sea bass in comparison to the 

previous work. To do so, a series of trials under in vivo and in vitro conditions were 

carried out, firstly by applying different temperatures and two photoperiod regimes, 

secondly by examining the endogenous melatonin rhythms under constant darkness 

(DD), and two applied temperatures. 

 

5.2. MATERIALS AND METHODS  

5.2.1. Animals 

European sea bass males (total weight of 580.2 ± 137.4 g and standard length of 

36.0 ± 2.1 cm) were obtained from Machrihanish Environmental Research Laboratories 

of the Institute of Aquaculture (MERL, Scotland, 55°44´N, 5°44´W). Fish were 

acclimated to constant 12L: 12D artificial photoperiod (light on at 7:00, lights off at 

19:00) and a temperature of 14 ± 1 ºC for a period of at least 1 month prior to the start 

of the experiments. Fish were fed twice per day to satiation with commercial fish food 

(Atlantic HE 50C+ 35A/25C, Skretting, Invergordon, UK). In all experiments, fish were 

either anesthetized with 2-phenoxyethanol (Sigma, 1:10000) or killed using a lethal 

dose (1ml/L). All experiments were carried in accordance with the Animals (Scientific 

Procedures) Act 1986, UK. 
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5.2.2. Experiment 1. Effects of varying photoperiod and temperature on daily in 

vivo plasma melatonin levels  

The aim of the experiment was to determine the diel plasma melatonin profiles 

under different photoperiod and temperatures. Sea bass males were PIT-tagged and 

transferred into 500L light-proof circular tanks placed in light-proof and temperature-

controlled rooms. Water was filtered by external bio-filter canisters (Fluval FX5) 

matured using a nitrifying pack (ABIL) with a flow through rate of 2000L/h. Water 

quality was monitored twice weekly using commercial kits (C-Test kits, New Aquarium 

systems, Mentor, Ohio, USA) and ammonia, nitrite, nitrate and pH levels remained 

within safe limits throughout the trial. Lighting was provided by one light unit/tank 

(100 watt bulbs inside bulkhead) fixed on each tank cover giving a light intensity of 0.6 

watts /m2 at the water surface (measured by single channel light sensor, Skye 

Instruments, Powys, UK). Two light regimes were tested under different temperatures: 

long day (18L: 6D, light on at 07:00 and off at 01:00); or short day (6L: 18D, light on at 

09:00 and off at 15:00). For each light regime two replicate tanks each contaning 14 

fish were used. Tanks were kept in controlled temperature rooms and subjected to 

gradual temperature changes for acclimation over 2-3 weeks interval, starting from 10 

ºC. Once the tanks water temperature reached the required expremental temperature (10 

ºC, 14 ºC, 18 ºC and 24 ºC), fish were kept under this temperature for at least two weeks 

and then blood sampled.At each sampling time, 4 fish were anaesthetised and blood 

withdrawn by superficial venepuncture using heparinized syringes, every 4 hours for a 

24 hour period for both long and short day treatments and each temperature (10 ºC then 

14 ºC, 18 ºC and 24 ºC). Sampling times were 10:30, 14:30, 18:30, 22:30 on day 1 and 

02:30, 06:30 and 10:30 on day 2 for both light regimes. Extreme care was made to the 
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experimental lighting regimes and night sampling to avoid potential light pollution. 

During night time sampling, when lights were switched off sampling was performed 

using a red dim light. 

 

5.2.3. Experiment 2. Effect of varying photoperiod and temperature on daily in 

vitro melatonin rhythms 

The aim of this trial was to determine the effect of photoperiod and temperature 

on daily melatonin profiles from pineal glands in culture. The fish used for this trial 

were from the same stock as for experiment 1. Fish were killed by lethal dose of 2-

phenoxyethanol (Sigma, 1ml /L) between 12:00 and 16:00 and pineal glands removed 

under a dissecting microscope after opening the skull dorsally around the pineal 

window and extracting the pineal according to Migaud et al. (2006). After removal, 

pineal glands were washed with sterile culture medium, then placed in the pineal culture 

chambers in the culture system; The pineal culture system consisted of a continuous 

flow through system regulated by a peristaltic pump at a flow rate of 1.5 ml of culture 

medium/hour and a fraction collector automatically collecting samples (1.5 ml/ tube) 

every hour after passing through the culture chambers, as previously described by 

Migaud et al. (2006) (see Chapter 2 for further details). HEPES sodium salt (Sigma, ref: 

H3784, 4.77 g/L) was added the culture media (RPMI 1640, Sigma) to adjust the pH 

(7.4). Penicillin–streptomycin (10 mg/L) and Fungizone (5 mg/mL) were also added to 

the culture media to avoid bacterial and fungal development, and then culture media 

filtered for sterility through 0.2 µm filter paper and stored in the fridge and replaced 

every day for the culture system. Each trial consisted of exposing the pineal glands to a 

light/dark (LD) cycle at the temperature at which the fish were reared, followed by 2 
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LD cycles per temperature tested (total of 7 LD cycles, 168 hours). After the first 

complete LD cycle, the cabinet temperature was decreased gradually (for 3 hours) to 10 

ºC and pineals were left for two complete LD cycles under this temperature, then the 

temperature was increased to 14 ºC. Once the temperature was stable pineals were left 

for two complete LD cycles under this temperature. The same was done for the last 

tested temperature, 18 ºC, and pineals were kept under this temperature for the last two 

complete LD cycles. Two photoperiods were tested: long day (light switched on from 

5:00 to 23:00) and short day (light switched on from 9:00 to 15:00). A total of 8 pineal 

glands per photoperiod treatment were tested in two replicats trials per photoperiod (4 

pineal glands in each). Selected culture medium samples were first selected from the 

first and the last LD cycle (3 from day and 3 from night periods for both LD cycle) to 

confirm the viability of each pineal gland and the samples produced from the dead 

pineals were elminated from the analysis. Because of the large number of samples 

generated (8 pineal glands x 2 photoperiodic treatments x 7 LD cycles x 24 hours, total 

of 2688 samples) and the high costs and time required for the analyses, only selected 

samples were analysed from 6 pineal glands every 2 to 4 hours corresponding to three 

and four time points assayed during the dark phase for the LD (00:00, 02:00, 04:00) and 

SD (18:00, 22:00, 02:00, 06:00) treatment, respectively and vice versa during the day (3 

and 4 sampling points for SD and LD respectively). Temperature changes were 

monitored throughout the trials (every 5 minutes) using a temperature logger (DigiTag, 

Farnell, UK) placed inside the pineal culture cabinet (Fig. 5.1 A and B). 
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5.2.4. Experiment 3. Effect of constant darkness on daily in vivo plasma melatonin 

rhythms 

The aim of this trial was to test if daily plasma melatonin rhythms seen in fish 

exposed to a 12L:12D photoperiod could be sustained endogenously under constant 

darkness at two different water temperatures.  A total of 120 fish were placed in 500L 

light proof circular tanks (20/tank), three replicat tanks were used with total 60 fish for 

each temperature and kept in light proof and temperature controlled rooms with the 

same water filtration system as described in exp. 1. Fish of the same origin as exp. 1 

and 2 were used and first acclimatised for 2 weeks to a 12L: 12D photoperiod (light 

switched on at 8:00 and off at 20:00) at two different temperatures (10 or 18 °C ± 1). 

Sampling consisted of killing 5 fish at random by lethal anaesthesia (2-phenoxyethanol, 

1 ml/L) and collecting blood by venepuncture. The experiment ran for 5 days (day 1 

under LD, day 2 to 4 under DD and day 5 under LD) with one sample during the day 

(2pm) and one sample during the night (2 am) every day (subjective day and night). 

Lighting was provided by one light unit/tank (100 W bulbs inside bulkhead) fixed on 

each tank cover giving a light intensity of 0.6 W/m2 at the water surface (measured by 

single channel light sensor, Skye instruments, Powys, UK). During DD sampling was 

performed using a red dim light. 

 

5.2.5. Experiment 4. Effect of constant darkness on daily in vitro melatonin 

rhythms  

The aim of this experiment was to confirm in vivo results obtained in exp. 3 in 

cultured pineal glands exposed to constant darkness (DD) and two different 

temperatures (10 ºC and 18 ºC) to determine the presence or absence of functional 
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intrapineal oscillators controlling melatonin production in the absence of a day/night 

cycle. Fish used in the experiment were from the same stock used in previous 

experiments. A total of 6 pineal glands were analysed for each temperature regime. 

Pineal glands were removed as previously described and exposed in vitro to the same 

photoperiod and temperature regime to avoid any endogenous rhythm or thermal shock 

to the pineal glands that could compromise the results. Pineal glands were exposed to 

first a light/dark (LD) cycle followed by four subjective cycles under DD and another 

LD cycle at the end to confirm that the pineal glands were still alive with a normal 

melatonin secretion pattern. Pineal glands were in culture for a total of 6 LD cycles 

(144 hours) and culture medium samples were collected every hour (total of 864 

samples). However, due to the cost and time constraints, only samples collected every 

four 4 hours for each pineal gland over the 6 cycles were analysed (total of 36 samples 

per pineal). Temperature changes were monitored and recorded daily (Figs. 5.1C & D). 

 

5.2.6 Melatonin assay 

Blood samples were centrifuged at 1200 g for 15 min at 4 ºC and plasma stored at 

-70 ºC until analysed for melatonin. Culture medium samples were immediately stored 

in -70 ºC. Melatonin level was determined by radioimmunoassay (RIA) according to 

Vera et al. (2010), as detailed in Chapter 2 (2.2.2). Samples from pineal culture were 

diluted 1:10 and 1:20 for light and dark samples respectively with assay buffer prior to 

assay while dark plasma samples were diluted 1:2 and no dilution was done for the light 

plasma samples. All standards and samples were assayed in duplicate. Intra- assay 

coefficient of variation was 8.25 % (n=5) and inter-assay coefficient variation was 

8.81% (n= 20). A known concentration of melatonin (50 pg/ml) was used to check 
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reproducibility of measurements between assays (quality control). 

 

5.2.7. Statistical analysis  

All data was analyzed using MINITAB® version 16.0 (Minitab, Ltd, UK). When 

necessary, data were transformed to improve normality and homogeneity of variance 

(Kolmogorov-Smirnov and Bartlett’s tests). Melatonin levels were analysed using 

General Linear Model (GLM) followed by Tukey’s post-hoc tests to identify significant 

differences. Data is expressed as mean ± S.E.M values. Significant differences were 

determined at p  0.05.  
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Figure 5.1.  Temperature changes during the experimental period of in vitro trials. A 

and B related to experiment 2 for long day and short day, respectively. C and D relate to 

experiment 4 for 10 ºC and 18 ºC respectively. Temperature was recorded every 5 

minutes using a data logger. 

 

 

0

2

4

6

8

10

12

14

16

18

20

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

Time

In
te

rn
al

 T
em

pe
ra

tu
re

 

0

2

4

6

8

10

12

14

16

18

20

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

Time

In
te

rn
al

 T
em

pe
ra

tu
re

 

0

5

10

15

20

25

30

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

Time

In
te

rn
al

 T
em

pe
ra

tu
re

0

5

10

15

20

25

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

2:00
PM

2:00
AM

Time

In
te

rn
al

 T
em

pe
ra

tu
re

 

  A   B 

  C   D 



Rania Ismail                 Chapter 5: Sea bass melatonin rhythms: effects of light & temperature  

 

 
178 

                                                                                                                                     

5.3. RESULTS  

5.3.1. Experiment 1. Effects of varying photoperiod and temperature on daily in 

vivo plasma melatonin levels 

Plasma melatonin of sea bass displayed a clear dial rhythm for both long and 

short day in all four studied temperatures. Dark phase melatonin levels increased 

significantly comparing to light phase (Fig. 2A&B). Under a LD regime (18L: 6D), 

day-time plasma melatonin levels were significantly higher in fish exposed to 24 ºC 

(70.7 ± 7.9 pg/ml) than all other temperatures tested (32.6± 11.6, 29.3 ± 7.8 and 27.1 ± 

12.9 for 10, 14 and 18 ºC, respectively) with no significant differences between 10, 14 

and 18 ºC (Figure 5.2A). Night plasma melatonin levels showed a significant increase 

from basal day levels (on day 1 and 2) for all temperature treatments under LD, except 

for fish exposed to 24 ºC sampled at 22.30. Significant differences were measured at 

night for both sampling points (2.30 and 6.30) with fish exposed to 24 ºC displaying 

higher plasma melatonin levels (150-170 pg/ml) than fish exposed to the other 

temperatures (mean melatonin ranging from 88 to 110 pg/ml). Levels in each 

temperature treatment remained high at both night sampling points with no significant 

differences and returned to basal levels in fish sampled on day 2 following the light 

being switched on at 7.00.   

Similarly, under a SD regime (6L: 18D), day-time plasma melatonin levels were 

significantly higher in fish exposed to 24 ºC (76.0 ± 7.9 pg/ml) than all other 

temperatures tested (31.8 ± 7.6, 36.2 ± 9.5, and 35.0 ± 10.8 pg/ml for 10, 14 and 18 ºC, 

respectively) with no significant differences between 10, 14 and 18 ºC (Figure 2B). 

Night plasma melatonin levels showed a significant increase from basal day levels (on 

day 1 and 2) for all temperature treatments under LD. Significant differences were 
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measured at night for all night sampling points (18.30, 22.30, 2.30 and 6.30) with fish 

exposed to 24 ºC displaying higher plasma melatonin levels (212.0 ± 19.2 pg/ml) than 

fish exposed to all the other temperatures (mean melatonin ranging from 88 to 144 

pg/ml). In addition, significant differences were observed between the 10, 14 and 18 ºC 

treatments. Plasma melatonin levels in fish exposed to 10 ºC were significantly lower 

than all other treatments throughout the night period except for 18 ºC at both the 18.30 

and 02.30 sampling points and 14 ºC at the 22.30 sampling point. A clear gradual 

increase in melatonin levels was observed when temperature increased (10 ºC < 14-18 

ºC < 24 ºC). Levels in each temperature treatment remain high throughout the night 

period with no significant differences and returned to basal levels in fish sampled on 

day 2 following the light being switched on at 7.00.  

Relative night-time melatonin levels are presented in Figure 5.3. In fish exposed to long 

days, relative night melatonin levels represent 350, 300, 250 and 224 % (for 10, 14, 18 

and 24 ºC respectively) of the day-time levels at the same temperature, while for short 

days these percentages were 290, 308, 318 and 285 % (for 10, 14, 18 and 24 ºC 

respectively) of the day-time levels at the same temperature (Fig. 5.3). The melatonin 

levels at 10, 14 and 18 ºC relative to the levels produced at 24 ºC for light and dark 

samples under long and short days are presented in Table 5.1. 
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Figure 5.2. Effect of temperature (10, 14, 18 or 24 ºC) on plasma melatonin profiles measured 

in sea bass subjected to 18L: 6D (A) and 6L: 18 D (B) regimes. Values are expressed as mean 

±SEM (n=4 fish/sampling point). Lower-case letters indicate significant differences between 

temperature treatments at a given sampling point while upper-case letters indicate significant 

differences between sampling points for a given temperature treatment. Open and filled boxes 

indicate day and night periods respectively.  
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Figure 5.3.  Effect of different temperatures on in vivo relative night-time melatonin 

levels in fish exposed to long day (A) and short day  (B) for the four different 

temperatures. The melatonin mean levels are presented as a relative percentage of the 

day-time mean levels. 

 

 

Table 5.1. Relative differences between temperature treatments at both day and night 

for long day (LD) and short day (SD). The melatonin mean levels are presented as a 

relative percentage of the day or night mean levels at 24 ºC. 

 

Day Night 
Treatments 

LD SD LD SD 

10 ºC 47.10 40.75 74.23 41.87 

14 ºC 42.65 48.63 56.27 52.80 

18 ºC 39.35 44.25 43.89 49.61 

24 ºC 100 100 100 100 

 

  A   B 



Rania Ismail                 Chapter 5: Sea bass melatonin rhythms: effects of light & temperature  

 

 
182 

                                                                                                                                     

5.3.2. Experiment 2: Effect of varying photoperiod and temperature on daily in 

vitro melatonin rhythms 

Melatonin production by pineal glands in culture at 10, 14 and 18 ºC showed 

marked dial rhythm for both LD and SD. Dark phase melatonin levels increased 

significantly relative to basal day-time levels for pineal glands exposed to either LD or 

SD photoperiods or any of the three temperatures tested (Figs. 5.4- 5.6). Under both LD 

and SD regimes, melatonin levels remained below 2000 pg/ml during the light phase for 

all pineal glands tested whereas they significantly increase during the dark phase to 

reach peak levels of >12,000 pg/ml in some of the pineal glands. Individual profiles for 

6 complete cycles (2 cycles/temperature) for each of the 5 (LD) or 6 (SD) pineal glands 

are shown in Figs. 5.4 and 5.5. Inter-pineal variability was apparent in both the day and 

night time melatonin levels reached for both LD and SD (from 1300 pg/ml to 2900 

pg/ml at day and 5000 pg/ ml to 9316 pg/ml at night). However, most pineals showed a 

gradual increase in night time melatonin peak levels with increasing temperatures (Figs. 

5.6 A, B) as seen when means of the 5 (LD) or 6 (SD) pineal glands are presented 

(values for 10, 14 and 18°C for both photoperiod,  Fig. 5.7).  

Day melatonin values for short days were higher than day melatonin values 

under long days for the three tested temperatures (Fig. 5.7A), while night values were 

not significantly different between long day and short day for the same tested 

temperature (Fig. 5.7B). Relative night-time melatonin levels from pineal glands 

exposed to LD showed an increase when temperature increased (354.26 ± 33.6,  448.5 ± 

31.0 and 500.2 ± 28.5 % of day-time levels for 10, 14 and 18 °C, respectively) (Fig. 

5.8). However, under SD, no significant difference was seen between 10 and 14 °C with 

relative values of 270.0 ± 9.3 and 258.9 ± 11.8 % respectively, but a significant increase 
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(347.7 ±  9.9 %) was observed when pineal glands exposed to 18 °C (Fig. 5.8). 
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Figure 5.4. In vitro melatonin production (pg/ ml) by individual sea bass pineal gland exposed 

to LD (18L: 6D) (n=5) under 10 ºC (green), 14 ºC (blue) and 18 ºC (red). Graph A to E show 

individual pineal profiles. Data expressed as mean of the duplicates.  
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Figure 5.4 Cont’d. In vitro melatonin production (pg/ ml) by individual sea bass pineal 

gland exposed to LD (18L: 6D) under 10 ºC (green), 14 ºC (blue) and 18 ºC (red). 

Graph A to E show individual pineal profiles. Data expressed as mean of the duplicates.  

  D 

  E 



Rania Ismail                 Chapter 5: Sea bass melatonin rhythms: effects of light & temperature  

 

 
185 

                                                                                                                                     

  

0

2000
4000

6000

8000
10000

12000

14000
16000

18000

14
:0

0
22

:0
0

06
:0

0
12

:0
0

18
:0

0
02

:0
0

10
:0

0
14

:0
0

22
:0

0
06

:0
0

12
:0

0
18

:0
0

02
:0

0
10

:0
0

14
:0

0
22

:0
0

06
:0

0
12

:0
0

18
:0

0
02

:0
0

10
:0

0

Hours

M
el

at
on

in
 p

g/
 m

l 

10 °C 14 °C 18 °C

  

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

14
:0

0

22
:0

0

06
:0

0

12
:0

0

18
:0

0

02
:0

0

10
:0

0

14
:0

0

22
:0

0

06
:0

0

12
:0

0

18
:0

0

02
:0

0

10
:0

0

14
:0

0

22
:0

0

06
:0

0

12
:0

0

18
:0

0

02
:0

0

10
:0

0
Hours

M
el

at
on

in
 p

g/
 m

l

10 °C 14 °C 18 °C

 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

14
:0

0
22

:0
0

06
:0

0
12

:0
0

18
:0

0
02

:0
0

10
:0

0

14
:0

0
22

:0
0

06
:0

0
12

:0
0

18
:0

0
02

:0
0

10
:0

0

14
:0

0

22
:0

0
06

:0
0

12
:0

0

18
:0

0

02
:0

0
10

:0
0

Hours

M
el

at
on

in
 p

g/
 m

l

10 °C 14 °C 18 °C

 
Figure 5.5. In vitro melatonin production (pg/ ml) by individual sea bass pineal gland 

exposed to SD (6L: 18 D) under 10 ºC (green), 14 ºC (blue) and 18 ºC (red). Graph A to 

F show individual pineal profiles. Data expressed as mean of the duplicates.  
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Figure 5.5 Cont’d. In vitro melatonin production (pg/ml) by individual sea bass pineal 

gland exposed to SD (6L: 18 D) under 10 ºC (green), 14 ºC (blue) and 18 ºC (red). 

Graph A to F show individual pineal profiles. Data expressed as mean of the duplicates.  
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Figure 5.6. Mean in vitro melatonin production (pg/ml) by sea bass pineal glands 

exposed to A) LD (18L: 6D) (n=5) or B) SD (6L: 18 D) (n=6) at three different 

temperature (10 ºC -green, 14 ºC -blue and 18 ºC-red). Values are expressed as mean ± 

SEM. Open and filled boxes indicate day and night periods, respectively.  
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Figure 5.7. Mean melatonin levels measured in culture medium when sea bass pineal 

glands were exposed to either LD or SD and three different temperatures (10, 14 and 

18°C). Values are expressed as means ± SEM (n=5 or 6 pineal glands for LD and SD, 

respectively). Values for each pineal represent the mean of day-time (4 and 2 sampling 

points for LD and SD, respectively) (A) or night-time (2 and 4 sampling points for LD 

and SD, respectively) (B) for two cycles under a given temperature. Superscripts denote 

significant differences if letters are different.  
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Figure 5.8.  Effect of different temperatures on in vitro relative night-time melatonin 

levels. The melatonin levels are presented as a relative percentage of the day-time 

levels. Data are expressed as mean ± SEM (n=5 or 6 pineal glands for LD and SD, 

respectively). Superscripts denote significant differences if letters are different.   
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5.3.3. Experiment 3. Effect of constant darkness on daily in vivo plasma melatonin 

rhythms 

When sea bass were exposed to complete darkness (DD), plasma melatonin levels 

remained high throughout the subjective LD cycles with no significant differences, 

indicating the lack of any circadian rhythm (Figs. 5.9 A and B). The plasma melatonin 

levels produced under DD at 18°C were higher than the levels produced at 10 °C with 

mean values 54.0 ±3.9 pg/ml and 35.5 ±2.0 pg/ ml respectively, while levels were 

similar during the light period at both temperatures.  
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Figure  5.9. In vivo plasma melatonin production (pg/ ml) of sea bass exposed to DD at 

either 10 ºC (A) or 18 ºC (B). Values are expressed as mean ± SEM (n=5). Samples 

were taken for light time (L), dark (D) and subjective day (SD). No significant 

differences were observed except for day levels (L) as indicated by asterisks. 
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5.3.4. Experiment 4. Effect of constant darkness on daily in vitro melatonin 

rhythms 

When sea bass pineal glands were exposed to complete darkness (DD), melatonin 

levels in the culture media remained high throughout the subjective LD cycles, 

indicating the lack of any circadian rhythm (Figs. 5.10 A and B). Similar results were 

obtained at 10 ºC or 18 ºC although, surprisingly, no differences were seen in melatonin 

levels when pineal glands were exposed to a higher temperature (8528.7 ± 1950.9 and 

8232.4 ± 2919.6 pg/ml for 10 and 18 ºC, respectively). When light was returned, 

melatonin levels significantly decreased under both temperatures (3249.4 ± 3270.6 and 

2656.7 ± 3237.6 pg/ml for 10 and 18 ºC, respectively). When the night-time melatonin 

levels under DD was calculated as relative percentage of the day-time melatonin (at last 

LD cycle) under the same temperature, a significant difference was found between the 

two temperatures, with higher relative night-time melatonin levels in pineal glands 

incubated at 18 °C than at 10 °C with 550 % and 450 % of day-time levels, respectively 

(Fig. 5.11).  
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Figure 5.10. In vitro mean melatonin production (pg/ ml) by sea bass pineals exposed 

to DD under either 10 ºC (A) or 18 ºC (B). Values are expressed as mean ± SEM (n= 6). 

Open (light grey) and filled (dark grey) boxes indicate day (subjective day) and night 

(subjective night) periods respectively. 
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Figure 5.11. Relative night-time melatonin levels of in vitro pineal glands in culture 

exposed to constant darkness (DD) and two different temperatures (10 or 18°C). The 

night-time melatonin levels are presented as a relative percentage of the day-time values 

at the same temperature. Data are expressed as mean ± SEM (n=6). Superscripts denote 

significant differences. 

 

 

 

 

 

 

 

 

 

 

a 

b 



Rania Ismail                 Chapter 5: Sea bass melatonin rhythms: effects of light & temperature  

 

 
193 

                                                                                                                                     

5.4. DISCUSSION  

In temperate teleosts, the integration of the daily and seasonal variations in both 

photoperiod and temperature play a crucial role to synchronize physiological and 

behavioural activities (Migaud et al., 2010). Melatonin is the main endocrine output in 

photoperiod signalling and it has been shown to be directly involved in the transduction 

of daily and seasonal environmental changes in vertebrates. However, in fish, despite a 

likely conserved role as seen in mammals, there is a lack of direct evidence for such an 

important role (Migaud et al., 2010). This study aimed to better understand the 

combined roles of photoperiod and temperature in regulating the daily melatonin 

production in sea bass, known for its strong seasonality in reproduction, migration and 

feeding behaviour.      

The present results first confirmed the daily variations in plasma melatonin with 

high levels secreted throughout the night period and low levels during the day 

according to the prevailing photoperiod (LD or SD). Such a strong seasonal melatonin 

rhythm has been reported in most teleost fish studied to date including sea bass (Falcon, 

1999; Falcon et al., 2007; Garcia-Allegue et al., 2001; Bayarri et al., 2010). In addition, 

as suggested in previous studies (Garcia-Allegue et al., 2001), if photoperiod appears to 

drive the phase of the daily melatonin profile, temperature appears to control the 

amplitude (Falcon et al., 1996). Accordingly, in the present study, temperature showed 

a significant effect on the absolute melatonin levels secreted and released in the blood 

stream in vivo or culture medium when pineal glands were incubated in vitro. Higher 

temperatures (24 ºC) stimulate the pineal gland to produce increased amount of 

melatonin. In vivo, a 135 % (LD group) and 240 % (SD group) increase in night-time 

melatonin levels, on average, were observed when fish were reared under 24 ºC as 
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compared to 10 ºC. The difference between both photoperiod regimes could be 

explained by the time required for the pineal gland to reach full stimulation and produce 

peak physiological levels. This cannot be easily seen on the graphs as the first night 

sample (at 2:30) in LD was performed 1.5 H after the light was switched off (at 1:00) 

while it was 3.5 H in the SD regime (sampling at 18:30, light switched off at 15:00). 

Furthermore, the temperature effect was direct as the pineal gland in fish is unable to 

store melatonin which is thus immediately released, when synthetised, in the blood and 

cerebrospinal fluid (as shown in mammals by Tricoire et al., 2002). Interestingly, 

temperature also had an effect on day-time melatonin release (with an average of 250 % 

and 230 % increase for LD and SD under 24 °C, respectively) when compared to the 

day-time melatonin under other lower temperatures. The temperature selected for this 

experiment aimed to recreate seasonal ambient changes. The results are in agreement 

with the study of Garcia-Allegue et al. (2001) who showed that the amplitude of the 

daily plasma melatonin profile of sea bass exposed to ambient conditions was the 

highest in summer conditions, with peak melatonin levels reaching 200 pg/ml 

(photoperiod of 15L: 9D and temperature of 28.2 °C) and the lowest in winter 

conditions with peak melatonin reaching 50 pg/ml (photoperiod of 9L:15D and 

temperature of 14.2 °C). The same patterns have been observed for a number of fish 

species in vivo including rainbow trout, Atlantic salmon, goldfish and Senegalese sole 

(Iigo & Aida, 1995; Falcon, 1999; Bromage et al., 2001). In Senegalese sole, water 

temperature was shown to affect the nocturnal melatonin levels, with the highest levels 

reported at 25 ºC, but temperature did not affect diurnal levels (Vera et al., 2007). In 

Atlantic salmon, plasma melatonin levels were significantly higher in fish maintained at 

12 ºC than 4 ºC (Porter et al., 2001). As most fish are poikilothermic, their body 
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temperature will impact on many metabolic and enzymatic pathways including the 

melatonin biosynthesis pathway. Studies have shown that temperature acts directly on 

the pineal organ to modulate melatonin secretion, through the regulation of AANAT2 

activity which is the main melatonin rate-limiting enzyme (Falcon et al., 1994, 1996; 

Zachmann et al., 1992; Coon et al., 1999; Falcón, 1999; Benyassi et al., 2000). 

Teleosts, unlike all other vertebrates, possess two AANAT genes, probably as a result 

of genome duplications (Falcon et al., 2010). While AANAT-1, more specifically 

expressed in the retina and brain in fish, seems to display classical kinetics for 

vertebrates with an increased activity at temperatures of 35 to 37 °C, the pineal-specific 

AANAT-2 appears to have species-specific properties (Falcon, 1999; Falcon et al., 

2010). However, contrasting results were reported in sea bass under a natural 

photoperiod regime with an increased daily melatonin amplitude in November (14.5 °C) 

and February (12.6 °C) and reduced in September (24.2 °C) and May (19.0 °C) (Bayarri 

et al., 2010). Differences between the two studies are probably related to the stage of 

development of the fish at the time of the sampling. Indeed, in the present study, fish 

were in the spermatogenesis stage while in the study by Bayarri et al. (2010), 

development stages differed between sampling dates as fish reached puberty. Therefore, 

it appears very clearly that internal factors such as reproductive status, age and size of 

the fish can modulate melatonin amplitude, although the mechanisms at work remain 

unknown.        

 The results obtained in vitro also confirmed the effect of temperature on the 

melatonin production as melatonin production at night was significantly higher when 

pineal glands were incubated at 18 ºC than 10 and 14 ºC under both LD and SD. 

Interestingly, melatonin production from isolated sea bass pineal glands in culture 
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medium was in average 50 times higher than plasmatic levels. This has been widely 

observed in other in vitro studies and may be explained by the large proportion of 

melatonin produced in vivo directly released into the cerebrospinal fluid (CSF) although 

the relative amount released into the CSF vs. blood is not known in fish (Migaud et al., 

2007; Falcon et al., 2010). In vitro, all the melatonin produced by the pineal gland is 

released in the culture medium. Similar results on temperature-dependent melatonin 

production were reported in vitro in other teleost species including rainbow trout, pike 

and white sucker pineal glands (Max & Menaker, 1992; Zachmann et al., 1992; Bolliet 

et al., 1994; Falcon et al., 1994). For example, in white sucker, in vitro melatonin 

production at 20 ºC was higher than that at 10 ºC (Zachmann et al., 1992). Furthermore, 

temperature is not only affecting the amplitude of melatonin production but can also act 

on the circadian rhythm of melatonin production. In pike, endogenous rhythms in 

melatonin production were shown in pineal glands exposed to DD when the 

temperature was higher than 15 ºC but the rhythm was lost if the temperature was 

maintained below 15 ºC (Bolliet et al., 1994). Similarly in white sucker, a circadian-like 

pattern was detected under DD in pineals kept at 20 ºC; while at 10 ºC no circadian 

melatonin rhythm was observed (Zachmann et al., 1992). Melatonin rhythm can also be 

lost under LD cycles when temperatures were kept low as shown in Arctic lamprey, 

Lampetra japonica (Samejima et al., 2000).  

The mode of action of temperature changes on melatonin production is not 

understood yet in fish. If temperature can directly modulate the activity of melatonin 

rate-limiting enzymes as previously discussed, it can also act on the second nervous 

message produced and released by fish photoreceptors as shown in rainbow trout, in 

which the ganglion cell’s activity is temperature-dependent, affecting the melatonin 
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discharge rates (Tabata & Meissl, 1993). The nervous message is an excitatory 

neurotransmitter in the retina as well as in the pineal gland (Ekstrom & Meissl, 1997; 

Falcon et al., 2007) that is released in the dark at the synaptic junction between 

photoreceptor end terminals and second order neurons. Temperature can also influence 

molecular and cellular processes such as membrane properties, ion homeostasis, 

calcium influx and signal cascade (cAMP, cGMP and protein kinases), which may 

affect protein phosphorylation processes of the circadian clock mechanism (Rensing & 

Ruoff, 2002) while Aanat2 gene expression is controlled by the clock machinery 

(Appelbaum et al., 2006). 

While melatonin circadian rhythms are clearly regulated by environmental 

conditions, they can also be self-sustained under the control of circadian clocks 

(Migaud et al., 2010). In order to further characterise the circadian control of melatonin 

production in sea bass, melatonin rhythms under constant darkness were investigated in 

vitro. Constant photoperiods (LL/DD) have been commonly used to study endogenous 

rhythmic melatonin production in many vertebrates including teleosts. By doing so, the 

existence of oscillators intrapineal capable of self–sustaining melatonin production in 

vitro in the absence of light stimuli have been demonstrated in many fish species except 

in salmonids (Gern & Greenhouse 1988; Migaud et al., 2006; Iigo et al., 2007).  In sea 

bass, previously published findings suggested the existence of such intrapineal 

oscillators as circadian melatonin rhythms were sustained in pineal glands exposed to 

DD (Bayarri et al., 2004a; Ron, 2004). However, only four out of seven pineal glands 

showed significant circadian rhythm under continuous darkness in the study of Bayarri 

et al. (2004a). Therefore, the present study aimed to confirm these results obtained in 

sea bass through both in vivo and in vitro studies. When fish were exposed to DD 
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following an acclimation to 12L:12D at two different temperatures (10 and 18 °C), no 

endogenous daily plasma melatonin rhythms were apparent. Similarly, when sea bass 

pineal glands were exposed to DD in culture at either a temperature of 10 or 18 °C, no 

circadian melatonin rhythmicity could be observed. It is difficult at this stage to explain 

these contrasting results, which may be due to differences in experimental protocols, 

fish strain used, fish background history (photoperiod, temperature) and different 

environmental conditions. In a recent study, when male European sea bass were kept 

under continuous light from early stages, plasma melatonin rhythm was lost, while 

hypothalamus melatonin binding sites (Kd and Bmax) exhibited seasonal variations, 

indicating that these variations are controlled by internal circadian and circannual 

clocks (Bayarri et al., 2010). Limitations with the present in vivo results should be 

acknowledged as one single night-time melatonin assessment is not enough to confirm 

the presence or absence of an endogenous rhythm. However, if a melatonin rhythm was 

sustained under DD, significant decrease in melatonin levels should have been seen 

during the subjective day which was not the case with levels maintained above 30-40 

and 50-80 pg/ml, respectively for 10 and 18 °C treatments. While a more acute 

melatonin assessment was done in vitro (every 4 hours during 3 subjective LD cycles), 

still no endogenous rhythm was apparent. Importantly, sea bass circadian organisation 

has been shown to differ significantly to other teleost species as, in vivo, both the pineal 

and eyes are needed to sustain melatonin production (Bayarri et al., 2003; Migaud et 

al., 2007). Furthermore, if an oscillator capable of driving melatonin production in DD 

conditions exists, which still requires confirmation, its localisation remains unknown 

(pineal, eye, brain) and should be further studied. This therefore highlights the 

importance of studying the circadian system as a whole (in vivo and in vitro). 
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In conclusion, these results further enhance our knowledge of light perception and 

circadian rhythmicity in fish, as sea bass exhibited daily variations in plasma melatonin 

with nocturnal elevations. Temperature affected these nocturnal levels both in vivo and 

in vitro, confirming previous work. The combination of both in vivo and in vitro studies 

in sea bass for the first time has enhanced our knowledge of the circadian rhythmicity 

of melatonin production in sea bass.  No circadian endogenous melatonin production 

was observed under DD conditions; however, further work is needed especially for in 

vivo to confirm the presence or absence of an endogenous rhythm.   Mechanisms by 

which environmental signals regulate/entrain seasonal sea bass physiology are relevant 

to both commercial farming, where various regimes (continuous light, altered 

temperature regimes...) are used throughout the production cycle to manipulate 

reproduction, enhance/increase growth, and fisheries as well, especially given the 

climate change and its potential effects on wild populations (migration, natural range, 

breeding).    
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6. GENERAL DISCUSSION.  

6.1 . Summary of findings 

In this section, the main findings of the thesis are summarised:  

 GnRHs mRNA expression throughout an annual cycle in male sea bass did not 

show clear seasonal profiles with the exception of some peaks for GnRH1 and 

GnRH2 coinciding with the high levels of steroids and GSI, however GnRH3 

showed no significant variations.  

 Clear seasonal patterns were observed for the genes encoding pituitary mRNA 

expression of lhβ and fshβ, with a significant correlation between both subunits 

expression and GSI and steroids levels. 

 Brain Kisspeptin mRNA expression levels (kiss1, 2 and kissr4) showed clear 

seasonal profiles and correlated well to other BPG markers (GnRHs, fshβ and 

lhβ), supporting a possible involvement of kisspeptin genes in the seasonal 

control of reproduction in repeat spawning sea bass. 

 Kisspeptin can act directly at the pituitary level and modulate fshß and lhß 

mRNA expression in sea bass although effects were limited and not uniform. 

 No effects of the reproductive stage on pituitary response to kisspeptin 

treatments were observed. 

 Diel melatonin rhythm in sea bass was similar to that seen in previous studies in 

the same species and other teleosts. 

 Temperature showed clear effect on the amplitude of the night-time melatonin 

production under both in vivo and ex vivo conditions for both long day and short 

day photoperiods.  
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 No circadian endogenous melatonin rhythms were found under darkness in sea 

bass, contrasting with previous reports.  

 

6.2. A note on the fish used in the thesis  

The European sea bass is one of the most commercially important species in 

Europe, with approx. 11933 tonnes from the wild stocks (FAO, 2011) and 113,653 

tonnes from aquaculture, mainly from cage farming, harvested in 2009 (FAO, 2011). 

Sea bass farming is a well advanced industry with knowledge gained and technologies 

developed on larviculture used as a reference for most other commercial marine species 

in the world. Sea bass broodstock management under captivity is well established since 

the 80s and photoperiod regimes have been developed to manipulate spawning 

windows (Zanuy et al., 1985; Carrillo et al., 1989). Due to its strong seasonality and 

commercial importance, sea bass has been the object of many studies focusing on the 

photo-neuroendocrine control of reproduction and growth (Zanuy et al., 2001; Carrillo 

et al., 2009). However, problems remain in hatcheries, where survival can be low and 

deformity prevalence high, and during ongrowing stage, where fish reach puberty early 

especially as sex ratios are usually skewed towards males (>80%) (That mature early) 

due to sex differentiation being driven by temperature (Carrillo et al., 1995; Piferrer et 

al., 2005). Interestingly, sea bass natural distribution is spread from the Mediterranean 

Sea, Black sea and along the Eastern Atlantic coast from Great Britain to Senegal, and 

it is also becoming more commonplace in Northern parts of Europe (Scotland and also 

Norway) with established breeding populations (Henderson, 2007). This is thought to 

be associated to the climate change which resulted in a 0.7 °C rise in the North Sea over 

the last decade (Hiddink & Hofstede, 2008). However, environmental conditions in 
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these Northern habitats are different with cooler water temperatures over the year 

(ranging from 6 to 18 °C) and higher amplitudes in photoperiod (from 21L: 3D in 

summer to 7L: 18D in winter). The fish used in this thesis were all from the same 

domestic broodstock produced by Llyn Aquaculture Ltd (Ireland), brought as juveniles 

and reared in Machrihanish Environmental Research Laboratories (MERL, 55°44´N, 

5°44´W, Scotland). Due to the low temperature experienced in the facilities (flow 

through system with water directly pumped from the sea), sea bass growth 

performances differed from the classical growth curve seen in the Mediterranean. To 

illustrate this, stock fish used in this study were aged 6+ for a weight ranging from 500 

to >1Kg. It is therefore important to acknowledge that stock used might not be 

considered as a reference population for sea bass as a species. 

 

6.3. Some comments on the methods used and additional experiments  

The main objectives of this PhD thesis were to better understand the molecular 

and endocrine drivers that control the Brain-Pituitary-Gonadal axis in repeat seasonal 

spawner sea bass, and expand our knowledge of sea bass light and temperature 

regulation of melatonin production. For this purpose, a range of laboratory tools were 

used: radioimmunoassay for hormonal assessment, histology for gonadal staging, cell 

culture and several molecular techniques including reverse transcriptase polymerase 

chain reaction (RT-PCR), cloning, quantitative RT-PCR (QPCR). Several bioinformatic 

tools were used including PrimerSelect, BLAST, ClustalW, genetic and genomic data 

bases (GenBank in NCBI, ENSAEMBL). In addition to sequence alignments, 

phylogenetic relationships were reconstructed using ClustalW, Bioedit and MEGA. 

Pituitary cell culture protocol including cell dispersion, cell culture and harvesting were 
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used to assess the direct effect of kiss1 and kiss2 core peptide on the gonadotropin gene 

expression. Pineal gland culture protocols have also been used to investigate the 

circadian rhythm of melatonin production. Besides these techniques and protocols, 

during the course of experiments, general fish experimental techniques have been used 

(handling, anaesthesia, blood sampling, PIT-tagging, dissection of targeted organs and 

general husbandry). 

Gene expression analyses have been used extensively in this doctoral project with 

a total of 9 genes studied throughout an annual cycle in sea bass broodstock as well as 

in pituitary cell culture. Real-time QPCR was used to analyze mRNA expression as this 

method is truly quantitative and preferred to the semi-quantitative RT-PCR which relies 

on the assessment of band intensity in an agarose gel stained with ethidium bromide. 

While it took more resources it was decided to use internal standards of a cloned 

sequence to allow absolute quantification of product abundance in preference to relative 

quantification (i.e. target expression expressed as a ratio to a reference gene) as it was 

felt the output was more comparable to other work when it is published. Both real- time 

PCR methods can be performed using different chemicals, the most common being 

SYBR Green or probe based assays e.g. TaqMan. SYBR green is an easy method that 

requires a double- stranded DNA dye in the PCR reaction, which binds to the newly 

synthesized DNA, and detection of florescent signal occurs during the PCR cycle. Since 

the aim was to study the variation in mRNA expression levels of candidate genes for 

different developmental stages, absolute QPCR was performed using SYBR Green, 

which is easy to use with low reaction cost compared to other fluorescent probes. One 

of the key points in the QPCR quantification is the choice of the reference gene (house 

keeping gene); usually the reference genes are selected due to their uniform expression 
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across the sample set. In the present studies we designed primers for three housekeeping 

genes, β actin, 18S and elongation factor 1 alpha (ef1α) and tested them by RT-PCR, to 

confirm that they were suitable to use. However, ef1α was selected for normalization as 

Mitter et al. (2009) demonstrated that it is more stable across various stages of 

development. Had time and resources allowed it would have been preferable to confirm 

this selection of the housekeeper in the present sample sets by comparing the stability of 

a suite of potential genes using the geNorm methodology (Vandesompele et al., 2002). 

Where possible I have tried to comply with the MIQE guidelines for QPCR data (Bustin 

et al., 2009), with my greatest challenge being the confirmation of RNA quality. As I 

did not have access to an Agilent Bioanalyzer, RNA quality had to be subjectively 

assessed by gel electrophoresis however in all cases this indicated ribosomal RNA of 

good quality thus it is fair to assume my sample integrity was good. 

 One main objective of this thesis is to investigate the role of kisspeptin in the 

reproduction of adult seasonal repeated spawner sea bass; kissr4 partial sequence was 

first cloned in our laboratory because when the study was initiated there was no sea 

bass specific sequence information available. However, during the course of the work, 

sequences of both sea bass kiss1 and kiss2 were published (Felip et al., 2009) which 

helped to give the complete image for the temporal changes in kisspeptin as a whole 

system. There was however unconfirmed reports of a second receptor form, but as 

discussed below, this did not become available until after my work was completed.  

 

6.4. Seasonal expression of GnRHs genes during an annual reproductive cycle  

Until recently, GnRH was regarded as the uppermost level of the BPG control of 

reproduction in vertebrates including fish, and it is described as the starting point 
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corresponding to the onset of puberty and reproduction. However, this changed since 

the discovery of kisspeptin peptides which have been recently identified as key catalysts 

for the initiation of puberty and regulator in seasonal breeding in mammals (Revel et 

al., 2007; Smith & Clarke 2007). Kisspeptin is now considered as the main driver of 

reproductive events sitting at the top of the BPG axis with a stimulatory role on GnRH 

signalling, sexual development and successive reproductive events in mammals. This 

was first demonstrated by the fact that the loss of Kiss1r through gene mutation resulted 

in impaired reproductive function e.g. delay in gonadal growth and decrease in fertility 

(Funes et al., 2003; de Roux et al., 2003; Seminara et al., 2003). In fish, kisspeptin has 

received much attention from scientists all over the world in an attempt to unravel the 

underlying mechanisms controlling the seasonal entrainment of reproduction in 

commercially important species. However, most of the published literature has so far 

focused on the characterisation of the kisspeptin system itself and its relationship to 

GnRH neurons without clear links to other well-known paracrine and autocrine 

regulatory signals along the BPG axis. One of the most likely reasons is the lack of 

available molecular and endocrine assays (e.g. GnRH, FSH, LH...) in most fish species. 

Sea bass, in this regards, is a very good “model” among temperate commercial species 

as a range of tools has already been developed or sequences are available, thanks to 

Spanish colleagues (Zamora et al., 2002; Mateos et al., 2003; Felip et al., 2009). One of 

the main objectives of this PhD was to analyse a suite of known endocrine and 

molecular messengers at the brain, pituitary and gonadal levels that play key roles in the 

initiation and completion of gametogenesis throughout a reproductive cycle in male 

repeat spawning sea bass including GnRHs (GnRH 1, 2 and 3), gonadotropins (fshβ, 

lhβ) gene expression and gonadal development (gonadosomatic index, sex steroid, 
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histology). It must be acknowledged that while these data are mostly correlative, they 

bring further support to the potential roles played by kisspeptin in the reproductive axis 

as part of a complex network of regulatory signals. Importantly, if most studies to date 

have focused their effort on understanding how puberty is regulated, the present work 

took a different route by looking at repeat spawners (“broodstock”). 

In the present study, gene expression analyses performed on the brain GnRHs 

confirmed that all three forms of GnRH (GnRH1, GnRH2 and GnRH3 corresponding to 

the sea bream, chicken and salmon forms in sea bass) are expressed in the brain of male 

sea bass. The variation of GnRHs expression between months did not show clear 

seasonal profiles lacking significant differences between months with the exception of 

few significant peaks for GnRH1 and GnRH2. Both GnRH1 and GnRH2 mRNA 

expression have peaks coinciding with the high levels of steroids and GSI and most 

individuals examined were spermiating, however, GnRH3 showed no significant 

variations. A correlation with GSI in both GnRH1 and GnRH2 implies changes in 

GnRH signalling with developmental state although such correlation was weak and nor 

significant (borderline, P=0.065). Furthermore, GnRH1 appeared to be more potent as it 

was correlated to kissr4 and FSH/LH when multiple regression was done. This is in 

agreement with the well know hypophysiotropic role of GnRH1 (Gonzalez-Martinez et 

al., 2002a; 2004a, b; Fornies et al., 2003; Amano et al., 2004; Shajahan et al., 2010a). 

The GnRH2 expression variation shed the light on its possible involvement in the 

reproductive cycle; whereas it has been associated with sexual behaviour (Kauffmann et 

al., 2005; Millar, 2005), other possible roles for sea bass GnRH2 have been suggested 

such as modulation of sea bass pineal function (Servili et al., 2010).  

 Comparing our results of GnRHs expression to previously published data in sea 
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bass was not straightforward as most previous studies were conducted on pubertal fish 

or larval stages. Of note, in the present work, QPCR assays to measure the expression 

levels of the three GnRHs mRNA forms found in sea bass was done for the fist time. 

Other techniques and methods have been used to study the GnRH system in sea bass 

such as in situ hybridization using primers designed on sea bass GnRH associated 

protein coding sequence (GAP) (Gonzalez-Martinez et al., 2002b), 

immunohistochemistry using specific antibodies raised against the GAPs, specific 

competitive enzyme linked immunosorbent assay (EIA) (Moles et al., 2007), and semi 

quantitative PCR technique to measure GnRHs mRNA expression levels (Moles et al., 

2007). Crucially, sea bass GnRH2 and GnRH3 showed at least two isoforms for each 

genes resulting from alternative splicing. This is a common feature in many gene 

families in fish. It is a mechanism by which the coding diversity of the genome can be 

greatly increased according to the evolutionary strategies of a particular group of 

teleosts (Lu et al., 2010). It is also one of the most important mechanisms that regulates 

gene expression in fish (Izquierdo & Vacarcel, 2006) and can translate into the 

production of truncated and non-functional proteins from a single pre-RNA (nuclear 

messenger RNA precursors). The lack of clear seasonal profiles in GnRH expression in 

this study could be due to alternative splicing of the GnRHs as QPCR assays were 

developed from primers designed on conserved coding regions from available 

sequences and were not specific to any variants. Thus, future studies should analyze the 

GnRHs gene structure to identify isoforms and using specifically designed primers, 

identify the different transcripts of GnRHs in sea bass and their differential expression 

during the reproductive cycle. 

Regarding genes encoding pituitary lhβ and fshβ, a clear rise in the mRNA 
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expression levels was observed during spermatogenesis and spermiation with a 

significant correlation between both subunit expression and GSI, as previously reported 

(Mateos et al., 2003; Miranda et al., 2007; Cerda et al., 2008). It has been suggested 

that FSH could have a key role at early stage of male gonadal development (Moles et 

al., 2008) by promoting the synthesis of sex steroids involved in spermatogonial 

proliferation in male fish (Schulz & Miura, 2002). The change of gonadotrophs 

expression during the annual reproductive cycle of male sea bass clearly demonstrates 

their involvement in the BPG axis in repeat spawners. 

 

6.5. Sea bass kissr4 phylogenetic relationships: presence of two kisspeptin 

receptors in sea bass   

In Chapter 3 we reported on the identification of sea bass specific transcripts for 

the kisspeptin receptor kissr4, while the peptides kiss1 and kiss2 genes were available at 

the time of the study (Felip et al., 2009), this lead to the development of quantitative 

assays to measure their expression for the first time in sea bass. Phylogenetic analyses 

confirmed the identity of the genes as being kissr4 with high similarity to sequences 

found in other teleost species, such as Nile tilapia, grey mullet, cobia, and Atlantic 

halibut. While only one form has been found in mammals, in some fish species, two 

distinct subtypes of kisspeptin receptor have been reported (Kissr2 and Kissr4 

paralogs), although kissr4 appeared to be the most predominant and functionally active 

form (Akazome et al., 2010). A recent in situ hybridization study using specific probes 

revealed that two kisspeptin receptors are expressed in sea bass brain (Escobar et al., 

2010). By the end of the present study, the whole genome of sea bass became available 

showing 2 paralogs for sea bass kisspeptin receptors (Dicentrarchus labrax Whole 
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Genome Shotgun sequencing project, 2010). The sequence isolated in the present study 

is 100 % identical to one of them.  

 

6.6. Expression of kisspeptin genes during the annual reproductive cycle:  

implications for the BPG axis and control of reproduction in fish    

While most studies have focused to date on the role played by kisspeptins during 

first reproduction (puberty), few others were done at different developmental stages 

including mature fish. Gene expression studies of the kisspeptin system in fish 

supported its involvement in the regulation of puberty. For example kissr4 levels 

showed significant differences in the brain between different pubertal stages as in grey 

mullet (Nocillado et al., 2007), cobia (Mohamed et al., 2007). In Chapter 3, results 

revealed a clear seasonality in kissr4 expression levels. These findings are supported by 

the differences in expression levels of brain Kissr4 between the gonadal developmental 

stages as shown in male fathead minnow (Filby et al., 2008) and in male and female 

grass puffer (Shahjahan et al., 2010b). For the kisspeptin ligand, both kiss1 and kiss2 

also displayed seasonal expression patterns with significant increases towards the end 

of the annual reproductive cycle (late spermatogenesis to spermiation). To date, 

contrasting results in kiss1 and kiss2 expression patterns during the gonadal 

development have been reported according to the studied species. Similar results to the 

present findings were found in grass puffer in which brain kiss2 expression peaked 

during spawning in both males and females (Shahjahan et al., 2010b), and kiss1 and 

kiss2 mRNA levels in zebrafish brain (Kitahashi et al., 2009). In contrast, in chub 

mackerel, the highest expression levels were observed in pre-pubertal fish (Selvaraj et 

al., 2010). The discrepancies found between studies for different species are probably 
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due to the different kisspeptin paralagous genes detected in the last few years (Akazome 

et al., 2010), which were unknown at the time when other studies were carried out. 

Furthermore, it could be due to the presence of a second isoform still undetected in 

some species. A third reason may relate to the precise definition of the developmental 

stage in each sex and species. For example, some studies referred to immature fish 

without precisely explaining whether the stage corresponds to juvenile immature or 

adult regressed fish. In order to avoid confusion in future researches, the following 

recommendations are suggested: 1) sexual maturation stage for each individual to be 

precisely determined using histological classification, 2) gene structure studies to be 

conducted and paralog genes identified using phylogenetic and synteny analyses, 3) 

alternative splice variants to be identified and analysed, 4) localisation studies to be 

performed for genes and proteins in central (different brain areas or nuclei if possible) 

and peripheral tissues including different stages of sexual maturation throughout the 

seasonal reproductive cycle. 

 Recent studies using in situ hybridization helped to localise the expression of 

kisspeptins in fish and speculate on their modes of action (Kanda et al., 2008; Lee et al., 

2009; Servili et al., 2011). Adding to the clear seasonal profile of kisspeptin system in 

sea bass, the positive correlation between  kisspeptin genes expression and  GnRH1, 

GnRH2, GSI and the expression levels of pituitary gonadotropins is in agreement with 

the suggestion that kisspeptin system is involved in the regulation of sea bass 

reproductive axis. The GnRH1 correlation with kissr4 is strongly supported in the 

recent in situ hybridization studies of sea bass brain in which GnRH1 expressing 

neurons are co-expressed with kiss2r (kissr4 in the present study) messengers (Escober 

et al., 2010).   
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Kisspeptin research in teleost fish has mainly focused on reproduction and in 

particular the control of puberty, it is possible that kisspeptin can regulate other 

physiological functions as suggested in mammals (Oakley et al., 2009). A recent study 

in zebrafish showed that kiss2 is involved in the control of reproduction, while kiss1 is 

probably implicated in the perception of environmental and metabolic signals (Servili et 

al., 2011). Future studies are needed to unravel the other possible functions of the 

kisspeptin system in teleosts, kisspeptin could be involved in sex determination or 

differentiation. Molecular assays developed for kisspeptin can be used as tools to 

measure maturity status and assess population reproduction status and dynamics of 

population growth in wild stocks. The field of reproductive endocrinology is moving at 

a fast pace and many new exciting findings will soon become available involving other 

upstream signal peptides still poorly described in vertebrates. 

  

6.7. Direct stimulatory actions of kisspeptin peptides on pituitary FSH and LH 

gene expression  

In order to test the direct effect of kisspeptin on the reproductive axis, the specific 

core sequences of both sea bass kiss1 and kiss2 were applied directly on cultured 

pituitary cells. For this purpose, cell culture techniques were done in the virology 

laboratory (IoA, Stirling University), with the technical support from Mrs Fiona Muir 

(Chief technician of virology lab). Results showed that kisspeptin can act directly at the 

pituitary level and modulate fshß and lhß mRNA expression in sea bass (chapter 4), 

although effects were limited and not uniform. The present findings support suggestions 

made in mammals according to which kisspeptin could act directly on the pituitary to 

regulate gonadotropin synthesis. Kisspeptin administration in vivo was shown to be 
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potent in other studied fish, including sea bass (Felip et al., 2009), medaka and 

zebrafish (Kithashi et al., 2009), as well as goldfish (Yang et al., 2010). The present 

study relied on the analyses of mRNA expression levels by QPCR. One limitation to 

this study is the fact that released LH and FSH in the culture media could not be 

assessed due to the lack of available commercial antibodies for ELISA analyses. Such 

antibodies have been developed by the past and published (Moles et al., 2007; Moles et 

al., 2008). Absence of tools to measure key endocrine factors represents a limiting 

factor in this type of study in fish. In pituitary cells of goldfish, the response to 

kisspeptin administration was greater for the LH release than for lhß mRNA expression, 

whereas expression levels increased only in response to the highest dose of kisspeptin 

after 24 hours of incubation (Yang et al., 2010). Kisspeptin treatment on pituitary cells 

was also shown to stimulate growth hormone (GH) and prolactin (PRL) release and 

mRNA expression as well (Yang et al., 2010). Further studies are needed to confirm 

our findings in sea bass and other species and better understand the variability seen. 

Kisspeptin receptor expression analyses together with LH/FSH medium analyses, not 

studied in this experiment, could prove to be very informative. In addition, studies 

should look at kisspeptin effects on other hormonal output of the pituitary such as 

growth hormone, somatolactin or prolactin. 

 

6.8. Additional work done on the use of kisspeptin as a hormonal therapy for fish 

spawning  

One of the important applications for aquaculture is to synchronize natural 

spawning and induce spawning out of season. Reproduction in fish kept in captivity can 

be controlled by environmental manipulations, however it is not always effective and, 
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in these instances, the use of hormonal therapies has been effective as a means to induce 

final oocyte maturation, ovulation and spawning. A lack of pituitary LH secretion and 

stimulation is the main reason for reproductive failure under culture conditions 

(Mylonas et al., 2010). Therefore, hormonal therapies have been developed using 

exogenous LH  that can act directly at the gonadal level or more recently using 

Gonadotropin Releasing Hormone analogues (GnRHa) that stimulate the endogenous 

production of pituitary LH (Mylonas et al., 2010).  

Another experimental approach, although data are not presented in this thesis, was 

to test the direct effect of kisspeptin on the induction of ovulation/spawning in fish. The 

concept of this study was that if kisspeptin operates as shown in mammals (master 

regulator of puberty directly stimulating the GnRH system involved in the onset of 

maturation) then it could be used as a more potent hormonal theraputant to improve 

broodstock spawning and gamete quality in fish. To do so, African catfish, available at 

the IoA, was selected instead of sea bass for scientific reasons. Female catfish, once 

puberty has been reached, remain all year long at a postvitellogenic gonadal stage under 

constant environmental culture conditions and do not spawn spontaneously without 

being induced hormonally (Richter et al., 1987; Bromage & Roberts, 1995). These fish 

can be hormonally induced and spawn at any time of the year which makes African 

catfish an ideal candidate to test the potency of alternative hormonal preparations such 

as kisspeptin. The standard method to induce African catfish ovulation is to use GnRHs 

together with a dopamine antagonist administered by injection (Baidya & Senoo, 2002). 

A commercial preparation, Ovaprim (Syndel, Vancouver, Canada, containing 20 mg 

salmon GnRHa and 10 mg domperidon per ml), has been shown to be very efficacious 

at a concentration of 0.5 ml/kg body weight. Importantly, catfish responds to the 
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hormonal induction within 24 hours with eggs being stripped and hatching occurs 24 

hrs later. Catfish males and females were obtained from the Tropical Aquarium 

facilities, Institute of Aquaculture, University of Stirling. Two trials were carried out 

using the 10 amino acids core sequence of kisspeptin. The first trial consisted in testing 

a single dose of a mix of 4 kisspeptin forms (mammalian Kiss1, zebrafish kiss1, sea 

bass kiss1 and sea bass kiss2). Eight fish (250-300g, 4 males and 4 females) were used 

for each treatment, and fish were injected with either: a) saline + dopamine antagonist 

(domperidone) as control, b) Ovaprim (0.5 ml/kg), c) Kisspeptin mix (containing 

250ng/100g fish body weight of each kisspeptin forms) + domperidone. Before 

injection blood samples were taken from all fish. In the second day, 18 hours following 

the injection, gonadal samples as well as blood from both males and females were 

collected. The second trial was similar but in this case two successive injections (24 

hours apart) were tested. Gonadal samples as well as blood from both males and 

females were collected. Plasma samples were analysed for sex steroids (testosterone 

and estradiol). Histological sections were done on both male and female gonads, and 

female oocyte diameters were determined. In both experiments kisspeptin injection 

failed to induce spawning of catfish, no significant differences were observed in the 

testosterone, estradiol and oocyte diameter between injected and control fish, while 

estradiol and oocyte diameter were significantly increased in fish treated with ovaprim 

(positive control). In this trial, the administration of kisspeptin did not show effect on 

spawning induction, however, lacking of the methods to analyse the plasma LH after 

injection is a limitation in order to investigate the effects of kisspeptin injection on the 

pituitary level with the measured gonadal steroids, also kisspeptin core sequences are 

different between species and might be species-specific in their stimulatory effects. 
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6.9. Environmental signalling through circadian melatonin production in sea bass: 

temperature and photoperiodic effects  

Sea bass, as with many other temperate fish species, display strong seasonality 

in its physiology and behaviour and is therefore an excellent candidate for the study of 

calendar mechanisms. As such, the circadian melatonin system is thought to play a key 

role in the entrainment and synchronisation of most physiological functions including 

reproduction, migration and feeding behaviour. Both photoperiod and temperature 

seasonal signals are known to regulate melatonin production by the pineal gland in sea 

bass. The present work aimed to study the synergistic effects of both key environmental 

factors on the daily phase and amplitudinal changes in melatonin production through 

both in vivo and in vitro studies. The results first confirmed the low at day and high at 

night melatonin profile, as seen in most teleost species studied to date. Then, a clear 

effect of temperature on daily melatonin amplitude between day and night was reported 

with enhanced melatonin production at higher temperatures. In many of the investigated 

fish species, photoperiod clearly controls the duration of melatonin production while 

temperatures can dictate the amplitude (Falcon, 1999). Furthermore, there is an 

optimum temperature for melatonin biosynthesis and it is species-dependent. The 

mechanisms by which temperature acts on melatonin secretion are not fully understood. 

However, it has been suggested that temperature effect would be mediated through the 

regulation of AANAT2 enzymatic activity in a species-dependent manner (Falcon, 

1999).  

As fish are ectotherms, they are directly influenced by the external temperature, 

by acting directly on their metabolism, physiology and behavior. Temperature varies on 

daily and seasonal bases as in the case of photoperiod. Integration of these seasonal and 
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daily variations is an essential factor in the adaptation of organisms to the natural 

fluctuations of their environment. In the last few decades global temperature has 

increased by 0.5 to 3.5 °C, depending on the geographic area (Hiddink & Hofstede, 

2008), and therefore fish have to adapt to this change. The impact of recent increases in 

temperature includes shifting of natural distribution areas and migration patterns. Sea 

bass, as for other warm-water fish species (e.g. red mullet and tuna), is now found in 

Northern parts of Europe (Scotland and also Norway) with established breeding 

populations (Henderson, 2007). This is may be due to climate change, which resulted in 

a 0.7 °C rise in the North Sea over the last decade (Hiddink & Hofstede, 2008). The 

initiation of distribution area displacement towards colder regions is an alternative way 

to compensate for temperature changes; however this will induce other changes like 

photoperiod or ecosystems, thus adaptation to the diel and annual changes for the new 

environment will be required. Furthermore, in sea bass sex ratio is temperature-

dependent. When larval and juvenile sea bass are reared at 19-22 °C instead of the more 

typical spawning temperature (~ 14 °C), it can result in a high male sex ratio (as high as 

90 %) due to the temperature-sensitive sex determination mechanism present in the 

species (Piferrer et al., 2005), which affects the sea bass aquaculture industry. It is clear 

that temperature changes are involved in the mechanisms controlling physiology and 

behaviour of fish, however, more studies are needed to understand the effects of 

environmental factors on these mechanisms. 

In the present study, we confirmed the low at day, high at night melatonin levels 

in sea bass which is also found in all teleost and vertebrates studied to date. This is in 

accordance with the role of melatonin as a “Zeitgeber” in entraining the physiology of 

animal to seasonal day length changes. However, unlike mammals, the mechanisms by 
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which melatonin controls reproduction, growth and behaviour (locomotor, feeding, 

shoaling, and migration) in fish and birds remain unclear (Falcon et al., 2007). This 

mechanism is thought to be controlled in mammals directly by light at the 

transcriptional level through specialized light regulated promoter regions in the 

AANAT gene. The daily and annual rhythms are also driven by internal clock 

mechanisms that free-run with a period close to 24h (circadian) or a year (circannual) 

when exposed to constant conditions, while melatonin circadian rhythms are clearly 

entrained by environmental conditions, they can also be self-sustained under the control 

of circadian clocks, through the existence of intrapineal oscillators (Migaud et al., 

2010). Contrasting to the previous findings, sea bass did not show any endogenous 

melatonin production under DD in both in vivo and in vitro conditions. Further 

confirmation for the presence of an oscillator capable of driving melatonin production 

in DD conditions is needed. Importantly, sea bass circadian organisation belongs to the 

fish group in which both the pineal and eyes are needed to sustain melatonin production 

(Bayarri et al., 2003; Migaud et al., 2007). More studies are required to define the 

circadian system in sea bass and its localization (in the brain, eye or pineal gland?). Due 

to the importance of AANAT activity, future studies are needed to quantify sea bass 

AANAT protein and aanat gene expression as well as its localisation. The 

understanding of mechanisms by which environmental signals regulate/entrain seasonal 

sea bass physiology will help the commercial farming where photoperiodic regimes are 

used throughout the production cycle to manipulate reproduction, enhance/increase 

growth and enable all year long supplies of seed (eggs/fry). It can also help to better 

understand/predict the effects of climate change on wild populations. It was also our 

intention in this PhD project to investigate the direct effect of different photoperiodic 
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regimes on the spawning time of sea bass broodstock. To do so, three different 

photoperiodic regimes were applied to adult males and females. However, due to a 

technical failure in the rearing system leading to fish mortalities, the experiment could 

not be completed.  

 

6.10. Importance of the environmental/neuroendocrine control of reproduction for 

fish aquaculture  

Research in reproductive physiology/endocrinology has direct implications for 

aquaculture where farmers continuously search for new means of improving fish 

growth, producing all year long product of constant high quality and ensuring fish 

welfare. Applied research has mainly focused on synchronizing the natural spawning 

and inducing spawning out-of-season through the use of hormonal manipulations 

(Mylonas et al., 2010) and photoperiodic regimes (Carrillo et al., 1993; Zanuy et al., 

1995), controlling the timing of puberty (Carrillo et al., 2009; Taranger et al., 2010) and 

sex ratio (Piferrer et al., 2005) of populations to promote growth and reduce production 

time using a range of environmental and genetic techniques and optimising the hatchery 

phases. To date, a significant part of the scientific knowledge gained over the last 

decade or so remains to be implemented in farming conditions and problems remain to 

be addressed in commercial settings related to reproduction, especially. Photoperiod is 

one of the most common tools used to control reproduction and puberty. Photoperiod 

manipulations have been used to control sea bass spawning time (Carrillo et al., 1989; 

Carrillo et al ., 1993; Zanuy et al., 1995) or control puberty and growth (Begtashi et al., 

2004, Felip et al., 2008). The characterisation of kisspeptin as an assay for puberty 

could prove to be essential in defining windows of decision (onset of puberty) and 
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optimising the timing of application which will significantly improve profitability of the 

industry. In some cases the use of exogenous hormone is an effective way to induce 

reproductive maturation and produce fertilized eggs (Mylonas et al., 2010). Kisspeptin 

administration can be an efficient tool in inducing spawning, as it can elicit the plasma 

LH as observed in previous studies on species including sea bass (Felip et al., 2009), 

medaka and zebrafish (Kitahashi et al., 2009). However, hormone administration in fish 

aquaculture is labour intensive, time consuming and therefore costly, and the control of 

spawning under culture conditions is not standardized. Therefore, further work is 

important to study environmental regulations of the neuroendocrine axis to develop 

protocols for the aquaculture industry.  

 

6.11. Conclusions and future work  

 Although the present findings clearly support previous suggestions according to which 

kisspeptin would play a key role in the neuroendocrine regulation of reproduction by 

the BPG axis in fish, the exact mode of action at the brain and pituitary levels remains 

unclear. The work carried out in this thesis provided correlative evidence supporting 

such a role. Further studies should now focus on dissecting the pathway by which 

kisspeptin acts on GnRH neurons and pituitary cells. Importantly, the mechanisms by 

which environmental signals regulate the BPG axis remain unknown and if melatonin is 

clearly involved in transducing environmental changes to the brain and tissues, direct 

evidence and mode of action of such an important endocrine signal still have to be 

ascertained. It has been hypothesised that kisspeptin could act as the missing link 

between environmental stimuli and GnRH stimulation in mammals and also in fish and 

this warrants further studies on this interesting research avenue. Further experiments on 



Rania Ismail                                                                      Chapter 6: General Discussion                 

 

 
221 

                                                                                                                                     

the interplay between melatonin and kisspeptin would be of great interest. Circulating 

melatonin (and kisspeptin) levels could be manipulated in vivo through injection, the 

use of melatonin antagonists or surgery (e.g. pinealectomy), photoperiodic regimes and 

in vitro assays, and their effects on kisspeptin, GnRH and reproduction analysed. Also, 

localisation of kisspeptin and melatonin expressing cells in the brain as well as neural 

projections would help to better define mechanisms at work. Importantly, both 

melatonin and kisspeptin might have other important functions than regulating seasonal 

reproduction and these should be investigated. Furthermore, given the large diversity in 

physiology (growth, reproduction), organisation (circadian systems, light perception), 

life strategies (puberty, reproduction feeding, migration) and natural distribution seen in 

fish, comparative physiology, endocrinology and molecular phylogenetic studies would 

be of great interest to unravel the roots of seasonal mechanisms shaped through millions 

of year of evolution. A better understanding of the control of reproduction has also 

direct implications in commercially important fish species for aquaculture as well as 

wild fish stocks that are under increased pressure from fishery activities and a changing 

environment (climate change). New knowledge would allow designing regimes and 

protocols that can be used to manipulate sea bass physiology (and other aquaculture 

species) in a farming context (optimised photoperiod/temperature regimes to enhance 

growth, suppress puberty or produce eggs out of season; new hormonal preparations to 

stimulate fish spawning). In addition, new tools developed along the BPG axis could be 

used to improve wild stock modelling based until now on gross physiological 

observations and better understand/predict how fisheries and climate change impact on 

fish recruitment, migration and overall population dynamics. 
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