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Abstract. 

1. Cost constraints in models of territory size are based on time/activity/laboratory 
estimates that predict birds using larger territories will incur higher energy costs. The predicted 
form of the cost constraint may be linear, accelerating or decelerating depending on 
assumptions inherent in the models. The aim of this study was to assess the reality and form 
of the cost constraint by making direct measurements of the energy costs of territory use in 
birds that occupy territories of different size and shape; polygonal territories represented by the 
robin Erithacus rubecula, and linear by the dipper Cinclus cinclus. Free-living energy 
expenditure was measured using the doubly-labelled water technique, whilst simultaneously 
recording patterns of territory use by radio-tracking. 

2. Territorial robins concentrated their activity in one or more foraging patches located in 
bushes. Range polygons containing all the foraging patches used by an individual provided 
estimates of territory area, and were generally of high eccentricity. A small proportion of robins 
was classified as non-territorial based on range polygon areas. Furthermore, while territorial 
robins showed high fidelity to ranges over the short term (days), non-territorial individuals were 
nomadic. Over the longer term (months), however, some territorial robins showed range drift. 
Dippers similarly used preferred core regions within ranges, although there was no selection 
for particular habitat features. 

3. Because robins occupied territory polygons which varied from polygonal to highly 
linear, work was focused on this species to allow intra-specific comparison. Robins tended to 
commute between foraging patches by flying. It was appropriate, therefore, to describe 
territories in terms of a number of patches linked by a network of flight paths. This generated 
two further measures of territory size; the number of patches used and the total flight distance 
between patches. 

4. The robins exploited a renewing food supply. Predictions were tested concerning the 
temporal scheduling of visits to foraging patches within territories. Patches tended to be 

separated by flight paths of similar lengths, and were visited in a regular sequence. Although 
the number of foraging patches used varied, all territories had similar total core areas. Robins 

using many small foraging patches commuted between patches more often and covered a larger 
total flight distance during each foraging circuit of the territory. The configurations of foraging 

patches were used in a highly linear manner. This was true even if the territory containing them 
was of low eccentricity. 

5. Changes in structure and pattern of use varied predictably with territory size, and could 
be described mathematically. Based on this and published time/activity budgets, a suite of 
models was developed to predict how energy costs would vary with number of patches used 
and total flight distance between patches. Models were tested by directly measuring the energy 
expenditure of robins using different territories. The number of patches used and total flight 
distance between patches were both significantly correlated with energy expenditure, while 
territory area was not. One of the models showed a significant fit to the observed data, and 
suggested that the form of the energy cost constraint on territory size was linear. The effect of 
territory shape on energy costs was minimal. The implications of these results for models of 
territory size are discussed. 

6. The slope and elevation of the energy cost constraint varied with the morphology of 
territory occupants. Based on this, an association of morphology with territory size was 
predicted; robins of lower mass and wing-loading using larger territories. The observed data 
supported these predictions, and suggested a possible genetic predisposition to particular 
patterns of territory occupancy in the robin. 
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Radio-tracking, like many other techniques, is seldom as easy as it looks. 

Robert Kenward (1982). 



Chapter 1. 
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1. Introduction. 

1.1. Territoriality; background and current concepts. 
1.1.1. A definition of territory. 

Territorial behaviour is one of the most conspicuous activities of many birds. 

Ownership of a fixed area, usually surrounded by clearly defined boundaries, is proclaimed 

with distinctive vocalizations, ritualised displays and not infrequently escalated fighting 

(Kaufman 1983). It is not surprising that such behaviour has attracted a large amount of 

study. 

Before beginning an investigation of the behavioural ecology of territorial birds, a 

workable definition of territory must be established. Three concepts of territoriality have been 

pointed out by Kaufmann (1983). The first concept uses a behavioural approach for its 

definition. The specific use of the term "territory" to refer to a zoological phenomenon was 

begun by Atum (1868), who explained it as an area occupied by one male of a species which 

defends it against intrusion by other males of the same species and in which it makes itself 

conspicuous. Nobel (1939) simplified the definition to 'any defended area' and this has since 

been accepted by Hinde (1956), Tinbergen (1957) and many others. This has the advantage 

of being easily applicable to field studies by exploiting the defensive behaviour of territory 

owners (Dhondt 1966). 

Secondly, a concept of territory more ecological than behavioural, has been advanced 

by Pitelka (1959). He defined a territory as an area of which the owner had more or less 

exclusive use, regardless of the means by which the area became identified with the occupant. 

This definition places the emphasis on the degree to which the members of a population 

partition the available habitat. 

Thirdly, territoriality is a form of social dominance. This concept was first expressed 

by Emlen (1957), who defined territory as an area or space in which an individual is 

aggressive and largely, if not supremely dominant, with regard to certain categories of 

intruder. Further to this, Rand (1967) defined a territory as an area or space in which an 

individual dominates others who dominate it elsewhere. 

When discussing what is meant by the term territory, it must be distinguished from 

the range of an individual. Range has been defined by Brown & Orians (1970) as "The area 
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in which an individual normally lives, exclusive of migrations, emigrations, or unusual erratic 

wanderings". Thus the defended territory may only be part of a larger range, which may 

overlap with the ranges or even territories of neighbouring individuals, depending on the 

intensity of territorial defense, and also contain roost sites used communally by many 

individuals (Swann 1975). 

1.1.2. The functions of territory. 

Many early studies of territoriality were qualitative in nature, and concentrated on what 

different species were doing in their defended areas (eg Snow 1956, Gibb 1956). This 

comparative approach highlighted the great diversity of territorial behaviour and gave rise to 

various functional categories such as feeding territories and breeding territories (Hinde 1956). 

Many of these observations were supported by explanations which, however, had little 

theoretical basis. Ideas such as predator pressure (Errington 1946), patchy environments 

(Carpenter 1958), mate defending (Snow 1956) and psychological advantage (Carpenter 1934) 

were invoked but rarely measured. 

Three functional hypotheses discussed by Verner (1977) offered more promise as 

general adaptive functions of territoriality. The density limitation hypothesis proposed that 

territoriality functions to limit population density below carrying capacity. This has been 

rejected by many biologists on the grounds of group selection (Wilson 1975). Territories may 

function to ensure an adequate supply of some resource; the sufficient resource hypothesis 

(Wilson 1975). Evidence is found in the negative correlation between territory size and the 

density of food, or some other important resource, found within the territory (Stenger 1958, 

Kodric-Brown & Brown 1978, Davies & Lundberg 1984). Finally the polygyny hypothesis 

(McLaren 1972) proposes that territoriality functions to allow males access to a number of 

females. However this fails to account for the breeding territories of monogamous species and 

non-breeding individual territories. 

It was soon discovered however, that questions as to the function of territorial 

behaviour did not represent a very useful approach. This is because of the many conflicting 

selective pressures involved in the evolution of territoriality (Davies 1980). 



3 

1.13. The concept of economic defendability. 

Brown (1964) proposed that the defendability of resources required for survival and 

reproduction (such as food supplies, mates and nest sites) is one of the most important 

determinants of the system of territorial behaviour which is attained through natural selection. 

Defendability should be conceived in terms of the time and energy spent in exploitation and 

defense activities (costs), and the advantages gained by exclusive access (benefits). Territorial 

behaviour should be expected when the benefits of being territorial are greater than the costs 

(Brown 1964). This concept of economic defendability has proved to be the corner stone of 

subsequent studies of territoriality. 

Using this idea of the economic defense of a resource, a considerable amount of 

research has been carried out on birds which exploit a renewing food supply. That is a 

resource which, if left undisturbed for a period after exploitation, will recover to its initial 

level. Nectivorous birds in particular have been studied in detail, but also insectivorous birds 

such as the Pied Wagtail*. 

The first investigation into the economics of feeding territoriality was carried out on 

the golden-winged sunbird (Gill & Wolf 1975). The nectar content of feeding territories 

comprising patches of flowers was measured, and from laboratory estimates of the energy 

costs of different activities, the amount of energy a sunbird expends in a day was calculated. 

When the daily energy costs were compared to the extra nectar gained by defending a 

territory and excluding competitors, it was found that the territorial individuals were making 

a slight net energetic profit. This was because the nectar level per flower inside a territory 

was higher than in undefended flowers, since other sunbirds were prevented from feeding. 

Thus the patches of flowers were economically defendable as territories. 

Territory owners may not rely entirely on the aggressive eviction of intruders for 

territory defense. Paton & Carpenter (1984) produced evidence for a pattern of foraging by 

rufous hummingbirds which resulted in a higher net energy gain and lower food losses than 

if their foraging effort was distributed evenly over their territories. Their idea of peripheral 

foraging proposed that territory owners should feed on flowers around the edge of their 

territory during the first few hours of the morning, since nectar levels are high at dawn and 

the periphery of the territory is most vulnerable to intrusion and nectar stealing. During 

midday owners forage -evenly over their territories, and in the territory cores in the late 

afternoon when they are heaviest and therefore have the highest flight costs. Such "defence 

* All scientific names are given in Appendix 12. 
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by exploitation" (Paton & Carpenter 1984) may be common when food resources are being 

defended and should be considered along with aggressive exclusion of intruders in the overall 

strategies of territorial animals. 
A study of pied wagtails by Davies (1976) supported these findings. Some single birds 

or pairs defended permanent territories along a river, consisting of a series of muddy bays 

where debris containing food items was washed up, and where feeding was predictably good. 

The total area suitable for feeding was about the same in each territory. Other birds fed in 

flocks and exploited temporary patches of abundant food. Further study of the economics of 

territorial defense in the pied wagtail (Davies & Houston 1981), explained why an owner 

sometimes tolerated another individual feeding on its territory. Since insects washed up on 

the river banks in the territory formed a renewing food supply, after a stretch had been 

depleted time was needed for prey abundance to-return to a profitable level. An individuals' 

feeding rate, therefore, depended on the time that had elapsed since the stretch was last 

depleted of prey, termed the "return time". Territory owners increased their return times and 

therefore feeding rates by a systematic search of the territory and by evicting intruding 

competitors when encountered. When intruders did land undetected they had a lower feeding 

rate than owners since they had no knowledge of the time since particular stretches were last 

exploited. They also reduced the owners feeding rate by depleting areas just before it arrived. 

Intruders landing on a recently depleted stretch, however, were often not evicted even though 

they were noticed, since their feeding rate was very low. They often left quickly of their own 

accord. Davies & Houston (1981) viewed this as "defence by depletion". 

Most studies of territoriality have assumed that the cost and benefits of defence are 

primarily determined by attributes intrinsic to each individual territory, such as resource 

levels. However a growing literature suggests that factors extrinsic to the territory may also 

affect the defense costs of the owner (Krebs 1971). In particular the position of a territory 

with respect to neighbouring territories and the nature of the habitat surrounding the group 

of territories may have significant effects on territory sizes, overlap and the densities of 

territory owners (Stamps & Beuchner 1985, Stamps et al 1987). 

1.1.4. Costs, benefits and the optimal territory. 

The type of quantitative studies discussed above sought only to discover whether 
territoriality was of net economic benefit in terms of exploitation and defense costs. For a 
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thorough understanding of avian territorial systems, however, it is necessary to know whether 
territoriality is more profitable than alternative strategies, and how the economics of defence 

vary with changes in the value of the defended resource, intruder pressure or territory size. 
More recently, attempts have been made to tackle these problems in a more 

quantitative manner by the use of optimization theory. If territorial behaviour is a result of 

natural selection then it can be interpreted in terms of the contribution it makes to an 
individuals' survival and reproductive success. It is assumed that an animal will exhibit 

territorial behaviour that maximizes its Darwinian fitness, (Pyke et al 1977). Like all 

optimization problems, it may be split into three stages; a) choosing a currency; what is to 

be maximized or minimized; b) choosing the appropriate cost and benefit functions 

(constraints); c) solving for the optimum, (Arnold 1988). The optimal solution can then be 

compared with what is observed in the field. If the predictions of the model correspond with 

observations, then it can provisionally be concluded that the selective pressures responsible 

for the behaviour have been correctly identified. If the model fails, then the discrepancy can 
be used as a source of information for devising alternative models, as a prelude to further 

observations and experiments. The aim is not to test whether an individual is behaving 

optimally; this is an assumption. Instead, the aim is to test whether the optimization criteria 

and constraints used to construct the model have been identified correctly (Krebs & Davies 

1987). 

For individual feeding territories, the benefit constraint in models of territorial 

behaviour has usually been described as a decelerating function with territory size. This is 

because benefits will increase as first and then level off, as the resource becomes 

superabundant in relation to the animals needs (Kodric-Brown & Brown 1978; MacLean & 

Seastedt 1979; Myers et al 1981; -Davies & Houston 1984; but see Pyke 1979). The 

parameters of this constraint are relatively straightforward to estimate, in terms of energy 

gains, from observations of foraging behaviour and information on the energy content and 

assimilation efficiencies of the food. Territory size can be adjusted in response to changes in 

the constraints, in order to provide sufficient resources for continued survival (constant 

resource territories; Stephens & Dunbar 1993). Territory size may be changed in order to 

track short-term optima (Davies & Houston 1984). Alternatively, the failure of owners to 

track short-term changes in costs and benefits by changing territory size, may suggest that 
long-term optima, for example maximising the chances of overwinter survival, are most 
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important (Davies & Houston 1981). 

The costs constraint on territory size has never previously been quantified directly, 

owing to the inability until recently to measure directly the free-living energy expenditure of 

animals, and the absence of information concerning specific defense activities, such as 
boundary patrolling. Previous studies have resorted to estimating the form of the cost 

constraint, based on various assumptions (Davies & Houston 1984). This has led to a variety 

of contradictory functions being used in models of optimal behaviour (Table 1.1. ). Three 

possible variants are illustrated in Fig. 1.1. to show how the constraints on costs and benefits 

can be used to make predictions about the territory size that optimises different currencies. 

1.2. Measuring the energy cost constraint on territorial behaviour. 

1.2.1. Hypotheses to be tested. 
Until the recent advent of the doubly labelled water technique (Lifson & McLintock 

1966), no direct method of measuring the free-living energy expenditure of animals was 

available. The use of this technique in directly measuring the form of constraints on territorial 

behaviour has been advocated by Bryant (1989), and has the advantage of framing both costs 

and benefits in a common currency (energy). 

All of the studies in which the form of the cost constraints on territory size have been 

described, have included the cost of territory defense in addition to the cost of territory 

exploitation (Kodric-Brown & Brown 1978; MacLean & Seastedt 1979; Myers et al 1981; 

Schoener 1983; Davies & Houston 1984; Stephens & Dunbar 1993). Although activities such 

as boundary patrolling have frequently been invoked, the nature and cost of these behaviours 

have never been quantified. 

Field studies of territorial energetics have largely concentrated on estimating the 

energy costs and benefits from the time/activity budgets of occupants (Gill & Wolf 1975, 

Carpenter & MacMillan 1976, Pyke 1979). Exploitation and defense are, however, behaviours 

which require an occupant to move between different regions within a territory. This pattern 

of time/space budgeting can now be recorded in detail for small birds, with the aid of recently 

developed miniature radio-transmitters (Kenward 1987). 

The costs of exploiting, and defending large or small territories should differ; large 

territories being more costly to maintain than small (Davies & Houston 1984). Furthermore, 

the slope of the cost constraint on territory size would be expected to differ for territories of 
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Fig. 1.1. The forms of different cost constraints on territory size that have been 
predicted by previous studies. All are shown with the same decelerating benefit 
constraint. In (a) the cost function is linear (Kodric-Brown & Brown 1978; 
MacLean & Seastedt 1979). The cost function in (b) is accelerating (Myers et 
al 1981, Davies & Houston 1984). Finally (c) shows a decelerating cost 
function (Stephens & Dunbar 1993). In each case the benefit function begins 
at the origin, while the cost function begins at a minimum maintenance cost 
(Kodric-Brown & Brown 1978, Myers et al 1981). The optimal territory size 
is indicated for three different currencies; (i) minimise cost, (ii) maximise net 
benefit, (iii) maximise gross benefit. 
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different shape. For example, the percentage area that is accessible from the centre of a 

circular or polygonal territory is greater than the percentage area within a highly linear 

territory (Fig.!. 2. ). It follows therefore, that the occupants of polygonal territories will incur 

lower costs when moving between foraging areas or boundaries, compared to the occupants 

of linear territories. The gradient, or rate of increase in gradient of the cost constraint should 

consequently be higher for the occupants of linear territories. 

A comparison of the energy costs of using territories which differ in both size and 

shape will establish the reality and form of the energy cost constraint on territorial behaviour, 

and allow its significance for energy balance and territory maintenance to be assessed. 
Consequently, the basic questions and hypotheses which this thesis will attempt to test 

may be summarised as follows: 

1) In terms of temporal scheduling of visits to different parts of their territories, 

how do small passerines achieve territorial exploitation and defense? 

2) Do the occupants of large territories incur higher energy costs than the 

occupants of small territories, and do the costs differ between territories of 

different accessibility (shape)? 

3) What is the mathematical form of the energy cost constraint on territory size, 

and what are the implications of this for existing optimal models? 

1.2.2. The study species. 

Most studies of territorial animals have viewed owners as being separated from 

neighbours by a discrete territory boundaries. The location of these boundaries dictates how 

territories may be classified in terms of their shape. This concept is typified by two studies 

of territorial waders. The breeding pectoral sandpiper occupies territories which are separated 

from neighbours by a continuous boundaries. These are defined by dyads of neighbours as 

they signal their ownership to each other on the flat and uniform tundra habitat. These 

territories may be classified as highly polygonal, often forming the shape of a regular hexagon 

(Grant 1969). A hexagon would be expected if territories were packed as closely together as 

possible. Sanderlings wintering on uniform tidal sand flats are territorial when this is the most 

economic way to forage (Myers et al 1981). Under these conditions individual sanderling 
defend sections of shore line against conspecifics which may intrude by aggressive chases and 

evictions. Because the invertebrate prey exploited by sanderling are constrained by the tidal 
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cycle into a zone running along the shore, these territories may be considered highly linear, 

and result in the shore line being divided into short lengths separated by defended boundaries, 

beyond which owners will not venture (Myers et al 1981). 

In these examples the defended resource is distributed in a uniform habitat, producing 

apparently simple territorial systems that are easily defined by shape. Such systems are 
however often difficult to study. For example, the behaviour of breeding sandpipers represents 

a compromise between several conflicting goals which often vary between the sexes. The goal 

of males is to guarantee paternity of his mates offspring while that of females may be to 

ensure copulations with the highest quality males available (Birkhead & Moller 1990). 

Furthermore, breeding territories are usually occupied by a male and female, making 

quantification of the costs and benefits of territorial behaviour more complex. Although these 

considerations do not affect the behaviour of wintering sanderlings occupying individual 

territories, defendability of their territories is governed by the 12 hr cycle of the tides, making 

long term monitoring' or manipulation of individuals using the same territory difficult. 

Individuals must abandon their territories during high tide during which prey populations may 

redistribute themselves. 

The choice of study species which conform to these two main criteria of easily 

observable territorial behaviour (display and aggressive evictions) and long term individual 

territoriality, and occupy polygonal and linear territories are met by a number of British 

species. The techniques employed to measure space use and energy expenditure, however, 

impose certain other requirements. Individuals must be large enough to be suitable for doubly 

labelled water measurements of energy expenditure, and to carry radio-tags for prolonged 

periods. Furthermore, frequent recaptures are necessary for replacing radio-transmitters during 

measurements of space use, and for labelling and sampling the body the water pool for the 

stable isotope technique. Finally the species must be sufficiently abundant for territorial 

interactions to be frequent and for information to be available on the consequences for the 

population of the territorial energetics of individuals. 

During winter, the European robin and the dipper fulfil all of these requirements (Lack 

1965, Cramp 1988). Based on the literature these species appeared to defend polygonal and 
linear territories respectively. 



Chapter 2. 
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2. General methods. 

2.1. Introduction. 
2.1.1. The non-breeding ecology and behaviour of the study species. 

2.1.1.1. The robin. 

The race of European robin to inhabit Britain is Erithacus rubecula melophilus (Cramp 

1988), and represents the western end of a cline in progressively darker plumage across 

Europe. British and Irish birds show more olive mantles and richer orange breasts than 

European populations (Cramp 1988). There is no sexual dimorphism in plumage in this small 

passerine, although some studies report statistical differences in the wing-chord, tail and tarsus 

lengths between sexes when measured from skins, males being larger then females (Cramp 

1988). The average life span of the robin has been estimated to be 13.3 months (Lack 1965), 

although a small proportion of birds may live for several years. Annual mortality is 62 % for 

adults and 72 % for juveniles (Lack 1965). 

The robin preys predominately on small mobile invertebrates (Lack 1948, Grajetsky 

1993), collected from the ground by hopping, or by dropping from perches once items have 

been located (East 1982). In severe weather, when the preferred foraging habitat may be 

frozen or covered by snow, individuals may take berries and even exploit ground disturbed 

by other animals including man (Harper 1984, Lack 1965). Birds living close to human 

habitations will readily exploit artificial food sources on bird tables (Lack 1965). 

Harper (1986) describes most habitat occupied by robins as containing at least some 

mature trees, robin densities being low in poorly wooded areas of the British Isles. Lack 

(1948) recorded a preference by robins for woodland edges, suggesting a requirement for 

something other than mature trees alone. An analysis of wintering densities around Oxford 

suggested that the presence of abundant cover within two metres of the ground is an 

important factor in the suitability of habitat for wintering robins (Harper 1984b). A positive 

correlation between the density of the shrub layer and reproductive success has also been 

recorded (Hoelzel 1988). 

Territories are maintained by singing and the aggressive eviction of intruders (Lack 

1965, Chantrey & Workman 1984). Display involves adopting poses which exaggerate the 

orange breast patch. It has been suggested that the colour and extent of the breast is important 

in determining the relative dominance between dyads of birds (D. Harper pers. comm. ). In this 
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way robins may usually be able to settle aggressive interactions without fighting, although 

robins will kill opponents during struggles for territory ownership (Lack 1965, Harper 1984) 

Non-breeding individual territories are established and defended by both sexes from 

the end of the annual moult in adults (July-August) or independence of fledged young, until 

the onset of spring song in the following spring. In the south of England the spring song 

surge may take place in early January (Lack 1965) while in central Scotland this is delayed 

until late February (this study). Females then abandon their individual territory and pair with 

males. The latter appear to enlarge their non-breeding territory, occasionally by fusing their 

territory with that of a neighbouring female (Lack 1965). 

The robin is a partial migrant (Lack 1943). Typically males defend the same territory 

for their entire life (Lack 1965), while the majority of females and some males migrate 

varying distances to winter in a different' location from that in which they breed. These 

movements are usually less than five kilometres (Mead 1984). A greater proportion of the 

population is migratory in the northern part of its range (Lack 1943). The tendency of 

individuals to be migrants or residents is genetically determined (Biebach 1983). Furthermore, 

the proportion of a population that is migratory depends on the nature of the habitat they 

occupy (Adriaensen & Dhondt 1984). 

2.1.1.2. The dipper. 

The mainland British race of the dipper Cinclus cinclus gularis (Cramp 1988) is an 

exclusively aquatic forager. Insect larvae constitute the main food items, supplemented with 

molluscs and small fish (Ormerod & Tyler 1986). Food is obtained by wading and diving in 

fast flowing water. This passerine is highly adapted to exploit this foraging niche, being of 

stocky build with powerful legs, and feet with sharp claws for clinging to boulders and stones 

to resist the full force of the water (Cramp 1988). 

Owing to these foraging adaptations, typical sites occupied by the dipper are fast 

flowing streams and rivers, where preferred prey are abundant. Although in common with 

most small passerines mortality is high during the first few months of life, thereafter 

individuals may expect to survive for several years (Newton 1989). The dipper exhibits sexual 

dimorphism of body size. Males are larger than females, with insignificant overlap (Ormerod, 

Tyler & Lewis 1986). 

The dipper has frequently been described as showing year round territorial defense 
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(Cramp 1988). Non-breeding territories are established after the late summer annual moult in 

adults, and after post fledging dispersal in young birds. Both males and females exhibit non- 
breeding territoriality. Individuals defend a length of suitable water course by the aggressive 

eviction of intruders (Cramp 1988). Dominance during encounters between owners and 

neighbours or owners and transients is influenced by relative body size and the intensity and 

extent of chestnut colouring on the belly (Newton 1989). Females abandon their territories in 

early spring and pair with males on larger breeding territories. Some populations show 

altitude-related seasonal movements, upland areas being abandoned during the winter (Cramp 

1988). 

2.1.2. Statistics and software. 
Statistical procedures generally follow Zar (1974) and were carried out using SPSSX. 

Normality of data was assessed by examination of histograms and by correlation with normal 

probability scores. Samples of data with correlations greater than 0.95 were considered to be 

normally distributed. Transformations were applied, where appropriate, to achieve normality. 

Small samples sizes and those which were not normally distributed were analyzed using non- 

parametric techniques. Unless otherwise stated, the five percent probability level for two-tailed 

tests was accepted as the value at which significance was achieved. 

A large proportion of the space use statistics were obtained using the Ranges Nm 

application, issue 1.5 (Kenward 1990). Additional software used were the Static and Dynamic 

programs of Doncaster (1990). Software was run on an IBM compatible PC under the 

MS-DOS operating system. Data were entered and edited in WordPerfect® before being 

imported to the packages in ASCII format. 

2.2. The robin. 
2.2.1. Methods. 

2.2.1.1. The study site. 
2.2.1.1.1. Location and aspect. 

The study population of robins was located on the campus of the University of Stirling 

in central Scotland. Although backed by the Ochil Hills to the north, the altitude of the study 

site was only 30-50 m above sea level. The two areas within which fieldwork was 

concentrated are shown in relation to major boundaries and buildings, in Fig 2.1. 
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2.2.1.1.2. Habitat structure and prey availability. 

The habitat within the study site could be divided into four zones. The major plant 

species and other important ground cover occurring within these zones are summarised in 

Table 2.1. The extent of the canopy, shrub layer and short grass within the main plots are also 

indicated on Fig. 2.1. b. and summarised in Table 2.2. The dense shrub layer and more open 

areas within woodland are illustrated in Plates 2.1. and 2.2. 

Prey availability was sampled using pitfall traps containing formaldehyde diluted in 

water, since these were likely the capture the mobile invertebrates which are preyed on by 

robins. Traps were placed in the ground so that their rim was at ground level. The 

circumference of the circular traps was 30 cm. Trap contents were inspected 24 hrs after 

being set. 

2.2.1.1.3. Weather data. 

A daily record was made of minimum and maximum temperature, rainfall and 

windspeed at the Parkhead weather recording station on the University campus during the 

course of each field season. Midpoint temperature was calculated as the midpoint value of the 

maximum and minimum temperature on each day. 

2.2.1.2. The examination of individuals. 

2.2.1.2.1. Capture techniques. 

Robins were captured using a variety of techniques. Most favoured, because of the 

minimum of disturbance to the habitat, were walk-in cage traps. These were placed in dense 

cover, baited with cheese, porage oats or meal worms and regularly inspected for captured 

birds. The robins entered through a funnel shaped opening and once inside could not find the 

opening again. Up to 10 traps could be set at once to either trap different individuals over a 

large area or to saturate a small area with traps to increase the chances of capturing a 

particular individual. Occasionally more than one robin was found in a particular trap. Fights 

between robins in the confined space were however, very rare. In over 550 robin captures 

using traps, only 2 birds (0.4 %) died while in a trap. Of these, one injured its self while 

trying to escape, while the other was killed by another robin which had entered the same trap. 



Table 2.1. Plant species and other important ground cover present in 
the different vegetation zones within the areas occupied 
by the robin study population. 

Vegetation zone Approximate Species & nature 
height range (m) of ground cover * 

Herb layer &0 Short grass 
other ground cover Leaf litter 

Nettle Urtica dioica # 
Fern Dryopteris felix-mas # 

Shrub layer 0-3 Rhododendron ponticum 
Various ornamental spp. 
Bramble Rubus fruticosus 
Gorse Ulex europaeus 
Broom Cytisus scoparius 
Holly flex aquifolium 
Yew Taxus baccata 

Under story 3-6 Elder Sambucus nigra 
Hawthorn Crataegus monogyna 
Hazel Corylus avellana 

Canopy 6-9 Oak Quercus robur 
Horse Chestnut Aesculus hippocastanum 
Sycamore Acer pseudoplantanus 
Birch Betula pendula 
Beech Fagus sylvatica 
Ash Fraxinus excelsior 
Elm Ulmus laevis 

* Ranked by approximate abundance. 
Patchy abundance in early Autumn only. 



Table 2.2. The area and % area of the habitat blocks indicated in 
Fig. 2.1. that is accounted for by different habitat types. 
Since some habitat types overlap (eg bushes under canopy), 
the percentage habitat areas will sum to greater than 100. 

Habitat type Boilerhouse Wood 

Area (ha) % total 

Spital Hill 

Area (ha) % total 

Bushes & shrubs 1.8 3 1.0 3 

Canopy 13.2 22 9.2 34 

Buildings 0.9 1 0.2 1 

Open grass 49.1 76 19.6 65 

Total 65.0 30.0 



Plate 2.1. A section of the Boilerhouse Wood study area showing large Rhododendron 
bushes separated by more open areas. 

-4 

Plate 2.2. A view through the Spital Hill study area. Although wooded, there were few 
bushes and shrubs. 
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Trapping efforts using cage-traps were supplemented with conventional mist netting 

when necessary. Using these techniques all robins using the study area could be captured or 

recaptured within a few hours, or occasionally with particularly wary individuals after a few 

days. 

2.2.1.2.2. Biometrics, ageing and sexing. 

Once captured robins were subjected to a detailed examination and a number of 

characters measured. These are described in Table 2.3. The standard diagrams used to 

quantify body fat deposits are summarised in Fig. 2.2. Although no confirmatory data are 

presented here, measurements were known to be highly repeatable. All birds were fitted with 

B. T. O. numbered aluminum leg rings and individual combinations of colour rings. 

Over the course of the study a sample of dead robins was collected for the purposes 

of carcass analysis. These were subjected to a more rigorous examination, including 

measurement of wing span and area and determination of sex by dissection (Table 2.3. ). 

2.2.1.3. Measuring the energy expenditure of free-living birds. 

2.2.1.3.1. The doubly labelled water technique. 

The metabolic rate and energy expenditure of animals during calorimetry studies has 

often been determined from the rate of carbon dioxide production. The doubly labelled water 

technique is a method of indirect calorimetry which can be used to measure the energy 

expenditure of animals while free-living in their natural environment, in terms of carbon 

dioxide production estimated from rates of stable isotope turnover (Lifson & McClintock 

1966). This measure of energy expenditure includes the costs of basal metabolism, 

thermoregulation, postural muscle activity, energy assimilation and locomotion. 

The doubly labelled water technique was developed after the observation that inhaled 

oxygen rapidly achieved isotopic equilibrium with the oxygen in the body water pool (Lifson 

et al 1949). This is due initially to the combination of inspired oxygen and hydrogen ions in 

the body to form water, and the breakdown of body water to produce carbon dioxide during 

the Krebs cycle. The oxygen atoms from the liberated carbon dioxide and the body water are 

brought into isotopic equilibrium in the blood and ultimately exhaled gases, by reactions 

catalysed by the enzyme carbonic anhydrase (Speakman & Racey 1988). 
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The technique involves labelling the body water pool with stable isotopes of hydrogen 

'H and oxygen t60. These are deuterium 2H and heavy oxygen `80 respectively. Doubly 

labelled water is made up by mixing 2H2160, a source of deuterium, and `H2`8O, a source of 

heavy oxygen. A period is allowed for the complete equilibration of these isotopes with the 

water within the subjects body, after which a sample of body fluid, normally blood, is taken. 

A second sample is taken some multiple of 24 hrs later, from which rates of isotope turnover 

are calculated. 

The principle routes of loss of the 180 label are in water and respiratory carbon 

dioxide. The 2H is required to determine the amount of 180 lost when combined with 

hydrogen to from water. Once this is known, the amount of 180 lost as metabolic carbon 

dioxide can be determined from the turnover rates of the oxygen and hydrogen isotopes in 

the body (equation 1-3, Table 2.4. ). The rate of carbon dioxide production is used to 

determine the average daily metabolic rate (A. D. M. R. cm3CO2g'' hr) (equation 4, Table 2.4. ). 

Daily energy expenditure (kJ day') may be calculated (equation 5, Table 2.4. ) using an 

assumed value of the respiratory quotient RQ to determine the calorific equivalent of the 

volume of carbon dioxide produced. 

Energy expenditure is often expressed in terms of metabolic intensity (M). This is the 

energy expenditure (kJ hr ) divided by the basal metabolic rate (kJ hr'). Since basal 

metabolic rate increases with the amount of metabolising tissue, this controls for differences 

in body mass when comparing energy expenditures between individuals or species. 

Calculation of metabolic rate and energy expenditure from the rate of isotope turnover 

involves several assumptions which are not normally violated to an extent sufficient to 

introduce serious error in the results (Tatner & Bryant 1989). The assumptions are listed in 

Table 2.5. The principles and assumptions of the doubly labelled water technique have been 

discussed in more detail by Lifson & McClintock (1966), Nagy (1980), Speakman & Racey 

(1988), Tatner & Bryant (1989) and Speakman (1990). 

Validation of the doubly labelled water technique against other techniques for 

estimating energy expenditure, such as laboratory based infra-red gas analysis and field based 

time/activity/laboratory studies, has yielded differences ranging from 3% to 13 % (Bryant 

et al 1985). The mean absolute discrepancy in vertebrate studies however, is generally less 

than 10 % (Tatner & Bryant 1989). 



Table 2.4. Formulae for calulation of energy expenditure from the initial, final 
and natural abundances of the stable isotopes 2H and 180 (ppm). 

K= In(Initial isotope excess) - ln(Final isotope excess) 1/(Measurement period) 

N= mass x Body water fraction x (1000/18)* 

rCO2 = (N/2.084) (K, -Kd) - (0.015 Kd N)$ 

ADMR = (rCO2 x 22.41)/mass 

DEE = ADMR x mass x 20 x (26.44/1000)4 

Where: 

(ppm hr' ) ................. 1. 

(m Mol) ................... 2. 

(m Mol hr') ............. 3. 

(cm3CO2 g-' hr-')..... 4. 

(kJ day') ................. 5. 

Isotope excess = Differences between initial or final isotope abundance and 
natural abundance (ppm). 

Measurement period = Period between initial and final samples (hrs). 
K= Isotope turnover rate (Ko for 180, Kd for 2H). 

mass = mean body mass during measurement period 
(initial mass + final mass )/2. 

Body water fraction = proportion of body mass that is water. Using data from 
Tatner & Bryant (1989), % Body water = 88.5 - 1.25 mass 

N= Size of body water pool 

* Converts g to Mol. 
# Product of a fractionation and stoichiometric factor. 
$ Fractionation effects of evaporative loss assuming this accounts for 50 % water 

loss (Lifson & MacClintock 1966). 
j Converts mMol to cm3. 
$ Converts hr-1 to day-'. 
§ Heat equivalent (kJ) of 1 cm3 CO. (Brody 1945) based on an assumed value 

of RQ for a winter robin of 0.75 (Tatner & Bryant 1986). 
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2.2.1.3.2. Field protocol and analysis. 
Robins were captured during the late afternoon and weighed. The volume of doubly 

labelled water required for isotope concentrations to be detectable above natural abundance 

after 48 hrs was calculated from body mass using a dosage per gram of 20'µl. For most 
individuals this required a dose of approximately 0.2 cm3. Labelled water consisted of a 

mixture of 20.6 atom % 'H2018 and 99.8 atom % 2H2160. The labelled water was introduced 

intraperitonially by injection. The injection site was midway between the anterior rim of the 

sternum and the pubis, off the mid line to avoid the ventral media] vein and dorsal aorta. 
Once the stable isotope has been loaded, the robins were held in a bird bag in a quiet 

place for approximately one hour to allow the isotopes to reach equilibrium with the body 

water pool. The initial sample of body fluid, represented by a blood sample, was collected by 

pricking a vein with a sterile syringe needle. Two such sites were used to obtain samples of 

blood; inside and slightly distal to the tarsal joint; and the brachial vein in the wing where 

it lay exposed over the humerus-ulna joint. Sites were first swabbed with ethanol to reduce 

the chances of introducing pathogens and afterwards smeared with an antiseptic ointment. 

Great care was taken to prevent the surrounding feathers from becoming matted with blood 

as this would compromise the birds insulation. Eight to ten blood samples of approximately 

5 µl were collected in 10 gl graduated glass capillaries, which were flame sealed within five 

minutes. The concentration of stable isotopes contained within these samples represented the 

initial abundances. The bird was then released in the same location as it was caught. By 

capturing birds in the late afternoon they could be released after equilibration around the time 

of dusk, at which time most birds settle down to roost. Because all robins were therefore 

inactive at the time of release, individuals could if necessary recover from the loading and 

sampling procedure without being at a competitive disadvantage relative to other robins in the 

neighbourhood. 

The robins were recaptured as close as possible to the full period of measurement. 
This was normally 24 hrs but occasionally 48 hrs. The birds were reweighed and the second 

blood samples taken using the same methodology. The isotope concentrations in these samples 

represented the final abundances after having followed normal free-living activity for the 

duration of the measurement period. Samples of blood were taken from two unlabelled 
individuals at the start and end of the period during which doubly labelled water 

measurements were carried out. The deuterium and heavy oxygen concentrations in these 
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samples represented the natural abundance of the isotopes in the study population. 
The sealed blood samples could be stored at room temperature indefinitely prior to 

analysis of isotopic composition. The concentrations of 180 and 2H were measured by isotope 

ratio mass spectrometry, in the Life Sciences Laboratory at the Scottish Universities Reactor 

Research Centre, part of the National Engineering Laboratory at East Kilbride. 

The concentration of 180 label was measured by conversion of the water in the sample 

to carbon dioxide via reactions with guanidine chloride and phosphoric acid (Dugen et al 
1985). The ratio of 1S0 to 160 in the sample of carbon dioxide was measured using a VG 

SIRA 10 isotope ratio mass spectrometer. 

The concentration of ZH was determined by reduction of the water in the sample to 
hydrogen gas in a uranium furnace at 600°C (Wong & Klein 1986). The gas was collected 

on activated carbon for analysis of hydrogen/deuterium ratios using an OPTIMA isotope ratio 

mass spectrometer. Samples were processed in ascending or descending order of deuterium 

concentration based on whether they were initial or final samples, in order minimise problems 

with the memory effect of the furnace which retains a small amount of the previous sample. 

Calibration equations used to determine the concentrations (ppm) of 180 and deuterium from 

the delta raw values produced by the mass spectrometers were determined by running 

standard samples containing known concentrations of isotopes. On each run samples were 

compared to a standard reference gas of known isotopic content, which remained the same 

throughout the analysis. 

Two capillaries from each sampling occasion were analyzed consecutively for each 

labelling isotope. A further replicate was analyzed if duplicate samples did not produce 

concentrations of the labelling isotope, ideally within 3% of one another. This was not 

always possible, although 85 % of oxygen samples and 92 % of hydrogen samples did 

conform to this level of replication. The remaining replicates were within 5 %. 

The mean of the closest pair of values from replicate samples was used in equation 1 (Table 

2.4. ). 

2.2.2. Results. 

2.2.2.1. Weather data. 

The correlations between the different weather variables during this period are shown 
in Table 2.6. All three temperature measures were highly positively correlated. Midpoint 



c 
-CJ U 

-o öö 

Q) =N 
Q ry, 

> 
e0) 

c 

ä3 . ti 

3 öý 

b 0) - 
0 
U bo y 

c 

Cl, 

.ow 
Uy 

] ÜU 

cßw 
o aý 

QýH 

oý'C 
Iý a 

fV 

cn 
ö 

Ici 
a) 

b N 
o 

E 

ä Ö Ö 

U 

q 
M 
O 

vn 
- 

O 
o0 

Ö Ö Ö ~ 

ýO - M Q> 
h QN O ~ N 

ý� Ö Ö Ö Ö 
In 

Ö n 
ý ä 

E,,., ö ö ö cý o c 

°c ov ý 
r a. A 

U' ~ w d ö ý« 
ý ý A 

, 

E Eý L C ý Q 



17 

temperature was negatively correlated with windspeed, but was not correlated with rainfall. 
Midpoint temperature was also strongly negatively correlated with day of year as was rainfall. 
To summarise, as late summer progressed into autumn and winter, it became colder, wetter 

and windier. 

The mean number of invertebrates captured by three pitfall traps positioned in the 
different habitat types in a 24 hr period was not correlated with the midpoint temperature 

recorded on the same day (r=0.23 ns n=20). Mean numbers of invertebrates captured were, 
however, correlated with the mid point temperature on the previous day (r=0.43 p<0.05 n=20), 

and most correlated with the midpoint temperature averaged over the previous five days 

(r=0.66 p<0.001 n=20). There were therefore more mobile invertebrates entering pitfall traps 

when the temperature was higher. 

2.2.2.2. Morphological variation between individuals. 

2.2.2.2.1. Structural body size. 

Body size has been defined as the amount of total attachment surface available for 

metabolising tissues and the size of support structures for internal organs (Freeman & Jackson 

1990). A measure of body size for each individual is required in order to control for 

differences in structural size when quantifying variables such as energetic condition, and when 

investigating the consequences of structural body size on the extent of territories and their 

pattern of use. Such a measure based on several characters is advantageous in that it reduces 

variation due to developmental abnormalities, abrasion or measurement error in single 

characters (Freeman & Jackson 1990). 

The summary statistics for measures of structural size from all robins in adult plumage 

are presented in Table 2.7. The correlation matrix in Table 2.8. shows the strengths of the 

relationships between these different structural measures. Significant correlations were found 

between keel length and wing chord, keel length and head & bill length. 

A principal component analysis was carried out on the measures of structural size 

recorded from each robin. The factor loading scores and percentage of variance in body size 

explained by each the three principal components extracted by the analysis are shown in 

Table 2.9. On average individuals of large structural size should be more massive than 

individuals of small structural size. The relationships between body mass, the individual 

measures of structural size and the composite measures of structural size represented by the 



Table 2.7. Summary statistics for biometrics 
of robins in full adult plumage. 

Mean (mm) S. D. n 

Wing chord 73.8 2.0 74 

Tarsus 28.9 1.9 74 

Head & bill 33.7 0.7 74 

Bill length 8.4 0.5 73 

Bill depth 3.4 0.2 74 

Keel 16.5 0.8 72 

t 
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Table 2.9. Factor loading scores from PCA of measures of 
structural size in robins (n=71). The % variance 
explained is the % of total variance in body 
size explained by each principal component. 

PCl PC2 PC3 

Wing chord 0.74 -0.18 0.30 

Tarsus 0.08 0.81 0.20 

Head & bill 0.68 0.22 -0.13 
Bill length 0.01 0.72 0.25 

Bill depth -0.01 -0.01 0.94 

Keel 0.75 0.04 -0.06 

% variance explained 27.4 21.6 16.8 
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principal components are shown in Table 2.10. Only keel length was significantly correlated 

with body mass. In multiple regression analysis with body mass as the dependent variable, 
keel length and bill depth were included at the five percent level of significance (Table 2.11. ). 

Together these accounted for 14 % of the variation in body mass (Table 2.11. ). This was 

considerably more than the 4% accounted for by regression of the best composite measure 

of body size (PC 1) on body mass. 

2.2.2.2.2. Wing morphology. 
The wing chord was significantly correlated with wing span but not wing length for 

the individuals measured post mortem (Table 2.12. ). Wing span was however highly 

correlated with wing area (Table 2.12. ). Wing span could not be measured on live robins 

because of the risk of injury and so it was predicted using the equation derived from the 

regression of wing span on wing chord (Table 2.13. ). The minimum and maximum wing span 

and wing area recorded during the post mortems of 28 robins are shown in Fig. 2.3. to 

illustrate the size range of the aerodynamic surfaces. 

2.2.2.2.3. Effects of age and sex. 

There were no significant differences between the individual measures and composite 

measure of structural size between male and female and adult and first year birds (Table 

2.14. ). Males were larger then females in three out of seven measures with one being equal, 

and adults being larger then juveniles in one out of seven, with three being equal. In addition, 

there were no significant differences between the composite measures of structural size 

represented by the principle components (T-tests all ns at p<0.05, same sample sizes). Any 

attempt to determine the age and sex of live robins, for example using a discriminant function 

analysis with the measures of structural size, was therefore liable to yield an unreliable sexing 

technique. 

2.2.2.3. Physiological variation between individuals. 

2.2.2.3.1. Body composition and energetic condition. 

Energetic condition is a measure of the extent of an individuals' energy reserves. 

These may take the form of deposits of fat or protein within the body, and can be used to 
investigate when food shortage or other stresses occur (Mareström & Kenward 1981). In order 



Table 2.10. Pearson correlation coefficients between body 
mass (g), and individual measures (mm) and 
principle components of structural size. All 
correlations except that indicated were 
non-significant at the 5% level. 

rn 

Wing chord 0.04 74 

Tarsus 0.06 74 

Head & bill 0.14 74 

Bill length 0.18 73 

Bill depth 0.21 74 

Keel 0.30 * 72 

PCl 0.20 71 

PC2 0.16 71 

PC3 0.17 71 

* P<0.01 



13 

Qý y 

f3 4% 

Ü 
t. 
ce 

O 

(A 
a'te' 

Cl e. C 

0h. 0 
Hy 02 

LA 
O td 

a+ 

0UG 

'N ý "3 

y3 
ce 9. ) 

U 

. 
a: O 

"C 

Or CJ t4 

OG0 

:OC 

N 

.a cc EE, 

U 
U 

°q VV vn a cl. 

U 

cl 
ö- 

U öö 

140 
O 

L3 Ö 

U 

.D 

Cli 
C ýv 

'O bq = 
C 

w` U 
~ 

UU. 
' 

U 
IC 

'U V 

º-r 

rD N vi 
C) ýO M U 

C1 ÖN 'ýj 
i.: 

U 

U QC 

ß_ 1-1 
U 0 

Cd 
10 E 

CZ4 Im CO. V U 
0 :a 



Table 2.12. Pearson correlation coefficients between measures 
of wing size recorded from robins during post 
mortems (n=28). Wing span and wing area were 
not significantly correlated with any non-wing 
measure of structural size at the 5% level. 

Wing chord (mm) Wing span (mm) 

Wing span (mm) 0.50 

Wing area (mm2) 0.33 0.75 ** 

* P<0.01 ** p<0.005 

Table 2.13. Regression statistics for the relationship 
between wing span and wing chord for robin 
carcasses examined during post mortem (n=27). 

Dependent Independent a r2 F Significance 

variable variable 

Wing span (mm) 1.15 Wing chord (mm) 143.37 0.22 8.51 p<0.01 

ß Slope. 
a Elevation. 
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to quantify the energetic condition of live robins of known structural size, from the extent of 

their fat deposits or body mass, it is necessary to compare these estimates with the measured 

body composition of a sample of birds. 

A sample of 27 robin carcasses collected over the course of the study and stored in 

a frozen state were analyzed to determine their composition in terms of fat, water and lean 

components. The mass at death was recorded before freezing. After thawing, the carcasses 

were examined and the characters described in Table 2.3. were measured and recorded as for 

live birds with the inclusion of further wing measurements and determination of sex by 

dissection. The stomach and intestine were dissected out to remove any effects of gut 

contents, and the carcasses reweighed to give the gut-free mass. Carcasses were then freeze 

dried to constant mass and reweighed to give the dry gut-free mass. The mass of water in the 

gut-free carcass was calculated as the difference between the gut-free mass and the dry gut- 

free mass. The fat contained within the carcasses was dissolved by reflux in a soxhlet 

apparatus for 24 hrs using a 5: 1 dimethylether: chloroform mixture as the solvent. The 

carcasses were then further freeze dried and weighed for a final time to give the gut-free lean 

dry mass. The results are summarised in Appendix 1. 

The fat scores were not normally distributed, 18 out of the 27 individuals (66 %) being 

scored zero for both tracheal pit and anterior abdominal regions. Because of this the data 

could not be normalised. 

The relationship between fat score and measured fat content for the dead robins was 

nonlinear, fat content following a decelerating function with fat scores. After Logo 

transforming the fat scores to linearise the relationship, the correlation between fat content 

and fat score was positive and highly significant (Fig. 2.4. ). Using the tracheal pit score alone, 

the correlation was slightly more significant (r, =0.76 p<0.001 n=27) than that for the anterior 

abdominal region alone (r, =0.74 p<0.001 n=27). The highest correlation however was obtained 

by using the sum of the two regions (r, =0.77 p<0.001 n=27). Fat scores were an estimate of 

the visible area of fat relative to the structural size of individuals. Therefore the bodies of 

robins which scored highly on an assessment of their visible fat deposits did contain a high 

fat component on both absolute and relative scales. 

The expected body mass of individuals of a particular structural size can be predicted 

from the equation in Table 2.11. Robins which contained relatively greater reserves of fat and 

protein will have a greater body mass than that predicted from their keel lengths and bill 
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Fig. 2.4. The relationship between total fat score and mass of fat (g) in robin carcasses 
(rj=0.77 p<0.001 n=27). The line shows the fitted regression; 

Fat mass=2.55 Logo (Total fat score+1)+0.46 
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Log 10(total fat score+1). 
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depths. An index of body condition may therefore be obtained by subtracting the predicted 

body mass from the observed body mass (Ormerod & Tyler 1990). Values for the condition 

index will be positive for birds heavier then predicted from their structural size and negative 

for those lighter then predicted. The condition indices therefore control for much of the 

differences in body size (Ormerod & Tyler 1990). 

Correlation analysis of the proportion of body mass at death made up by each body 

component (arcsine-square root transformed to normalise) with condition (Table 2.15. ), 

indicated that robins that were heavier than expected from their structural size contained 

higher levels of fat, and robins which contained a large fat component did so at the expense 

of their proportional water and lean components. The relationship between change in fat 

content as measured by fat score and body mass is illustrated in Fig. 2.5. for a sample of live 

birds reweighed after a mean period of 28-days (range 3-239 n=18). Mass change between 

captures was positively correlated with change in total fat score, the correlation explaining 

33 % of variation in the data (r=0.59 p<0.01 n=18). Since each variable could be considered 

as the dependent, the trend is illustrated with a geometric mean regression line. 

Robins which increased or decreased their total fat scores also increased or decreased 

their body mass. Total fat score and condition were therefore measures of body energy 

reserves and thus energetic condition. 

The causes of death of the dead robins were known and could be categorised. These 

are shown in Appendix 1., along with definitions of the categories to which they were 

assigned. In summary four were taken under licence; six were found dead; seven died in 

accidents and seven were predated by domestic cats. Based on an analysis of body mass and 

total fat score, there were differences between individuals which had died from different 

causes. Robins which were collected under licence were assumed to represent healthy average 

birds. Their median body mass was only 1. Og (5 %) less than the median of all live 

individuals captured (n=74). Robins which were found dead were on average 2.45 g (14 %) 

lighter than these, while those predated by domestic cats were on average 2.41 g (13 %) 

heavier. The birds which had suffered accidental deaths were however only 0.81 g (4 %) 

heavier than those taken under licence. The data are shown in Fig. 2.6. a. Although the 

differences between groups were significant (Kruskal Wallis ANOVA H= 11.21 p<0.005 df=3 

n=4,6,7,7), Tukey multiple comparisons between classes were barely significant at the five 

percent level (Table 2.16. ). There were no differences between the structural size of the birds 
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Fig. 2.6. Body condition and causes of mortality. In (a) is shown median body mass at 
death (open) and median body mass predicted from structural size (hatched). 
The median fat content of carcasses is shown in (b). Error bars indicate range 
of data, and dashed lines the mean of the group means of the observed data. 
Samples sizes; taken under licence n=4; found dead n=6; accidental death n=7; 
domestic cat n=7. See text and Tables 2.16 and 2.17 for accompanying 
statistics. 

Taken under licence Found dead Accidental death Domestic cat 

Cause of mortality. 

Taken ender licence Found dead Accidental death Domestic cat 



Table 2.16. Critical values (q) and probability levels for relevant Tukey 

multiple comparisons between the body mass at death of robins 
which died of different causes. 

Found dead Accidental death Domestic cat 
(n=6) (n=7) (n=7) 

Taken under licence 2.826 0.962 2.862 
(n=4) 

Accidental death 4.364 *** - 
2.228 

(n=7) 

* p<0.2 ** p<0.1 *** p<0.05 

Table 2.17. Critical values (q) and probability levels for relevant Tukey 

multiple comparisons between the fat content at death of robins 
which died of different causes. 

Found dead Accidental death Domestic cat 
(n=6) (n=7) (n=7) 

Taken under licence 2.694 0.198 3.786 
(n=4) 

Accidental death 3.345 **4.218 
(n=7) 

* p<0.2 ** p<0.1 *** p<0.05 
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which had died in different ways (Kruskal Wallis ANOVA H=5.29 ns df=3 n=4,6,7,7). The 

same pattern of differences between causes of death were shown by the total fat scores 
(Fig. 2.6. b. ). The differences were more significant (Kruskal Wallis ANOVA H=16.13 p<0.001 
df=3 n=4,6,7,7), as were the multiple comparisons between classes (Table 2.17. ). 

2.2.2.3.2. Variation in energetic condition. 

Condition was not correlated with daylength or time of capture (as a percentage of 

daylength elapsed)(aresine square root transformed; r=-0.12 ns n=66, r=0.15 ns n=66). 

Similarly, total fat score was not correlated with time of capture (r=0.01 ns n=49). However, 

it was negatively correlated with day length (r=-0.54 p<0.001 n=49). Hence robins tended to 

have larger fat deposits when days were short. The small annual variation in body mass from 

late summer through to mid winter is illustrated in Fig 2.7. 

The correlations between condition, total fat score and various weather variables are 

shown in Table 2.18. Both condition and fat score were most consistently and strongly 

correlated with the weather averaged over the previous five days with temperature being most 

important. 

2.2.3. Radio-tagging methodology. 

2.2.3.1. Weight considerations and transmitter performance. 

Attaching a load to a volant animal will cause a reduction in its flight performance, 

specifically by increasing its weight and increasing the drag on its body (Obrecht et al 1988). 

Such effects may be highly significant for animals which include flight as part of their normal 

time/activity budgets. The often-cited 10 % and 5% of body mass limits (Brander & Cochran 

1969, Cochran 1980) have been applied in many studies when determining the maximum 

mass a device may be in order to prevent any deleterious effects on a subject. The rationale 

for selecting these limits however, has seldom been discussed. 

In most flying animals the power available from the flight muscles (P3) is greater then 

the power required for flight at the maximum range velocity (Pm. ); the most economic velocity 

for level flight (Caccamise & Hedin 1985). The difference between P. and Pm, represents the 

surplus power (P, ) available for a bird to use in flight over and above Pm,.. A portion of P, is 

used whenever a bird accelerates, manouvers, gains altitude or transports an additional load 

such as fat deposits, large food items or an electronic device (Caccamise & Hedin 1985). 
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Fig. 2.7. Variation in mean body mass with daylength (+SD). Although data were 
independent within each daylength class, some individuals were included in 
several different classes to achieve acceptable sample sizes. Sample sizes for 
daylength classes, starting with the shortest; n=47,34,31,29,19,26,25,39,12. 
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Furthermore, for a given reduction in Ps a small bird can carry a greater proportion of its 

body mass than a large bird (Caccamise & Hedin 1985). 

A radio-tag represents just such an additional load to a bird, and because of this a 

compromise must be sought between minimising the device mass and maximising its 

usefulness in the field. A large and heavy power cell can drive a transmitter of high signal 

range or long transmitting life, but represents a larger load to the bird. All radio-tags used in 

the present study were based on Biotrack SS-1 single stage transmitters powered by silver 

cells and potted in epoxy resin. While the predicted transmitting life was two to four weeks, 

field life was frequently longer. 

The completed radio-tags weighed 1.8 g compared to the mean of 19.3 g (range 15.0- 

23.5 n=74) for the body mass of the robin in the present study. Radio-tags therefore 

represented on average 9% of body mass. For the lightest bird however, this represented 12 

% and for the heaviest 7% of body mass. The reduction in the surplus power available to 

robins of this range of body mass are shown in Table 2.19. with accompanying data in 

Table 2.20. Pmr was calculated using the computer programs of Pennycuick (1989), metabolic 

variables being set to the default values (see Appendix 2. ). The radio-tag was assumed to be 

covered by feathers with zero increase in drag. Examples of the output for two simulations 

are shown in Appendix 2. Variation in the mass of the pectoral muscles of the robin 

accounted for 71 % of the variation in body mass (Table 2.20. ). If flight muscles of different 

mass are assumed to have the same power availability (P, ), then as predicted by Caccamise 

& Hedin (1985) birds of higher body mass will use more of their P, in carrying devices than 

birds of low mass (Table 2.19. ). If P. from the flight muscles covaries with their mass 

however, then it is the low mass and under-powered individuals which must use more of their 

Pa to carry a device such as a radio-tag (Table 2.19. ). In both cases however, the reduction 

in P. is less then two percent. In terms of available mechanical power produced by the flight 

muscles therefore, an 1.8 g radio-tag falls well within the capabilities of the robin to carry 

additional loads in level powered flight. 

During the short flights typical of foraging robins, the total chemical power required 

(25.6 kJhr'`; Tatner & Bryant 1986) is twice P. (Table 2.19), since birds are operating at 

speeds less than V. 
P. Although some of this is due to basal metabolism, thermoregulation and 

the legs during takeoff and landing (Tatner & Bryant 1986), P, will be substantially reduced 

with associated reduced load carrying capacity. Nevertheless, the chemical power required by 
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Table 2.20. Flight characteristics of robins of minimum, mean 
and maximum body mass and mean wing span. 

Body mass Pectoral muscle mass" Wingdisc loadings 
(g) (g) (g mm-2) 

15.0 1.7 0.00115 

19.3 2.4 - 0.00148 

23.5 3.2 0.00181 

* Pectoral muscle mass=0.81 Body mass-1.05 (p<0.0001 F=38.5 r2=0.71 n=16), 
(pectoral muscle mass was not correlated with body size, as predicted from keel 
length and bill depth, r=0.25 ns n=16). 

$ Body mass divided by 1t(wingspan/2)2 (Feinsinger & Chaplin 1975). 
Wing Chord set to mean value of 228.2mm (see section 2.2.2.2.2. ). 



23 

the muscles of a 19.3 g robin to carry the 1.8 g device at Vmp only increases from 5.29 to 
5.83 kJhr-' (10 %)(Appendix 2. ). For 15 g and 23.5 g birds this is 12 % and 8% respectively. 
Here chemical power refers to the rate that energy must be metabolised in order to provide 

mechanical power in the form of muscle contraction. Approximately 77% of the chemical 

power will be lost as heat. 

Following a theoretical study of load carrying in small bats, Aldridge & Brigham 

(1988) concluded that a 1: 1 relationship existed between percent device load and percent 
decrease in manouverability. The robin has a relatively high wing loading and aspect ratio 

compared with other birds of a similar body mass or wing area (Tatner & Bryant 1986, this 

study), which implies an inherent high acceleration and manouverability (Pennycuick 1989). 

Consequently, this implies that robins equipped with 1.8g packages could likewise incur a 

7-12 % reduction in their manouverability depending on their body mass. 

The radio signal was broadcast through a 10 cm whip antenna and was in the 173-174 

MHz range. The range over which the signals could be detected with RX-81 receivers and 

three-element yagi antennas was up to one kilometre, but depended on the height of birds 

above ground level. The range was greatest at night when the birds were stationary and 

usually some distance above the ground while roosting. The poorest range was experienced 

from birds which roosted in rabbit burrows. Even when transmitters were shielded by up to 

50 cm of earth, however, signals could be detected at over 100 m. 

2.2.3.2. Available options for attaching radio-tags to small passerines. 
Radio-tags have frequently been attached to larger birds in the form of a back pack 

using harnesses made from elastic, leather or neoprene (reviewed by Kenward 1987). This 

technique however, has been rarely used to attach radio-tags to small birds. Out of 13 studies 

of birds of body mass less than 70 g (Table 2.21. ), only 1 (8 %) used a harness. Problems 

associated with the use of harnesses include the possibility of snagging on vegetation; 

disruption of the aerodynamic profile of the bird and the generation of a thermal window in 

the plumage around the device and along the harness straps, causing failure of water proofing 

or excessive heat loss in cold environments. Harnesses are also permanent unless a bio- 

degradable element is included. 

The technique used most often on small birds has been to attach radio-tags using glue, 

usually to an area of trimmed feathers in the interscapular region (8 out of 13 studies, 62 %, 
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Table 2.21. ). Radio-tags attached to small birds in this way are seldom aerodynamic and also 

present similar thermal window problems. Glue-mounted devices do however always fall off 
of their own accord, although the duration of attachment is frequently unpredictable. 

In some studies, radio-tags have been attached to small birds using miniature tail-clips 

(2 out of 13,15 %, Table 2.21. ). There are distinct advantages to using this method. Tail- 

mounted packages hidden under the tail coverts do not disrupt the aerodynamic profile of the 

birds or generate a thermal window through which heat may be lost. Furthermore, tail-clips 

remain on the bird until removed or are lost naturally during the annual moult. 

2.2.3.3. Attaching radio-tags to robins using glue. 
Radio-tags were attached using cyanoacrylate to the centre a piece of gauze of 

approximately four times the area of the tag. This had negligible effect on the mass of the 

package. A small area of feathers on the central dorsal tract between the scapulae and above 

the centre of gravity of the bird was trimmed down to short stumps and the gauze and radio- 

tag glued to these using latex adhesive or cyanoacrylate, after first degreasing the plumage 

with ethanol. The antenna projected down the midline and beyond the tail. The process was 

difficult to perform single handed on such a small bird and once fitted, radio-tags could not 

be easily removed by hand, remaining on the bird for very unpredictable periods (mean=7 

days, range 1-12 n=9). This was largely similar to the retention times achieved by previous 

studies (1-4 days on swallows; Brigham 1989, mean 24 days on captive yellowthroats; Sykes 

et al 1990, mean 5 days on northern cardinal; Johnson' et al 1991). Furthermore, radio-tags 

fitted this way tended to bond to the feathers more readily than the skin so that they were not 

securely anchored and liable to unbalance the bird during movement. The number and fate 

of radio-tags attached to robins using this technique are shown in Table 2.22. 

2.2.3.4. Radio-tags attached to robins using tail-clips. 

The initial design of tail-clip used on free-living robins consisted of two one 

millimetre thick perspex plates clamped together using nylon bolts, based on the design of 

East & Hoffer (1986). The dimensions of the plates are shown in Appendix 3. With the radio- 

tags attached to the tail-clips, the total package weighed 1.8 g. They were attached to robins 
by threading the two central tail rectrices between the plates, tucking a further rectrice 
between the plates on each side and tightening the bolts. The clip was fitted so that the bulk 
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of the package was beneath the tail and hidden by the under tail coverts(Fig. 2.8. Plate 2.3. a-c. ). 

This ensured that the radio-tag was as close to the centre of gravity of the bird as possible 

while being securely anchored, and did not disrupt the aerodynamic profile of the bird. There 

is a possibility, however, that such an off axis load may affect flight performance. The extent 

of this could not be assessed. 

This basic design was later modified so that the upper tail-clip plate was made of one 

millimetre thick rubber backed by a nylon load spreading washer. This cushioning eliminated 

the small tendency for tail rectrices to break off after having their shafts crushed by over 

tightened bolts. The arrangement of the rectrices in and alongside the tail-clip is illustrated 

in Fig. 2.9. 

During the fitting of tail-clips robins were restrained by wrapping them in black cloth 

(Plate 2.4. ). Using this technique tail-clips could be fitted or removed by one person and the 

bird released within two minutes. The number of radio-tags fitted to robins using tail-clips 

and the numbers recovered in different ways are shown in Table 2.22. During August, some 

adult robins were still undergoing their annual moult. Because of this the tail rectrices had 

not fully emerged from their sheaths, and were insufficiently hardened to carry a tail-clip 

without damage. These individuals could only be radio-tagged using glue-on techniques. 

2.2.4. Results; the effect of radio-tags on the robin. 

2.2.4.1. Behaviour. 

The radio-tagging procedure and subsequent presence of the package may cause the 

robins to behave differently after release. The effect may be temporary, lasting minutes to 

hours or chronic, lasting many days. Effects may range from initial discomfort to altered 

foraging behaviour, changes in metabolic rate and decreased survival (reviewed by Calvo & 

Furness 1992). 

Upon release, robins radio-tagged using both glue-on and tail-clip techniques flew 

strongly with an apparently normal bounding flight gait. Occasionally birds were unbalanced 

when landing on perches for the first few times, however after this they quickly adjusted to 

the small change in centre of gravity caused by the presence of the back or tail-mounted 

package. This was particularly apparent when tags were removed, as some individuals still 

allowed for the mass of the radio-tag when first landing and over balanced. 

The distances between successive two minute relocations of four radio-tagged robins 
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Plate 2.3. The ventrally mounted tail-clip and radio-tag attached to a robin. 
(a) Ventral view showing how well the package is hidden by the under tail 
coverts. 

(b) Dorsal view showing the upper plate of the tail-clip and the nylon bolts 
which clamp the two plates together. Once fitted the tail-clips cause the tail 
rectrices to be spread further than normal, although this had no apparent effect 
on the birds. 





(c) Side view showing how little the under tail package affected the 
aerodynamic profile of the bird. 

Plate 2.4. A robin restrained in cloth during the fitting of a tail-mounted radio-tag. 
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were measured for each of three consecutive 20 min periods after release, and for 20 min at 

approximately the same time on the following day. Distances between relocations were in this 

situation considered to be statistically independent. There were no differences in the inter- 

location distances moved by robins between the four time periods for each of the four 

individuals (Kruskal Wallis ANOVA all H<3.6 ns df=3 n=10). The results for two individuals 

are shown in Fig. 2.10. The lines join the median values, indicating that bird (b) did show 
decreased activity for a short period after release, although this was not significant. Radio- 

tagged robins were regularly seen in flights of several hundred metres across open fields when 

moving between areas. 

Some robins briefly pecked at the radio-tag on release. After birds had been equipped 

with tail-clips for several weeks, antennae were frequently bent over at the tip, foreshortening 

the length and reducing the range. This was probably done during the preening of the tail 

rectrices from which the antenna projected. After carrying tail-clips, the tail rectrices were 

always clean and well preened. 

Robins sang and evicted intruders while radio-tagged with no apparent difficulty. 

Furthermore, the tail-flicking behaviour associated with tic-calling (Cramp 1988) was 

unaffected. Because there was huge variation in song output between individuals and the 

eviction of intruders by owners was very rarely observed, it was not considered feasible to 

attempt to quantify the effects of radio-tags on such advertisement behaviour. Radio-tagged 

robins sometimes spent up to 20 min sitting quietly in dense cover, sometimes on the ground. 

This was interpreted as normal resting behaviour that would otherwise have gone un-observed. 

Similar behaviour was recorded by East (1982). It was often difficult to distinguish radio- 

tagged robins from un-tagged conspecifics when they were in close proximity. 

2.2.4.2. Energetic condition. 

The change in body mass over time of a robin with a radio-tag glued to its back is 

illustrated relative to an un-tagged control bird in Fig. 2.11. and serves to contrast the effect 

of glue-on techniques and tail-clips. Clearly the radio-tagged bird lost mass relative to the 

control bird. The experiment was carried out during February when time available for 

foraging was short and temperatures low, and had its rate of mass loss continued the tagged 

bird would have surely reached a mass below which starvation was inevitable. A few radio- 

tags were attached to moulting robins in August using the glue-on technique. The mean mass 
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change in these birds was 0.4 g (range 0-0.8, n=2) over a mean duration of 4.5 days (range 

2-7, n=2). 
Although the sample size was small there was no difference in the mass change 

between matched pairs of robins radio-tagged using tail-clips and untagged control birds over 

a median period of 6.5 days (range 3-12) (Wilcoxon Matched-pairs Signed-rank test Z=-0.10 

ns n=6, tagged median=0.15 g range -2.4-1.4, control median=0.15 g range -2.6-2.0). 
Body mass was most closely correlated with the temperature averaged over the 

previous five days (section 2.2.2.3.2. ). Variation in temperature explained 15 % of the 

variation in body mass. Using the regression equation: Mass=19.85-0.12 Temperature 

(p<0.001 F=14.42 r2=0.15 n=76), body masses could be corrected using residuals, to values 

that would be expected at 5°C, the approximate mid point of the temperature range. This 

allowed direct comparison of body masses measured on days when temperatures were 

different. 

The change in body mass, previously corrected to that at 5°C, was not correlated with 

the duration that the tail-clips were carried (square root transformed to normalise) (r=0.14 ns 

n=38, mean duration=30 days range 1-239, Fig 2.12. ). Similarly, the change in total fat score 

was not correlated with the duration over which tail-clips were carried (r=0.01 ns n=18, mean 

duration=28 days range 3-239). Although change in fat score was normally distributed, the 

total fat score was not, and therefore could not be corrected to that at 5°C using a regression 

equation. 

2.2.4.3. Energy expenditure. 

A ventrally mounted tail-clip will produce negligible additional drag. The cost to a 

robin of mean body mass (19.3 g) and wing span (228 mm) of carrying such a 1.8 g tail- 

mounted radio-tag was consequently calculated to represent an increase of 10 % in the 

chemical power required for level powered flight at the minimum power speed, using the 

computer program of Pennycuick (1989)(Appendix 2. ). The effect on daily energy expenditure 

of this predicted additional cost will be tiny however, since robins spend less than one percent 

of their activity period in flight (East 1980). Increase in the energy required for hopping 

caused by the additional mass of the radio-tags was impossible to estimate, but would be 

considerably less than that for flight considering the different energy requirements of the 

activities (Tatner & Bryant 1986). In contrast to hopping or flying, the cost of perching 
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quietly is predominately that of thermoregulation. Therefore since unlike back mounted radio- 

tags, the ventrally mounted tail packages do not disrupt the insulating qualities of the 

plumage, they will have minimal effect on the energy required for thermoregulation and the 

total cost of perching quietly. 

The cost of carrying a 1.8 g radio-tag attached by tail-clip was measured using the 

doubly labelled water technique. The experimental protocol is summarised in Fig. 2.13. The 

energy expenditure was measured for experimental radio-tagged and un-tagged control birds 

over day-1, at the end of which the radio-tag was removed from the experimental bird. The 

energy expenditure for day-2 therefore represents that for un-tagged birds. This was carried 

out for two pairs of birds, each containing an experimental and control individual. The 

experimental birds had previously carried a radio-tag for at least seven days and so will have 

habituated to it short term effects, reducing the chance of including some additional cost of, 

for example increased preening. 

The results are shown in Table 2.23. Natural abundances of 180 and ZH were 1990.80 

and 145.19 ppm respectively. These were within 0.03 and 0.19 % of the values for winter 

robins predicted by an isotopic tracer study (Tatner 1988). In response to the removal of the 

tail-clip from the experimental birds, their ADMR increased by 6% (range 4-12) relative to 

the control birds. This value falls within the ±10 % error inherent in the doubly labelled water 

technique (Tatner & Bryant 1989). It must be concluded therefore that there was no evidence 

for an effect of the radio-tags on free-living energy expenditure. 

2.2.4.4. Survival. 

There was a slight but non-significant tendency for more robins to die while radio- 

tagged compared to the number of un-tagged birds which disappeared (x2=0.114 ns df=1 

n=52, Table 2.24. ). Similarly there was a slight but not significant tendency for robins which 

survived carrying a radio-tag at least once to subsequently disappear before the onset of 

spring song relative to the number of birds which were never radio-tagged but had 

disappeared by the same date (x2=0.912 ns df=1 n=40, Table 2.25. ). 

The causes of mortality reported for recoveries of ringed birds which had died (Mead 

1984); the recovery of carcasses by Harper (1984); the dead robins obtained for body 

composition analysis; and the robins which died while radio-tagged are summarised in 

Table 2.26. 
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Table 2.24. Contingency table for number of occasions 
on which radio-tagged and un-tagged matched 
control robins survived, or died or disappeared. 
x2=0.114 ns. f 

Radio-tagged Un-tagged control Total 

Survived 20 21 41 

Died or 
disappeared 65 11 

Total 26 26 52 

Table 2.25. Contingency table for number of occasions 
on which robins which had or had not been 
equiped with radio-tags disappeared. Data 
from the population during 1991/92. Birds 
were classed as survivors if they were 
still alive during the spring song surge 
(a few days either side of 16th February). 
X2=0.912 ns. 

Survived being Never radio-tagged Total 
radio-tagged 

Survived 8 13 21 

Disappeared 10 9 19 

Total 18 22 40 
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2.2.5. Discussion. 

2.2.5.1. Structural size, 

Most studies of small birds and of robins in particular have described body size using 

a single structural measure, usually wing chord length or tarsus length (Harper 1985, Karlson 

et al 1986). The most important predictor of overall structural body size in the present study 

was keel length. This measurement was not recorded for birds captured in the previous 

studies. The sternal keel forms the origin of the pectoral muscles, the major muscle block in 

small birds. Furthermore, the sternum forms the ventral wall of the thoracic cavity, containing 
heart, liver and lungs. Because of this, keel length is intuitively to be preferred over wing 

chord or tarsus since it is much more likely to reflect the amount of metabolising tissue 

present in an individual. 

An error in a single measure of structural size will produce a greater error in the value 
for structural size than a composite measure derived from principle component or, as in this 

case, multiple regression analysis. This is because an error in a single measurement will 

contribute less to the measure of overall size. Consequently body size predicted by keel length 

and bill depth was considered a robust estimate of the structural size of individual robins. 

2.2.5.2. Estimating the energetic condition of live birds. 

Fat deposits comprise stored energy to be used when food availability is limited 

(Houston & McNamara 1993). Total fat score was a accurate estimate of the fat content of 

individuals. Since fat scores were an estimate of area of visible fat deposits relative to the 

area of each particular anatomical region, they were independent of body size. The extent to 

which individuals were heavier than expected based on their structural body size is a crude 

index of their energetic condition. Heavier birds contained proportionally larger fat deposits 

at the expense of their proportional water and lean components. In addition, the condition 

index and fat scores of individuals were directly proportional. Consequently for the purposes 

of this study, condition indices and fat scores were considered good estimates of the extent 

of the energy reserves of the robin'. 

From the analysis of birds found dead, mortality in the robin was mass dependent 

(section 2.2.2.3.1. ). Birds that were of lower than average condition were at greater risk of 
dying of starvation, while birds that were of higher than average condition were more likely 

to be predated. It is intuitive that birds of low body mass and fat score, and therefore low 
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energy reserves, will be at a greater risk of dying during a period of high energy demand such 

as a cold night than birds of average condition. Although a central tenet of much recent 

theory (Houston & McNamara 1993), the increased susceptibility to predation of birds with 
higher energy reserves and therefore body mass in the present study may have been an 

artifact. Robins near buildings may have been in better energetic condition because of access 

to bird tables, and it is just such situations that domestic cats occur. However the individuals 

predated by cats in this study all came from isolated houses, where the availability of 

supplementary food was limited. Robins that are heavier than average will experience a higher 

wing loading than average birds, with an associated reduction in flight performance. Their 

ability to avoid predators will therefore be compromised. 

2.2.5.3. The effects of radio-tags on the robin. 
Of the 13 field studies of small birds using radio-tracking listed in Table 2.21. nine 

(69%) considered the effects of the devices. Of those that did, five (56 %) recorded modified 

behaviour, ranging from initial discomfort to desertion of nests and three (33 %) recorded 

increased predation. Only one study (11 %) attempted to assess change in energetic condition, 

as indicated by body mass change, but found no effect. The most detailed assessment of the 

effects of radio-tags on small birds has been carried out on captive individuals (Sykes et al 

1990). Using the common yellowthroat to evaluate harness and two glue-on techniques for 

attaching radio-tags, they found significant differences between treatment and control groups 

behaviour, flying ability and physical condition. Differences between treatment groups 

however, suggested that glue-on techniques were to be preferred over harnesses, although 

retention times were shorter (Sykes et al 1990). 

In the present study robins equipped with glue-on devices rapidly lost mass compared 

to controls during winter. The mean midpoint temperature over the period of observation was 

4.3°C (range -1.2-9.5 n=84 for 3 yrs) compared to 15 °C for Maryland. U. S. A. in October 

(from climate tables) where Sykes et al (1990) carried out their evaluation. This indicates 

considerably higher thermoregulatory costs in the robin at this time, resulting in a greatly 

magnified heat loss through the thermal window in the birds plumage caused by the glue-on 

package. There was no mass change in moulting robins fitted with glue-on radio-tags in 

August, when the mean midpoint temperature over the period was 15.7 °C (range 11.7-20.7 

n=62 for 2 yrs), suggesting the heat loss through the thermal window was normally 
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unimportant in late summer. 
Although there was no significant effect on body mass or total fat scores during the 

period robins carried tail-mounted radio-tags in autumn and winter, they may have modified 
their time activity budgets to increase energy intake to compensate for increased costs of 
particular activities. It was not possible to record time budgets from treatment and control 
individuals in the dense shrub layer of the study site however, without bias towards when 
birds were visible. Consequently the energy expenditure was measured relative to an un- 
tagged control bird using the doubly labelled water technique. The difference between 

experimental and control birds was however within the error of the technique indicating no 

significant increase in energy expenditure by radio-tagged robins. Similar studies on larger 

wild birds are inconclusive. Pennycuick et al (1990) found energy expenditure was higher in 

radio-marked white-tailed tropic birds, while Klaassen et al (1992) found no such effect on 

the common tern. 

There was no significant tendency for robins carrying loads in the form of radio-tags, 
to suffer higher mortality than their un-tagged conspecifics. This was in spite of the fact that 

birds of greater body mass appeared more susceptible to predation. It is possible that the 

relationship between P. and flight muscle mass follows an inverted U-shape, with reduced 

power output from both emaciated and obese individuals. Robins of average flight muscle 

mass and equipped with radio-tags would need to use more P. to fly, but would not suffer the 

handicap of the decreased Pa of obese birds of the same total mass and its associated effect 

on their ability to avoid predators. 

The causes of mortality of the robins which died while radio-tagged, and could 

therefore be recovered, were different from the causes of mortality suggested by carcass 

recoveries and ringing recoveries (Table 2.26. ). Carcass and ringing recoveries are biased 

towards the causes of death that allow bodies to be found, such as road and window 

casualties. These seen likely to form a minority of deaths, while predated and starved birds 

are very difficult or impossible to locate. The data from Harper (1984), who used the same 

categories, are intermediate between the starvation and predation biased mortality of radio- 

tagged birds and the mortality of ringing and carcass recoveries which are biased towards 

accidental deaths. This probably represents high effort in finding carcasses supplemented with 

ringing recoveries. It is interesting that no birds in the present study were killed by other 

robins compared to 18 % found by Harper (1984). 
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To conclude, although it would be premature to assume from the present results that 

the additional loads had no effect, it appeared that the attachment of 1.8 g tail-mounted radio- 
tags had no significant effect on the behaviour, body condition, energy expenditure or survival 

of the robin in winter. 

2.3. The dipper. 
2.3.1. Methods. 

2.3.1.1. The study sites. 

The study sites selected to radio-track territorial dippers are shown in Fig. 2.14. The 

three sites encompassed a range of different watercourse widths and flow rates to ensure that 

the birds studied occupied territories of potentially varying of quality (Table 2.27. ). More 

importantly, however, sites were chosen for their easy access along their whole length from 

a road or track, so that the length of water course could be rapidly searched for birds which 

had moved out of range. 

2.3.1.2. The study population. 
The population from which dippers were selected for radio-tracking was monitored 

regularly as part of a long term study of dipper behavioral ecology and population dynamics. 

Most individuals were already marked with B. T. O. rings and individual combinations of 

colour rings. 
Dippers were captured at nocturnal roost sites with hand nets, or on their daytime 

territories using mist nets placed across the river or stream. Prior to attaching radio-tags, 

individuals were subjected to a standard examination and a set of measurements was taken. 

This is described fully along with measures of structural size and energetic condition by 

Newton (1989) and Ward (1992). In the present study however, body size and composition 

was not considered further. 

2.3.1.3. Radio-tag attachment. 
Newton (1989) used radio-tags on dippers to monitor the dispersal distances of 

juvenile dippers as they achieved independence and searched for a suitable location to 

establish non-breeding territories. Radio-tags were attached using tail-clips. The same design 

of tail-clip was used to attach Biotrack SS-1 transmitters powered by silver cells to dippers 
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Table 2.27. Width, altitude and length of the study water 
courses on which dippers were radio-tracked. 

Water course Width (m) Altitude (m) Length of study area (m) 

Mean Range 

Lower River Devon 15 12-20 150-200 2500 

Ardoch Burn 8 4-11 50 3500 

Whary Burn 2 1-3 230 3500 
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in the present study. Tail-clips consisted of two one millimetre thick perspex plates clamped 
together using a pair of brass bolts of one millimetre diameter. The design of the clips is 

shown in Appendix 3. Tail-clips weighed 3.2 g making a total radio-tag package mass of 4.0 

g. This represented 7% body mass for a 56 g female and 6% body mass for a 69 g male. 
Tail-clips were fitted to the tail rectrices in the same way as to robins, except that the 

bulk of the package lay dorsally and under the upper tail coverts (Plate 2.5. ). This was to 

reduce the amount of time the transmitters would be immersed in water while birds were 

wading. Care was taken to ensure that the radio-tags did not obscure access to the preen 

gland. Because dippers were much larger than robins, radio-tags fitted dorsally in this way 

were normally hidden from view by feathers and had no apparent effect on the aerodynamic 

or hydrodynamic profile of the bird. This was particularly important considering the aquatic 

lifestyle of the dipper. The drag imposed by a transmitter package on a submerged dipper 

trying to maintain its position in fast flowing and turbulent water may have significant effects 

on energy expenditure or foraging success. The number of radio-tags deployed on dippers 

during 1990 and 1991 and details of their recovery are shown in Table 2.28. 

Dippers often struggled considerably during the procedure and needed to be restrained 
in the corner of a bird bag. Tail-clips could however be fitted and the bird released within a 
few minutes. 

The range of the transmitters was generally similar to that of radio-tags deployed on 

robins. Dippers were more likely to move out of the one kilometre maximum range but could 

always be relocated after a systematic search. Birds sometimes used feeding or, more often, 

nocturnal roost sites which were shielded from the surrounding countryside by rocky 

overhangs or gorges. The range of radio-signals in these situations was considerably reduced. 

2.3.2. Results; the effect of radio-tags on the dipper. 

2.3.2.1. Behaviour 

Radio-tagged dippers appeared to behave normally after release, following a short bout 

of intensive preening typical of any dipper after release. Birds caught on their territories 

during the day quickly recommenced foraging while those caught at roost readily returned to 

the ledges and holes used as roost sites. 



Plate 2.5. A dippertiquipped with a tail-mounted radio-tag photographed at roost. The 

roost site was on a natural riverside cliff. 



Table 2.28. Number of radio-tags deployed on dippers in 1990 
and 1991 using tail-clips, and details of their 
recovery. 

No. 

No. radio-tags fitted 12 

No. recovered from live birds 3 25 

No. moulted or slipped off 2 17 

No. in which water proofing failed 18 

No. recovered from dead birds 00 

No. not recovered 6 50 
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Radio-tagged dippers were adept at removing antennae from transmitters, presumably 
during preening. This considerably reduced their range, but was overcome by reinforcing the 
base and first few centimetres of the antenna with silicone rubber. 

2.3.2.2. Energetic condition 

The dipper shows very little daily or seasonal trend in body mass (Bryant & Tatner 

1988). This allowed comparison between measurements of body mass at different times of 
day and on different days. The initial body mass of the dippers that subsequently carried tail- 

mounted radio-tags for a mean duration of 19 days (range 4-29) was not significantly different 

from their body mass when the radio-tags were removed (Wilcoxon Signed-rank Matched- 

pairs test Z=-1.52 ns n=9, median initial mass=59. Og range 57-74, median final mass=56.5g 

range 55-77). Furthermore, there was no relationship between mass change and the period of 

time that the package had been carried (r=-0.12 ns n=9). 

2.3.2.3. Energy, expenditure 

The cost to a dipper body mass of 69 g and flight wing span of 305 mm of carrying 

a tail-mounted 4.0 g radio-tag was calculated to represent an increase of 8% in the chemical 

power required for level flight, using the computer program of Pennycuick (1989) with 

metabolic variables set at the default values and device drag assumed to be zero. 

For the months in which most dippers carried radio-tags (October and November), 

average time budgets contained 2.9 % of time in flight and 22.4 % of time diving over the 

active period (Bryant et al 1985). Hydrodynamic drag on a body is approximately 12 times 

the aerodynamic drag (Wilson & Culik 1992). It was therefore a priority to minimise any 

increase in energy expenditure incurred by dippers carrying radio-tags during diving. When 

diving, dippers use their wings flexed at the wrist with the primary feathers trailing behind. 

The diving wing span of a dipper for which the flight wing span equals 305 mm is 130 mm, 

estimated from a dead bird (Fig 2.15. ). Therefore when diving, dippers experience an increase 

in wing loading and therefore power required to produce forward motion over and above that 

required to overcome hydrodynamic drag. The speed of water flow over a diving bird is 

fastest over the interscapular region (the maximum spindle diameter; Wilson & Culik 1992). 

Packages mounted in this position therefore would have the most pronounced drag effects 
during diving. By mounting the radio-tag on the tail any turbulence produced will not act on 
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the birds body, but rather trail out behind it (Wilson & Culik 1992), although, as with the 

robin, such an off axis load may have an effect on flight performance. 

2.3.2.4. Survival 

No dippers died while carrying radio-tags. Two predation attempts were observed on 

tagged dippers during radio-monitoring. One bird was encountered and pursued by a female 

hen harrier at dusk. The dipper responded by diving into the water and swimming to safety 

under the overhanging stream bank. Another individual behaved similarly in response to an 

unsuccessful attack by a male sparrow hawk. 

2.3.3. Discussion. 

Newton (1989) found no effect on dispersing juveniles of being equipped with tail- 

mounted radio-tags. Similarly in the present study, the radio-tags had no significant effect on 

the body mass or survival of dippers during the autumn. 



Chapter 3. 
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3. Territory and neighbourhood structure: -the robin. 

3.1. Introduction. 
Of the previous studies of the robin in which the location and extent of territories have 

been measured (Lack 1940 1965, Jackson 1956, Adriaensen & Dhondt 1983, Harper 1985, 

Brindley 1991), none has considered territory shape. Maps of territories from some previous 

studies (Lack 1965, Adriaensen & Dhondt 1983, Brindley 1991) however show that the 

shapes of the territories, although often irregular, are polygonal in nature (Fig 3.1. ). The 

definitions by which the edges of territories were located often varied between studies 

(Table 3.1. ) and were qualitative in nature. Any problems of independence between 

observations and sample size were not considered. 

The form of a territory may be the result of the quality and activity of neighbours, as 

well as that of the owner. On territory maps produced by other studies, the edges of territories 

were invariably indicated as discrete lines. The territories of neighbours are often shown as 

being close packed and sharing common boundaries (Fig 3.1. ). 

Having determined the location and extent of territories, previous researchers have 

given little attention to their internal structure and pattern of use, for example the possible 

existence of centres of activity and the intensity with which any boundaries were visited. 

Also, measures of the extent of territories have been based on observations collected over 

months or even a whole breeding season (Table 3.1. ). Any changes in location or extent of 

territories within seasons are described in anecdotal terms if at all (eg Adriaensen & Dhondt 

1983). 

So, although the territorial behaviour of the robin has received a great deal of study 

(above references and references therein), the territory structure has yet to be described in 

rigorous quantitative terms. Therefore, before a complete understanding of the economics of 

territorial behaviour can be obtained, the existing ideas of territory and neighbourhood 

outlined above must be assessed and if necessary refined. 

Territories have no value for foraging after dusk. Individuals must select sites in which 

they can roost safely until dawn. Although observations of the nature of roost sites used by 

robins exist (Swann 1975, Cramp 1988), there is little information on the locations of roost 

sites selected by an individual in relation to its territory, and changes in the use of such sites 

on successive nights. For a robin in midwinter, approximately two thirds of each 24 hr period 
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will be spent roosting. Consequently, in addition to providing a place safe from predators, the 

selection of roost sites may play an important role in the energy budget and daytime territorial 
behaviour of the robin. 

3.2. Methods. 
3.2.1. Accuracy of radio location estimates. 

All radio-tracking was done using a hand-held three element Yagi antenna and RX-81 

receiver. The °0.95 error arc (Springer 1979, Saltz & Alkon 1985) of the antenna was taken 

as equal to ±5°, although trials suggested this was an overestimate. Radio-tagged birds were 

easy to locate, and due to their confiding nature were often observed visually. On occasions 

when individuals remained out of sight, bearings were taken "by eye" from about 10 in away 

to determine the location of the bird. Using this method, radio locations could confidently be 

assigned to one metre square grid cells, and were always confirmed to be correct if the bird 

subsequently moved into view. Radio location estimates were allocated a grid reference on 

an accurate map of the study area. 

3.2.2. Sampling protocol. 

Independence between successive radio locations is an implicit assumption in statistical 

measures of animal movement (Swinhart & Slade 1985, Worton 1987). The minimum sample 
interval for which it was possible to collect consistently accurate location estimates for the 

robin was two minutes. A sample of such continuous tracking data was analyzed to determine 

the t2/r2 ratio along with the oc0.25 critical value (Swinhart & Slade 1985), this being the upper 
boundary of significance from table 1. in Swinhart & Slade (1985). The results from an 
individual that was particulary inactive (during very windy conditions) indicated that the 

minimum sample interval to produce a non-significant t2/r2 ratio followed by two successive 

non-significant intervals was six minutes (Fig 3.2. ). Data from individuals which were more 

active showed a shorter time to independence. Within the 60 min time frame examined, there 

was no evidence for individuals following prescribed routes as indicated by a return to 

dependence at longer sample intervals (Swinhart & Slade 1985). The sample interval adopted 
for this study was however 60 min. Although much longer than required to achieve statistical 
independence between successive locations, it enabled up to 10 radio-tagged individuals to 
be monitored concurrently, and ensured radio-locations were collected over a period of several 
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days, reducing any possible bias caused by exceptional daily variations in space use. 
The number of such discontinuous location estimates required to accurately represent 

the space used by robins was determined by calculating observation-area asymptotes (Odum 

& Kuenzler 1955, Kenward 1987, Harris et al 1990) using non-statistical minimum convex 

polygons as the measure of the area used. The results for 10 individuals indicated that a 

sample size of 40 radio-locations represented in excess of 95% of the true maximum area (Fig 

3.3. a. ). Being an outline technique, the minimum convex polygon method of measuring space 

use is particularly sensitive to edge locations (White & Garrot 1990). Since it is conceivable 

that an individual which is actively defending a territory may spend more time near the edges 

of its range than near the centre, an asymptote was also constructed for five individuals using 

the number of 25 m2 grid cells visited in place of an outline estimate of area. The results 

suggested that the sample size required to achieve saturated sampling of the interior of the 

range was also 40 locations (Fig 3.3. b. ). When sample size exceeded 40, the rate at which 

new cells were visited dropped from an average of 0.33 to 0.08 per additional location. 

Consequently a standardized sample size (Harris et al 1990) of 40 statistically 

independent location estimates was adopted to represent space use by the robin. This was 

termed an individuals' range. Radio locations were collected throughout the daylight hours, 

with exact times varying between days. The required sample size was obtained after four to 

five days. 

Any interactions with conspecifics or, behaviour associated with territorial 

advertisement and defense, shown by a focal robin each time it was relocated was recorded 

along with the position of the bird. This behaviour included evicting intruders, being evicted, 

mutual display, song, and tic calls (Cramp 1988). 

3.2.3. Locating roost sites. 

The locations of roost sites were recorded in the same way as daytime radio locations. 

The nature of the roost sites were recorded at the time or in daylight on the following day. 

Sites were assigned to the mutually exclusive qualitative categories shown in Table 3.2. 

These categories included all the possible sites birds could choose based on previous 

information (Cramp 1988). The advantage of such qualitative categories was that they could 

be quickly and consistently applied in the field. Roosting individuals were rarely visible 

without them being disturbed. The location and nature of sites could however be determined 
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tracking locations from non-breeding robins. Asymptotes are constructed using 
two measures of range size; a) the minimum convex polygon containing all 
locations (mean and range for 10 individuals) and b) the number of 25m2 grid- 
cells visited (mean and range for five individuals). In b) the best fit lines 

emphasise the point at which the rate at which new cell were visited dropped 
from 0.33 to 0.08. Sampling achieved saturation after approximately 40 
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accurately. Roost sites were located on the night following each day that discontinuous 

tracking had been carried out. 

3.2.4. Range shape. 

Most studies of space use have not considered the shape of the range outlines that they 
produce. A simple method to quantify shape is to calculate the eccentricity (E), where c 

equals one minus the ratio of the major and minor axes (eg Swinhart & Slade 1985). This is 

an unambiguous procedure when applied to ellipses since the axes always pass through the 

focus (Korn & Korn 1968). However, this needs to be further qualified when applied to 

irregular polygons since they do not have a point analogous to the focus of an ellipse. 
Irregular range outlines are frequently the result of applying polygon range estimators to 

radio-tracking data. Consequently, the method by which range shape was measured is 

described in Fig. 3.4. e ranges from zero for a radially symmetrical polygon or circle to one 
for an straight line. 

3.2.5. Defended-area. 

The definition of a territory as a defended-area has been widely accepted (Kaufmann 

1983). In addition, this definition is easily applied to determining the location and extent of 

territories in the field. 

The defended-areas of robins were determined by recording the locations at which they 

exhibited behaviour associated with territorial advertisement and defense. This is based on the 

assumption that territorial individuals only communicate their territorial ownership from 

within their territory; the area that they defend by evicting intruders. This behaviour included 

song, tic calling and evicting of intruders (Cramp 1988). Behaviour in which the focal bird 

was subordinate or equal in status to a conspecific (being evicted or display without 

aggression respectively) was not included, since they will both occur outside the territory. 

Behaviour was recorded during routine relocations of radio-tagged robins. Additional 

observations were made on a casual basis at all times of day. The interval between recording 

observations of the same individual was never less than 60 mins to ensure statistical 
independence. Over each month, different individuals were observed for similar lengths of 

time. 



Fig. 3.4. Calculating the eccentricity E of irregular polygons. 

E=1-(Y/X) 

Where; Z=The geometric centre of the polygon; the point 
furthest from all corners, determined by 
measurement. 

X=The length of the longest axis which passes through 
the geometric centre. 

Y=The length of the axis perpendicular to X which also 
passes through the geometric centre. 

Increasing values of E indicate increasing departure from radial symmetry. 
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The sample required to accurately represent the defended-area of individuals was 
determined by constructing observation-area asymptotes using minimum convex polygons 

containing all the locations. This technique was used since it is sensitive to edge locations, 

and only an outline of the area was required. An asymptotic sample size was achieved at 10 

observations, based on the results from nine individuals (Fig 3.5. ). Consequently a 

standardized defended-area was defined as the space within a minimum convex polygon 

applied to 10 locations of behaviour. 

The observations contributing to the defended-area that was associated with a 

particular range were always made during the same month, and usually during collection of 

discontinuous tracking data. Observations supplementary to this were used to produce 

estimates of the location and extent of defended-areas for individuals that were not radio- 

tracked in a particular month. 

3.3. Results. 

3.3.1. Independence between ranges. 

168 ranges of standardised sample interval and sample size were collected from 56 

robins of both sexes and various ages between August 1990 and May 1992. From these, 

random samples of ranges were selected such that each individual contributed only one range, 

ensuring statistical independence. Individuals were assumed to be independent between years. 

Samples represented a) non-breeding individuals (the end of the annual moult in August until 

the spring song surge in February) and b) breeding individuals (post spring song surge until 

the fledging of young). In both samples, ranges were distributed uniformly over time. Unless 

otherwise stated the results presented here refer to the non-breeding individuals. 

Because the distributions described frequently included small sample sizes with 

frequent outliers, non-parametric techniques were used throughout when comparing range 

statistics. 

3.3.2. Selecting appropriate range estimators. 

A frequently used estimator of range and territory size in previous studies of small 
birds has been the minimum convex polygon (eg Davies & Lundberg 1984, Hanski & Haila 

1988, Hanski & Laurila 1993). This range estimator is non statistical and so allows direct 

comparisons to be made between studies, although it provides no information on the intensity 
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of range use and may be strongly affected by peripheral locations (White & Garrot 1990). 

However, to provide meaningful comparisons with other studies of territoriality in small birds, 

the sizes of ranges were determined by applying this technique to the standardised sample of 

location estimates from each robin. This represented the simplest estimate of range size, and 

was termed the maximum-area. Median and quartiles of the maximum-area for the sample of 

radio-tracked robins are shown in Table 3.3. The measures of range use for all individuals 

developed in this and subsequent chapters are presented in Appendix 4. During analysis using 

outline range estimators, a boundary strip of width equal to half a resolution cell (in this case 

half a metre), was added to each location. This ensured that any estimates of range area 

allowed for the level of accuracy of the locations estimates (Kenward 1990). 

When three dimensional histograms of the radio-locations contributing to each range 

were examined, it was clear that the distributions of locations from the majority of individuals 

were non-uniform and multinuclear (Fig 3.6. ). This imposed a limitation on the choice of 

range estimator which could be used to quantify the dispersion of the location estimates in 

each range. Parametric ellipse models (Jennrich & Turner 1969) were excluded because of 

their assumption of normality. Mono-nuclear range polygons (Kenward 1987) were also 

inadequate for the same reason. It was considered that contour models such as kernel and 

harmonic mean estimators (Worton 1989, Dixon & Chapman 1980), although non-parametric 

and applicable to multinuclear distributions, did not realistically represent the true range. This 

was because the probability of an animal occurring in each position within the range are 

calculated from all the locations in the sample, causing the isolines to veer round and include 

unused areas in very patchy distributions (Kenward 1987). Consequently the most appropriate 

technique for estimating the structure of ranges used by robins was sequential cluster analysis 

(Kenward 1987,1990,1992). 

3.3.3. Defining core regions. 
Sequential cluster analysis was carried out on each range, using a joining rule that 

initiated clusters with a minimum of three locations (Kenward 1992). The addition of a 

boundary strip, of width equal to half a resolution cell, to each location ensured that cores 

containing three or more locations at the same grid reference had an area of one resolution 

cell (one square metre) (Kenward 1990). Plots of percentage area against percentage of 

locations assigned to clusters were then produced (utilization distribution plots: Ford & 
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Fig. 3.6. Histogram in three dimensions showing an standardised sample of radio- 
locations from robin F636519 during November (n=40). Locations were 
assigned to 25m2 grid-cells. Horizontal axes indicate map reference, the 
vertical axis indicates the frequency of locations in each cell. 
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Krumme 1979). The inflexion point, beyond which additional locations were more widely 

scattered, was used to determine the percentage of locations contributing to any core areas 

(Kenward 1987, Harris et al 1990)(Fig 3.7. ). Each plot was examined individually so as to 

detect any differences between individuals. Birds which visited widely separated locations 

more frequently will show an inflexion point at a lower percentage. In the majority of cases 

the core percentage was easy to define (Fig. 3.7. a. ), however also illustrated are some of the 

less straight forward cases. When maximum-areas were very large, the true inflexion point 

was sometimes less obvious (Fig. 3.7. b. )(there was a two orders of magnitude difference 

between the smallest and the largest maximum-range). This could be overcome simply by 

expanding the Y axis. Occasionally the utilization distribution plots followed the form of a 

smooth exponential function (Fig. 3.7. c. ). If all the locations contributed to the core areas, the 

utilization distribution plot would approach-a straight line with no inflexion point (Kenward 

1990). The reason why some utilization plots resembled an exponential function is possibly 

that several different core areas within the range showed different exclusion values, masking 

any inflexion point (Wray et al 1992). In the few cases that this occurred, the percentage of 

locations contributing to core areas was taken as the percentage at which the slope of the 

utilization distribution plot was equal to one. On average core areas contained 77 % of the 

location estimates (range 55-90 n=51). 

3.3.4. Core areas and range patchiness. 

Of the core areas defined by cluster analysis, 98 % produced more than one centre 

of activity (n=5 1). The degree to which an animal concentrates its activity in such centres can 

be assessed by calculating the partial area (Ar) of its range. This is the total area of the 

convex polygons surrounding the locations assigned to each core area divided by the area of 

a convex polygon containing all core locations (Kenward 1990). Values of AP can range from 

one (locations distributed evenly) to zero (locations concentrated several single points). AP 

was calculated for each of the ranges (Fig 3.8. ). The median value of AP was 0.11 (range 

0.01-1.00, n=51). The locations making up ranges therefore generally exhibited very patchy 

distributions. A range of mean AP (0.22) was characterised by 77% of-the locations being 

contained within only 1.8 % of the maximum-range area. The individual core regions defined 

by sequential cluster analysis were termed core-nuclei. Values of the median and quartiles for 

the number of core-nuclei occupied by the sample of robins that were radio-tracked are shown 



Fig. 3.7. Utilization distribution plots (Ford & Krumme 1979) from the results of 
sequential cluster analysis for three non-breeding robins. In a) is shown a 
typical plot, the arrow marks the inflexion point beyond which locations no 
longer contribute to core regions. When maximum-areas were very large the 
true inflexion point was less obvious (b). This could be overcome by 
expanding the vertical axis. Occasionally -the plots followed the form of a 
smooth exponential function (c). The percentage of locations contributing to 
core regions was taken as the point at which the slope was equal to one. 
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in Table 3.3. 

This high degree of patchiness in range use was a result of the concentration of 
activity by robins in areas of shrubs and bushes. Such vegetation covered a greater proportion 

of the core area than the area of a polygon containing all of the core nuclei (Sign test Z=5.92 

p<0.005 n=51, Fig 3.9. ). Data from pitfall traps placed in three locations within bushes and 

shrubs and in three locations in the open areas between them, suggested that there was no 

difference in the invertebrate availability between the two habitats (Within habitat comparison 

oneway ANOVA; within bushes F=0.332.20 ns, in open areas F=0.642.20 ns, between habitat 

comparison using pooled data within habitats; T-test T=-1.42 ns n=60). 

The high proportion of locations contributing to core nuclei suggested that the robins 

were moving rapidly between nuclei by the most direct routes. Therefore the probability of 

being located when outside a core nucleus was very low. This was supported by visual 

observations. Consequently the area within which the birds normally moved can be defined 

as the area of a convex polygon containing all of the core nuclei. This third measure of range 

use was termed the usual-area. The median value and quartiles for the sample of radio-tracked 

robins are shown in Table 3.3. The three measures of ranges use as applied to an example 

range from a robin are illustrated in Fig. 3.10. The usual-area can be thought of as a composite 

range estimator, being based on the core-defining properties of cluster analysis and the simple 

minimum convex polygon. Furthermore, this definition of the space usually occupied by an 

individual has an advantage over isoline models of multinuclear ranges in that it is based on 

the actual pattern of movement of the robin, rather than a generalized mathematical algorithm. 

On average, the usual-area contained 79 % of locations, 77 % of which lay in the core-nuclei. 

3.3.5. Defended-area and range use. 

The summary statistics for the different measures of range use and number of core- 

nuclei are presented in Table 3.3. By definition core-area :5 usual-area <_ maximum-area. In 

order to assess the relationship between these and the defended-area it was necessary to 

compare a) the degree of overlap of the polygon outlines and b), the similarity in size of the 

standardised defended-areas and the different measures of range use for each individual. 

Of the 51 ranges making up the independent sample of non-breeding individuals, only 

25 showed enough territorial advertisement behaviour to constitute standardised defended 

areas. The median percentage polygon overlap between the defended-area and the different 
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Fig. 3.10. An example of a range occupied by a non-breeding male robin. The 
standardised sample of 40 location estimates was recorded over five days from 
18" September, north is towards the top of the figure. Also shown are the 
different measures of range use as applied to this individual. Thick solid lines 
indicate the convex polygons containing the locations assigned to the core area, 
as determined by the examination of utilization plots from sequential cluster 
analysis. In this example the robin used four core-nuclei, here numbered 
clockwise from the most northerly. The thin solid line indicates the usual-area; 
the convex polygon which contains all the locations assigned to the core- 
nuclei. The dashed line shows the maximum-area; the convex polygon which 
contains all of the location estimates in the sample. 
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measures of range use within individuals is shown in Table 3.4. Polygon overlap is the area 

of one polygon which is overlapped by another. The defended-area lay almost entirely within 

the maximum-area and both defended-area and usual-area showed high mutual polygon 

overlap. In addition, the defended-area contained part or all of 80 % of the core nuclei of 

each range. 

There was no significant difference between the size of the usual-area and defended- 

area for each individual (Wilcoxon Matched-pairs Signed-ranks test Z=-0.23 ns n=25). 

However the differences in size between defended-areas and core-areas, and defended-areas 

and maximum-ranges were both significant (Wilcoxon Matched-pairs Signed-ranks tests Z=- 

4.37 p<0.005 n=25, Z=-4.37 p<0.005 n=25 respectively). The usual-area therefore was the 

best candidate for an estimate of the location and extent of the territory, since it showed 

similar size to and high overlap with the defended-area. An example of a range occupied by 

a robin showing core-nuclei and defended area in relation to local habitat features is presented 

in Fig 3.11. 

3.3.6. Characteristics of the usual-area. 

For the ranges of both territorial and non-territorial individuals, there was a strong 

negative relationship between usual-area and core area as a percentage of usual-area (rs -0.78 

P<0.005 n=51, Fig. 3.12. ). The curve shows the expected distribution if all usual-areas 

contained the same core area (the mean core area of all birds tracked). In general the observed 

data closely approached this. 

Only 25 of the 51 ranges from non-breeding individuals had associated asymptotic 

defended-areas. Of the usual-areas that did not have such defended-areas, some were 

unusually large (Fig 3.13. a. ). Furthermore such ranges were much larger than those which did 

have associated defended-areas (Fig 3.13. b. ). This suggests the existence of widely ranging 

non-territorial individuals within the population. 

Harper (1984) recorded the presence of non-territorial individuals in a population of 

robins at Cambridge. They were categorised as non-territorial simply by their widely ranging 

behaviour (Harper 1984). Since in this study the space use of such otherwise elusive and 

difficult to observe individuals could be measured, it was possible to derive a more rigorous 

definition enabling individuals to be assigned to territorial or non-territorial categories. 



Table 3.4. Median polygon overlap of the different 
measures of range use within individuals. 
(n=25). 

Nature and direction of overlap % polygon overlap 

Median Range 

Maximum-area on usual-area 

Usual-area on maximum-area 

Maximum-area on defended-area 

Defended-area on maximum-area 

Usual-area on defended-area 

Defended-area on usual-area 

100 *- 

22 2-62 

100 65-100 

20 2-54 

73 28-100 

66 25-100 

% of core-nuclei within defended-area 75 33-100 

# The % area of the second named polygon which is overlapped 
by the first named polygon. 

* By definition. 
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Fig. 3.11. An example of the standardised range and defended-area of a first year male 
robin radio-tracked during september. The thick solid lines outline the four 
core-nuclei while the dashed line outlines the defended-area. Thin solid lines 
show the local habitat features (shrubs and bushes). Four excursive locations 
are marked by asterisks and the two roost sites used during the period are 
shown by open symbols. 
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On examining the frequency distributions, it was clear that there was no obvious cut- 

off point for assigning individuals to such categories on the basis of usual-area alone. Of the 
individuals which did not have an associated standardised defended-area, those that were 

territorial may still have shown more advertisement behaviour than those that were non- 

territorial. The usual-area of each individual plotted against the percentage of locations at 

which territorial advertisement and defense behaviour was recorded during tracking is shown 

in Fig 3.14. This is an estimate of the frequency of territorial advertisement behaviour that 

is comparable between individuals. Using this estimate there was no significant tendency for 

robins to invest in these activities differently over the course of the Autumn and Winter 

(correlation between proportion of locations with advertisement and defense behaviour and 

day of year with day one set to is` August; r, =-0.07 ns n=43). This was largely due to the fact 

that some individuals very rarely vocalised even in the early Autumn. Of the ranges with 

associated defended-areas, none showed a usual-area greater than 2500 m2. Although some 

individuals with defended-areas showed little or no advertisement behaviour, no individuals 

of usual-range size greater than 2500 m2 were observed to engage in advertisement and 

defense behaviour at more than 8% of locations (Fig. 3.14. ). Although rarely engaging in 

activity associated with the communication of territorial status, the remaining birds which 

lacked standardised defended-areas were categorised as territorial. This is because an 

individual may still maintain a territory even if it never needs to communicate its territorial 

status or evict any intruders. Consequently a cut-off point between territorial and non- 

territorial individuals of 2500 m2 was adopted. Therefore by definition, the usual-areas of non- 

territorial individuals were considerably larger than those that were territorial (Fig 3.14. ). 

Maximum-areas and core areas were also significantly larger (Table 3.3. ), but the difference 

between the number of core-nuclei was not significant (Table 3.3). In territorial individuals, 

the usual-area contained on average 79 % of locations, 78 % of these being in the core-nuclei. 

The corresponding values for the usual-areas of individuals that were categorised as non- 

territorial were 77 % and 74 % respectively, indicating a slightly greater dispersion of 

locations. 

The usual-area polygons of individuals that were classed as territorial showed high 

eccentricity, indicating a high degree of departure from the shape of a regular polygon (Fig 

3.15. ). Examples of the usual-areas of territorial individuals which showed low and high 

eccentricities are presented in Fig 3.16. 
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Fig. 3.15. Frequency distribution of eccentricity C for non-breeding territorial robins 
(n-43). Increasing values C indicate increasing departure from radial 
symmetry. 
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Fig. 3.16. Examples of standardised ranges from non-breeding territorial robins showing 
low and high values of C, shown to the same scale. 

a) F646516; E=0.22 Highly polygonal. 
b) H227556; E=0.85 Highly linear. 

Thick lines indicate core-nuclei, thin lines usual-areas. 
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There were no significant differences in the size or eccentricity of the usual-areas of 

territorial robins between age and sex classes (Mann-Whitney all ns p<0.05 level n=43). For 

age comparisons, birds were classed as adult or first year. There was no difference in the age 

structure of the groups of robins that were territorial and non-territorial (comparing first years 

with adults x2=0.02 ns df=l, 53 % of territorial birds (n=43) and 50 % of non-territorial birds 

(n=8) were in their first year of life). Because most robins disappeared before they could be 

sexed in the breeding season the cell frequencies were too small to compare the sex ratios of 

the territorial and non-territorial portions of the populations. The available data however show 

that 35 % of the territorial birds were female (n=20) while 80 % of the non-territorial birds 

were female (n=5). 

3.3.7. Range fidelity. 

The assumption that the use of space is unchanging during the period of monitoring 

is inherent in all statistical ranges estimators (White & Garrot 1990). However ranges may 

change in a) size and b) location. These may be measured over the short term (days) or the 

long term (months), and may be gradual or abrupt. Ranges which do change in size and/or 

location indicate low fidelity. 

The degree to which this assumption was correct was investigated using the grid-cell 

approach of Doncaster (1990). This technique is based on the utilization of grid-cells rather 

than the size and location of polygons. This allowed all of the locations in each sample to be 

used without losing any details of the range anatomy. All locations were assigned to 25 m2 

cells. This increased the number of cells that contained several locations without obscuring 

the overall configuration of the range (Doncaster 1990). 

The grid cells occupied by an asymptotic sample of location estimates can be thought 

of as a cohort in a population. Between successive cohorts, new cells may be recruited and 

old cells "die" as they are abandoned. A range showing high fidelity to size but weak fidelity 

to location will leave a trail of "dead" cells across the habitat, while maintaining a constant 

area of live occupied cells (prevailing area), and a steadily increasing cumulative area. The 

number of cells surviving from the initial cohort (initial area) will eventually decrease to 

extinction. 

No other data are currently available on range fidelity in small birds, so absolute 

values produced in this way as yet have little value. It was possible however to compare the 
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relative degrees of range fidelity over the short term between individuals categorised as 

territorial and non-territorial using the definition described above. 

The results for territorial and non-territorial ranges separated by a mean inter-cohort 

interval of 6.4 and 6.2 days respectively are shown in Fig 3.17. Ranges of both territorial and 

non-territorial individuals showed no change in their prevailing areas (Mann-Whitney U=14.5 

ns, territorial n=10 non-territorial n=5). The non-territorial individuals, however, occupied new 

grid-cells and abandoned previously used cells approximately three times faster then territorial 

individuals (cumulative area Mann-Whitney U=0.0 p<0.005 territorial n=10 non-territorial 

n=5, initial area Mann-Whitney U=1.0 p<0.005 territorial n=10 non-territorial n=5). The 

ranges from territorial individuals showed high fidelity to both location and extent. Although 

size also remained relatively constant for the ranges of non-territorial individuals, their ranges 

showed low fidelity to location over the same time interval, indicating range drift (Doncaster 

1990). An example of the relative range fidelity for concurrently tracked territorial and non- 

territorial individuals is shown in Fig 3.18., displayed using usual-area outlines. 

Change in range fidelity is seen at its most dramatic during territory takeovers. Both 

range size and location can change drastically over just a few days. Since this is a rare, 

unpredictable and abrupt phenomenon, it is very difficult to record the changes in range use. 

One such takeover was recorded by radio-tracking however, and is illustrated in Fig. 3.19. 

For non-breeding territorial robins, usual-area was not correlated with day of year (day 

one set at 1'` August)(rs 0.11 ns n=43), indicating high fidelity to range size. Ranges 

frequently revealed low fidelity to location however when viewed over several months. In 

some individuals this appeared to be highly directional territory drift. An example of such 

behaviour is shown in Fig 3.20. 

Previous studies have described three periods of change in the space use of the robin 

over the course of the year; a) adult moult and juvenile dispersal; b) the establishment of non- 

breeding territories by adults and juveniles and c) the establishment of breeding territories by 

males and mate selection by females (Lack 1965, Cramp 1988). There are few data in this 

study with which to examine changes in the location and extent of ranges over the first two 

periods, however more information was available on the third stage; the change from non- 
breeding individual territories to breeding pair territories. 

There was no significant difference between the usual-area of non-breeding and 
breeding individuals (Mann-Whitney W=116 ns non-breeding n=43, breeding n=6, non- 
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Fig. 3.17. Comparison between the median short term change in area of 25m2 grid-cells 
occupied by territorial (hatched)(n=10) and non-territorial (open)(n=5) non- 
breeding robins. Statistics and probability levels refer to one-tailed Mann- 
Whitney U tests, error bars indicate interquartile range. Mean inter-cohort 
interval (the interval between the completion of data collection for the first 
standardised range and the beginning of the second) was 6.4 days (territorial) 
and 6.2 days (non-territorial). Taking the decrease in area of the initial cohort 
as an estimate of range fidelity, territorial ranges changed by 39 m2 day" while 
non-territorial ranges changed by 108 mz day'. 
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Fig3.19. An example of a territorial takeover in non-breeding robins, recorded by radio- 
tracking. Between the 18`h October (a) and the 24' October (b), non-territorial 
robin F646597 (thick outline) moved onto the area occupied by robin F646599 
(thin outline) and became territorial. F646599 consequently became non- 
territorial, as indicated by the changes in usual-area. Arrows indicate the 
directions of range drift. The crosses mark the corners of a reference hectare 
on the map grid. 
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breeding median=468 m2 range 60-2495, breeding median 485 m2 range 327-2138). The 

beginning of the breeding season was characterised by an abrupt and synchronised surge in 

territorial advertisement behaviour (Fig 3.21. ). One male which had moved onto the territory 

of and paired with a neighbouring female began singing on 28`h January, approximately 20 

days before the majority of the population. This individual was predated by a sparrowhawk 

on the second day, and illustrates the potential cost of advertisement by song. Over this period 

most territorial males showed no change in the extent of their usual-area (Fig. 3.22. a. ). A few 

males however showed a short lived phase during which their usual-areas were typical of 

those occupied by non-territorial birds (Fig 3.22. a. ). An example of such "pre-territorial" male 
behaviour is shown in Fig 3.23. Migrant males which arrived in the study area at around this 

time initially appeared to go through a similar pre-territorial phase before settling on a 

breeding territory (Fig 3.22. a. ). 

All resident females abandoned their territories and occupied non-territorial drifting 

ranges (Fig 3.22. b. ), before pairing with a male and sharing its territory. Examples of the 

changes in location and extent of the usual-areas during the preceding Autumn and Winter 

of a male and female which subsequently paired are shown in Fig 3.24. 

3.3.8. The individual within the neighbourhood. 

The understanding of neighbourhoods requires neighbours to be identified. Previous 

studies have used qualitative definitions such as looking for common boundaries between the 

territories of different individuals. Because radio-tracking can provide a rigorous definition 

of a territory however, a similarly rigorous definition can be constructed for the categorisation 

of neighbours. 

The simplest model of a neighbourhood of polygonal territories consists of close 

packed regular polygons of similar size (Fig 3.25. a. ). Each territory has a diameter d, the 

diameter of a circle of equivalent area. Near neighbours are those territories that are accessible 

within a distance 1.5d from the centre of the focal territory, excluding those that are separated 

by an intervening territory. Far neighbours may be defined as those other than near 

neighbours. This definition, however, is inadequate when some territories show high 

eccentricity. The number of near neighbours will be underestimated near the poles of an 

eccentric focal territory (Fig 3.25. b. ). In addition, large territories will have a greater region 

of influence within which neighbours may occur, than small territories. This will lead to an 
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Fig. 3.22. Changes in the usual-area of individual robins over the period in which the 
spring song surge occurs. The males can be divided into three categories on 
the basis of changes in fidelity to the usual-area they occupy (a). All females 
undergo a non-territorial phase during this period as they search for mates (b). 
The horizontal line indicates the cut-off between territorial and non-territorial 
range size while the vertical line indicates the onset of spring song in males. 
Other lines indicate range use histories for different individuals. 
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Day of year (200 =16 February). 
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Fig. 3.23. Example of the range drift associated with the spring song surge shown by a 

resident male robin that exhibited a pre-territorial phase between non-breeding 

and breeding territoriality. 



Fig. 3.24. Range use histories for a male and female robin 
during the Autumn preceding their pairing in 
spring. Both birds were initially territorial. 
Thin lines indicate the usual-areas of continuously 
territorial male F646594. The thick line indicates 
the usual-areas occupied during the nomadic 
wandering of female F646582. These ranges lay 
largely outside the cluster of territories containing 
F646594. Arrows indicate the direction of range drift. 
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Fig. 3.25. The development of a definition that enables neighbours to be classified 
according to the spacing of local territories. 



a) The simplest model of a neighbourhood of polygonal territories consists 
of close packed regular polygons of similar size. The near neighbours of 
a focal territory will lay within 1.5 territory diameters (d) of the centre 
of the territory and will not be separated from it by any intermediate 
territories. Each territory here has six near neighbours. 
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b) However this definition is insufficient when territories show high 

eccentricity, the number of near neighbours being underestimated near 
the poles of the focal territory. 
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c) Modification of the definition such that near neighbours lay within one 
"standard" territory diameter of the edge of the focal territory will 
overcome this problem, and will allow consistent estimation of the 
number of near neighbours for any configuration and size of territory. 
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overestimation of the number of near neighbours. Modification of the definition such that the 

near neighbours lay within one standard territory diameter from the edge of the focal territory 

will overcome this problem, and allow consistent identification of near neighbours and far 

neighbours for any size and shape of territory (Fig. 3.25. c. ). In this study a standard territory 

was a regular hexagon of area equal to the median usual-range area of a territorial individual, 

which corresponded to a circle of diameter 25 m. This value has biological meaning, 

representing the maximum movement distance that a robin can make within a radially 

symmetrical usual-area of median size. 

The number of near neighbours was determined by estimating the number of usual- 

areas in which all or some of their edges lay within 25 m of the edge of each focal territory. 

Territories further than this distance were classed as far neighbours even if there were no 

intervening territories. The usual-areas of Hon-territorial individuals were not considered to 

have neighbours nor be a neighbour of a territorial individual. This is because they were 

characterised by rapid range drift, leading to an overestimate of the number of near 

neighbours they had at any one time. Not all of the territorial birds in the study area could 

be tracked concurrently. Since territorial individuals showed high fidelity to the location they 

occupied however, estimates of the location and extent of territories based on usual-areas from 

the previous month, or defended-areas alone, were used when assessing the number of near 

neighbours. In practice, the precise locations of the territory edges were only needed for the 

minority of cases which fell close to the 25m cutoff distance from the edge of a focal 

territory. Because tracking was often carried out on clusters of territories and the 

advertisement behaviour of birds that were not tracked was also recorded, all neighbours 

could be categorised. 

There was no pattern to the number of near neighbours each individual experienced, 

except than none had the six near neighbours that would be expected if territories were close 

packed regular hexagons (Fig 3.26. ). 

The percentage polygon overlap of the different measures of utilization distribution 

between dyads of concurrently tracked near neighbours are shown in Table 3.5. The term 

dyad is used to refer to two individuals, to avoid confusion with the term pair used to 

describe birds during breeding. As described above, polygon overlap is the area of one 

polygon which lays within the edges of another. When measuring the overlap between near 

neighbours, each dyad only contributed one overlap value to the sample to ensure statistical 
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Fig. 3.26. Frequency distribution of the number of near neighbours experienced by each 
non-breeding territorial robin (n=43). 
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independence. The degrees of overlap of the different measures of range use on near 

neighbours were different. The maximum-areas of near neighbours showed considerable 

polygon overlap. The usual-areas and defended-areas, however, never overlapped. The 

maximum-areas showed no median overlap with the usual-areas of near neighbours. The 

median distance between the usual-areas of near neighbours was 12 m (range 1-23 n=16), 

nearly half the diameter of a standard territory. The interstices between the usual-areas of near 

neighbours were considered to be undefended neutral ground. This contained habitat features 

that were apparently indistinguishable from those in which core-nuclei were sited. The usual- 

areas of a group of territorial robins over a 12 day period is illustrated in Fig 3.27. During 

this period minimal range drift will have occurred, and so the usual-area outlines are 

comparable. Note the unoccupied habitat features located in the interstices between the usual- 

areas. 

A second analysis of the degree of overlap between near neighbours was carried out 

using the measure of static interaction developed by Doncaster (1990). This can provide 

information on the degree to which the occupied grid-cells of two ranges overlap, and also 

whether the shared area contains the most or least utilized cells of each range. Since the 

technique is based on the positions of the grid-cells occupied by the locations, it can reveal 

more detail about how the internal structure of the ranges interact than can polygon outline 

techniques with their associated assumptions. 

Locations were assigned to 25 m2 grid-cells to increase the number of observations per 

cell. The number of cells visited by both birds gives a simple estimate of the grid-cell overlap 

between the members of the dyad. Spearmans' correlation coefficient was then calculated 

from the pairs of cell frequencies for all the cells visited by one or both birds. This tests for 

correlation between the two ranges. The value of the correlation in part depends on the degree 

of grid-cell overlap between the members of the dyad. It was clear that most dyads shared 

very few grid-cells (Table 3.6. ). The interpretation of the values of r3 for such small degrees 

of overlap is difficult, however the following values from Doncaster (1990) can be used as 

a guide. If for two ranges of the same size, the shared area contained the most utilized cells 

of each range, r, would be approximately -0.4. If the shared area contained the least utilized 

cells of one or both ranges, r, would be approximately -0.8. r, equals -0.86 if no cells are 

shared. The observed values of -0.7 to -0.8 indicated heavily utilized cells are never shared 
by neighbours. For comparison the value for a dyad during mate-guarding of a female by its 
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Table 3.6. Static interaction between dyads of territorial robins 
measured using Spearman correlation and measures of 
range overlap using occupied grid-cells and minimum 
convex polygons. 

Stage of annual cycle rs * % overlap 
Members of dyad" 

Occupied .. Maximum-area 
grid-cells polygon 

Non-breeding 

F646583/F646579 -0.76 37 (35-39) 65 (56-73) 

F646540/F646551 -0.77 17 (15-18) 60 (52-68) 

F646551/F646581 -0.78 12 (11-13) 56 (45-67) 

F646590/F646587 -0.88 8 (7-8) 63 (42-83) 

F646727/F646568 -0.90 0 52 (45-59) 

Mate-guarding 

F646581/H227560 0.40 66 (57-75) 93 (89-97) 

# Individuals included twice came from different years. 
* Probability levels not important. 
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Appendix to Table 3.6. Graphical presentation of the data in Table 3.6. Spearman's 

correlation coefficient between the intensity with which dyads of territorial robins used 

areas of grid-cell overlap in their ranges plotted against the % grid-cell overlap. Closed 

symbols represent non-breeding near neighbours and the open symbol represents a pair 
during mate-guarding. The two shaded areas show the theoretical distributions of r, 
based on Doncaster (1990) and adapted from Tew & Macdonald (1994), that would 

correspond to sharing of the most utilized (a) and the least utilized (b) grid-cells within 

ranges. 

Tew T. E. & Macdonald D. W. (1994). Dynamics of space use and male vigour amongst wood 
mice Apodemus sylvaticus, in the cereal ecosystem. Behav. Ecol. Sociobiol. 
34337-345. 
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mate indicates the sharing of heavily utilized cells. On comparing the results of polygon 

overlap and static interaction, it was found that in one dyad, although the maximum-areas 

showed substantial overlap, the two birds visited none of the same 25 m2 grid-cells. 
Individuals classed as non-territorial used very large usual-areas relative to those that 

were territorial, and frequently ranged outside the main study area. In addition, because of the 

rapid range drift typical of non-territorial individuals it was not possible to identify dyads of 

near neighbours with any degree of confidence. Therefore a quantitative assessment of 

polygon overlap or static interaction was not possible. On plotting all the usual-areas of non- 

territorial and territorial robins using the same general area over a two month period, 

however, it was apparent that although the usual-areas of non-territorial birds often overlapped 

those of some territorial birds, they never ranged over the area most densely populated by 

territorial birds (Fig 3.28. ). 

From measuring short term fidelity, it was clear that the usual-areas of territorial 

robins maintained a constant size. This was also found to be true over the whole non-breeding 

season (r, =O. 11 n=43). The number of near neighbours and therefore local population density, 

however, decreased with day of year over the course of the Autumn and Winter (r, =-0.40 

p<0.01 n=43). This reflected the decline in population size during this period due to natural 

mortality. 

3.3.9. Excursive activity. 
For territorial birds, locations which occurred outside the usual-area were considered 

to be excursive. The excursive area therefore was the maximum-area minus the usual-area. 

On average 21 % of locations were excursive (range 7-45 n=43). The positions of excursive 

locations in relation to the neighbourhood could be allocated to a number of different 

categories; a) neutral interstices between territories and b) the usual-areas of neighbours; 

which included i) the usual-areas of near neighbours and ii) the usual-areas of far neighbours. 

A mean of 6% of locations were in the usual-ranges of neighbours (min 0 max 35 n=43). 

The strengths of the relationships between the different measures of excursive activity and 

number of near neighbours (an estimate of local population density) are shown in Table 3.7. 

As excursive area increased with decreasing local population density, the percentage of 
locations that were excursive remained constant. Of the excursive locations, three quarters 

were in the neutral interstices between territories and only one quarter inside neighbouring 
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Table 3.7. Correlations between number of near neighbours, 
an estimate of local population density, and 
different measures of excursive activity (n=43). 
The value in parentheses excludes an obvious 
outlying point. 

Measure of excursive activity r$ 

Usual-area (m) -0.16 

Excursive area (m`) -0.51 *** 

% locations that were excursive -0.01 

% locations that were in neutral interstices -0.08 

% locations that were in neighbours -0.08 

% locations that were in near neighbours 0.27 
(0.32 **) 

% locations that were in far neighbours -0.33 ** 

* p<0.1 ** p<0.05 *** p<0.005 
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territories. Furthermore, as local population density decreased, the robins showed the same 

probability of being located during intrusive activity. This came about by the shifting of 
intrusive activity into the territories of far neighbours. 

3.3.10 Roost selection. 
The robins were never active dusk despite some of the study area being continually 

illuminated by security lights. The vast majority of territorial birds preferred roost sites in 

habitat features similar to those which contained core-nuclei. Of 43 individuals, each 

contributing one randomly selected roost night to the sample, 98 % of sites were in bushes 

and shrubs and only 2% in sites away from such vegetation (chi-square goodness-of-fit test 

x2=44.08 ldf p<0.005 n=43). When roosting in vegetation, sites were nearly always from one 

to three metres above ground, only occasionally selecting sites low in the canopy of larger 

trees. On the rare occasions when birds were located visually, they were perched on thin 

branches away from the foliage of the bushes. Most sites were however thought to be among 

dense clusters of leaves (Fig. 3.29. a. ). Sites away from shrubs and bushes were in holes on the 

ground. These included rabbit burrows (Fig. 3.29. b. ) and abandoned mouse holes in drifts of 

dead leaves (Fig. 3.29. c. ). Similar behaviour was shown by the non-territorial birds although 

the sample size was too small for statistical analysis. Non-territorial birds were excluded from 

analysis of roost selection in relation to the usual-area because of their low fidelity to range 

location and the small number of individuals monitored. 

There was no marked tendency for territorial birds to prefer sites in their own usual- 

ranges (51 %) over excursive sites (49 %) (Chi-square Goodness-of-fit test )e=0.33 ldf ns 

n=43). The quality of sites used by robins which roosted on their own usual-area and in 

excursive locations is shown in Table 3.8. The cell frequencies were too low for statistical 

comparison, however it was apparent that birds which roosted excursively were more likely 

to obtain sites in medium density vegetation such as Rhododendron and broom suggesting that 

these may represent the sites of highest quality. Of those sites that were outside the usual-area 

however, there was a significant tendency for birds to select sites in neutral interstices (77 %) 

rather than sites in the usual-areas of neighbours (23 %), (chi square goodness-of-fit test 

2=6.55 ldf p<0.05 n=22). This sometimes resulted in the formation of communal roosts 

containing two to three robins within a few metres of each other in the same bush. Robins 

may therefore leave their daytime territories at dusk to congregate in roost sites of high 
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Fig. 3.29. A diagrammatic summary of the types of roost site used by robins during the 
non-breeding season. Most frequently used were sites in bushes and shrubs (a). 
During very cold weather robins were located roosting in drifts of dead leaves 
(b) and in rabbit burrows (c). 



Table 3.8. The quality of sites selected by territorial 
robins which roosted within their own 
usual-area or excursively. Only one randomly 
selected roost night was included from each 
individual. 

Category of site * In own usual-area Excursive 

No. % No. % 

i) On ground in open 0 -0 0 0 

ii) On ground in hole 3 5 0 0 

iii)In sparse vegetation 12 21 4 18 

iv) In medium vegetation 39 67 18 82 

v) In dense vegetation 4700 

vi) Above ground in hole 0000 

Total 58 22 

* See Table 3.2. for full details. 
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quality in the neutral interstices between territories. 

There was no difference in the distance from the edge of their usual-area, over which 
birds travelled to sites in the usual-areas of neighbours or in neutral interstices (Mann- 

Whitney U=16.5 ns, in neighbours n=5, in neutral interstices n=11). Furthermore, there was 

no relationship between the distance to the roost site and local population density estimated 
from the number of near neighbours (r., =-O. 11 ns n=22). 

Roost sites were always discrete locations with little variation, so it was easy to 

determine when birds were using a different site to that used on the previous night. Different 

territorial individuals used different numbers of roost sites over a period of five consecutive 

nights. The number of sites used differed significantly from the expected number if no 

preference was expressed (chi-square goodness-of-fit test x2=14.8 4df p<0.01 n=34); more 

individuals using fewer sites. The total number of sites used provides little information on the 

degree to which birds re-selected the same site to that used on a previous night (roost 

fidelity). A bird which alternated between two sites was considered to show greater fidelity 

than a bird which visited five sites once each, but lower fidelity than a bird which used the 

same site on each night. The degree of infidelity to both numbers of sites used and number 

of changes in site can be quantified by an index of roost infidelity (R; of; 
Fig. 3.30. ). Rif equals 

zero for total roost fidelity. R;,, f shows strong positive correlation with both number of sites 

used and number of changes in site (r, =0.98 and 0.99 respectively n=43). Increasing infidelity 

therefore results in a linear increase in R;., f. There was, however, no relationship between R, f 

and usual-area, day of year or local population density (r, all ns at the p<0.05 level n=43). 

3.4. Discussion. 
3.4.1. Territory definition and structure. 

Robins showed a marked preference for concentrating their activity in areas of bushes 

and shrubs. These occupied only a small proportion of their usual-area. Such a preference by 

the robin has been recorded previously by Hoelzel (1989) and Adriaensen & Dhondt (1990), 

who suggested the advantages of occupying such sites could include protection from predators 

and severe weather. Results from the present study indicate that prey availability was unlikely 

to be a factor (section 3.3.4. ). These habitat features were therefore considered to be resources 

of high quality. Analyses of radio-tracking data from great tits has shown that within ranges 
individuals concentrated their activity in small localised patches, spending little time between 
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Fig. 3.30. The behaviour of the index of roost infidelity R;,, f in relation to the number of 
roost sites used and number of changes in roost site over a five night period. 
Where; 

Rj nf= No. si tes used x No. changes in site 

Dashed lines join equal values of R;,, f and the arrow indicates the direction of 
increasing R;, f. 
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these areas (East & Hoffer 1986). This pattern of space use is identical to that shown by the 

robins in this study, and may be typical of small birds occupying heterogeneous habitats. 

Although the extent of the usual-areas varied, all contained similar areas of high 

quality resources, as suggested by the area of their core-nuclei. This phenomenon has been 

observed in a number of other studies (eg Davies & Lundberg 1984, Kenward 1982b), and 

possibly represents the amount of high quality resource that each individual requires access 

to in order to survive. 

Not all ranges had associated standardised defended-areas. Of those that did, the high 

degree of polygon overlap and similarity in size between the usual-area and defended-area for 

each individual suggested that the robins were only spending time and energy in the defense 

of their core-nuclei and the area between them. This represented the areas within which 

individuals concentrated their activity, and the area over which they travelled during 

apparently rapid commuting flights between nuclei. 

The territorial status of the robins in the study population could only be determined 

by measuring their space use. This was because the absence of high levels of advertisement 

behaviour (song and tic-calls) could not be assumed to reflect a lack of willingness to exhibit 

territory defense. Of the individuals for which defended-areas were not available, the widely 

ranging behaviour of some suggested that they were non-territorial. By definition, they 

occupied usual-ranges that were considerably larger than those occupied by territorial birds. 

Although objective and quantitative, the use of a discrete cut-off point for assigning 

individuals to territorial or non-territorial categories does have an associated difficulty. 

Individual robins differed in morphology and energetic condition. This may result in some 

birds being able to use their range in a territorial manner while for others, a range of the same 

size may not be economically defendable. Because of this some individuals may have been 

wrongly categorised by such a discrete cut-off. Because few ranges fell close to the cut-off 

point, however, this was considered unlikely. 

Because the absence of territorial defense or advertisement behaviour does not 

necessarily mean that the usual-area of a particular individual would not be strongly defended 

if the need arose, the usual-area of those individuals classed as territorial represents a good 

estimate of the location and extent of the territory. 

The high eccentricity of the majority of the usual-areas of territorial individuals was 
inconsistent with what would be expected from the simple economic view of territorial 
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exploitation and defense discussed in chapter 1. Because the shapes of territories occupied by 

other animals inhabiting two dimensional habitats have not been generally reported, it is not 

possible to determine the prevalence of highly eccentric ranges among other species. 
In many radio-tracking studies, the assumption is made that the probabilities of 

locating an animal at different locations within its range will take the form of a smooth 
"probability landscape". This concept is reinforced by the use of isoline models, with their 

inherent smoothing characteristics, when estimating range use from a sample of location 

estimates. The results from this study of the robin suggest a more appropriate topographical. 

analogy for describing range use may be a series of cliff-bound peaks on an almost flat plain. 

3.4.2. Change in the location and extent of territories over time. 

The range use of an animal must be"defined in spatial and temporal terms (Kaufmann 

1983). When applying range estimators to a sample of animal locations, an inherent 

assumption is that the pattern of space use is unchanging over the period of observation 

(White & Garrot 1990). 

Over the short term (days), although both showed high fidelity to range area, the 

ranges of territorial robins showed very high fidelity to the habitat features they occupied 

compared to the ranges of non-territorial birds. The small changes that were shown can be 

explained in the following way. The distribution of one standardised sample of location 

estimates cannot be expected to be identical to the true distribution of probabilities of being 

located over the same period. Furthermore, subtle changes in the size and location of the 

centres of activity in response to short term variation in the internal state of the owner or 

external conditions (eg wind direction), will produce a degree of "noise" when comparing 

ranges which otherwise showed high fidelity. This suggests that the edges or boundaries of 

a territory may be better thought of highly dynamic and essentially indefinable in space. The 

use of the defended-area or usual-area outline can only be viewed as an estimate of the 

location and extent of a territory over a particular measurement period. 

The ranges of non-territorial individuals drifted relatively rapidly across the habitat. 

Because non-territorial individuals showed such low fidelity to particular habitat features, the 

ranges of these individuals would not have reached an asymptote after 40 relocations. 
However the use of a standardised sampling protocol for the whole population ensured that 

representative "snap shots" of space use could be obtained that were comparable between all 
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individuals. The total core area used by individuals which were non-territorial was 

significantly larger than those of territorial birds. This was considered to be an artifact of the 
high rate of range drift they exhibited. New core nuclei were established and old ones 

abandoned within the four to five day period over which standardised samples were collected. 
Hence although all were included in the range analysis, only some of them may have been 

being utilised at any particular time. The usual-area of non-territorial robins will therefore also 

be overestimated. Because of this pattern of space use, non-territorial individuals may be 

thought of as nomadic, with no particular preferred "home range". Because the assumption 

of range stability (White & Garrot 1990) is untrue for non-territorial robins, estimates of the 

location and extent of ranges are therefore of limited quantitative value. The space use of such 

individuals is perhaps better measured using data from continuous tracking techniques, which 

have no associated assumptions about sampling protocol. 

Radio-tracking results show that the robin can change the pattern of its ranging 
behaviour most dramatically during territory takeovers. During such takeovers, non-territorial 

birds evict and replace an owner on its territory, forcing the latter to adopt a nomadic non- 

territorial existence. Fidelity to both range extent and location show massive change over just 

a few days. 

Although usual-range size remained constant over the course of the Autumn, some 

individuals showed considerable directional territory drift. This supports the concept of a 

territory as a consequence of the activities of its owner, rather that the owner making the 

decision to occupy vacant a territory that is both discrete and fixed in the habitat. 

3.4.3. Neighbourhood structure during day and night. 
By deriving a robust and quantitative definition by which neighbours may be 

categorised, this study is the first in which the structure of neighbourhoods can be rigorously 

measured. There were gaps between the edges of the usual-areas of near neighbours. These 

neutral interstices consisted of undefended neutral ground, and were rarely or never visited 

even though they often contained patches of vegetation indistinguishable from those occupied 

by core nuclei. 

Verner (1977) suggested that individuals should defend territories much larger than 

is necessary for their own survival. It was suggested that since selection acts on the 

performance of an animal relative to all others in the population, an individual could increase 
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its fitness by inhibiting the fitness of conspecifics. One way of achieving this would be to 

defend large "super territories" which contain more resources than are necessary for survival. 
The existence of neutral interstices between territories containing superfluous high quality 
habitat features suggests that this form of "spiteful" (Hamilton 1970) behaviour does not 

occur in the robin. 

Usual-areas, defended-areas and therefore territories never overlapped. The maximum- 

areas showed only a small degree of overlap on the usual-areas of near neighbours. This value 

is misleadingly small, since the maximum-areas usually overlapped the usual-area of only one 

of several near neighbours during the sampling period. This reduced the probability of it being 

recorded in randomly assigned dyads. Although the maximum-areas of dyads of near 

neighbours often showed considerable overlap, care has to be taken in interpreting the values, 

since the maximum-area polygons will be -strongly influenced by a few outlying locations. 

Two polygons may overlap without any of the locations from which the polygons are 

constructed being included in the shared area. In these situations the results from static 

interaction using a grid-cell range estimator give a better measure of the degree of 

concordance between two ranges. 

The degree of polygon overlap or static interaction between the ranges of territorial 

and nomadic non-territorial individuals would be meaningless due to the rapid range drift of 

non-territorial birds. It was very clear however, that although the core-nuclei and usual-ranges 

were much more likely to overlap with those of territorial individuals, the majority of 

locations were in neutral interstices. Furthermore, non-territorial birds appeared to avoid the 

dense clusters of territories that occurred in areas with large numbers of high quality habitat 

features. Many other studies have recorded the presence of non-territorial "floaters" in 

populations of territorial birds. These are thought to arise when habitat suitable for the 

economic defense of territories becomes saturated (Brown 1969, Krebs 1977, Desrochers 

1988). In some populations a dominance hierarchy of floaters within territories has been 

observed (Smith 1978). When the owner dies its place is taken by the most dominant floater. 

Territory holders could benefit from this arrangement if floaters participate in territorial 

defense (Smith 1978). Krebs (1971) found that if pairs of great tits were removed from their 

woodland territories, the spaces were rapidly filled by pairs moving in from the surrounding 

hedgerows, which were considered habitats of lower quality. The neighbourhood structure of 

the robin appears to resemble this system, with nomadic non-territorial individuals 
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surrounding patches of habitat densely populated by birds defending territories. Beletsky 

(1992) has presented evidence for non-territorial floaters in a population of red-winged 
blackbirds being attracted to regions of social instability, where they were more likely to 

subsequently establish territories. In the present study non-territorial robins were observed to 

gain territories. It is possible that they were able to monitor the behaviour of territory owners 

within the clusters of territories from a distance, eliminating the need for information 

gathering intrusions with their associated risks. Robins are able to distinguish between 

individuals by their song (Brindley 1991), therefore this could allow such long-range 

monitoring to occur. 

The local population density, estimated by number of near neighbours, declined over 

the course of the Autumn. Yet there was no relationship with usual-area. Territorial behaviour 

has frequently been suggested as a mechanism to limit population density (Brown 1969, Krebs 

1971, Knapton & Krebs 1974). In this study, as local population density declined (mainly 

through birds starving and being predated), there was no evidence for non-territorial 

individuals moving in and defending areas which became vacant. Therefore, it is possible that 

the habitat features that were defended as territories fell vacant because they were no longer 

economically defendable. Reasons for this could include the changing energetic requirements 

of owners, and changes in the quality of the habitat features that were previously defended. 

Although there is some information on the nature of the sites selected by robins for 

roosting (Cramp 1988), the difficulties of observing individuals in low light levels at dusk 

means that the only way to record roost selection in a truly representative way is to use radio- 

tracking. Cramp (1988) describe non-breeding robins as usually roosting on the territory in 

dense cover. The results from this study reveal a rather different picture. 

Mead (1984) describes observations of robins singing and even foraging under street 
lights long into the night. The robins in the present study areas never did this despite the 

presence of flood lights. Qualitative observations of robins under street lights away from the 

study area indicates that the trigger for such nocturnal activity is disturbance rather than light. 

Such disturbance to roosting birds is more likely to occur in areas with street lighting. 

Although roost sites were in habitat features indistinguishable from those which contained 

core-nuclei, there was no tendency for birds to select sites within their usual-area more often 

than excursive sites. When excursive sites were used however, they tended to be in medium 

density vegetation more often than when birds remained on their usual-areas. Medium density 
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vegetation may therefore represent sites of the highest quality, perhaps in terms of rates of 
heat exchange. When selecting excursive sites however, there was a strong preference for sites 
in the neutral interstices between territories rather than in usual-areas of neighbours. The 

number of such sites were limited, resulting in the formation of small communal roosts. The 

daytime neighbourhood structure of non-overlapping territories separated by neutral interstices 

ceases to exist after dusk. It is replaced by territorial individuals roosting in favourable sites 

scattered across the habitat with their distribution bearing little resemblance to their daytime 

range use. Nevertheless, robins face a trade off between the potential energy savings of 

roosting in high quality sites away from their territory, and the possible cost of evicting any 

intruders on return to their territory at dawn when most challenges for territory ownership 

occur (Harper 1984). 

3.4.5. A probabilistic model of territory and neighbourhood structure. 
From these results, a model of territory and neighbourhood structure during daytime 

may be produced, based on the probabilistic use of its range by an average non-breeding 

territorial robin (Fig 3.31. ). The range is divided into a series of utilization compartments, 

each with an associated probability of containing the territory owner. 

The excursive activity of the robin varied with local population density. As the number 

of near neighbours decreased, the territorial individuals maintained the same probability of 

being located in excursive utilization compartments (Fig 3.32. ), but increased the extent of 

the excursive area. Thus, when the number of near neighbours was low, territorial robins had 

to travel further if they were to visit the territories of the nearest conspecifics (Fig 3.33. ). 

Because intrusions into the territories of far neighbours requires movements over larger 

distances, the associated energy costs would be higher. For territorial robins with different 

numbers of near neighbours to maintain the same probability of intruding, therefore, the 

intrusive behaviour must have a compensatory high value. It may be important for a robin to 

acquire knowledge about the quality of owners and their territories to assess the costs and 

benefits of changing the locations of the core-nuclei it uses. Nevertheless, the same 

probability of being located while engaged in intrusions does not reveal any information on 

the number or duration of each intrusion. Such information is only available from continuous 

tracking data. 
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Fig. 3.31. The model of territory and neighbourhood structure based on the probabilistic 
use of its' range by an average non-breeding territorial robin, based on data 
from 43 radio-tracked individuals. Shading indicates core-nuclei, the solid line 
indicates the usual-area of focal bird and neighbour and the dashed line 
indicates the maximum-area, part of which overlaps with the usual-area of the 
neighbour. The values indicate the probability of the focal bird being recorded 
in the different utilization compartments. 
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Fig. 3.32. Diagrammatic representation of relationships between the two measures of 
excursive activity and the number of near neighbours, based on the correlations 
presented in Table 3.7. Excursive activity was measured in two ways; the 
excursive area (the difference between the maximum-area and the usual-area; 
Fig. 3.10. ) and the proportion of locations that were excursive. Here, the 
excursive area is indicated by a solid line and the proportion of locations that 
are excursive by a dashed line. 
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Fig. 3.33. Diagrammatic representation of the relationships between the probability of 
robins being located in different excursive utilization compartments and the 
number of near neighbours. The probability values are based on the data from 
43 non-breeding territorial robins. 
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3.4.6. Previous studies of territory of the robin in the light of radio-tracking results. 
The values of territory size in the non-breeding robin that were obtained by previous 

studies are shown in Table 3.9. The overall median was 3800 m2. The median value of 

territory size in the present study, estimated by the usual-area, was nearly one seventh of this 

(Table 3.9. ). This was considered primarily due to the ambiguous and qualitative nature of 

the definitions used earlier to specify the location and extent of territories. This resulted in 

the inclusion within boundaries of the neutral interstices between territories, and the failure 

to take into account the effects of long term territory drift. 

The effect of including neutral interstices can be illustrated by examining the 

differences in non-breeding territory size recorded for robins occupying different types of 

habitat in Belgium (Adriaensen & Dhondt 1990). Individuals apparently occupied larger 

territories in habitat with few bushes and shrubs and lower population density. The definition 

of territory used by Adriaensen & Dhondt (1990) included all sightings of each individual. 

Therefore these values of territory size are more comparable with the values of maximum-area 

recorded in the present study. The maximum-area is the sum of the usual-area (an estimate 

of territory) and the excursive area. When an individual occupies a territory with few near 

neighbours it ranges over a larger excursive area enabling it to still achieve intrusions into the 

territories of conspecifics. The values of territory size presented by the Belgian study and 

others, therefore, may not represent values of the size of territory size in the robin at all. 

An even more marked difference is seen between this and previous studies when 

changes in territorial behaviour over the course of the year are examined. The ratio of non- 

breeding to breeding territory size range from 0.25 to 0.5. The ratio recorded in this study was 

0.96. Once again this is probably due to the inappropriate definition of territory used by 

previous studies, which results in the inclusion of areas outside the extent of the true territory. 

Quantitative estimates of the proportion of time spent away from the territory by 

robins are few. Harper (1984) reports that territorial robins spent only 7% of their time away 

from their territory. The equivalent value obtained from discontinuous radio-tracking in the 

present study was 21 %. The discrepancy may again be explained in terms of the different 

approach to defining the extent of territories. The majority of the excursive locations recorded 

in the present study were in the neutral interstices between neighbours. Some of these would 

have been classed as within the territory by less rigorous definitions. Of the excursive 
locations recorded in the present study, an average of only 6% were intrusive. This agrees 



Table 3.9. Estimates of territory size given by previous 
studies of the robin, compared to values of 
the usual-area, which represents territory size 
in the present study. 

Reference Study area. Nonbreeding territory size (m) 

Median Range 

Lack (1965) South Devon 3000 700-5300 
(n=33) 

Jackson (1956) Dublin 4000 3000-6000 

Harper (1986) Cambridge 2700 800-6500 
(n=108) 

Cramp (1988) Oxfordshire 4100 1100-10900 
(n=62) 

Sussex 7300 3200-13400 
(n= 18) 

Adriaensen & 
Dhondt (1990) Belgium 

Woodland 5300 *- 
(n=15) 

Parkland 2100 *- 
(n=46) 

Total 3600 * 800-11800 
(n=98) 

Present study Central Scotland 468 255-803 
(n=43) 

* Indicates mean, median not being available. 
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well with the value of 7% from time/activity budgets reported by Harper (1984). 

In conclusion, most studies of territoriality in mammals have used radio-tracking to 

monitor otherwise elusive species. Results have often indicated highly dynamic space use (eg 

Doncaster 1992). The results of this investigation of the space use by the robin suggest a 

similarly dynamic and variable territory and neighbourhood structure for a small passerine 

bird. 



Chapter 4. 
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4. Territory and neighbourhood structure: the dipper. 

4.1. Introduction. 
Although the biology of the dipper has been the subject of a number of studies (Bakus 

1959, Price & Bock 1983, Bryant et al 1985, Bryant & Tatner 1988), there is little 

information available on the structure of territories and how this may change over time. Since 

the territorial behaviour shown by an individual may depend on the behaviour of its 

neighbours, the structure of neighbourhoods may also be important if the nature of 

territoriality is to be fully understood. As shown for the robin, radio-tracking provides a very 

powerful technique for measuring the use of space both within and between the individuals 

which make up neighbourhoods, and provides a common approach by which the space use 

of robins and dippers can be compared. 

Owing to the linear nature of the riparian habitat, it is intuitively appropriate to 

describe the territory of the dipper in terms of length. The role of the available resource area, 

however, must also be considered. For example, it has been suggested that length is governed 

by the area of shallow water suitable for feeding (Shooter 1970). Furthermore, Robson (1956) 

observed territory length to be greater where the water course was narrower. 

When in flight dippers closely follow the twists and turns of a water course (Cramp 

1988). Territories may therefore be considered as being used only in a linear manner. Some 

individuals however, may exploit habitat on tributaries whose junction with the main water 

course is contained within the territorial boundaries. In these situations, although the 

movements of owners is still constrained by the riparian habitat into a linear pattern, the space 

use shown by such individuals can no longer be considered equal to the simplest linear 

territory with two boundaries. In such situations the configuration may be described as T- 

shaped. Since it is not possible to describe these special cases in terms of a simple outline, 

their shape cannot be quantified using a measure of shape analogous to the eccentricity of a 

polygon. It is important to note that the length within a non-linear territory is more accessible 

than that within an simple linear territory (Fig. 4.1. ). This-is because, unlike in a territory of 

simple linear configuration (Fig. 4. l. a. ), it is not necessary for the owner to travel the total 

length of its territory when moving from one boundary to another (Fig. 4. l. b. ). This will result 
in locations along the length of such a T-shaped configurations being relatively more 
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Fig. 4.1. The accessibility of territory length in territories of different configuration; (a) 

simple linear, (b) non-linear T-shaped. The difference in flight distance 

required to reach the whole of each territory length from the geometric centre 
is illustrated in (c). The geometric centre of a territory is the point furthest 
from all of the boundaries. 
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accessible to occupiers than locations along a territory of simple linear configuration 
(Fig. 4.1. c. ). They must therefore be classified as being less-linear. Intermediate to these 

extremes is the possibility of L-shaped configurations, in which a tributary is used which joins 

the main water course at one end of the territory. A dipper using such a configuration may 

need to defend three boundaries against intruders without the benefit of the increased 

accessibility of boundaries conferred by a T-shaped territory. Following this, the configuration 

of territory that is defended by a dipper may have implications for the energy costs of 

exploitation and defense. 

The dipper has long been known to select roost sites in artificial structures such as 

tunnels and bridges over water courses (Hewson 1969, Shaw 1979; Ormerod & Tyler 1990). 

Particularly favoured sites are often occupied by many individuals resulting in communal 

roosts, although most roost alone in sheltered concealed places over running water (Hewson 

1969). There is little information as to the distances individuals travel to roost sites from their 

territories (Shaw 1979). There may be a tradeoff between the energy costs of such flights and 

the advantages of roosting in high quality sites. This may have consequences for the relative 

quality of territories, occupied. 

4.2. Methods. 
4.2.1. Accuracy of location estimates. 

For their occupants, riparian habitats generally provide high visibility both along the 

length of the water course and to the side into the surrounding countryside. This makes close 

approaches to radio-tagged dippers impossible, due to the risk of disturbance and therefore 

disruption of the subsequent space use. Because of this, the locations of individuals could 

only be recorded at some distance from the river bank and often out of sight of the bird. A 

directional receiver antenna records the direction from which a signal reaches it rather than 

the true direction of the transmitter antenna. The discrepancy between the estimated direction 

and the true direction of the transmitter may be termed topolo,; ical error. The accuracy of 

location estimates of radio-tagged dippers was on some occasions further reduced by such 

topological error, when individuals were sheltering under overhanging banks or active in 

rocky gorges. It was not possible to quantify this form of error although its effects were 

probably small. Following this, the minimum segment of water course to which radio-tagged 
individuals could be assigned to locations on an accurate map was considered to be 50 m. 
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Although individuals frequently swam and dived while carrying radio-tags, the effect on the 

radio signal was minimal and birds could always be located during the daytime, although a 

methodical search was required for more widely ranging individuals. 

4.2.2. Sampling protocol. 

Increasing range eccentricity (departure from radial symmetry) produces a 

corresponding decrease in the values of t2/r2 (Swinhart & Slade 1985). Because of the linear 

nature of the habitat they occupy, the eccentricity of ranges used by dippers closely 

approached one. Using the criteria of Swinhart & Slade (1985) therefore, estimates of the time 

required to achieve statistical independence between successive locations estimates would be 

too long to be compatible with any feasible radio-tracking protocol. 

Andersen & Rongstad (1989) found that, using radio-tracking data from red-tailed 

hawks, different sampling strategies did not significantly alter estimates or indices of range 

size. They went on to suggest that with highly mobile species, the time to independence 

(Swinhart & Slade 1985) may be an over-estimate of an appropriate sample interval when 

common estimators of range size, such as minimum convex polygons, are applied (Andersen 

& Rongstad 1989). Since the time to independence for the robin was calculated to be only 

a few minutes, it was therefore concluded that for the dipper, a minimum sample interval of 

one hour would produce location estimates that were sufficiently independent for statistical 

range estimators to be applied. This was often much longer when several individuals were 

monitored concurrently over several kilometres of water course. 

The number of independent location estimates required to accurately represent the use 

of the dipper was determined with reference to the asymptotes of sample size with percentage 

of maximum length and percentage of maximum number of 50 m segments visited (Fig. 4.2. ). 

A total of 20 independent location estimates clearly represented a saturated sample. This was 

adopted as a standardised sample (Harris et al 1990) of locations estimates for the dipper. 

Standardised samples were collected at all times of the day over a period four days for each 

individual. 

4.2.3. Locating roost sites. 

The signals from radio-tagged dippers were searched for after dusk by walking along 
the water course. Birds roosting in their daytime range could quickly be located. Birds 
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roosting at sites away from their daytime range were always located after a methodical search. 
Information on the locations of previously used sites (S. Newton pers. comm. ) enabled 

searches to be concentrated on areas which the birds were likely to select. 

Because of the background noise of running water, roosting birds could be approached 

very closely and illuminated without being disturbed. This enabled details of site selection to 

be recorded accurately. 

4.2.4. Territory defense. 

The dipper apparently defends its territory by evicting intruders and broadcasts its 

territorial status by means of year round song (Cramp 1988). Bryant & Tatner (1988) ranked 

singing the second most frequent activity for male and female dippers at rest during the 

months in which radio-tracking was carried ont. Territorial behaviour was recorded only rarely 

during radio-tracking. Because of the need to stay out of sight of the individual being 

monitored however, some such behaviour may have been missed. Consequently it was not 

possible to record sufficient numbers of interactions to generate estimates of the length of 

water course that was being defended. The few instances that were recorded could be 

compared, in retrospect, with the estimates of the location and extent of the range estimated 

from radio-tracking data alone. 

4.2.5. Habitat structure. 
A survey of each of the study water courses was carried out, recording width to the 

nearest metre and scoring which 50 m segments contained broken water. This was water 

running over shallows (riffles) or among boulders (rapids). Such locations are preferred by 

foraging dippers (Cramp 1988). The detailed maps of the study areas used during tracking 

also provided information on the locations and angles of bends in the water courses. The 

increased erosion of banks at the sites of bends may provide suitable sheltered places for 

dippers to rest during the daytime. 

4.3. Results. 

4.3.1. Independence between ranges. 

Twenty ranges of standardised sample interval and sample size were collected from 

16 individuals of both sexes and various ages between August 1984 and December 1987 
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(Nutall 1988, D. M. Bryant unpublished data), and September to December 1990 

(I. G. Johnstone). From these a random sample of standardised ranges were selected such that 

each individual only contributed one range, ensuring statistical independence. No individuals 

were tracked in more than one year. The times of the year that individuals were monitored 

are shown in Appendix 5. Nonparametric statistics were used unless otherwise stated due to 
frequent small and non-normally distributed samples. 

4.3.2. Deriving measures of range use. 

Since the dipper occupies a linear habitat, any estimates of range use must intuitively 

be based on length rather than, for example polygon area. This is true even for ranges that 

are classified as non-linear, since owners can only move within the linear constraint of their 

riparian habitat. Consequently, the simplest measure of range use in the dipper is the sum of 

the distance between the most outlying locations measured along the intervening water course. 

This was termed the maximum length. The median maximum-length is shown in Table 4.1. 

This definition is also suitable for individuals which occupied L-shaped or non-linear T- 

shaped configurations. 

On examining the frequency of use of the different 50 m segments of water course 

visited by each individual it was clear that ranges were predominately non-uniform and 

multinuclear. An example of a range in presented in Fig. 4.3. with a map of the water course 

occupied. As discussed in chapter 3, sequential cluster analysis is the most appropriate method 

of quantifying this type of range use. Following the methodology of chapter 3. therefore, 

sequential cluster analysis was carried out on each range, and core total lengths determined 

using the same techniques that were applied to location estimates from the robin. An example 

of a utilization distribution plot produced by sequential cluster analysis of a standardised 

sample of location estimates from a dipper is shown in Fig. 4.4. The stepped effect, typical 

of dipper ranges, was due to the large size of the cells to which locations were assigned 

relative to the maximum-lengths of the ranges occupied. The median core length shown by 

the dippers in this study is shown in Table 4.1. Core lengths contained a median of 73 % of 

the location estimates (minimum 55 % maximum 90 %). This represented 29 % of the median 

maximum-length. 

Of the core-lengths defined by sequential cluster analysis, 80 % produced more than 

one centre of activity (n=16). Modifying the partial area index of range patchiness (AP) 
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(Kenward 1990), the degree of patchiness in the range use of dippers was quantified by 

calculating the partial length (Lv). LP equals the ratio of the total core-length to the distance 

along the water course which contained all core-lengths. LP can vary from one (locations 

uniformly distributed within range) to zero (locations concentrated in a number of infinitely 

small core-lengths). The values of LP are shown in the form of a frequency histogram in 

Fig. 4.5. The median LP was 0.27 (range 0.15-1.0 n=16). Location estimates were therefore 

concluded to follow a highly patchy distribution. Each cluster of locations was termed a core 

nucleus. The number of core-nuclei occupied by each of the radio-tracked dippers is shown 

in Table 4.1. 

Since dippers only moved between core-nuclei by following the twists and turns of 

the water course, the length which contained all core nuclei represented the length of water 

course within which individuals spent the majority of their time, either in core-nuclei or 

commuting between nuclei. This was termed the usual-length. The median usual-length is 

given in Table 4.1. The four measures of range structure developed to describe the use of 

space by the dipper are summarised in Fig. 4.6. 

4.3.3. Characteristics of the usual-length. 

Of the locations at which dippers were observed to show behaviour associated with 

territorial defense and advertisement, all occurred within their usual-lengths (n=7 occurrences 

from 5 individuals). Although based on a small sample size, this may suggest that birds which 

were territorial were only attempting to defend their core-nuclei and the length of water 

course between them. 

There was a significant negative correlation between the usual-length and the core- 

length as a percentage of the usual-length (r, =-0.89 p<0.005 n=16 Fig. 4.7. ). The expected 
distribution if all ranges contained the same core-length (the median core-length of all birds 

tracked) is shown by the curve in Fig. 4.7. The data closely approached this. 
There was a slight but not significant tendency for the core lengths of each individual 

to be located in segments of the water course containing broken water compared to the usual- 

length (median % usual-length broken water-45, median % core-length broken water=67, 

Sign test binomial ns n=16 Fig. 4.8. ). There was no tendency for dippers to concentrate their 

activity in sections of the water course that contained bends of greater than an arbitrarily 

selected angle of 45° (% 50 m sections making up core length containing bends=25, % 50 m 
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sections making up usual-length containing bends=25, Sign test binomial ns n=16). 
It was clear that the usual-lengths of some individuals were considerably longer than 

others occupying the same water course (Fig. 4.9. ). The usual-lengths of these individuals 

always overlapped the usual-lengths of one or more neighbours. Since this is unlikely to occur 
between neighbours that were defending territories, it suggests that individuals which were 

using large ranges which overlapped others were non-territorial. It was not possible to produce 

a definition for categorising individuals as territorial or non-territorial that was universally 

applicable, however the ranges of all individuals suspected to be non-territorial were 

distinctive in terms of length and overlap, when compared to their neighbours. Pooling the 

data between water courses, the maximum-lengths and usual-lengths of non-territorial 

individuals were significantly longer than those of territorial birds, while there was no 

difference in the core-lengths and number of nuclei between the two classes (Table. 4.1. ). 

Although there was no difference between the number of territorial and non-territorial 

individuals which were of different sexes (%2=0.262 ns df=1 n=16), individuals that were non- 

territorial were significantly more likely to be juveniles than birds which were defending 

territories (x2=5.591 p<0.05 df=1 n= 16). Here a juvenile is defined as an individual in its first 

year of life. 

On comparing the proportions of the three study sites that were made up of broken 

water, it was clear that as the width increased, the proportion of 50 m segments that contained 

broken water decreased (r, =-0.81 p<0.005 n=3). There was no increase in width along the 

length of each of the three study water courses (all r, p>O. 1 n>50). As width increased 

between water courses however, usual-length decreased, core-length remained constant and 

core area increased (Table 4.2. ). Core area was calculated by multiplying the total core length 

by the mean width of the water course occupied (Section 2.3.1.1. Table 2.27). 

The sample size of territorial individuals within each study water course was too small 

for statistical comparisons of space use statistics to be made between different sex and age 

classes (for Lower Devon; male n=4, female n=2, adult n=6, juvenile n=0). The age, sex and 

statistics for the 16 dippers are presented in Appendix 5. 

Only one territorial dipper out of the eleven that were radio-tracked, appeared to 

occupy a territory which could be classified as a non linear T-shaped configuration. In this 

individual, a small tributary was occupied briefly during a period of raised water levels. One 

out of eleven territorial and two out of five non-territorial dippers used core-nuclei on 
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Table 4.2. Spearman correlation coefficients between different 

measures of range size and the width of the water 
course occupied by non-breeding territorial 
dippers (n=11). 

Measure of range size rs 

Usual-length (m) -0.59* 
Core-length (m) -0.13 
Core-area (m)# 0.69* 

* p<0.05 
# Core-length multiplied by median width of water 

course occupied. 
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tributaries which joined the main water course some distance up-stream or down-stream of 
their other core-nuclei. This resulted in their using L-shaped usual-length configurations. This 

use of tributaries also occurred under spate conditions. The type of range configuration used 
by each individual is shown in Appendix S. 

Because of the small number of individuals radio-tracked concurrently in this study, 

the degree of short term range fidelity shown by territorial dippers could not be measured for 

comparison with that of non-territorial individuals. However, the percentage change in the 

utilization of 50m segments between two cohorts (Doncaster 1990) of location estimates is 

shown and compared to that for robins in Fig. 4.10. In order to compare dippers and robins, 

for which range is measured in length and area respectively, the proportional change in grid 

segments/cells occupied was used. The sample size for the dipper was too small to allow 

statistical comparison between the two, although the ranges of both territorial dippers and 

robins appeared to change at a similar rate relative to their size. An example of the short term 

range fidelity for a territorial dipper is shown in Fig. I l. a. There was only one individual for 

which ranges were available with an inter-cohort interval of sufficient length to assess longer 

term range fidelity. The two usual-lengths of the individual are illustrated in Fig. 4.1 l. b. and 

show a change from territorial to non-territorial space use. 

4.3.4. Individuals within the neighbourhood. 

On modifying the definition of a near neighbour developed for use in a two 

dimensional system of territories, the near neighbour of a dipper may simply be defined as 

an individual for whom part or all of its usual-length lays within one median usual-range 

length of the edge of the usual-length of a focal individual. This was equal to 550m (Table 

4.1. ). This definition is also suitable for both linear and non-linear territories, the maximum 

number of near neighbours possible for these being two and three respectively. 

The percentage length overlap for different measures of range overlap between the five 

dyads of concurrently tracked near neighbours that were recorded in this study is shown in 

Table 4.3. Clearly by definition, the maximum-lengths and usual-lengths of non-territorial 

individuals overlapped those of both territorial and non-territorial individuals, often to a large 

extent. The usual-lengths and therefore core lengths of territorial dyads never overlapped, 

although in one case the maximum-length overlapped the usual-length of a near neighbour 

to a small extent. An example of a group of near neighbours is shown in Fig. 4.12. A median 
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Fig. 4.11. Examples of range fidelity in non-breeding dippers. Adult female RA84852 
showed high fidelity to the segments of water course occupied over the short 
term on the Lower River Devon (a), while juvenile female XR68870 showed 
a change from territorial to non-territorial space use over the longer term on 
the River Ardoch (b). The open bars indicate usual-length and dates refer to 
the first day of sampling for each standardised sample. 
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of 17 % of radio-locations occurred outside the usual-length of ranges of individuals that were 

classed as territorial. These were defined as excursive locations. Excursive locations of 
territorial dippers that were also intrusive in concurrently tracked neighbours were rare. Only 

one out of five dyads showed a small degree of intrusive activity in the core nucleus of a near 

neighbour. 

4.3.5. Roost selection. 

The roost sites selected by radio-tagged dippers could be assigned to two main 

categories. These were a) associated with artificial structures and b) in entirely natural 

situations. The range of situations observed within each category are illustrated in Fig. 4.13., 

although they were not quantified to this level. 

Some individuals were captured of night on their roost sites for the purposes of 

attaching radio-tags. Of these, a few selected a different site on the following night, 

suggesting that disturbance at roost sites may have effect on roost selection. One such 

individual selected a roost site two kilometres from where it was initially captured, returning 

to the first site after a few days. Other individuals merely selected a different position within 

the same site or occupied the same position on subsequent nights. Because of this the last 

night on which roost sites were recorded was used when looking for differences in selection 

between individuals, in order to reduce any disturbance-related biases. 

There was a slight but not significant tendency for birds which selected artificial sites 

to travel further than birds which selected natural sites (Mann-Whitney U=9.0 ns, median 

distances artificial=300m range 0-2250 n=6, natural=50m range 0-950 n=4). There was also 

a slight but not significant tendency for dippers which roosted excursively to move upstream 

(x2=1.28 ns ldf n=7,5 moved upstream and 2 down stream). Birds which roosted excursively 

were however, significantly more likely to be located in a communal site than birds which 

remained on their usual-length to roost (X2=4.0 p<0.05 df=1 n=10). 

Because the effect on roost selection of capture at roost, the fidelity to particular sites 

over time was difficult to assess. Of two individuals which were initially captured on their 

territory during daytime however, both used the same sites over the five nights that they were 

monitored. 



a) 

b) 

i) 

ll) \ ill) 

Fig. 4.13. Categories of roost site selected by radio-tagged dippers. Artificial sites (a) 
contained individuals roosting on ledges (i) and in pipes and holes (ii) in 
bridges and culverts. Natural sites were more varied (b), with birds choosing 
sites under overhanging vegetation (i), on rock faces over water (ii) and even 
in dry cavities behind rapids (iii). 
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4.4. Discussion. 

4.4.1. Structure of the territory and neighbourhood in the dipper. 

In common with the robin, the utilization distribution of the dipper was highly non- 

uniform and multinuclear. Ranges contained a varying number of core nuclei separated by 

stretches of water which were overflown but rarely used. Together these core nuclei 

comprised the usual-length and represented the length of water along which each individual 

must travel in order to utilize its fragmented core regions. Behaviour associated with 

territorial defense was only recorded from dippers which were within their usual-length. This 

may indicate that, as in the robin, the latter measure of range use approximates the extent of 

the defended territory. In chapter 3. it was shown that the usual-area of the robin, the measure 

of range use analogous to the usual-length, also represented the space that was defended. The 

sizes of usual-length recorded in the present study are in general larger than the estimates of 

non-breeding territory length recorded by previous studies (Table 4.4. ). This is possibly due 

to variation in the width of the water courses in the different studies, since usual-length was 

negatively correlated with width in the present study. This difference is however, more likely 

to be a result of the different definitions used to determine the lengths of territories in 

previous studies. Furthermore, radio-tracking allows the relocation of individuals which may 

have been missed by visual observations alone. This could lead to under estimation of range 

length, particularly if individuals were particularly widely ranging. 

Some dippers were apparently non-territorial. As with the non-territorial element of 

the robin population however, individuals that were non-territorial could not be unequivocally 

identified. Nevertheless, the usual-ranges of those dippers that were classified as non- 

territorial were significantly longer than those of their territorial neighbours, with which they 

showed considerable range overlap. Although the robin study population also contained non- 

territorial individuals, the constraints of the riparian habitat occupied by the dipper and the 

resulting obligatory linear space-use, results in the non-territorial members of the population 

being forced to link remote core nuclei with flight paths which ¢ lay directly through the 

territories of one or more neighbours. Thus non-territorial dippers potentially experience a 

higher probability of unintentional aggressive encounters with territorial neighbours than 

robins, whose two dimensional pattern of space-use allows them the option of manouvering 

round neighbouring territories clustered in high quality habitat, when moving between remote 

core-nuclei. Dippers moving relatively long distances on the water course, for example when 



Table 4.4. Comparison between the non-breeding usual-range 
length obtained by radio-tracking and territory 
length obtained by visual observations for two 
species of dipper. 

Species Study Range (m) 

Cinclus cinclus Vogt (1944) 200-500 

Balat (1962) 100-200 

Holmbring & Kjedemar (1968) 220-830 

Sudhaus (1972) 150-200 

Davenport (1983)* 400-3200 

Cousins (1985)" 
Territorial 100-775 
Non-territorial 250-1000 

Present study using radio-tracking 
Territorial 250-1400 
Non-territorial 1500-2450 

C. mexicanus Bakus (1959) 55-963 

Price & Bock (1983) Aggression but no 
territoriality 

* Davenport (1983) concluded all individuals were non-territorial. 
# The definition of Cousins (1985) was "an aggressively defended area". 
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commuting to and from excursive roost sites, were often observed to fly very fast through the 
territories of neighbours or to fly much higher than territory owners that were moving 
between their core-nuclei. This may allow birds to move between remote locations along the 

riparian habitat while avoiding interactions with intervening aggressive territory owners. 
The ends of territories can be considered as impermeable, through which there is no 

possibility of intrusions by neighbours, if they border on riparian habitat which is not 

occupied by other dippers. This may occur when birds occupy core nuclei on small tributaries, 

upstream of which there are insufficient resources to support a neighbour. When the ends of 

territories border on habitat that does contain neighbours, however, they must be viewed as 

being permeable, through which intruders can enter to trespass on the owners territory. All 

territory boundaries will be of this form on main water courses, where territories are of simple 

linear configuration. Regardless of simple linear, L-shaped or T-shaped territory configuration, 

therefore, it is possible that dippers may occupy usual-lengths with one, two or three 

permeable boundaries through which intrusions into their territories may occur. 

Although the potential for occupying non-linear territories exists for the dipper, these 

results suggest that such configurations are rare. Some territorial and non-territorial 

individuals maintained core-nuclei on the main water course and on tributaries simultaneously 

in L-shaped configurations. It is possible, however, that these ranges represented two defended 

lengths occupied simultaneously or sequentially during the period of radio-tracking. Like the 

robin, non-territorial dippers may be nomadic and exhibit range drift. Only one dipper used 

core nuclei which conformed to a T-shaped configuration. This could similarly have been a 

transient feature or artifact of sampling protocol. Of the small tributaries present in the study 

sites, they were seldom used by more than one bird. Tributaries may therefore be considered 

"cul de sacs", containing additional foraging habitat but only hard boundaries. The edges of 

usual-lengths on the main water course, however, represent soft or permeable boundaries 

through which intruders may trespass from upstream or downstream. It is possible therefore, 

that intentional intruders or birds in transit between sites, may enter or pass through a 

neighbours linear territory without being detected while the owner is located in such a "cul 

de sac". 
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4.4.2. Range-use and habitat selection. 

All the study water courses drained areas of similar geology, land use and climate. 
Any differences observed were therefore not a consequence of acidity-mediated variation in 

aquatic biomass on which the dippers depend for food (Vickery 1992, Ormerod et al 1985, 

Logie in press). Although the usual-length occupied by dippers varied, each contained a 

similar total core length. This'suggests a minimum requirement of some habitat feature for 

survival. This phenomenon was also a characteristic of the usual-area of the robin and has 

been noted in a number of other studies of range use (Kenward 1982, Davies & Lundberg 

1984). 

It has often been suggested that dippers defend habitat which contains sufficient 

regions of preferred foraging habitat (broken water) to meet their energy requirements (Cramp 

1988). There were, however, no significant preferences for core lengths to be located in such 

habitat features in the present study. Furthermore, there were no preferences for core lengths 

to be located on sheltered bends in the water course. Usual-lengths decreased as the width of 

the water course occupied increased. This has been recorded previously in the dipper (Robson 

1956). The total core length however remained constant between different widths. The core 

area was therefore directly proportional to the width of the water course. It has been 

suggested that each dipper attempts to defend a particular area of broken water containing 

good foraging sites (Shooter 1970). The lack of clear selection for such shallow water and the 

varying core area indicated by this study, suggests that this is not the case. These results 

instead appear to show that the habitat which is defended is instead a critical length of water 

from which, for example, owners may have high visibility of neighbours or predators, shelter 

from the elements and access to broken water for foraging. Alternatively, from the proportion 

of time which is spent sitting quietly by the dipper during the non-breeding season (30%; 

Bryant & Tatner 1988) it is clear that that the radio-tracking data represent the locations of 

birds engaged in a wide range of activities. The resulting range statistics may therefore not 

correlate with the extent of any one habitat feature, if different features are utilized during 

different activities. The existing radio-tracking data are insufficiently detailed to measure this 

differential habitat utilization with behaviour. 

The data were too few for a statistical comparison to be carried out between the 

territory lengths of dippers of different age and sex. The data do however, suggest that male 
dippers generally occupied longer usual-ranges than females. This has previously been shown 
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in the dipper (Davenport 1983), although the reverse was found by Cousins (1985). The 

energy expenditure of dippers is positively correlated with body mass (Bryant et al 1985). 

Since male dippers are larger than females (Galbraith & Broadley 1980), the conclusion is 

that male dippers must defend a longer total core length in order to satisfy their daily energy 

requirements. Because total core lengths are fragmented into a number of core nuclei 
distributed along the water course, males must therefore defend a longer usual-length. 

4.4.2. Short and long term changes in range-use. 

The limited data available on the dipper in the present study suggest that like the 

robin, territorial dippers showed strong fidelity to the location and size of their territory over 

the short term. The degree of fidelity was similar to that of the robin, although lack of data 

from other species makes it difficult to draw a general conclusion. The fidelity shown by 

dippers in previous studies appears to vary. Price & Bock (1983) describe some individuals 

as highly sedentary, while others appeared to wander "seemingly at random". The latter 

presumably refer to nomadic non-territorial individuals. The non-territorial dippers recorded 

by radio-tracking were significantly more likely to be juveniles than birds which were 

defending territories. Price & Bock (1983) suggest that juvenile dispersal continues into the 

winter and the non-territorial dippers in the present study may have represented juveniles 

which had not yet managed to obtained a usual-length of sufficient quality for economic 

defense. 

Qualitative observations in the present study suggest that dippers responded to raised 

water levels by establishing new core-nuclei in small tributaries, presumably where shallow 

water for foraging remained accessible. Such short term movements have been recorded 

previously in dipper populations (Balat 1962). 

The data available for assessing long term range fidelity in the dipper were too few 

for quantitative conclusions to be drawn. It seems likely however, that territorial individuals 

showed high fidelity to their usual-lengths, compared to the more nomadic non-territorial 

birds. Switches between patterns of space-use are however to be expected as some birds gain 

territories and others are evicted or abandon territories that are no longer economically 

defendable and pursue a non-territorial existence in response for example to periods of spate. 

Such changes in space-use have been recorded by Bakus (1959) from observations of colour 

ringed dippers. 
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4.4.3. The selection of roost sites. 

The types of roost site occupied by the radio-tagged dippers were similar to those 

recorded by other studies (Cramp 1988), with the exception of birds which roosted in natural 

cavities behind flowing water. These would have been impossible to locate without the aid 

of radio-tracking. Dippers not initially caught at roost, and for which the selection of roosts 

over successive nights was recorded, showed high fidelity to roost sites. This appears to be 

common in the dipper (Ormerod & Tyler 1990, Shaw 1979). 

The dippers radio-tracked in this study showed a tendency to select roost sites that 

were further from their daytime range when in artificial structures such as bridges. If such 

artificial locations provide higher quality roost sites than are available on most territories, 

longer flights to and from territories would be energetically justified. Birds which chose roost 

sites in excursive locations were more likely to be in the company of other dippers, forming 

a communal roost. This phenomenon was similarly recorded in the robin. The conservation 

of energy during the long winter night has been suggested as a reason for the use of bridges 

for roosting (Shaw 1979, Ormerod & Tyler 1990). Since such high quality sites are relatively 

rare along the water course (only 6 bridges were used for roosting on approximately 10 km 

of water course), it would be expected that dippers from the surrounding area will commute 

to and roost communally within such structures. One individual commuted over two 

kilometres every dusk and dawn to reach its chosen roost site, further than the nearest natural 

site known to have been used at the same time. The large distances that some individuals 

were prepared to fly to reach an artificial roost site suggests the advantages of such behaviour 

is considerable. For example security from nocturnal predators and shelter from severe 

weather (Shaw 1979, Ormerod & Tyler 1990). 

When roosting excursively, movements towards roost sites tended to be in an upstream 
direction. Hewson (1969) also observed this preference and suggested that is was due to the 

greater abundance of roost sites in the upper reaches of streams and rivers. This was probably 

true for the radio-tagged dippers occupying territories on the lower reaches of the widest 

water course, but for the other study sites suitable sites appeared abundant along their whole 

length. 



Chapter 5. 
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5. Short term territory use in the robin; 

predictions and tests. 

5.1. Introduction. 
Animals meet their energy requirements by foraging. For predators, the density of the 

prey they exploit may vary two ways. Firstly, the density of prey items exploited by some 

predators can vary due to events independent of the predators activity (Charnov 1976). An 

example of such prey is that exploited by the spotted flycatcher. This small bird catches flies 

in swarms during short flights from perches, where it scans for scans for prey items. The 

density of flies does not change during the time a perch is used, successive inter-catch 

intervals being similar (Davies 1978). Changes in availability of prey therefore depend on 

whether a swarm of flies happens to be within striking distance from a perch, rather than any 

effects of the predator on the swarm (Davies 1978). 

Secondly, a predator may deplete the available prey in a local area either directly by 

consuming all the accessible items, or indirectly by disturbance of the remaining prey. Daily 

or seasonal changes in, for example prey mobility, will however, mean that both short and 

long term changes in the profitability of different areas may occur that are outside the 

predators control (Charnov 1976). Any small insectivorous birds such as the robin and the 

dipper are likely to experience this form of variation in prey density. 

In situations where prey densities are reduced by the presence of a predator, the animal 

must at some point to move to an undepleted patch if it is to maximise its feeding rate 

(Charnov 1976). Once the predator has depleted and abandoned a patch, mobile prey items 

may redistribute themselves such that the patch is once more profitable to exploit. The 

phenomenon of patch recovery means that under certain circumstances the resource, 

represented by renewing prey densities within patches, can be exploited most efficiently by 

defending them as territories; owners can temporally schedule their visits to patches to 

coincide with maximum prey densities (Davies 1980). 

Previous studies have discussed territorial defense in terms of concepts such as patrol 

time (Schoener 1987) or boundary patrolling (Dill 1978), often without quantitative field 

evidence. Consequently, there is little information on how territorial exploitation and defense 

is achieved and what behaviours, and therefore energy costs, are involved. Because of this, 
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previous estimates of the form of the cost constraint on territory size cannot yet be considered 

accurate. 

Radio-tracking can provide information not only about what habitat features are used 
by small territorial birds, but also how they are used over time. This presents an opportunity 

to determine; a) the pattern of resource exploitation within territories and b) what activities 

comprise territorial defense and the degree to which they are mutually incompatible with 
territory exploitation. 

The robin was found to occupy territories of different shape, estimated by their 

eccentricity, which ranged from polygonal to highly linear. The dipper on the other hand 

occupied territories that were essentially only linear. Consequently it was considered more 

informative to focus on the energetic consequences of the large variation in the shapes of 

territories defended by the robin, rather than on a comparative study of the different territorial 

systems of both robin and the dipper. 

5.2. The territory as a network. 
5.2.1. Differential space-use within the usual-area. 

In previous studies, robin territories have been assumed to consist of enclosed and 

usually fixed areas with abrupt but permeable boundaries (eg Lack 1965, Brindley 1991). This 

may be an unrealistic model since it is already apparent that territories are highly dynamic 

in location over time (chapter 3). Furthermore, the probabilistic model of territory use shows 

that the robins are normally located in a varying number of core-nuclei (78% of occasions), 

separated by areas that were rarely visited (1% of occasions)(Fig. 3.31. ). If the birds used all 

of their core nuclei on a regular basis (for the purposes of territorial exploitation and defense), 

they must therefore have been moving between nuclei very rapidly for them to have been 

recorded in transit so infrequently. 

Continuous tracking data from robins of sample interval two minutes indicated that 

they moved significantly faster when commuting between nuclei than when travelling within 

nuclei (Wilcoxon signed rank matched pairs test Z=-2.80 p<0.01 n=10, median speed; within 

nuclei=2.5 m min-' range 0-5.4, between nuclei=19.5 m miri 1 range 12.4-70.0). Qualitative 

observations indicated that this was because movements between nuclei were predominately 
by means of flight, while within nuclei birds spent their time engaged in perch and drop 

foraging (East 1980,1982), foraging by hopping on the ground and resting. The estimates of 
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speed while engaged in the two different types of movement from continuous tracking were 

equal or lower than direct measurements of flight or hopping speed (flight 3.85 m sec'' and 
hopping 1.5-2.5 m min-', Tatner & Bryant 1986). This was because the two minute sample 
interval between continuous radio-tracking locations allowed time for birds to engage in 

activities such as pausing for vigilance during commuting and repeatedly quartering prey-rich 

areas within nuclei. 

From the examination of samples of continuous tracking data, it was apparent that not 

only were inter-nucleus commuting movements rapid, but individuals tended to follow the 

most direct routes. An example of such movement is shown in Fig. 5.2.1. Based on these 

observations the territory may be better considered simply as a number of core nuclei within 

which birds foraged, linked by a network of preferred flight paths. 

5.2.2. The classification and shape of hypothetical networks. 
Using this concept of a territory as a variable number of feeding patches linked by 

preferred flight paths, it is possible to construct a set of hypothetical territory networks in 

which core-nuclei are represented by points and are separated by commuting distances 

representing the preferred flight paths. These networks may vary in two ways; a) the number 

of core-nuclei being used and b) the commuting distances between nuclei. These two forms 

of variation are not mutually exclusive. 

The simplest form for such models is the uniform mononuclear territory described by 

Grant (1969). As the initially mononuclear territory fragments into an increasing number of 

core-nuclei (increasing patchiness), owners must begin to commute between foraging patches 

in order to utilize their whole territory. When the number of nuclei increases, so does the 

number of potential configurations for the commuting paths. This is illustrated in Fig. 5.2.2. 

for hypothetical networks for which all inter-nucleus commuting distances are the same 

distance d. The cost of moving between any pair of nuclei is therefore constant. At one 

extreme robins may select core-nuclei which constitute an ideal-linear configuration. In such 

territories, robins must pass through all nuclei when moving between the most distant points 

of their territory. This is essentially identical to the pattern of use shown by most dippers 

defending lengths of river. Alternatively, robins may select core-nuclei for which the network 

of flight paths enables it to reach the majority of its foraging patches without having to pass 

through intermediate nuclei. This was termed an ideal-polygonal territory configuration 
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Fig. 5.2.1. Continuous tracking data from non-breeding territorial robin F646594. In this 
example only 4 (10 %) of locations occured outside the core-nuclei polygons, 
here indicated by stars. Nevertheless some were very close to and therefore 
most likely still associated with the nearest nucleus. The sample interval was 
2 min and the sampling period 1 hr. 
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(Fig. 5.2.2. ). Between these two extremes lie a range of intermediate configurations, within 

which territory owners can reach varying numbers of their constituent foraging patches within 

a commuting distance d (Fig. 5.2.2. ). 

In addition to the above variation, each of these networks may also vary simply by 

increasing or decreasing the individual commuting distances between nuclei (Fig. 5.2.3. ). As 

the individual flight distances between feeding patches increase so will the cost of each 

movement. 

In chapter 3. the shape of robin territories was quantified using an index of eccentricity 

applied to irregular polygons. From the range of potential configurations however, it can be 

seen that some apparently polygonal territories (low, E) may be utilised by a network of 

highly linear configuration (pseudo-polygonal linear). In order to compare the relative merits 

of polygons and networks in measuring the accessibility of patches within the territory, it was 

necessary to derive a measure of territory shape based on the configuration of flight paths. 

An index of linearity L was calculated by following the procedure in Fig. 5.2.4., where 

examples for different configurations are also shown. L varies in a consistent manner for 

networks of different configuration and number of core-nuclei (Table 5.2.1. Fig. 5.2.5. ). Values 

of L greater than 0.25 indicate ideal-linear use, values equal to 0.25 indicate circuit-polygonal 

use and values less than 0.25 indicate varying degrees of polygonal use. The lowest values 

of L indicate ideal-polygonal use. 

On applying the index of linearity, it is apparent that a polygonal territory is a 

network within which it is not necessary to pass through all the constituent core-nuclei in 

order to travel along its greatest length. For a robin occupying a particular core-nucleus 

therefore, L may be viewed as a measure of the accessibility of other nuclei in the individuals 

network. The proportion of nuclei accessible within the same flight distance within networks 

containing four core-nuclei and of different values of L are shown in Fig. 5.2.6. The use of 

L therefore allows territory networks of different patchiness to be assigned to the different 

categories of configuration. Note that mononuclear territories are non-configurational, owners 

not needing to commute between patches during territorial exploitation and defense. The index 

L is therefore not relevant to such ranges. In Fig. 5.2.2. therefore, both E and L increase from 

left to right and from bottom to top. 

In the network configurations illustrated in Fig. 5.2.2. the commuting distances shown 
by solid lines represent the flight distance d. Dashed lines indicated distances greater than d. 
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Fig. 5.2.4. Calculation of the index of linearity for quantifying the configurations of 
territory networks. The value of L is derived from the number of core-nuclei, 
and the matrix which decribes the movement possibilities within the network. 
Examples of networks, matrices of different values of L are shown 
in b) and c). 



a) 
Index of linearity L= (n/Mto, ) 

Mma, 

Where; 
n= No. core-nuclei in the territory network. 

M0, = The total number of movement possibilities (the sum of the 
cells in the matrix describing the network). 

M, 
�,,., = The maximum number of movement possibilities from one nucleus 

(the highest total of any column or row in the matrix). 

b) 

Matrix of movement possibilities within network 
1 2 3 4 
0 1 1 0 0 n4 

Mt., 6 
21 0 1 0 MII1ax=2 

( 

L=0.33 
30 1 0 1 

40 0 1 0 

1 
C) 

4 

3 
Matrix of movement possibilities within network 

1 2 3 4 
10 1 1 1 n=4 

M`°` 12 
21 0 1 1 Mn, 

u3 
31 1 0 1 L= 0.11 

41 1 1 0 

2 

1234 
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Fig. 5.2.5. The behaviour of the index of linearity L for different classes of network 

configuration containing different numbers of core-nuclei. Values of L greater 

than 0.25 indicate ideal-linear configurations, values equal to 0.25 indicate 

circuit-polygonal configurations and the lowest values of L indicate ideal- 

polygonal configurations. Between circuit-polygonal and ideal-polygonal lie a 

range of possible hybrid configurations and range of associated values for L. 

Mononuclear territories were non-configurational and therefore L was not 

relevant to them. 
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Robins which choose to commute between nuclei along these longer routes will experience 

a decreased L. The total distance to their other foraging patches will therefore decrease, 

increasing the accessibility of the range as a whole. Individuals using longer flight paths will 
however incur an increase in the energy cost of individual commuting movements. 
Furthermore, longer flights may expose birds to a higher predation risk by giving aerial 

predators such as sparrowhawks longer to pinpoint and launch an attack on a flying bird 

(Newton 1986). 

In ideal linear configurations of core-nuclei, the angle between pairs of flight paths 

is 180°. This represents the maximum angle possible between commuting routes and prevents 

occupants from using additional flight paths longer than d. The minimum angle possible 

between commuting paths of equal length is 60°. Angles equal this when flight paths take the 

form of equilateral triangles. In such situations L can be minimised. Values of angles between 

these extremes will provide opportunities for the use of longer flight paths as short-cuts to 

otherwise distant nuclei. This will produce intermediate effects on the accessibility of foraging 

patches within territories. 

To recap, territories of high E must contain networks of high L. Territories of low E 

however, may contain networks of low or high L depending on the owners motivation to use 

inter-nuclei commuting paths of different cost. An apparently polygonal territory may be used 

in a highly linear manner. 

5.2.3. The quantification of network use from field data. 

The pattern of use of territory networks was measured using continuous tracking data. 

A sample interval of two minutes, the minimum interval feasible for manual radio-tracking, 

ensured that radio-location estimates showed high serial autocorrelation. This form of data can 

reveal how the configuration of core-nuclei suggested by sequential cluster analysis were used 

during each bout of continuous tracking. Because of the inevitable natural variations in robin 

movements however, it was necessary to construct a series of "movement rules" in order to 

define intra-nuclei activity, inter-nucleus commuting and excursive movements. 

The core-nuclei defined by discontinuous tracking data often contained less than the 

proportion of continuous tracking locations that would be expected from the probabilistic 

model of territory structure (Fig. 3.3 1. ). This was considered to be due to territory drift and 

the effects of seasonal and weather induced micro-habitat selection (eg Walsberg 1993). For 
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example during October each year, many acorns were squashed on the road running through 

the study site. This was exploited as a food source by the robins whose territories lay close 

to the road, resulting in a shift in activity to the edges of nuclei which provided the best 

access. Histograms of distance from the edge of core-nuclei both within and outside the usual- 

area for continuous tracking data are shown in Fig. 5.2.7. These suggested that robins 

concentrated their activity in the area defined by a two metre wide boundary strip around each 

of the core-nuclei predicted by discontinuous tracking data. Of the 300 continuous tracking 

locations from 10 individuals which fell outside the core-nucleus polygons (Fig. 5.2.7. ), 59 % 

were within 2m of the core polygon edges. When two nuclei were separated by less than two 

metres they were considered to have been used as one, forming a "complex nucleus". This 

occurred in 19% of territorial individuals (n=43) but had no effect on the median number of 

nuclei within networks (without boundary strip median=4 range 1-7 n=43, with boundary strip 

median=4 range 1-6 n=43). The mean area of the core-nuclei and boundary strip within each 

territory network were significantly correlated with the mean area of the bushes they occupied 

(r, =0.77 p<0.005 n=10 Fig. 5.2.8. Table 5.2.2. ). The data lay close to the line expected if both 

were the same size. This suggested that the edge of the boundary strip corresponded with the 

edge of the bushes occupied. 

Although this two metre boundary strip ensures that on average 76% of continuous 

tracking locations could be directly assigned to particular core-nuclei, there were still small 

numbers of locations which lay outside these areas. Some of these occurred within the usual- 

area while others were excursive. Robins may forage in the open for short periods while still 

being associated with and subsequently returning to a particular nucleus (for example during 

perch and drop foraging; East 1980,1982), or may more rarely be recorded during a 

commuting movement to a different nucleus. Only one of these indeterminate locations would, 

if classed as being outside a nucleus, be sufficient to disrupt measurements of the duration 

of nucleus occupancy or sequences of inter-nuclei commuting. Since it is this information that 

is required to determine patterns of patch use, these locations must be further classified. 

By constructing lines of equi-distance between nuclei, it was possible to assign the 

intermediate locations to the nearest nuclei on the assumption that such movements originated 

within or were directed towards them. This definition is based on the position in space of the 

intermediate locations. The locations that occurred outside the usual-area however, included 

brief movements just outside the boundary strip and true excursive activity, including 
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intrusions into neighbouring territories. Here the duration of each excursion must be used in 

determining the category into which locations fall, leading to a definition based on time. The 

frequency with which excursive movements of different durations occurred, based on 35 

excursions by 10 individuals, are shown in Fig. 5.2.9. Although these data were not 

statistically independent, the majority of excursions (66 %) were equal to or of less than four 

minutes duration. Using a sub-sample of independent data, bouts of excursive activity were 

equal to or of less than four minutes duration significantly more often than excursions longer 

than four minutes (Goodness of fit test x2=3.6 p<0.05 one tailed n=10). The test was one 

tailed because excursions of longer than four minutes were not expected to be more frequent. 

There was no relationship between the median duration of excursions and the median value 

of maximum distance individuals attained from their nearest nucleus (r, =-0.12 ns n=10). More 

distant excursive movements therefore were not öf longer duration. A duration of four minutes 

however, was adopted as the cut off point beyond which movement outside the usual-area and 

boundary strip was considered to be of excursive intent. This arbitrary period was judged to 

allow insufficient time for an individual to gain significant information concerning neighbours, 

or to have its own foraging success reduced by a simultaneous intrusion by a neighbour onto 

its own territory. This space and time based classification of intermediate locations is 

summarised in Fig. 5.2.10. 

It was not possible to determine the routes of all flight paths in observed ranges with 

a high degree of certainty. This was because their use varied in intensity, some nuclei were 

not visited during a window of continuous tracking and some birds may have used different 

flight paths in different situations. A measure of network accessibility (L) therefore, although 

useful in demonstrating the differences between hypothetical networks, cannot be directly 

applied to the dynamic pattern of space use shown by real territorial robins. Hence it was only 

possible to measure the lengths of the flight paths that a bird would use if minimising each 

commuting distance between its core-nuclei. The extent of the departure from this base line 

value in territories with low E and therefore potentially low L, will indicate the degree to 

which their use departs from that of an ideal-linear pattern. 
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Fig. 5.2.9. Frequency histogram showing the duration of bouts of excursive activity (n=35 
from 10 individuals). The sample interval for continuous tracking data was 
equal to 2 min. One excursive location was assumed to represent activity of 
duration 2 min. 
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All locations here are excursive. Bouts of 
excursive activity of greater than four minutes 
duration indicate an intent to move excursively. 

All locations here associated 
with nearest nucleus. 

Line of equidistance 
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Diagramatic circular 
ý% ------------- core-nucleus. 

Fig. 5.2.10. Summary of the movement rules applied to continuous tracking locations. 

Following these, intermediate locations could consequently be assinged to a 

particular core-nucleus, or to true activity of excursive intent. 
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5.3. The use of nuclei within networks. 

5.3.1. Predation of a renewing food supply. 
Previous studies have shown that the robin in winter preys mainly on small mobile 

invertebrates collected from the ground surface (Lack 1948, Cramp 1988, Grajetsky 1993), 

although fruit is also sometimes taken (Harper 1984). The size of prey items taken by robins 
has also been correlated to bill morphology (Herrera 1978). The remains of prey found in the 

stomachs of dead birds dissected for body composition analysis in this study supported these 

observations (Table 5.3.1. Appendix 6. ). 

From chapter 3 it was apparent that robins concentrated their foraging behaviour in 

a varying number of core-nuclei. These corresponded to the position of shrubs and bushes, 

which were considered habitat patches of high quality. On arriving in a patch, the capture rate 

experienced by a robin will follow a function of diminishing returns as the number of prey 

items available on the ground surface decreases. Such resource depression within a patch will 

occur primarily through the consumption of prey by the predator (Charnov et at 1976). The 

resource may also be depressed simply by the presence of the predator in the patch; the 

mobile invertebrate prey moving into cover and becoming inaccessible to the predator 

(microhabitat depression; Chamov et al 1976). This has been shown to occur in the robin 

(Grajetsky 1993), its effects being reduced by birds employing perch and drop foraging 

behaviour (East 1980,1982) instead of hopping along the ground. So, within a particular 

patch the feeding rate of a robin will decline exponentially with time until it reaches zero, by 

which time all the prey initially available have been consumed; have moved out of sight; or 

have adopted a cryptic posture. If the non-breeding robin is assumed to be maximising its rate 

of energy intake over the day (energy maximiser with a time constraint; Schoener 1969), 

individuals must at some point make the decision to give up foraging in a depleted patch and 

incur the short-term cost of commuting to an undepleted patch where its foraging rate is likely 

to be higher. The time period between arriving in a new patch and leaving after giving up 

foraging has been termed the "giving-up time" (Davies & Houston 1981). 

Once abandoned, the number of prey available in a depleted patch will start to recover 

as previously hidden invertebrates move into sight. The time that it takes for the prey 

availability in a depleted patch to return to its initial value is the recovery time (Davies & 

Houston 1981). Assuming that the giving-up time is considerably shorter than the recovery 

time for foraging robins, the most profitable behaviour is that which ensures the time elapsed 



Table 5.3.1. Percentage of robin stomachs which contained 
each of the different items. See Appendix 6. 
for stomach contents of individuals. 

Phylum % stomachs containing each category 
Class 

Order Present study (n=28) Lack(1948)(n=13) 

Mollusca 
Gastropoda 

Pulmonata 48 

Annelida 
Oligochaeta 

Lumbricidae 0 8 

Arthropoda 
Arachnida 

Acarina 
Pseudoscorpiones 
Araneae 

Crustacea 
Isopoda 

Myriapoda 
Diplopoda 
Chilopoda 

Insecta 
Thysanoptera 
Hemiptera 
Coeloptera 
Lepidoptera 
Diptera 
Hymenoptera 
Dermaptera 

7 
4 
11 

4 

11 
11 

4 
7 

74 
0 

56 
11 
19 

8 
0 

23 

0 

0 
0 

8 
38 
77 
15 
38 
31 
31 

Vegatable matter 22 23 
Seeds 11 46 
Grit 52 - 
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between giving-up and returning to the same patch (the return time; Davies & Houston 1981) 

is equal to the patch recovery time. Shorter than this and the robin will incur a cost in the 
from of a reduced feeding rate, by trying to exploit patches that have only partially recovered. 
Longer than this and the robin will spend more time travelling to other patches than is 

necessary in order to return to a fully replenished patch. This will also have associated cost. 
For example, failure to harvest fully recovered patches may make the territory relatively more 

attractive to intruders. Alternatively, robins may need to visits patches as soon as they have 

fully recovered simply to fuel their energy requirements. Perhaps because of a processing 

constraint (Schoener 1971), such as stomach size, robins may be constrained into consuming 

prey items in small quantities and thus more frequently. Consequently in the absence of any 

behaviour associated with resource defence, a territorial robin, should commute between the 

core-nuclei within its territory network in a "sequence such that each is depleted of prey after 

a regular time period. Assuming patches only begin to recover once the predator has left and 

the prey densities are uniform within and between patches. of different size, this regular 

sequence of visits would be expected for robins using networks containing few high quality 

patches or many low quality patches. The reason for this is that both types of patch will 

recover at the same rate after depletion, leading to the adoption of the same return time by 

owners. The results from chapter 3 already suggest that usual-areas tended to contain similar 

total core areas. As the number of nuclei increases therefore, the area of individual nuclei 

would be expected to decrease along with the duration of visits required to harvest the 

available prey. 

Based on the networks of patches described in -section 5.2., the most economic 

configurations will be those that allow access to all patches in a sequence of visits that 

minimises the total commuting distance. Such configurations are those classified as circuit- 

polygonal, ideal-polygonal and to a lesser extent pseudopolygonal-linear if owners choose to 

use longer and more costly individual flight paths as short cuts (Fig. 5.2.2. ). In these 

configurations linearity L is equal to or less than 0.25. Assuming individuals only exploit 

patches that are, or based on their return time would be expected to be, fully recovered, robins 

using ideal-linear configurations (L greater than 0.25) must at some point pass through a 

number of the patches within its network without pausing to forage in order to reach the next 

recovered patch. 
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5.3.2. Methods. 

The ranges comprising the independent sample of utilization distributions analyzed to 

determine the locations of core-nuclei and usual-areas, were inspected to determine the linear- 

length of each range. This was the total of the commuting distances that individuals would 

use if minimising the lengths of individual movements between nuclei. Individual commuting 

distances were measured to the nearest metre between the geometric centres of each relevant 

pair of nuclei. 
Robins commonly leave their roost sites well before sunrise (Harper 1985), often 

when it is still dark. Birds could not be continuously tracked this early since to a large extent 

continuous tracking data represented radio-assisted visual observation. Nevertheless, it was 

considered important to monitor birds as early in the day as possible since most singing in 

the robin has been reported to occur at dawn (Harper 1984). Accordingly, periods of 

continuous tracking were carried out, each lasting one hour, at dawn (starting within a few 

minutes of sun rise), dusk (timed to finish when the birds went to roost) and during the 

middle of the day. The timing of the latter period varied but was always within a couple of 

hours of noon. Foraging and singing are mutually exclusive activities in the robin (East 1982). 

The cost of singing at dawn, therefore, may be low since the benefits of foraging are limited. 

This is because low temperatures or light levels make invertebrates less detectable (Kacelnik 

& Krebs 1982). Although prey items are less be less likely to initially escape if chilled, prey 

densities will take longer to recover once depleted. Ten minutes was always allowed to 

habituate the focal bird to the presence of the observer. In addition to the location of 

individuals, a note was made of the locations at which focal birds engaged in vocalisation 

(song and tic-calls) or evicted intruders. The total time spent singing was also recorded to the 

nearest second on a stopwatch. 

The continuous tracking data and behavioral observations were superimposed onto the 

core-nuclei and usual-area polygons measured for each individual. The latter were based on 

discontinuous tracking data collected not less than one week before the continuous tracking 

was carried out. For these ranges, the angles between the individual commuting paths that 

minimised distances between nuclei were also measured. These were measured to the nearest 

degree at the geometric centres of the core-nuclei from which they originated. The pattern of 

use of the core-nuclei was then quantified by applying the movement rules described in 

section 5.2. The measures of range and network use are described in Table 5.3.2. These were 
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selected to quantify parameters of space use both within and outside territory networks. 
If robins foraging within their territory networks follow the predictions for exploitation 

of a renewing food supply within patches, it would be expected that they should visit their 

core-nuclei in a regular sequence or circuit, such that the return time of the individual equals 
the recovery time of the prey within patches. The degree of randomness of direction in the 

commuting movements between core-nuclei could not be assessed directly using a statistic 

such as the Runs test of serial randomness (Zar 1984). This was because such a test requires 

the two categories of movement (move to new nucleus or "back-track" to previously visited 

nucleus) to occur with approximately equal frequency. Since robins visiting nuclei of a 

polygonal network in a regular sequence will never back-track as long as the number of 

nuclei is greater than two, such a test is inappropriate. The proportion of a particular 

individuals movements that are backtracks' however, does provide a crude measure of the 

departure from the predicted regular sequence of exploitative visits to core-nuclei. 

5.3.3. Results. 

5.3.3.1. Network structure. 
The number of core-nuclei occupied by each territorial individual was positively 

correlated with the size of the usual-area within which they were contained (r, =0.47 p<0.001 

n=43). This relationship was more significant when the number of nuclei was replaced by the 

number revised to include complex nuclei, formed by the addition of two metre boundary 

strips to the edges of core nuclei (r, =0.62 p<0.001 n=43). From section 5.2. it was clear that 

robins spent most of their time within this area during continuous tracking and when 

considering the size of individual patches used by robins therefore, this area must be included. 

Furthermore, this relationship was less significant than the correlation between the "revised" 

number of nuclei and the linear length of each territory network (r, =0.68 p<0.001 n=43 

Fig. 5.3.1. ). Also shown for comparison are the data for non-territorial robins. All subsequent 

references to the core area and number of core-nuclei refer to the revised number and area 

including 2m boundary strip. 
The average individual commuting distance (the linear-length divided by the number 

of commuting paths) was not correlated with the number of nuclei in ranges (r, =0.01 ns 

n=43), indicating that within territory networks of different numbers of nuclei, the individual 

minimum commuting distances were similar (median 20 m range 8-52). If territory networks 
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Fig. 5.3.1. The relationship between the linear-length of ranges and the number of core- 
nuclei within ranges. The linear-length was the sum of the individual 
commuting movements if robins always minimised the distances moved 
between core-nuclei. Solid symbols indicate territorial individuals (r, =0.68 
p<0.001 n=43), open symbols indicate non-territorial (n-8). The line shows the 
expected distribution if all individual commuting distances were equal to the 
median value of 20 m (range 8-52). 
Equation for line is, 

Linear-length = 20 x No. core-nuclei -20 
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containing different numbers of nuclei were separated by the same total linear-length, the 
individual commuting distances would be negatively correlated with the number of core- 

nuclei. The solid line in Fig. 5.3.1, about which the data from territorial individuals were 

clustered, shows the expected distribution if all the core-nuclei in territories were separated 
by the median value of 20m. The networks occupied by non-territorial robins did not conform 

to this pattern, core-nuclei being much more widely separated. 

The number of core nuclei was negatively correlated with the mean area of individual 

nuclei within networks (the total core area divided by the number of nuclei into which it was 

fragmented) (r=0.39 p<0.01 n=43 Fig. 5.3.2). If all ranges contained the same total patch area, 

the distribution will follow curve (a). This was calculated by extrapolation from the median 

nucleus area of the median number of nuclei within territorial ranges. Although as would be 

expected, curve (a) fitted the observed data well around the median value of four core-nuclei, 

the fit is less good at the extremes of the observed data. 

The total core area showed a slight but significant increase as it fragmented into 

increasing numbers of core-nuclei (r, =0.42 p<0.005 n=43 Fig. 5.3.3. ). The data were 

considered sufficiently normally distributed for a linear regression equation to be fitted. Of 

the variation in core area, 15 % was explained by variation in the number of nuclei 

(Fig. 5.3.3. ). This suggested that for each additional core-nucleus occupied and 20m 

commuting flight path used by a territorial robin, the total core area of the territory network 

increased by 26 m2. In Fig. 5.3.2. curve (b) represents the expected distribution if the median 

area of the median number of core-nuclei was adjusted by this value between networks of 

lower or higher numbers of nuclei. The median discrepancy between the observed and 

expected values of mean nucleus area were 29.3 (range 1.5-157.0 n=43) and 19.2 (range 0- 

73.3 n=43) for curves (a) and (b) respectively. Curve (b) therefore represents a closer fit to 

the observed data (Fig. 5.3.2. ). 

5.3.3.2. Patch use within networks. 

It is already apparent that the area of individual core-nuclei was similar to the area of 

the patches of vegetation they occupied (section 5.2. ), suggesting that the edges of core-nuclei 

and the edges of occupied bushes and shrubs occupied the same locations. It is possible that 

the density of prey varies between large and small bushes and between the centre and edge 

regions within bushes. This difference would have implications for the foraging quality of 
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Fig. 5.3.2. The relationship between the mean area of core-nuclei (m) and the number of 
core-nuclei within ranges for non-breeding territorial robins (r, =-0.61 p<0.001 
n=43). Line (a) shows the expected distribution if all ranges contained the 
same total core area, the median core area of all ranges. Line (b) shows the 
expected distribution if for each additional nucleus used, there is a 26 m2 
increase in total core area (see text). The median discrepancy between the 
observed and expected values of mean core area were 29.3 m2 (range 1.5- 
157.0) and 19.2 m2 (range 0-73.3) for curves (a) and (b) respectively. 
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bushes of different size. This is because, assuming nuclei are circular, the total edge length 

increases at 1.7 times the rate of the total core area as the number of nuclei are increased. The 

data on prey densities, estimated from the number of prey items captured in pitfall traps in 

a 24 hr period, were normally distributed. There were no differences between the prey 
densities within bushes of different size (Table 5.3.3. ). Because of this, data from the different 

sites within bushes could be pooled between bushes of different size to test for any difference 

between the prey density in different sites (T-test T=-1.62 ns df=1 n=60). Since there were 

no differences in prey density between bushes of different size nor between different sites 

within bushes, patch size may be considered a measure of the number of prey available in the 

undepleted state. As the area of a bush doubles so does the number of available prey and 

hence the patch quality. 

Data concerning the patterns of movement of robins were based on over 900 radio- 

locations collected during discontinuous tracking and three one hour samples of continuous 

tracking from each of seven territorial individuals during October and November 1991. Each 

sample was analyzed to determine values for the measures of range and network use 

described in Table 5.3.2. The data are presented in Appendix 7. There were no significant 

differences between the different times of day for the different measures of range and network 

use (Table 5.3.4. ). The mean values of the three samples were therefore used in subsequent 

analysis. Because each individual was represented by only three sampling periods, the mean 

value was preferred over the median since the latter would only represent the middle 

observation and therefore only one third of the available information would be used compared 

to all for the mean. The utilization distribution statistics for the seven ranges derived from 

discontinuous tracking data are shown in Table 5.3.5. Correlations between these and the 

measures of range and network use are shown in Table 5.3.6. The number of core-nuclei was 

the measure of network size that was most consistently correlated with measures of network 

use, closely followed by linear-length (Table 5.3.6. ). Usual-area was only correlated with one 

measure of network use and eccentricity with none (Table 5.3.6. ). The measures of range and 

network use were poorly correlated with the environmental variables experienced by the 

robins during and previous to the period of continuous tracking (Table 5.3.7. ). Although more 

correlations were significant at the five percent level than would be expected at random, all 

the correlations were weak or inconsistent and do not warrant detailed consideration (Table 

5.3.7. ). 



Table 5.3.3. One-way ANOVA between numbers of prey items 
found in pitfall traps after 24 hrs, for traps 
located in different sites within bushes of different 
size. Values indicate mean with standard deviation 
in parentheses. Both results were non-significant 
at the 5% level. 

Bush size No. prey items trapped over 24 hr period 

Centre of bush Periphery of bush 

Small (<50 m2) 6.55 7.65 
(n=20) (5.65) (4.65) 

Intermediate (50-100 m2) 7.60 10.65 
(n=20) (6.48) (9.05) 

Large (>100 m2) 6.30 5.75 
(n=20) (3.69) (5.08) 

F 0.33 2.83 
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Commuting rate was positively correlated with the number of core-nuclei used by each 

robin (Table 5.3.6., Fig. 5.3.4. ). Each point represents the data averaged over the three periods 

of continuous tracking during the day. Ranges were omitted from all figures for clarity, the 
individual data being shown in Appendix 7. The line in Fig. 5.3.4. represents the distribution 

if each bird exhibited the same return time. This would be expected for a bird exploiting a 

renewing food supply by visiting a series foraging patches in a regular sequence. The line was 

calculated by extrapolating from the median number of nuclei and median commuting rate, 

and represents a median return time of 31 min (range 19-40). Return times for each individual 

were estimated by multiplying the number of nuclei by; duration of tracking divided by 

commuting rate. The durations of commuting movements were assumed to be negligible. 

There was no relationship between the return time and the number of core-nuclei being used 

(rs 0.43 ns n=7). The fitted line predicts that a robin occupying four core-nuclei will move 

between nuclei about twice as often as a robin occupying only two nuclei (Fig. 5.3.5. ). 

The duration of nucleus visits was negatively correlated with the number of core- 

nuclei in each territory network (Table 5.3.6. Fig. 5.3.6. ). As in Fig. 5.3.4. the fitted line shows 

the expected distribution if each bird showed the same return time. This equalled the visit 

duration multiplied by the number of nuclei (median 25 min range 17-35). The discrepancy 

between the return times calculated from the visit duration and commuting rate for each 

individual was because birds could be recorded as commuting from one nucleus to another 

without the duration of both nucleus visits being known (the tracking began or ended during 

a visit). Furthermore, sequences of nucleus visits and movements between nuclei may be 

interrupted at any time by excursive activity, amplifying this effect. Commuting rate was 

negatively correlated with the duration of visits to nuclei (r, =-0.88 p<0.005 n=7). As expected 

therefore, robins which exhibited short giving up times commuted between their foraging 

patches more often. 

If the area of patches is a measure of the number of available prey items, the duration 

of visits to individual nuclei by robins will be positively correlated with their area. The 

observed data support this prediction (r, =-0.78 p<0.05 n=7 Fig. 5.3.6. Table 5.3.8. ). The fitted 

line extrapolated from the median values shows the expected distribution if the duration of 

visits by robins was twice as long in patches that were of twice the area (Fig. 5.3.6. ). 

Robins which occupied networks containing larger numbers of nuclei were observed 

to vocalise at a greater proportion of continuous tracking locations (r, =0.69 p<0.05 n=7 
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Fig. 5.3.4. The inter-nucleus commuting rate averaged over the day (movements hr') as 
a function of the number of core-nuclei within ranges (r, =0.87 p<0.005 n=7). 
The line shows the expected distribution if all robins showed the median return 
time of 31 min (range 19-40). The individual data for the commuting rate are 
shown in Appendix 7. 
Equation for line is; 

Commuting rate = 1.93 x No. core-nuclei 
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Fig. 5.3.5. The mean duration of visits to core-nuclei averaged over the day (min) as a 
function of the number of nuclei within ranges (rs -0.80 p<0.01 n=7). The line 
shows the expected distribution if all robins showed the median return time of 
25 min (range 17-35). The individual data for the mean visit durations are 
shown in Table 5.3.8. 
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Fig. 5.3.6. The relationship between the mean duration of visits to core-nuclei averaged 
over the day (min) and the mean area of nuclei within ranges (m2) (ra=0.78 
p<0.05 n=7). The fitted line extrapolated from the median values shows the 
expected relationship if the duration of visits by robins was twice as long in 
foraging patches that were of twice the area. The individual data are presented 
in Table 5.3.8. 
Equation for line is; 

Visit duration = 0.08 x Nucleus area 
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Fig. 5.3.7. ). The fitted line shows the expected relationship if robins vocalised twice as often 

when occupying double the number of nuclei. When robins vocalised, they were significantly 

more likely to do so during the first third of a visit to one of their core-nuclei and least likely 

to do so in the middle third of a visit. The likelihood of vocalisations in the last third was 
intermediate (Goodness of fit test for visits longer then 4 minutes x2=15.23 p<0.01 df=2 n=50 

Fig. 5.3.8. ). There was no significant tendency for robins to vocalise during nucleus visits 

more often at different times of day (x2=4.55 ns df=2 n=151). 

5.3.3.3. Network use. 

If the most efficient way for robins to visit renewing foraging patches is to ensure that 

return times are equal to the recovery time of prey density within patches, they should adopt 

a regular sequence of patch visits. The most economic configurations will be those that allow 

access to all patches used in a sequence of visits that minimises the total commuting distance. 

The degree to which robins achieve this will depend on the shape and configuration of the 

network of foraging patches they use. 

The mean angle between the pairs of flight paths constituting the linear length, along 

which birds would commute when following ideal linear use, were consistently high (median 

139° range 105-160°). There was no relationship between the median angle and number of 

nuclei in each network (r, =O. 13 ns n=6). High values for angles between commuting paths 

would indicate that the distance saved by taking the short cut and avoiding the intermediate 

nucleus is minimal, the maximum possible angle being 180°. The networks occupied by the 

robins that were continuously tracked therefore presented few opportunities for the 

exploitation of short cuts and pseudo-polygonal network use. 

Excluding any individuals which occupied only two nuclei, a configuration which can 

only be used in an ideal-linear manner, the departure from ideal linear use increased with the 

number of nuclei within the territory network (rte 0.74 p<0.05 n=6 Fig. 5.3.9. ), although the 

departure was small (median 13.1 range 0-30.4). Also shown in Fig. 5.3.9. is the percentage 

departure from ideal-linear use achieved for networks of different numbers of nuclei separated 

by commuting distance (d) if they were instead used in a circuit polygonal manner (line b). 

For example, a robin using a network of three nuclei would reduce the distance required to 

travel to its most distant nucleus by 50 % if it could use three instead of two commuting 

paths. This indicated that although the robins to some extent took advantage of short cuts 
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Fig. 5.3.7. The proportion of locations at which robins vocalised (sang or tic-called) 
during continuous tracking averaged over the day plotted against the number 
of core-nuclei within each range (r, =0.69 p<0.05 n=7). The fitted line 
represents the expected relationship extrapolated from the median values, if 
robins which used twice the number of nuclei were observed to vocalise at 
twice the number of locations. The individual data for the proportion of 
locations at which birds vocalised are shown in Appendix 7. 
Equation for line is; 

Proportion = 0.02 x No. core-nuclei 
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Fig. 5.3.8. The frequency with which robins vocalised (sang or tic-called) during different 
portions of visits to their core-nuclei that were longer than four minutes 
(Goodness of fit test x2 15.23 p<0.001 df=2). Visits shorter than this could not 
be divided into thirds. 
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Fig. 5.3.9. The departure from ideal-linear use averaged over the day plotted against the 
number of nuclei within ranges (r, =0.74 p<0.05 n=6). If the robins had used 
their networks only, in an ideal-linear manner the data would follow line (a). 
Line (b) shows the expected distribution if all nuclei were separated by 
distance d, and the robins changed their pattern of use from that of ideal-linear 
to circuit-polygonal (see text). The individual data for the % departure from 
ideal-linear use are shown in Appendix 7. 
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when moving between distant nuclei, their pattern of use was close to that expected if they 

always minimised the individual commuting distances. 

The randomness of the direction of movements by robins using their networks can be 

assessed by measuring the proportion that were back-tracks (Table 5.3.2. ). Excluding those 
individuals which used networks containing more than two nuclei and visited more than two 

nuclei during continuous tracking, the proportion of movements that were back-tracks was not 

correlated with the number of core-nuclei used (r, =-0.56 ns n=5). If robins were following a 

predictable sequence of nucleus visits, the proportion of movements that were back-tracks 

would be zero for circuit-polygonal networks (always move forwards and never backwards; 

Fig. 5.3.11. line a). If robins moved randomly between nuclei the expected proportion of 

movements that were back-tracks would be equal to 0.5 for circuit polygonal use (equal 

probability of moving forwards or backwards; line b). For networks used in an ideal-linear 

manner, a number of commuting movements must be back-tracks if birds are to return to fully 

recovered patches (visits to terminal nuclei must always be followed by a backtrack). From 

Fig. 5.3.9. it is already apparent that the robins did use their territory networks in a way that 

closely approached ideal-linear use. The effects of this on the probability of making a 

backtrack during ideal-linear network use are shown in Fig. 5.3.11. by lines (c) and (d) for 

regular and random patch visits respectively. The predicted lines were calculated by averaging 

the probability of the next movement being a backtrack for each nuclei in networks of 

different size and during different types of movement. The departure of the observed data 

from ideal-linear random use (median 0.42 range 0.15-0.48 n=5) was greater than the 

departure from ideal-linear regular use (median 0.07 range 0.02-0.35 n=5). Examples of 

temporal and spatial foraging circuits being used by territorial robins recorded during the 

study are shown in Fig. 5.3.12. Although the robin occupying a network of two nuclei can 

only visit them in a regular sequence, the individual using five nuclei could visit them 

randomly. Clearly the latter follows a much more regular sequence of core visits. Both birds 

showed similar return times of 25-30 min (Fig. 5.3.12. ), similar to the values predicted from 

commuting rate between and visit duration to core-nuclei. 

The results therefore suggest that the movement of robins around their network of 

foraging patches is intermediate between regular sequences of patch visits and a random 

sequence of visits. 
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Fig. 5.3.11. The proportion of movements that were back-tracks averaged over the day 
plotted against the number of core-nuclei within ranges (r, =-0.56 ns n=5). Line 
(a) represents regular movement by robins occupying circuit-polygonal territory 
networks. Line (b) represents random movements between core-nuclei that 
were used in an circuit-polygonal pattern. Line (c) represents regular sequences 
of visits to nuclei in ideal-linear configurations, and line (d) represents random 
movements between nuclei in ideal-linear networks. Predicted lines were 
obtained by averaging the probability of making a backtrack on the next 
commuting movement for each nucleus in networks of different size and 
configuration. The individual data for the proportion of movements that were 
back-tracks are shown in Appendix 7. 



Fig5.3.12. Two examples of movement between nuclei by non-breeding territorial robins. 
In (a) two nuclei were being used and therefore could only be visited in a 
regular sequence. The five nuclei used in (b) however could be visited 
randomly. The observed sequence of visits is nevertheless remarkably regular. 
Both birds showed a return time of 25-30 min. 
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5.3.4. Discussion. 

5.3.4.1. Network structure. 

Within territories, pairs of feeding patches represented by the core-nuclei were 

separated by minimum commuting flights of similar length. Bigger territories contained a 
larger number of core-nuclei separated by similar distances, rather than the same number of 

nuclei separated by longer flight distances. Large territories with long linear-lengths therefore 

contained feeding patches that were more fragmented. This perhaps reflects the selection of 

patches by robins that minimise individual commuting distances between patches rather then 

the minimisation of the average commuting distance between all patches. This might be 

expected if moving across the open ground between patches was an energetically costly or 

a risky activity. 

As the number of core-nuclei within the network increased, the total core area also 

increased by a small and constant increment, while the area of individual core-nuclei 

decreased exponentially. Each increment possibly represents the additional feeding area 

required to provide enough energy to fuel the additional flight distance needed to reach the 

patch. Nevertheless, the total core area was very similar between networks containing 

different numbers of core-nuclei. This constant resource amount appears to be a common 

element in the territories of birds which exploit renewing resources; nectar feeders defend 

territories of very different area but similar number of flowers (Gill & Wolf 1975, Kodric- 

Brown & Brown 1978) and the insectivorous pied wagtail defends a similar length of river 

bank on which insects are washed up (Davies & Houston 1981). 

5.3.4.2. Patch use within networks. 
Since there was no difference in the prey density between or within bushes of different 

size, large bushes contained more available prey in the undepleted state than small bushes. 

Large bushes therefore represented feeding patches of higher quality. This may however, 

depend on the degree of microhabitat depression caused by robins foraging by hopping along 

the ground (Grajetsky 1993). In large patches, mobile invertebrate prey items may move out 

of reach or adopt a cryptic posture by sensing an approaching robin some distance away. 

If the foraging behaviour of robins was organised to ensure patches were only revisited 

after they had fully recovered, the duration of visits to nuclei (giving up time) would decrease 

and commuting rate increase as the core area became more fragmented in large networks. The 
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observed trends in commuting rate and nucleus visit duration with number of core-nuclei 

clearly support these predictions. The data showed that birds occupied networks of similar 

total patch area which was fragmented into individual patches to different extents. In networks 

containing a greater number of patches, individual patches were smaller. Robins using such 

patches exhibited shorter giving up times and commuted to new patches more often indicating 

that they contained fewer prey items and were of lower quality. This suggests that the robin 
is exploiting a renewing food supply within the foraging patches which it defends. It would 
be useful to understand more fully the depletion of prey within patches by foraging robins and 

the response to a such predator by the invertebrate prey. 

Robins occupying large territory networks with high numbers of nuclei vocalised more 

often than those occupying small networks. Since birds tended to vocalise when arriving on 

or leaving nuclei, it would be expected that vocalisations would increase with commuting rate, 

as observed. The function of vocalisations in this context is perhaps the announcement by the 

owner of its' arrival in and use of a feeding patch. Robins may also vocalise just prior to 

leaving since this their last chance to signal ownership before moving on. Such information 

may targeted towards both intruders who may already occupy nuclei used by the owner, and 

neighbours to discourage them from initiating intrusions into the patches exploited by the 

owner. The song of the robin is structurally highly complex (Hoelzel 1986, Brindley 1991) 

and serves to identify particular individuals within the neighbourhood (Brindley 1991), 

probably through individual voice characteristics (Weary & Krebs 1992). So, neighbourhoods 

of robins may continually monitor the position of each other as they move round their 

respective networks of feeding patches. Tic calls are structurally much simpler (Cramp 1988) 

and tend to replace song during the winter months (Rae 1979). Over the course of the 

Autumn and Winter robin populations decline through emigration and mortality (Adriaensen 

& Dhondt 1983, Harper 1984, this study). New individuals do not arrive and establish 

territories until the following spring. During the Winter therefore, territory owners may 

monitor neighbours simply by the location rather than auditory characteristics of their 

vocalisations. The communication of individual identity through song would therefore be less 

important. Furthermore song projected from preferred singing perches may be costly in terms 

of predator attraction (section 3.3.7. ). In this situation, therefore, tic calls, which unlike song 

are often issued from the safety of dense cover, may be enough for robins to monitor the 

location and movements of a closed population of neighbours. The use of vocalisations in this 
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way may also have costs associated with territory use. By singing or calling, owners will 

reveal their location to potential intruders which may then target their intrusive activity 

elsewhere in the owners territory to avoid an encounter. Clearly it is necessary to understand 

more about the frequency and behaviour of conspecific intruders into the territories of robins. 

5.3.4.3. Network use. 

It is possible that territories of low eccentricity may be utilised by a network of 

feeding patches of high linearity (pseudopolygonal-linear; Fig. 5.2.2. ). These results suggest 

that the robins departed very little from the network of flight paths that would be used if birds 

were minimising individual flight distances between nuclei. The robins therefore rarely used 

"short cuts" when commuting between distant foraging patches to reduce their total 

commuting distance per circuit. The large value's of the median angles between pairs of flight 

paths indicated that the majority of networks approached ideal linear configurations 

irrespective of size as indicated by the number of nuclei. The study site contained few 

artificial linear elements such as hedges (Fig. 2.1. ). The robins therefore, were not constrained 

into selecting core-nuclei which were arranged in network configurations that approached 

ideal-linear. It appears, however, that all habitats preferred by robins contain natural linear 

elements such as streams, banks, and woodland edges and clearings, along which suitable 

bushes and shrubs develop. A preference for such potentially linear habitat has been 

previously recorded (Lack 1948; Fig. 5.3.13. ); non-breeding territories being clustered along 

roads and around the edges of woodland where such habitat is likely to occur. The linear 

robin territory may therefore be the norm rather than the exception, even though they may 

be less efficient in terms of length of foraging circuit. 

Although the robins did not appear to move between foraging patches in a perfectly 

regular sequence, their pattern of movement was closer to that expected for regular movement 

than for random movement. It would be naive to expect real robins to visit the patches within 

their ranges in a perfectly regular sequence geared only to food availability, since they must 

also carry out other activities such as territory defense and predator avoidance. The extent to 

which their behaviour departs from the most economic way of exploiting renewing food 

patches will have implications for the costs of territory maintenance. 



Scale (km) 

Fig3.3.13. The distribution of resident robins in Wytham Great Wood during October 
1945 (from Lack 1948). Note how the territories are clustered along the road 
and around the woodland edge. 
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5.4. Intrusions and evictions. 

5.4.1. Methods. 

Continuous radio-tracking provides the first technique by which small birds may be 

monitored continuously regardless of their activity or movements. Previous to this studies of 

the robin have relied on visual observations, which unavoidably are subject to biases towards 

focal individuals which are easy to observe, or which by their behaviour draw attention to 

themselves (East 1982). The levels of intrusion and eviction recorded by this study therefore 

represent the first rigorous assessment of the frequency and duration of this behaviour in the 

robin. 
Hour long samples of continuous tracking data were examined for intrusive activity. 

This was defined as activity during which one bird spent a period of time inside the usual- 

area of another. Because all robins concentrated their activity in bushes and shrubs, intruders 

were almost always located within the core-nuclei of neighbours. In this analysis intrusions 

of less than four minutes duration, which following the movement rules for quantifying 

network use, would not be classed as intentionally excursive, were included. This is because 

these very short intrusions may represent instances of encounters with and eviction by owners, 

and therefore successful defense. 

Although continuous tracking data were available for five non-territorial robins, it was 

not possible to determine when any intrusive activity was initiated since these individuals 

ranged widely into areas in which the ranges of territorial robins were not regularly 

monitored. However, the rate at which non-territorial robins were evicted could be assessed 

and compared with that for territorial birds. 

5.4.2. Results. 

The results summarised in Table 5.4.1. show intrusions by territorial robins into 

territorial neighbours, which were monitored from the moment the bird entered a neighbours' 

usual-area, to the moment it left of its own accord, or was forcibly evicted by the territory 

owner. The data contributing to the three sampling periods were not statistically independent; 

three individuals intruding into the same neighbour at different times of the day. It was not 

possible therefore, to compare statistically the intrusion pressure experienced by territorial 

robins at these different times. Intrusion pressure was, however, highest during midday and 
lowest at dusk (Table 5.4.1. ). 



Table 5.4.1. Intrusive actvity of territorial robins in the 
territories of neighbours during different- 
times of the day. 

Dawn . Middle Dusk Total 

No. hour long 15 35 15 65 
observation periods 

No. intrusions recorded 4 11 1 16 

No. of intrusions that were 1203 
terminated by an eviction 

No. of intrusions that 491 14 
were targeted at near 
neighbours 
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The proportion of hour long continuous tracking samples during which intrusions 

occurred (a measure of intrusion rate) was positively correlated with the number of nuclei in 

the territory network into which the intrusions were directed (r, =0.97 p<0.005 n=5 Fig. 5.4.1. ). 

There was never more than one intrusion recorded per hour. The form of the function relating 
intrusion rate to number of core-nuclei must be exponentially accelerating, since even robins 

which only used one core-nucleus must have experienced some intrusions however brief. The 

curve shows a second order polynomial passing through the origin and fitted to the data 

(Fig. 5.4.1. ). The number of nuclei making up the networks from which intrusions were 

initiated, however, was not significantly correlated with the intrusion rate (r, =0.50 ns n=5). 

Dyads of non-breeding robins were only seen close together, without one attempting 

to evict the other, during bouts of mutual display. These always occurred in the neutral 

interstices between territories (n=18). The foraging behaviour of intruders was similar to that 

of owners, concentrating their time in bushes and shrubs. Intruding robins however, never 

vocalised. Intruders that were encountered were evicted by aggressive chasing until they left 

the territory. An impression formed during observations of chases was that intruders flew in 

any direction to escape. This resulted in the intruder entering another nucleus of the owner 

or a nucleus of a neighbour, rather than an obvious retreat across a discrete territory boundary 

to neutral ground. All intruders visited only one nucleus in the target territory before being 

evicted or leaving of their own accord (n=16), whereupon they returned to their own territory. 

Intrusions were more likely to be directed towards the territories of near neighbours 

(Table. 5.4.1. ). The durations of intrusions which were terminated by the intruder leaving the 

nucleus of its own accord were positively correlated with the area of the nucleus visited (data 

from middle of day r, =0.78 p<0.01 n=9 Fig. 5.4.2. ). Also shown are the two intrusions by 

robins which occurred during this period, that were encountered by owners and the intruder 

evicted. 

The median area of nuclei visited during intrusions was 38 m2 (range 27-85 n=9). The 

median area of nuclei used by owners, however, was 75 m2 (range 44-84 n=7). This reflects 

the higher intrusion pressure experienced by territory networks which contain large numbers 

of nuclei, each of which has a small area. From section 5.3., the median duration of nucleus 

visits by territory owners which occupied networks containing greater than one nucleus was 
6.5 min (range 3.3-8.5 n=41). The median duration of intrusions during midday that were not 

terminated by eviction was two minutes (range 2-8 n=9), while the median time until being 
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Fig. 5.4.1. The relationship between the proportion of hour long samples of continuous 
tracking during which intrusions into neighbours occurred, and the number of 
core-nuclei within the usual-areas into which intrusions were targeted for non- 
breeding robins (rs=0.97 p<0.005 n=9). The curve shows the polynomial 
equation; 

Proportion =1-0.04 No. nuclei + 0.03 (No. nuclei)2 -1 



Table. 5.4.2. Comparison of the number of evictions experienced 
by territorial and non-territorial robins. 

Territorial Non-territorial 

Dawn Middle Dusk Total Dawn Middle Dusk Total 

No. hour long 15 35 15 65 363 12 
observation 
periods 
No. evictions 12032709 
recorded 

Table 5.4.3. Comparison between the number of evictions of 
intruding robins by territory owners during an 
eight hour winter day. 

Study No. evictions per territorial No. evictions per non- 
robin per day territorial robin per day 

Harper (1986) 1 15 

This study 0.5 9 
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Fig. 5.4.2. The duration of intrusions by robins during midday (min) plotted against the 
area of the core-nucleus visited (m2). Robins only visited one nucleus during 
each intrusion. The solid symbols show intrusions that were terminated when 
the intruder left of its own accord (r, =0.78 p<0.01 n=9). Open symbols show 
intruders that were encountered and evicted by owners. The line is that fitted 
to the equivalent data for owners (Fig. 5.3.6. ). 
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evicted from a nucleus during an intrusion was seven minutes (range 6-8 n=2). 
Tic calls appeared to be particularly important for territory owners in the monitoring 

of movements by neighbours. An example of such tic call mediated interaction between two 

territorial neighbours is shown in Fig. 5.4.3. 

Non-territorial robins were evicted more often (0.75 hr) than territorial robins (0.05 

hr t)(Table 5.4.2. ). In common with the territorial birds most evictions occurred during midday 

(78 %) and least at dusk (0 %)(Table 5.4.2. ). 

5.4.3. Discussion. 

Compared to previous studies of the robin the levels of intrusion and eviction recorded 

in the present study were low. A comparison between the number of evictions recorded per 

eight hour winter day in Cambridge recorded by visual observation (Harper 1984) and 

measured by radio-tracking in the present study is shown in Table 5.4.3. Harper provided no 

sample sizes, so statistical comparisons were not possible. The intrusion pressure recorded 

using the rigorous radio-tracking technique produced values approximately half those recorded 

using visual observations. A possible explanation for this is that many excursions may have 

been misclassified by Harper as intrusions when in fact they only represented birds visiting 

bushes located in the neutral interstices between territories. If, however, radio-tracking 

recorded all intrusions while the visual observations of Harper only some, then the observed 

difference may be real, reflecting differences in the territorial behaviour of the two 

populations. 
On the whole however, the results from radio-tracking showed strong similarities with 

those of Harper; most intrusions by territorial birds were into the territories of near 

neighbours; intruding robins were never tolerated on the territory of a neighbour if 

encountered by the owner; intruders visited only one territory before returning to their own 

territory; most intrusions occurred during the middle of the day with fewest at dusk; and 

non-territorial robins intruded and were evicted considerably more often than robins which 

were territorial. 

The purpose of intrusions is assumed to be that initially of information gathering. Such 

information may include assessing prey densities or thermoregulatory costs of occupying 

different core-nuclei. Since dyads of neighbours can monitor each others location by listening 

to vocalisations, intrusions probably do not serve to determine the occupancy of neighbouring 
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Fig. 5.43. An example of the role of Tic-calls in the initiation of intrusions by territorial 
robins into neighbours. The behaviour of the focal robin is shown during 
midday on 11`h January in (A) and during midday on the 14' January in (B). 
Thick lines indicate core-nuclei, thin lines usual-areas and dashed lines inferred 
movement between continuous tracking locations. 
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territories. The ultimate purpose of such information gathering, however, may be to increase 

resource holding potential (Parker 1974) during a take-over of one or all of a neighbours 
foraging patches by territory drift. Furthermore, some intrusions may simply be concerned 

with stealing food from a neighbours patches to supplement that available on a poor territory. 

Knowledge of which patches are food rich would then be useful. 

On average, intruders visited core-nuclei of smaller area than robins visiting their own 

nuclei. This was because higher a number of intrusions were experienced by robins occupying 

territory networks containing large numbers of nuclei. These contained nuclei of small 

individual area (section 5.3. ). For core-nuclei of the same area it would be expected that, if 

not located and evicted, the visit duration of intruders would be less than the visit duration 

of owners with no intruders. This is because the average time elapsed between nucleus visits 

by owners and subsequent intruders will be'less than the most economic return time (Davies 

& Houston 1981). Intruders will experience prey densities less than the asymptotic value of 

each patch and therefore robins harvesting available prey should show shorter giving up times. 

The relationship between visit duration of owners and nucleus area (a measure of the 

asymptotic number of prey and therefore patch quality) is shown in Fig. 5.3.6. The line 

extrapolated from these data is also shown in Fig. 5.4.2. The visit durations of intruders were 

significantly shorter than the visit durations of owners (Mann-Whitney U=13.0 p<0.05; 

intruders median visit duration=2.0 min range 2-8 n=9; owners median visit duration=6.3 min 

range 3.4-8.6 n=7). Furthermore, intruders which were located and evicted had stayed in 

patches longer than would be expected for the area of patch visited. These individuals had 

perhaps intruded into patches in which prey densities were close to full recovery leading to 

long giving up times, but which were next in sequence to be visited by the owner. 

Territory owners vocalise when arriving on and leaving their core-nuclei. Intruding 

robins could, therefore, monitor the locations at which territorial neighbours vocalise to 

synchronise their intrusions to target core-nuclei that were last visited by the owner for a 

period just under the optimal return time. Intruders may thus take advantage of higher prey 

availability than they would obtain by selecting a nucleus at random. For this reason perhaps, 

owners vocalised during only 30% of nucleus visits. Robins may therefore experience a 

tradeoff between the benefits of communicating the territorial ownership of nuclei and the 

costs of revealing which feeding patches have just been depleted and therefore which have 

fully recovered (Goldberg & Ewald 1991). In a similar way pikas have been shown to 
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monitor neighbours and only mount intrusions when they were inactive (Smith & Ivins 1986). 

Intruders which stayed the longest were more likely to be encountered by owners and evicted. 
This would occur if intruders failed to anticipate the arrival of owners, perhaps because the 
latter did not reveal their position by vocalising. Although robin song has received a great 
deal of attention (Hoelzel 1986, Brindley 1991) there is no information available as to the 

behavioral ecology of tic calls. It would be advantageous for robins to respond to the tic calls 

of neighbours, since such calls are often used as an alarm call (Cramp 1988). In such 

situations tic calls are used to signal to a predator, such as a stoat, that it has been detected 

and an attack would be pointless. In a similar way the hare uses a visual signal when the 

approach of a fox has been detected (Holley 1993). Robins, therefore, may use tic calls to 

deceive neighbours into revealing their location prior to an intrusion. In this situation 

therefore, the tic call could be interpreted as meaning "here am I, where are you? " 

Intruders were more likely to occur in territory networks with high numbers of core- 

nuclei, and therefore linear-length, even though individual feeding patches were smaller. This 

is because potential intruders moving through the habitat in a random direction would be 

more likely to encounter one of the many nuclei that are strung out in highly linear 

configuration in large territory networks. 

The presence of an intruder may inflict a cost on owners in two ways. Intruders may 

gather information which may enhance their resource holding potential (Parker 1974) during 

subsequent territory drift or bids for territory ownership. The effect of foraging intruders is 

a reduction of the owners foraging efficiency, through depleting patches shortly before visited 

by the owner. Intruders however will also incur a cost when intruding. The feeding patches 

of any neighbour visited will always be at a suboptimal level of recovery if underlying patch 

qualities are the same, and may have just been depleted. Furthermore, the patches in the 

intruders own territory network will not be harvested during intrusions by them into the 

territories of neighbours, and so once the prey densities in such patches have fully recovered, 

they will represent the highest quality habitat to a simultaneous intruder. 

During normal behaviour, robins spent the majority of their time out of sight in the 

bushes and shrubs in which their core-nuclei are sited. In such situations, the visibility of the 

rest of their territory is probably limited to an area within a few metres by dense vegetation. 

Because of this, owners may only have a high probability of detecting an intruder when it 

visits the nucleus that they already occupy. Conversely, the chance of an owner detecting an 
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intruder that is visiting another nucleus within their territory network may be low. Because 

intruders usually visit the core nuclei of an owner for a similar or shorter period as the owner 

and terminate the intrusion when they leave the patch, the theoretical probability of an owner 

encountering an intruder within its territory network therefore will be one divided by the 

number of nuclei within the network. 

Theoretical studies have used the concept of intruder equilibrium when modelling 

territory size (Schoener 1971,1987). This implies that the number of intruders that an owner 

evicts from its territory reaches an equilibrium with the density of intruders. The intruder 

density experienced by territorial robins is so low (less than two per day) that this concept 

does not apply. Nevertheless, the impact of patch depletion by intruders on the foraging 

economics of territory occupants may have important implications for the energy costs of 

territory maintenance during winter. 

5.5. The defense component of territorial behaviour. 

5.5.1. The consequences of hypothetical defense behaviours. 

Animals may meet their energy requirement by adopting time-energy budgets which 

achieve one of a number of different foraging goals (Schoener 1971). These different time- 

energy regulation strategies are independent of the foraging strategy, such as perch and drop 

or ground hopping (East 1980,1982), that is pursued by an individual. Many animals and 

small territorial birds in particular, have been considered to be energy maximisers with 

daylength acting as a time constraint (Schoener 1971,1981, Hixon & Carpenter 1983, 

Beletsky 1986, Eason 1992). The goal of a robin which behaves as an energy maximiser and 

spends all of its time within its network of core-nuclei, therefore, is assumed to be the 

maximisation of its net rate of energy gain. This can be achieved by exploiting a number of 

feeding patches. Patches should only be revisited within a regular foraging route between 

nuclei after the prey densities have recovered from previous depletion by the owner. A 

hypothetical robin which follows such behaviour is here termed an ideal exploiter. An ideal 

exploiter invests all of its time and energy in the economic exploitation of the patches of 

renewing resource it uses. Such an individual invests nothing in other activities, such as 

predator avoidance or interactions with other robins. 

Robins occupying networks containing large numbers of small patches move between 

nuclei more often and spend less time in patches than robins within networks containing a 
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smaller numbers of larger patches. Furthermore, individuals using larger numbers of feeding 

patches experience a higher intruder pressure (section 5.4. ). The expulsion of intruders by 

territory owners may be important for several reasons. An intruder which enters the territory 

of a robin without being located will deplete patches such that they will not have fully 

recovered when they are revisited by owners, thus reducing the average rate of energy gain 

of owners (Davies & Houston 1981). By terminating their visit without being evicted, 

intrusions may be considered successful, and therefore may return more frequently than 

intruders that are located and evicted (Ewald & Carpenter 1978). Finally, successful intruders 

may become more difficult to evict (Krebs 1982). As their knowledge of the owners territory 

increases, their resource holding potential also increases, perhaps leading to escalated fighting 

(Krebs 1982). 

The goal of a robin which spends all of its time in defense of the foraging patches it 

uses, is to maximise its probability of encountering intruders. A hypothetical individual which 

follows this behaviour is here termed an ideal defender. Ideal defenders invest their time and 

energy only in searching for intruders. The behaviour which achieves this ideal defense has 

received much theoretical speculation. Dill (1978) considered animals occupying circular 

territories with perfect visibility. His model dictated that owners must make a return trip from 

the centre of the territory to the perimeter to evict an intruder. Schoener (1987) describes 

models of optimal territory size in which time budgets of owners contain patrol time, but the 

nature of this is indeterminate. An approach from the level of populations has been used by 

Parker & Knowlton (1980) to model evolutionary stable strategies for maintenance of territory 

size. Their model considers the effect of mutant strategies of defensive effort within a 

territorial population, although once again the nature of the different kinds of defensive effort 

are not described. 

Field studies of territorial birds have attempted to describe such defensive investment 

in more detail. Frequently this has been considered to simply involve the eviction of intruders 

when located (Davies & Houston 1981, Ewald 1992). In hummingbirds, however, increased 

defense may be achieved simply by differential allocation of foraging effort over the territory 

(Paton & Carpenter 1984). The apparent quality of a territory to potential intruders is reduced 

by the owners concentrating their foraging effort at the edge of their territory in the early 

morning. Intruders first assess the profitability of persisting with an intrusion by foraging at 

the edge of a target territory. This "defense by exploitation" results in higher net energy gains 
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to owners and lower food losses to intruders (Paton & Carpenter 1984). 

Bird song has often been implicated in territorial defense (Krebs 1977). Song has been 

proven to play a role in territorial maintenance in the great tit (Krebs 1977), where playback 

of song during the breeding season in unoccupied territories delayed the settlement of pairs 
from adjacent poor quality habitat. Song output is also related to the energetic condition of 

territory owners and so may act as a reliable indicator of fighting motivation and territory 

quality (Strain & Mumme 1988). Birds subject to higher temperatures (Garson 1979), low 

parasite loads (Moller 1991), or with access to supplementary food (Strain & Mumme 1988, 

Cuthill & Macdonald 1990) sing more. Even if birds with access to supplementary food do 

not increase their background levels of song, they may still. be able to increase song output 

during a territorial emergency, such as an attempted takeover. This has been shown to occur 

in the robin (Harper 1984) and suggests singing has associated costs. Playback of song from 

undefended feeders has been shown to attract non-territorial hummingbirds (Goldberg & 

Ewald 1991). Consequently territorial birds that sing may provoke either decreased or 

increased intrusions depending on whether intruders interpret the signal as indicating a high 

ability and motivation to fight, or as indicating the presence of feeding patches of high 

quality. 
Clearly an ideal exploiter cannot maintain optimal return times for the core-nuclei 

within the network it occupies without experiencing resource depression by intruders, and an 

ideal defender would lose no food to intruders but would die from starvation. In successfully 

maintaining an economic territory therefore, a robin must be investing time and energy in 

both exploitation and defense activities. The goals of these two activities are mutually, 

incompatible; a robin that is commuting between the core-nuclei within its territory network 

in a regular sequence cannot be maximising encounter rates with unseen potential intruders 

which can arrive anywhere in its territory. The territory owner must therefore adopt a 

compromise between the two conflicting goals such that the trade off in investment between 

the two is optimised (Fig. 5.5.1. ). This has been studied using captive great tits (Kacelnik et 

al 1981). The birds were considered to be vigilant for intruders while moving between 

patches, and not vigilant when foraging within patches, since these two activities were 

assumed to be incompatible. In response to the presentation of another great tit (a potential 
intruder) the subjects moved between feeding patches more often, increasing their vigilance 

time but decreasing their foraging time and therefore rate of energy gain. The degree to which 
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Fig. 5.5.1. A model to illustrate the tradoff between territory exploitation and defense 
behaviour. Assuming the activities involved with territorial exploitation and 
defense are mutually incompatible, robins must find an optimal tradeoff in 
investment between the two, depending on the immediate importance of each 
activity. 

In this figure, a robin which experiences intruder pressure (A) selects 
an optimal tradeoff (A0P) in which two thirds of its time and energy are 
invested in activities associated with exploitation, and one third in territorial 
defense. If intruder pressure increases to (B), the robin must increase its 
investment in defense, the optimal tradeoff therefore changes (B0P) to that in 

which one third of time and energy is invested in exploitation and two thirds 
in defense. 

Robins which invest all their time and energy in exploitation are ideal 

exploiters, while robins which invest all their time and energy in defense are 
ideal defenders. Neither of these extremes, however, is a viable option (see 
text). 
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an individual can increase patrolling time and decrease foraging time will therefore depend 

on its energetic condition as demonstrated using free living territorial great tits (Ydenberg 

1984, Ydenberg & Krebs 1987). Using principles of dynamic optimality, they showed that an 
individual will change the tradeoff between foraging (time within patches) and territorial 

defense (moving between patches) with changes in food deficit. 

Some qualitative predictions of the effects of different defense behaviours on owners 

and intruders are shown in Table 5.5.1. The probability of encountering intruders can only be 

increased by the owner spending less time away from its territory. This represents a cost to 

territory occupants, if intrusions allow owners to gain valuable information on neighbours. 

Different changes in the pattern of network use will produce different effects on both owners 

and potential intruders. Increasing the commuting rate will make patches less profitable to 

intruders but also increase the commuting c6sts of owners. Increasing the randomness of patch 

visits will similarly make patches less profitable for intruders. Although this will cause no 

increase in exploitation costs, the owner will, however, experience a reduced rate of energy 

gain. Commuting costs will be reduced by birds using "short cuts" to decrease linearity L and 

increase the accessibility of the foraging patches they use. The increased individual flight 

distances required may however, have an associated increased predation risk. Furthermore, 

such behaviour will have no effect on either the probability of owners encountering intruders 

or the profitability of intrusions to intruders. Increase in vocalisations similarly will have no 

effect on the probability of owners encountering intruders or the profitability of intrusions to 

intruders. Owners which signal to potential intruders by vocalising may encourage intrusions 

by revealing their location and communicating the economic defendability of the territory and 

the state of recovery of individual patches. 

The extent to which these effects occur will depend on the number of core-nuclei in 

the network used by the territory owners. Robins occupying large numbers of nuclei will 

initially experience a relatively low probability of encountering an intruder, assuming the 

visibility between core-nuclei experienced by foraging robins is low (Fig. 5.5.2. ). Furthermore, 

territory networks containing large numbers of nuclei suffer a higher intruder pressure 

(Fig. 5.5.2. ). Each territory network contained a similar total area of foraging patches. In large 

networks therefore, the proportion of the total prey available from the entire network, that is 

available per nucleus is lower (Fig. 5.5.3. ). Robins were only observed to visit one nucleus 
before terminating an intrusion (section 5.4. ). Consequently the potential damage to the 
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Fig. 5.5.2. The probability of a territorial robin detecting an intruder within its network 
of foraging patches will decrease exponentially with the number of patches it 
uses (curve a), assuming visibility between nuclei is very poor and as observed 
intruders only visit one nucleus before leaving of their own accord. 

Conversely, the probability of an intrusion occurring will increase with 
the number of foraging patches (curve b). The curve is the polynomial 
equation fitted to the observed data in Fig. 5.4.1. 
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Fig. 5.5.3. The foraging patches within a territory network contain all of the prey required 
by the owner per circuit of visits (line a). Territories containing different 
numbers of patches contain very similar total patch areas, and there is no 
difference in the prey densities between individual patches of different area. 

As the number of such core-nuclei within territories increases therefore, 
their individual area decreases, and the proportion of the total prey required 
that is available from each nucleus, also decreases exponentially (curve b). 
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owners rate of energy gain by one intruder will be less in a large territory than in a small 

territory. 
It is not possible to quantify the degree to which the overall behaviour for any 

particular individual is a trade off between exploitation and defense simply by observations 

of behaviour. The unknown defense component of the optimal compromise may only be 

revealed by carrying out manipulations such that the territory owner is forced to alter its 

allocation of effort and hence the optimal tradeoff between the two. The consequences for the 

overall behaviour of the individual may then be assessed (Fig. 5.5.1. ). 

5.5.2. Methods. 

The territorial robins which were continuously tracked at different times of the day 

were presented with simulated territorial intrusions by conspecifics. These took the form of 

short periods of playback of robin song from one of up to four speakers which were placed 

in the estimated locations of the owners core nuclei, separated by periods of silence. Although 

this did not realistically replicate the behaviour of the usual furtive intrusions which were 

impossible to simulate, it did represent a potential threat to the territory owner. Robins 

frequently sing during intrusions, particularly if their intention is to usurp the owner and take 

over the territory (Lack 1965, Harper 1984). 

A 60 min tape cassette containing three copies of a 20 min recording of Autumn and 

Winter robin song was obtained from the British Library of Wildlife Sounds. The tape 

contained song from 11 individuals recorded in England. Details of the recordings are listed 

in Appendix 8. Although clines in song phrase pitch and length have been described across 

Europe, no such differences between populations in Britain have been observed (Cramp 1988). 

All of the taped song was therefore considered to simulate a threat to territory owners. The 

taped song was played on a Sony TCM-8 18 cassette player and presented through Sony SRS- 

37 speakers with integral amplifiers via 25-50 m cables. The quality of the tape head was 

sufficiently high to reproduce the high frequencies in robin sing (P. Slater pers. comm. ). The 

selection, activation and timing of song playback was controlled by software running on a 

Psion Organiser linked to speaker selection hardware. All of the power requirements were 

provided by a 12v automobile battery so the selection of owners and territories to be 

manipulated was not dependent on the proximity of a mains supply The Equipment was 

constructed by the Micro Processor Group at the University of Stirling, and is illustrated in 

Fig. 5.5.4. 
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Speakers were placed in what were estimated to be the locations of core-nuclei. The 

discontinuous tracking data, from which the locations of the core-nuclei were determined, 

were analyzed after the continuous tracking was completed. This insured that the two types 

of data were independent. The estimated locations always proved to be correct after 

subsequent data analysis. Robins habitually sing from perches well above the ground (East 

1982). This increases efficiency of the signal projection (Rae 1979, Brindley 1991). Speakers 

were therefore located two metres above the ground, attached to tree trunks or branches, and 

facing towards the geometric centre of the usual-area. This ensured that the song could be 

heard by the owner while in any of its core-nuclei. The volume of the song playback was 

standardised to an average of 90 dab (Brindley 1991) at one metre using a Lucus Instruments 

CEL-214 impulse sound level meter. There was some variation in the sound levels due to 

variation in the original recording levels. Preliminary trials with the recorded robin song 

broadcast from a single speaker showed that the study population did respond to the tape, 

probably because they recognised it as conspecific. For example, individuals would reply from 

a distance, approach and sometimes circle round the speaker. 

The experimental procedure was as follows. An asymptotic sample of discontinuous 

tracking data was collected over four days from the focal individual. On the day before the 

start of the manipulation, the speakers were placed in the estimated core-nuclei of the focal 

individuals territory. This allowed time for the owner to habituate to their presence. The next 

day (set as day one) the territory owner was continuously tracked for periods of one hour at 

dawn, midday and dusk. Behavioural observations of territorial defense and vocalisations were 

recorded. This activity represented the control data. On day two, approximately 10 min before 

dawn the sample of continuous tracking commenced, the playback equipment was activated 

to present the recorded tape from a randomly selected speaker for 2.5 min, followed by 2.5 

min of silence. A duration of 2.5 min was an arbitrarily selected period, but was similar to 

that of previous playback experiments on the robin (Hoelzel 1986, Brindley 1991). This 

continued until the period of radio-tracking was over, exposing the territory owner to 12 

periods of playback during the period of continuous tracking period. The 20 min of recorded 

song from 11 birds ensured that the subjects were only exposed more than once to a very 

small number of song phrases. This was probably insufficient for habituation (Rae 1979, 

Hoelzel 1986). The equipment was similarly activated before and deactivated after the midday 

and dusk observation periods and represented the experimental data. The number of speakers 
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deployed in each territory could be varied between two and four, so that as far as possible 

there was one speaker in or near each nuclei used by the focal bird. The continuous tracking 

data was quantified by applying the movement rules outlined in section 5.2. and measures of 

network use obtained (Table 5.3.2. ) obtained. In addition, the response of experimental birds 

to the active speakers was scored as either movement towards, movement away from, or no 

change in location relative to each activated speaker in turn. 

5.5.3. Results. 

The midpoint temperatures on control and experimental playback days were not 

significantly different (control median=8.5°C range 5.7-10.6, playback median=10.3°C range 

2.7-12.6, Wilcoxon Signed-rank Matched-pairs Z=0.00 ns n=7). Any temperature related 

changes in behaviour (eg East 1982) will therefore not cause responses to playback to differ 

significantly. 

There was no relationship between the number of nuclei used by each individual and 

the percentage of occasions on which they approached, retreated or showed no reaction to the 

activation of speakers (Table 5.5.2. ). The data could therefore be grouped between individuals, 

increasing cell frequencies sufficiently for chi-square analysis of the frequency of movement 

in relation to the activation speakers. There was no significant difference between the 

frequency of moving and not moving at different times of the day (x`=3.96 df=2 ns n=195). 

Furthermore when birds did move, they were equally likely to move towards or away from 

speakers when activated at each time of day (x2=0.08 df=2 ns n=151). 

The continuous tracking data for the robins during the playback manipulation are 

presented in Appendix 9. Comparing data from the different times of day, there were no 

significant differences between the measures of space use on control and playback days 

(Table 5.5.3. ). Furthermore there were no differences between the measures of space use when 

averaged over the control and playback days (Wilcoxon Signed-rank Matched-pairs all p>0.3 

n=7). The absolute and percentage change in the measures of space use in response to the 

playback manipulations are shown in Table 5.5.4. 

Correlations between changes in space use and territory size, measured by number of 

core-nuclei, are summarised in Table 5.5.5. When presented with simulated intrusions 

territorial robins responded by changing their commuting rate or proportion of movements that 

were backtracks, depending on whether they occupied networks containing small or large 



Table 5.5.2. Correlations between the number of core-nuclei occupied 
by each robin and the percentage of occasions on which 
birds were observed to move towards, away from or show 
no reaction on occasions when speakers playing robin 
song were activated (n=7). All p>0.05. 

Time of day Spearman correlation 

Move towards No reaction Move away 

Dawn -0.20 -0.28 0.36 

Midday 0.00 0.14 -0.30 
Dusk 0.33 -0.11 -0.58 
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numbers of core-nuclei (Fig. 5.5.5., Fig. 5.5.6. ). In summary robins using small territories 
increased their rate of commuting between foraging patches, while robins using large 

territories increased the randomness of their sequence of patch visits. The data from one bird, 

indicated by a star in the figures, were clearly different to the rest of the sample. This 

individual was the only robin for which there was a severe ground frost on the experimental 

playback day, but not on the control day. None of the other birds experienced such an large 

difference in the environmental variables on the control and playback days. 

5.5.4. Discussion. 

In response to the playback of song to simulate intrusions into their territories, the 

experimental robins in the present study did not respond by approaching active speakers or 

by increasing their vocalisations. Several studies have assessed the effect of experimental 

playback of song on territorial robins (Rae 1979, Chantrey & Workman 1984, Hoelzel 1986, 

Brindley 1991), although their conclusions were confined to the nature of communication and 

aggression between individuals. In these earlier studies, trials lasted no longer than 35 min 

(Rae 1979), and were usually less than 10 min (Hoelzel 1986, Brindley 1991), and presented 

playback from a single speaker placed either in the centre of territories or in locations defined 

as territory boundaries. All studies recorded approach behaviour, vocalisations and display for 

the time that the focal birds were visible. The two studies carried out at the same time of year 

as the present study concluded that robins can determine the sex, distance and identity of 

other singing robins, frequently recording aggressive approaches to the speakers when birds 

were presented with the song of strangers (Hoelzel 1986, Brindley 1991). In the present study 

therefore, a robin apparently could have identified the simulated intruders as strangers, and 

approached in order to evict them from its territory. The reasons why the birds did not 

respond by approaching speakers in this way are unclear. Possibly the two-minute sample 

interval necessary for continuous tracking resulted in any rapid dashes to the speakers, in 

response to a series of song phrases, being missed. This is unlikely however, since for much 

of the monitoring periods, the location of focal birds was known continually but only recorded 

at two minute intervals. Alternatively, the random locations at which playback was presented, 

more closely simulated the natural behaviour of intruders rather than the much more 

threatening apparent challenges for territory ownership represented by stationary playback 

presentations. The latter may elicit a much stronger reaction by owners in response to the 



No 

Wý 

0) 
et U 

C 
I 

O 
U 

M0 

z 

N 

. zim äuunuxuzoD izionu-zalui ut asuu4D 

'o 

In 

0 u 
U 

C". 

O 
U 

M2 

N 

öS 

ý"Uo 
'r (ý U 

OA 

Ü 

=Oý 

0I 

NO vý 
II 0 a 
Lwý ý 

ate- 

ý. UU 

O try ,w OUý 
`ýO y ID 
aý V II 

bA[ýdO 
Cý ed 
E II 

ýi 
p, 

Ü 
.0N 

wU 

üO -4 
- 

UoUG 

ä 

vi 

t+'v 
w 

ýf NON 1" .4 

"ol12upnunuoo iajOnu-salut ui o2urgD 



r. 

%C 
N0 

- 

' 

II 
ed OyÜ 

r 

try 

V 

7 
bjý 
r 4 - c> � 
U rD 

bbý C 
M V Ü 

Ce Ci 
JD 

%e . 

UH 

N 3ý 
.je1. 

VO "1 

1 +1 
JI ,^ 

Y1 

i. l 

rVI 

UOQ 
V O 

! Cý 

0 
U n U 

OCÜ 
o CA 

ß' ö = 
V 

ä o . aý 
ö 

' 0 
U 

pbL Cd z OO 
rVO 

z üwýa 

V'1 
ti Q 
_ 

og 
%n 

00$ 

"sxov. n-xoicq mann wiq sluauianom 
&uunuzuioo jo uop. iodoid ut o2uEg3 o 

N 

RNN 
ÖÖÖq 

-sXo"-xorq mann ingl siuowoAow 
2upnwwo3 jo uotuodoid ut o2utq, 



108 

perceived territorial emergency. Lack (1965) observed frequent intrusions by neighbours to 

forage. These intruders were not aggressively evicted by owners. Furthermore, the large 

number of individuals on the recording, their random temporal scheduling and the multiple 

locations at which song was presented may have better simulated multiple intrusions and a 

higher intruder pressure, rather than a single territorial challenge. 

It remains possible that the experimental birds simply did not recognise the recording 

as a potential territorial threat. The significant results from analysis of the measures of space 

use and casual observations of approach behaviour to the speakers by some individuals some 

of the time, however, showed that the robins did react to the simulated intrusions, but 

generally in a more subtle way than previous playback experiments have considered. 

Robins may increase their probability of encountering intruders by increasing the time 

they spend on their territory. The birds thät were subjected to playback already spent over 

80% of their time associated with their usual-areas (median 81 range 63-100 n=7), slightly 

greater than the 79% predicted from the probabilistic model of territory use in chapter 3. The 

robins therefore had little scope for increasing their time on territory without compromising 

their own information gathering excursive (but not necessarily intrusive) activity. 

Nevertheless, the robins did change their space use in response to simulated intrusions. Only 

the robins occupying smaller numbers of core-nuclei increased their commuting rate. By doing 

this, the birds decreased the quality of the feeding patches within their territory by revisiting 

them before the full recovery time had elapsed. Potential intruders would therefore experience 

lower prey densities than if owners continued to forage as they had before. Flight is the most 

energy costly activity of the robin (Tatner & Bryant 1986). This increased commuting activity 

will, therefore, result in an increased energy expenditure by the owner, but with no decrease 

in the owners rate of energy gain since patches were visited more often. 

Robins occupying larger numbers of core-nuclei did not increase their commuting rate. 

Such individuals were perhaps already working at close to some maximum sustainable rate 

merely to maintain such large territories, and so could not incur additional costs. These birds 

increased the randomness of their visits to core-nuclei. This resulted in a similar decrease in 

the apparent quality of patches as perceived by potential intruders. Increased randomness of 

movements will not increase energy expenditure, but owners may incur a decrease in their 

own rate of energy gain, since patches visited too often will be at an early stage of prey 

recovery and yield a low rate of energy gain, while patches visited less often than the full 
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recovery time will not any yield higher energy gains. There was no tendency for robins to 
increase their departure from ideal-linear network use when commuting between foraging 

patches. Possibly the risk of predation is too great a potential cost for a trade off to be made 

with the benefits of increased accessibility of foraging patches. 

Robins appear to increase their territorial defense by decreasing the apparent quality 

of the feeding patches they use. The reduced average prey densities within patches will 

discourage any intruders from remaining to forage or returning at another time. This "defense 

by resource depression" shows strong similarities with the defense by depletion of pied 

wagtails (Davies & Houston 1981) and defense by exploitation of the rufus hummingbird 

(Paton & Carpenter 1984). This nectivorous bird depletes the periphery of its territory early 

in the morning. Intruders, which will encounter this part of the territory first, experience low 

rates of energy gain and so are discouraged from remaining on the territory. Owners would 

be able to detect and monitor the effect of intruders by comparing the actual prey densities 

in patches with that anticipated if there were no intruders. Owners can consequently modify 

their pattern of network use accordingly. The highly patchy structure and absence of discrete 

territory boundaries in the robin means that in order to discourage intruders from staying, 

owners must keep all of their feeding patches at a low level of prey recovery. The robin may 

therefore show two types of territorial defense. Firstly, the eviction of challengers for territory 

ownership, which requires intruders to be aggressively dominated and expelled; and secondly, 

the discouragement of information gathering intruders by an increased degree of resource 

depression. This latter mechanism of territory defense does not require owners to locate 

intruders at all. Since temporary or long-term injury may compromise fitness (Arcese 1987), 

this pattern of interference competition may be a less risky strategy. 

The evidence from pitfall traps and observed patterns of network use in the robin, and 

previous studies of other small birds, suggests that the maintenance of a renewing food supply 

is frequently the economic basis for territorial behaviour during the non-breeding season. 

Nevertheless, since overwinter survival is the goal of such birds, the effects of long term prey 

depletion may also be of economic importance. Although active during the winter, small leaf 

litter invertebrates do not undergo reproduction. Over the winter, therefore, the asymptotic 

prey densities within patches will decline as robins successively remove visible prey. 

Consequently, in addition to short term exploitation and defense behaviours, a third as yet 

unidentified component of the temporal scheduling of patch visits may be the prevention of 

gross losses of prey to intruders. 



Chapter 6. 



110 

6. The energy costs of territory use. 
6.1. Introduction. 

In previous studies, it has been assumed that the costs of territorial behaviour in birds 

are related to the area of the territory they occupy (Stephens & Dunbar 1993). In chapter 5 

a new model of territory structure was developed for the robin that was based on the concept 

of a territory as a number of defended foraging patches linked by a network of preferred 
flight paths. The size of a territory can therefore be measured in terms of number of patches 

and flight distances, in addition to the simple estimate of total area. The main points 

concerning the structure and use of such territory networks are summarised below. 

Robins concentrated their time in a varying number of patches. These were located in 

bushes and shrubs, in which they foraged.. Individual foraging patches were termed core- 

nuclei. As the number of core-nuclei increased, the core-area was fragmented into foraging 

patches of decreasing individual size. The total area of the patches used by each individual 

was similar, although there was a consistent small increase in total area for each additional 

patch used. No territory contained more than six core-nuclei. The individual commuting 

movements that minimised the distance between patches were on average 20 m in length. This 

distance was similar for territories containing different numbers of patches. Large territories, 

therefore, contained many small foraging patches and a long total distance of commuting 

flights. Small territories contained few large patches and a short total flight distance. The total 

flight distance was termed the linear length. 

Robins tended to visit the core-nuclei within their territory in a regular sequence; 

termed a foraging circuit. The return time for visiting patches was approximately 30 min for 

all territories, regardless of the number of foraging patches they contained. This was because 

robins exhibited shorter giving-up times in small patches. The length of a foraging circuit 

depends on the configuration of the nuclei within the territory. Foraging circuits are at their 

shortest when the nuclei are in an circuit-polygonal or ideal-polygonal configuration, and at 

their longest when in an ideal-linear configuration. Results suggest that robins select foraging 

patches which together produce territory shapes of high eccentricity. Furthermore, individuals 

move between patches in a highly linear manner. The parameters which quantify the structure 

of territory networks of different size for the observed range of territory sizes, are shown in 

Table 6.1. The values and relationships were derived from information on the space use of 
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Appendix to Table 6.1. Derivation of the expression for the total edge length of the core- 
nuclei within a territory network. 

For a circle of radius r, circumference C, and area A; 

C= 2nr 

A= 7tr2 

r-ýn A 

So, assuming the core-nuclei comprising each territory network are circular and of similar 
individual areas; 

Total core area = A+(n-1)a 

:. Area of individual nuclei = A+(n-1)a 
n 

Radius of individual nuclei =fA n-1 a 
V rnt 

Edge length of individual nuclei =f A+(n-1)a 
2it V nit 

.: Total edge length for all nuclei =f A+ n-I a 
n 2n if nn 

Where; 

A= Total core area when number of core-nuclei equals one (Fig. 5.3.3. ). 

a= Incremental increase in total core area for each successive increase in 

number of core-nuclei (slope of line in Fig. 5.3.3. ). 

n= Number of core-nuclei in territory network. 
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43 non-breeding territorial robins. 

Territorial robins showed a differential response to simulated intrusions, depending on 

the size of the territory they occupied. Birds using small territories increased their rate of 

commuting between foraging patches; an activity with an associated increased energy 

expenditure. Birds using large territories increased the randomness with which they visited 

their foraging patches; an activity which requires no increase in energy expenditure, but which 

has an associated decrease in foraging success. 

These observations provide a basis for the prediction of time/activity budgets for 

robins using territory networks of different size and configuration. From this the form of the 

energy cost constraint on territory size can be determined, and compared with direct 

measurements of energy expenditure. 

6.2. Modelling the time/activity budgets for territorial robins. 
6.2.1. Time/activity budgets and network size. 

Detailed time/activity budgets for the behaviour of non-breeding territorial robins have 

been published by East (1980,1982) for individuals under similar environmental conditions 

to those experienced by robins in the present study. These studies were carried out at the 

University of Sussex in a 6.75 ha copse of deciduous woodland, within which the shrub layer 

was dominated by bramble and hawthorn bushes (Hoelzel 1989). This was of similar spatial 

structure to that occupied by robins in the present study (Table 2.1. ). The categories into 

which activities were divided are summarised in Table 6.2. Time/activity budgets for robins 

occupying territory networks of different size and configuration may vary. East (1980,1982) 

however, did not consider differences between robins defending small or large territories. The 

assumptions associated with three possible sources of variation in time/activity budgets with 

territory size are presented in Table 6.3. and form the basis for the models developed in this 

chapter. 

In Model I the only element of owners time budgets to vary is the total time spent 

commuting between core-nuclei. Robins occupying large territory networks have to move 

between many small foraging patches more often than those occupying small territories 

containing large patches. As commuting time increases, the time available for perching quietly 

must correspondingly be reduced to balance the time budget. This assumption is also made 

for Models II and III. The robin uses two main foraging strategies; perch & drop and ground 
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hopping (Table 6.2. ). In Model II the foraging behaviour is assumed to vary in proportion to 

the total patch area, for example a 10 % increase in patch area will require a 10 % increase 

in time spent foraging to collect all available prey. Within patches robins are assumed to use 
both foraging strategies over the whole area of each patch, such that the ratio of time spent 

in each foraging strategy is constant. Perch & drop foraging behaviour involves scanning for 

small prey items from a perch some distance above the ground (East 1980). This increases 

the range over which prey can be detected and reduces prey disturbance (Grajetsky 1993). In 

order to detect prey, however, light levels must be high and there must be sufficient space for 

unimpaired flight from the perch to the ground and back. This imposes a constraint upon 

where the perch & drop foraging strategy can be employed within the territory. In Model III 

this constraint is assumed to confine perch & drop foraging to the perimeters of patches, 

where illumination is good and flight unrestricted. Ground hopping is therefore the dominant 

foraging strategy when birds are moving in the dense vegetation typical of the centre of core- 

nuclei. Consequently, in Model III the time invested in perch & drop behaviour is assumed 

to vary in proportion to the total patch perimeter length, and the time invested in ground 

hopping is assumed to vary with the total core area. The rate of change in total core area and 

total core perimeter, due to changes in the number of core-nuclei, were not equal. As core 

areas fragmented into increasing numbers of nuclei, the total perimeter length increased at 1.7 

times the rate of increase in total core area (Table 6.1. ). Following this, the proportion of the 

active period spent in different activities by non-breeding territorial robins are shown as 

percentages in Table 6.4. following the assumptions for each of the three models. Values were 

derived from average time/activity budgets from East (1980,1982). In these studies, focal 

individuals were generally observed continuously for between 15 min and one hour, any 

observations of less then 10 min being excluded from the analysis (East 1982). This 15 min 

period is longer than the longest visits by robins to foraging patches within multinuclear 

territories (Fig. 5.3.5. ). Furthermore, the robins in these studies were sometimes observed to 

spend up to 20 min perched quietly within bushes (M. East pers. comm. ), suggesting that any 

bias in the published time/activity budgets towards individuals that were more active and 

visible was minimal. Robins with average time/activity budgets were assumed to occupy 

territories of average size and configuration. In the present study the median number of core- 

nuclei occupied by territorial robins was 4 (range 1-6, n=43). Time budgets could have been 

predicted for robins occupying territory networks containing more than six foraging patches, 
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although this was never observed in the field. 

The eviction of intruding robins by territory owners was rare in the present study. In 

chapter 5. intruders were shown to occur more often in large territories (section 5.4.2. 

Fig. 5.4.1. ). Due to the skulking nature of intruders, and the impracticality of radio-monitoring 

all potential intruders, it was not possible to measure the intrusion rate into a particular 

territory. If the number of intrusions initiated by a focal bird is assumed to equal the number 

of intrusions experienced by it, however, it is possible to estimate the percentage of the active 

period that territory owners were estimated to have been engaged in the eviction of intruders 

for territory networks of different size (Table 6.5. ). All intruders were assumed to be 

encountered and evicted, and based on observations of evictions during both radio-tracking 

and qualitative observations (n>10), each was assumed to require a 40 m flight at 3.85 msec' 

(Tatner & Bryant 1986). Even if all intruders were evicted, which is unlikely, and evictions 

required considerably more time than this, however, the proportion of the active period that 

owners were engaged in evicting intruders would have been extremely small (Table 6.5. ). 

Consequently this activity could not justifiably be included in the time activity budgets 

constructed using the assumptions of the three models. 

6.2.2. The effects of network shape. 

The predicted time/activity budgets in Table 6.4. are for territory networks that are 

used in an ideal-linear manner. That is, the owners only use the commuting paths that make 

up the linear length when visiting patches. The length of the foraging circuit for this pattern 

of use will therefore equal twice the linear length. It is possible for some configurations of 

core-nuclei to be visited using a circuit-polygonal or ideal-polygonal network of flight paths 

(section 5.2.2. ). Such configurations are characterised by a linearity (L) of equal or less than 

0.25 . This will result in a considerable reduction in the flight distance required to complete 

a sequence of patch visits (Table 6.1. ). The angles between commuting paths in ideal-linear 

configurations will be 180°. As the linearity decreases and the configuration becomes 

progressively more polygonal these angles will become smaller, increasing the benefit of 

using short cuts (section 5.2.2. ). 

Clearly by definition, only territory networks containing three or more core-nuclei may 
be used in a polygonal manner. The only parameters to change when time/activity budgets 

are constructed for robins following a pattern of polygonal rather than linear use are the time 
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spent commuting between nuclei and the time spent perching quietly, assuming foraging 

requirements do not change. For networks containing four nuclei commuting time decreases 

by 66.7 %, and for six nuclei commuting time decreases by 60.0 %, when used in a circuit- 

polygonal rather than linear manner. The time perched quietly increases by equivalent 

amounts. 

6.3. Direct measurements of energy expenditure. 
6.3.1. Methods. 

Measurements of energy expenditure were carried out using the doubly labelled water 

technique. The field protocol and analysis for this technique are fully described in chapter 2. 

Over the four days preceding stable isotope loading, a standardised sample of radio-location 

estimates was collected following the protocol described in chapter 3. During the 

measurement period, isotope loaded individuals were also continuously tracked for an hour 

at dawn, midday and dusk if possible, and behavioral observations recorded following the 

methodology of chapter 5. 

6.3.2. Results. 

Over the course of the study 20 robins were loaded with doubly labelled water. Of 

these 13 (65 %) were subsequently recaptured and an estimate of energy expenditure obtained 

(section 2.2.1.3. ). Since two of these were un-tagged control individuals, detailed information 

on the energy expenditure and space use was available from 11 radio-tagged robins. 

Measurements of energy expenditure were assumed accurate to ±10% (Tatner & Bryant 

1989). 

The morphological, energetic, space use and environmental data relating to these 

individuals are presented as a series of tables. The individual attributes and energy 

expenditures are shown in Table 6.6. The discontinuous radio-tracking data were analyzed 

using sequential cluster analysis to determine the utilization distribution statistics, following 

the methods developed in chapters 3. & 5. The results are shown in Table 6.7. Following the 

definition in chapter 3, three of the robins were classified as non-territorial. Measures of space 

use were derived from the continuous tracking data (Table 6.8. ), methodology and definitions 

following those in chapter 5. The environmental variables experienced by the robins during 

the period of measurement of energy expenditure are summarised in Table 6.9. 
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Table 6.8. Rates of space use and singing by robins for which 
free-living energy expenditure was measured. Values 

are based on an hour of continuous tracking carried 
out at dawn, midday and dusk during the period over 
which energy expenditure was measured. Dashes show 
non-territorial individuals for which commuting rate 
between core-nuclei cannot be measured. 

Ring No. Speed (m min'') Commuting rate Time singing 
(movements hr ) (sec min'') 

F646727 7.78 - 0 

F646583 5.71 3.6 0.27 

F646590 5.40 6.3 0 

F646594 4.27 10.0 0 

H227546 6.50 - 0 

F646582 5.10 - 0 

F646569 4.75 5.0 0 

Table 6.9. Environmental variables during the 24 hr period 
over which energy expenditure was measured. 

Date Temperature (°C) 

Minimum Maximum 

Wind speed 
(knots) 

Rainfall 
(mm) 

Daylength 
(hrs) 

28th January 91 0.2 2.1 2.0 0 8.3 

28th November 91 3.0 10.1 5.0 1 7.5 

1st December 91 4.6 8.2 2.0 0 7.5 

21st January 92 -4.0 3.7 0.0 0 8.0 

24th January 92 0.4 5.9 2.0 0 8.3 

4th February 92 1.9 11.7 7.0 0 8.8 

6th February 92 6.8 9.3 3.5 1 9.0 
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The relationships between energy expenditure and territory size and shape; individual 

attributes; activity and environment for territorial robins are presented as a correlation matrix 
in Table 6.10. In summary, measures of territory size were most closely correlated with 
ADMR, although usual-area was not correlated with any measure of energy expenditure. 

Territory shape, estimated by eccentricity (E) and mean angle between commuting paths, was 

not significantly correlated with energy expenditure. The correlations between individual 

attributes and energy expenditure were strongest for DEE, specifically body mass and 

wingdisc loading. Of the measures of activity, only commuting rate was correlated with 

energy expenditure, although the sample size was very small. The environmental variables 

showed most significant correlations with ADMR. 

Taking all the individuals for which doubly labelled water measurements were made, 

there was a significant loss of body mass between the initial and final captures of isotope 

loaded birds (Wilcoxon Matched-pairs Signed-ranks test Z=-2.85 p<0.005 n=13). Mass change 

was however not significantly correlated with energy expenditure (all individuals r, <O. 16 for 

ADMR, DEE and M, all ns n=13; territorial only Table 6.10. ). One individual died 16 hrs 

after isotope loading. The weather conditions at the time were severe frost and freezing fog, 

conditions under which resident robins were most likely to disappear, presumably having died. 

6.4. A test of the models. 
6.4.1. Predicting energy budgets from their component costs. 

The total energy expenditure of a bird engaged in a particular activity varies with the 

ambient temperature due to changing thermoregulatory requirements. The measures of 

temperature used in the present study were the minimum and maximum for each day (Table 

6.9. ). In constructing energy budgets for robins, the ambient temperature during the active 

period was assumed to equal the upper quartile of the observed mean temperature range, and 

the ambient temperature for the roosting period the lower quartile. Although this only 

estimates ambient temperatures, simply using the midpoint temperature for both would fail 

to allow for the fact that daytime is always warmer than nighttime, an important consideration 

considering the imbalance in the duration of each period during short winter days. The use 

of 75 % and 25 % of the temperature range respectively, however, approaches the values used 

by Ward (1992) in adjusting minimum and maximum temperatures to mean temperature for 

daytime and nighttime periods experienced by the same dipper population observed in chapter 



O V1 cn N O ýD O 00 O V) N 
' 00 \O "O [ý tý N M N \O V 1 

O p p p D 9 9 O O O C O 
ý ý O 

ý 

. lý 
I- r- 
C13 Cis 

Qi C 

o-. ß 

c "d 

w 

n 
1.0 r. 

II 

y +r 

0 
"ýr 

"Iý 

V 

to 

C: Ld 

eýv-D 

cl r- 

%- 
%i, O 

C 

a 
aý 
c 
0 
I- 
C 
W 

.r 
.y 
U 

.0 

Cd 

. -r 

1ý 

aý N 
.y 

O 
.r 

N 
H 

fA 
a N 

a N 

_ q 

Iti 

tu 
: Z. ` G 

10 

tu 

E 

C 

Ici 
äßr 

> 3 c ä > 
.r 3 ä ä 3 rx 

cý o- 
N 00 v 
cOÖ 

r. M cý IO 
OOO OOO 

Iý 
c 

aý 
cl S. bD 
an r. 
G 'pp 

'w Q 
:s 'gin 

'b C- 
U 

pÖE 

vý UH 

.» v1 N 
W) W) 

OOO66 

an 

E 

'li 

w 
r- 

3 

E 

a 

ö 

:d 
C 

. 

eo 

U 

2 

oooo oö 
0 

ö ö ö 0 ö 

U U w 
cý i 

U ý 
U t V 

Z :D 
C4 
k4 

b .c 

oq vi "e: ö O ö O O 

en 

cO 

y. .0 
«ci ' - ä E v 

- E 
r. 2 

° ä. 3 a 3 

00 N M G\ 
M N O 

O 0 O O O 
O 

. -. ýo ýC 
73 L 

GýW 
Qý U 

.. 
oI G ý+ VýUý 

td 

W 
W 
C 

a 
aý 
ý" Gp 

'C pq 
ýC 

', ý E :4 

N 

vii 
Ü E=ý 

M et N N 
Ö Ö O Ö Ö 

CA 

C 

dA bli H y 

w 3 äa 3 ý 

00 O ; O\ N 
[ý ', I: Z -i O O O Ö O 

' :Z u 
ö ° ý 5 

ä w 
Z 

r. 
04 

c ^" 
ll- Ei 
U ýj 
hJ v 

OA C Gy 
N y 

iC N 

00 

e. i 
aS U 

H_ C 

try CU 
ö3w 

'D a 
b 

ý' 
"> N 

IM 'C' 
y 

10 C 

. CD . 

35y> 

ß. ;; 
'b 

.y 
«7 b 

0 

Ci N 

Nb yU 0 b0 > 

YGU 

a3 ä 

*4 



116 

4. during springtime. 

The energy costs for robins engaged in each of the daytime activities from which time 

budgets were constructed, could be calculated for different ambient temperatures, using 

published equations (Tatner & Bryant 1986). The costs of vocalisation and other-activities 

(preening and defecating) were assumed to equal 1.1 times the cost of perching quietly 

(Ettinger & King 1980). Based on the minimum and maximum temperature averaged over the 

days that energy expenditure was measured (Table 6.9. ), the temperature during the active 

period was taken to equal 6.8°C and during the roosting period 3.8°C. The energy costs of 

robins engaged in the different activities were calculated for individuals operating at these 

temperatures, along with predicted values of B. M. R. from the equation of Aschoff & Pohl 

(1970)(Table 6.11. ). The values shown correspond to the minimum, mean and maximum body 

mass of robins for which estimates of energy expenditure were made. 

Although the energy cost of night time resting will be the lowest of the different 

activity costs due to inactivity during the roosting period, it nevertheless is one of the most 

important, since this period represents approximately two thirds of the daylength during 

winter. Radio-tracking results show that the robin will readily return to previously used roost 

sites on subsequent nights (chapter 3). One of the potential advantages of repeatedly using a 

particular site would be the presence of a favourable microclimate (Webb & Rogers 1988). 

In such a location, the energy expended during nocturnal roosting will be less than that 

expended at the same level of activity outside the roost, because of reductions in the energy 

lost from the inactive bird via various routes (Webb & Rogers 1988). The routes of heat loss 

for a roosting robin are summarised in Fig 6.1. after Webb & Rogers (1988). The magnitude 

of these, mediated by the temperature in the roost microhabitat will have a direct effect on 

the thermoregulatory requirements of the roosting bird. Since roosting birds are not foraging, 

this energy is obtained by the assimilation of gut contents and the mobilisation of energy 

deposits, such as fat, laid down during the active period. Birds should select sites which 

minimise the use of these stores, within the constraint imposed by the risk of being predated 

while roosting. Furthermore, ambient temperature inside the roost is likely to be slightly 

higher than the open site at which the temperature data was recorded. Based on previous 

studies of the energetics of roosting in small birds (Wallberg 1986, Webb & Rogers 1988), 

therefore, the cost of roosting was taken to equal 85 % of the cost of night resting at the 

mean ambient temperature outside the roost (Table 6.11). This represents the mean of two 
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Fig. 6.1. The routes of heat loss experienced by a roosting passerine such as the robin, 
ranked in approximate in order of decreasing importance (after Webb & 
Rogers 1988). Since birds such as the robin are immobile for up to two thirds 
of the day during winter, the selection of roost sites which minimises their 
effects could realise considerable reductions in thermoregulatory costs. 

Hf = Forced convective loss due to wind penetration through roost site. 
He = Evaporative heat loss down vapour density gradient between the birds 

surface and the environment. 
Hr = Long-wave radiative heat loss; surrounding vegetation acts to shield 

the bird from the sky, to some extent reducing long-wave flux. 
Hp = Effect of precipitation through plumage wetting; heat lost is due to the 

high specific heat capacity of water and reduction in insulating 
properties. 

H, = Conductive loss; heat lost through contact with branch negligible. 
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values for small passerines which roosted alone in similar sites and under similar temperature 

ranges (9 % saving at 0.6°C; Walsberg 1986,20 % saving at 10°C; Webb & Rogers (1988). 

Using the values of energy expenditure during different activities (Table 6.11. ), the 

energy budget for a 19.5 g robin was predicted under the assumptions inherent in each of the 

three models. Energy expenditure per hour was calculated by multiplying the proportion of 

time spent in each activity (Table 6.4. ) by the energy cost per hour (Table 6.11. ). The results 

are shown in Table 6.12. Daylength was set to the mean value for the days on which energy 

expenditure was measured, and was taken to be typical of the mid-winter period. 

6.4.2. Energy expenditure and territory size. 

For the territorial robins, energy expenditure was correlated with two out of the three 

measures of territory size (Table 6.10. ). Of these, the closest correlations were with ADMR; 

a measure independent of body size. The median value of ADMR for robins using the largest 

territories (5 core-nuclei) was 21 % higher than the ADMR for robins using the smallest 

territories (2 core-nuclei). Gram for gram therefore, robins using large territories expended 

more energy than those using small territories. Energy expenditure was not correlated with 

territory size as estimated by the usual-area (Fig. 6.2. ). Energy expenditure was, however, 

highly correlated with the number of core-nuclei within the territory network (Fig. 6.3. ) and 

the linear length of the territory network (Fig. 6.4. ). In Figs. 6.3. - 6.4. are also shown the lines 

representing the minimum ADMR required for robins to use ranges of different size, predicted 

by the three models of time/activity budgets. Also indicated are the linear regressions fitted 

to the observed values of ADMR in each case. For comparison, the data for robins which 

were classified as non-territorial are also shown. Range size for these individuals are of 

uncertain value however, due to the characteristic rapid rate of range drift. Hence 

instantaneous range sizes may have been smaller. Nevertheless the measures of range size for 

territorial and non-territorial robins were comparable, since they are all based on a 

standardised sample size. The statistics for the lines predicted by the three models and the 

fitted regressions are shown in Table 6.13. for the two measures of territory size. Probability 

levels are given despite some degree of violation of the assumptions concerning the 

parametric regression technique. In addition is shown the percentage departure of the 

predicted lines from the fitted regression equations. Although the median ADMR of non- 

territorial birds was 7% lower than that for territorial birds, this difference was non- 

significant (Mann-Whitney U-test Z=-1.0 ns, territorial median=5.18 cm3C02g''hr' range 4.11- 
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No. core-nuclei 
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Model 11 
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Fig. 6.3. The relationship between average daily metabolic rate (cm3CO2g''hr 1) and the 
number of core-nuclei used by non-breeding territorial robins (r1=0.83 p<0.005 
n=8). Solid symbols indicate territorial; open symbols non-territorial, following 
the definition in chapter 3. The solid lines show the constraint on energy 
expenditure predicted by each of the three models, and the dashed line shows 
the fitted linear regression. The equations and statistics are shown in Table 
6.13. 
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5.88 n=8, non-territorial median=4.81 cm3CO2g''hr ' range 4.31-5.23 n=3). 

The fit of the models to the observed data was assessed using paired T-tests between 

observed values of ADMR, and predicted values from the models matched by territory size 

(Table 6.14. ). At the 10 % probability level, there was no significant difference between the 

observed data and Model III using number of core-nuclei as the measure of territory size. 

There was no significant difference between the observed data and Models II and III at the 

10 % level if linear-length was used as the measure of territory size (Table 6.14. ). Therefore 

although the assumptions associated with Model III produced the best predictions of the 

energy costs of territory use in the non-breeding robin, Model II could not on the basis of this 

evidence be rejected with confidence. 

A sensitivity analysis was carried out on the predictions of Model III to assess the 

degree to which the relationship between energy expenditure and territory size was influenced 

by the cost of each component activity included in the energy budgets. This was done by 

decreasing the cost of each of the activities in turn by 10 % and assessing the effect on the 

slope and elevation of the predicted energy cost constraint (Table 6.15. ). On examining the 

percentage change in the equation parameters for each activity, it was clear that for both 

measures of territory size, a reduction in the cost of perch & drop foraging and commuting 

(i. e. flight) produced the largest decrease in the slope of the line (-12%), while a reduction 

in the cost of roosting produced the largest decrease in the elevation of the line (-4%). In no 

other case did the effect on calculated energy costs exceed 4%. 

Any territorial robin is able to move outside its territory at dusk in order to find 

locations in which microhabitat characteristics produce the largest reduction in the energy 

costs of roosting overnight. The energy cost of activities involving flight, such as perch & 

drop foraging and commuting between core-nuclei, however, may only be reduced by a 

reduction in the wing loading; a fixed attribute of the territory owner. In the robin, the wing 

span and body mass vary between individuals (this study). An individual of proportionally 

lower body mass or longer wings will experience a lower wing loading and consequently 

incur a reduced flight cost (Pennycuick 1989). During most flights involved in perch & drop 

foraging and inter-patch commuting, the bird is moving at speeds below V. 
P 

(Tatner & Bryant 

1986). It was not possible, therefore, to evaluate the effects of variation in wingspan on flight 

costs directly, since the software of Pennycuick (1989) can only estimate flight parameters 

for speeds between Vmp and V. Using-the equation in Tatner & Bryant (1986), it was 

possible, however, to model the effects of variation in body mass on flight costs at such low 



Table 6.14. T-values and probability levels for paired T-tests between 

observed values of A. D. M. R. and predicted values from 

each model matched by territory size (n=8). 

Model I Model II Model III 

No. core-nuclei -2.51 ** =2.67 ** -2.13 * 

Linear-length -2.36 ** -1.95 * -1.19 

* p<0.1 ** p<0.05 
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speeds, by assuming wing span is constant and assessing flight cost of birds of different mass. 
The effects of differences in body mass on total free-living energy expenditure, when 

occupying territories of different size, are shown in Table 6.16. and Fig 6.5. Lines show the 

cost constraint for each value of body mass, predicted by the time/activity budgets under the 

assumptions of Model III. These differences are best illustrated by differences in DEE, since 
birds of different mass experience different component costs. The statistics for the predicted 

lines representing the energy cost constraints on territory size are shown in Table 6.17. 

Decrease in body mass decreases wingloading. Intuitively therefore, decreasing wingspan 

increases wingloading, and the effect on energy expenditure of variation in wingspan may be 

inferred. The predicted effects of body mass on energy expenditure will also hold if 

individuals are assumed to follow the assumptions of Model II. 

6.4.3. Discussion. 

Differences in territory size, individual attributes, activity and environmental conditions 

accounted for some of the variation in energy expenditure experienced by territorial robins. 

Territory size, as estimated by number of core-nuclei and linear-length, was most closely 

correlated with ADMR, as would be expected if differences in activity were the underlying 

cause of variation rather than differences in body size. In accord with this, the individual 

attributes, specifically body mass and wingloading, were most closely correlated with DEE; 

large birds having a higher energy expenditure because of their greater mass of metabolizing 

tissue and higher BMR, and birds with high wingloading experiencing higher flight costs. 

Territory area was not significantly correlated with energy expenditure, either for ADMR or 

DEE. The number of foraging patches used and the total length of the flight paths between 

nuclei was, however, highly correlated. This is consistent with the concept of territories as 

forging patches linked by a network of commuting paths, rather than a simple defended area 

within which birds are equally likely to move between and use any locations. Environmental 

variables were most closely correlated with ADMR, implying that the energy expenditure by 

individuals of different size was similarly subject to the effects of weather and season. 

Radio-tracking indicated that all robins classified as territorial during the period that 

they were monitored, were occupying exclusive ranges, from which intruders were always 

evicted when encountered. The proportion of energy budget devoted to specific territory 

defence activities such as vocalisations and evicting intruders was negligible for all sizes of 



an 

ti av 

pC0 

O 
42 4� n 

TJ 
O cý 

> 

b 0E= 

.0-00 OCy 

G� c.. 
tC 

O> 'X 

Li07 cOC 
C. ý 

aýi 

M 00 -. 
%0 - 00 
O v1 Vl 

v? ýO 
'C N 

00 

N 
00 M 

cu 'o N N 

> xt lt N IN 

O 

00 00 "O 

Ü 
O N M N 

Ü 00 
000 - O 

Irý 'n "-ý Ö 
M N 

\O 

b0 
\O - 

00 

coi (Z C) CD 

00 N 
-C ý" 
O 

00 O 00 dj oo N 

00 - G Ü 
ý 

N c fl 
N 

�C 
2 

N 
cU 00 

ýO 00 

N 'r Z - M 

C\ 00 N 

pp Oý Iý 
o 
p 'O 

' N 
r p 

CA 00 CN 

E 'O N M 
N N 
d 

"ý N 
M N v 

N v l 

u 0 00 00 e 
r-1 N 

O 

W ýZ 
N N vi 

r. rv 
_ Im 2 

2,2 

W W u? 
W W A 

V1 
1r 

Fy. 'Ch 

.GN 
ýp N 

OÖ 

ar en 

ýo 

en ap 

10 
V= 

VV V/ 

X 

WWA 

** 400t 



a 
r 

N 

0 
In N 

O 
O 
N 

0 

0 
0 

0 
tn 

2 
'- CGU to tu 

O 
.VU :O 

4. 

C- UOvÖ 

10 -8 
c OC 

.O 

. 
4 

,b .=O 
O 

0 

10 °a=u 
äy° 

dj 
N 

di y 

.. yý'. 1 b- 

UO 'D 
12 

Q) bG cu O : Id - 

3c 
.a eä 0 

. bE 
t) WO G 

I. 
j . -O* CD 

c2 
j 

. CD = 

. 
'r' %. rOÖ -ce 

fi 
{ r02 öC ti 
(L) '0 

t tu 0 z t) 
ýC y {ý 

14 

ti 
Lz 

"(irp/p) *w, a*a 

0 
0 CD 000 CD 
oý QO r- MD 411 -Ir 



N 
N 

O 

CyC 

C's 
yj 

N 

bN 

O C13 "- 

.0yO O03 
ti+ a, G`r O 

yO 

ýUU 

UyO1 

ty Ü_ 
C- CA. = 
N0 C 

(U i_ ihr 
ý "d V1 

.C> 
.C 

5. ) 2 

C 
r-. ÖR 

0ya 
"`' ýö 

E 
E '''ye 
Oö ca UE 

ýlz 

an 

ri 

CG 

E 

O 
Ca n. 

oA 

all 

O 

8 

O 

an 
e+ý 
0ö 

O 

V 
O 

cn 

00 ýo 
00 ýo 
't kn CD > 

0 N N 

00 Wi N 
401 

vi C14 
If N 

0 

00 rý e4 r- 

00 --ý 
-: N 
ý' ýC Ö v1 

Ö Ö 

w `n s w rn 
cd c 

c71 N. 

.2 
W W V` 

w 

it 

ö c 

z a 

ai c 

Q 
äö 

W 

=. d 



120 

territory occupied. In a review of energy allocation to resource defense, Walsberg (1983) 

found an average of 11 % of DEE invested in advertisement and defense activities by birds 

at all stages of the annual cycle, although in five out of eight studies (63 %) this was less 

than 8 %. As shown in chapter 5, increased investment in territory defense, involves changes 

in the trade off between ideal patch harvesting behaviour and ideal intruder location behaviour 

rather than increased investment in some discrete and costly boundary patrolling behaviour. 

Consequently the energy costs of defense are inextricably bound up with the costs of 

exploitation, and should not be considered as separate activities in time/activity/energy 

budgets. 

The results suggest that the assumptions of Model III most closely represent the 

differences in time/activity budgets of robins using territories of different size, although the 

assumptions of Model II could not be rejected. The energy costs of commuting between core- 

nuclei, in whatever configuration and over any distances consistent with observed territory 

sizes, represent less than one percent of the total time/activity and energy budgets predicted 

by all three models of variation with territory size. Therefore the effect of territory shape and 

actual commuting distances on the energy costs of network use are negligible. The sensitivity 

analysis indicated the most important factor affecting the increase in energy expenditure with 

territory size was the degree of fragmentation of the foraging patches. Use of a larger number 

of foraging patches requires owners to spend a greater proportion of their time in perch & 

drop foraging, because of the greater length of total patch perimeter relative to total patch 

area. The assumptions about foraging behaviour upon which Model III was'based could be 

tested by equipping robins with radio-tags containing mercury droplet activity sensors, from 

which instantaneous behaviour could be determined (Exo et al 1992). 

Bryant & Prys-Jones (1985) showed that change in body mass was positively 

correlated with DEE in non-breeding dippers. This was because increased body mass 

represents an increase in the amount of metabolizing tissue in an individual. Although there 

was a significant loss of mass during the period of doubly labelled water measurement in 

robins, there was no associated relationship with energy expenditure. This was possibly due 

to the small range of the mass changes involved, or the fact that the mass changes were due 

to the assimilation or evacuation of gut contents rather than change in the amount of 

metabolizing tissue. The cause of the mass loss was probably the enforced fasting period of 

one hour during which the injected isotopes were allowed to equilibrate with the body water 
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pool. If so, a second measurement of body mass just prior to release may have reduced the 

apparent mass loss. Any loss of mass as a result of blood sampling was considered negligible. 
Another source of this mass loss may have been the use of baited traps for initial captures and 

mist nets for final captures. The initial mass measurement could have been raised by recently 
ingested food. 

Several studies have proposed the existence of an upper limit to the rate of energy 

assimilation (Kirkwood 1983) and maximum sustainable rate of energy expenditure by 

homeotherms (Drent & Dann 1980, Bryant 1989, Bryant & Tatner 1991). Work in excess of 

this apparent threshold is possible however, although individuals may incur loss of condition 

as energy reserves are used, or associated increased predation risk (Drent & Dann 1980). The 

frequency distribution of daily energy expenditures -suggest that this metabolic ceiling lays 

near a metabolic intensity equal to 4xBMR or even 5xBMR, although the value will vary 

between species (Bryant 1989). A comparison of the frequencies of M measured in the 

present study with values for robins at stages of the annual cycle excluding nestling 

provisioning (a very costly activity) from Bryant & Tatner (1991) is shown in Fig. 6.6. The 

data show that few individuals expended energy at a rate greater than 3xBMR. Previous 

results have suggested that, unlike those using small territories, robins using large territories 

are unable to increase their energy expenditure in response to simulated intrusions (section 

5.5. ). Although valid energy expenditures for using territory networks containing more than 

six foraging patches could be calculated using the assumptions of Model III, robins were 

never observed defending more than six foraging patches as a territory in the field. This may 

suggest an upper limit to territory size set by a constraint on M, above which the energy 

expenditure required for harvesting the foraging patches cannot be sustained. The metabolic 

intensity required for using a territory of the maximum six core-nuclei was predicted by 

Model III to equal 2.855xBMR (Table 6.12. ). This is close to the 3xBMR suggested by 

Fig. 6.6. 

The observed values of M, the constraint on minimum energy expenditure required for 

territory use as predicted from Model III, and the proposed upper constraint on the sustainable 

energy cost of territory use are shown in Fig. 6.7. Also indicated is the difference between the 

predicted energy expenditure for robins using small and large territories, and the proposed 

upper constraint on energy expenditure. This illustrates how robins using large territories are 

already working close to this upper limit, and so can only increase their level of territory 
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defense by using an activity that has no additional cost (section 5.5). The two constraints on 

energy expenditure intersect to predict a threshold level of territory size above which robins 

cannot maintain territorial behaviour. This is supported by the presence of only non-territorial 
individuals with range sizes above this limit (Fig. 6.7. ). 

Differences in the morphology of the robin affects the wingloading, and in turn the 

flight cost. Heavy birds or birds with short wing spans will experience a higher wingloading 

and energy cost of territory use (Table 6.16. ). Robins of different morphology may therefore 

show differences in behaviour. For robins using a certain size of territory, some individuals 

of low wingloading may be able to economically exploit the renewing food supply in the 

constituent foraging patches, while other individuals of higher wingloading are forced by their 

higher energy expenditure to use space in an energetically less costly non-territorial manner. 

By becoming non-territorial, however, they'may incur an associated reduction in fitness, due 

to for example increased risk of predation. The result of this would be the development of 

an association between wingloading and territory size. 

Another factor that may affect associations between morphology and territory size is 

differences in dominance status between robins. Dominance has been defined as a relationship 

between individuals in agonistic encounters that has a predictable outcome; a dominant 

individual regularly defeating or displacing a subordinate. Dominant status often confers 

priority of access to key resources such as food (Hogstad 1988) and territories (Smith 1976, 

Arcese & Smith 1985). Following this, dominant individuals have been shown to be more 

likely to survive overwinter than subordinates (Arcese & Smith 1976).. Furthermore, 

individuals of high body mass have previously been shown to be more dominant over low 

mass conspecifics (Petrie 1984, Newton 1990). In the robin, small territory networks, with 

their associated low energy costs of use, should be perceived as of the highest quality by all 

members of the population. If the dominance of individual robins over conspecifics is 

correlated with structural size or body mass, then dominant birds would be expected to obtain 

priority access to these small high quality territories. Individuals of lower mass would be 

excluded and must occupy larger lower quality territories. The predicted effects on the 

association between morphology and territory size for both of these factors is similar, and is 

illustrated as the modified Model III in Fig. 6.8. Furthermore, if polygonal territories have 

shorter foraging circuits (Table 6.1. ), dominant robins of large structural size or high body 

mass might be expected to acquire such networks. The proportion of time in costly perch & 
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drop foraging may not differ from that in linear networks, however, so the reduction in flight 

costs of using polygonal networks may be negligible and confer little energetic benefit on 

robins occupying polygonal territories. 

Non-territorial robins were characterised by their rapid rate of range drift. Because of 
this, their pattern of space use could not be measured in terms of use of core-nuclei, as it was 

with territorial birds. Consequently a model of the time/activity budget for non-territorial birds 

could not be developed for comparison. Nevertheless, the extremely large ranges observed in 

addition to their low energy expenditure suggests that short term patterns of space use were 

considerably different from that of territorial birds. Perhaps non-territorial robins reduce the 

proportion of their time spent in high cost perch & drop foraging in favour of cheaper ground 

hopping. The microhabitat resource depression associated with hopping (Grajetsky 1993) may 

be less important if individuals are less reliant on regular sequences of visits to harvest prey 

in the same patches. 

6.5. A test of the modified Model III. 

6.5.1. Territory size and the quality of owners. 
If the assumptions of Model III do correctly represent the energy cost constraint on 

territory size, then some relationship between individual attributes and territory size must also 

apply. Correlative results already suggest a positive, although non-significant, relationship 

between energy expenditure and wingloading (Table 6.10), however the sample size was 

small. By correlating territory size with individual attributes directly, the sample size can be 

considerably increased and the assumptions of the modified Model III tested. 

Wingloading was measured in two ways; the structure dependent wingdisc loading was 

calculated from the body mass predicted from the individuals structural size measurements 

reflecting phenotypic flying ability, while the condition-dependent wingdisc loading was 

calculated from the observed body mass during the period that the territory size was 

measured, and reflects flying ability at this time. Significant relationships existed for structural 

size, wingloading and fat score (Table 6.18. ). The results of tests between territorial and non- 

territorial robins for the above parameters are shown in Table 6.19. The relationships between 

linear length and predicted mass and structure-dependent wingdisc loading; and number of 

core-nuclei with fat score are shown in Figs. 6.9. -11. The predicted mass, wing span, wingdisc 

loading, observed mass, condition and fat score are presented in Appendix 10 for the sample 

of radio-tracked robins whose range structure was analyzed in chapter 3. 
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6.5.2. Discussion. 

In general, the evidence supports the prediction of the modified Model III, that robins 

of low mass and wingloading should be excluded from small territory networks, with their 

associated low energy cost of use. Reasons for this may include a dominance hierarchy in the 

population based on body size; large birds being more likely to gain exclusive access to 

patches which make up a small territory networks. In addition, for a particular territory size, 

an individual of low wingloading may be able to economically exploit the foraging patches, 

while a bird of high wingloading with its' increased flight costs, cannot. 

Correlations of the three measures of territory size with energy expenditure suggested 

that the number of core-nuclei and linear-length were the most accurate measures of territory 

size, if it is assumed that birds using large territories have a high energy expenditure. Of these 

measures of territory size, linear-length was also most closely correlated with individual 

attributes. The number of core-nuclei, however, were least correlated. Correlations with usual- 

area were of intermediate value. The reasons for this difference are unclear. The sample of 

46 ranges used by territorial robins was compiled between August and February, 

encompassing the whole non-breeding season. It is possible that some unidentified seasonal 

variation in prey availability or recovery; habitat selection; or range drift reduces the accuracy 

with which the true number of foraging patches within territories can be identified. This 

would however, be expected to effect estimates of linear-length, if the model of territory 

structure does not also vary. 

Structure-dependent wingloading was more correlated with territory size than 

condition-dependent wingloading. This seem likely to represent selection of territories by 

robins that allow optimal use over the long term (months), rather than the period over which 

range size was measured (days). During this short period the observed mass and therefore 

condition-dependent wingloading, would be subject to weather related variation. It may be 

more important for a territorial robin to optimise its body condition rather than its 

wingloading, over the short term. An example of this would be the need to lay down 

additional energy reserves in order to survive long winter nights during a cold snap. 

Robins occupying large territories, containing many core-nuclei and a large total 

commuting distance, were in better energetic condition than birds occupying small territories 

estimated by total fat score, a measure independent of size differences, despite being 

structurally smaller, indicated by predicted mass, and of lower observed body mass. Robins 

occupying large territories change their activity in a different way to birds on small territories 
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when increasing their level of territory defense (section 5.5. ). Because of this it may be 

beneficial for them to maintain higher levels of energy storage, to offset decreased foraging 

success when intruder pressure is high. Furthermore, despite being significantly smaller and 

of lower wingloading at the 10 % probability level, non-territorial robins showed a 

significantly higher index of condition than territorial birds (5% level). The condition measure 
does not fully allow for size differences. Further correcting for size would, however, amplify 

the existing difference. The higher energetic condition of non-territorial robins relative to their 

territorial counterparts may be due to them requiring a larger buffer against adverse 

conditions, since their nomadic use of space means they cannot exploit a predictable renewing 

food supply. The cost of carrying additional reserves may be offset by a low wingloading and 

associated flight cost. The superior condition of non-territorial birds in the present study is 

contrary to the usual view of non-territorial birds being the poorest quality individuals in a 

population in terms of mass loss during cold weather in winter (Harper 1984) and while 

wandering prior to pairing in spring (Harper 1985). 

After the analysis for the present study was carried out, Carpenter et al (1993a, b) 

published results for hummingbirds defending territories during migratory stopovers. Patterns 

of territory acquisition and quality were positively related to dominance, as indicated by 

wingloading. Adult males had the highest wingloadings, were dominant over females and 

immatures which had lower wingloadings, and were more likely to gain territories and occupy 

territories of high quality (Carpenter et al 1993a). Some birds at the lower end of the 

dominance hierarchy were forced to follow a non-territorial existence. Despite their 

subordinate status, however, like robins, they were able to accumulate energy reserves at a 

comparable or higher rate than that of territory owners. This energetic compensation was 

achieved due to the low wingloading and therefore flight costs of non-territorial individuals 

(Carpenter et al 1993b). 

The phenotype of an individual is the product of its genotype and its environment 

(Boag 1983). The morphological characteristics of small birds have been shown to have high 

indices of heritability (Boag 1983). If the phenotype of individual robins is similarly 

predominately dictated by its genes rather than its environment, then these results suggest a 

genetic predisposition to particular patterns of territory occupancy. 



Chapter 7. 
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7. General discussion. 

7.1. Radio-tracking small birds. 
7.1.1. Temporal scale of observations. 

A territory is a space, and a given territory must be defined in spatial terms 

(Kaufmann 1983). Furthermore, territories may vary in the length of time they exist on any 

one site, thus a territory must be described with reference to both space and time (Kaufmann 

1983). In many previous studies of space use, the period over which radio-locations were 

collected, the sample size and the effects of autocorrelation have often not been considered 

important (Harris et al 1990). Thus differences in space use over a range of time scales have 

rarely been addressed. The space use of the robin and the dipper were intentionally sampled 

and analyzed over a variety of time scales; from as little as two minutes to as long as 200 

days, requiring both autocorrelated continuous tracking data and asymptotic samples of 

discontinuous tracking data (Fig. 7.1. ). This enabled both very short and very long term 

changes in the territorial behaviour of a small passerine bird to be quantified over the non- 

breeding season in unprecedented detail. 

The results from the present study demonstrate how inappropriate radio-tracking 

protocols could provide misleading data. For example, due to the effects of range drift, 

estimates of territory area based on sampling period of several weeks could severely 

overestimate the "instantaneous" area; that is the area used over a period of only a few days. 

It is suggested, therefore, that the most appropriate base-line measure of range size is that 

determined from an asymptotic sample size using a sample interval just sufficient to ensure 

statistical independence between successive location estimates, and the patterns of range use 

and changes in range structure over time should then be quantified relative to this, using 

shorter or longer sample intervals as required. 

7.1.2. The analysis of radio-tracking data; difficulties and solutions. 

In the present study the most appropriate technique for determining internal range 

structure, was non-parametric sequential cluster analysis (Kenward 1987,1990,1992). This 

was because of its effectiveness in identifying a number of much used patches in a non- 

uniform multi-nuclear range, without being influenced by other locations or an arbitrary grid 
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Fig. 7.1. The temporal scale of observations available using radio-tracking data from the 
robin. Bold indicates use of range statistics based on discontinuous tracking 
data, and normal text indicates use of range statistics based on continuous 
tracking data. 
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(Kenward 1992). The number and size of core-nuclei identified by this technique depends 

only on the analysis algorithm; for example the number of locations required to initiate a 

cluster. In the Ranges IV software used to analyze the discontinuous tracking data, the 

minimum number of locations for cluster formation was three (Kenward 1992). Although this 

number is arbitrary, it represents the minimum number required to form an area (a triangle) 

if all three locations occur in different resolution cells. Nevertheless, using this technique the 

core-nuclei apparently occupied by some robins were only one resolution cell in area (1 m2). 

This was because the bird made three or more visits to a single perch at a sufficiently large 

distance from other clusters. The existence of such small outlying clusters in the robin 

prompts the question are they used as part of the territory, or are they simply regularly visited 

excursive or even intrusive locations? These difficult to categorise outlying core-nuclei could 

be excluded from estimates of range strticture by using a higher minimum number of 

locations for cluster initiation, although an objective criteria for determining such a minimum 

number is at present not available. 

Once the appropriate percentage of locations was assigned to the clusters, their area 

was determined by constructing convex polygons around each one (Kenward 1990). Although 

these generally produced a tight-fitting outline, they were inevitably subject to some of the 

disadvantages inherent in any convex polygon measure of range area, such as the inclusion 

of unused areas (White & Garrot 1990). An example of this is found in core-nucleus number 

2 in Fig. 3.10. where the true distribution of location estimates resembles a crescent. Estimates 

of nucleus area which more closely follow the distribution of the locations could be obtained 

using concave polygons (Harris et al 1990), although the rules for their construction often 

lack objectivity. 

A new non-parametric approach for identifying core-regions within ranges has been 

described by Wray et al (1992b). The use of dirichlet tessellations has the advantages of 

cluster analysis when applied to non-uniform multinuclear ranges, but makes no assumptions 

of convexity in defining core-areas. Instead, internal range structure may be described in 

terms of the summed area of the tiles constructed around each location (Wray et al 1992). 

Consequently, a form of cluster analysis could be developed based on the clustering of tiles 

of different area (tiles are smallest where the locations are densest), rather than distances 

between points based on sophisticated joining rules (Wray et al 1992). 
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In order for the continuous tracking information to be interpreted in terms of the use 

of different foraging patches, it was necessary to develop a series of movement rules. This 

was to remove the effect of brief anomalous movements which would otherwise disrupt the 

quantification of movement sequences. The precise effect of the rules were not important, 

since patterns of range use were compared between individuals using the same analysis 

protocol. The rules were deemed suitable if they enabled the duration of individual visits to 

foraging patches and the sequence of visits to patches, to be determined. 

On superimposing continuous tracking data on the range structure determined from 

discontinuous tracking data, it was necessary to add a two metre boundary strip to all core- 

nucleus polygons, in order to assign peripheral locations to appropriate nuclei. This increased 

their area and in some cases caused neighbouring nuclei to fuse, reducing the number of core- 

nuclei in the range. Core-nucleus polygons were derived by a mathematical algorithm which 

was independent of the real activity of robins. Because of this the addition of a boundary strip 

produced range statistics that were no less representative of the behaviour of real robins. 

7.2. Territory and neighbourhood structure. 
7.2.1. Comparison with previous studies. 

A comparison between the conclusions drawn from the present study, and those of 

previous studies have been discussed in detail in the previous chapters. However, the more 
important differences for the robin are summarised in Table 7.1. and drawn together below. 

7.2.2. Territory structure. 

The most important difference was in the approach to describing territory structure. 
In previous studies, both breeding and non-breeding territories have been viewed as areas of 

utilized habitat surrounded by a defended boundary (Lack 1940, Harper 1984, Adriaensen & 

Dhondt 1990). The locations of these were determined by visual observations of territorial and 

other behaviour, and plotted on maps as precise lines (Table 3.1. ). The highly quantitative 

methods of measuring space use used in the present study produced no evidence for such 

territory boundaries. Instead, territory structure was much closer to the network concept 

developed in chapter 5. Robins defended a number of foraging patches located in bushes and 

shrubs. In order to use the territory, birds commuted between patches using a network of 

preferred flight paths, each of which minimised individual commuting distances. 
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7.2.3. Changes in territory over time. 

During the non-breeding season, all territorial robins showed high fidelity to the grid- 

cells they occupied over the short term (days), compared to the nomadic space use of 
individuals classified as non-territorial. Over longer periods of time (months), however, some 

territorial robins appeared to show directional range drift; new core-nuclei being established 

and old ones abandoned, resulting in a constant prevailing range size. This behaviour may be 

a response to changes in the quality of foraging patches. For example, after the loss of leaves 

during October, the shelter from wind and rain provided by deciduous vegetation will 

decrease. The robins using them will therefore experience increased thermoregulatory costs. 

In such situations, robins would benefit from moving their defended foraging patches to 

habitat features which provide more shelter, such as dense evergreen bushes. It was unclear 

from the present study whether such behaviour involved the aggressive takeover of individual 

foraging patches used by other robins, or more passive responses to the movement or 

disappearance of neighbours. 

The ability to establish and maintain a territory will have a profound influence on an 

individuals fitness (Howard 1983). Robins first establish territories during August (Lack 1965, 

present study). At this time juvenile robins, unlike adults which have already successfully 

over-wintered at least once, can have no knowledge of how the quality of foraging patches 

will change during the subsequent Autumn and Winter. It may be expected, therefore, that 

adults would be likely to establish territory networks containing evergreen vegetation, which 

will, based on previous experience, maximise their chances of surviving the next winter 

without further territory drift, even if such configurations are initially suboptimal. Juvenile 

robins, on the other hand, may be expected to select patches on a short term economic basis, 

such that the configurations of patches used are optimal only for current conditions. The 

consequences of such habitat selection by juveniles is that may need to modify their territory 

networks later in the Autumn as some of their foraging patches become uneconomic. 

At the onset of the breeding season, signalled, by the increase in vocalisations by 

males, females and some males adopt a nomadic non-territorial pattern of space use. In 

females this has been interpreted as facilitating mate selection (Harper 1985). Most males 

maintain normal territorial behaviour during this period, attracting females by virtue of their 

song (Hoelzel 1986). Some resident male robins, however, go through a brief period of pre- 

territorial behaviour characterised by frequent song, but with the nomadic behaviour similar 
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to that of non-territorial birds during the Autumn and Winter. Such behaviour perhaps 

represents a final attempt, by rapid range drift, to increase territory quality sufficiently to 

support a female and attempt to rear a brood. Such pre-territorial wandering is also shown by 

migrant male robins which must search for a suitable location in which to establish a territory 

on returning to the breeding habitat. 

Usual-areas occupied during breeding were not significantly different in size from 

those occupied during non-breeding, despite being used by both a male and female. The work 

described here represents the most northerly study of the robin to date. In more southerly 

populations in Britain, the spring song surge and establishment of pair territories takes place 

in early January (Lack 1965, Harper 1984), some six weeks earlier than in the present study. 

In such a situation, the pair members have been observed to use separate halves of the 

enlarged joint territory (Harper 1984). This suggests that each bird makes exclusive use of 

a number of foraging patches within the enlarged territory, perhaps cooperating in the eviction 

of challengers for territory occupancy. The delayed onset of breeding behaviour in the central 

Scottish population is possibly due to harsher weather in the early spring. Robins cannot 

manage to establish and maintain a joint territory before the onset of growth in vegetation and 

invertebrates, which occurs several weeks later in central Scotland than southern England 

(pers. obs. ). It is perhaps this increase in quality of territories which allows males and females 

to both occupy a territory which could previously only support one bird. 
. 

Changes in the location of territories between years has been shown to be adaptive, 

leading to increases in area (Patersen & Best 1987), and/or reproductive success (Beletsky & 

Orians 1987). It would be useful to analyze the data relating to changes in territory networks 

obtained during the present study, to test the above hypotheses and to determine how territory 

drift within years contributes to increased fitness, in terms of over-winter survival and 

reproductive success. 

7.2.4. A measure of territory size. 
The values of territory area observed in the present study, as estimated by the usual- 

area, were considerably smaller than values suggested by previous studies. This was because 

the neutral interstices were previously included within territory boundaries, and the effects of 

territory drift were not considered. The network concept of territory structure, however, 

suggests that territory size viewed in terms of an area surrounded by a defended boundary 
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may not be appropriate for the non-breeding robin. Furthermore, correlations between the 

three measures of territory size and energy expenditure suggest that the number of foraging 

patches defended and the total flight distance between patches, are better indicators of 

territory size. This provides further support for the idea of a territory as a number of defended 

foraging patches, between which owners commute by following a network of preferred flight 

paths which minimise individual distances. Many previous studies have tested hypotheses 

about territorial behaviour based on territory areas (eg Smith & Shugart 1987, Cave & 

Perdeck 1989). If this network concept of territory structure is universal among small birds 

occupying patchy habitats, then these results should be reconsidered in light of the findings 

of the present study. 

Based on the network concept of territory structure and size, it may be possible, given 

details of a particular habitat, to predict the over-winter carrying capacity by measuring the 

number and area of individual bushes and shrubs, and the commuting distances required to 

exploit and defend different configurations. Furthermore, knowledge of a territorial 

individuals' specific requirements, in terms of habitat fragmentation and the quality of 

individual patches, may allow the manipulation of habitats to maximise the population size, 

survival or reproductive success. 

7.3. The form of the energy cost constraint on territory size. 
7.3.1. Predicted exploitation and defense costs. 

The relationship between energy costs and territory size was best predicted by the 

assumptions of Model III, although Model H could not be rejected at the 10% level. For both 

models, the predicted line had an elevation of positive value. This indicated the existence of 

a maintenance cost incurred by all birds, similar to the cost constraint envisaged by Kodric- 

Brown & Brown (1978). The size of this maintenance cost was most sensitive to the cost of 

roosting overnight, reflecting the large proportion of the day spent at roost during mid-winter. 

The energy cost of territory use in the robin was predicted to increase linearly with 

territory size, since investment in the component activities increased in a stepwise manner as 

the size of the territory network increased. The costs of evicting intruders were estimated to 

be negligible (section 6.2.1. ). Even though the intruder pressure was observed to increase with 

network size (section 5.4. ), at their greatest intensity intrusions were not sufficiently frequent 

to warrant inclusion in time/activity budgets. Consequently the energy cost constraint on 
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territory use predicted by Model III may be considered to represent only the costs of territory 

exploitation. 

If the time and/or energy costs of evicting intruders were larger, however, the form 

of the cost constraint would accelerate, following the cost constraint envisaged by Myers et 

al (1981). To illustrate this, eviction costs were modelled using literature values of the 

proportion of energy expenditure spent in defense. The E. E. 
acuve of a robin using a territory 

network of median size (four core-nuclei and a linear length of 60m) was increased by the 

mean and maximum values in table I of Walsberg (1983). The defense costs were adjusted 

for territories of larger and smaller size using the observed values of intruder pressure (section 

5.4. ). The results are presented in Table 7.2. and Fig. 7.2. showing the two cost constraints are 

clearly accelerating. The effect of this would be to reduce the maximum territory size for 

which the energy costs of use are less then the energy benefits. 

The results of the playback manipulations suggested, however, that robins could 
increase their investment in territory defense by changing the pattern in which they visit their 

core-nuclei (section 5.5. ). Robins using small territories increased their commuting rate and 

therefore energy costs, while robins using large territories increased the randomness of the 

sequence in which they visited their foraging patches. The latter, therefore, may increase their 

level of territory defense without increasing their energy expenditure. This has similarities 

with the owner/satellite scenario in pied wagtails (Davies & Houston 1981), in which the 

response of territory owners to high intruder pressure is allow a temporary satellite individual 

to exploit the renewing food supply and contribute to territory defense. The owner incurs an 

energy cost in terms of reduced return times, but requires no increase in its own energy 

expenditure. Robins are perhaps unable to similarly share territory defense because low 

visibility prevents cooperating individuals from maintaining the same sequence of patch visits. 

Consequently, in response to very high intrusion rates, the cost constraint may maintain its 

linear form although the slope may decrease and the elevation increase. The reality of an 

accelerating cost function as territory size increases is therefore unconfirmed and may be 

unfounded. 

It has been suggested that song in the robin plays a role in territory defense (Lack 

1865). The robins for which measurements of energy expenditure were made did not vocalise. 

If vocalisation in the form of song formed a large part of the time/activity budget and song 

was a more costly activity than published estimates suggest (1.1 times cost of perched quietly; 

Ettinger & King 1980), then this may affect the parameters of the cost constraint. Since the 
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Fig. 7.2. Energy cost constraints on territory size in the robin. For line (a) eviction costs 
were negligible. For line (b) eviction costs were an additional 10% EE,, ti, e and 
for line (c) eviction costs were an additional 33% EE, crive for a robin occupying 
a territory of median size (see Table 7.2. ). The dashed line indicates a linear 
regression fitted to the observed data. 
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vocalisations increased with territory size in a linear way (section 5.3. ), the cost constraint 

would still follow a linear form. At present there are no studies in which the cost of fighting 

and evictions of intruders have been measured (Riechert 1988). Even if these activities were 

very energetically costly, their short duration (except during attempted territory takeovers; 

Harper 1984) would result in a very small effect on overall energy expenditure. 

Stephens & Dunbar (1993) have used dimensional analysis to propose a cost constraint 

that decelerates with territory size. Considering the stepwise increase in exploitation costs with 
the number of foraging patches used and the observed increase in intruder pressure with 

number of patches, this is not appropriate in the robin. 

7.3.2. The effects of territory shape. 

The slope of the cost constraint in the robin was most sensitive to the cost of perch 

& drop foraging (Table 6.15. ). This activity, although of relatively short duration in 

time/activity budgets, represents flight at speeds less than V,, 
p and so has a very high energy 

cost, relative to the cost of the other component activities (Tatner & Bryant 1986). 

The only parameter to change between territory networks containing similar numbers 

of foraging patches is the length of the foraging circuit (Table 6.1). Since the commuting 

costs, a component of total flight costs, are very small (0.2% EE, 
c, i,. 

for median number of 

foraging patches) compared to the costs of perch & drop foraging (55.6% EE, 
ýý, Q 

for median 

number of foraging patches), the effects of network configuration and territory shape will be 

very small. The energy expenditure of robins using territories of ideal-polygonal configuration 

(low eccentricity E and linearity L), therefore, will be only slightly less than that of robins 

using territories of ideal linear configuration (High E and L). 

7.3.3. Evidence from direct measurements of energy expenditure. 
It was difficult to fully endorse one particular form for the energy cost constraint on 

territory size from the observed values of energy expenditure, because of the small number 

of measurements successfully completed. Since the data obtained on changes in patterns of 

use and intruder pressure with territory size prevent the possibility of a decelerating constraint, 

however, the observed data suggest the linear constraint predicted by the assumptions of 

Model HI is most likely to be correct (Fig. 7.2. ). Nevertheless the eviction costs, even if very 

small as the data suggest, will result in a small degree of acceleration in the cost constraint, 
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which would be difficult to detect even with a much larger sample size. 

7.3.4. The effects of bird morphology. 

The morphology of birds can have consequences for their behavioural ecology (Herrera 

1978). Examples of this range from differences in food-niche width, for example variation in 

the bill length of the robin (Herrera 1978), to differences in foraging strategy, for example 

via wing-disc loadings and flight costs in hummingbirds (Feinsinger & Chaplin 1975). 

In the present study of the robin, energy expenditure predicted from the assumptions 

of Model III could be shown to vary with the morphology of individuals, suggesting 

implications for their territorial behaviour. Robins of high body mass size or small wing span 

had associated higher wing-disc loadings and consequently higher flight costs (section 6.4.2. ). 

The robin population exhibited natural variation in both of these characteristics (Appendix 

10. ). Therefore an association of morphology with territory size was predicted, generated by 

differences in the energy costs of using territories of the same size. It was suggested that an 

additional cause of this predicted association could be the existence of relationships between 

body size and dominance status. Correlational analysis provided support for the predictions. 

Consequently, although the slope of the energy cost constraint will vary slightly between 

individuals (Fig. 6.5. ), the slope of the population energy cost constraint will be slightly less 

than that for each individual, since robins occupying territories which are more costly to use 

are more likely to have adaptations which reduce their energy expenditure (Fig. 6.8. ). 

It would be valuable to compare the morphology of robin populations from habitats 

of different patch structure, to see if natural selection has acted to adapt birds to the 

aerodynamic requirements for defending particular configurations of foraging patches. For 

example robins defending small, closely packed territories in the dense shrub layer of a 

lowland deciduous woodland may have higher wing-loadings than robins eking out an 

existence in sparsely populated upland coniferous forest. The possibility of high degrees of 

gene flow between robins occupying different but adjacent habitats may, however, result in 

any differences being negligible. Alternatively, inherent variability between robins allows 

individuals to distribute themselves appropriately between different habitat types. 

Data from Cramp (1988) suggest the existence of a cline in wing-loading across the 

western Palaearctic (Table 7.3. ); eastern robins having lower flight costs. Unlike robins from 

western Europe, these eastern populations are also predominately migratory (Cramp 1988), 
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and this may be reflected in lower wing-loadings and reduced flight costs. Alternatively, 

eastern robins may occupy territories in poorer habitat, which requires more time in flight 

during exploitation and defense, for example many small and widely spaced foraging patches, 
lower prey densities or longer recovery times within patches. At present there are no data on 

territory size for robins living in eastern Europe and north west Asia. Furthermore, the 

problems inherent in measuring territories using common criteria makes a test of these 

hypotheses impossible here. 

7.3.5. Implications for the cost constraint on territory size in the dipper. 

The foraging strategies employed by dippers include walking/wading and diving 

(Bryant et al 1985, Bryant & Tatner 1988). The energy costs of these activities, at the same 

ambient temperature for which the activity' costs of the robin were calculated, are shown in 

Table 7.4. Also shown are the average time budgets for each species during non-breeding 

territoriality. It is already apparent that, due to its relatively high cost, the time expended in 

perch & drop foraging in the robin has a profound impact on the slope of the energy cost 

constraint on territory size (Table 6.15. ). The costs of commuting between foraging patches, 

in contrast, comprises a very small part of the total energy budgets. The energy costs of 

foraging (walking/wading and diving) in the dipper are considerably less than those of the 

robin, although this is to some extent offset by a greater time engaged in feeding activities 

(Table 7.4. ). The energy cost of flight in the dipper is nearly 40% greater than that of the next 

most costly activity (Table 7.4. ). Unlike the robin, however, flight is not used during foraging. 

Therefore, the cost of commuting between foraging patches might be expected to have a 

greater impact on the energy budget of the dipper. 

Nevertheless, since like the robin, the usual-lengths occupied by non-breeding dippers 

all contained similar core-lengths (Fig 4.7. ), the energy cost of territory exploitation would 

also be likely to increase in a linear manner with territory size, if inter-patch commuting 

distances were similar for all territories. The low levels of intrusions into dipper territories 

(section 4.2.4) suggests that eviction costs, like those of the robin, were negligible and 

unlikely to cause the overall cost constraint on territory size to accelerate. 

Finally, male dippers are structurally larger and of greater body mass than females 

(Newton 1989). This has already been shown to have implications for DEE (Bryant & Tatner 

1988), partially due to possible differences in their respective flight costs. Because of this, the 
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energy cost constraint on territory size experienced by female dippers will have a slightly 
lower elevation and slope, enabling them to economically exploit and defend configurations 

of foraging patches that males, due to their greater energy demands, cannot. 

7.4. Costs, benefits and the optimal territory. 
7.4.1. The form of the benefit constraint. 

Territoriality should be expected when the benefits of territorial behaviour are greater 

than the costs (Brown 1964). The constraint on benefits available with variation in size of 

territory used by the robin may take one of several forms (Table 7.5. ). If the robin defends 

the constant resource territories of Stephens & Dunbar (1993), then the benefit constraint will 

take the form of a line of slope zero, the elevation representing the benefits in terms of energy 

gains required for continued existence (Constraint 1; Table 7.5. ). 

There was some evidence, however, that the total cdre area increased linearly with the 

number of foraging patches used (Fig. 5.3.3.1. ). Since the results from pit-fall trap catches 

suggested that prey density did not vary within or between patches (section 5.3.3.2. ), the 

observed increase in total core area with number of foraging patches used will result in a 

corresponding increase in available energy benefits. This benefit constraint will be a linear 

function with positive slope (Constraint 2; Table 7.5. ). The slope should equal that of the 

proportional change in total core area with number of patches used (Table 6.1. ). This is 

because a territory which increases in core area by 10% will increase the number of prey 

items available per foraging circuit by 10% also. 

For individual feeding territories, the benefit constraint in models of territorial 
behaviour has usually been described as a decelerating function with territory size. This is 

because benefits will increase at first and then level off as the prey availability becomes 

superabundant in relation to the animals needs (Kodric-Brown & Brown 1978, MacLean & 

Seastedt 1979, Myers et al 1981, Davies & Houston 1984)(Constraint 3; Table 7.5. ). 

In chapter 6. it was suggested that there was a constraint on the maximum daily 

energy expenditure of robins, which could explaine the occurrence of nomadic non-territorial 

individuals. Work in excess of this threshold (achieved when territory networks contain in 

excess of six core-nuclei) is possible, although individuals may incur costs such as loss of 

condition or increased predation risk (Drent & Dann 1980). Furthermore, this level of energy 

expenditure in the robin may be approached by any individual for short periods regardless of 

the size of territory occupied. For example those occupying small number of foraging patches 
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and responding to short periods of increased intruder pressure. This supposition allowed a 
further series of hypotheses to be formulated and tested. 

It is possible, however, that the occurrence of non-territorial individuals is due to the 

energy costs of using a range of a size in excess of six core-nuclei being greater than the 

energy gains provided by its territorial defense. Under this assumption it is possible to 

illustrate the role of the cost constraint in the determination of optimal territory size. 

7.4.2. The currency optimised. 

The possible benefit constraints are shown diagrammatically in relation to the form 

of the cost constraint measured using the doubly labelled water technique in Fig. 7.3. Also 

shown is the observed frequency distribution of territory sizes, measured by the number of 

foraging patches used. Optimal territory sizes under different currencies are indicated in 

Fig. 7.3. and summarised in Table 7.6. to illustrate how the cost and benefit functions may be 

used to predict territorial behaviour. The maximum territory size observed in the robin was 

six foraging patches. If it was assumed that this represented the point at which costs exceeded 

benefits and territorial behaviour was no longer economically sustainable, then only robins 

that are maximising their net energy benefits under benefit Constraint 3 would occupy 

territories that resemble the observed median territory size (Fig. 7.3. ). 

Robins were observed to occupy a range of territory sizes around the median, and 

presumably optimum value. It may be that only a few individuals managed to optimise 

territory size, or, as the morphological data may suggest, a broad range of optima exist, which 

most birds manage to achieve. Observed territory size will still be normally distributed since 

more individuals will be of average rather than unusual morphology. This possibility has been 

suggested previously (Stamps et al 1987, Mares & Lachter 1987, Schoener 1987). Other 

reasons for the existence of such "optimal surfaces" (Schoener 1987) may include habitat 

geometry; intruder pressure may depend on the position of the territory in an insular habitat 

patch (Stamps et al 1987), and variation in cost and benefit constraints over time (Mares & 

Lachter 1987). 

7.4.3. Non-economic costs and benefits. 

Up to this point, the costs of territory exploitation and defense have been considered 

purely in terms of energy expenditure. The exploitation and defense of territories, however, 



Fig. 7.3. Diagrammatic cost/benefit models of territory size compared to the observed 
distribution of territory sizes in the robin. 
In (a) are shown alternative benefit constraints 1 (thin horizontal line) and 2 
(thin line of positive slope)(Table 7.5. ). In (b) is shown the remaining possible 
benefit constraint 3. (Table 7.5. ). The cost constraint predicted by Model III is 
represented by the thick line throughout. 
In (a) the slope of benefit constraint 2 is greater than that of the cost constraint 
since the proportional change in total core area as the number of foraging 
patches changes (Table 6.1. ) is greater then the proportional change in energy 
expenditure predicted by Model III. (Table 6.12. ). Lower case roman numerals 
correspond with those in Table 7.6. 
For comparison in (c) is shown the observed distribution of territory sizes in 
the robin as measured by the number of foraging patches used. 
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may also involve non-economic costs (Davies 1980). These are costs which cannot be 

measured in terms of time or energy. Such non-economic costs may affect territorial 

behaviour in a number of ways. 

All individuals, in the course of daily territory exploitation and defense, may 

experience non-economic costs such as risk of dying during some necessary activity. It is 

already apparent that the commuting movements between foraging patches represent a very 

small proportion of EE, 
c, ve. 

Such movements across the open spaces between patches may 

nevertheless carry a very high cost in the form of predation risk. Sparrowhawks can fly faster 

than robins (Newton 1986), and given a long enough pursuit would be able to capture them 

in flight. There is evidence that robins minimise the lengths of individual commuting 

distances between patches, by using configurations of patches in a highly linear manner even 

though this increases the total length of foraging circuits (section 5.3). Furthermore, robins 

are more likely to use "short cuts" between patches if they do not require flights over 

distances much greater than average (section 5.3. ). Furthermore, since robins occupying large 

territory networks must commute between patches more often, they will experience increased 

predation risk in addition to increased energy costs. To some extent this may be offset by 

lower wingloading, since they will reduce flight costs and possibly increase an individuals 

ability to flee from an attack. Robins may attempt territory defense by resource depression 

rather than aggressive eviction of intruders. An advantage of this may be the minimisation 

of another form of risk. This is the possibility of injury during interactions with conspecifics. 

Any injuries sustained may compromise an individuals fitness (Arcese 1987). Nevertheless, 

for the goal of territory occupancy, robins may even risk the possibility of the ultimate cost 

of being killed during territorial interactions (Harper 1984). 

The occupation and maintenance of a territory requires experience in the form of 

resource holding potential (Parker 1974). When robins establish new defended foraging 

patches, during either initial territory establishment or as a result of territory drift, some of 

the costs incurred may be non-economic. For example, the assimilation of experience of the 

local habitat and neighbouring territory occupants may be an important factor in determining 

success (Smith 1978, Yasukawa 1979 Stamps 1987). 

Robins are the host of a wide range of external and internal parasites (Mead 1984). 

Individuals in the present study were frequently observed to carry mites, fleas and 

Hippoboscid flies externally. A cost of occupying a large number of foraging patches spread 
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over a large total flight distance may increase the chances of contracting such parasites if they 

are randomly distributed through the habitat. Since robins are only likely to encounter 

parasites during foraging (infective stages laying dormant in leaf litter or bird faeces, 

invertebrate prey items acting as intermediate hosts), the effects of this cost on territory 

configurations will be minimal. 

The breast patch colour of the robin varies between individuals (Cramp 1988). 

Examples of the range of colour present in the central Scottish population are shown in Plate 

7.1. It has been suggested that conspicuous plumage signals of status will evolve when there 

is interference competition for resources and repeated confrontations between individuals 

(Rohwer 1982). The ultimate source of differences in status is differences in aggression and 

fighting ability. A high fighting ability will allow an individual to dominate and displace 

conspecifics in competitive interactions. A dominant individual therefore benefits from 

exclusive access to, for example, territories of high quality. It has been suggested that 

development of extent or colour of the plumage badge is controlled by the same gene or gene 

group that endows some individuals with superior fighting ability, such that the two are 

correlated (Rohwer 1982). Consequently, individuals of unequal status competing for limited 

resources need not risk accidental injury or waste energy assessing the relative fighting ability 

of opponents (Parker 1974, Rohwer 1982). Support for this hypothesis has since been 

demonstrated (Jarvi & Bakken 1984, Studd & Robertson 1985, Moller 1987). Alternatively, 

differences in breast colour may simply be a result of differences in diet quality during 

growth (Slagsvold & Lifjeld 1985); a redder breast signalling high quality parental 

provisioning. Furthermore, it has been suggested that plumage brightness may reliably signal 

parasite load (Hamilton & Zuk 1982). Birds with low parasite loads are fitter and signal this 

by brighter plumage. Evidence supporting this hypothesis has since been produced (Read 

1987). 

During encounters between robins, the participants initially adopt postures that present 

the maximum area of orange breast patch to the opponent, sometimes associated with swaying 

from side to side, the erection of orange feathers on the throat and song (Lack 1965, Cramp 

1988). At this point, if on a territory, one birds normally retreats, failure to do so initiating 

physical contact. Many interactions, however, occurred in the neutral interstices between 

territories, and involved display but no aggression. The song of the robin facilitates individual 

recognition (Brindley 1991). Therefore, the interactions outside territories, usually involving 
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Plate 7.1. Comparison between the breast colour of two robins which formed part of the 
sample collected for body composition analysis. The individual on the left was 
adult female F646424, breast colour score 6.0. The individual on the right was 
juvenile male A27, breast colour score 2.5 (see Appendix 11. for methodology 
of breast colour scoring). 
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neighbours, possibly represent dyads of birds learning to identify each other on the basis of 

plumage differences, so that song subsequently heard from hidden neighbours can be 

associated with a particular breast colour and competitive ability. 

The breast colour of robins could be scored in live birds using a custom made colour 

chart. Preliminary results with this colour chart suggested adults were significantly redder than 

juveniles, and females were significantly redder than males (Appendix 11. ). Acrese & Smith 

(1985) found that age and sex had the most profound effect on dominance. It is possible that 

the variation in the breast colour of robins similarly functions as a signal of dominance, both 

between and within age and sex classes. 

Across the western Palaearctic there is a cline in breast colour in the robin (Cramp 

1988). Robins along the western seaboard of Europe being redder then robins in northwest 

Asia (Table 7.3. ). It would be valuable to investigate the function of this difference. Possibly 

eastern robins must exist on diets which are deficient in particular pigments or minerals. 

Alternatively, perhaps individuals in the eastern part of their geographic range are less 

aggressive, as an adaptation to living in poor habitat where a large investment in aggressive 

interactions would reduce the time available for foraging. 

The most dominant robins in the population would be expected, by virtue of their 

dominant status, to monopolise optimal territories. Subordinate robins, therefore, may be 

forced to occupy territories that are larger or smaller than their individual optima, as dictated 

by their morphology. This second kind of non-economic cost will bare differently on different 

individuals. The role of plumage variability in the life of the robin, and its consequences for 

patterns of territory occupancy represents a promising and ongoing area of research. 

7.5. Conclusions. 

This work represents one of the first large-scale radio-tracking studies of small birds 

in winter. Coupled with the doubly-labelled water technique for measuring free-living energy 

expenditure, radio-tracking proved to be a powerful technique for determining both what 

features small birds use in their habitat, the temporal scheduling with which they are visited 

and the energy costs incurred. 

Territorial behaviour is one of the most conspicuous activities of many birds. 

Ownership of a fixed area, usually surrounded by a clearly defined boundary, is proclaimed 

with vocalisations, displays and escalated fighting (Kaufmann 1983). The techniques used by 
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the present study have allowed this concept to be rigorously tested for the first time. Some 

of the previous ideas about territory structure and patterns of territory exploitation and defense 

have been found inadequate to describe observed territorial behaviour in non-breeding robins. 
The primary aim of this study was to assess the reality and form of the energy cost 

constraint on territory size. Data for the robin suggested a cost constraint of linear form, 

although exceptionally high investment in evicting intruders would cause the constraint to 

accelerate overall. 

There are insufficient data to endorse any particular energy benefit function for non- 

breeding territorial robins. More studies are required of foraging behaviour in the robin, in 

addition to studies of patterns of prey availability, depletion and subsequent recovery, in 

relation to the use of defended networks of foraging patches. This information would allow 

the form of the benefit constraint on territory'size to be verified, whereupon it may then be 

possible to construct a complete energy model for the territorial behaviour of the robin. This 

could then be assessed in the field to examine; a) the extent to which real individuals, which 

also experience non-economic costs and benefits, depart from the predictions; and b) the 

extent to which the economic and non-economic factors determining territorial behaviour 

influence overwinter survival both at the level of the individual and the population. 



Chapter 8. 
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Appendix 10. Structural size, body mass, condition and aerodynamic 
statistics for the independent sample of robins for 
which space use was measured using radio-tracking (n=51). 

Ring No. Predicted 
mass (g) s 

Wing span 
(mm) * 

Wingdisc 
area (mm2) " 

Structure dependent 
wingdisc-loading 
(g mm )$ 

Observed body 
mass (g) 

Condition dependent 
wingdisc-loading 
(g mm 2) 

Condition 
(g) = 

Total fat 
score 

F073988 18.84 232 42244 0.000446 21.30 0.000504 2.46 1 
F139219 19.52 225 39768 0.000491 19.50 0.000490 -0.02 1 
H227544 19.93 227 40585 0.000491 18.30 0.000451 -1.63 - 
H227546 18.02 225 39768 0.000453 19.00 0.000478 0.98 0 
1-1227547 20.27 228 40997 0.000494 18.30 0.000446 -1.97 0 
H227533 19.52 227 40585 0.000481 21.20 0.000522 1.68 0 
H227556 - 227 40585 - 21.10 0.000495 - 0 
H227557 20.20 231 41826 0.000483 18.50 0.000442 -1.70 2 
H227558 18.64 228 40997 0.000455 19.90 0.000461 0.26 1 
H227559 18.43 230 41410 0.000445 17.10 0.000413 -1.33 0 
F646516 19.42 228 40997 0.000474 - - - - 
F646519 19.73 226 40175 0.000491 20.60 0.000513 0.87 0 
F646521 18.43 224 39362 0.000468 18.20 0.000462 -0.23 2 
F646521 18.43 224 39362 0.000468 21.90 0.000556 3.47 - 
F646536 18.98 231 41826 0.000454 19.90 0.000476 0.92 0 
F646540 - 225 39768 - 17.70 0.000445 - - 
F646540 - 225 39768 - 20.20 0.000503 
F646541 19.55 227 40585 0.000482 17.60 0.000434 -1.95 0 
F646546 19.25 228 40997 0.000470 22.10 0.000539 2.85 0 
F646546 19.25 228 40997 0.000470 - - - - 
F646550 18.98 226 40175 0.000472 19.50 0.000485 0.52 0 
F646551 - 232 42244 - 20.10 0.000476 - 0 
F646551 - 232 42244 - 19.70 0.000466 - 0 
F646544 - 225 39768 - 19.20 0.000483 - 0 
F646561 19.07 228 40997 0.000465 18.40 0.000449 -0.67 0 
F646562 19.41 230 41410 0.000469 21.00 0.000507 1.59 4 
F646564 19.01 230 41410 0.000459 19.60 0.000473 0.59 0 
F646565 19.25 228 40997 0.000470 18.80 0.000459 -0.45 0 
F646567 19.79 232 42244 0.000468 19.70 0.000466 -0.09 0 
F646568 19.99 231 41826 0.000478 18.30 0.000438 . 1.69 0 
F646569 19.49 228 40997 0.000475 17.80 0.000434 -1.69 0 
F646578 - 224 39362 - 19.40 0.000493 
F646579 - 227 40585 - 20.20 0.000498 - - 
F646581 19.62 231 41826 0.000469 18.50 0.000442 -1.12 - 
F646582 - 225 39768 - 18.70 0.000470 - 1 
F646583 - 226 40175 - 18.40 0.000458 - 0 
F646585 19.11 230 41410 0.000461 18.20 0.000440 -0.91 3 
F646586 - 227 40585 - 17,70 0.000436 
F646587 - 227 40585 - 20.40 0.000503 - - 
F646589 - - - 19.10 - - - 
F646590 19.25 228 40997 0.000470 - - - 
F646591 18.67 226 40175 0.000465 20.20 0.000503 1.53 0 
F646592 - 231 41826 - - - - 
F646593 19.50 226 40175 0.000485 19.90 0.000495 0.40 0 
F646594 20.20 232 42244 0.000478 20.50 0.000485 0.30 1 
F646595 19.99 230 41410 0.000483 21.50 0.000519 1.51 0 
F646596 18.74 231 41826 0.000448 17.50 0.000418 . 1.24 0 
F646597 18.88 226 40175 0.000470 17.60 0.000438 . 1.28 1 
F646598 - 228 40997 - 18.20 0.000444 
F646599 - 227 40585 - 16.70 0.000411 0 
F646727 19.15 230 41410 0.000462 21.20 0.000512 2.05 5 

§ From equation in chapter 2, Table 2.11. 
* From equation in chapter 2, Table 2.13. 
# 71(wingspan/2)2 (Feinsinger & Chaplin 1975). 
$ Predicted body mass divided by wingdisc area (Feinsinger & Chaplin 1975). 
" Observed body mass divided by wingdisc area (Feinsingen & Chaplin 1975). 
$ Observed minus predicted body mass. 



Appendix 11. The colours of robins were scored in shaded daylight by comparing 
their breast directly with the colours on a custom made standard chart, 
which ranged from faded orange (score 1) to deep rufous orange (score 
8). This reflected the cline in breast colour across the wester Palaearctic 
(Table 7.3; after Cramp 1988). Individuals were matched to a particular 
shade, or scored as intermediate between two consecutive shades. The 
eight colour shades therefore allowed a range of 15 possible scores. 
Histograms (a) and (b) show data for live juveniles and adults scored 
while in the hand (Mann-Whitney U-test W=417 p<0.0005, juvenile 
median=3.0 n=23, adult median=4.5 n=15). Histograms (c) and (d) 
shown data for males and females scored from the dead birds in 
Appendix 1, than had been sexed by dissection (Mann-Whitney U-test 
W=221 p<0.01, male median=3.0 n=14, female median=4.0 n=12). No 
attempt was made to assess repeatability of scores, or changes in scores 
over the season. 
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Appendix 12. 

Plants 

Common and scientific names of all plants and animals mentioned in 
the text, listed in systematic order. 

Bramble Rubus fruticosus 
Hawthorn Crataegus monogyna 

Invertebrates 
Mites Order Acrina 
Bird fleas Family Ceratophyllidae 
Flatflies Ornithomyia avicularia 

Birds 
White-tailed tropicbird Phaethon lepturus 
Henharrier Cirus cyaneus, 
Sparrowhawk Accipiter nisus 
Red-tailed hawk Buteo jamaicensis 
Pectoral sandpiper Calidris melanotos 
Sanderling Calidris alba 
Common tern Sterna hirundo 
Rufous hummingbird Selasphorus rufus 
Swallow Hirundo rustica 
Piedwagtail Motacilla alba 
Dipper Cinclus cinclus 
American dipper Cinclus mexicanus 
Robin Erithacus rubecula 
Spotted flycatcher Muscicapa striata 
Golden-winged sunbird Nectarinia reichenowi 
Nothern cardinal Cardinalis cardinalis 
Common yellowthroat Geothlypis trichas 

Mammals 
Rabbit Oryctolagus cuniculus 
Hare Lepus capensis 
Pika Ochotona princeps 
Fox Vulpes vuples 
Stoat Mustela erminea 

ýp 



Chapter 10. 



Johnstone I. G. (1992). Home range utilization and roost selection by non- 
breeding territorial European robins Erithacus rubecula. 

A paper presented at the 4th European International Conference on Wildlife 
Telemetry held in Aberdeen, September 1991, where it was awarded the 
Mariner Radar Prize for the best contribution by a student. It was subsequently 
published in Wildlife Telemetry: Remote Monitoring and Tracking of Animals 
Ed by Priede I. G. & Swift S. Ellis Horwood, Chichester. 
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