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Abstract 

 

This thesis examines the use of historical macrophyte records to assess long term 

changes in macrophyte communities in lakes and potential reasons for these changes. In 

particular it uses historical records to assess changes in macrophyte communities in the 

Norfolk Broads and West Midland Meres, two sets of lowland, eutrophic lakes in 

England. It provides a critical examination of the use of historical records, highlighting 

some of the constraints common to such data such as variations in recording effort, and 

bias in species recording and site selection. Having acknowledged these issues a robust 

way to interpret such data is developed using a “change index” based on species 

persistence over the last 200 years within individual lakes. Species with high change 

index values represented species which had persisted or increased within the studied 

lake districts and were characteristic of eutrophic lakes. Conversely species with low 

index scores, which had declined in both the broads and meres over the last 200 years, 

included species associated with less fertile conditions but also a selection of typically 

eutrophic species. Averaging of change index scores in present day survey data served 

to identify the historically least changed lakes and to rank lakes in order of degree of 

botanical change over the last century. 

 

In order to better understand the processes behind the decline of some species and 

survival of others in the Norfolk Broads and West Midland Meres an analysis of the 

ecological basis of the change index was then performed. Functional groups determined 

from morphological and regenerative traits displayed significant differences in change 
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index values in both groups of lakes, but declining taxa occurred across a wide range of 

plant growth forms. Non-hierarchical clustering of species based on their ecological 

preferences, obtained from published literature, resulted in groups with distinct change 

index values, indicating that changes in the status of species could be partly explained 

by these preferences. Of these, trophic preference was consistently the most important 

factor, with species of less fertile habitats consistently experiencing the greatest 

declines. However, some characteristically eutrophic species have also declined 

significantly, particularly in the broads. In these cases increasing loss of shallow water, 

low energy habitats in the broads, or loss of fluctuating water levels and less alkaline 

marginal habitat in the meres, appear to have been contributory factors. 

 

In addition to the change index approach, historical records were also used at a site 

level to complement palaeolimnological analysis and investigate the change in 

macrophyte community composition and structure at Barton Broad, Norfolk. Sediment 

samples were extracted from the bottom of the broad and analysed for sub-fossil 

remains and pollen of macrophytes. The historical records and palaeolimnological 

analysis combined showed that early communities did not consist entirely of low 

growing, oligotrophic and mesotrophic species as previously thought, but in fact 

comprised a mixture of these and other more characteristically high nutrient species 

typified by a taller, or free-floating growth habit. As eutrophication progressed 

throughout the last century, the community was increasingly dominated by these latter 

growth forms. Diversity was maintained, however, since encroaching reedswamp 

generated a mosaic of low energy habitats which supported a range of species unable to 
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withstand the hydraulic forces associated with more open water habitat. When the 

reedswamp disappeared in the 1950s, many of the dependent aquatic macrophytes also 

declined resulting in widespread macrophyte loss. 

 

The thesis demonstrates not just the complexities of using historical records, but also 

ways in which these can be overcome. Such records can then permit useful 

observations and new insights into lake macrophyte community change and ecological 

integrity that can inform conservation and lake management, both on a site- and lake 

district level. 
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CHAPTER 1 Introduction 

 

1.1 Aquatic plant communities in lakes 

 

Aquatic plants, or macrophytes as they are also termed, are a diverse group defined by 

their ecology (their growth in water) rather than their taxonomy. They consist largely of 

vascular plants, but also include bryophytes (liverworts and mosses), and a large group 

of macroalgae, the charophytes. Where the line is drawn between aquatic and terrestrial 

species, is not clear cut. Rather it is a gradual transition from largely submerged 

obligate aquatics, such as Ceratophyllum demersum, Potamogeton pectinatus and 

Myriophyllum spicatum, through floating-leaved species such as Potamogeton natans 

and Nuphar lutea, emergent species such as Schoenoplectus lacustris, Typha latifolia 

and Phragmites australis to littoral species associated with wet conditions but growing 

largely outside of the water, such as the marshland herbs, Mentha aquatica, Veronica 

scutellata and Epilobium hirsutum.  

 

The nature and extent of the aquatic communities found in lakes varies enormously 

depending on a large suite of biotic and abiotic factors, such as fish community 

structure, zooplankton densities, bird grazing, water currents, alkalinity, colour, area, 

altitude and substrate (Sculthorpe, 1967; Spence, 1967; Spence and Chrystal, 1970; 

Hutchinson, 1975; Jupp and Spence, 1977a, b; Sand-Jensen and Sondergaard, 1979; 

Spence, 1982; Timms and Moss, 1984; Toivonen and Huttunen, 1995; Scheffer and 
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Jeppesen, 1998; Vestergaard and Sand-Jensen, 2000b; Heegaard et al., 2001; Jones et 

al., 2003; Schutten, 2005; Zambrano et al., 2005). The most fundamental are arguably, 

however, nutrient status and lake bathymetry (Hutchinson, 1975; Moss, 1998; Natural 

England, 2008). Although macrophytes can occasionally grow at depths of 30 m or 

more, plants will generally be restricted to shallower depths by levels of light 

attenuation. Shallow lakes (< 3 m maximum depth) therefore offer more possibility for 

the colonisation of macrophytes than deep lakes where macrophytes are confined to the 

shallow margins. The depth to which plants can colonise also depends on the 

transparency of the water, which itself is often dependent on nutrient concentrations, as 

the more nutrient-rich a lake, the higher the density of phytoplankton supported by the 

open water, so the less transparent the water, and the more restricted the aquatic 

vegetation. The nutrient status of lakes is determined in part by catchment geology 

which affects nutrient chemistry and alkalinity. In Britain the waters of upland lakes are 

naturally low in solutes as they lie on hard igneous rock which does not weather easily. 

Conversely, lowland lakes often lie on mixed glacial drift, or on a variety of older, 

more eroded rocks, and therefore tend to be richer in solutes, including carbonate. As 

more productive systems with higher nutrient concentrations, lowland lakes are able to 

support a larger biomass of macrophytes compared to oligotrophic upland lakes. The 

species composition also varies considerably between these systems, and can be 

generalised as being characterised by plants with an isoetid growth form in oligotrophic 

lakes, and those with an elodeid growth form in eutrophic lakes. Isoetids are generally 

small in size and stature and are able to persist in low nutrient situations, where 

competition for light availability and CO2 (which is used in photosynthesis) is less 
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restricting, e.g. Isoetes lacustris (Arts and Leuven, 1988; Maberly and Madsen, 2002; 

Smolders et al., 2002; Pedersen et al., 2006). Elodeids tend to be larger, taller and 

faster-growing, better able to exploit high nutrient concentrations quickly by 

maximising their growth and therefore their potential for competing effectively for light 

in a crowded water column, e.g. Elodea Canadensis (Sand-Jensen and Sondergaard, 

1979; Phillips, 1992; Vestergaard and Sand-Jensen, 2000a; Pedersen et al., 2006). They 

are also able to use HCO3- as a carbon source, as concentrations of free CO2 can be 

naturally very low in productive lakes (Maberly and Madsen, 2002). Plants in more 

productive lakes also have other effective ways of competing for CO2 and light, such as 

Nuphar lutea, which has floating leaves thereby enabling it to reach atmospheric CO2 

via stomata on the upper leaf surface, as well as being best placed for light capture 

(Sculthorpe, 1967).  

 

Although higher nutrient concentrations in lakes allow for a greater biomass of plants, 

at increasing levels of nutrient enrichment, usually from anthropogenic sources such as 

treated sewage or agricultural fertilisers, macrophytes start to disappear, becoming 

replaced by algae. These are reliant on high dissolved nutrient concentrations in the 

water as, unlike rooted macrophytes, the water column is their primary source of 

nutrients. Epiphytic algae grow on leaves of submerged macrophytes, severely reducing 

the amount of light reaching the leaf surface, whilst planktonic algae reduce light 

penetration beyond the water surface, leading to the loss of macrophytes and 

dominance of algae at higher nutrient concentrations (Phillips, 1992). In shallow lakes 

dominated by macrophytes the displacement by phytoplankton can occur at relatively 
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high nutrient concentrations as macrophyte-dominated lakes are stabilised by various 

positive feedback mechanisms (Scheffer and Jeppesen, 1998). For instance, the 

macrophyte canopy offers refuge for zooplankton from predation by planktivorous fish, 

allowing large populations to build up which are able to feed on phytoplankton, 

maintaining water transparency (Schriver et al., 1995; Jeppesen et al., 1998). Larger 

macrophytes also provide physical structure within the lake, breaking up erosive forces, 

thus limiting phytoplankton re-suspension, and reducing the hydraulic shear stress on 

other rooted plants (Schutten, 2005). When plants do start to disappear, so does their 

structuring influence, and it may become very hard for them to re-establish. Various 

counter-factors, such as the change in fish communities, sediment structure and decline 

in zooplankton, also re-enforce the phytoplankton-dominated state (Scheffer et al., 

1993; Scheffer et al., 2003). This phenomenon, encapsulated in the alternative stable 

states theory, has been widely invoked to explain the difficulty in restoring shallow 

lakes suffering from eutrophication, even after substantial reduction in nutrient loading 

(Madgwick, 1999; Phillips et al., 2005). 

 

1.2 Long term change in lake macrophyte communities 

 

Prior to the 1970s there was little systematic national monitoring of macrophyte 

communities, or of the ecological quality of lakes in England. In more recent years, 

following concerns over the condition of water bodies in nationally protected areas 

(Sites of Special Scientific Interest; SSSIs) some of these water bodies have been 

subject to more detailed survey (Carvalho and Moss, 1995) and subsequently a 
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standardised monitoring programme has been put in place, partly also driven by the 

data requirements of the Water Framework Directive (WFD) and the Habitats Directive 

(JNCC, 2005; Williams, 2006). The most recent assessment of the condition of open 

water in England‟s protected areas found that 45% were in an unfavourable condition, 

and amongst the habitats in the worst condition in England (Natural England, 2008; 

UKTAG, 2009). The main cause identified for this was eutrophication from both point 

sources (such as sewage outfalls) and diffuse sources (such as run-off of agricultural 

fertilisers). These are contributory factors to unfavourable condition in 70% and 40% 

respectively of the total water bodies in unfavourable condition. Lakes are particularly 

badly affected, and in a survey of over 100 SSSI lakes in England, Carvalho and Moss 

(1995) found that 84% showed symptoms of eutrophication. They also observed that 

the symptoms of deterioration were most frequently recorded in the aquatic plant 

communities. 

 

Since the incorporation of the Water Framework Directive (WFD) into UK legislation 

in 2005 there has been a statutory requirement for monitoring the quality of all lakes 

above 50 ha in area, plus smaller water bodies located inside protected areas. The WFD 

requires that all water bodies in all EU member states be brought into “good ecological 

status” by 2015 (European Union, 2000). A scoping exercise carried out in preparation 

for implementation of the WFD found that 41% of water bodies in England and Wales 

were at risk of failing to meet good ecological status due to phosphorus enrichment 

(Natural England, 2008; UKTAG, 2009). In order to achieve good ecological status 

water bodies should not deviate significantly from “reference conditions”. These are 



 6 

defined as the conditions expected in water bodies prior to significant anthropogenic 

impacts (European Union, 2000). Surveying and monitoring of various ecological 

quality indicators, including macrophytes, will be necessary for the WFD in order to 

judge how far water bodies deviate from their reference conditions, and to determine 

whether measures to control various pressures are effective (UKTAG, 2009). 

 

The practical problem with using reference conditions as a baseline for the assessment 

of lakes is that information on past macrophyte communities is somewhat limited, and 

most systematic surveys only started after the pressures on these systems, and changes 

to their flora were already advanced (for example in the Norfolk Broads, George, 

1992). Instead of formal survey data, other types of data need to be used in innovative 

ways to define the composition of macrophytes in reference condition lakes and thus 

give a clear and unbiased impression of macrophyte community change. 

 

1.3 Palaeolimnology 

 

Palaeolimnology is an established field of research which concerns itself with the study 

of lake sediments to answer questions about catchment and lake ecosystem histories. 

By collecting and examining multiple layers of sediment from cores taken from lakes, 

researchers are able to view a historic record which is both long term and highly 

resolved. Palaeolimnological techniques can be used to investigate not only physical 

and chemical characteristics of lakes, but also biological elements, which may in turn 

provide information about the past chemical and physical environment. There are a 
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whole range of animal and plant taxa that preserve well in lake sediments, and are 

therefore of use in palaeolimnology, such as diatoms, cladocera, ostracods, molluscs, 

chironomids, beetles and aquatic mites. Also included are a wide range of macrophyte 

taxa, which are represented in sediments as plant “macrofossils”. These include any 

remains of plants that preserve well and are possible to identify under a low powered 

light microscope, such as seeds, leaf spines, leaf tips and more resistant fragments of 

leaf or stem (Figure 1.1). In addition to these, macrophyte pollen is often also 

preserved, although high power light microscopy is required for identification. In 

Britain there have been a few studies which have successfully investigated past 

macrophyte communities and macrophyte community change using macrofossils 

(Sayer et al., 2006; Zhao et al., 2006; Ayres et al., 2008) or a combination of 

macrofossils with pollen (Davidson et al., 2005). 
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Figure 1.1 Examples of macrofossil remains under x40 light microscope: a) charophyte 

species oospores, b) Ranunculus subgenus Batrachium seed, c) Potamogeton natans 

seed, d) core collection on Barton Broad. 
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1.4 Historic records 

 

Another source of data on long term change in macrophyte communities is historic 

records. In this thesis, this very general term is used for any recorded observations of 

macrophytes growing in a lake, besides those obtained through systematic surveys. 

These records derive from a huge variety of sources such as herbarium specimens 

(Figure 1.2), county floras, naturalists‟ notebooks, photographs, guidebooks, journal 

articles and excursion notes. Whilst this presents a rich data source, often dating back to 

the early 19
th

 century, it is not without its difficulties as the data quality and quantity 

varies enormously between lakes, data sources and time periods. Data compilation and 

interpretation also presents a significant barrier to the use of this sort of data in long 

term studies of lake macrophytes. Despite the difficulties there are a number of studies 

from the UK (Jackson, 1978; Davidson et al., 2005; Ayres et al., 2008) and elsewhere 

which have utilised historic records to investigate long term change in lake macrophyte 

communities, for example in the Netherlands (Arts and Leuven, 1988; Arts et al., 1990) 

and Denmark (Sand-Jensen et al., 2000; Sand-Jensen et al., 2008), as well as studies 

observing changes in macrophytes in rivers (Riis and Sand-Jensen, 2001; Baattrup-

Pedersen et al., 2008) and the wider countryside (Simons and Nat, 1996; Auderset Joye 

et al., 2002; Pedersen et al., 2006). An adequate supply of historic records is a 

prerequisite for using this approach. Therefore, this study has focussed on two lowland 

lake districts in England, the Norfolk Broads and West-Midland Meres. Historically 

these represented some of the botanically most diverse and best recorded groups of 

lakes in Britain. 
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Figure 1.2 Herbarium specimen of Lobelia dortmanna in the Natural History Museum, 

collected from Bomere Pool, Shropshire, in 1881.
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1.5 England’s lowland lake districts: the Norfolk Broads and West 

Midland Meres. 

 

This thesis is concerned with two lowland lake districts in the UK, both situated in 

England: the West Midland Meres and the Norfolk Broads (Figure 1.3). Both have been 

subject to macrophyte community change over the last 200 years (George, 1992; Fisher 

et al., 2009) and both have relatively large collections of early (pre-1910) botanical 

records associated with them. 

 

 
 

Figure 1.3 Map showing the location of the Norfolk Broads and West Midland Meres, 

England, UK. 
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1.5.1 The West Midland Meres 

 

The West Midland Meres are a series of sixty or more small lakes situated in local 

groupings across the Cheshire/Shropshire/Staffordshire plain (Figure 1.3 and Figure 

1.4). The meres were formed less than 18,000 years ago with the retreat of the late 

Devesian ice sheet. The area is characterised by its substrate, a permeable glacial drift 

deposited by the glaciers of North Wales and the Lake District during the Pleistocene 

ice advances. This substrate is predominantly sand and gravel made up of 

Carboniferous rock deposited by meltwater as the ice sheets retreated. Underlying this 

is a layer of impermeable boulder clay till laid when the ice sheet was advancing. The 

meres were formed in a number of ways, either as meltwater lakes, kettle holes, 

moraine-dammed hollows or post-glacial subsidence hollows (Reynolds, 1979). The 

majority of the meres were isolated from rivers and streams early in their development, 

so are dependent on groundwater for supply. The lake water is ion-rich and of wide 

ranging chemical composition, often including high concentrations of phosphorus and 

calcium carbonate  (Gorham, 1957). The surrounding land is used primarily for 

agriculture, including dairy and arable farming. The area is currently largely rural but 

there are a number of small- to moderate-sized towns in the district including 

Shrewsbury, Chester, Market Drayton, Wem, Stafford, Sandbach, Middlewich, 

Nantwich, Wellington and Crewe. 

 

The meres have long been heralded as Britain‟s naturally eutrophic lakes (Reynolds and 

Sinker, 1976; McGowan and Britton, 1999) and blue-green algal blooms have been 
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reported since at least the nineteenth century (Phillips, 1884) and probably occurred for 

centuries before then. Many of the meres contain phosphorus at the level of several 

hundreds of micrograms per litre, exceeding the levels expected of lowland lakes 

contaminated by treated sewage effluent (Moss et al., 1995). This feature of the meres 

was originally attributed to apatite in the drift, through which the groundwater 

supplying the lakes percolates (Reynolds, 1979). The concentrations of phosphorus in 

the groundwater supplying Whitemere are, however, much lower than in the lake water. 

The high levels of phosphorus are now thought to be due to its release from the 

anaerobic sediments in summer, its recycling to the sediment in winter and limited 

export of phosphorus due to the small outflow of water (Kilinc and Moss, 2002). 

Whether the historic productivity and high phosphorus levels are natural (McGowan 

and Britton, 1999; Kilinc and Moss, 2002), with high initial loads of nutrients coming 

from freshly weathered glacial deposits, or cultural (Anderson, 1995), with low level 

anthropogenic eutrophication occurring over a long time period, is uncertain. 

 

The meres vary in depth and bathymetry. About a third are shallow (i.e. less than 3 m 

deep), but most are quite deep with the average maximum depth being around 8.5 m. 

They are, however generally small in area for their depth, ranging from about 3 to 75 

ha., with a median area of about 16.5 ha. This means there is often a high littoral to 

open water area ratio, offering potential for macrophyte colonisation. Despite this, the 

extent of the macrophytic vegetation is quite limited, possibly due to shading caused by 

the abundant phytoplankton or well wooded margins. Whilst some of the less eutrophic 

meres such as Bomere and Oak Mere have extensive macrophyte assemblages that 
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include more typically oligotrophic species, such as Luronium natans, Elatine hexandra 

and Littorella uniflora, the majority support a low diversity and abundance of 

macrophytes. Indeed, many have next to no macrophytes at all, or, where a few species 

persist, these tend to be those associated with highly eutrophic conditions, such as 

Zannichellia palustris, Elodea canadensis or Nuphar lutea (Sinker et al., 1985; Moss et 

al., 1993).  

 

Historical records indicate that species of more oligotrophic conditions have been lost 

from many of the meres, including Isoetes lacustris from Bomere and Ellesmere, 

Luronium natans from Whitemere and Ellesmere, Potamogeton alpinus from Bomere 

and Hatch Mere, and Potamogeton gramineus from Berrington Pool and Hatch Mere, 

to name just a few. Whilst many of the meres have been eutrophic for a long period of 

time, there is evidence that nutrient concentrations have increased still further over the 

last 100 years due to intensification of agriculture (Fisher et al., 2009), which may 

explain some of these losses. Some meres, such as Berrington Pool, Aqualate Mere and 

Crose Mere, have marginal reedswamp vegetation, comprising Typha latifolia, Typha 

angustifolia, Phragmites australis and occasionally Schoenoplectus lacustris. Again 

this is limited in its distribution and extent, possibly for a combination of reasons that 

include steeply shelving lake margins, wind erosion, poaching by livestock and shading 

by bank side trees (Sinker et al., 1985; Moss et al., 1993). 
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Figure 1.4 Examples of West Midland Meres: a) Fenemere in Shropshire, b) Bomere 

Pool in Shropshire, and c) Persicaria amphibia growing in the Mere at Mere, Cheshire. 

a) 

b) c) 
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1.5.2 The Norfolk Broads 

 

The Norfolk Broads are a series of about 50 shallow lakes linked with four rivers, close 

to the East Anglian coast (Figure 1.3 and Figure 1.5). They were dug out as peat pits 

before the fourteenth century (Lambert et al., 1960) and have since flooded, creating a 

large wetland of lakes, rivers, floodplains and estuaries. It is thought that human 

alterations in the 18
th

 and 19
th

 century resulted in the loss of two of the three estuaries, 

through damming and lock building (George, 1992), leaving only Breydon Water, a 

large brackish lagoon into which all the rivers discharge. The broads can be divided 

into three groups (Moss, 1994). Firstly, there are those which are not attached to the 

river system, such as Upton Broad and Calthorpe Broad. Secondly, there are those 

broads connected to the main river system, which are normally fresh water, but 

occasionally become penetrated with sea water, when tidal surges sweep inland beyond 

the estuary. These are the large majority of the broads and include Barton Broad, 

Hoveton Broad, Cockshoot Broad and Malthouse Broad. The final group are those 

associated with the upper reaches of the river Thurne, and include Hickling Broad, 

Horsey Mere, Heigham Sound and Martham Broad. These waters are slightly brackish 

because seawater is able to percolate through the underlying permeable rock, the 

Norfolk Crag. This is exacerbated by the pumping of water from the land adjacent to 

the sea, into the River Thurne, to drain land for agriculture, thus drawing more sea 

water into the system (Moss, 1994). Other factors, such as whether boat traffic is 

permitted, and which river catchment they are positioned on, also influence the 

character of these lakes 
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The catchment area is fertile lowland consisting of glacial debris with underlying chalk 

in the west, and sandstone (Norfolk Crag) in the east. The areas of former river 

floodplain are underlain with marine clays and freshwater peat. Originally the rivers 

would have occupied their floodplains during winter, but now are largely confined to 

embanked channels built to combat flood risk, though some areas of fen and 

reedswamp remain. The rivers drain a large proportion of East Anglia, most of which is 

arable farmland. Gradients are very low, as is discharge, and the lower regions 

experience reverse flow during high tide in the summer months. The broads themselves 

are shallow (1-2.5 m) and have experienced shallowing and in some cases 

terrestrialisation through sediment build up and encroachment of swamp and terrestrial 

vegetation. The water is rich in calcium and magnesium, as well as dissolved salts from 

underlying rocks and glacier debris, sea spray and, to varying extents, intrusion of 

seawater.  

 

Palaeolimnological studies (Moss, 1978; Moss, 1979, 1980, 1988; Sayer et al., 2006; 

Ayres et al., 2008) and historical records (Mason and Bryant, 1975; Jackson, 1978) 

show that the broads were once dominated by a rich aquatic macrophyte flora notably  

of charophytes which often formed a dense carpet throughout the shallow lake basins 

(Gurney, 1904; Nicholson, 1906). Nutrient levels had been increasing since the 

industrial revolution due to the rise in population and the intensification of agriculture. 

Treated sewage effluent was also increasingly entering some of the broads. Sometime 

during the last 100 years or so most of the broads lost their rich macrophyte flora, 
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becoming dominated instead by phytoplankton. Despite attempts to reduce nutrient 

loading to the rivers and broads in the last 30 years, there was little evidence of 

macrophyte recovery, partly due to high internal loading of phosphorus from 

sedimentary sources (Moss, 2001). In fact, the amount of phosphorus which was re-

suspended from the sediment often became substantially greater than that coming from 

the catchment, (Phillips & Jackson, 1990). The restoration of the broads, managed by 

the Broads Authority, often therefore involves removal of the phosphorus-rich surface 

sediments by suction pumping (Kelly, 2008). 

 

Today, few of the broads have retained macrophytes and clear water. Upton Great 

Broad (which is land-locked), has not been subject to the same degree of eutrophication 

from sewage effluent as most of the broads, and the Martham Broads (North and South) 

are distant from the other broads on the River Thurne, so are less affected by 

phosphorus inputs from upstream. Upton Great Broad is dominated by Najas marina, a 

Red Data List species which, in the UK, is confined to the Norfolk Broads. A diverse 

selection of charophyte species dominate in Martham Broad, forming a dense carpet 

across the broad, interspersed with other species such as Najas marina and Ranunculus 

circinatus. Most of the other broads support only sparse stands of a few species more 

resilient to eutrophication, such as Elodea canadensis, Potamogeton pectinatus and 

Ceratophyllum demersum, and, on occasion, have been devoid of aquatic vegetation. 

Many species previously recorded in the broads, such as Stratiotes aloides, Utricularia 

intermedia, Potamogeton alpinus, Potamogeton compressus and Littorella uniflora 

have all but disappeared (Jackson, 1981b). Although there are areas of fen and 
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reedswamp associated with some of the broads (e.g. Barton Broad and Hickling Broad) 

reedswamp, consisting primarily of Phragmites australis, Typha angustifolia and 

Schoenoplectus lacustris, was previously much more widespread and used to extend 

into the open water areas of many of the broads. This also disappeared over the last 100 

years leaving larger areas of open water which is, at best, surrounded by a much 

reduced littoral growth of Phragmites australis and Typha angustifolia with little or no 

growth extending into the open water (Boorman and Fuller, 1981; Boar et al., 1989). 
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Figure 1.5 Examples of some of the Norfolk Broads: a) Barton Broad (© Mike Page), 

b) Upton Great Broad (© Ewan Shilland) and c) Martham South Broad. 
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1.6 Aims and objectives 

 

This study focuses on two lake districts rich in historic records: the Norfolk Broads and 

West Midland Meres. The primary aim of the study was to compile as many historic 

macrophyte records for as many of the lakes within these systems as was feasible, and 

to explore the possibilities of using these data, in combination with macrofossil 

analysis, to investigate the change in macrophyte communities in these lakes over the 

last 150-200 years. The objectives of the study were: 

 

 To explore the issues inherent in using historical records 

 To investigate means of utilising historic records to inform lake management 

and lake classification 

 To investigate general trends in macrophyte communities in these lake districts 

over the last 150 years 

 To use historic records in combination with macrofossil analysis to make 

specific observations about a particular lake. 

 

1.7 Outline of the thesis 

 

A large amount of historical macrophyte data was compiled for this thesis, from a 

variety of sources. In combination with modern macrophyte survey data, compiled 

records represent a vast data source encompassing over 100 lakes and over 20,000 
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records. Whilst the potential benefits of this are apparent, there are a large number of 

issues and constraints inherent in historical data such as this, which need to be 

identified and tackled before the data are analysed (Chapter 2).  

 

Given the nature of the data, and the constraints described in Chapter 2 a novel 

technique was developed to identify which species had changed most in their 

distribution within the Norfolk Broads and West Midland Meres. By developing a so 

called “change index” for each species, based on its persistence in lakes, those species 

which declined most in distribution within each lake district could be identified, despite 

the gaps and irregularities of the historical data (Chapter 3).  

 

Chapter 4 explores the “change index” developed in Chapter 3, in light of published 

information on plant ecological preferences, in order to identify the factors driving 

species change over the last 100 years. Non-hierarchical clustering of the species based 

on their ecological traits was carried out to test whether this would divide them into 

statistically different mean change index groupings. Individual correlations were also 

carried out between the change index values and ecological trait values for each of the 

species in both the meres and broads to see which traits were most important in 

determining species persistence or decline in these systems.  

 

Chapter 5 illustrates how historical data can be used at a site level, in combination with 

macrofossil studies, to shed light on the change in macrophyte communities and the 

causes for this. In this chapter the macrophyte history of Barton Broad spanning the last 
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200 years is investigated and put into context using a combination of macrofossil and 

pollen analysis, as well as historical records, descriptions and photographs. 

 

Chapter 6 summarises the key findings of the thesis. 
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2.1 Abstract 

 

This chapter critically examines the use of historical records for assessing macrophyte 

community change in lakes. It highlights some of the constraints common to such data, 

as illustrated by extensive long term datasets collected for two sets of lowland lakes in 

England, the Norfolk Broads and West-Midland Meres. The number of visits made to 

lakes was found to be highly variable throughout the time span of the datasets, as was 

the number of records made per visit, both of which were strongly related to the 

number of species recorded. This variation in recording effort can easily lead to false 

changes in species richness. Examples of bias in species recording and site selection are 

illustrated, particularly for earlier records, where recording was more species-focussed 

as opposed to the typical modern day approach of recording based on systematic 

surveys of entire water bodies. In conclusion, gathering information about, and 

understanding the nature and sources of historical datasets is vital in order to analyse 

them in an ecologically meaningful way, thus ensuring that they fulfil their potential to 

contribute to freshwater ecology and conservation. 

 

2.2 Introduction 

 

Historical biological records are important in a number of branches of ecology and 

biogeography, both for understanding the range and variability of community structure 

prior to modern anthropogenic impacts, and for establishing reference points that can 
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serve as a benchmark against which to assess spatiotemporal trends and variability in 

individual water bodies. The establishment of a reference condition based on the 

ecological chronology of selected sites is of particular value to conservation, as it 

provides evidence-based restoration targets, information on how a site or species might 

respond to different forms of management in the future (Landres et al., 1999; Swetnam 

et al., 1999; Egan and Howell, 2001), and perhaps equally importantly, insight into the 

scale of changes that occur naturally within and between sites when the anthropogenic 

signal is weak or absent. Establishing reference conditions for water bodies is an 

important requirement of the EU Water Framework Directive (WFD), since ecological 

status, the basic currency of the WFD, is a measure of the degree of biological 

alteration from reference conditions (European Union, 2000). A number of methods are 

given in the WFD to define biological reference conditions, including establishing a 

network of high status sites to act as analogues for each water body type, predictive 

modelling and hindcasting. Among the hindcasting methods given, is the use of 

available historical data. 

 

Interest in botany in the UK dates back to the 17
th

 century and by the mid 19
th

 century 

was a popular pastime. Many amateur and professional naturalists gathered wild plants 

enthusiastically, to augment their collections and swap with other collectors (Allen, 

1986, 1987). These naturalists and collectors amassed many thousands of records 

between them of aquatic plants alone, from right across the UK. Despite the potential 

utility of historical lake macrophyte records for a range of purposes there are a limited 

number of studies which have made use of them (e. g. Jackson, 1978; Rintanen, 1996; 
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Simons and Nat, 1996; Sand-Jensen, 1997; Riis and Sand-Jensen, 1998; Sand-Jensen et 

al., 2000; Riis and Sand-Jensen, 2001; Davidson et al., 2005; Ayres et al., 2008) and 

few have been employed specifically in defining reference conditions for the WFD 

(Blümel et al., 2002; Nielsen et al., 2003; Baattrup-Pedersen et al., 2008). A possible 

explanation for the under exploitation of such records is that their use requires research 

of an interdisciplinary nature, involving not only the study of species and their ecology, 

but also of the history of naturalists and botanical recording that underlies records. 

Historic records are also, by their very nature, rarely quantitative, which renders them 

much less attractive for ecological analysis. They require critical scrutiny before they 

can be investigated for ecological trends, to ensure that any conclusions drawn relate to 

genuine ecological patterns rather than being an artefact of the bias often inherent in 

this sort of data. Nevertheless, this concern has not prevented their use in other fields, 

and there is an extensive literature on the analysis of historical records to map 

distributions or changes in, for example beetles (Desender and Turin, 1989), butterflies 

(van Swaay, 1990; Thomas and Abery, 1995) and vascular plants (McCollin et al., 

2000; Telfer et al., 2002). There are also discussions of some of the problems inherent 

to this type of data in relation to botanical recording (Rich and Woodruff, 1992; Rich 

and Smith, 1996; Delisle et al., 2003; Rich, 2006; Rich and Karran, 2006) and butterfly 

surveys (Dennis et al., 1999). 

 

With the current emphasis in conservation and management being on restoring sites 

back to a more sustainable and less impacted condition, and with developing interest in 

the long term responses of aquatic ecosystems to climate change (Mooij et al., 2005; 
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Heino et al., 2009), it is timely for aquatic ecologists to identify the hurdles to using 

historic macrophyte records and to find ways of overcoming these. In order to do this, 

there must be a strong understanding of the nature of historic records, the effect that 

this has on the qualities of datasets and the constraints imposed on analysis and 

interpretation. This paper considers some of these issues, drawing examples from long 

term macrophyte data collected for two English lake districts, the Norfolk Broads and 

West Midland Meres. In turn it seeks to demonstrate ways in which pitfalls in 

interpretation can be minimised so that the rich potential of the historical archive can be 

exploited more effectively in the fields of freshwater ecology and conservation.  

 

2.3 Methods 

 

2.3.1 Study area 

 

The Norfolk Broads are a series of over 50 shallow, eutrophic, lowland lakes, 

associated with five major rivers, lying near the east coast of England, in Eastern 

Norfolk (Figure 1.3). They are water filled medieval peat diggings and vary in area 

from 1-140 hectares, with depths rarely exceeding 2 m. Once famous for clear waters 

and diverse communities of aquatic plants, they have since suffered significant 

eutrophication and have now lost many of their original macrophytes and some have 

become dominated by phytoplankton (George, 1992; Moss, 2001). The West Midland 

Meres are a series of mesotrophic or eutrophic lakes formed by the filling of pits and 
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sinks in the glacial moraine deposited at the end of the last glacial period (Figure 1.3). 

Scattered across the English counties of Shropshire, Cheshire and Staffordshire, they 

range in area from <1-75 hectares, and are generally deep for their surface area, with 

depths ranging from <1-50 m (Reynolds, 1979). Although they are mostly groundwater 

fed, many are highly eutrophic with particularly high phosphorus concentrations 

thought to be due to phosphorus-saturated sediments and long water residence times 

(Reynolds and Davies, 2001; Moss et al., 2005). Termed Britain‟s “naturally eutrophic” 

lakes, they have experienced some of the earliest recorded algal blooms (Reynolds, 

1979; Anderson, 1995; McGowan and Britton, 1999). Nevertheless, there is strong 

evidence that eutrophication has intensified over the last century (Carvalho and Moss, 

1995; Brooks et al., 2001; Fisher et al., 2009), including the loss of macrophyte species 

(Chapter 3). 

 

2.3.2 The broads and meres dataset 

 

The dataset utilised here is a compilation of macrophyte records from the lakes within 

the Norfolk Broads and the West Midland Meres. It spans two centuries, with records 

from 1798 to the present day. The records were collated from original sources and 

previous, published and unpublished compilations of historical records. Most of the 

meres records were compiled by Lockton on behalf of the Shropshire Botanical Society 

(www.shropsbotdata.org.uk) and many of those from the broads by Jackson (1978; 

1981a; 1981b). These were complemented and verified by checking original sources, 

such as antiquarian books (e.g. Christopher Davies, 1882, 1883; Emerson, 1893), 



 30 

county floras (e.g. Leighton, 1841; Trimmer, 1866), articles in journals (e.g. 

Transactions of the Norfolk and Norwich Naturalists’ Society, Journal of Botany), 

records collected from herbarium specimens at the Natural History Museum, London, 

and the Castle Museum, Norwich, and from the Botanical Society of the British Isles 

(BSBI) Vascular Plants database, accessed via the National Biodiversity Network 

gateway (data.nbn.org.uk). Modern surveys contributing macrophyte records include 

those carried out routinely since 1983 by the Broads Authority (Broad Authority 

unpublished data), and a series of surveys of the meres from 1978 onwards, carried out 

for the Nature Conservancy Council (now the Joint Nature Conservation Committee - 

JNCC), English Nature (now Natural England) and the Environment Agency 

(Wigginton, 1980, 1987; Moss et al., 1993; Whild Associates, 2001, 2002, 2003 & 

2005, Goldsmith et al., in prep.). For the purposes of this study, macrophytes were 

defined as plants with Ellenberg F (moisture) values of 10 or above (Ellenberg et al., 

1991; Hill et al., 2004, Chapter 3). Further details of the dataset are presented in Table 

2.1. 

 

Table 2.1 Details of the broads and meres macrophyte dataset 

 

Area Year span No. records No. visits No. lakes No. species 

Broads 1805-2006 5151 1377 51 95 

Meres 1798-2006 5202 1016 50 99 

 Total: 10353 2393 101 120 

2.3.3 Analysis 

 

Linear regression was used to demonstrate the relationships between numbers of 

recorded species and various parameters of recording effort (e.g. number of visits). 
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Where relationships were logarithmic, data was log transformed (logeX) prior to entry 

into regression equations. All correlations reported are Pearson‟s correlation coefficient 

(r). For the purposes of this study, a visit was defined as a unique combination of 

recorder, lake and date attached to one or more macrophyte records. A record was 

defined as a unique combination of recorder, lake, date and species. All statistical 

analysis was performed using Minitab (Release 14). 

 

Distribution of species and visits in the meres was visualised by plotting number of 

records against sites along the x-axis, ordered by distance from Shrewsbury, Shropshire 

and distance to Tabley House near Knutsford, Cheshire (distance to 

Shrewsbury/distance to Tabley House), the two places where the authors of the early 

Shropshire and Cheshire floras respectively, were based. Two fifty year time periods 

were plotted, 1830-1880 and 1950-2000, to capture the main recording activity of each 

era. The former captures the records published in the first floras of Shropshire and 

Cheshire (Leighton, 1841; Warren, 1899), and the latter captures major surveys in 

1979-80, 1987 and 1991 carried out for the JNCC and Natural England (Wigginton, 

1980, 1987; Moss et al., 1993).  

 

2.4 Results and Discussion 

 

Before long term data sets containing historical records can be used to illustrate 

ecological trends (Chapter 4) they must be fully understood in terms of the data sources 

from which the records derive, the nature of the records and the habits and motives of 
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recorders, so that any bias in the dataset can be recognised and overcome where 

possible. Major sources of error can be summarised as those associated with recording 

effort, record distribution, and selective recording of species. Examples of these are 

illustrated here using the broads and meres datasets and further problems encountered 

when collecting and analysing historical records are also discussed. 

 

2.4.1 Recording effort 

 

There is a large variation in recording effort throughout the period of the combined 

broads and meres dataset, with modern surveys tending to be both more frequent and 

more comprehensive than the generally more ad hoc historical records. There are many 

factors contributing towards recording effort, with the number of visits within a time 

period likely to be a significant one. Figure 2.1 a shows the increase in both number of 

recorded species and number of visits over the time span of the dataset. Indeed, the 

number of species recorded in the broads and meres within ten year periods is highly 

correlated with the number of visits in each period (loge (no. of visits)) (Pearson‟s r =  

0.915, p < 0.0001) (Figure 2.1 b). The number of visits fluctuated substantially 

throughout the recording period, with number of visits being low prior to 1880 and 

around the period of the two world wars (1910-1950). The lower numbers of species 

recorded in those periods reflects this reduced effort (Figure 2.1 a). 
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Figure 2.1 Plot showing a) number of visits to lakes within the broads and meres and 

total number of species found within ten year time periods, and b) the logarithmic 

relationship between number of species and number of visits. 
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The nature of recording also varies substantially throughout the time period of the 

dataset, with visits after 1940 yielding higher numbers of records collected per visit 

than visits pre-1940, and many of the earlier visits contributing only one record (Figure 

2.2 a). This is because later records are generally obtained as part of surveys designed 

to sample the full flora, whereas older records largely comprise herbarium specimens or 

references to a single occurrence of a species in the literature. Lists of species found at 

a lake on a single day are much less common among the earlier records, and collectors 

for herbaria would often target specific species, rather than a range of species at one 

site. It is therefore not possible to use number of visits alone to reflect recording effort. 

The number of species recorded in ten year periods is also highly correlated with the 

average number of records per visit over ten year periods (loge (no. records per visit)) 

(p < 0.0001), demonstrating, as expected, that higher numbers of records per visit (i.e. 

increased comprehensiveness of survey) also results in more species being found within 

a given time period (Figure 2.2 b). Trends observed in macrophyte species richness or 

diversity using historical records are often subject to this kind of bias leading to 

underestimates in the level of decline. For example, Sand-Jensen et al. (2000) 

compared species richness between an early period (1870-1927) and a late period 

(1983-1997) in Danish lakes and streams, and found that species richness in vegetated 

lakes had not changed, whereas in streams it had declined. They concede, however, that 

their results may be underestimates of decline as the modern surveys were probably 

more comprehensive than the early records, especially in the lakes where they were 

aided by scuba diving.  
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Figure 2.2 Plot showing a) number of species within the broads and meres and average 

number of records per visit within ten year time periods, and b) the logarithmic 

relationship between number of species and average number of records. 
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2.4.2 Record distribution 

 

In botanical recording there is often a tendency for the distribution of plant records to 

reflect the distribution of botanists, and for less accessible sites to receive less attention 

than more accessible ones (Rich and Woodruff, 1992). The distribution of visits to 

meres over a 50 year period in the 19
th

 century is certainly more heavily biased towards 

particular sites and areas than in recent times (Figure 2.3). These biased distributions in 

early records reflect the botanical recording activity of the time, which in Shropshire 

was dominated by W.A. Leighton, who collected material for his Flora of Shropshire 

(1841), and, being based in Shrewsbury, Shropshire, favoured nearby sites, such as 

Berrington Pool and Bomere Pool. Other sites that feature prominently, such as Hatch 

Mere and Rostherne Mere, are those recorded as part of the Flora of Cheshire (Warren, 

1899), the principle recorder being J. B. L. Warren, who was based at the nearby 

Tabley House, near Knutsford, Cheshire, and worked within the same time period. This 

bias is also probably more pronounced for the earlier period as the records tend to be 

fewer and derive from fewer recorders. In the latter half of the 20
th

 century, site visits 

were more evenly distributed across the meres. This is not just because there were more 

site visits in total, but also because the recording culture changed, with recorders 

tending to visit many sites (often for comparative purposes) rather than repeatedly 

visiting the same sites and ignoring others. There was a shift from an interest in 

individual species, which prompted early botanists like Leighton to return to the same 

location where a species was known to grow, to an interest in lake plant communities 

and species associations driven by the emerging discipline of vegetation science. 
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Interestingly, despite the differences in visit frequencies between lakes in the early and 

late period, there is still a strong correlation between number of visits to each lake in 

the early period and numbers of visits to each lake in the late period (p = 0.001), 

suggesting that lakes surveyed frequently in the earlier period were more likely to be 

surveyed frequently in the later period. Number of visits is not significantly correlated 

to lake size or distance from the nearest road in either period (all p = >0.05), so a likely 

explanation is that these lakes became known as sites worth visiting, perhaps because 

they were known to be species-rich or supported rare species, or even because the aim 

of some surveys was to document a change in flora, making previous recording a 

prerequisite. There is a correlation between number of species in the early period and 

number of visits in the late period (p = 0.001), but as number of species is so dependent 

on number of visits in the earlier period it is impossible to say whether it is the intensity 

of earlier recording or number of species which influenced the future recording at sites, 

although it is most likely both. 
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Figure 2.3 Plot of the number of visits to meres and the numbers of species found in 

two 50 year time periods. Lakes are ordered by distance from Shrewsbury/distance 

from Tabley House. 
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2.4.3 Species bias 

 

The factor most difficult to overcome when interpreting historical datasets is the 

tendency for earlier collections of records to be biased towards particular species. One 

potential problem is that common species tend to be under-represented, and rare species 

over-represented. This is partly due to the tendency for earlier collectors to be species-

orientated rather than vegetation-orientated, focussing on rare species at the expense of 

the commoner and probably ecologically more important ones. It is also due to the 

nature of the sources from which earlier records are extracted. These are largely entries 

in county floras and herbarium specimens. Entries in county floras were much more 

likely to name a site when a species was uncommon, for example Littorella uniflora, 

which is referred to as “not common” and occurring at “Filby Broad” in Trimmer‟s 

Flora of Norfolk (1866). In contrast, the common species Potamogeton pectinatus, is 

described in the same flora as being “frequent in rivers, canals, ponds, and marsh 

ditches”, and a list of some of the parishes in which it is found is given, but with no 

specific locations. This results in few early site-specific records for common species 

giving the impression that they were rarer in the lakes than was probably actually the 

case based on more general descriptions of their distribution.  

 

In the 19
th

 century botany was a popular pastime, one principal concern being the 

identification and collection of plants to create comprehensive personal herbaria (Allen, 

1986). There was a network of botanical exchange clubs (e.g. the Watson Botanical 

Exchange Club), where amateur botanists could exchange specimens to complete their 
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collections. When a rare species was found, its location became a hotspot for botanical 

collectors, with multiple specimens collected and distributed to different herbaria 

through the exchange clubs. An example of this occurred at Hickling Broad, where the 

scarce Najas marina was first discovered in 1883 (Bennett, 1884). The site and its 

surrounds were intensively visited after this date, and so many specimens were 

collected that measures had to be taken to protect the population. This is clearly 

illustrated by Bennett‟s 1909 account of events in the Transactions of the Norfolk and 

Norwich Naturalists’ Society: 

 

 “Passing (…) near the keeper‟s house to Hickling Broad, (…) my daughter at the 

bow of the boat brought up a lot of aquatics in the “drag.” (…) I at once saw we had 

Naias! Giving a good “Hallo,” and making the boat rock considerably, I knew we 

had the new British plant. Curiously enough three days after Mr. H. Groves went 

over the same ground and found the Naias, being accompanied by the same lad. He 

said to Mr. Groves: “Be ye from Lon‟on after weeds? Ah, yer too late.” He knew 

the plant again as I had pointed it out to him. (…) Afterwards I heard the plant has 

been so “raided” as to be hardly found, and I asked Mr. Coton to buy the land. On 

August 8
th

, 1888, Mrs Coton wrote me that “her husband has bought the rand (…) 

where Naias grows, as you suggested to him at the Linnean.” This was done with a 

view to preserve the plant” (Bennett, 1909). 

 

The resultant records create the misleading impression that Najas marina was actually 

more common and consistently present than probably more widely distributed and 
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abundant species such as, for example, Potamogeton pectinatus and Myriophyllum 

spicatum (Figure 2.4). However, Najas is known from the above description to have 

been scarce and, in Hickling Broad was confined to the south-east corner (Bennett, 

1909), whereas Potamogeton pectinatus is recorded in Hickling as early as 1868 and, 

although not formally recorded again until much later, is described as being one of the 

dominant submerged plants of the Thurne valley broads, of which Hickling Broad is the 

largest (Pallis, 1911). Similarly, Myriophyllum spicatum, although not recorded in 

Hickling Broad until 1934, is described as abundant in the Thurne Broads in 1911 

(Pallis, 1911) and “not uncommon” in the county and present in Hickling parish 

(Trimmer, 1866). This example demonstrates the importance of putting historical 

records into the context of other contemporary accounts, even where these are not lake-

specific. Additional information can be gained by comparing historical records to 

macrophyte chronologies assembled through analysis of macrofossil remains in 

sediment cores (Davidson et al., 2005; Ayres et al., 2008). Macrofossil sequences 

generally provide a good representation of common species, as their remains are likely 

to be prevalent in the sediment, although rare or local species may often be missed by 

this approach (Davidson et al., 2005; Zhao et al., 2006). 

 

There are also discrepancies in methods and criteria for inclusion of species between 

modern surveys (see Goulder, 2008). For example, recent mere surveys have tended to 

record marginal species more thoroughly than equivalent investigations of the broads 

by the Broads Authority, which only record plants growing in open water (Wigginton, 

1980; Jackson, 1983; JNCC, 2005; Goldsmith, in prep.). These discrepancies must be 
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understood when comparing results of different survey regimes. Issues of detection bias 

between species (e.g. caused by abundance, conspicuousness or size) are similarly 

likely to be amplified by variations in survey method, survey personnel or conditions at 

the time of survey. Consequently the true loss of a species may be very difficult to 

confirm with certainty; it merely becomes more probable as the length of period or 

number of surveys increase in which the species is not found. 
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Figure 2.4 Chronology of species records for Najas marina, Potamogeton pectinatus 

and Myriophyllum spicatum. A mark is shown for each year which has one or more 

records for that species.
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2.4.4 Species names 

 

Historical records often refer to synonyms which need to be converted to current 

nomenclature, such as that of Stace (1997). Where authorities are given, this can 

usually be done via the literature and there are several websites which can facilitate this 

(e.g. TROPICOS and the International Plant Names Index). In instances where 

renaming has been simple and unambiguous it is usually clear to which species a 

synonym refers, even where the authority is not given (e.g. Littorella lacustris L. is 

now Littorella uniflora (L.) Asch.). Herbarium specimens, which constitute a large part 

of the older records, have often been checked and renamed on the specimen sheets, or 

where they have not, can easily be verified by specialists. There are still instances 

however, where naming and identification is notoriously difficult and therefore often 

confused, with multiple synonyms. For example, among the genus Callitriche, species 

are vegetatively very similar, exhibit marked phenotypic plasticity, and have reduced 

flowers, making taxonomy difficult (Lansdown and Jarvis, 2004; Lansdown, 2006). It 

is difficult to be confident that misidentification, or mistranslations of synonyms have 

not occurred, and consequently earlier records may have to be discarded or degraded, 

e.g. to genus level. There are also instances of common misidentification. For example 

in Britain, Potamogeton berchtoldii has often been confused with Potamogeton 

pusillus, or the distinction between closely related taxa had not been described when 

records were made, for example Ceratophyllum demersum and Ceratophyllum 

submersum, whose distinction was not properly understood in the UK until 1927 

(Preston and Croft, 1997). In these instances records have to be merged under one name 
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which covers both species as the two cannot be confidently distinguished over the full 

duration of a recording period. Consequently the whole species list must be subject to 

the same scrutiny when comparing old and new records. 

 

2.4.5 Site locations 

 

Identifying specific locations for species records is perhaps easier for lakes than it is for 

rivers or many terrestrial habitats, as lakes are relatively discrete entities which usually 

retain the same name. Despite this, caution is still required, and old maps must be 

checked to confirm that the old names and locations agree with contemporary ones. 

Furthermore, with older records it is not always clear whether a name refers to a lake, 

or the church parish area with the same name. Thus, for example, in his Flora of 

Norfolk (1866), Trimmer often refers to locations such as “Hickling” or “Horsey”, but 

does not clarify whether this refers to the parish, the broad with the same name, or 

either interchangeably. Where this degree of ambiguity exists, records cannot safely be 

assumed to be from the lake. 

 

2.4.6 Dates 

 

Dates attached to records vary in their precision, from full dates including the day of 

the year, to just the year. The exceptions are records from books (e.g. county floras) 

which may be referring to records in lakes collected any time before the date of 
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publication (where not specified), sometimes spanning ten years or more. Occasionally 

this can be refined by checking primary sources, where they are given, or, when no 

other references exist, dates must be estimated based on the date of publication, or 

excluded. Amalgamation of records over a number of years is common in studies using 

historical records which removes this uncertainty to an extent, and also reduces the 

problems of record scarcity and recording bias. For example, Davidson et al. (2005) 

compared chronological trajectories of macrophyte community change in Groby Pool, 

Leicestershire as inferred by palaeolimnology (macrofossil and pollen analysis) and 

historical records collected from herbarium and literature sources, by combining these 

data and splitting them into ca. 50 year intervals from 1740 to 2000. More often studies 

using historical macrophyte records tend to compare an early period spanning a number 

of years, with a modern survey or surveys. For example Riis and Sand-Jensen (2001), 

compared macrophytes collected in Danish streams between 1876-1920, with a 

comprehensive survey conducted in 1996. They aimed to capture the maximum number 

of early records by merging records collected around 1896 which was considered a 

particularly comprehensively surveyed year. There is undoubtedly a trade-off to be 

reached between temporal resolution and quantity of data, and this should be based on 

the characteristics of each individual dataset (Rich and Karran, 2006). 

 

2.4.7 Pre-compiled data 

 

Many of the records within the broads and meres dataset were not collected directly 

from their primary source, but are a synthesis of various pre-compiled records such as 
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those of Jackson (1981b), the Shropshire Botanical Society (Lockton pers. comm.) and 

the BSBI Vascular Plants database accessed via the NBN gateway. A clear 

understanding of the criteria for record collection is required so that any bias relating to 

collection criteria can be eliminated. For example in the broads, Jackson‟s literature 

review (1981b) focussed on a subset of aquatic species (74 in total) so care had to be 

taken to check original sources for those species which he excluded (e.g. 

Schoenoplectus lacustris). In the broads and meres dataset the pre-compiled data used 

was well referenced, so duplication of records could be largely avoided and additional 

searches could be focussed on sources not previously investigated.  

 

2.4.8 Analysis 

 

Once all the issues associated with historical macrophyte records have been identified, 

the data need to be analysed and interpreted in ways which avoid or at least minimise 

the various sources of error so that remaining patterns are not an artefact and can be 

interpreted ecologically. Most previous studies using historical macrophyte data have 

tended either to treat the data in a descriptive, qualitative or semi-quantitative manner, 

(Jackson, 1978; Arts et al., 1990; Simons and Nat, 1996; Sand-Jensen, 1997; Nielsen et 

al., 2003), or have used other techniques, such as macrofossil analysis, to complement 

the historical records (Orth and Moore, 1984; Davidson et al., 2005; Ayres et al., 

2008). Where direct quantitative comparisons of early and late record sets have been 

made, authors have acknowledged some of the associated problems. Auderset Joye et 

al. (2002) compared the distribution of Characeae in Switzerland before 1930 and after 
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1975 using herbarium specimens for the older period, and field survey data for the 

recent period. They observed changes in the frequency of different species by looking 

at numbers of records in each period as a percentage of the total number of records for 

that period, in order to counteract changes in recording effort. They also looked at the 

change in geographical distribution by observing changes in species percentages per 10 

km grid squares. It was acknowledged that at this scale, observed distributions and 

species richness of grid squares were directly related to number of records and 

botanical activity. Sand-Jensen et al. (2000) used a randomisation procedure to allow 

them to compare historical and recent surveys of lakes and streams in Denmark, despite 

there being more sites covered in the recent survey. The contemporary frequency of 

each species was calculated by randomly sampling the same number of sites covered by 

the historical study from the larger pool of modern sites. This was done 1000 times to 

obtain 95% confidence intervals. They also estimated that similar recording effort was 

used in each period per stream based on the number of days the historical survey took. 

Despite this, they still acknowledge that the modern surveys of the larger lakes were 

more comprehensive than the historical ones. Occasionally, historical data is deemed 

sufficiently comprehensive and survey methods well documented enough to allow 

direct comparisons using quantitative analysis techniques. For example Rintanen 

(1996) observed the changes in macrophyte communities in 113 Finnish lakes between 

the 1930s and 1980s by comparing a comprehensive and well documented early survey, 

with a modern survey carried out using the same methods. In a study of change in 

submerged macrophytes in Lake Fure, Denmark, Sand-Jensen et al. (2008) compared 

macrophyte records collected in 1911-13, 1951-52, 1983 and 87, and every second year 
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since 1990. They obtained relative abundance measures for each species in each period 

by calculating the number of sampled sites in which it was found (ni) as a proportion of 

the total number of site and species combinations (Σni). These relative abundances were 

then used to measure dissimilarity in macrophyte communities between the time 

periods.  

 

In most cases however, the statistical assumptions of quantitative analysis (for example 

the consistency of survey method and recording effort), particularly of some widely 

used ordination techniques, are not properly met and the output is consequently difficult 

to interpret, the effect of changes in recording methods or recording bias between 

observers being virtually inseparable from ecological changes. Historical data itself is 

also rarely sufficiently comprehensive or well documented enough to overcome many 

of its associated biases. In addition, zero values arising from the lack of records would 

be treated as an absence of that species, strongly influencing the outcome of community 

ordinations when, in reality, there are significant biases in what is recorded which can 

result in common species being treated as absent, despite most likely having been 

present (Figure 2.4).  

 

The quantitative analysis of ecological trends in species compositions and distributions 

using historical records is an advanced field of study (Desender and Turin, 1989; van 

Swaay, 1990; Rich and Woodruff, 1996; Warren et al., 1997; McCollin et al., 2000; 

Telfer et al., 2002; Graham et al., 2004; Lutolf et al., 2006). Many of these studies 

analyse data from biological atlas datasets, most of which have a combination of 
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collated historical records as well as various modern surveys (Telfer et al., 2002). For 

example, van Swaay (1990) assessed changes in the abundance of butterfly species in 

the Netherlands by dividing atlas data collated for the Dutch Butterfly Mapping 

Scheme into five year periods (1901-1980) and observing the change in number of grid 

squares each species occupied in each period, as a percentage of the total number of 

recorded grid squares in that period. Telfer et al. (2002) used a mixture of collated 

historical data and survey data to calculate an index of relative change in range size for 

vascular plants and beetles by using the standardised residuals of each species from a 

linear regression of counts of 10-km grid cells between an early and a late time period. 

These analytical methods are designed to minimise bias associated with the data and 

there are also many studies within this wider field which specifically tackle the 

problems inherent in the use of historical records (Rich and Smith, 1996; Dennis et al., 

1999; Rich, 2006) and ways in which to overcome them (Delisle et al., 2003; Lutolf et 

al., 2006; Rich and Karran, 2006). These techniques, developed mainly for analysing 

the large amounts of fairly coarse scale (e.g. hectad level) historical and modern survey 

data used in distribution mapping, can equally be applied to the study of aquatic 

macrophytes at finer spatial scales, but need to be tailored to the specific attributes of 

historical records. For example, a useful approach which neutralises many sources of 

bias, would be to measure the proportion of lakes in which each species was historically 

found and which still contained that species in the modern period (Chapter 3). The most 

important starting point for any analysis of historic records is, however, an 

understanding of the dataset and its sources, and recognition of its inherent biases, so 
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that appropriate methods of analysis can be devised while over-interpretation or false 

conclusions are avoided. 

 

2.5 Conclusion 

 

The biases associated with historical records can be summarised as those relating to 

recording effort, record distribution, and species. All were pertinent to the broads and 

meres dataset presented here, and are likely to be common influences in any dataset 

containing historical records. These biases largely reflect the change in recording ethos 

over the last 200 years, from ad hoc collection of interesting species, to comprehensive 

whole lake surveys. Additionally there is scope for error from other factors such as 

misidentifications, confusion about site names and the logistics of combining data from 

widely different sources. 

 

The analysis of a dataset containing historical records, whether quantitative or 

qualitative, requires caution and a strong understanding of the source and nature of 

those records, so that the various sources of bias are acknowledged and, where possible 

circumvented, leaving behind patterns that can be interpreted ecologically. Only then 

can historical records provide new insights to community change and its underlying 

causes, or be used reliably to inform future restoration and management.  
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3.1 Abstract 

 

This paper uses historical macrophyte data from two groups of principally eutrophic 

lowland lakes in the UK (the Norfolk Broads and the West Midland Meres), to develop 

a change index, based on species persistence over the last 200 years within individual 

lakes. The use of a change index enables the robust interpretation of datasets based on a 

large variety of historic sources and incorporating a number of known and unknown 

biases. Species persistence, measured as the proportion of lakes still containing a 

species that occurred historically, was found to have a linear relationship with present 

day levels of occupancy across all lakes. This relationship was used to derive change 

index scores for species with limited historical data. Species with high change index 

values were most characteristic of nutrient-enriched lakes. Species with low index 

scores, which showed several periods of steep decline in the broads and meres, were 

not, however, confined to those associated with less fertile conditions. Averaging of 

change index scores in present day survey data served to identify the lake whose 

current flora suggests the least historical change, and to rank lakes in order of degree of 

botanical change over the last century. Thus the index may be a useful tool in assessing 

restoration measures or in guiding the selection of reference sites.  
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3.2 Introduction 

 

Historical macrophyte records, although sparse and inconsistently collected, are often 

the only readily available data from which to reliably reconstruct the past aquatic flora 

of highly impacted lakes which are now the norm over most of lowland Europe. For the 

purposes of the Water Framework Directive (2000/60/EC), information on former plant 

communities is essential for establishing how far a contemporary lake deviates from its 

pre-impacted, “reference” state, and therefore for judging the ecological status of a 

lake. Historical records are also essential in helping to characterise the range of 

community structures which can be expected for a particular lake type in its reference 

state, information which is lacking for many lowland lakes types where un-impacted 

analogues are scarce (Bennion and Batterbee, 2007). Such information is important in 

setting suitable targets for restoration or conservation and as a benchmark against 

which to measure progress. The catchments of lowland lakes have been subjected to a 

higher intensity and earlier onset of human impact than those in the uplands. However, 

the proximity of human habitation has also ensured a long recording history, with some 

lowland lakes being subject to extensive botanical interest since the early 19
th

 century, 

when field botany was growing in popularity (Morton, 1981). 

 

There is a large and expanding literature on the use of museum records or other 

historical data to interpret change in species distribution and composition (van Swaay, 

1990; Rich and Woodruff, 1996; Graham et al., 2004; Braithwaite et al., 2006; Rich 

and Karran, 2006). Where survey methods and recording effort are comparable between 
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time periods, direct comparisons between them are possible (Kennison et al., 1998; 

Sand-Jensen et al., 2000; von Numers and Korvenpää, 2007). However, this is rarely 

the case, especially with collections of older records, so in these situations different 

forms of bias associated with the data must be carefully considered, and analysis 

methods used which overcome them. These problems have been widely acknowledged 

(Rich and Woodruff, 1992; Rich and Smith, 1996; Rich, 2006; Rich and Karran, 2006, 

Chapter 2).  

 

Historical records have been used before to characterise changes in the aquatic plant 

communities of standing waters (e.g. Rintanen, 1996; Simons and Nat, 1996; Sand-

Jensen et al., 2000; Auderset Joye et al., 2002; Körner, 2002; Davidson et al., 2005), 

but either more complete survey datasets have been used (Rintanen, 1996; Körner, 

2002) than in the present study, or the limitations have been discussed but ignored for 

the sake of the analysis (Auderset Joye et al., 2002). Often historical data have been 

used to characterise past macrophyte communities, but in a more descriptive way 

(Jackson, 1978; Sand-Jensen, 1997; Davidson et al., 2005; Ayres et al., 2008). This 

paper uses historical macrophyte data for two sets of lowland lakes, the Norfolk Broads 

and the West Midland Meres, to develop a quantitative change index comprising a 

continuous gradient from species which have declined through to those which have 

persisted or increased, over the last 150 years. The index is then considered in terms of 

its ecological significance and is used to interpret changes in the vegetation of both the 

broads and meres over the period of the datasets. 
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3.3 Methods 

 

3.3.1 Geographic area 

 

This study makes use of two historical macrophyte datasets, one from the Norfolk 

Broads, and the other from the West Midland Meres. These are both sets of lowland, 

typically base-rich and predominantly freshwater lakes in England. The broads are a 

series of flooded medieval peat workings associated with a number of rivers in the East 

of England. They range in area (from 1 ha. to 140 ha.) and are shallow (most sites are 

<2 m deep) and highly alkaline (2-4 meq/L) (George, 1992; Moss, 2001). The meres of 

the English West Midlands are a series of natural water-filled hollows in the glacial 

drift, grouped in local clusters. They are of varying alkalinity (0.03-5.88 meq/L), with 

the majority being highly alkaline (>2 meq/L). They vary in depth (from less than 1 m 

to ~50 m) and area (from less than 1 ha. to 75 ha.) and are largely ground water fed 

(Reynolds, 1979). Both sets of lakes are surrounded by intensive agriculture and are 

near to centres of human population so have consequently been subjected to 

anthropogenic eutrophication over the last 150 years. Current nutrient concentrations 

are typically high in the broads (the majority have TP values of >100 μg L
-1

) and in the 

meres (average TP values in most meres are over 100 μg L
-1

 in summer and may 

exceed 1500 μg L
-1

; NO3-N up to 6 mg L
-1

) (George, 1992; Fisher et al., 2009). 
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3.3.2 Sources of historical macrophyte data 

 

The Norfolk Broads data were compiled from various sources including the Botanical 

Society of the British Isles‟ (BSBI) Vascular Plants Database accessed via the NBN 

gateway (www.data.nbn.org.uk), records collated from various published and 

unpublished sources and museum herbarium specimens, by Jackson (1978; 1981a; 

1981b) and supplemented by searches done for this study. Records were also obtained 

from regular surveys carried out since 1982 by the Broads Authority (Broads Authority 

unpublished data). The meres data was compiled by A. Lockton on behalf of the 

Shropshire Botanical Society‟s Shropshire Flora database (www.shropsbotdata.org.uk 

at) and supplemented by records compiled for this study, largely from the Natural 

History Museum herbarium. All records were stored in an MS Access database with 

taxon name, date of record, lake, recorder, and source of record as fields. Each record 

represents the confirmation of a species growing in a particular lake at a particular date, 

although the source of the records, method of collection, frequency of records, and sites 

recorded varies greatly throughout the time span of the datasets (Chapter 2). Both 

datasets were checked by the respective county recorders (B. Ellis and A. Lockton) and 

species names were changed to conform to the nomenclature of Stace (1997). Where 

there were uncertainties over nomenclature or identification, or where an aggregate 

name was used widely in some sources of records, species were merged into groups, 

e.g. all the Callitriche were merged under “Callitriche spp.”, Potamogeton berchtoldii 

and pusillus were merged under “Potamogeton pusillus agg.”, and all the 

Ranunculaceae of the subgenus Batrachium were merged under “Ranunculus subgenus 
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Batrachium” except Ranunculus circinatus which was considered sufficiently 

distinctive for identifications to be generally reliable.  

 

3.3.3 Criteria for species and site selection 

 

For the purposes of this study, macrophytes were broadly defined as having an 

Ellenberg F (moisture) value of ten or above (Ellenberg et al., 1991; Hill et al., 2004). 

In the broads dataset, with two exceptions (Littorella uniflora and Hippuris vulgaris), 

species with an Ellenberg F value of ten were ignored as they were considered unlikely 

to be recorded by Broads Authority boat surveys which do not systematically record 

marginal vegetation (Jackson, 1983). Littorella uniflora is sufficiently rare in the 

Broads region that it is likely to have been recorded as a species of interest were it 

present, while Hippuris vulgaris routinely grows fully submerged in the open water of 

the broads and thus is recorded by the surveys. In the meres dataset, four additional 

species, Limosella aquatica, Lythrum portula, Ranunculus hederaceus and Ranunculus 

omiophyllus were included despite having Ellenberg values of less than ten, as they 

were considered to have a sufficiently aquatic habit to be treated as macrophytes in this 

study. The Ellenberg classification deals only with vascular plants. Since charophytes 

are well represented in the historical record and are an important component of the 

aquatic vegetation of base-rich lakes, they were included. Aquatic bryophytes, with the 

exception of the floating liverwort Riccia fluitans, were excluded as they were virtually 

absent from the historical record. All the lakes were distinct recognisable water bodies 

(either broads or meres) and clearly identifiable as the same lake throughout the time 
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span of the dataset. Where records referred to a part of a larger lake set (e.g. north and 

south basins of Martham Broad), all records were merged under the name of the set 

(e.g. Martham Broad), so that records which did not specify a basin could be included.  

 

Table 3.1 Number of lakes, species and records in the broads and meres datasets 

including breakdown of these in the two time periods: pre-1921, and post-1979 for the 

broads, and pre-1911 and post-1969 for the meres. 

 

   Early period Late period 

Dataset 
Year 

span 

Total no.  

records 

No. 

lakes 

No. 

species 

Total no.  

records 

No. 

lakes 

No. 

species 

Total no.  

records 

Broads 
1805-

2006 
4510 24 55 538 37 50 3159 

Meres 
1798-

2006 
4661 38 88 900 44 71 3282 

 

Two time periods were identified for each set of lakes; an early and a late period. The 

earlier time period was chosen to capture the maximum number of records without 

sacrificing temporal resolution, and the later time period to coincide with the onset of 

comprehensive modern surveys (Wigginton, 1980; Jackson, 1983; Kennison et al., 

1998). In the broads these periods were pre-1921, and post-1979, and in the meres pre-

1911 and post-1969. Lakes which had no records in the later period were deleted as 

they were assumed to have either disappeared, or not been surveyed at all in the later 

period and therefore could not be used for comparison. Further details of the datasets 

are presented in Table 3.1. Note that the numbers in Table 3.1 differ from those in 

Table 2.1, chapter 2, due to the exclusion and merging of species and sites detailed in 

the above in sections 3.3.2 and 3.3.3. 
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3.3.4 Developing a change index 

 

The number of lakes occupied by each macrophyte species in the early period were 

enumerated, as were the number of these lakes which still supported each species in the 

late period. An empirical change value (Pem) was calculated for each species as the 

proportion of early period lakes still occupied by the species in the late period. This was 

done separately for each set of lakes (broads and meres). All subsequent calculations 

were performed using the statistical software package Minitab (release 14).  

 

Pem = Number of these lakes which are still occupied by species X / Number of lakes 

with species X in early period 

 

Pmod = Number of modern lakes occupied by species X / Total number of modern lakes 

 

E.g. Species X currently grows in 10 out of 20 lakes surveyed. It was historically 

recorded in 8 lakes, of which 5 still contain the species. The Pem and Pmod values would 

be as follows: 

 

Pem = 5/8 = 0.625 

 

Pmod = 10/20 = 0.5 
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When plotted, Pem was revealed to have a strong linear relationship with the total 

number of modern sites occupied by each species (Pmod) (p<0.001 for both broads and 

meres; n = 61 and n = 100 respectively), which was expressed as a proportion of the 

total number of modern sites surveyed (Figure 3.1).  

 

Both sets of proportions were logit transformed to ensure normal distribution: logit (P) 

= ln[P/(1-P)] where P is the proportion (either Pem or Pmod) (Williamson and Gaston, 

1999; Telfer et al., 2002), (Anderson-Darling normality test, p>0.05 for both broads 

and meres). To avoid zero values proportions were calculated as Pem = (x + 0.5)/(n + 1), 

where x is the number of early period lakes still containing a species in the late period, 

and n is the number of lakes containing the species in the early period, and Pmod = (x + 

0.5)/(n + 1) where x is the number of lakes with a species in the late period and n is the 

total number of late period lakes surveyed. Where the number of early period lakes 

containing a species was very low, limited information could be inferred for that 

species. Thus only species occupying 4 or more lakes in the early period were used in 

the calculation. Logit transformed Pem and Pmod then had an even stronger linear 

relationship with each other (Figure 3.2), (p=<0.0001 for both broads and meres; n = 25 

and n = 45 respectively).  

 

An inverse linear regression model was constructed with the same logit-transformed 

proportions, again using only those species occurring in four or more lakes in the early 

period (Figure 3.3). The inverse regression equations were then used to model the 

change index for all the species in each data set from the proportions of modern lakes 
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containing each species (Pmod). This allowed a change index value to be given not only 

for those species with an empirical change value, (Pem), but also for those that were 

rare, absent, or unrecorded in the early period.  

 

In order to check the relationship between the change indices derived from the two 

separate lake district datasets, a Pearson‟s correlation was carried out between the 

change index values obtained from the broads dataset, and those obtained from the 

meres dataset, for species common to both broads and meres. 
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a)   Broads   b)          Meres 

 

Figure 3.1 Total number of modern sites occupied by each species as a proportion of total 

number of modern sites (Pmod) against proportion of early period lakes still being occupied 

by a species in the late period (Pem), for a) the broads and b) the meres data. The fitted 

regression line (solid), the 95% confidence (blue, dashed) and prediction intervals (red, 

dotted) are also shown. 

 

a)   Broads   b)          Meres 

 
 

Figure 3.2 Logit-transformed number of modern sites occupied by each species as a 

proportion of total number of modern sites (Pmod) against logit-transformed proportion of 

early period lakes still being occupied by a species in the late period (Pem), for a) the 

broads and b) the meres data. The fitted regression line (solid), the 95% confidence (blue, 

dashed) and prediction intervals (red, dotted) are also shown. Only species with 4 or more 

early period sites were used. 
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a)   Broads   b)   Meres 

 
 

Figure 3.3 Inverse regression models of logit-transformed proportion of early period lakes 

still being occupied by a species in the late period (Pem) against Logit-transformed 

proportions of modern sites occupied by each species as a of total number of modern sites 

(Pmod), for a) the broads, (inverse regression equation Pem = 0.7075 + 0.813 Pmod, adjusted 

R
2
: 0.724, F-statistic: 63.96, degrees of freedom: 23, p-value: <0.001) and b) the meres, 

(inverse regression equation Pem = 0.698 + 0.7412 Pmod, adjusted R
2
: 0.7975, F-statistic: 

174.3, degrees of freedom: 43, p-value: <0.001). 
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3.3.5 Establishing an ecological basis for the change index 

 

Eutrophication is probably the most significant anthropogenic influence on lowland 

lakes in Europe (Carvalho and Moss, 1995; Gulati and van Donk, 2002; Sondergaard 

and Jeppesen, 2007). A test was therefore carried out to determine whether the 

macrophyte change index was related to species nutrient affinity. This was done by 

observing the relationship between the change index and the Lake Macrophyte Nutrient 

Index (LMNI) scores of the corresponding species (Willby et al., 2009). The LMNI 

index is based on an adjustment of Ellenberg N scores specifically for aquatic 

macrophytes, undertaken following the algorithmic approach described by Hill et al. 

(1999). The LMNI scores are derived from a compilation of 4500 macrophyte surveys 

of lakes distributed across Britain and Ireland. Spearman‟s rank correlations were used 

to test correlations between change index and LMNI as the data were not normally 

distributed.  

 

3.3.6 Reconstructing changes in lake vegetation 

 

In order to overcome the problem of sporadic recording before the advent of modern 

surveys, the first and last appearance of each species in each lake was noted and an 

assumption was made that species were continuously present in lakes between these 

two dates. A timeline was constructed of numbers of lakes containing, or assuming to 

contain each species based on first and last observations. Species were then subdivided 
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into three groups of index scores; those falling within the standard error of the change 

index mean (Group 2), and those falling below (Group 1) or above (Group 3) this 

range. The mean was weighted by the number of early period lakes in which a species 

occurred in order to give less weight to rare species. Changes in the representation of 

each group over the recording period were then assessed graphically. 

 

3.3.7 Use of the change index to compare contemporary lakes 

 

The change index values were subsequently applied to a set of contemporary survey 

data for a suite of sites in each group of lakes. Lakes were chosen which were known to 

have been comprehensively surveyed for macrophytes within the last 20 years. A value 

was derived for each lake by summing the change index of all species found in each 

lake since 1990, and dividing it by the total number of species found in the lake during 

that period, to obtain an average species change index for each lake. These values were 

then compared in order to rank lakes from most to least changed. 

 

3.4 Results 

 

3.4.1 The change index and its interpretation 

 

The macrophyte change index values for all species in each lake dataset are given in 

Table 3.2 and the mean and standard deviation for each lake group are shown in Table 
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3.3. Species suffering the most decline in distribution within the lakes, were represented 

by low index scores, whereas those with an apparently increasing or stable distribution 

were represented by higher change index scores. 

 

Table 3.2 List of species, their modelled logit- Pem (change index) values and change 

index groups for the broads and meres datasets. The three change index groups were: 

Group 2, those falling within the standard error of the change index mean; Group 1, 

those falling below; or Group 3, above this range. Where index values are missing, 

these species were not found in the late or early period of that particular dataset. 

 

Species 
Broads 

Index 

Meres 

Index 
LMNI value Change index group 

    Broads Meres 

Acorus calamus  -0.94 8.16  2 

Alisma plantago-aquatica  1.55 7.25  3 

Apium inundatum  -2.70 5.69  1 

Apium nodiflorum  0.66 7.70  3 

Azolla filiculoides -2.80  9.28 1  

Baldellia ranunculoides  -2.70 5.58  1 

Berula erecta  0.32 7.48  3 

Butomus umbellatus -2.80 -1.84 8.46 1 2 

Callitriche sp. 0.13 1.85 6.90 3 3 

Carex elata  1.15 5.48  3 

Carex lasiocarpa  -1.84 4.87  2 

Carex limosa  -2.70   1 

Carex rostrata  0.32 4.46  3 

Carex vesicaria  0.32 5.02  3 

Ceratophyllum demersum 1.99 -0.18 8.67 3 2 

Chara aspera -0.92 -2.70 7.10 2 1 

Chara baltica -0.92  8.60 2  

Chara canescens -2.80  8.13 1  

Chara connivens -0.43  7.92 2  

Chara contraria var. contraria -0.74 -1.84 7.47 2 2 

Chara curta -1.45  6.52 2  

Chara globularis 0.58 -0.95 7.34 3 2 

Chara hispida -0.30  6.87 2  

Chara intermedia -0.74  8.00 2  

Chara rudis  -2.70 6.94  1 

Chara virgata -1.15 -0.95 5.55 2 2 

Chara vulgaris 0.41 -0.08 7.19 3 2 

Crassula helmsii  -1.43 6.18  2 

Damasonium alisma  -2.70 4.64  1 

Elatine hexandra  -0.95 5.41  2 

Eleocharis acicularis  -0.77 6.75  2 

Eleocharis multicaulis  -2.70 1.93  1 

Eleocharis palustris  1.01 5.48  3 

Eleogiton fluitans  -1.84 3.45  2 

Elodea canadensis 1.29 0.94 7.14 3 3 

Elodea nuttallii 0.32 -1.16 6.92 3 2 
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Species 
Broads 

Index 

Meres 

Index 
LMNI value Change index group 

    Broads Meres 

Equisetum fluviatile  0.80 5.15  3 

Glyceria fluitans  0.80 6.17  3 

Glyceria maxima  -0.63 8.24  2 

Glyceria x pedicellata  -1.43 6.88  2 

Hippuris vulgaris -0.58 -1.84 6.40 2 2 

Hottonia palustris -1.89 -0.38 7.33 1 2 

Hydrocharis morsus-ranae -0.58 -2.70 8.26 2 1 

Hypericum elodes  -1.84 4.95  2 

Isoetes lacustris  -2.70 3.09  1 

Juncus bulbosus  0.09 3.72  2 

Lemna gibba -1.89 -1.43 9.24 1 2 

Lemna minor 1.39 2.09 7.58 3 3 

Lemna minuta -0.58 -0.63 8.64 2 2 

Lemna trisulca 0.75 0.80 7.82 3 3 

Limosella aquatica  -2.70 6.49  1 

Littorella uniflora -2.80 -0.95 4.70 1 2 

Lobelia dortmanna  -2.70 2.46  1 

Lythrum portula  -2.70 5.56  1 

Menyanthes trifoliata  -0.18 4.76  2 

Myriophyllum alterniflorum  -2.70 4.54  1 

Myriophyllum spicatum -0.58 -0.38 7.84 2 2 

Myriophyllum verticillatum -0.74 -2.70 8.67 2 1 

Najas marina 0.58  8.84 3  

Nitella flexilis agg. -0.43 -1.16 5.60 2 2 

Nitella mucronata -0.74  8.42 2  

Nitellopsis obtusa -0.74  7.62 2  

Nuphar lutea 1.01 1.74 6.92 3 3 

Nuphar pumila  -1.84 5.33  2 

Nuphar x spenneriana  -1.16 5.61  2 

Nymphaea alba 0.49 0.87 5.54 3 3 

Oenanthe aquatica  0.09 8.31  2 

Oenanthe fluviatilis -2.80  7.67 1  

Persicaria amphibia  1.46 7.25  3 

Phragmites australis  1.46 7.19  3 

Pilularia globulifera  -2.70 5.18  1 

Potamogeton acutifolius -1.89  7.48 1  

Potamogeton alpinus -2.80 -1.84 5.79 1 2 

Potamogeton coloratus -1.89 -2.70 6.70 1 1 

Potamogeton compressus -2.80  8.00 1  

Potamogeton crispus 0.67 0.32 7.64 3 3 

Potamogeton friesii -0.07 -2.70 7.64 2 1 

Potamogeton gramineus  -2.70 5.51  1 

Potamogeton lucens -1.89 -1.84 7.02 1 2 

Potamogeton natans -1.45 -0.63 5.16 2 2 

Potamogeton obtusifolius -0.92 -0.63 6.72 2 2 

Potamogeton pectinatus 0.84 0.09 8.25 3 2 

Potamogeton perfoliatus -0.74 -1.43 5.83 2 2 

Potamogeton polygonifolius  -1.43 3.50  2 

Potamogeton praelongus -2.80 -2.70 5.77 1 1 

Potamogeton pusillus 0.84 0.60 7.61 3 3 

Potamogeton trichoides -1.89  8.39 1  

Potamogeton x angustifolius  -2.70 5.69  1 
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Species 
Broads 

Index 

Meres 

Index 
LMNI value Change index group 

    Broads Meres 

Potamogeton x cooperi  -2.70 5.67  1 

Potamogeton x salicifolius -1.45  6.89 2  

Potentilla palustris  0.60 4.59  3 

Ranunculus circinatus -0.19 -0.18 8.64 2 2 

Ranunculus lingua  -0.08 7.61  2 

Ranunculus subgenus Batrachium -1.89 0.24 6.86 1 3 

Riccia fluitans  -2.70 6.63  1 

Rorippa microphylla  -0.95   2 

Rorippa nasturtium-aquaticum  1.01 7.58  3 

Rumex hydrolapathum  0.24 7.70  3 

Sagittaria sagittifolia -1.89  7.88 1  

Scheuchzeria palustris  -2.70   1 

Schoenoplectus lacustris -0.92 0.39 7.59 2 3 

Schoenoplectus tabernaemontani  -0.38   2 

Sparganium emersum -0.58 -0.77 6.59 2 2 

Sparganium erectum  1.85 7.54  3 

Sparganium natans  -2.70 4.84  1 

Spirodela polyrhiza -1.89 -0.95 8.79 1 2 

Stratiotes aloides -1.45 -2.70 8.51 2 1 

Subularia aquatica  -2.70 2.93  1 

Typha angustifolia  0.87 7.12  3 

Typha latifolia  1.46 7.83  3 

Utricularia australis -2.80  4.65 1  

Utricularia intermedia -2.80  2.74 1  

Utricularia minor -2.80 -2.70 2.97 1 1 

Utricularia vulgaris -1.15 -2.70 5.39 2 1 

Veronica anagallis-aquatica  -1.16 7.60  2 

Veronica beccabunga  1.46 6.98  3 

Veronica catenata  -0.63 8.07  2 

Zannichellia palustris 0.67 0.73 8.49 3 3 

 

Table 3.3 The mean and standard deviation of the macrophyte change index scores for 

all species the broads and meres. The weighted mean was weighted by the number of 

early period lakes in which a species occurred in order to give less weight to rare 

species. 

 

 Mean change index S.E. mean Weighted mean change index 

Broads -0.924 0.789 -0.834 

Meres -0.888 0.673 -0.513 

 

The change index values derived from each of the broads and meres datasets for species 

common to both areas, were found to be highly correlated (Pearson‟s r =  0.656, n = 42, 

p < 0.0001, Figure 3.4). Although the general trend was for species to have equivalent 
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index scores whether calculated from the broad or meres data, there were a few species 

which did not fit this pattern. There was only one taxon (Ranunculus subgenus 

Batrachium) whose index scores fell below the standard error of the weighted mean of 

the change index (group 1) in one set of lakes (the broads) but above the standard error 

of the weighted mean (group 3) in the other (the meres). This is perhaps not surprising 

as the species aggregated under Ranunculus subgenus Batrachium differ between the 

broads and meres, making it difficult to make general statements about the taxon as a 

whole. 

 

 
 

 

 

Figure 3.4 The relationship between change index values obtained for species common 

to both broads and meres (Pearson‟s r =  0.656, n = 42, p < 0.0001). 
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3.4.2 Ecological basis for the change index 

 

There was a correlation between the change index and Lake Macrophyte Nutrient Index 

(LMNI) scores (p = 0.169 and p = 0.002 in the broads and meres respectively), 

suggesting that the change index is related to nutrient affinity. However, this correlation 

was not significant in the broads. This was because, as was also the pattern in the 

meres, species with lower change index scores covered a large range of LMNI scores, 

whereas those species with high change index scores, tended to have high LMNI 

values, consistent with tolerance of fertile conditions (Figure 3.5). 

 

3.4.3 Temporal changes in vegetation over the recording period 

 

The macrophyte change index was applied to the historical macrophyte datasets of the 

broads and meres in order to interpret changes in macrophyte community structure over 

the period spanned by the datasets. The overall change in status of each change index 

group (those above, below or within the standard error of the mean) over the time 

period of the datasets is summarised in Figure 3.6. Figure 3.7 provides examples of 

changes in the status of selected representatives of each change index group. 
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a)       b) 

 
Figure 3.5 The relationship between Lake Macrophyte Nutrient Index (LMNI) and the change 

index in the broads a) and the meres b). 
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Figure 3.6 Number of species belonging to each index group within ten year periods throughout 

the time span of the broads a) and meres b) datasets.  

 

Figure 3.7 (on following page) Change in number of lakes a species is recorded in within ten 

year periods, assuming continuous coverage between first and last observation dates for each 

species in each lake. A selection of species representative of index groups 1, 2 and 3 are shown 

for both the broads, a), c) and e), and the meres, b), d) and f), datasets. 
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a)      b) 
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c)      d) 
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In both lake districts, the numbers of index group 1 species, such as Potamogeton 

compressus and Potamogeton lucens in the broads and Lobelia dortmanna and Apium 

inundatum in the meres, decreased as expected. In the broads they dropped from 18 to 3 

species, and in the meres from 23 to 1 species. The periods of most rapid decline in this 

group occurred before 1910, and between 1940 and 1950, and 1980 and 1990 in the 

broads, and before 1850 and between 1890 and 1920 in the meres (Figure 3.6). In 

contrast the observed numbers of species within the other two groups increased, in both 

the broads and, especially the meres. This increase was sufficient to buffer the change 

in total numbers of observed species which consequently dropped by a smaller amount 

(by 19.6 % in the broads and 9.2 % in the meres). Some species within group 2 showed 

a slight decline or increase in the number of lakes in which they were observed, for 

example Littorella uniflora which decreased in the meres and Myriophyllum spicatum, 

which increased in the broads, but the majority of species in this group showed little 

change (e.g. Chara hispida in the broads and Hottonia palustris in the meres). All 

species in group 3 showed an increase in the number of lakes occupied over the time-

span of the dataset. Although some of this increase could be due to increased sampling 

effort and more comprehensive survey methods, some increases will reflect a genuine 

expansion in distribution. Invasive alien taxa, such as Elodea nuttallii, that were absent 

historically, offer a good example. In the examples of group 3 species in the meres, 

there appears to be an abrupt increase in the number of lakes occupied between 1970 

and 1980. This is almost certainly due to increased recording effort associated with the 

onset of surveys by the Nature Conservancy Council (Wigginton, 1980, 1987). 

Nonetheless, the decrease in group 1 species still indicates a real decline, as modern 
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recording regimes would be likely to detect these species if they were present. Indeed, 

many of the group 1 taxa have declined so severely across lowland Britain (and 

elsewhere) that they are now protected by national or international legislation, and 

considerable recording effort is devoted to assessing changes in their status (e.g. 

Stewart and Church, 1992; Edwards and Pearman, 2004; Lockton and Whild, 2005)  

 

3.4.4 Application of the index 

 

One straightforward application of the index is to provide a measure of the integrity of 

contemporary sites using comprehensive biological survey data to reflect the degree of 

similarity between modern sites and their historical analogue. Such an index would be 

based on the average change index values of the species recorded. For the purposes of 

comparing values between different sites it is necessary to employ a change index that 

has been trained on the sites to which it is to be applied, or which is based on sites of a 

similar type and geographical distribution, in order to minimise the influence of 

environmental and biogeographical elements on species composition. 

 

When applied to a set of contemporary (post 1990) data for each group of lakes (Figure 

3.8) the change index indicates that Horsey Mere and the Martham Broads represent the 

historically least changed broads in terms of their composition, whilst Ranworth Broad 

and Filby Broad appear to be the most degraded. Within the meres, Whitemere and 

Mere Mere stand out as those sites whose current composition converges most closely 

on the historical baseline. 
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Figure 3.8 A selection of lakes in a) the broads and b) the meres ranked according to 

the average index scores of the macrophyte species found growing in them since 1990.
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3.5 Discussion 

 

3.5.1 Using historical data to interpret macrophyte compositional changes 

 

The change index proposed here seeks to characterise those species which have 

declined in distribution within lowland lakes. It is essentially a measure of the 

proportion of lakes in which a species was recorded historically and which still contain 

that species in the late period, as modelled from empirical data. As such, the lower the 

index value for a species, the fewer individual lakes it has persisted in (and hence the 

fewer lakes it is found in presently). The higher the index value, the closer it is to 

persisting in all of the lakes in which it was historically recorded. Although there are 

many more lakes with records of high index value species (e.g. Elodea canadensis) 

recorded in the modern period compared to the early period (5 and 6 in the early period 

in the broads and meres respectively, compared to 25 in the late period for Elodea 

canadensis), the index can only go as far as saying that a species persists in those lakes 

in which it was first recorded. Thus it cannot be used to indicate an increase in the 

distribution of a species from an historical baseline. This is inevitable given the nature 

of the data used to generate the index; within the late period the records come mainly 

from surveys designed to be much more inclusive than early period recording. Common 

species were undoubtedly under-recorded in the early period due to a bias in historical 

recording towards rarer, more noteworthy species (Chapter 2). Equally, the apparent 

increase in the number of lakes containing common, widely distributed species is likely 
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to be an artefact of more comprehensive modern surveys. For example, Nuphar lutea 

was known to be widespread in the broads and meres in the late 19
th

 century (Leighton, 

1841; Trimmer, 1866; Christopher Davies, 1883), but was rarely noted on botanical 

expeditions or collected for herbaria. The increase in number of lakes in which it is 

recorded today compared to historically is likely to be due, in part, to changes in 

recording strategy (Chapter 2). 

 

Since the index value for each species is modelled as opposed to being strictly 

empirical, some species recorded in very few or no lakes in the early period may still 

have high index values, as the index is derived from the number of modern lakes 

containing a species (and the model is only based on species present in four or more 

early period lakes). This means that in some cases (e.g. Elodea nuttallii and Lemna 

minor in the broads, and Apium nodiflorum and Veronica beccabunga in the meres), 

high index values do not necessarily mean that a high proportion of lakes retain this 

species, but may simply mean that a species has changed from being uncommon, to 

widespread, or from being unrecorded (or overlooked) to well recorded. Elodea 

nuttallii is a good example of a species which was definitely not present in the broads 

in the early period, being first recorded in Britain in 1966 (Stace, 1997), but which is 

now widespread and hence has a higher than average index score. These species are an 

exception but must be considered when interpreting the index.  

 

Another group of species to consider are those with potentially high site turnover. 

These species may show little persistence in individual lakes, but still retain a high or 



 79 

persistent overall distribution among the group of lakes as a whole. Ruderal species 

with high reproductive output and efficient dispersal mechanisms would be expected to 

dominate this group (Willby et al., 2000). If there are many such cases it could affect 

the assumption that low change index scores indicate species decline. This was checked 

by looking at the index scores of those species which had occupied more early period 

lakes than modern ones (i.e. where there is an unequivocal decline in distribution). This 

revealed that all the below average change index (group 1) species in both the broads 

and meres occurred in fewer lakes in the modern period than historically. Of the 

average index score (group 2) species, 23% in the broads and 33% in the meres species 

occupied fewer lakes in the modern period than historically, while all species with an 

above average index score (group 3) had more modern sites than historic ones. This 

means that one can say conclusively that the species with a below average index score 

have declined in absolute terms within that group of lakes. In summary, low change 

index values indicate a species characterised by decline and restricted modern 

distribution. Conversely species with high change index values indicate a large modern 

distribution, and either high levels of persistence or a genuine increase in distribution 

since the early period, although these two possibilities cannot be distinguished by the 

index. 

 

This study is unique among those previously using historic macrophyte data in that it 

utilises a change index and is thereby able to classify species by the level of their 

change in lake occupancy whilst avoiding the problems of recording bias and 

insufficient data. The change index approach has, however, been used for numerical 
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assessments of change in the distribution of other species (van Swaay, 1990; Thomas 

and Abery, 1995; Pearman, 1997; Warren et al., 1997; Preston et al., 2002; Telfer et al., 

2002; Braithwaite et al., 2006). The index in this study follows a similar principle to 

that of Pearman (1997) who calculated a “decline rating” for vascular plants based on 

the number of recorded post-1970 10-km squares (hectads) divided by the number of 

recorded post-1930 hectads, expressed as a percentage. In the change index presented 

here it is the ratio of early period lakes still holding a species in the late period, to the 

number of early period lakes in which the species was recorded. However, the principle 

was then extended by identifying the relationship between this ratio and the current 

distribution of aquatic plant species, expressed in terms of the number of individual 

lakes occupied, this relationship was used to infer the index for all species, even where 

historical data were very sparse or lacking. The advantage of this approach is that it 

allows the use of a limited amount of data within specific areas (the broads and the 

meres), from a large variety of historical sources and yet still can indicate which species 

have declined, and identify periods of more rapid decline. As lakes are usually 

identifiable as a discrete location, even in older records, the number of lakes occupied 

could be used as a measure of decline. This allows for a more sensitive index than one 

based upon hectads, where losses within one site within a hectad may be obscured by 

persistence at other sites within the same hectad. This is particularly important when 

assessing decline in lake macrophytes in those areas with a high density of aquatic 

habitat, as species lost from lakes may potentially persist in other aquatic habitats 

nearby. In Broadland, for example, many species lost from the broads have continued 

to thrive in adjacent drainage dykes (George, 1992).  
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One limitation of the index is that it is impossible to tell from this method whether 

species are increasing or staying stable; it can only provide information on species 

decline. Telfer et al. (2002) were able to calculate an index of relative change in range 

size (both increase and decline) by using the standardised residuals of each species 

from a linear regression of counts of 10-km grid cells occupied in an early and a late 

time period. Such an approach could not be applied to the data in this study, however, 

as there was no relationship between number of lakes occupied in early and late 

recording periods. This may be because, compared to their datasets which incorporated 

data from intensive recording of >1500 species across Britain (2800 hectads), this 

dataset was relatively small (fewer species and fewer sites). This meant that the data 

from the early recording period was more sensitive to inconsistent recording as a site 

scale was used, rather than the much larger hectad scale, as the basis for analysis. 

Additionally, the early period used was much earlier than that of Telfer et al. (2002), 

being designed to capture the nineteenth century condition of these lakes, and therefore 

relied on much more sporadic data compiled from different sources, with associated 

bias. The most noticeable bias was the tendency for common species to be under 

recorded in the early time period (Chapter 2). These changes in recording activity could 

not be easily corrected for as attempted in some other studies (Rich and Karran, 2006), 

as the sources used in this study were so varied (Chapter 2). Another limitation, 

common to many indices based on presence only data, is that they take no account of 

abundance. For example, in the broads the index suggests that charophytes show good 

persistence, as they are still found in most of the lakes in which they were historically 
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recorded. This conceals that fact that their extent within the lakes is generally much 

lower now than it was historically; the sparse and fragmented growth of charophytes 

found in many broads today is far removed from the luxuriant charophyte lawns 

referred to in early accounts (Gurney, 1904; Pallis, 1911). Additionally, it cannot be 

assumed that probability of detection is related to abundance, since earlier surveys often 

specifically sought out rare species, which were likely to have limited cover (Bennett, 

1909).  

 

In global terms, based on the reconstructions there was a slight decrease in total number 

of species recorded in the broads and meres over the time period of the dataset (Figure 

3.6). This probably underestimates the true extent of species loss, as some species 

present were probably not recorded in the earlier time periods. Thus, the apparent 

stability or increase in groups 2 and 3 may be illusory rather than real. There is an 

unequivocal loss of group 1 species, with periods of rapid decline in this group before 

1910, and between 1940 and 1950, and 1980 and 1990 in the broads, and before 1850 

and between 1890 and 1920 in the meres (Figure 3.6). This indicates early (pre-1910) 

eutrophication impacts in both sets of lakes, associated with a growth in rural 

populations, increased agricultural mechanisation, land drainage, increased fertiliser use 

and stocking densities (Rowley, 1972; Reynolds, 1979; George, 1992; Williamson, 

1997).  
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3.5.2 Characterising changed species 

 

Change index values derived separately for species common to both broads and meres 

were significantly correlated (p < 0.0001). This suggests that the index is not highly 

specific to an individual group of lakes but rather may be generally applicable to 

lowland base-rich lakes in Britain. It also suggests that similar species have declined or 

remained widespread in both lake districts, pointing towards common drivers of 

change. Species associated with lower tolerance to eutrophication, such as Littorella 

uniflora and Potamogeton alpinus in the broads, and Myriophyllum alterniflorum and 

Apium inundatum in the meres, were found to have below average index scores. 

Historical studies in other European countries replicate these findings (Rintanen, 1996; 

Sand-Jensen et al., 2008). In contrast, many of the species with above average scores, 

such as Myriophyllum spicatum, Zannichellia palustris and Nuphar lutea, are generally 

quite tolerant of nutrient-rich situations (Preston and Croft, 1997). Observation of the 

relationship between Lake Macrophyte Nutrient Index (LMNI) scores and the change 

index confirms that species with high change index scores consistently have high 

nutrient affinity. This is not surprising, since cultural eutrophication, driven by 

agricultural intensification, has been a major influence on both groups of lakes (George, 

1992; Fisher et al., 2009). However, it is notable, especially in the case of the broads, 

that low change index values are not at all confined to those species normally 

associated with less fertile conditions, thus implying that species tolerating more 

nutrient-rich conditions have also declined significantly (e.g. Hydrocharis morsus-

ranae, Stratiotes aloides). It is likely that some of the lakes considered here were 
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already quite enriched by the time of the earliest records, meaning that some species 

present historically had relatively high LMNI scores, e.g. Sagittaria sagittifolia and 

Potamogeton lucens in the broads, and Myriophyllum verticillatum and Butomus 

umbellatus in the meres. Nevertheless, parish records indicate that land cover and rural 

population densities have changed sufficiently over the last century for nutrient loading 

to most of the lakes in this study to have increased significantly on average (Sinker et 

al., 1985; George, 1992; Williamson, 1997; Greenwood, 1999; Fisher et al., 2009). 

Subsequent losses of some species may therefore be due more to other factors only 

indirectly linked to eutrophication, such as the changes in physical habitat structure that 

are likely to have accompanied reedswamp dieback in the broads (Boorman & Fuller, 

1981), expansion of invasive species (Ellis, 1963), or increased densities of 

benthivorous cyprinid fish (Timms and Moss, 1984; Scheffer et al., 2003). In exploring 

the underlying basis of a general change index constructed for British vascular plants 

Preston et al. (2002) also noted that many rather nutrient tolerant species had declined 

significantly alongside more nutrient sensitive ones. 

 

3.5.3 Application of the index 

 

The index has the potential to classify lakes into those least changed and those most 

impacted, based on current macrophyte assemblages, as illustrated in Figure 3.8. Those 

lakes which are thought to be in a better ecological condition generally have relatively 

low average index scores, such as the Martham Broads and Whitemere, whereas those 

known to have impacted macrophyte communities, such as Ranworth Broad and 
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Rostherne Mere, have high scores. Whilst this has the potential to provide a very useful 

tool for lake classification, it must be remembered that species composition is only one 

aspect of the vegetation community, and that the average lake index in its simplest form 

does not say anything about species richness or abundance of species. For example, 

Horsey Mere has the lowest index score of all the broads, but is known to have a low 

abundance of a few species, reflecting its often turbid state, so is not generally thought 

of as being in good ecological condition. It still has a low average score, however, as 

those species which it does possess, such as Chara baltica and Potamogeton x 

salicifolius have low index scores. The low diversity of the lake also means that it has 

few of the higher scoring species which are ubiquitous in many of the other lakes, such 

as Nuphar lutea and Ceratophyllum demersum. It is important to note that the use of a 

change index in this way cannot measure how much any individual site has changed 

over time, since the baseline for each site is generally unknown (due to the 

incompleteness of the historical record) or it would naturally have varied between sites 

within a region due to site-specific factors. The average change index therefore 

effectively reflects the relative importance at a site of species that have declined across 

a complex of lakes as a whole. 

 

Visualisation, based on physical examples, is an important part of developing an 

appropriate guiding image for restoration (Palmer et al., 2005). Ecologists have 

struggled to identify the biology that equates with reference conditions when most or all 

examples of a habitat type are impacted. Hence the robust use of historical recording 

data offers significant potential in this area. It may also serve to provide targets for, or 
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indicators of successful restoration. Diagnosing the full causes of historic changes in 

lake vegetation will prove challenging in systems exposed to multiple stressors. The 

use of a change index to identify declining species, when allied to knowledge of 

species‟ ecological requirements, could aid interpretation of macrophyte community 

change, without making assumptions which cannot be supported by a dataset 

characterised by gaps and inconsistent recording methods. 
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4.1 Abstract 

 

Lake macrophytes are often surveyed in order to determine the ecological status of 

lakes, the distribution of individual species over environmental gradients commonly 

being used to infer general or specific causes of degradation. This ecological information 

can also shed light on past environmental conditions in those lakes for which historical 

records are available. This study analyses the underlying ecological basis for an index of 

macrophyte change derived from historical records for two lake districts in England, the 

Norfolk Broads and West Midland Meres. The change index, based on the modern day 

survival of each species in individual lakes in which they were historically recorded, 

provides a measure of the extent of species decline within each lake district over the last 

100-150 years. Functional groups determined from morphological and regenerative traits 

displayed significant differences in change index values in both groups of lakes, but 

declining taxa occurred across a wide range of plant growth forms. The change index 

was analysed in light of published information on plant ecological associations in order 

to identify the main factors driving long term compositional change. Non-hierarchical 

clustering of species based on their ecological traits resulted in groups with distinct 

change index values, indicating that changes in the status of species could be partly 

explained by their ecological preferences. Of these traits, trophic preference was 

consistently the most important, with species of less fertile habitats consistently 

experiencing the greatest declines. However, some characteristically eutrophic species 

have also declined significantly. In these cases increasing loss of shallow water, low 

energy habitats, or fluctuating water levels, appear to have been contributory factors. 
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4.2 Introduction 

 

Macrophytes play an important part in the functioning of lakes, particularly shallow 

lakes or those with relatively small circumference to area ratios where the colonisation 

potential and thus influence of aquatic plants is likely to be greatest (Jeppesen et al., 

1998; Moss, 1998). Different attributes of macrophytes, such as richness, cover, general 

community composition, or the presence or absence of indicator species can therefore 

give information on the ecological quality of a lake (Seddon, 1972; Palmer et al., 1992; 

Moss et al., 2003; Duigan et al., 2007; Willby et al., 2009). Macrophytes are one of 

several biological quality elements that must be considered in the ecological 

classification of lakes, required under the WFD, as well as being a feature of interest in 

many designations of freshwater sites as Special Areas of Conservation, under the EU 

Habitats Directive. To this end, extensive sampling programs have been initiated to 

gather contemporary data on species distributions and lake attributes in order to type 

lakes and to devise systems to classify lake status or conservation value, based on their 

macrophyte assemblages (Moss et al., 2003; Duigan et al., 2007, 2008; Penning et al., 

2008a; Penning et al., 2008b; Willby et al., 2009). Although macrophyte assemblages 

can vary systematically along recognised pressure gradients, such as nutrient 

concentrations (Penning et al., 2008b; Willby et al., 2009), knowledge of the trophic 

status of a lake does not necessarily equate to its ecological status as defined in the 

WFD. Thus, the Directive requires that status is evaluated by assessing the amount to 

which the biology deviates from that expected under “undisturbed conditions” 

(European Union, 2000), regardless of the cause of that deviation. Assessments of biotic 
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integrity undertaken with respect to the US Clean Water Act follow a similar rationale 

(Patrick and Palavage, 1994). 

 

The question of what constitutes a macrophyte community characteristic of “undisturbed 

conditions” is pivotal in terms of assessing ecological status, yet such conditions may 

prove elusive, especially so in the case of highly impacted lowland lakes for which un-

impacted modern day analogues are scarce or lacking on a European scale (Bennion and 

Batterbee, 2007). Historical macrophyte records collected from lakes >100 years ago 

could thus offer an important insight into the composition of past macrophyte 

communities, complementing information that can be extracted from more conventional 

palaeoecological sources, such as pollen or macrofossils (Davidson et al., 2005; Ayres et 

al., 2008). By comparing the past and present distributions of a species in particular 

lakes, a change index can be assigned to each species (Chapter 3), which then can be 

interpreted in relation to species ecological traits. Other studies investigating change in 

the British Flora have also attempted to identify drivers of change by correlating change 

indices against various known attributes of species (e.g. Preston et al., 2002; Telfer et 

al., 2002; Braithwaite et al., 2006). For example, Braithwaite et al. (2006) used BSBI 

repeat survey data at a tetrad scale (2 km x 2 km) to calculate a “change factor” for each 

species. They then divided the flora into “Broad Habitat” types (e.g. wetland, aquatic 

habitats, calcareous grassland, etc) and took the mean change factor of species within 

each group and correlated this to various known ecological attributes of the species, such 

as Ellenberg values for light (L), acidity (R) and fertility (N). They also used one-way 

analysis of variance to look for differences in the change factor across various 
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categorical variables, such as whether species are native to Britain, perennation habit 

and level of north-south distribution. The disadvantages of this coarse-grained approach 

may be more pronounced in the case of aquatic habitats than other Broad Habitats as 

changes within waterbodies could be masked by changes in the number and nature of 

waterbodies in the countryside as a whole. 

 

This study explores the underlying ecological basis of an index based on the change in 

distribution of macrophytes in two sets of lowland lakes in England, over the last 150 

years (Chapter 3). By analysing the ecological profiles of those species whose 

distributions have shown the greatest change within these two lake districts this study 

attempts to identify the main environmental drivers of macrophyte change in shallow 

lowland lakes. 

 

4.3 Methods 

 

4.3.1 Geographic area 

 

This study focuses on two groups of lowland, predominantly base-rich lakes in England: 

the Norfolk Broads and the West Midland Meres. The broads are a series of flooded 

medieval peat workings associated with a number of rivers near the East Anglian coast. 

They range in area (from 1 ha to 140 ha) and are very alkaline (2-4 meq/L) and shallow 

(mostly <2 m deep) (George, 1992; Moss, 2001). The meres of the English West 
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Midlands are a series of water-filled hollows in the glacial drift, grouped in local 

clusters. Alkalinity may be as low as 0.05 meq/L but most sites are base-rich (>2 

meq/L). The meres vary in depth (from less than 1 m to ~50 m maximum depth) and 

area (from < 1 ha to 75 ha) and are largely ground water fed (Reynolds, 1979). Both 

groups of lakes have been subjected to eutrophication over the last 150 years and, given 

their lowland situation, are surrounded by intensive agriculture and are near to centres of 

human population. 

 

4.3.2 The species change index 

 

A change index was derived using a dataset compiled of macrophyte records collected 

from ca. 90 lakes in the Norfolk Broads and West Midland Meres spanning a period of 

over 200 years. The dataset contained historical plant records collected from a variety of 

sources, including herbarium specimens, published records, county floras and 

naturalists‟ notes, as well as records from modern surveys and sampling regimes. For 

more detail on the sources or the issues encountered in collecting and using these data 

see Chapter 2 and Chapter 3. 

 

The change index was based on species persistence over the last 200 years, within 

individual lakes. Species persistence, measured as the proportion of those lakes which 

historically supported a species, and which still contained that species in the modern 

period, was found to have a linear relationship with current day levels of occupancy 

across all lakes within a lake district (i.e. the number of lakes occupied as a proportion 
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of all lakes surveyed). This relationship was used to derive change index scores for 

species with limited historical data. A separate index was calculated for the broads and 

meres, though these were subsequently found to be highly correlated. Low index values 

represent species which have declined (i.e. have been lost from a high proportion of the 

lakes in which they occurred historically) and have restricted modern distributions (i.e. 

occur in a small proportion of the available lake resource), whereas high index values 

are an indication of species persistence and large modern distribution. For more details 

on the calculation of the index see Chapter 3. 

 

4.3.3 Species selection 

 

For the purposes of this study, macrophytes were broadly defined as having an Ellenberg 

F (moisture) value of ten or above (Ellenberg et al., 1991; Hill et al., 2004). In the 

broads dataset, with two exceptions (Littorella uniflora and Hippuris vulgaris) species 

with an Ellenberg F value of ten were ignored since contemporary surveys do not 

systematically record marginal vegetation (Jackson, 1983). In the meres dataset, four 

additional species, Limosella aquatica and Lythrum portula (with Ellenberg F values of 

8), and Ranunculus hederaceus and Ranunculus omiophyllus (with Ellenberg F values of 

9) were also included, as they were considered to have a sufficiently strongly aquatic 

habit to be treated as macrophytes for the purposes of this study. The Ellenberg 

classification deals only with vascular plants. Since charophytes are well represented in 

the historical record for these lakes, and are an important component of the aquatic 

vegetation of base-rich lakes, they were also included in this study. Aquatic bryophytes, 



 94 

with the exception of the floating liverwort Riccia fluitans, were excluded as they were 

virtually absent from the historical record. Where there were uncertainties over 

nomenclature or identification, or an aggregate name was used widely in some sources 

of records, species were merged into groups, e.g. all the Callitriche were merged under 

“Callitriche spp.”, Potamogeton berchtoldii and pusillus were merged under 

“Potamogeton pusillus”, and all the Ranunculaceae of the subgenus Batrachium were 

merged under “Ranunculus subgenus Batrachium” with the exception of Ranunculus 

circinatus which was considered sufficiently distinctive for identifications to be 

generally reliable. All other nomenclature conformed to Stace (1997) and Bryant et al 

(2002). The list of species analysed contained 118 species in total across the broads and 

meres: 61 in the broads and 100 in the meres (Table 4.1). 



 K -mean group   Change index  Ellenberg  K -mean group   Change index  Ellenberg

Broads Meres Broads Meres R S LMNI FG Broads Meres Broads Meres R S LMNI FG

Acorus calamus 6 -0.946 7 0 8.157 21 Nitella flexilis  agg. 4 2 -0.432 -1.156 4 0 5.604 2

Alisma plantago-aquatica 4 1.550 7 0 7.255 13 Nitella mucronata 4 -0.736 6 0 8.421 2

Apium inundatum 1 -2.696 6 0 5.693 22 Nitellopsis obtusa 4 -0.736 8 1 7.617 2

Apium nodiflorum 4 0.665 7 0 7.702 22 Nuphar lutea 4 2 1.011 1.741 7 1 6.924 12

Azolla filiculoides 2 -2.802 8 0 9.278 1 Nuphar pumila 5 -1.840 6 0 5.327 12

Baldellia ranunculoides 1 -2.696 6 0 5.578 13 Nuphar x spenneriana 2 -1.156 6 0 5.610 12

Berula erecta 4 0.316 7 0 7.482 22 Nymphaea alba 4 2 0.493 0.869 6 0 5.540 12

Butomus umbellatus 2 6 -2.802 -1.840 7 0 8.457 13 Oenanthe aquatica 4 0.086 7 0 8.306 22

Callitriche sp. 1 4 0.128 1.847 6 0 6.899 Oenanthe fluviatilis 2 -2.802 8 0 7.665 22

Carex elata 3 1.151 7 0 5.483 19 Persicaria amphibia 6 1.463 6 0 7.254 10

Carex lasiocarpa 1 -1.840 6 0 4.874 19 Phragmites australis 6 1.463 7 2 7.192 21

Carex limosa 3 -2.696 4 0 19 Pilularia globulifera 3 -2.696 4 0 5.179 4

Carex rostrata 1 0.316 4 0 4.459 19 Potamogeton acutifolius 4 -1.887 7 0 7.485 14

Carex vesicaria 4 0.316 5 0 5.021 19 Potamogeton alpinus 1 2 -2.802 -1.840 6 1 5.788 16

Ceratophyllum demersum 4 2 1.991 -0.176 7 1 8.666 5 Potamogeton coloratus 1 1 -1.887 -2.696 8 0 6.697 16

Chara aspera 4 2 -0.924 -2.696 7 1 7.098 2 Potamogeton compressus 4 -2.802 7 0 7.998 14

Chara baltica 4 -0.924 8 2 8.599 2 Potamogeton crispus 2 6 0.665 0.316 7 1 7.644 17

Chara canescens 1 -2.802 8 2 8.133 2 Potamogeton friesii 4 2 -0.075 -2.696 7 0 7.643 14

Chara connivens 4 -0.432 8 1 7.924 2 Potamogeton gramineus 1 -2.696 6 0 5.512 16

Chara contraria  var. contraria 4 2 -0.736 -1.840 8 0 7.469 2 Potamogeton lucens 4 2 -1.887 -1.840 6 0 7.017 17

Chara curta 4 -1.449 8 1 6.516 2 Potamogeton natans 1 2 -1.449 -0.626 6 0 5.158 16

Chara globularis 4 2 0.579 -0.946 7 1 7.342 2 Potamogeton obtusifolius 4 2 -0.924 -0.626 6 0 6.718 14

Chara hispida 3 -0.304 7 1 6.867 2 Potamogeton pectinatus 2 6 0.837 0.086 7 2 8.247 15

Chara intermedia 4 -0.736 8 1 7.998 2 Potamogeton perfoliatus 4 2 -0.736 -1.432 6 1 5.825 17

Chara rudis 5 -2.696 8 0 6.935 2 Potamogeton polygonifolius 1 -1.432 4 0 3.497 16

Chara virgata 4 2 -1.152 -0.946 5 0 5.550 2 Potamogeton praelongus 4 2 -2.802 -2.696 7 1 5.765 16

Chara vulgaris 4 2 0.405 -0.084 7 0 7.194 2 Potamogeton pusillus/berchtoldii 4 2 0.837 0.597 7 1 7.608 14

Crassula helmsii 1 -1.432 6 0 6.176 5 Potamogeton trichoides 2 -1.887 7 0 8.389 14

Damasonium alisma 4 -2.696 5 0 4.639 13 Potamogeton x angustifolius 2 -2.696 6 0 5.693 16

Elatine hexandra 3 -0.946 5 0 5.409 11 Potamogeton x cooperi 2 -2.696 7 1 5.669 17

Eleocharis acicularis 4 -0.773 7 1 6.749 4 Potamogeton x salicifolius 4 -1.449 7 0 6.886 17

Eleocharis multicaulis 3 -2.696 4 0 1.925 4 Potentilla palustris 3 0.597 5 0 4.591 10

Eleocharis palustris 4 1.008 6 1 5.484 20 Ranunculus circinatus 3 5 -0.185 -0.176 7 0 8.645 5

Eleogiton fluitans 1 -1.840 4 0 3.452 15 Ranunculus lingua 4 -0.084 6 0 7.613 10

Elodea canadensis 4 2 1.288 0.938 7 0 7.139 5 Ranunculus  subgenus Batrachium 1 6 -1.887 0.242 6 0 6.862

Elodea nuttallii 4 2 0.315 -1.156 7 1 6.923 5 Riccia fluitans 5 -2.696 8 0 6.632 1

Equisetum fluviatile 1 0.801 6 0 5.153 20 Rorippa microphylla 6 -0.946 7 0 11

Glyceria fluitans 4 0.801 6 0 6.170 13 Rorippa nasturtium-aquaticum 6 1.008 7 0 7.583 11

Glyceria maxima 6 -0.626 7 0 8.242 21 Rumex hydrolapathum 4 0.242 7 0 7.705 10

Glyceria x pedicellata 4 -1.432 7 1 6.880 13 Sagittaria sagittifolia 2 -1.887 7 0 7.877 12

Hippuris vulgaris 1 6 -0.575 -1.840 6 1 6.405 7 Scheuchzeria palustris 3 -2.696 3 0 20

Hottonia palustris 3 5 -1.887 -0.380 7 0 7.327 7 Schoenoplectus lacustris 1 2 -0.924 0.388 7 0 7.592 20

Hydrocharis morsus-ranae 4 2 -0.575 -2.696 7 0 8.261 8 Schoenoplectus tabernaemontani 4 -0.380 8 3 20

Hypericum elodes 3 -1.840 3 0 4.950 11 Sparganium emersum 2 6 -0.575 -0.773 7 0 6.588 13

Isoetes lacustris 1 -2.696 4 0 3.090 4 Sparganium erectum 6 1.847 7 0 7.536 21

Juncus bulbosus 1 0.086 4 0 3.717 4 Sparganium natans 1 -2.696 6 0 4.841 13

Lemna gibba 2 6 -1.887 -1.432 7 1 9.240 1 Spirodela polyrhiza 3 5 -1.887 -0.946 7 1 8.791 1

Lemna minor 2 6 1.387 2.093 7 0 7.579 1 Stratiotes aloides 3 5 -1.449 -2.696 7 1 8.506 8

Lemna minuta 2 6 -0.575 -0.626 7 0 8.640 1 Subularia aquatica 1 -2.696 5 0 2.932 4

Lemna trisulca 2 6 0.751 0.801 7 0 7.815 1 Typha angustifolia 6 0.869 7 1 7.124 21

Limosella aquatica 3 -2.696 5 0 6.494 11 Typha latifolia 6 1.463 7 0 7.827 21

Littorella uniflora 1 1 -2.802 -0.946 5 0 4.701 4 Utricularia australis 3 -2.802 5 0 4.647 9

Lobelia dortmanna 1 -2.696 5 0 2.460 4 Utricularia intermedia 3 -2.802 4 0 2.741 9

Lythrum portula 3 -2.696 5 0 5.562 11 Utricularia minor 3 3 -2.802 -2.696 4 0 2.972 9

Menyanthes trifoliata 3 -0.176 4 0 4.764 10 Utricularia vulgaris 3 5 -1.152 -2.696 6 0 5.386 9

Myriophyllum alterniflorum 1 -2.696 5 0 4.537 7 Veronica anagallis-aquatica 4 -1.156 7 0 7.598 11

Myriophyllum spicatum 2 6 -0.575 -0.380 7 0 7.845 7 Veronica beccabunga 4 1.463 6 0 6.981 11

Myriophyllum verticillatum 2 6 -0.736 -2.696 7 0 8.667 7 Veronica catenata 4 -0.626 7 0 8.067 11

Najas marina 4 0.579 9 0 8.835 14 Zannichellia palustris 2 6 0.665 0.733 8 2 8.492 15

Table 4.1. Macrophyte species included in the analysis showing: k - mean group membership in both broads and 

meres, change index values derived from both the broad and meres historical data, Ellenberg R (acidity) and 

Ellenberg S (salinity) values, Lake Macrophyte Nutrient Index (LMNI) values, and functional group membership 

(FG) as detailed in Willby et al. 2000.
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4.3.4 Analysis 

 

A matrix of the ecological profiles of the species was compiled from the literature (e.g. 

Sledge, 1949; Spence and Chrystal, 1970; Haslam et al., 1975; Moore, 1986; Clapham 

et al., 1987; Grime et al., 1988; Hultgren, 1989; Blindow, 1992; Stewart and Church, 

1992; Fitter and Peat 1994; Preston, 1995; Vandenbrink et al., 1995; Hroudova et al., 

1996; Preston and Croft, 1997; Stace, 1997; Luo et al., 2008), as well as personal 

observation of species at these and other lake sites in the UK. These included 17 

attributes distributed across 4 multistate-ordered habitat variables: Water depth, water 

level fluctuation, water flow and trophic status. These variables were chosen because 

they are relatively well covered in the literature, and were expected to be factors which 

have changed in the broads and meres over the last 100 years (George, 1992; English 

Nature, 1998; Fisher et al., 2009). Categorical scores were assigned to each species for 

for each habitat attribute, with „0‟ indicating no recorded association, „1‟ indicating a 

weak or variably reported association, and „2‟ indicating a strong association of that 

species with that habitat attribute. In addition to the categorical variables, two ordinal 

and one continuous variable describing species-environment associations were also 

included. These were the Ellenberg‟s indicator values for acidity (R) and salinity (S), 

adjusted for the British flora (Ellenberg et al., 1991; Hill et al., 1999; Hill et al., 2004) 

and the Lake Macrophyte Nutrient Index (LMNI), an algorithmic adjustment of 

Ellenberg‟s N scores specifically for aquatic macrophytes (Willby et al., 2009), 

undertaken following the approach described by Hill et al. (1999). Since most vascular 

plant hybrids, plus all charophytes, lack Ellenberg scores suitable values were derived 
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for these taxa based on published accounts (e.g. Stewart & Church, 1992, Preston, 

1995; Preston & Croft, 1997). The 22 habitat characteristics are given in Table 4.2.  

 

Table 4.2. The 22 habitat characteristics used in correlations, including 17 which are 

subdivisions of 4 multistate habitat variables which were used in the k-means cluster 

analysis. 

 

Multistate variables Characteristics 

Water depth <0.5 m 

 0.5-2 m 

 2-4 m 

 >4 m 

  

Water level stability Permanent/stable 

 Permanent/fluctuating 

 Intermittent exposure 

 Prolonged exposure 

  

Water speed Sluggish/standing 

 Slow 

 Moderate 

 Fast 

  

Trophic status of water column Oligotrophic 

 Oligo-mesotrophic 

 Meso-eutrophic 

 Eutrophic 

 Hypereutrophic 

  

Other variables: Lake macrophyte nutrient index (LMNI) 

 Ellenberg R (acidity) 

 
Ellenberg S (salinity) 

 

Species were partitioned into groups sharing similar habitat characteristics by non-

hierarchical k-means cluster analysis based on the 4 multistate habitat variables, using 

the algorithm of Hartigan and Wong (1979) and the statistical software R (2008). The 

habitat variables were first standardised by making the sum of each of the 4 multistate 

variables for each species equal to one. Species were chosen at random to act as group 
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centroids. This „random starts‟ procedure was carried out 100 times and the solution 

which minimised the total error sum of squares, i.e. the distance between cluster 

members and the cluster centroid, was chosen (Legendre and Legendre, 1998). The 

number of groupings was determined by plotting the within groups sum of squares 

against the number of clusters extracted (Everitt and Hothorn, 2006). By doing this, the 

number of groups could be chosen which maximised the within group sum of squares, 

whilst retaining enough species in each group for meaningful analysis. Cluster analysis 

was performed separately for the broads and meres as they contained different species 

and different numbers of species. The broads species were clustered into four groups, 

and the meres, which contained more species, into six groups. 

 

The results of k-means cluster analysis were visualised on a biplot after principal 

component analysis (PCA) of the species environmental preferences used in the cluster 

analysis (Fig. 4.1).  

 

In order to test whether the species change index was related to habitat characteristics, 

species were divided into their k-mean groups. Kruskal-Wallis tests were carried out on 

both broads and meres index values, to test for differences between the cluster groups, 

using the statistical software package MINITAB 14. Groups were then tested against 

each other using the Mann–Whitney test to check for equal probability distributions 

(i.e. that the two samples are drawn from a single population), in order to ascertain 

which groups differed most in relation to the change index. The frequency and 
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distribution of change index values within each of the k-mean groups (for both the 

broads and meres separately) were visualised using histogram plots. 

 

Species were also ordered into functional groups composed of species sharing 

homogenous collections of attributes for a range of morphological and regenerative 

traits (Willby et al., 2000). These functional groups are detailed in Table 4.3. The 

variation in within-group relative to between-group change index values was then 

tested for each group of lakes by ANOVA. Given that there was no significant 

heterogeneity of variances in change index values between these groups, (Bartlett‟s test, 

p=0.459 and p=0.92 for the broads and meres respectively), a one-way ANOVA was 

carried out on both broads and meres index values. Since Willby et al., (2000) did not 

consider charophytes and some emergent species in their analysis these species were 

assigned to new groups based on growth form characteristics, as indicated in Table 4.1 

and Table 4.3. 

 

The relationship between the change index and the habitat preferences in Table 4.2 was 

further explored using Spearman‟s rank correlations. As the relationship between the 

change index and trophic niche was found previously to break down for those species 

with higher LMNI values (Chapter 3), the correlations were also performed 

independently on an exclusive group of more eutrophic species (LMNI >6) to 

determine if different trends in relation to habitat characteristics existed within this 

group
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Table 4.3. Functional groups based on morphological features and habitat use (see 

Willby et al., 2000). 
 

Functional 

group code 
Name Growth form and morphology 

1 lemnids and ricielids Very small, free floating plants 

2 charophytes Small-medium, predominantly submerged perennials or annuals with 

simple branched structure of capillary leaves, high reproductive 

output 

4 isoetids Small-medium sized, submerged or amphibious, rosette forming 

plants with stiff, tubular evergreen leaves 

5 elodeids and ceratophyllids Medium-large, submerged, canopy forming, multi-branched 

perennials with densely arranged small laminar or rigid dissected 

leaves. Mainly vegetative 

7 myriophyllids and herbids Medium-large, submerged or partially emergent, rhizomatous 

perennials with flexible, dissected-leaved submerged foliage 

8 hydrocharids and stratiotids Medium-large, free-floating rosettes of mainly floating or aerial 

leaves linked by stolons 

9 utricularids Small-medium, submerged, loosely or unanchored perennial with 

multiple branches and small, dense, flaccid, capillary-leaves. 

Conspicuous aerial flowers 

10 magno and parvonymphaeids Large, mostly emergent or floating leaved, stand-forming, 

stoloniferous or rhizomatous perennials with large, insect-pollinated 

aerial flowers 

11 herbids and elodeids Small-leaved, amphibious or submerged, annual or perennial, 

prostrate plants 

12 magnonymphaeids and 

sagittarids 

Large-very large, unbranched, rhizomatous perennials with large 

expanded, submerged and floating leaves 

13 vallisnerids and sagittarids Medium-sized, perennial, basal rosette of submerged elongate leaves 

with expanded or strap-shaped floating and/or emergent foliage 

14 parvopotamids Small-medium, submerged, fine, linear leaved pondweeds with 

multiple branched foliage 

15 magno- and parvopotamids Submerged, medium-sized, rhizomatous perennials with fine or 

tubular leaves 

16 parvonymphaeids and 

magnopotamids 

Medium-large, branched, submerged rhizomatous perennials with 

expanded medium submerged and floating leaves 

17 magnopotamids Medium-large, branched, submerged rhizomatous perennials with 

expanded medium-large submerged laminar leaves. 

19 carices medium sized, linear leaved, spreading plants with rosette growth 

form 

20 rushes and horsetails medium sized, linear-or tubular-leaved, erect, rhizomatous emergent 

plants 

21 large, emergent monocots large-very large, rhizomatous emergent plants 

22 aquatic/semi aquatic 

umbellifers 

facultative submerged plants with capillary or dissected leaves, and 

expanded emergent leaves 
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Figure 4.1 K-mean cluster analysis of the species in the a) broads and b) meres, based 

on a set of their habitat associations (see Table 4.2). Cluster centers are indicated with a 

cross. Species associated with each k-mean numbered group are detailed in Table 4.1. 
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4.4 Results 

 

The k-means clustering split the broads species into four groups with 9, 9, 15 and 28 

members respectively. The meres species were split into six groups of 8, 12, 17, 17, 22 

and 24 members respectively. The group memberships of the species are given in Table 

4.1. The results of the k-means cluster analysis are also shown on a biplot of the 

ecological trait data, using principal components analysis (PCA) (Figure 4.1). The 

grouping pattern and dispersion differs slightly between the broads and meres on 

account of the differing numbers of species being clustered, and the different number of 

groups they were being clustered into. Despite this, groups 4, 3 and 2 in the broads held 

many of the same species as groups 2, 5 and 6 in the meres (Table 4.1). 

 

The mean ranks of the change index values were significantly different among the k-

mean cluster groups in the broads (Kruskal–Wallis H = 8.95, 3 d.f., P = 0.03) and 

meres (Kruskal–Wallis H=27.78, 5 d.f., P = 0.000). This indicates that the change 

index, and thus the change in macrophyte species distribution in the broads and meres 

over the last 100 years, is influenced by one or more of the four environmental 

variables used in the classification. 

 

Mann-Whitney U test probabilities are displayed in Table 4.4. Figure 4.2 and Figure 

4.3 show the difference in change index between the k-mean groups. In the broads, 

significant differences in probability distributions of change index values were found 

between group 4, and groups 1 and 3 (Table 4.4 and  
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Figure 4.2). Groups 1 and 3 had very little difference in probability distribution of the 

change index, as did groups 2 and 4 (Table 4.4 and Figure 4.2). In the meres, the groups 

with the most significantly different probability distributions of the change index were 

groups 4 and 6 in relation to the other groups, with groups 4 and 6 also not significantly 

different from one another (Table 4.4 and Figure 4.3). None of the other groups had 

significantly different change index probability distributions, although very low change 

index values were most prevalent in groups 1 and 3 (Figure 4.3). 

 

Table 4.4. Mann-Whitney U test comparing the probability distribution of the species 

change index between the k-mean cluster groups. Numbers are P values, with * 

representing significance at the 95% level. 

 

 

 Broads  

Group 

No. 1 2 3 4 5 

M
er

es
 

1  0.1641 1.0000 0.0149*  

2 0.0589  0.1939 0.7013  

3 1.0000 0.1686  0.0142*  

4 0.0004* 0.0100* 0.0048*   

5 0.9498 0.2234 1.0000 0.0034*  

6 0.0002* 0.0108* 0.0033* 0.8984 0.0055* 

 

There was a highly significant difference in the mean index values for the functional 

groups of Willby et al. (2000) for both the broads and meres (ANOVA p=0.007 and 

p=0.006 respectively) (Figure 4.4), suggesting that the index values of species relate 

strongly to their functional and morphological characteristics. 

 

The results of Spearman‟s correlation between the change index in the broads and 

meres and the ecological characteristics of species (Table 4.2) are presented in Table 

4.5. In both groups of lakes, significant positive correlations were found between the 
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species change index and association with hypertrophic conditions, and significant 

negative correlations were found with association with oligotrophic and oligo-

mesotrophic conditions. Additionally, in the broads, significant positive correlations 

were found between the species change index and species associations with 2-4 m 

depth water and permanent/stable water level, and significant negative correlations 

were found with associations with water depth less than 0.5 m and intermittent 

exposure. In the meres, significant positive correlations were also found between the 

change index and environmental preferences towards sluggish/standing water, 

eutrophic conditions, LMNI, and Ellenberg‟s indicator values for acidity (R). 

 

Table 4.5. The results of Spearman‟s correlation between the species change index in 

each lake district and species environmental preferences. 

 

  All species LMNI>6 

Change index: Broads Meres Broads Meres 

<0.5 m -0.28* 0.19 -0.29* 0.13 

0.5-2 m -0.08 -0.11 -0.13 0.00 

2-4 m 0.3* -0.15 0.34* -0.14 

>4 m 0.12 -0.15 0.17 -0.13 

Permanent/stable 0.29* -0.08 0.22 -0.20 

Permanent/fluctuating 0.13 0.15 0.06 0.14 

Intermittent exposure -0.38** 0.08 -0.31* 0.15 

Prolonged exposure -0.19 -0.10 -0.18 0.02 

Sluggish/standing -0.11 -0.26* -0.08 -0.41** 

Slow 0.12 0.16 0.02 0.24 

Moderate 0.04 0.17 0.11 0.36** 

Fast 0.01 0.15 -0.02 0.14 

Oligotrophic -0.29* -0.36*** 0.00 -0.16 

Oligo-mesotrophic -0.31* -0.35*** -0.07 -0.08 

Meso-eutrophic -0.06 -0.05 -0.22 -0.06 

Eutrophic 0.10 0.25* -0.24 -0.15 

Hypereutrophic 0.42** 0.48*** 0.32* 0.32* 

LMNI 0.18 0.32** -0.09 0.01 

Ellenberg R (acidity) 0.15 0.27* -0.09 -0.05 

Ellenberg S (salinity) 0.20 0.13 0.22 0.07 

* p<0.05, ** p<0.005, *** p<0.0005 
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For those species associated with more eutrophic conditions (species with LMNI>6), 

there was still a significant positive correlation between the change index and 

association with hypertrophic conditions in both the broads and meres. In the broads, 

there was still a positive correlation with the 2-4 m depth preference. Significant 

negative correlations were still found with species preferences of water depth less than 

0.5 m and intermittent exposure. In the meres, species with LMNI>6 also retained a 

negative correlation between the change index and association with sluggish/standing 

water. The only additional significant correlation here was a positive one with 

association with moderate water velocity. 
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Figure 4.2 Histograms of the change index values found in each of the 4 broads k-mean 

cluster groups. 
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Figure 4.3 Histograms of the change index values found in each of the 6 meres k-mean 

cluster groups. 
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Figure 4.4 A boxplot of change index values for species within each functional group 

for both data sets, ordered by average change index value of species in each group. 
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4.5 Discussion 

 

The lake district-specific species change indices used in this study are based on the 

survival of species in the lakes in which they were found ~100 years ago, ascertained 

using historical records (Chapter 3). By analysing these species change indices in the 

broads and meres this study hoped to link ecological attributes of these species to their 

level of decline or their persistence in these lakes over the last 200 years. Not only 

would this enable objective assessment of the main pressures on macrophyte species in 

these lake districts, but it would also help interpret the ecological context of an index 

based on historic records. This in turn would assess the effectiveness of the change 

index in gauging the ecological quality of lakes based on contemporary macrophyte 

records. 

 

K-mean clustering based on species environmental preferences (water depth, water 

level stability, water speed and trophic status) identified distinct groups of species 

which varied significantly in their change index values. In the broads, group 4 (Table 

4.1), which contained species such as Ceratophyllum demersum, Elodea canadensis, 

Najas marina and Nuphar lutea, showed significantly higher change index values, and 

hence less decline, than groups 1 and 3, (which included species such as Littorella 

uniflora, Potamogeton alpinus, Schoenoplectus lacustris, Hottonia palustris, Stratiotes 

aloides and Utricularia vulgaris), indicating that the four environmental variables; 

water depth, water level fluctuation, water movement and trophic state, together were 

important in influencing the amount of species change. In the meres, groups 4 and 6, 
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which included high index score species such as Apium nodiflorum, Glyceria maxima, 

Lemna minor, Myriophyllum spicatum, Typha latifolia and Zannichellia pulustris, were 

the groups which had significantly higher change index values than groups 1, 2 and 3, 

with groups 1 and 3 being the most different. Groups 1 and 3 in the meres included 

those species with the lowest change index, and hence those which have suffered the 

greatest decline, such as Baldellia ranunculoides, Myriophyllum alterniflorum, 

Potamogeton coloratus and Elatine hexandra. 

 

The index values were also strongly related to an established functional grouping based 

on morphological characteristics (Willby et al., 2000) in both broads and meres. The 

functional groupings of (i) isoetids, (ii) hydrocharids and stratiotids, (iii) utricularids, 

and (iv) parvonymphaeids and magnopotamids (groups 4, 8, 9 and 16 respectively) 

(Table 4.3), were those with the lowest average index scores, suggesting that these 

species had declined the most in both lake districts during the period of the datasets. 

These functional groups contain many species which are generally regarded as being 

associated with less nutrient-rich conditions, such as Isoetes lacustris, Littorella 

uniflora, Lobelia dortmanna, Utricularia species and Potamogeton gramineus, but also 

species which typically favour more sheltered conditions such as Utricularia vulgaris, 

Potamogeton coloratus, Stratiotes aloides and Hydrocharis morsus-ranae, or species 

associated with deeper water, such as Isoetes lacustris and Potamogeton praelongus 

(Preston and Croft, 1997). 
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Eutrophication is the most important factor affecting community composition of 

macrophytes in lowland lakes in Europe (Carvalho and Moss, 1995; Sand-Jensen et al., 

2000; Penning et al., 2008b). Therefore, it would be expected to find some correlation 

between the degree to which the distribution of a species has changed, and the nutrient 

profile of the species. Correlations between the change index and the ecological traits 

showed that the trophic niche of species was indeed an important factor influencing 

changes in the status of species in both the broads and meres. Thus, characteristically 

oligotrophic and oligo-mesotrophic species (e.g. Littorella uniflora, Isoetes lacustris, 

Lobelia dortmanna and Utricularia minor) were negatively correlated to the change 

index, while hypertrophic species (e.g. Zannichellia palustris, Potamogeton pectinatus, 

Rorippa nasturtium-aquaticum, Rumex hydrolapathum and Typha latifolia) were 

positively correlated, as expected. This confirms that species with oligo and oligo-

mesotrophic preference have declined in both the broads and meres, and there are now 

a very limited number of lakes in both regions that continue to support such species. 

Conversely, those species associated with hypertrophic conditions have persisted or 

expanded over the last 100 years, and currently are widely distributed among the lakes 

of the broads and meres. Similar trends were observed in other studies of vegetational 

change in lakes across Europe (Arts and Leuven, 1988; Arts et al., 1990; Rintanen, 

1996; Sand-Jensen, 1997; Sand-Jensen et al., 2000; Sand-Jensen et al., 2008). For 

example, in Denmark, studies of macrophyte changes in lakes over the last 100 years 

also showed decline in some similar typically oligotrophic species, such as Littorella 

uniflora and Utricularia sp., and an increase in typically eutrophic species, such as 

Potamogeton pectinatus (Sand-Jensen et al., 2000; Sand-Jensen et al., 2008). 
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Given the pervasiveness of cultural eutrophication of lowland lakes, the evidence that 

species of low fertility habitats have been lost is affirming but unremarkable. More 

surprising is that, whilst the mere-specific species change index showed a positive 

correlation with the fertility rank of all macrophyte species (LMNI), the broads change 

index did not. Similarly, in the meres there was a correlation between the eutrophic 

attribute and the change index that was not replicated in the broads. The broads have 

suffered significant and well documented cultural eutrophication over the last 100 

years, caused principally by the intensification of agriculture and the development of 

central sewerage systems in Norwich, the region‟s main centre of population (George, 

1992; Williamson, 1997; Moss, 2001). It was therefore expected that the change in 

macrophytes would closely reflect this in their trophic niche. Since this is not entirely 

the case it raises the question of why some species of typically eutrophic habitats have 

persisted, whilst others have declined. 

 

Chapter 3 has previously shown that species with high index scores (i.e. those that have 

not declined), are universally associated with highly fertile conditions, but that species 

with low change index scores (i.e. which have declined), are associated with fertility 

ranging from very high to very low. This is because some of the species which have 

declined in the broads, and hence have low change index values, such as Hottonia 

palustris, Stratiotes aloides, and Potamogeton compressus, are also strongly associated 

with eutrophic conditions. There is conclusive evidence, based on historical record 

data, for the decline of these and other associated species on a national scale (Preston et 
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al., 2002). It is notable however, that many of the species lost from the broads 

themselves continue to thrive in drainage ditches in the adjacent grazing marshes 

(George, 1992), or elsewhere in similar habitats, such as canals with low boat traffic 

(Willby et al., 2001). Clearly niche characteristics, other than fertility, must be 

influencing historical changes in the status of plants in shallow lakes.   

 

Interestingly, the variable persistence of aquatic plants of naturally fertile habitats 

appears to replicate a trend observed by Preston et al. (2002) in an analysis of possible 

causes for changes in the entire British vascular plant flora over the period 1930-1990. 

A variety of mechanisms have been invoked to explain the coexistence of species in 

fertile habitats. These include niche partitioning on alternative axes, establishment 

lotteries, physical patchiness or resource heterogeneity, or reduced interspecific 

competition due to disturbance (e.g. flood scouring, water level fluctuation, 

management, or grazing) (Grime, 1979; Kautsky, 1988; Townsend, 1989; Grime, 

1998). When there are selective declines in species of fertile habitats the logical 

deterministic explanation is that one or more mechanisms that promote coexistence 

have, in some way, been compromised. 

 

Having restricted the analysis to species associated with fertile conditions (LMNI>6), 

in the broads there was found to be a correlation between the change index and the 

water depth niche of different species, with those species preferring shallower water 

(<0.5 m) declining, and species with depth preferences of 2-4 m, stable or increasing. 

At first sight this seems counterintuitive, as the broads have been getting steadily 
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shallower, especially in the last century when levels of eutrophication have led to 

increased sedimentation rates (Osborne and Moss, 1977; George, 1992). However, the 

physical structure of the broads has changed considerably over the last century due to 

the loss of fringing and within-lake reedswamp. This occurred quite dramatically in the 

1940 & 50s (Boorman and Fuller, 1981), seemingly due to a combination of factors 

such as feral coypu (Ellis, 1963) and increases in nitrogen loading (Boar et al., 1989). 

The reedswamp, consisting of emergent species such as Phragmites australis, Typha 

angustifolia and Schoenoplectus lacustris, that are able to establish in relatively deep 

water (1-1.5 m) would have lent complex structure to the broads, sheltering both the 

margins and patches of open water from wind or boat-induced wave action, and 

encouraging sedimentation. In fact, until the reedswamp disappeared, it had been 

steadily encroaching on the open water of many of the broads (Boorman and Fuller, 

1981; George, 1992). This structure allowed submerged, or free-floating species 

characteristic of shallow, low energy conditions, such as Utricularia vulgaris, 

Potamogeton compressus, Stratiotes aloides and Hottonia palustris to grow in the 

central parts of the broads in close association with the reedswamp, as is described by 

Pallis (1911). When the reedswamp disappeared, so too did the associated aquatic 

vegetation, and the underlying propagule- rich sediment was presumably dispersed by 

wind action, accumulating in areas of inhospitable deeper water. Thus, shallow water 

species of low energy habitats were replaced by a suite of species better adapted to 

slightly deeper (or perhaps less transparent) water, and more turbulent conditions, such 

as Elodea canadensis, Potamogeton crispus and Nuphar lutea. Shallow water species 

are also likely to be more light-demanding, and their decline is therefore consistent with 
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reduced water transparency associated with increased phytoplankton densities, mineral 

turbidity caused by bed re-suspension, and, in some broads, water coloration by iron 

ochre. 

 

As well as promoting coexistence through physical patchiness, rhizosphere oxygenation 

by reedswamp should also introduce heterogeneity in carbon and nutrient supplies 

(Mitsch and Gosselink, 2000). This can facilitate coexistence of submerged 

macrophytes (Espinar et al., 2002). In naturally infertile habitats reedswamp creates 

patches with elevated fertility, as reported by Espinar et al., (2002) enabling the growth 

of several species excluded from bare sediment. In more fertile habitats it seems 

possible that radial oxygen release by the rhizomes of emergent plants may generate 

localized pockets of reduced fertility, due to increased iron-phosphorus binding. 

Potentially this could have facilitated the coexistence of various shallow, still water 

plants within a more generally fertile, open water environment.   

 

In contrast to the broads, in the meres the correlation between the change index and 

species trophic preference (LMNI) was strongly significant, suggesting that many of 

the species that have declined, such as Lobelia dortmanna, Eleocharis multicaulis, 

Subularia aquatica, Isoetes lacustris and Myriophyllum alterniflorum, were more 

exclusively characteristic of low nutrient lakes, than in the broads. There were still, 

however additional plant characteristics which correlated to the change index and hence 

may also have affected declined or survival of species. There was a specific loss of 

species of more acidic conditions, such as Scheuchzeria palustris, Pilularia globulifera, 
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Isoetes lacustris, Eleocharis multicaulis and Myriophyllum alterniflorum, and 

persistence or increase in species characteristic of higher alkalinity (Ellenberg R), such 

as Zannichellia palustris, Ceratophyllum demersum, Lemna minor and Carex elata. 

There is a certain extent to which Ellenberg‟s acidity values are linked to trophic 

(LMNI) values (these factors are highly correlated; p > 0.005), but the fact that 

Ellenberg‟s R was correlated to the change index in the meres, but not in the broads, 

indicates that some of the naturally less alkaline of the meres may have been 

particularly susceptible to species loss during eutrophication. It is also possible that 

some of the species to have declined may have been growing in marginal, sandy or 

peaty „mosses‟ associated with the meres but that these habitats were lost as water 

levels became increasingly stabilised and low growing marginal or shoreline vegetation 

was replaced by luxuriant reedswamp or riparian woodland. A negative correlation of 

the change index to species which grow in sluggish/standing water conditions (e.g. 

Utricularia spp., Lythrum portula and Pilularia globulifera) suggests that there was 

also a decline in the availability of still water environments associated with water level 

rise and stabilization and the consequent loss of the marginal bog habitats. Some 

contemporary accounts actually describe these habitat features as “ditches” or 

“swamps” at the margins of meres (Leighton, 1841; Warren, 1899).  

 

Change in species distributions within the broads and meres appears to predominantly 

reflect trophic associations, as would be expected in two sets of lowland lakes which 

have experienced chronic increases in nutrient inputs over much of the last century 

(George, 1992; EN, 1998; Fisher et al., 2009). However, there are other directly 
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contributing environmental factors, often themselves linked to eutrophication, which 

can determine whether individual species are able to persist or not. These might be 

general, e.g. reed dieback or increased alkalinity, or lake-specific, e.g. presence of non-

native invasive species, increased densities of benthivorous cyprinid fish, or increased 

growth of marginal vegetation, but all are part of the overall syndrome of eutrophic 

lakes. There are also less well documented ecological traits which it was not possible to 

consider here that have probably contributed to species declines, such as sediment 

structure and hydraulic forces (Schutten and Davy, 2000; Schutten et al., 2005) that are 

likely to change in parallel with increased nutrient supply.  

 

In summary, the change index offers an ecologically relevant measure of species 

change which can be applied in future to current ecological status assessments of 

lowland lakes. Macrophyte surveys could therefore offer information both on current 

nutrient status of a lake, inferred from aquatic vegetation, as found in many ecological 

assessment methods (Moss et al., 2003; Penning et al., 2008a; Willby et al., 2009), but 

could also provide an indication of the extent of likely change over the last 100 years 

that reflects both generic effects of eutrophication, but also more local factors. 

Restoration of aquatic vegetation in shallow productive lakes may depend crucially on 

restoring aspects of characteristic structure that contribute to resource heterogeneity, 

but this in itself is fundamentally reliant on nutrient reduction. 
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5.1 Abstract 

 

This study investigates recent and historical changes to macrophyte community 

composition and architecture in a shallow, eutrophic lake, Barton Broad, Norfolk, 

England, utilising a combination of historical records and palaeolimnology. This 

included a survey of all literature referring to aquatic plants in the broad, as well as 

herbarium specimens, old photographs and the notebooks and comments made by local 

naturalists. Additionally, sediment samples were extracted from the bottom of the broad 

and analysed for sub-fossil remains and pollen of macrophytes. Two types of sediment 

samples were taken: large bulk samples from the bottom of cores, analysed to give a 

picture of pre-1850 communities found in the lake and complete cores, analysed in 

order to provide a chronology of macrophyte community change throughout the history 

of the lake. The study found that early communities did not consist entirely of low 

growing, oligotrophic and mesotrophic species, but in fact comprised a mixture of these 

and other more characteristically high nutrient species associated with taller, or free-

floating growth habit. As eutrophication progressed throughout the last century, the 

community was increasingly dominated by these latter growth forms. Diversity was 

maintained, however, since encroaching reedswamp generated a mosaic of low energy 

habitats which supported a range of species unable to withstand the hydraulic forces 

associated with more open water habitat. When the reedswamp disappeared in the 

1950s, many of the dependent aquatic macrophytes also declined. Today only species 

more resilient both to eutrophication and the hydraulic forces associated with open 

water are able to persist, and then usually only erratically and in small numbers. This 



 119 

study demonstrates the benefit of a combined approach to palaeolimnology which 

incorporates other available historic information. 

 

5.2 Introduction 

 

The eutrophication of freshwater lakes remains one of the primary challenges facing 

lake managers, both in the UK and worldwide (Rast and Holland, 1988; Carvalho and 

Moss, 1995; Moss, 1999; Gulati and van Donk, 2002; Hilt et al., 2006; Schindler, 2006; 

Jeppesen et al., 2007). Macrophytes play an important part in the functioning of lakes, 

particularly shallow lakes where they can colonise the entire extent of open water 

(Jeppesen et al., 1998; Moss, 1998). Eutrophication results in macrophytes being 

increasingly unable to compete for light against faster growing phytoplankton. At high 

nutrient concentrations these can dominate the water column to the eventual exclusion 

of other plants. The effects of eutrophication have been well documented in the Norfolk 

Broads, a series of shallow eutrophic lakes in eastern England (George, 1992; Moss, 

2001). These former medieval peat diggings were once famed for their species rich 

communities of aquatic plants and clear waters. Over the last 100 years, however, they 

have suffered the effects of eutrophication; decreased water transparency,  increased 

phytoplankton density, decreased in macrophyte diversity, and ultimately in some 

lakes, a complete loss of aquatic plants.  

 

The generally accepted model of macrophyte community change in the Norfolk Broads 

as postulated by various authors based on historic records and diatom cores (Osborne 
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and Moss, 1977; Moss, 1978; Moss, 1979, 1980, 1988; George, 1992; Phillips, 1992) is 

that there are three phases: Phase 1 is the pristine, clear water state that existed prior to 

1800. In this phase the broads were thought to be dominated by charophytes and „low 

growing‟ plants such as Potamogeton alpinus, Utricularia intermedia and Najas 

marina. Phase 2 occurred with increased nutrient concentrations and was characterised 

by taller growing „rank‟ species such as Zannichellia palustris, Potamogeton 

pectinatus, Ceratophyllum demersum, Stratiotes aloides and Myriophyllum spicatum. 

These species could potentially out-compete Phase 1 species at higher nutrient 

concentrations, because they are canopy forming, and could therefore also compete 

effectively for light with epiphytes and phytoplankton. Phase 3 occurred at yet higher 

nutrient concentrations when macrophytes became sparse or absent, and the water 

column became dominated by phytoplankton, resulting in the phytoplankton dominated 

conditions which continue to prevail in many of the broads to the present day. Whilst 

this model has been used to inform lake management and restoration efforts (Phillips, 

1992; Phillips et al., 1999), there is little actually known about the macrophyte species 

and structure of Phase 1. This first pre-disturbance phase often occurred prior to the 

first historical records, and whilst diatom analysis of sediment cores can show some 

changes in ecosystem functioning, the Phase model has never been tested against actual 

plant data as can be done through macrofossil analysis of sediments.  

 

Barton Broad is the second largest (70 ha.) of the Norfolk Broads and is very shallow 

throughout (mean depth 1.4 m). Situated on the River Ant (Figure 5.1), it originated 

from the flooding of peat cuttings around the 13
th

 century (Lambert et al., 1960). 
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Accounts of Barton Broad from the early 19
th

 century describe it as rich in aquatic 

vegetation, including charophytes (Gurney, 1904; Nicholson, 1906; Pallis, 1911). After 

the second world war, there were increasing concerns that the lake was in fact too 

densely vegetated by aquatic plants, with reedswamp and macrophytes encroaching 

well into the broad and threatening a developing interest in leisure boating (George, 

1992). Between the late 1950s and early 1960s the macrophytes and reedswamp 

declined strongly, such that, by 1970, no plants at all were found in the lake (Mason 

and Bryant, 1975). This instigated a series of early investigations into the effects of 

eutrophication on the ecology of the broads, including Barton Broad (Mason and 

Bryant, 1975; George, 1977; Osborne and Moss, 1977). Subsequently, Barton Broad 

became the first of several broads to form the subject of a nutrient reduction and 

restoration program which started in the late 1970s and continues today (Madgwick, 

1999; Phillips et al., 2005). 

 

The changes in aquatic vegetation in Barton Broad, as inferred from historic accounts, 

is well documented (Jackson, 1978, 1981a, b; George, 1992). Using palaeolimnological 

techniques, these changes have been placed in the context of increased phosphorus 

concentrations and a shift in dominance from epi-benthic to planktonic diatoms 

(Osborne and Moss, 1977; Moss, 1980; Bennion et al., 2001). Despite these studies, 

little is known about the pre-disturbance macrophyte communities of the broad. Study 

of the pollen and macrofossil remains of aquatic plants in sediment cores can give a 

more direct insight into the dynamics of macrophyte communities. This study uses 

macrofossils and pollen based palaeolimnological analyses in combination with historic 



 122 

and contemporary records of plants growing in Barton Broad to construct a unique 

insight into the composition, architecture and functioning of previous macrophyte 

communities in the lake, as well as the changes which culminated in plant loss in the 

1960s. 

 
 

Figure 5.1. Map of Barton Broad showing the core locations. 
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5.3 Method 

 

5.3.1 Core sampling 

 

Ten sediment cores were taken from a variety of locations across the lake in November 

1998 (BART2 & BART3), February 1999 (BART5), October 2000 (BART8) and 

March 2008 (BART10-15) (Figure 5.1), using a standard diameter (7.4 cm) Livingstone 

type piston corer (Livingstone, 1955). Sampling locations were chosen to cover a broad 

range of open water habitats in an attempt to capture as much of the macrophyte 

diversity in the broad as possible. Core locations were recorded using a handheld GPS 

and visible changes in sediment colour and texture were noted and photographed in the 

field. BART5 (96 cm length) and BART3 (99 cm length) from the Neatishead Arm and 

Heron‟s Carr area of the broad respectively, were extruded and sliced on site at 1 cm 

intervals. In order to gain a more comprehensive picture of the macrophyte species 

growing in the broad prior to 1850, additional macrofossil analysis was carried out on 

bulk sampled cores from the bottom of the sediment profile (i.e. constituting early, pre-

1850 sediment). This was necessary to provide a more complete species list as 

macrofossils were relatively scarce in the 1 cm sections of the chronological cores. All 

other cores were therefore divided into 10 cm sections of which the 10 cm section 

closest to the bottom of the lake sediment was chosen for macrofossil analysis. This 

was identified by observing the level of the peat (which constitutes the lake bottom 
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prior to sediment deposition) and choosing the first 10 cm slice above this which was 

comprised entirely of lake sediments (i.e. was sure not to contain peat). 

 

5.3.2 Core chronology and lithostratigraphy 

 

Percentage organic matter and CaCO3 were estimated for each of the 1 cm levels of 

BART5 and BART3 using standard loss on ignition (LOI) procedures (Dean, 1974). 

 

Both radiometric dating and spheroidal carbonaceous particle (SCP) analysis were used 

to provide a chronology for core BART5. An approximate date was assigned to BART3 

by comparing the lithostratigraphic profile of the two cores and assuming that the 

observed change from light marl to dark silt found in both cores occurred at roughly the 

same date. Additional SCP counts were conducted on the bulk samples from the other 

cores to check that these were deposited prior to 1850, the time of first SCP depositions 

in the area.  

 

Sediment samples were analysed for 
210

Pb, 
226

Ra and 
137

Cs by direct gamma assay in 

the Liverpool University Environmental Radioactivity Laboratory, using Ortec HPGe 

GWL series well-type coaxial low background intrinsic germanium detectors (Appleby 

et al., 1986). 
210

Pb was determined via its gamma emissions at 46.5keV, and 
226

Ra by 

the 295keV and 352keV γ-rays emitted by its daughter isotope 
214

Pb following 3 weeks 

storage in sealed containers to allow radioactive equilibration. 
137

Cs was measured by 

its emissions at 662keV. The absolute efficiencies of the detectors were determined 
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using calibrated sources and sediment samples of known activity. Corrections were 

made for the effect of self absorption of low energy γ -rays within the sample (Appleby 

et al., 1992). 

 

SCP analysis followed the method described in Rose (1994). Dried sediment was 

subjected to sequential chemical attack by mineral acids to remove unwanted fractions 

leaving a suspension of mainly carbonaceous material and a few persistent minerals in 

water. A known fraction of the resulting suspension was evaporated onto a coverslip 

and mounted onto a microscope slide. The number of SCPs on the coverslip was 

counted using a light microscope at x450 magnification and the sediment concentration 

calculated in units of „number of particles per gram dry mass of sediment‟ (gDM
-1

). 

The criteria for SCP identification under the light microscope followed Rose (2008). 

The detection limit for the technique is c. 100 gDM
-1

 and concentrations have an 

accuracy of c. ± 45 gDM
-1

. 

 

The dating of the BART5 core followed the method described in Rose et al. (1995) 

whereby three main features of the SCP profile are used to provide dates: the start of 

the record, the rapid increase in SCP concentration and the peak in SCP concentration.  

 

5.3.3 Macrofossil analysis 

 

A total of 17 (BART5) and 16 (BART3), 1 cm levels from c. 5 cm intervals along the 

length of the BART5 and BART3 cores were analysed for macrofossils respectively. 
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Volumetrically measured subsamples of c. 20 cm
3
 were washed through a 125 μm sieve 

using a gentle jet of tap water, and the entire residue was examined under a stereo-

microscope at 30x magnification. The macrofossils were enumerated and identified 

using a reference collection of plant seeds and vegetative parts. For the pre-1850 bulk 

sediment, subsamples of around 300 cm
3
 were washed through a 355 μm sieve and 

examined for macrofossils. If fossil species were uncommon, these were counted 

throughout the 300 cm
3
 sample, but if they were too numerous to count in this manner, 

they were counted in a 30 cm
3
 subsample. For the bulk sampling of BART3, which had 

already been divided into 1 cm levels, a 10 cm section was chosen at the bottom of the 

core (64-74 cm) and the remainder of the sediment (230 cm
3
) counted for macrofossils 

using the same procedure.  

 

5.3.4 Pollen analysis 

 

Subsamples for pollen analysis were taken from each of the eight 10 cm bottom 

sediment cores used for macrofossil analysis. These were prepared for pollen analysis 

by a standard chemical procedure, using HCl, NaOH, sieving, HF, and Erdtman‟s 

acetolysis to remove carbonates, humic acids, particles >170 μm, silicates, and 

cellulose, respectively. The samples were then stained with safranin, dehydrated in 

tertiary butyl alcohol, and the residues mounted in 2000 cs silicone oil (method B of 

Berglund and Ralska-Jasiewicsowa, 1986). Slides were examined at a magnification of 

400x (1000x for critical examination) by equally-spaced traverses across slides to 

reduce the possible effects of differential dispersal on the slides (Brookes and Thomas, 
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1967). The aim was to achieve a count of 500 grains of land pollen and spores. Pollen 

identification, where necessary, was aided using the keys of Moore et al. (1991), Faegri 

& Iversen (1989), and a small modern pollen reference collection.  

 

5.3.5 Historical macrophyte data 

 

Historical macrophyte records and descriptions of macrophyte growth in Barton Broad 

were compiled from a variety of sources including journal articles (Geldart, 1889; 

Salmon and Bennett, 1902; Bennett and Salmon, 1903; Nicholson, 1906; Boardman, 

1939; Morgan, 1972; Mason and Bryant, 1975), books (Christopher Davies, 1882; 

Emerson, 1893; Dutt, 1903; Ready, 1910; Pallis, 1911; Buxton, 1950; George, 1992; 

Moss, 2001), Norfolk county floras (Trimmer, 1866; Nicholson, 1914), sketches and 

field notes of local naturalists, the Nature Conservancy Council files, old photographs 

and postcards, herbarium specimens from the Natural History Museum, London and 

Castle Museum, Norwich, as well as Broads Authority macrophyte surveys conducted 

on an annual basis from 1983 until the present (Jackson, 1983). The collection of over 

230 records (i.e. taxa x unique date), covered a period from the 1870s to 2008 and 

included records and descriptions of 54 aquatic plant species. 
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5.3.6 Data manipulation and presentation 

 

All macrofossil counts were standardised as numbers per 100 cm
3
 of wet sediment and 

core diagrams of BART3 and BART5 were generated using C2 (Juggins, 2007). Bulk 

pre-1850 samples were plotted on a log scale as numbers of fossil remains varied 

considerably. Given the low numbers of aquatic pollen, data are presented alongside the 

macrofossil counts as presence/absence, rather than actual counts. 

 

All plant nomenclature follows Stace (1997). Only species with Ellenberg moisture 

values of 9 or above were included in this study as the primary focus was on the 

dynamics of open water vegetation rather than the marginal fen. 

 

5.4 Results 

 

5.4.1 Core lithostratigraphy and chronology of BART5 and BART3 

 

Both cores showed three distinctive lithostratigraphic layers (Figure 5.2 and Figure 

5.3). In BART5 the base of the core constituted a mixture of peat and marl (70-75 cm), 

followed by a large light marl layer (29-70 cm), and nearest the surface, a dark silt layer 

(0-29 cm). BART3 had broadly comparable layering, but this core did not reach the 

basal peat layer so instead had a layering of dark marl (65-75 cm) followed by light 

marl (27-65 cm) and dark silt near the surface (0-27 cm). This is also evident from the 
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LOI data where the 80 % peak in organic matter at the base of BART5 represents the 

high organic content of the peat at this depth. BART3 does not have an LOI peak at this 

point despite organic content being higher here, confirming that the core had not 

reached the peat (Figure 5.2 and Figure 5.3). Both cores also showed a decrease in % 

sediment dry weight (from 19.8 to 8.2 in BART3 and from 21.6 to 8.8 in BART5) and 

an increase in % LOI (from 14.5 to 20.2 in BART3 and from 15.6 to 23 in BART5) 

from near the start of the dark silt layer, to the surface, indicating a gradual increase in 

organic matter in this layer, i.e. from the 1960s onwards. 

 

Dating of the BART5 core by 
210

Pb alone was not possible because of the very poor 

record of 
210

Pb fallout. The 
137

Cs activity has a relatively well-resolved peak at a depth 

of 25.5 ± 3.5 cm that can be assumed to record the maximum fallout of the radionuclide 

in 1963 from the atmospheric testing of nuclear weapons. The 
137

Cs record implies a 

mean post-1963 sedimentation rate of 0.13 ± 0.04 g cm
-2

 y
-1

 (0.71 cm y
-1

). 

 

SCP concentrations for BART5 are given in Figure 5.4. The first presence of SCPs 

occurs at 44-45 cm and concentrations increase gradually, though irregularly, up to 17-

18 cm. Between here and 15-16 cm there is then a major increase in concentration to 

more than 2600 gDM
-1

. Concentrations then decline from 15-16 cm to the sediment 

surface. If it is assumed that the SCP concentration peak represents the period of 

maximum deposition then 15 – 16 cm may be ascribed the date 1978 ( 5) years. This 

is in reasonable agreement with the radiometric dating, although 15.5 cm would be 

given the slightly younger radiometric date of 1981 ( 5 years). The SCP 1978 date 



 130 

produces a mean sediment accumulation rate for the most recent 21 years of 0.738 cm 

yr
-1

 (0.596 – 0.938 cm yr
-1

). If this rate is extrapolated below 16 cm, then 1950, usually 

indicated by a rapid increase in SCP concentration, would be expected to occur at c. 36 

cm (29.5-47.5 cm). However, the rapid increase feature in BART5 is not very obvious. 

This may be because it occurs at the start of the SCP record, at the lower end of the 

depth range, where the SCP concentrations move from below to above the analytical 

limit of detection for the first time. Given this, and the shape of the profile, it seems 

likely that the 1950s would be at c. 39 cm with the profile below this truncated as a 

result of falling below the analytical detection limit. 

 

Given the uncertainty in identifying the rapid increase feature in SCPs, and the poor 

record of 
210

Pb fallout, all dates, especially those prior to 1963, should be treated with 

caution. 

 

5.4.2 Macrofossil stratigraphy of BART3 and BART5 

 

Both chronological cores, BART5 and BART3, showed a similar sequence of 

compositional change, although macrofossils were more abundant in BART5, which 

also had more species (9 rather than 7) (Figure 5.2 and Figure 5.3). Three main zones 

were observed for the macrofossils which corresponded well with the lithostratigraphic 

changes. In zone 1, in the lower half of the light marl (and into the dark marl in 

BART3), Nitella and Chara were abundant along with Stratiotes aloides and 

Nymphaeaceae. Chara in BART3 were only found in a fraction of the quantities found 
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in BART5 and it is likely that the Chara-rich period is not well represented here 

because the core did not penetrate sufficiently deeply (i.e. not to the peat). In BART5 

zone 1 also contained other species such as Potamogeton friesii and Zannichellia 

palustris. In zone 2, which stretched from half way up the light marl to the beginning of 

the dark silt, Nymphaeaceae and Stratiotes aloides were still common in both cores, 

and a few Schoenoplectus lacustris seeds were also found although the other species 

had declined. In BART5 Nitella oospores were also found in this period, as were 

evidence of Najas marina and Ceratophyllum. Interestingly these Najas marina 

fragments were not a new occurrence, but rather, a re-appearance, as fragments were 

also found towards the base of BART5. The dark silt layer of zone 3, which was the 

most recent sediment, contained Stratiotes aloides leaf spines and Nymphaeaceae leaf 

trichoschlereids in much lower numbers than the other zones, in both cores. Apart from 

small numbers of Chara oospores and Schoenoplectus lacustris seeds, the only other 

species found in this layer, was Najas marina. 
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Figure 5.2 Macrofossils and lithostratigraphy of core BART5 including SCP ascribed 

dates. 

 
Figure 5.3 Macrofossils and lithostratigraphy of core BART3. The location of the 1967 

date was approximated by comparing the lithostratigraphy of BART3 with BART5 

which was dated. 
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Figure 5.4 SCP concentrations down the length of core BART 5 with SCP and 
137

Cs 

derived dates. 
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5.4.3 Pre-1850 macrofossils and pollen 

 

A total of 28 aquatic macrophyte taxa were found in the macrofossil and pollen analysis 

of the pre-1850 samples (Figure 5.5). This is significantly more than the 9 taxa found in 

cores BART3 and BART5. Chara, Nymphaeaceae, Potamogetonaceae and 

Schoenoplectus lacustris were represented in all of the bulk samples. Chara oospores, 

Ceratophyllum leaf fragments, Nymphaeaceae leaf trichoschlereids, Najas marina seed 

fragments and Stratiotes aloides leaf spines were the most numerous macrofossil 

remains. Potamogeton leaves, seeds and pollen were well distributed in smaller 

quantities, but were not always identifiable to species level. In some instances however, 

whole seeds or diagnostic leaf structures were preserved, which allowed the 

identification of five different Potamogeton species, including Potamogeton coloratus 

in core BART10. Similar species were found in samples from the different locations in 

the broad, with numbers of taxa ranging from 11 (BART2) to 20 (BART11). 

 

Overall pollen preservation in the slides was good but pollen of obligate aquatics, 

which were the subject of this study, was less well preserved. Their pollen can be very 

fragile as it is often released directly into the water or onto its surface so does not need 

to survive in air. Whilst the macrofossil analysis yielded more taxa (21), the pollen 

analysis, which identified 17 taxa, also added a number which were not represented at 

all by macrofossils, such as Callitriche spp., Hippuris vulgaris, Hydrocharis morsus-

ranae, Lemna spp., Littorella uniflora, Myriophyllum alterniflorum and Sagittaria 

sagittifolia. 
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Figure 5.5 Macrofossil and pollen found in the pre-1850 bulk sediment samples. 

Macrofossils are shown as numbers per 100 cm
3
 on a log scale. + represents 

remains/pollen found in pollen analysis. Remains found are seeds unless specified 

otherwise.  
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5.4.4 Historical macrophyte data 

 

Of the 52 macrophyte taxa recorded in Barton Broad since the first record in 1884, 

including 40 species before 1960, only 27 have been recorded after 1960, despite 

detailed annual plant surveys by the Broads Authority since 1983 (Figure 5.6). Since 

these surveys started there have been eight survey years (1987, 1989-92 and 2001) 

where aquatic vegetation was absent from the broad, leading to no species records. In 

surveys where plants were found they were generally in low numbers, the commonest 

being Ceratophyllum demersum, Elodea canadensis, Elodea nuttallii and Potamogeton 

pectinatus (Broads Authority unpublished data). Other species which have persisted 

after 1960 in small numbers include Najas marina, Potamogeton obtusifolius, 

Potamogeton perfoliatus, a few charophyte species, Nymphaea alba, Nuphar lutea, 

Potamogeton pusillus, Sagittaria sagittifolia, Schoenoplectus lacustris and Sparganium 

emersum. Over the last twenty years a number of species have also been recorded for 

the first time in the broad, including Potamogeton crispus, Potamogeton berchtoldii, 

Potamogeton trichoides, Elodea nuttallii, Elodea canadensis, Lemna trisulca, Nitella 

mucronata, Ranunculus circinatus, Chara virgata, Sparganium emersum, Spirodela 

polyrhiza and Zannichellia palustris. Some of these are most likely due to 

misidentifications or under-recording of these species in earlier records, e.g. Chara 

virgata and Potamogeton berchtoldii have only been taxonomically resolved fairly 

recently (Moore, 1986; Preston, 1995), whereas others may have been present but were 

simply not recorded, either because they were not sufficiently noteworthy, or because 

there were no regular surveys prior to 1983 and they were therefore overlooked. This 
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was evidently the case for Potamogeton crispus and Zannichellia palustris which were 

not recorded before 1960, but were found in BART14 (Figure 5.5) and BART5 (Figure 

5.2) of the macrofossil samples respectively, at levels dated earlier than 1960. A few 

cases also represent recent invasions by non native species (e.g. Elodea spp). 

 

Species recorded prior to 1960, but no longer found in the broad include a number of 

charophytes (Nitella flexilis, Nitellopsis obtusa, Chara contraria var. contraria, Chara 

aspera and Chara hispida), various Potamogeton species (Potamogeton polygonifolius, 

Potamogeton natans, Potamogeton praelongus, Potamogeton compressus, 

Potamogeton friesii, Potamogeton lucens), as well as Hippuris vulgaris, Myriophyllum 

spicatum, Myriophyllum verticillatum, Utricularia intermedia, Utricularia vulgaris, 

Hottonia palustris, Butomus umbellatus, Hydrocharis morsus-ranae, Persicaria 

amphibia, Ranunculus aquatilis and Stratiotes aloides (Figure 5.6). Species loss seems 

to have occurred in two obvious periods; just before 1920 when a large number of 

species including Potamogeton lucens, Potamogeton compressus and Chara hispida 

disappeared, and around 1950 when a handful of other species such as Utricularia 

vulgaris and Stratiotes aloides disappeared. 

 

As well as the change in species over the period for which records exist, the structure 

and abundance of macrophytes has also changed dramatically. When old and new 

photographs of Barton Broad are compared (Figure 5.7), it is evident that there has 

been a dramatic change in vegetation since the 1950s, with the loss of extensive 

Nymphaeaceae and Schoenoplectus beds. Schoenoplectus stands formerly grew out into 
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the open water of the broad, and together with Typha angustifolia dominated 

reedswamp on their landward edge, meant that little open water remained and total 

encroachment was considered a threat (Table 5.1). The change is well recorded in the 

literature (Table 5.1), which also documents the change from an open broad dominated 

by charophytes in the late 1800s, followed by increasing encroachment by reedswamp 

up to the 1950s, and finally in the late 1950s and early 1960s, the disappearance of 

macrophyte cover and contraction of reedswamp. 
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Figure 5.6 Macrophyte changes in Barton Broad as documented from historical records 

and modern surveys.  
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Figure 5.7 Barton Broad littoral and aerial view in a) summer 1951 and b) summer 

2003 and 2008. Photos in a) reproduced from Mottram, 1951 and © English Heritage, 

NMR, Aerofilms Collection and b) Carl Sayer 2003 and © Mike Page 2008. 

a) 
 

b) 
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Table 5.1 Chronology of macrophyte growth in Barton Broad as detailed from literature 

sources. 

 

1870s “A fine sheet of water with good depth…” (Ready, 1910) 

1882 “…is full of mud; there being large “hills” where water is not more than 2 

feet deep.” “light yellow” 

(Christopher 

Davies, 1882) 

1889 “At our new anchorage on Barton Broad we could look through six feet of 

water, absolutely clear, down to a bottom of smooth yellow mud, with here 

and there a clump of dark green weed. Elsewhere acres of matted tangle 

grow densely under water, and even rise in summer to the surface. We lay in 

a deep curved bay, open towards the north, margined by walls of reeds and 

rushes, backed by rising land and trees, and islanded with clumps of giant 

rush.” 

(Doughty, 1889) 

1893 “…we sailed through wastes of reed, gladden [Typha], and bolder 

[Schoenoplectus], until we reached the wide expanse of Barton, with its 

low-lying shores.” 

(Emerson, 1893) 

Since early 

1900s 

Increasing reedswamp encroachment noticed (Gurney, 1904; 

Ready, 1910) 

1902 “A great deal of open water” (Nicholson, 1902) 

1903 “…Barton is very shallow except in the wherry [boat] channels…” 

“…and sailing close to the fringing reed-beds I often heard the water-weeds 

which cover the shallows brushing against the sides of my boat.”   “…shoal 

water was only distinguishable by its dark patches of weeds and sparse 

growth of rush and sedge.” 

“…I turned into a little a inlet where the white water-crowfoot [Ranunculus] 

was in full bloom” 

(Dutt, 1903) 

1904 Relatively small area of open water rapidly growing up. Characterised by 

large beds of Chara. “characterised by the presence of large beds of Chara” 

(Gurney, 1904) 

1906 “In Barton Broad, there is an extensive growth of Characeae, consisting 

(probably with other species) of Chara fragilis, Desv. [Chara globularis], 

Chara aspera, Willd., var. capillata [Chara aspera], Braun., Chara 

vulgaris, L., and Chara vulgaris var. papillata, Wallr. [Chara vulgaris]. The 

great abundance of the genus Chara in these waters, is an indication of the 

presence of a considerable quantity of calcium carbonate held in 

suspension…” 

“…dark green carpet of Chara covering the bottom.” 

(Nicholson, 1906) 

1910 “…was a fine sheet of water with good depth in those days, though latterly 

it has become much choked up by dense growths of weed.” 

(Ready, 1910) 

1911 Marietta Pallis‟ vegetation transect through Barton Broad published, 

showing the progression from dry land, through reedswamp to open water. 

It clearly shows the structural heterogeneity of the vegetation and the 

association of submerged and floating leaved macrophytes with the 

reedswamp. 

(Pallis, 1911) 

1911 Stratiotes aloides occupying a large extent of the broad (Boardman, 1939) 

1915 Persicaria amphibia infrequent and leaves algae coated Pallis 1915 

herbarium 

specimen, NHM 

London 
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1920s “The open water was enhanced by clumps and ronds of gladdens [Typha 

angustifolia] and and bolders [Schoenoplectus lacustris], much sought after 

by the basket weaving industry. From the marshes, which now form the 

banks of the broad, deep banks of reed [Phragmites australis] spread out 

over the shallower water, bolders and gladdens taking over in the deeper 

pools. Beyond the navigation channels, kept clear by the Commissioners, 

lay masses of weeds with the occasional clear pool, arresting the passage of 

boats and making rowing very difficult. Large areas of yellow [Nuphar 

lutea] and white water lilies [Nymphaea alba] and water soldier [Stratiotes 

aloides] abounded. The mass of underwater weeds consisted mainly of 

hornwort [Ceratophyllum], milfoil [Myriophyllum], bladderwort 

[Utricularia], and pond-weeds [Potamogeton species]. In sheltered shallow 

corners, the beautiful water-crowfoot [Ranunculus subgenus Batrachium], 

frog-bit [Hydrocharis morsus-ranae], amphibious persicaria [Persicaria 

amphibia] and the greater spearwort [Ranunculus lingua] flourished.” 

(Gane, 1976) 

1924 Sewage effluent starts being discharged into the Ant upstream of Barton 

from North Walsham Sewage Treatment Works (STW) 

 

1910s-40s The broad decreased in size but the percentage of open water increased in 

relation to the percentage of reedswamp 

(Boorman and 

Fuller, 1981) 

Late 1940s The broad stopped shrinking in size and the percentage of open water 

increased 

(Boorman and 

Fuller, 1981) 

1943 “Some broads decreased in size through the encroachment of reeds till they 

almost disappeared, as for instance Sutton Broad.  …Barton is in a 

transitional stage, the reed beds covering about a third of the water, but here 

they have been encouraged and have been planted” 

 

“Shallow broads such as Barton and Hickling, where light can penetrate to 

the bottom, are richer in weed and consequently clearer; they have, 

moreover, a higher phosphate content than the Bure Broads” 

(Rudd, 1943) 

1947 Utricularia vulgaris in peatier more sheltered parts (Ellis, 1947) 

1949 Mechanical cutting of the macrophytes started opening up 50 acres of water 

not open since 1900 

(Buxton, 1950) 

1950s Najas marina generally on naked mud in scattered clumps which often have 

hollow centres (Heron‟s Car and near pleasure island) 

(Crompton, 1977) 

Early 1950s Stalham STW opened and capacity of North Walsham STW increased (George, 1992) 

1950s Coypu escaped into the wild (George, 1992) 

1952 “The bulrush (Schoenoplectus lacustris) forms a rather open community, 

associated with white water lily (Nymphaea alba). It is later invaded by the 

lesser reedmace (Typha angustifolia). (…) the task of restoring overgrown 

open water is now of major importance. The increase of power-driven water 

traffic has had some effect in this direction itself.” 

(Lambert, 1953) 

1960s Macrophytes declined (George, 1992) 

1963 Sharp winter and around this time; loss of Schoenoplectus lacustris and 

water lilies  

Yaxley pers. 

comm. 

1963 Loss of reedswamp noted linked to coypu grazing (Ellis, 1963) 

1977 Phosphorus stripping introduced in STW upstream of broad (George, 1992) 

by 1980 All significant discharges upstream of lake had phosphorus removal (George, 1992) 

1981/82 15000 Stratiotes aloides and Nupha lutea introduced to NE of the broad by 

Norfolk Naturalists‟ Trust, but unsuccessfully 

(George, 1992) 

1987 Coypu eradicated (George, 1992) 
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1989 Broads Authority set up with jurisdiction to protect the environmental, 

leisure and navigational interests of the Broads 

Broads Authority 

1995 Broads Authority mud pumping started “ 

1997 Improved phosphorus removal techniques at STWs “ 

1997-2000 Surface sediment removal by the Broads Authority “ 

2000 Mud pumping of main broad finished “ 

2000 First fish-proof enclosures installed “ 

2003 Macrophytes begin to recolonise within enclosures “ 

2005 Plants growing outside of enclosures. Extensive plant growth was observed 

chiefly along the western edge of the main broad 

“ 

2008 Schoenoplectus lacustris found growing in the north west bay of the broad “ 
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5.5 Discussion 

 

5.5.1 A combined approach 

 

Macrofossils remains are not particularly numerous in the sediment of Barton Broad. 

This means that while sediment cores analysed at 1 cm intervals for macrofossil 

remains are useful in showing overall changes to macrophyte communities over the last 

200 years, this level of resolution underestimates past species richness. In this study the 

high resolution sampling was complemented with bulk sampling of pre-1850 core 

material increasing the representation of rarer remains to get a more comprehensive 

insight into pre-1850 macrophyte communities. By analysing 10 cm blocks from the 

bottom of 8 cores it was possible to add 15 species to the list compiled from the 2 

conventional cores. Ayres et al. (2008) also used a similar bulk sampling approach to 

complement their higher resolution macrofossil cores, and also found that it added 

species to their total. The species added in this study using this bulk approach were 

primarily those which leave remains which are large but less numerous, such as 

Potamogeton coloratus or Nuphar lutea seeds.  

 

Although pollen analysis of the bottom sediments identified fewer species than the 

macrofossil analysis, it did add a further 7 species, including taxa which rarely leave 

remains, such as Lemna and Callitriche species. Of the 29 species recorded in historical 

records prior to 1912, half were also recorded in the macrofossil and pollen analysis. 
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Those which the historical records added were mainly species which are often hard to 

resolve taxonomically from sub-fossil remains, such as Chara and Potamogeton 

species. The early historical records were, however, most probably not coincident with 

the bulk macrofossil and pollen counts, which probably represented an earlier 

community. Of the 29 species in the historical records prior to 1912, only 9 of these 

were actually recorded prior to 1900. The different methods used here to reconstruct 

past macrophyte communities each have their strengths and weaknesses (Chapter 2), 

but by using this combined approach this study was able to illuminate on a complex 

history of macrophyte community change over the last two centuries. 

 

5.5.2 Pre-disturbance macrophyte communities 

 

In Barton Broad, the earliest descriptions of macrophyte growth suggest that the lake 

was characterised by large beds of Chara (Gurney, 1904; Nicholson, 1906) (Table 5.1). 

Several species of charophyte were recorded prior to 1900, as well as Potamogeton 

compressus, Potamogeton lucens, Potamogeton praelongus, Utricularia intermedia and 

Utricularia vulgaris (Figure 5.7). Moreover the broad is described as being open and 

good for sailing, although it was also noted to be prone to encroachment by reedswamp 

at this time (Table 5.1). Besides this information, and charophyte oospores which have 

been found in sediment cores analysed for diatoms (Moss, 1980), there is no further 

evidence supporting the traditional description of Phase 1. 
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Whilst historic records are useful in helping illuminate this early vegetation in the 

broad, they may be insufficient to give a detailed picture, not least because the earliest 

records do not start until 1884. The findings from macrofossil analysis of the bottom of 

sediment cores from Barton Broad, provide the only direct insight into pre-disturbance 

macrophyte communities in the lake. The range of species found in the pre-1850 

sediment suggest that the community was more structurally diverse than previously 

thought, also including a range of taller growing species such as, Myriophyllum 

spicatum and Zannichellia palustris, and a variety of different architectures including 

floating leaved or floating species (Nuphar lutea and Stratiotes aloides), broad and fine 

leaved Potamogeton species and dissected leaved taxa such as Ceratophyllum and 

Myriophyllum. 

 

Alongside these species, it was particularly surprising to find evidence of Littorella 

uniflora and Myriophyllum alterniflorum growing in the broad in the same period. 

These species are typical of low alkalinity, nutrient poor lakes, although they can be 

found in high alkalinity situations, particularly where nutrient concentrations are low 

(Preston and Croft, 1997). Littorella uniflora, is a low growing plant of isoetid growth 

habit often growing in shallow margins as it tolerates emersion. Although normally 

associated with mesotrophic or oligotrophic conditions, it can grow in eutrophic waters 

(Preston and Croft, 1997; Vestergaard and Sand-Jensen, 2000a; Pedersen et al., 2006), 

but has declined in south-east England  partly due to its sites becoming overgrown with 

rank vegetation (Preston and Croft, 1997). Records from 1840 and earlier show that 

Littorella was growing in the nearby Filby Broad (Trimmer, 1866; Nicholson, 1914), so 
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it is possible that it previously grew in several of the broads. Although it is traditionally 

associated with gravel substrate it can also be found on peat (Preston and Croft, 1997) 

and could well have populated some of the shallow peat bulks (raised ridges of peat) 

which used to be dispersed throughout Barton Broad. 

 

Chara oospores were abundant in the bottom sediments of Barton Broad suggesting 

that Chara were dominant and probably formed meadows throughout the open water of 

the lake (Figure 5.5 and Fig. 8 a). Early accounts of the variety of Chara species found 

in the broad (Nicholson, 1906) further support the idea of a structurally diverse 

community, with Chara aspera, a shallow water species, growing towards the 

shallower margins or on peat bulks, and Chara vulgaris and Chara globularis 

occupying the deeper open water. Potamogeton coloratus, a species typical of nutrient 

poor, calcium-rich conditions and often associated with Chara (Preston and Croft, 

1997), was represented by a sub-fossil seed in BART 10. This species may also have 

been more widespread in many of the broads, having been found historically in 

Hickling Broad, Calthorpe Broad and Ormesby Great Broad (Madgwick unpublished 

data, Jackson, 1981b).  

 

Najas marina seed fragments were also found abundantly in the pre-1850 samples. The 

chronological cores, BART3 and BART5, suggest however, that Najas marina was not 

continuously present, but rather occurred early on in the history of the lake, then 

disappeared before re-appearing again some time before the late 1930s.  
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The suggestion is that rather than there being an assemblage of low growing plants in 

the early phase, there was in fact a very diverse community which included both low 

and tall growing species, alongside a dominant and diverse charophyte flora. Perhaps 

the lower nutrient concentrations were instrumental in maintaining the coexistence of a 

wide range of species, as can be found elsewhere in contemporary naturally 

mesotrophic lakes (Murphy, 2002), preventing competitive displacement of 

charophytes and low growing species by taller, faster growing species. 

 

There are a number of spatial analogues that either support descriptions of the classic 

Phase 1 assemblage, or which match the more diverse version of Phase 1 that was 

observed. For example the Loch of Strathbeg, a shallow, high alkalinity lake in NE 

Scotland, which was formed in the late 1700s by the evolution of a coastal sand bar, 

historically had an aquatic vegetation dominated by Chara aspera, Littorella uniflora 

and Myriophyllum alterniflorum, with few other species (Pritchard, 1990). Though 

reminiscent of the classic Phase 1 assemblage, this may not, however, be fully 

representative of the Norfolk Broads, which are more sheltered, and potentially more 

fertile naturally, and have a strong continental influence on their flora. Elsewhere, 

several authors (e.g. Small, 1931; Forbes, 2000) have commented on the close 

similarities between the aquatic flora of East Anglia and that found in the Lough Neagh 

fenlands or in County Fermanagh, Northern Ireland. Unpublished data from the 

Northern Ireland Lake Survey of 1991 reveals that shallow, high alkalinity, non-marl 

lakes with low levels of enrichment (growing season TP <50ug/L) have an aquatic flora 

including both Littorella uniflora and Chara globularis growing alongside species such 
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as Stratiotes aloides, Nymphaea alba, Hydrocharis morsus ranae, Ranunculus 

circinatus and a wide range of pondweeds, or alternatively, Chara hispida growing 

with Hippuris, Utricularia vulgaris, Nuphar lutea, Nymphaea alba, Potamogeton 

coloratus, Potamogeton lucens and other pondweeds (Willby et al., 2009). Both of 

these combinations share many of the attributes of the Barton pre-1850 flora that was 

observed. 

 

5.5.3 Early eutrophication 1900-1950 

 

Littorella uniflora and Myriophyllum alterniflorum were never historically recorded 

suggesting that these species disappeared before 1900, possibly due to a change in 

sediment structure caused by eutrophication, or an increased competitive pressure on 

their habitat (Pedersen et al., 2006). Other species lost before the 1920s include 

Potamogeton lucens, Potamogeton compressus, Chara hispida and Nitellopsis obtusa. 

There is also a suggestion that the Chara meadows described by Gurney and Nicholson 

prior to 1906 (Gurney, 1904; Nicholson, 1906), may have disappeared. By the time 

Marietta Pallis drew a detailed transect of the broad‟s aquatic flora in 1911, Chara did 

not feature in the drawing and she only mentions Chara hispida as “less abundant” in 

the Ant Broads (Pallis, 1911). This decline in Chara is also seen clearly in zone 1 of 

BART5 (Figure 5.2). 

 

In contrast to the late 19
th

 century descriptions of Barton Broad, accounts from as early 

as 1904 describe a lake increasingly encroached upon by emergent vegetation (Table 
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5.1). By examining maps and aerial photographs, Boorman and Fuller (1981) showed 

that reedswamp increased in the broads from 1880 to 1905 by colonising open water. 

After 1905 the rate of colonisation was slower and much was lost through succession to 

fen. From 1946 onwards there was a dramatic loss of reedswamp and reversion back to 

open water. Barton Broad typified this trend: the transect drawing by Pallis in 1911 

(Pallis, 1911) clearly shows a broad with extensive reedswamp interspersed with rich 

aquatic vegetation. The reedswamp was a prominent feature of the broad up to the 

1950s as can be seen most dramatically from contemporary photographs (Figure 5.7) 

and accounts (Table 5.1). It consisted of Schoenoplectus lacustris at the open water 

end, followed by Typha angustifolia then Phragmites australis going inland (Pallis, 

1911; Lambert, 1953). Schoenoplectus lacustris also formed islets of vegetation 

interspersed with beds of Nymphaea alba. Many aquatic species, particularly those 

favouring relatively still water, were probably able to thrive in the quiescent zones 

created by the shelter afforded by the stands of Schoenoplectus lacustris (Figure 5.7 a), 

such as Stratiotes aloides, Hottonia palustris, Utricularia vulgaris and Myriophyllum 

verticillatum, which were found in the broad in this era (Figure 5.6). Pallis herself noted 

the strong affinity the underwater plants had with the reedswamp and that they did not 

colonise the open water beyond it (Pallis, 1911). As the reedswamp continued to invade 

the open water up to the 1950s, there was increasing concern that weed cutting was 

required to stop the broad disappearing altogether (Rudd, 1943; Buxton, 1950; 

Lambert, 1953, Table 5.1). In 1952, it was noted that this trend was beginning to 

reverse (Lambert, 1953) and by 1963 there was recognition of the dramatic loss of 

reedswamp in Barton and throughout the Broads in general. This was linked to 
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pressures of feral coypu grazing and eutrophication (Lambert, 1965; Boorman and 

Fuller, 1981; Boar et al., 1989).  

 

5.5.4 Plant loss 

 

At around the same time as the reedswamp disappeared, many of the associated aquatic 

macrophytes also vanished causing a notable gap in macrophyte records between the 

mid 1950 and 1960s (Figure 5.6). This transition is also visible in the chronological 

macrofossil cores BART3 and BART5, as Chara, Stratiotes aloides, Nymphaeaceae 

and Nitella remains decline just before 1967 (Figure 5.2 and Figure 5.3). This loss may 

have been caused by the huge structural change which will have occurred when the in-

lake swamp and reedswamp declined in the early 1960s. The scale of this structural 

change can be appreciated by comparing the photographs in Figure 5.7 which show 

how the reedswamp and in-lake swamp covered nearly all of the broad in the 1950s. 

Hydraulic forces acting on submerged plants will have increased once this disappeared, 

uprooting or breaking the remaining plants which had been persisting in the shelter 

afforded by the in-lake swamp community. The increased hydraulic forces, or perhaps 

increased dredging, may have eroded the peat bulks which also may have been 

providing additional in-lake structure. 

 

This dramatic change in Barton‟s aquatic vegetation was also reflected in similar 

changes throughout the Broads around this time, prompting national awareness of their 

plight, eventually leading to extensive research into the causes of plant loss and 
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methods of restoring the lakes and their aquatic flora (George, 1992; Phillips, 1992; 

Madgwick, 1999; Phillips et al., 1999; Moss, 2001). A campaign to reduce nutrient 

inputs into the broad was started in the 1970s and annual plant surveys were instigated 

in 1983. It was not until the early 1990s that macrophytes were consistently to be found 

growing in the broad again, but most species are still found in very low abundance and 

comprise those which are generally regarded as being more characteristic of eutrophic 

conditions, such as Zannichellia palustris, Elodea canadensis, Elodea nuttallii, 

Potamogeton berchtoldii, Potamogeton pectinatus, Ceratophyllum demersum and 

Nuphar lutea. The species able to persist in the broad are also limited by physical 

conditions linked to eutrophication, such as loose sediment and the higher hydraulic 

pressures associated with open water (Schutten et al., 2005). Many of the species still 

found in the broad are fine-leaved, such as Potamogeton pectinatus and Zannichellia 

palustris, and therefore either more resistant to hydraulic forces, or are able to survive 

breakage or uprooting, such as Ceratophyllum demersum and Myriophyllum spicatum, 

due to their ability to regenerate vegetatively from broken off stems (Preston and Croft, 

1997).  

 

Recent mud pumping activity to remove phosphorus-rich sediment, as well as thirty 

years of controlling surface water nutrient inputs to Barton Broad, have resulted in 

reduced nutrient loading and algal growth, with visible changes in the composition of 

phytoplankton communities (Phillips et al., 1999; Phillips et al., 2005, Table 5.1). 

Whilst more macrophyte species have also re-colonised in recent years, such as 

Schoenoplectus lacustris, Chara vulgaris and Sagittaria sagittifolia, macrophyte 
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growth has generally been restricted in quantity and often confined to fish-proof 

enclosures where conditions are more sheltered and plants less vulnerable to uprooting 

by benthivorous fish (Madgwick, 1999, Hoare pers. comm.). In 2005, macrophytes 

began to colonise in larger numbers outside of the fish-proof barriers, yet it seems 

unlikely that they will form a stable vegetation, or that some of the historic species 

characteristic of sheltered conditions will return, unless some of the physical structure 

previously offered by the reedswamp is also restored. The establishment of 

Schoenoplectus lacustris in the North West bay of the broad in recent years (D. Hoare 

pers. comm.) is an encouraging step in this direction  

 

5.5.5 Conclusion 

 

This investigation into the macrophyte history of Barton Broad using literature, 

herbarium and palaeo-sources has provided a more detailed picture of the communities 

that existed prior to 1850 and the onset of significant anthropogenic eutrophication. It 

indicates that the distinction between phase 1 and 2 is less clear cut than previously 

thought, with both low- and tall-growing species, or those more characteristic of low 

nutrient levels, and those characteristic of higher levels, able to coexist in a structurally 

diverse community. As nutrient concentrations gradually increased, the taller more 

prolific species appear to have out-competed the low-growing species, such as 

Littorella uniflora and Chara aspera. This change occurred progressively from 1900 or 

earlier, until the early 1950s. Despite this, macrophytes were abundant and diverse in 

this period, as the extensive reedswamp offered a mosaic of still water habitats similar 
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to those conditions now found in some Broadland ditches where many of these species 

still persist (George, 1992). Once the reedswamp disappeared, the physical structure of 

the habitat was lost thus inhibiting macrophyte re-colonisation, despite subsequent 

reductions in nutrient loading (Phillips et al., 2005).  

 

This approach, which combines evidence from historical accounts, historic plant 

records, macrofossil and pollen palaeolimnological analysis, give a much more 

comprehensive picture of vegetational change than each component data source 

independently. Barton Broad is particularly suited to this sort of analysis as it is rich in 

historical records as well as being easy to core. The macrofossil and pollen analysis was 

particularly helpful in investigating what macrophytes grew in the pre-disturbance 

period of the lake, prior to first historic records. The bulk sampling approach also added 

many species which would not have been found in conventional macrofossil cores. As 

well as adding a different range of species, the historic descriptions accompanying 

many of the plant records were also invaluable as they helped build a picture of how the 

historically recorded plants were organised spatially, enabling the visualisation of the 

old structure and architecture of the broad. In summary, this study shows the value of 

putting palaeolimnological analysis into context using complementary data sources. 
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CHAPTER 6 Conclusion 

 

There is increasing interest within ecology in looking back and looking forward; using 

biological evidence as a clue to the causes of past changes, and as an indicator of the 

possible trajectories of future change. Historical records are a significant data resource 

in this respect. The need to understand biological structure in water bodies under un-

impacted conditions, as a reference point for measuring ecosystem health or biotic 

integrity has been given added impetus by the Water Framework Directive. This not 

only stipulates that water bodies must be restored to a state equivalent to a low level of 

impact, but also endorses the use of historical data (among other techniques) as a means 

of identifying what this pre-impact state may be. Historical data may be a particularly 

important resource for reconstructing un-impacted biology in base-rich, eutrophic lakes, 

as in England at least, many of these have been subject to human impacts for so long 

that there is little remaining evidence of past functioning, and few un-impacted 

examples for comparison. Thus, while interest in the use of historical data to 

reconstruct changes in aquatic vegetation is not new in itself, there is a need to critically 

consider the potential of different types of historical data (e.g. records, surveys, 

specimens), its use in different water body types (e.g. lakes, rivers, wetlands), and at 

scales beyond the individual water body (e.g. lake district, lake type). 

 

This study required the compilation of over 22,000 aquatic plant records from over 

3,000 visits to 134 lakes in the Norfolk Broads and West Midland Meres, spanning a 

time period of over 200 years from the late 18
th

 century until 2008. Once compiled, 
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these records presented a significant challenge to interpret. The historical records came 

from hundreds of different sources and recorders, each with different priorities and 

sampling methodologies, with data quantity varying enormously between lakes and 

time periods. These factors, combined with uncertainties over species‟ names and 

localities, introduced sufficient bias to render most methods of multivariate analysis 

commonly used in ecology, such as correspondence analysis, not only invalid, but also 

impossible to interpret.  

 

Chapter 2 demonstrated some of the generic problems found in historical record data, 

through examples from the compiled macrophyte data for the Norfolk Broads and West 

Midland Meres. It showed that the number of visits made to lakes was highly variable 

throughout the time span of the datasets, as was the number of records made per visit, 

both of which were strongly related to the number of species recorded. This variation in 

recording effort could easily lead to false assumptions about species richness if not 

recognised. The study was also able to demonstrate that there was bias in species 

recording and site selection, particularly for earlier records. The change in recording 

methods largely reflects the change in recording ethos over the last 200 years, from 

mainly ad hoc collection of interesting species, to comprehensive whole lake surveys. 

 

These biases, and others discussed in Chapter 2 are relevant to the broads and meres 

dataset presented here, but also have a wider relevance for any study using a 

combination of historical records derived from multiple sources. Historical records are 

currently not widely used in a direct form by ecologists and conservationists, but they 
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will become an increasingly important source of „hard evidence‟ for degree of impact 

as conservation bodies and environmental agencies attempt to restore lakes back to 

“good ecological status” as required by the newly adopted Water Framework Directive, 

or to favourable condition, as required under the Habitats Directive. It is therefore 

particularly important that historical record data are properly understood and analysed 

in ways which acknowledge and overcome the various sources of bias, leaving behind 

patterns that can be interpreted ecologically. 

 

Once the various problems with the data had been considered, it was decided to analyse 

the macrophyte datasets of the Norfolk Broads and West Midland Meres by using a 

novel variation of a method used to assess amount of change in distribution of plants 

from historical records used for the UK flora (Preston et al., 2002; Telfer et al., 2002). 

The method demonstrated in Chapter 3 used the historical data for the broads and meres 

to develop a “change index” based on species persistence over the last 200 years, within 

individual lakes. Species persistence, measured as the proportion of those lakes which 

contained a species in the historic period, and which still contained that species in the 

modern period, was found to have a linear relationship with current day levels of 

occupancy (i.e. the number of lakes occupied as a proportion of all lakes). This 

relationship was used to derive change index scores for species with limited historical 

data. As expected, species with high index scores and thus large modern distribution 

and high levels of persistence in lakes, were those which are characteristic of lakes with 

high nutrient concentrations, such as Myriophyllum spicatum, Zannichellia palustris 

and Nuphar lutea. Conversely, species associated with low nutrient levels, such as 
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Littorella uniflora and Potamogeton alpinus in the broads, and Myriophyllum 

alterniflorum and Apium inundatum in the meres, had low index scores. There were, 

however, many species, such as Hydrocharis morsus-ranae and Stratiotes aloides, 

which are characteristic of lakes with relatively high nutrient concentrations, but which 

had low index scores. This implies that increasing fertility is not the sole driver for 

change in the composition of lake macrophyte communities, but rather a complex 

interaction of various chemical, physical and biological factors allied to eutrophication, 

but which have more immediate effects. These various supporting factors were 

explored more fully in Chapter 4.  

 

The change index was used not only to show periods of decline in low change index 

species in both the broads and meres, but was also used alongside contemporary data to 

rank lakes into those most and least changed in their macrophyte communities, 

compared to the historical analogue for the overall district of lakes. This was done by 

taking the average change index of all the species currently found in each lake and 

comparing the values for different lakes. Whilst this does not take into account 

important attributes of the vegetation community, such as diversity and abundance, the 

results demonstrated that many of the lakes were classified as expected, such as the 

Martham Broads and Whitemere which had low average change index values and 

Rostherne Mere and Ranworth Broad which had high averages. The use of a change 

index in this way not only enables the robust interpretation of datasets based on a large 

variety of historic sources but also offers a potentially useful tool for lake managers. It 

cannot however, state how much any individual site has changed over time, since the 
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baseline for each site is generally unknown (due to the incompleteness of the historical 

record)  or would have varied naturally between sites within a region due to site-

specific factors. The average change index therefore effectively reflects the relative 

importance at a site of species that have declined across a complex of lakes as a whole. 

 

Chapter 4 investigated in more detail the ecological significance of the change index. 

When species were spilt into functional groups based on their morphological 

characteristics using an accepted macrophyte classification system which also relates to 

habitat use (Willby et al., 2000), there was found to be a highly significant difference in 

the functional group mean index values for both the broads and meres. The functional 

groupings of (i) isoetids, (ii) hydrocharids and stratiotids, (iii) utricularids, and (iv) 

parvonymphaeids and magnopotamids, were the groups with the lowest average index 

scores, suggesting that these had declined most in both lake districts during the period 

of the datasets. While these functional groups cover a wide range of growth forms 

(isoetid, free-floating submerged, free-floating rooted, submerged rooted) they 

principally contain species characterised either by a) their occurrence in relatively 

mesotrophic or oligotrophic lakes, such as Isoetes lacustris, Littorella uniflora, Lobelia 

dortmanna, Utricularia species and pondweeds such as Potamogeton alpinus or 

Potamogeton gramineus, b) their occurrence in shallow, low energy habitats such, as 

Utricularia spp,  Stratiotes aloides and Hydrocharis morsus-ranae or c) their 

occurrence in deeper water such Isoetes lacustris and Potamogeton praelongus (Preston 

and Croft, 1997). These species could have declined not only due to increases in 

nutrient concentrations which stimulated growth of more productive canopy-forming 
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species, but also due to the role of nutrient loading in reedswamp loss in the broads 

(Boorman and Fuller, 1981), which contributed to the loss of shallow, low energy 

habitats, and an increase in light attenuation in the deeper, phytoplankton- rich meres.  

 

In order to test which particular ecological traits of these plants resulted in their decline 

or survival, they were each assigned a score of 0-2 for a variety of habitat 

characteristics assembled from the literature, including water depth, water level 

fluctuation, water movement and trophic state, as well as Ellenberg‟s indicator values 

for acidity (R). Non-hierarchical clustering of the species based on their ecological 

traits resulted in groups with distinct change index values, suggesting that changes in 

species could be partly explained by their ecological preferences. As established in 

Chapter 3, species characteristic of low nutrient conditions had consistently low index 

values, reinforcing the role of eutrophication in species decline in the broads and meres, 

but the main factors controlling decline or survival of species characteristic of high 

nutrient lakes, were less clear. In order to ascertain what ecological preference traits 

controlled the change index score (and hence whether species declined or survived) for 

eutrophic species, correlations were carried out between their index scores and the traits 

used in the cluster analysis. Of these traits, trophic preference was still the most 

significant, but with others, particularly depth preferences in the broads, and 

preferences for still water and lower pH in the meres, also contributing. These results 

revealed that trophic condition was the overriding influence on the status of 

macrophytes in the broads and meres, but that other, often site-specific factors 
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associated with eutrophication were also important in determining which species 

declined or persisted.  

 

A complementary approach to using historical records is illustrated in Chapter 5. This 

looks at macrophyte community change over the last 200 years using a combination of 

historical records and palaeolimnology, in a key lake within the Norfolk Broads; Barton 

Broad. Sediment samples were taken from the broad and analysed for macrofossil 

remains and pollen. Two types of sediment samples were taken: large bulk samples 

from the bottom of cores, analysed to give a picture of pre-1850 communities found in 

the lake, and complete cores, analysed to provide a chronology of macrophyte 

community change throughout the history of the lake. This was then integrated with 

historic records of plants growing in the broad dating back to 1884. Additionally, 

descriptive references to the aquatic vegetation were also compiled from books, journal 

articles, naturalists‟ notes and newspaper articles. 

 

This combined approach covering a range of data sources was able to give a more 

detailed picture of macrophyte community change than had previously been done, or by 

using any single data source in isolation. By complementing the historic records with 

palaeoanalysis it was possible to establish key aspects of the vegetation that pre-dated 

the first historic records. The method of bulk sampling bottom sediment also added 

many species which would not have been picked up or identified to species level in a 

small number of conventional, more finely sliced cores, e.g. Potamogeton coloratus 

and Nuphar lutea. Pollen analysis of the bottom sediments also added species, 
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including those which rarely leave macrofossil remains, such as Lemna and Callitriche. 

Most surprisingly pollen of Littorella uniflora and Myriophyllum alterniflorum was 

also found. These are species not generally associated with alkaline eutrophic lakes, 

implying that nutrient levels must have been much lower than at the present time and 

the structure of the broad quite different to provide suitable habitat for these species. 

All these sources of data, combined with very early descriptions of the broad (Gurney, 

1904; Nicholson, 1906), indicate that the communities that existed prior to 1850 were 

probably dominated by charophytes, but were not simply low growing Chara meadows 

as previously thought (Moss, 1979; George, 1992; Phillips, 1992). Instead, it appears 

that the vegetation structure was much more complex and varied, and, even at this time, 

contained many tall, fast growing species conventionally associated with quite nutrient 

rich conditions, such as Myriophyllum spicatum, Zannichellia palustris, Nuphar lutea, 

Stratiotes aloides and Ceratophyllum demersum. 

 

Subsequent changes in the aquatic flora were well documented in the historic records, 

historic descriptions and photographs, as well as in the macrofossil cores. This started 

with the loss of species such as Littorella uniflora and Myriophyllum alterniflorum and 

Potamogeton coloratus which were never historically recorded in Barton Broad, so had 

probably disappeared before the first botanists started collecting records there in the 

late nineteenth century. By around 1910 the charophyte lawns had probably also 

already diminished. Species such as Potamogeton lucens, Potamogeton compressus, 

Nitellopsis obtusa and Chara hispida all disappear from the historic records prior to 

1920, probably due to the effects of increasing nutrient concentrations. At the same 
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time, there is an increasing encroachment into the broad of reedswamp (Gurney, 1904; 

Ready, 1910; Boorman and Fuller, 1981). Whist this may have invaded the habitat of 

some of the species which were lost prior to 1920, it also provided a heterogeneous 

physical structure to the previously open water areas of the broad which allowed still-

water species, such as Stratiotes aloides, Hottonia palustris and Utricularia vulgaris, to 

continue to thrive in the mosaic of open water and in-lake reedswamp. The pressures of 

eutrophication and coypu grazing probably contributed to the dying back of the 

reedswamp, which occurred in the 1950s, after pumping of sewage effluent into the 

broad began (Lambert, 1965; Boorman and Fuller, 1981; Boar et al., 1989). Once the 

reedswamp had died back and the in-lake swamp had gone, the hydraulic forces and 

change in sediment structure caused by remobilisation would have been too much for 

the remaining plants, and would have prevented further recruitment from the sediment 

propagule bank, causing these species to disappear around 1960. 

 

Subsequent reductions in nutrient loading to Barton Broad have not yet lead to a 

recovery of its macrophyte community, which, although improving, remains sparse and 

species-poor. It is reasonable to speculate that this will not be possible until some of the 

structure, previously present in the form of the in-lake reedswamp, is re-established. 

The case study of Barton Broad demonstrates the added value of, not just historic 

records, but also historic descriptions, to palaeolimnological analysis. 

 

This thesis has demonstrated that there is considerable potential for the use of historical 

records in ecological studies of macrophyte communities in lakes. It has illustrated 
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some of the common problems associated with these records, but has also provided 

examples of robust ways in which to use them and overcome these problems. With the 

increased accessibility of historic records, and construction of databases of plant 

records, such as that run by the National Biodiversity Network gateway 

(data.nbn.org.uk), it is hoped that more studies into past macrophyte communities or 

ecological change, will exploit historic records, either as a data source in their own 

right, or to complement conventional palaeoecological research methods. The use of 

historical records is not a cheap alternative and will always require careful scrutiny and 

evaluation but, in return, it offers a more comprehensive insight into past lake 

environments and the factors resulting in diversity loss and reduction in ecosystem 

quality. 
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Appendix 3: Graphical representation of the relationships between tables in the historic plant

records database.



LatinName CommonName DateOfRecord Year Recorder Source Author PlantNotes

Glyceria maxima Reed sweet-grass 21.8.62 1862 Gould, S. British Museum (Natural History) Herbarium. Barton Broad, Barton Turf. Growing in shaded area near water. Common

Potamogeton praelongus Long-stalked pondweed 4.8.1884 1884 Bennett, A.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Carex diandra Lesser Tussock-sedge 1885 1885 Mennell, H. T.

Miscellaneous notes and observations. Trans. Norf. 

Nor. Nat. Soc. (1889) 4, 254-259. Geldart, H. D.

Oenanthe aquatica Fine-leaved Water-dropwort 1885 1885 Mennell, H. T.

Miscellaneous notes and observations. Trans. Norf. 

Nor. Nat. Soc. (1889) 4, 254-259. Geldart, H. D.

Potamogeton lucens Shining pondweed 8.8.1885 1885 Groves, H.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Carex curta White sedge June 1886 1886 Linton E. F.

Notes on a few Norfolk plants, including five newly 

found in the county. Trans. Norf. Nor. Nat. Soc. (1889) 

4, 324. Linton, E. F. by the edge of Barton Broad, on the Barton turf side.

Carex elata Tufted sedge 8.6.1886 1886 E.F.G British Museum (Natural History) Herbarium.

Potamogeton compressus Grass-wrack pondweed 8.7.1886 1886 Linton, E. F.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Potamogeton praelongus Long-stalked pondweed 1886 1886 BSBI

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Potamogeton praelongus Long-stalked pondweed 8.7.1886 1886 Linton, E. F.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Potamogeton praelongus Long-stalked pondweed 8.6.1886 1886 Linton, E. F. Biological Centre, Monkswood. Herbarium.

Potamogeton compressus Grass-wrack pondweed 10.7.1888 1888 Bennett, A.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Potamogeton compressus Grass-wrack pondweed 18.7.1890 1890 Cotton, C.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Hippuris vulgaris Mare's tail 20.7.1898 1898 Perring, F. H. Biological Centre, Monkswood. Herbarium.

Potamogeton compressus Grass-wrack pondweed 1.8.1900 1900 Bennett, A. & Salmon, C. E.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Potamogeton compressus Grass-wrack pondweed 26.7.1900 1900 Bennett, J & Bennett, A.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Carex appropinquata Fibrous Tussock-sedge May 31. 1902 1902 Salmon, C.E. British Museum (Natural History) Herbarium. Great Fen, Barton Broad

Potamogeton obtusifolius Blunt-leaved pondweed 1902 1902 Salmon, C. E. Norfolk notes. J. Bot., (1902) 40, 94-101. Salmon, C. E. & Bennett, A.

Sagittaria sagittifolia Arrowhead September 1902 1902 Slater, Rev.H.H. NBN Gateway

Hottonia palustris Water-violet 1903 1903 Bennett, A. Norfolk Notes. J. Bot. (1903) 41, 202-204. Bennett, A. & Salmon, C. E. Barton turf

Stratiotes aloides Water-soldier 1903 1903 Bennett, A. Norfolk Notes. J. Bot. (1903) 41, 202-204. Bennett, A. & Salmon, C. E.

Potamogeton friesii Flat-stalked pondweed 20.8.1909 1909 Moss, C. E. Biological Centre, Monkswood. Herbarium.

Potamogeton obtusifolius Blunt-leaved pondweed 15.8.1909 1909 Moss, C. E.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Potamogeton pectinatus Fennel-leaved pondweed 26.8.1909 1909 Moss, C. E.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Potamogeton polygonifolius Bog pondweed Aug 1909 1909 Moss, C. E. Biological Centre, Monkswood. Herbarium.

Potamogeton pusillus Lesser pondweed 22.8.1909 1909 Moss, C. E.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Potamogeton pusillus Lesser pondweed 23.8.1909 1909 Moss, C. E.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Potamogeton pusillus Lesser pondweed 26.8.1909 1909 Moss, C. E.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Ceratophyllum demersum Rigid Hornwort 28.8.1910 1910 Wilmot, A. J. British Museum (Natural History) Herbarium.

Potamogeton friesii Flat-stalked pondweed 28.6.1910 1910 Adamson, R. S.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Hydrocharis morsus-ranae Frogbit 1911 1911 Pallis, M.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Myriophyllum spicatum Spiked water-milfoil 1911 1911 Pallis, M.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Myriophyllum verticillatum Whorled water-milfoil 1911 1911 Pallis, M.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Nuphar lutea Yellow Water-lily 1911 1911 Pallis, M.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Nymphaea alba White Water-lily 1911 1911 Pallis, M.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Potamogeton lucens Shining pondweed 1911 1911 Pallis, M.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Potamogeton natans Broad-leaved pondweed 1911 1911 Pallis, M.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Potamogeton praelongus Long-stalked pondweed 1911 1911 Pallis, M.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Schoenoplectus lacustris Common Club-rush Aug 1911 1911 Tansley, A. G.

The development of a Broadland estate at How Hill, 

Ludham, Norfolk. Trans. Norf. Nor. Nat. Soc. (1939) 

15, 5-21. Boardman, E. T.

Stratiotes aloides Water-soldier 1911 1911 Pallis, M.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Stratiotes aloides Water-soldier Aug 1911 1911 Tansley, A. G.

The development of a Broadland estate at How Hill, 

Ludham, Norfolk. Trans. Norf. Nor. Nat. Soc. (1939) 

15, 5-21. Boardman, E. T. "occupying a large extent of Barton Broad.

Nymphaea alba White Water-lily pre 1914 1914 Anon A flora of Norfolk (1914). Nicholson, W. A.

Potamogeton compressus Grass-wrack pondweed pre 1914 1914 Anon A flora of Norfolk (1914). Nicholson, W. A.

Potamogeton friesii Flat-stalked pondweed pre 1914 1914 Anon A flora of Norfolk (1914). Nicholson, W. A.

Persicaria amphibia Amphibious bistort Aug 3rd 1915 1915 Pallis, M. British Museum (Natural History) Herbarium.

Infrequent. Leaves nearly always algae coated. Typha angustifolia skeleton remain found 

amoung slime & dead roots.

Potamogeton lucens Shining pondweed 2.8.1915 1915 Pallis, M.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Potamogeton obtusifolius Blunt-leaved pondweed 5.8.1915 1915 Pallis, M.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Nymphaea alba White Water-lily 1920's 1920 Ellis, E. A. ?EAE in shallow peaty bays

Hottonia palustris Water-violet Sept. 1928 1928 Meinertzhagen, R. British Museum (Natural History) Herbarium. Submerged in deep water.

Potamogeton perfoliatus Perfoliate pondweed Sept. 1928 1928 Meinertzhagen, R. British Museum (Natural History) Herbarium.

Butomus umbellatus Flowering rush 1930's 1930 Gane, G. Barton Parish Magazine. 23.3.76 found near the banks and in dykes

Hydrocharis morsus-ranae Frogbit 1930's 1930 Gane, G. Barton Parish Magazine. 23.3.76 found in sheltered shallow corners

Nuphar lutea Yellow Water-lily 1930's 1930 Gane, G. Barton Parish Magazine. 23.3.76

Nymphaea alba White Water-lily 1930's 1930 Gane, G. Barton Parish Magazine. 23.3.76

Persicaria amphibia Amphibious bistort 1930's 1930 Gane, G. Barton Parish Magazine. 23.3.76 found in sheltered shallow corners

Ranunculus aquatilis Common Water-crowfoot 1930's 1930 Gane, G. Barton Parish Magazine. 23.3.76 found in sheltered shallow corners

Ranunculus reptans Creeping Spearwort 1930's 1930 Gane, G. Barton Parish Magazine. 23.3.76 found in sheltered shallow corners

Stratiotes aloides Water-soldier 1930's 1930 Gane, G. Barton Parish Magazine. 23.3.76

Myriophyllum verticillatum Whorled water-milfoil 29.8.35 1935 Ellis, E. A. & Geldart, A. M.

East Anglian Notebook. Norfolk and Suffolk Wild Life. 

Eastern Evening News. No. 1362. (1935). Ellis, E. A. & Geldart, A. M. numerous flowering spikes

Nuphar lutea Yellow Water-lily 29.8.35 1935 Ellis, E. A. & Geldart, A. M.

East Anglian Notebook. Norfolk and Suffolk Wild Life. 

Eastern Evening News. No. 1362. (1935). Ellis, E. A. & Geldart, A. M.

Nymphaea alba White Water-lily 29.8.35 1935 Ellis, E. A. & Geldart, A. M.

East Anglian Notebook. Norfolk and Suffolk Wild Life. 

Eastern Evening News. No. 1362. (1935). Ellis, E. A. & Geldart, A. M.

Stratiotes aloides Water-soldier 29.8.35 1935 Ellis, E. A. & Geldart, A. M.

East Anglian Notebook. Norfolk and Suffolk Wild Life. 

Eastern Evening News. No. 1362. (1935). Ellis, E. A. & Geldart, A. M.

Stratiotes aloides Water-soldier pre 1939 1939 Gane, G. Barton Parish Magazine. 23.3.76 absent but known to have occurred in the past

Najas marina Holly-leaved naiad c. 1947 1947 Ellis, E. A.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Nymphaea alba White Water-lily c. 1947 1947 Ellis, E. A.

Notes on the natural history of the Broads area. (NCC 

files BG 9-10). (1947). Ellis, E. A.

Nymphaea alba White Water-lily c. 1947 1947 Ellis, E. A.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Stratiotes aloides Water-soldier c. 1947 1947 Ellis, E. A.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Najas marina Holly-leaved naiad Sept 1949 1949 Boardman, D. T.

Norfolk Rare Plant Survey. Vol VII. (Held at NCC, 

Norwich). (1977). Crompton, G.

Najas marina Holly-leaved naiad 30.8.52 1952 Dunbar, R. E. C.

Norfolk Rare Plant Survey. Vol VII. (Held at NCC, 

Norwich). (1977). Crompton, G. found in bay near Heron's Carr. Also specimen in Norwich Castle Musuem.
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Appendix 4. An example of data held in the historic plants database; all records held for Barton Broad, Norfolk.



LatinName CommonName DateOfRecord Year Recorder Source Author PlantNotes

Potamogeton obtusifolius Blunt-leaved pondweed 14.7.53 1953 Ryland, J. S.

British Museum (Natural History) Potamogetonaceae 

Card Index Dandy, J. E.

Najas marina Holly-leaved naiad 27.7.54 1954 Goodway, K. M.

Norfolk Rare Plant Survey. Vol VII. (Held at NCC, 

Norwich). (1977). Crompton, G. generally on naked mud in scattered clumps which often have hollow centres

Najas marina Holly-leaved naiad 1951-1955 1955 Jermy, A. C.

Norfolk Rare Plant Survey. Vol VII. (Held at NCC, 

Norwich). (1977). Crompton, G. at Pleasure Hill btwn submerged peat cuttings and west side of north end

Sparganium erectum Branched bur-reed 7.7.1956 1956 Norwich Castle Musuem (Natural History) Herbarium. Barton turf

Ceratophyllum demersum Rigid Hornwort 19.9.68 1968 Morgan, N. C.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Lemna minor Common duckweed 19.9.68 1968 Morgan, N. C.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Nuphar lutea Yellow Water-lily 19.9.68 1968 Morgan, N. C.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Nymphaea alba White Water-lily 19.9.68 1968 Morgan, N. C.

Problems of the conservation of freshwater 

ecosystems. In: Conservation and Productivity of 

Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Nuphar lutea Yellow Water-lily 25.9.72 1972 Mason, C. F. & Bryant, R. J.

Changes in the ecology of the Norfolk Broads. 

Freshwater Biology, (1975) 5, 527-570. Mason, C. F. & Bryant, R. J.

Nymphaea alba White Water-lily 25.9.72 1972 Mason, C. F. & Bryant, R. J.

Changes in the ecology of the Norfolk Broads. 

Freshwater Biology, (1975) 5, 527-570. Mason, C. F. & Bryant, R. J.

Nymphaea alba White Water-lily 1977 1977 Tubbs, F. R. Pers. comm. 15.12.77 Tubbs, F. R.

Potamogeton pectinatus Fennel-leaved pondweed 02/08/1983 1983 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 01/08/1985 1985 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 01/08/1985 1985 Broads Authority Broads Authority

Nuphar lutea Yellow Water-lily 30/07/1986 1986 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 29/07/1988 1988 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 03/09/1993 1993 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 23/08/1994 1994 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 23/08/1994 1994 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 18/08/1995 1995 Broads Authority Broads Authority

Elodea nuttallii Nuttall's waterweed 18/08/1995 1995 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 18/08/1995 1995 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 18/08/1995 1995 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 15/08/1996 1996 Broads Authority Broads Authority

Elodea nuttallii Nuttall's waterweed 15/08/1996 1996 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 15/08/1996 1996 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 15/08/1996 1996 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 16/07/1997 1997 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 16/07/1997 1997 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 03/07/1998 1998 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 04/08/1999 1999 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 18/08/2000 2000 Broads Authority Broads Authority

Elodea canadensis Canadian pondweedwaterweed 18/08/2000 2000 Broads Authority Broads Authority

Lemna minor Common duckweed 18/08/2000 2000 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 18/08/2000 2000 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 18/08/2000 2000 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 13/08/2002 2002 Broads Authority Broads Authority

Elodea canadensis Canadian pondweedwaterweed 13/08/2002 2002 Broads Authority Broads Authority

Nuphar lutea Yellow Water-lily 13/08/2002 2002 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 13/08/2002 2002 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 25/07/2003 2003 Broads Authority Broads Authority

Elodea canadensis Canadian pondweedwaterweed 25/07/2003 2003 Broads Authority Broads Authority

Lemna trisulca Ivy-leaved duckweed 25/07/2003 2003 Broads Authority Broads Authority

Najas marina Holly-leaved naiad 25/07/2003 2003 Broads Authority Broads Authority

Nuphar lutea Yellow Water-lily 25/07/2003 2003 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 25/07/2003 2003 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 25/07/2003 2003 Broads Authority Broads Authority

Potamogeton pusillus Lesser pondweed 25/07/2003 2003 Broads Authority Broads Authority

Sagittaria sagittifolia Arrowhead 25/07/2003 2003 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 02/09/2004 2004 Broads Authority Broads Authority

Elodea canadensis Canadian pondweedwaterweed 02/09/2004 2004 Broads Authority Broads Authority

Elodea nuttallii Nuttall's waterweed 02/09/2004 2004 Broads Authority Broads Authority

Lemna minor Common duckweed 02/09/2004 2004 Broads Authority Broads Authority

Lemna trisulca Ivy-leaved duckweed 02/09/2004 2004 Broads Authority Broads Authority

Nuphar lutea Yellow Water-lily 02/09/2004 2004 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 02/09/2004 2004 Broads Authority Broads Authority

Potamogeton obtusifolius Blunt-leaved pondweed 02/09/2004 2004 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 02/09/2004 2004 Broads Authority Broads Authority

Ranunculus circinatus Fan-leaved Water-crowfoot 02/09/2004 2004 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 05/08/2005 2005 Broads Authority Broads Authority

Elodea canadensis Canadian pondweedwaterweed 05/08/2005 2005 Broads Authority Broads Authority

Najas marina Holly-leaved naiad 05/08/2005 2005 Broads Authority Broads Authority

Nuphar lutea Yellow Water-lily 05/08/2005 2005 Broads Authority Broads Authority

Nymphaea alba White Water-lily 05/08/2005 2005 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 05/08/2005 2005 Broads Authority Broads Authority

Potamogeton obtusifolius Blunt-leaved pondweed 05/08/2005 2005 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 05/08/2005 2005 Broads Authority Broads Authority

Potamogeton perfoliatus Perfoliate pondweed 05/08/2005 2005 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 26/07/2006 2006 Broads Authority Broads Authority

Elodea nuttallii Nuttall's waterweed 26/07/2006 2006 Broads Authority Broads Authority

Nuphar lutea Yellow Water-lily 26/07/2006 2006 Broads Authority Broads Authority

Nymphaea alba White Water-lily 26/07/2006 2006 Broads Authority Broads Authority

Potamogeton berchtoldii Small pondweed 26/07/2006 2006 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 26/07/2006 2006 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 26/07/2006 2006 Broads Authority Broads Authority

Ranunculus circinatus Fan-leaved Water-crowfoot 26/07/2006 2006 Broads Authority Broads Authority

Schoenoplectus lacustris Common Club-rush 26/07/2006 2006 Broads Authority Broads Authority

Sparganium emersum Unbranched bur-reed 26/07/2006 2006 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 2007 2007 Broads Authority Broads Authority

Elodea canadensis Canadian pondweedwaterweed 2007 2007 Broads Authority Broads Authority

Elodea nuttallii Nuttall's waterweed 2007 2007 Broads Authority Broads Authority

Lemna minor Common duckweed 2007 2007 Broads Authority Broads Authority

Nuphar lutea Yellow Water-lily 2007 2007 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 2007 2007 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 2007 2007 Broads Authority Broads Authority

Potamogeton pusillus Lesser pondweed 2007 2007 Broads Authority Broads Authority

Potamogeton trichoides Hairlike pondweed 2007 2007 Broads Authority Broads Authority

Ranunculus circinatus Fan-leaved Water-crowfoot 2007 2007 Broads Authority Broads Authority

Schoenoplectus lacustris Common Club-rush 2007 2007 Broads Authority Broads Authority

Sparganium emersum Unbranched bur-reed 2007 2007 Broads Authority Broads Authority

Spirodela polyrhiza Greater Duckweed 2007 2007 Broads Authority Broads Authority

Zannichellia palustris Horned pondweed 2007 2007 Broads Authority Broads Authority

Ceratophyllum demersum Rigid Hornwort 2008 2008 Broads Authority Broads Authority

Elodea canadensis Canadian pondweedwaterweed 2008 2008 Broads Authority Broads Authority

Elodea nuttallii Nuttall's waterweed 2008 2008 Broads Authority Broads Authority

Lemna minor Common duckweed 2008 2008 Broads Authority Broads Authority

Nuphar lutea Yellow Water-lily 2008 2008 Broads Authority Broads Authority

Potamogeton crispus Curled pondweed 2008 2008 Broads Authority Broads Authority

Potamogeton pectinatus Fennel-leaved pondweed 2008 2008 Broads Authority Broads Authority

Sagittaria sagittifolia Arrowhead 2008 2008 Broads Authority Broads Authority

Schoenoplectus lacustris Common Club-rush 2008 2008 Broads Authority Broads Authority

Sparganium emersum Unbranched bur-reed 2008 2008 Broads Authority Broads Authority

Spirodela polyrhiza Greater Duckweed 2008 2008 Broads Authority Broads Authority
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LatinName DateOfRecord Year SiteName GridReference Recorder Source Author PlantNotes

Utricularia 1911 1911 Barton TG359214 Pallis, M.

Problems of the conservation of freshwater ecosystems. In: Conservation 

and Productivity of Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C. more than one species of utricularia

Utricularia 1930's 1930 Barton TG359214 Gane, G. Barton Parish Magazine. 23.3.76

Utricularia 18.4.39 1939 Crome's TG374196 Geldart, A. M.

The development of a Broadland estate at How Hill, Ludham, Norfolk. 

Trans. Norf. Nor. Nat. Soc. (1939) 15, 5-21. Boardman, E. T.

Utricularia pre-1953 1953 Sutton (Stalham) TG375235 JM The British Isles and their vegetation. (1953). Tansley, A. G.

Utricularia 1968 1968 Hickling TG419214 George, M.

Problems of the conservation of freshwater ecosystems. In: Conservation 

and Productivity of Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C. more than one species of utricularia

Utricularia July 1968 1968 Hickling TG419214 Morgan, N. C.

Problems of the conservation of freshwater ecosystems. In: Conservation 

and Productivity of Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C. more than one species of utricularia

Utricularia 22.7.68 1968 Horsey Mere TG449222 Morgan, N. C.

Problems of the conservation of freshwater ecosystems. In: Conservation 

and Productivity of Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C. more than one species

Utricularia 1968 1968 Blackfleet TG444213 George, M. Aquatic macrophytes. (NNC files Subject files)

Utricularia 18.10.68 1968 Heigham Sound and Whiteslea TG433205 George, M. Field Notes. (NNC files C 22). (1971). George, M.

Utricularia 1.6.69 1969 Hickling TG419214 Morgan, N. C. & Britton, R. H.

Conservation Review. Interim Report on Open Water. (NCC files HG 9, HI 

861, HO 26 and RC 28). (1969).

Morgan, N. C. & 

Britton, R. H.

Utricularia 23.9.69 1969 Upton Great TG389134 Morgan, N. C.

Problems of the conservation of freshwater ecosystems. In: Conservation 

and Productivity of Natural Waters. Symp. Zool. Soc. Lond. (R. V. 

Edwards & D. J. Garrod). (1972) 135-154. Morgan, N. C.

Utricularia 25.8.71 1971 Martham South TG459201 Hornby, R. J. & Pigg, F. Field Notes. (NNC files MA 13). (1971). Hornby, R. J.

Utricularia 18.8.71 1971 Martham South TG459201 Cadbury, C. Field Notes. (NNC files MA 3). (1971). Cadbury, C.

Utricularia 1.8.75 1975 Martham South TG459201 Wright, P. A. & Stevens, P. M. C. Field Notes. (NNC files MA 4). (1975). Wright, P. A.

in area close to the boathouse and associated with 

najas

Utricularia 1977 1977 Martham Somerton TG450200 Norfolk Naturalists Trust Vegetation Survey of Nature Reserves. (NCC files MA 29-35). (1978).

Norfolk 

Naturalists Trust

Utricularia 1977 1977 Martham South TG459201 Norfolk Naturalists Trust Vegetation Survey of Nature Reserves. (NCC files MA 29-35). (1978).

Norfolk 

Naturalists Trust

Utricularia 15.8.79 1979 Calthorpe TG409259 Dollmon, H. E. Pers. comm. 29.3.78 Dollman, H.

Utricularia 22.8.79 1979 Hickling TG419214 Linsell, S. Pers. comm. 22.8.79 Linsell, S. at mouth of dyke leading into broad

Utricularia australis 28.7.1899 1899 Martham Somerton TG450200 Bennett, J & A. British Museum (Natural History) Herbarium. Dike connecting the Thurne with Martham Broad

Utricularia australis 1937 1937 Wheatfen TG328057 Ellis, E. A. Flora of Norfolk (1968).

Petch, C. P. & 

Swann, E. L. Recorded as U. neglecta

Utricularia intermedia 28.9.1892 1892 Barton TG359214 Clarke, W. G. Norwich Castle Musuem (Natural History) Herbarium.

Utricularia intermedia 31 Aug. 1893 1893 Barton TG359214 Groves, H. British Museum (Natural History) Herbarium. Fen on South of Barton Broad, E Norfolk

Utricularia intermedia October 1912 1912 Barton TG359214 Clarke, W.G. British Museum (Natural History) Herbarium. Barton Turf Fen, Norfolk

Utricularia intermedia 28.9.1912 1912 Barton TG359214 AHB British Museum (Natural History) Herbarium. Barton turf Norfolk

Utricularia intermedia Sept. 1915 1915 Sutton (Stalham) TG375235 Pallis, M. British Museum (Natural History) Herbarium. Sutton Fen

Utricularia intermedia 1920 1920 Sutton (Stalham) TG375235 Clarke, W.G. & Gurney, R.

Notes on the genus Utricularia and its distribution in Norfolk. Trans. Norf. 

Nor. Nat. Soc. (1921) 11, 128-161.

Clakre, W.G. & 

Gurney, R.

Utricularia intermedia 24.6.1921 1921 Sutton (Stalham) TG375235 Gurney, R. Diaries. (Held at NCC, Norwich). (1921-29). Gurney, R.

All species recorded from lousy bay. Littorella uniflora 

and Utricularia neglecta previously present

Utricularia intermedia 20.7.1921 1921 Sutton (Stalham) TG375235 Gurney, R. Diaries. (Held at NCC, Norwich). (1921-29). Gurney, R. Littorella uniflora previously present

Utricularia intermedia 23.6.1921 1921 Hoveton Little Broad TG330175 Gurney, R. Diaries. (Held at NCC, Norwich). (1921-29). Gurney, R.

Utricularia intermedia June 1921 1921 Hoveton Little Broad TG330175 Gurney, R. Diaries. (Held at NCC, Norwich). (1921-29). Gurney, R. near boathouse on Pound end broad

Utricularia minor 1798 1798 Shomere Pool SJ504079 Williams, Rev E. Leighton, W.A. (1839)

Leighton, W.A. 

(1839) Ditch on Shomere Moss, near Condover.

Utricularia minor <1805 1805 Surlingham (Bargate) TG318078 Turner, D. Flora of Norfolk, (1866). Trimmer, K. "Bogs at Surlingham". From Botanist's Guide

Utricularia minor 1821 1821 Betley Mere SJ748479 Purton, Dr T. Purton, T. (1821) Purton, T. (1821) Near Betley.

Utricularia minor AUG 1835 1835 Bomere Pool SJ498080 Leighton, Rev W.A. Bolton Museum (2006)

Bolton Museum 

(2006)

Utricularia minor 13 SEP 1835 1835 Bomere Pool SJ498080 Babington, Prof C.C. A flora of Shropshire (1841) Leighton, W. A. Ditches on the north side of Bomere Pool.

Utricularia minor <1841 1840 Bomere Pool SJ498080 Leighton, W. A. A flora of Shropshire (1841) Leighton, W. A. ditches on the north side

Utricularia minor 7/1862 1862 Oak Mere SJ574677 Boswell-Syme, J.T.I. British Museum (Natural History) Herbarium.

Utricularia minor 1874 1874 Hatch Mere SJ552721 Warren, Sir J.B.L. Warren, J.B.L.(Lord de Tabley) (1899)

Warren, 

J.B.L.(Lord de 

Tabley) (1899) Pit-holes in the north swamp at Hatchmere.

Utricularia minor 1874 1874 Abbot's Moss SJ590689 Warren, Sir J.B.L. Warren, J.B.L.(Lord de Tabley) (1899)

Warren, 

J.B.L.(Lord de 

Tabley) (1899)

Pits in the centre of the swamp on Newchurch 

Common, by the letter N" in Ordnance Map."

Utricularia minor July, 1877 1877 Oak Mere SJ574677 Whitelegge, T. British Museum (Natural History) Herbarium.

Utricularia minor 1878 1878 Bomere Pool SJ498080 Phillips, Rev W.

Transactions of the Shropshire Archaeological & Natural History Society 

Vol 1, 1878 Phillips, William Ditches on the north side of Bomere Pool.

Utricularia minor 23rd August 1879 1879 Oak Mere SJ574677 Bailey, C. British Museum (Natural History) Herbarium. Edge of Oakmere, in the neighbourhood of Delamere

Utricularia minor 25th June 1890 1890 The Mere, Ellesmere SJ406349 Wolley-Dod, A.H. British Museum (Natural History) Herbarium.

Utricularia minor 1901 1901 Betley Mere SJ748479 Welch, D. Bagnall, J.E. (1901)

Bagnall, J.E. 

(1901) Betley.

Utricularia minor 1910 1910 Hatch Mere SJ552721 Dunlop, Mr G.A. Dunlop, G.A. (1910)

Dunlop, G.A. 

(1910) In shallow, mossy pools near edges of mere.

Utricularia minor 27.6.1910 1910 Sutton (Stalham) TG375235 Wilmott, A.J. British Museum (Natural History) Herbarium.

Norfolk: in shallow water fen near mouth of Sutton 

Broad

Utricularia minor 1920 1920 Sutton (Stalham) TG375235 Clarke, W.G. & Gurney, R.

Notes on the genus Utricularia and its distribution in Norfolk. Trans. Norf. 

Nor. Nat. Soc. (1921) 11, 128-161.

Clakre, W.G. & 

Gurney, R.

Utricularia minor 24.6.1921 1921 Sutton (Stalham) TG375235 Gurney, R. Diaries. (Held at NCC, Norwich). (1921-29). Gurney, R.

All species recorded from lousy bay. Littorella uniflora 

and Utricularia neglecta previously present

Utricularia minor 20.7.1921 1921 Sutton (Stalham) TG375235 Gurney, R. Diaries. (Held at NCC, Norwich). (1921-29). Gurney, R. Littorella uniflora previously present

Utricularia minor 1921 1921 Sutton (Stalham) TG375235 Gurney, R.

Utricularia in Norfolk in 1921: The effects of drought and temperature. 

Norf. Nor. Nat. Soc. (1921) 11. Gurney, R.

"[not in flower but] survived the summer in a thriving 

condition at the edge of the Broad."

Utricularia minor 1950 1950 Hatch Mere SJ552721 Butcher, Dr R.W. Biological Records Centre (1970-2005)

Biological 

Records Centre 

(1970-2005) [No date. This is approximate.]

Utricularia minor 1964-1969 1966 Abbot's Moss SJ590689 Newton, Mr A.L. Flora of Cheshire (1971) Newton, Alan

Two bog pools near Abbot's Moss. With Eleocharis 

multicaulis. Flowering regularly.

Utricularia minor 28-Jun-83 1983 Abbot's Moss SJ590689 Newbold, Dr C. English Nature (1946-2005)

English Nature 

(1946-2005)

Utricularia minor May-91 1991 Abbot's Moss SJ590689 Hawksford, Mr J.E. Biological Records Centre (1970-2005)

Biological 

Records Centre 

(1970-2005)

Utricularia minor 12-Jul-01 2001 Abbot's Moss SJ590689 Hodgetts, Mr N.G. Whild Associates (1993-2006)

Whild Associates 

(1993-2006) Rare in bog pools in the Lily Pond.

Utricularia vulgaris 1800 1800 Hencott Pool SJ480160 Williams, Rev E. Leighton, W.A. (1839)

Leighton, W.A. 

(1839) Hencote pool.

Utricularia vulgaris 29 JUL 1836 1836 Crose Mere SJ430305 Bowman, Mr J.E. A flora of Shropshire (1841) Leighton, W. A.

In a deep ditch on the north margin of Croesmere 

Mere.

Utricularia vulgaris 1840 1840 Crose Mere SJ430305 Bowman, J. E. A flora of Shropshire (1841) Leighton, W. A. In deep ditch on North margin of the mere

Utricularia vulgaris 1841 1841 Hencott Pool SJ480160 Dickinson, Mr F. A flora of Shropshire (1841) Leighton, W. A.

Utricularia vulgaris 1844 1844 Betley Mere SJ748479 Garner, Dr R. Garner, R. (1844) Garner, R. (1844) Betley.

Utricularia vulgaris 1844 1844 Aqualate Mere SJ772204 Garner, Dr R. Garner, R. (1844) Garner, R. (1844) Frequent in pools... Aqualate.

Utricularia vulgaris 1844 1844 Maer Pool SJ789384 Garner, Dr R. Garner, R. (1844) Garner, R. (1844) Maer.

Utricularia vulgaris August 1846 1846 Hickling TG419214 Mann, R.J. British Museum (Natural History) Herbarium.

Utricularia vulgaris 1847 1847 Hickling TG419214 Mann, R. J. Royal Botanical Gardens, Kew. Herbarium.

Utricularia vulgaris <1866 1866 Hickling TG419214 Trimmer. K. Flora of Norfolk, (1866). Trimmer, K.

Utricularia vulgaris 19.7.1881 1881 Ormesby Great TG467161 Norwich Castle Musuem (Natural History) Herbarium.

Utricularia vulgaris 23 SEP 1882 1882 Fenemere SJ445229 Beckwith, Mr W.E. Beckwith, W.E. (1882)

Beckwith, W.E. 

(1882) In ditches near Fenemere.

Utricularia vulgaris 1882 1882 Hencott Pool SJ480160 Beckwith, Mr W.E. Beckwith, W.E. (1882)

Beckwith, W.E. 

(1882)

Utricularia vulgaris 17th July 1883 1883 Sutton (Stalham) TG375235 Hanbury, F.J. British Museum (Natural History) Herbarium.

Utricularia vulgaris 12th July 1883 1883 Martham Somerton TG450200 Hanbury, F.J. British Museum (Natural History) Herbarium.

Utricularia vulgaris 12.7.1883 1883 Martham North TG458204 Hanbury, F. J. British Museum (Natural History) Herbarium.

Utricularia vulgaris 9. 1884 1884 The Mere, Ellesmere SJ406349 Beckwith, W.E. British Museum (Natural History) Herbarium.

Utricularia vulgaris 8.1885 1885 Sutton (Stalham) TG375235 Mennell, H. T. British Museum (Natural History) Herbarium.

Utricularia vulgaris 16.7.1885 1885 Upton Great TG389134 Southwell & Geldart, H. D.

Miscellaneous notes and observations. Trans. Norf. Nor. Nat. Soc. (1889) 

4, 254-259. Geldart, H. D.

Utricularia vulgaris July 1/1889 1889 Hickling TG419214 Salmon, C.E & E. British Museum (Natural History) Herbarium.

Utricularia vulgaris 6.7.1897 1897 Sutton (Stalham) TG375235 Norwich Castle Musuem (Natural History) Herbarium.

Utricularia vulgaris 20.7.1898 1898 Barton TG359214 Perring, F. H. Biological Centre, Monkswood. Herbarium.

Utricularia vulgaris 1901 1901 Hencott Pool SJ480160 Hamilton, Mr W.P. Record of Bare Facts 11: 1901 (1902)

Record of Bare 

Facts 11: 1901 

(1902)

Abundantly in flower at its old habitat Hencote Pool, 

where it has been in some seasons apparently extinct.

Utricularia vulgaris 1903 1903 Hencott Pool SJ480160 Hamilton, Mr W.P. Record of Bare Facts 15: 1905 (1906)

Record of Bare 

Facts 15: 1905 

(1906)

The hibernacula or winter buds were found at 

Christmas in a garden tank, into which plants from 

Hencote pool had been introduced a season or two 

ago.

Utricularia vulgaris July 1905 1905 Sutton (Stalham) TG375235 Nicholson, W. A.

A preliminary sketch of the bionomical botany of Sutton and the Ant 

district. Trans. Norf. Nor. Nat. Soc. (1906) 8, 265-289. Nicholson, W. A.
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LatinName DateOfRecord Year SiteName GridReference Recorder Source Author PlantNotes

Utricularia vulgaris 1906 1906 Heigham Sound and Whiteslea TG433205 Nicholson, W. A.

A preliminary sketch of the bionomical botany of Sutton and the Ant 

district. Trans. Norf. Nor. Nat. Soc. (1906) 8, 265-289. Nicholson, W. A.

Utricularia vulgaris 2.8.1915 1915 Sutton (Stalham) TG375235 Pallis, M. British Museum (Natural History) Herbarium.

Utricularia vulgaris 6.8.1915 1915 Horsey Mere TG449222 Pallis, M. British Museum (Natural History) Herbarium. Rare

Utricularia vulgaris 2.8.1915 1915 Barton TG359214 Pallis, M. British Museum (Natural History) Potamogetonaceae Card Index Dandy, J. E.

Utricularia vulgaris July 2 1915 1915 Upton Great TG389134 White, J.W. British Museum (Natural History) Herbarium.

Utricularia vulgaris 1920 1920 Sutton (Stalham) TG375235 Clarke, W.G. & Gurney, R.

Notes on the genus Utricularia and its distribution in Norfolk. Trans. Norf. 

Nor. Nat. Soc. (1921) 11, 128-161.

Clakre, W.G. & 

Gurney, R.

Utricularia vulgaris 1920 1920 Hickling TG419214 Clarke, W.G. & Gurney, R.

Notes on the genus Utricularia and its distribution in Norfolk. Trans. Norf. 

Nor. Nat. Soc. (1921) 11, 128-161.

Clakre, W.G. & 

Gurney, R.

"grows freely on Hickling Broad" "but is there found on 

the bottom in about 4 feet of water and not floating"

Utricularia vulgaris 24.6.1921 1921 Sutton (Stalham) TG375235 Gurney, R. Diaries. (Held at NCC, Norwich). (1921-29). Gurney, R.

far from being as abundant as in the past. 'All species 

recorded from lousy bay. Littorella uniflora and 

Utricularia neglecta previously present

Utricularia vulgaris 15.7.1921 1921 Sutton (Stalham) TG375235 Gurney, R. Diaries. (Held at NCC, Norwich). (1921-29). Gurney, R. flowering in profusion

Utricularia vulgaris 1921 1921 Sutton (Stalham) TG375235 Gurney, R.

Utricularia in Norfolk in 1921: The effects of drought and temperature. 

Norf. Nor. Nat. Soc. (1921) 11. Gurney, R. "plants were growing with conspicuos vigour"

Utricularia vulgaris 14.12.1921 1921 Hickling TG419214 Bullock-Webster, G. R. Diaries. (Held at NCC, Norwich). (1921-29). Gurney, R.

Utricularia vulgaris 9.8.1927 1927 Martham Somerton TG450200 Norwich Castle Musuem (Natural History) Herbarium.

Utricularia vulgaris 13.8.1927 1927 Hickling TG419214 Frogitt, T. J. Biological Centre, Monkswood. Herbarium.

Utricularia vulgaris 13 Aug. 1927 1927 Hickling TG419214 Foggitt, T.J. British Museum (Natural History) Herbarium.

Utricularia vulgaris Sept. 1928 1928 Hickling TG419214 Meinertzhagen, R. British Museum (Natural History) Herbarium. deep water 5ft and stagnant

Utricularia vulgaris 1934 1934 Hickling TG419214 Ellis, E. A. Species list from weedcutting operations. (NNC files HI 29-). (1934). Ellis, E. A. all species identified from weedcutting operations

Utricularia vulgaris 22.8.35 1935 Hickling TG419214 Pugsley, H. W. Biological Centre, Monkswood. Herbarium.

Utricularia vulgaris 22nd August 1935 1935 Hickling TG419214 Reynolds, B. & Pugsley, H. W. British Museum (Natural History) Herbarium.

Utricularia vulgaris 29.8.35 1935 Barton TG359214 Ellis, E. A. & Geldart, A. M.

East Anglian Notebook. Norfolk and Suffolk Wild Life. Eastern Evening 

News. No. 1362. (1935).

Ellis, E. A. & 

Geldart, A. M. U.vulg- spikes appeared here and there above water

Utricularia vulgaris c.1947 1947 Sutton (Stalham) TG375235 Ellis, E. A.

Notes on the natural history of the Broads area. (NCC files BG 9-10). 

(1947). Ellis, E. A. in the peatier and more sheltered parts

Utricularia vulgaris c. 1947 1947 Barton TG359214 Ellis, E. A.

Notes on the natural history of the Broads area. (NCC files BG 9-10). 

(1947). Ellis, E. A. in the peatier and more sheltered parts

Utricularia vulgaris 1947 1947 Alderfen Broad TG354195 Ellis, E. A.

Notes on the natural history of the Broads area. (NCC files BG 9-10). 

(1947). Ellis, E. A. In peatier and more sheltered parts

Utricularia vulgaris 1949 1949 Upton Great TG389134 Lambert, J. M. & Jennings, J. N.

Alluvial stratigraphy and vegetational succession in the region of the Bure 

Valley. J. Ecology, (1951) 39, 120-148.

Lambert, J. M. & 

Jennings, J. A.

Utricularia vulgaris July 1949 1949 Upton Great TG389134 Lambert, J. M. & Jennings, J. N. Complete results of vegetation survey. (NNC files U 15-20). (1954). Lambert, J. M. generally confined to reedswamp.

Utricularia vulgaris Aug. 1949 1949 Upton Great TG389134 Lambert, J. M. & Jennings, J. N. Complete results of vegetation survey. (NNC files U 15-20). (1954). Lambert, J. M.

Utricularia vulgaris 1951 1951 Hoveton Little Broad TG330175 Lambert, J. M. & Jennings, J. N.

Alluvial stratigraphy and vegetational succession in the region of the Bure 

Valley. J. Ecology, (1951) 39, 120-148.

Lambert, J. M. & 

Jennings, J. A. all species in shelter of reedswamp

Utricularia vulgaris 1951 1951 Upton Great TG389134 Lambert, J. M. & Jennings, J. N.

Alluvial stratigraphy and vegetational succession in the region of the Bure 

Valley. J. Ecology, (1951) 39, 120-148.

Lambert, J. M. & 

Jennings, J. A. generally confined to the shelter of the reedswamp

Utricularia vulgaris 23.7.52 1952 Upton Great TG389134 Jermy, A. C. Field Notes. (NNC files U 50). (1952). Jermy, A. C. in phragmites and typha reedswamp.

Utricularia vulgaris Aug. 1954 1954 Heigham Sound and Whiteslea TG433205 Lambert, J. M. Complete results of vegetation survey. (NNC files HI 8-18). (1954). Lambert, J. M.

all species recorded from transect across Heigham 

Sound

Utricularia vulgaris Aug. 1954 1954 Heigham Sound and Whiteslea TG433205 Lambert, J. M. Complete results of vegetation survey. (NNC files HI 8-18). (1954). Lambert, J. M. all species recorded from transect across Whiteslea

Utricularia vulgaris Aug. 1954 1954 Hickling TG419214 Lambert, J. M. Complete results of vegetation survey. (NNC files HI 8-18). (1954). Lambert, J. M.

Utricularia vulgaris 1955 1955 Betley Mere SJ748479 Edees, Mr E.S. Edees, E.S. (1972)

Edees, E.S. 

(1972) Drain near Betley Mere.

Utricularia vulgaris 1956 1956 Calthorpe TG409259 Jermy, A. C. Annotated List of Vascular Plants. (NNC files C 55-58). (1956). Jermy, A. C.

Utricularia vulgaris 11.9.58 1958 Calthorpe TG409259 Marsh, A. R. Vegetation Map of Calthorpe Broad. (NNC files C 7). (1958). Marsh, A. R.

Utricularia vulgaris 1959 1959 Alderfen Broad TG354195 Jermy, A. C.

Report on the vegetation and its ecological status at Alderfen Broad. 

(NCC files A 1-19). (1959). Jermy, A. C. Found in shelter of Typha stools

Utricularia vulgaris 1965 1965 Hickling TG419214 Cadbury, J.C. The Norfolk Naturalist's trust 39th annual report. 31st December 1965.

Utricularia vulgaris 1968 1968 Hickling TG419214 Hornby, R. J.

Correspondence - Aquatic plants in Norfolk Broads. (NNC files HO 29). 

(1972). Hornby, R. J. all species recorded from Catfield dyke

Utricularia vulgaris 1968 1968 Hickling TG419214 Hornby, R. J.

Correspondence - Aquatic plants in Norfolk Broads. (NNC files HO 29). 

(1972). Hornby, R. J. all species recorded from swim coots

Utricularia vulgaris 5.9.68 1968 Martham Somerton TG450200 George, M. Aquatic macrophytes. (NNC files Subject files)

Utricularia vulgaris 22.7.68 1968 Hickling TG419214 Morgan, N. C. Field Notes. (NNC files HI 41). (1968). Anon

Utricularia vulgaris 1968 1968 Hickling TG419214 Morgan, N. C.

The Aquatic Vegetation of the Thurne Broads. (NCC files HO 25 and MA 

15). (1972). Hornby, R. J.

Utricularia vulgaris 23.11.70 1970 Hickling TG419214 SANKEY

Distribution map of Najas marina in Hickling Broad. (NNC files HI 22-23). 

(1970). Sankey

Utricularia vulgaris 1971 1971 Martham Somerton TG450200 Hornby, R. J.

The Aquatic Vegetation of the Thurne Broads. (NCC files HO 25 and MA 

15). (1972). Hornby, R. J.

Utricularia vulgaris 25.8.71 1971 Martham Somerton TG450200 Mann, R. J. & Pigg, F. Field Notes. (NNC files MA 13). (1971). Hornby, R. J.

Utricularia vulgaris 1972 1972 Martham Somerton TG450200 Hornby, R. J.

The Aquatic Vegetation of the Thurne Broads. (NCC files HO 25 and MA 

15). (1972). Hornby, R. J.

Ceratophyllum demersum, Najas marina & 

Myriophyllum sp. were previously present.

Utricularia vulgaris 1972 1972 Martham South TG459201 Hornby, R. J.

The Aquatic Vegetation of the Thurne Broads. (NCC files HO 25 and MA 

15). (1972). Hornby, R. J.

Utricularia vulgaris Sept. 1973 1973 Martham Somerton TG450200 Britton, R. H.

Submerged vegetation survey of Martham Broad (NCC Files MA 18-20). 

(1973) Britton, R. H.

Utricularia vulgaris Sept. 1973 1973 Martham South TG459201 Britton, R. H.

Submerged vegetation survey of Martham Broad (NCC Files MA 18-20). 

(1973) Britton, R. H.

Utricularia vulgaris 1973-74 1974 Upton Great TG389134 Hornby, R. J.

Conservation in the Upton Broad area. (NCC files U 6 and U 21-24). 

(1974). Hornby, R. J.

Myriophyllum verticillatum & Potamogeton obtusifolius 

recorded in 1949-52 but not in recent years. 

Hydrocharis morsus-ranae, Lemna minor, Lemna 

trisulca & Potamogeton friessi not specified as 

recorded from the broad.

Utricularia vulgaris 20.8.74 1974 Calthorpe TG409259 Hornby, R. J. Field Notes. (NNC files C 60). (1974). Hornby, R. J.

found in boathouse dyke, found growing in the water 

but apparently only near the edges.

Utricularia vulgaris 14.10.75 1975 Heigham Sound and Whiteslea TG433205 George, M. Field Notes. (NNC files HI 32). (1975). George, M.

all sp recorded from bays away from main boat 

channel

Utricularia vulgaris June 1975 1975 Martham Somerton TG450200 Phillips, G. L.

The distribution, biomass and productivity of submerged aquatic 

macrophytes in the Thurne Broads, Norfolk, 1975-1977. (Held at the 

NCC, Norwich). (1978).

Phillips, G. L. & 

Moss, B.

Utricularia vulgaris Sept. 1975 1975 Martham Somerton TG450200 Phillips, G. L.

The distribution, biomass and productivity of submerged aquatic 

macrophytes in the Thurne Broads, Norfolk, 1975-1977. (Held at the 

NCC, Norwich). (1978).

Phillips, G. L. & 

Moss, B.

Utricularia vulgaris 1975 1975 Martham South TG459201 Phillips, G. L.

The distribution, biomass and productivity of submerged aquatic 

macrophytes in the Thurne Broads, Norfolk, 1975-1977. (Held at the 

NCC, Norwich). (1978).

Phillips, G. L. & 

Moss, B.

Utricularia vulgaris 1976 1976 Martham Somerton TG450200 Phillips, G. L.

The distribution, biomass and productivity of submerged aquatic 

macrophytes in the Thurne Broads, Norfolk, 1975-1977. (Held at the 

NCC, Norwich). (1978).

Phillips, G. L. & 

Moss, B.

Utricularia vulgaris 1976 1976 Martham South TG459201 Phillips, G. L.

The distribution, biomass and productivity of submerged aquatic 

macrophytes in the Thurne Broads, Norfolk, 1975-1977. (Held at the 

NCC, Norwich). (1978).

Phillips, G. L. & 

Moss, B.

Utricularia vulgaris 1976 1976 Heigham Sound and Whiteslea TG433205 Phillips, G. L.

The distribution, biomass and productivity of submerged aquatic 

macrophytes in the Thurne Broads, Norfolk, 1975-1977. (Held at the 

NCC, Norwich). (1978).

Phillips, G. L. & 

Moss, B.

Utricularia vulgaris 1977 1977 Martham Somerton TG450200 Phillips, G. L.

The distribution, biomass and productivity of submerged aquatic 

macrophytes in the Thurne Broads, Norfolk, 1975-1977. (Held at the 

NCC, Norwich). (1978).

Phillips, G. L. & 

Moss, B.

Utricularia vulgaris 1977 1977 Hickling TG419214 Norfolk Naturalists Trust Vegetation Survey of Nature Reserves. (NCC files MA 29-35). (1978).

Norfolk 

Naturalists Trust

Utricularia vulgaris 5.9.77 1977 Martham South TG459201 Jackson, M. J. & Pigg, F.

The Changing Status of Aquatic Macrophytes in the Norfolk Broads. 

Trans. Norf. Nor. Nat. Soc. (1978) 24, 137-152. Jackson, M. J.

Utricularia vulgaris 14/08/1984 1984 Cockshoot dyke TG346160 Broads Authority Broads Authority

Utricularia vulgaris 14/08/1985 1985 Cockshoot dyke TG346160 Broads Authority Broads Authority

Utricularia vulgaris 08/08/1986 1986 Cockshoot dyke TG346160 Broads Authority Broads Authority

Utricularia vulgaris 17/08/1987 1987 Cockshoot dyke TG346160 Broads Authority Broads Authority

Utricularia vulgaris 17/08/1988 1988 Cockshoot dyke TG346160 Broads Authority Broads Authority

Utricularia vulgaris 01/09/1988 1988 Crome's South TG374196 Broads Authority Broads Authority

Utricularia vulgaris 07/08/1989 1989 Cockshoot dyke TG346160 Broads Authority Broads Authority

Utricularia vulgaris 13/08/1990 1990 Crome's South TG374196 Broads Authority Broads Authority

Utricularia vulgaris 30/07/1998 1998 Strumpshaw TG339067 Broads Authority Broads Authority

Utricularia vulgaris 23/06/1999 1999 Strumpshaw TG339067 CSR Carl Sayer's notes

Utricularia vulgaris 21/08/1999 1999 Strumpshaw TG339067 CSR Carl Sayer's notes

Utricularia vulgaris 01/09/2004 2004 Catfield Broad TG376208 Broads Authority Broads Authority

Utricularia vulgaris 25/08/2005 2005 Strumpshaw TG339067 Broads Authority Broads Authority

Utricularia vulgaris 18/07/2006 2006 Strumpshaw TG339067 Broads Authority Broads Authority
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Bart 2 Bart 3 Bart 8 Bart 10 Bart 11 Bart 12 Bart 13 Bart 14

Alisma plantago-aquatica 0.61

Callitriche

Ceratophyllum  (leaf frag.) 10.00 2200.00 2103.33 13.33

Ceratophyllum demersum 2.07 0.91

Chara oospore 3.33 3.13 1960.00 1203.33 576.67 1063.33 860.00 733.33

Cladium mariscus 0.30 0.30

Eleocharis palustris 0.91

Hippuris vulgaris

Hydrocharis morsus-ranae

Lemna

Littorella uniflora

Menyanthes trifoliata  (seed frag.) 2.30 1.52 1.18 1.21

Myrica gale 0.46 1.52 0.30 1.82 0.29 0.30

Myriophyllum alterniflorum

Myriophyllum spicatum 0.30 0.30

Najas marina  (seed frag.) 10.56 13.94 1.52 248.93 0.61 4.71 97.88

Nitella oospore 0.30

Nuphar lutea  (seed frag.) 0.59

Nymphaea  (leaf trichoschlerid) 70.00 400.00 70.00 176.67 440.30 340.00 180.00 570.00

Nymphaea alba  (seed frag.) 1.38 1.52 1.18 10.88 0.30

Potamogeton 4.15 2.42 1.82 6.21 5.76 6.47 22.42

Potamogeton coloratus 0.30

Potamogeton crispus 0.30

Potamogeton friesii  (leaf) 0.30 0.59 0.30 0.29

Potamogeton obtusifolius  (leaf) 1.21

Potamogeton pusillus  (leaf) 4.55 2.12 6.51 4.55 3.24 5.15

Potamogeton pusillus 1.38

Ranunculus Batrachium 0.56 0.46 0.61 0.59 0.30

Sagittaria sagittifolia

Schoenoplectus lacustris 0.88 0.61

Stratiotes aloides  (leaf spine) 41.11 292.90 74.55 127.88

Typha latifolia 20.00 2.30 0.91 1.52 0.59 1.21 0.29

3
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Appendix 6. Counts of macrofossil remains (numbers per 100 cm ) in the Barton bulk bottom 

sediment samples. Species were represented by seeds unless stated otherwise.
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1.5 25 0 0 0 5 5 0 40 0 0 5 35 0

4.5 25 0 0 0 15 5 0 60 0 0 0 105 5

8.5 40 0 0 0 25 0 0 0 0 0 0 80 0

13.5 75 0 0 0 25 0 0 130 0 0 0 225 0

17.5 45 0 0 0 5 0 0 75 0 0 0 120 0

24.5 60 0 5 0 0 5 0 45 0 0 0 95 5

25.5 5 0 0 0 10 5 0 0 0 0 0 0 0

30.5 55 5 0 5 10 5 0 230 0 0 5 380 0

35.5 45 0 0 0 5 0 0 125 0 0 10 205 0

41.5 25 10 0 0 0 0 0 290 0 0 0 195 0

46.5 15 10 0 0 10 0 0 235 0 0 0 295 10

53.5 60 0 0 0 10 0 0 195 0 0 0 565 0

58.5 285 0 0 0 0 0 0 885 0 0 0 530 0

63.5 850 0 0 0 5 0 0 0 5 25 5 95 0

66.5 465 0 0 0 15 0 0 235 0 10 0 410 5

70.5 2325 0 10 0 20 5 10 95 0 0 0 20 0

74.5 1020 5 0 0 30 0 15 30 0 0 0 5 0
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1.5 15 0 0 0 15 5 0 40 0 5 5

4.5 0 0 0 0 20 5 0 60 5 35 5

8.5 10 0 0 0 25 0 0 100 0 15 0

13.5 0 0 0 0 35 5 0 30 5 50 5

17.5 0 0 5 0 10 0 5 65 5 20 0

25.5 5 0 10 0 20 0 0 210 0 30 5

30.5 0 0 0 0 10 0 0 220 0 65 5

35.5 10 0 0 0 0 0 0 155 5 145 5

41.5 105 0 0 0 15 0 0 290 0 195 0

46.5 75 0 5 0 25 0 0 120 0 65 0

53.5 5 0 0 10 50 0 0 75 0 180 0

58.5 65 0 0 5 280 0 0 60 0 210 0

63.5 0 0 0 0 0 0 0 120 0 160 0

66.5 5 0 5 0 95 0 0 195 0 15 0

70.5 5 0 0 0 105 0 0 400 0 250 0

73.5 10 5 0 0 105 0 0 30 0 480 0
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a) BART5 and b) BART3.

Appendix 7. Counts of macrofossil remains (numbers per 100 cm ) in the Barton sediment cores,
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