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ABSTRACT 

Arthropod hemocyanin and phenoloxidase are members of a group of proteins called the 
Type-3 copper oxygen-binding proteins, both possessing a highly conserved oxygen-
binding site containing two copper atoms each coordinated by three histidine residues 
(Decker and Tuczek, 2000). Despite similarities in their active site, these proteins have 
very different physiological functions. Phenoloxidase possesses both tyrosinase and o-
diphenoloxidase activity, and is predominantly involved in reactions which protect 
insects from infection (Kopàcek et al., 1995). Hemocyanin is a large multi-subunit 
protein with a primary function as a respiratory protein, reversibly binding and 
transporting molecular O2 (Decker and Rimke, 1998; Decker and Tuczek, 2000). 
 
Recently, it has been demonstrated in vitro that arthropod hemocyanin possesses an 
inducible phenoloxidase activity when incubated with denaturants, detergents, 
phospholipids or proteolytic enzymes. This activity appears to be restricted to only a few 
subunit types, and it has been hypothesised that it may be accompanied by 
conformational change which opens the active site increasing access for larger phenolic 
substrates (Decker and Jaenicke, 2004; Decker et al., 2001; Decker and Tuczek, 2000). 
This possibly suggests a dual role of hemocyanin in arthropods. 
 
The presented thesis deals with two distinct aims. The first was to isolate and sequence a 
phenoloxidase gene from the insect Spodoptera littoralis (Egyptian Cottonleaf Worm). 
Despite efforts, progress was hindered by a number of experimental problems which are 
outlined within the relevant chapters. The second aim was to characterise the mode of 
SDS induced phenoloxidase activity in arthropod hemocyanin from the ancient 
chelicerates Limulus polyphemus (horseshoe crab) and Eurypelma californicum 
(tarantula) and the more modern chelicerate Pandinus imperator (scorpion), using a 
number of biophysical techniques. The results indicated that the SDS induced 
phenoloxidase activity is associated with localised tertiary and secondary conformational 
changes in hemocyanin, most likely in the vicinity of the dicopper centre, thus enhancing 
access for larger phenolic substrates. Experiments indicate that copper remains associated 
with the protein during these structural changes; however the nature of the association is 
unclear. SDS concentrations approximating the CMC appeared critical in causing the 
necessary structural changes required for a significant increase in the detectable 
phenoloxidase activity to be exhibited. 
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βGRP β – glucan recognition protein 
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Figure 21: Determining the suitability of various degenerate primer pair combinations for 
the amplification of an S. littoralis PPO DNA fragment. Each lane shows products 
formed in PCR reactions which contained the M. sexta PPO1 clone as the template 
DNA and one pair of degenerate primers. Lanes marked ‘M’ contained PCR 
markers with sizes as detailed in the top right image. Primer combinations and 
expected fragment size (in brackets), as determined from the known sequence of the 
M. sexta PPO1 clone, were as follows: Lane 1 – MsextaPPO1-F and MsextaPPO1-R 
(1155 bp); Lane 2 – CuA4-F and CuB2-R (606 bp); Lane 3 – CuA4-F and MIELD-
R (969 bp); Lane 4 – CuA4-F and Cys2-R (1131 bp); Lane 5 – CuA4-F and Cterm-
R (1317 bp); Lane 6 – GELF-F and CuB2-R (534 bp); Lane 7 – GELF-F and 
MIELD-R (897 bp); Lane 8 – GELF-F and Cys2-R (1059 bp); Lane 9 – GELF-F 
and Cterm-R (1245 bp); Lane 10 – CuB2-F and MIELD-R (387 bp); Lane 11 – 
CuB2-F and Cys2-R (549 bp); Lane 12 – CuB2-F and Cterm-R (735 bp); Lane 13 – 
CuA4-F and Cys-R (1131 bp); Lane 14 – GELF-F and Cys-R (1065 bp); Lane 15 – 
CuB2-F and Cys-R (555 bp); Lane 16 – CuA-F and Cterm-R (1317 bp); Lane 17 – 
CuA2-F and Cterm –R (1317 bp); Lane 18 – CuA3-F and Cterm-R (1317 bp). 
Control PCR reactions were performed to ensure primers could not generate 
products alone. Lanes C1 – C11 contained only CuA4-F, CuB2-R, MIELD-R, Cys2-
R, Cterm-R, GELF-F, CuB2-F, CuA-F, CuA2-F, CuA3-F or Cys-R respectively. 
Reactions containing no template DNA generated no products (data not shown)._ 85 

Figure 22: PCR reaction products selected for Southern blotting and subsequent 
membrane probing. All reactions used the Spodoptera littoralis L5p cDNA library 
as the template DNA. The reaction products in each numbered lane are the result of 
the following primer pair combinations (reaction annealing temperature and 
expected product size are shown in brackets): Lane 2 – CuA4-F and Cterm-R (45°C, 
1341 bp); Lane 4 – CuA4-F and Cterm-R (49.4°C, 1341 bp). PCR marker sizes in 
Lane M are indicated to the left. Each PCR reaction used a 2.5°C/sec annealing 
touchdown ramp to increase primer annealing specificity. Southern blotting of this 
gel and subsequent membrane manipulation resulted in the membrane found in 
Panel A, Figure 32._________________________________________________ 89 

Figure 23: PCR reaction products selected for Southern blotting and subsequent 
membrane probing. All reactions used the Spodoptera littoralis L5p cDNA library 
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as the template DNA. The reaction products in each numbered lane are the result of 
the following primer pair combinations (reaction annealing temperature and 
expected product size are shown in brackets): Lane 1 – CuA4-F and Cterm-R (55°C, 
1341 bp); Lane 2 – GELF-F and Cys2-R (55°C, 1044 bp); Lane 3 – GELF-F and 
Cys2-R (59.4°C, 1044 bp) Lane 4 - CuA-F and Cys-R (40°C, 1155 bp); Lane 5 – 
CuA-F and MIELD-R (40°C, 987 bp); Lane 6 – 1 µl of a 1:10 dilution of the M. 
sexta clone plasmid; Lane 7 – 5µl of a 1:10 dilution of the M. sexta clone plasmid. 
PCR marker sizes in Lane M are indicated to the left. Each PCR reaction used a 
2.5°C/sec annealing touchdown ramp to increase primer annealing specificity. 
Southern blotting of this gel and subsequent membrane manipulation resulted in the 
membrane found in Panel B, Figure 32. _________________________________ 90 

Figure 24: PCR reaction products selected for Southern blotting and subsequent 
membrane probing. All reactions used the Spodoptera littoralis L5p cDNA library 
as the template DNA. The reaction products in each numbered lane are the result of 
the following primer pair combinations (reaction annealing temperature and 
expected product size are shown in brackets): Lane 1 – CuA-F and Cys-R (40°C, 
1155 bp); Lane 2 – CuA-F and Cys-R (44.4°C, 1155 bp); Lane 3 – CuA-F and Cys-
R (50°C, 1155 bp); Lane 4 – CuA-F and MIELD-R (40°C, 987 bp); Lane 5 – CuA-F 
and MIELD-R (44.4°C, 987 bp); Lane 6 – CuA-F and MIELD-R (50°C, 987 bp). 
PCR marker sizes in Lane M are indicated to the left. Each PCR reaction used a 
2.5°C/sec annealing touchdown ramp to increase primer annealing specificity. 
Southern blotting of this gel and subsequent membrane manipulation resulted in the 
membrane found in Panel A, Figure 33._________________________________ 91 

Figure 25: PCR reaction products selected for Southern blotting and subsequent 
membrane probing. All reactions used the Spodoptera littoralis L5p cDNA library 
as the template DNA. The reaction products in each numbered lane are the result of 
the following primer pair combinations (reaction annealing temperature and 
expected product size are shown in brackets): Lane 1 – CuA2-F and CuB2-R (40°C, 
606 bp); Lane 2 – CuA2 and CuB2-R (44.4°C, 606 bp); Lane 3 – CuA2-F and 
CuB2-R (50°C, 606 bp); Lane 4 – CuA2-F and MIELD-R (40°C, 987 bp); Lane 5 – 
CuA2-F and CuB2-R (44.4°C, 987 bp) Lane 6 – CuA2-F and MIELD-R (50°C, 987 
bp). PCR marker sizes in Lane M are indicated to the left. Each PCR reaction used a 
2.5°C/sec annealing touchdown ramp to increase primer annealing specificity. 
Southern blotting of this gel and subsequent membrane manipulation resulted in the 
membrane found in Panel B, Figure 33. _________________________________ 92 

Figure 26: PCR reaction products selected for Southern blotting and subsequent 
membrane probing. All reactions used the Spodoptera littoralis L5p cDNA library 
as the template DNA. The reaction products in each numbered lane are the result of 
the following primer pair combinations (reaction annealing temperature and 
expected product size are shown in brackets): Lane 1 – GELF-F and Cys-R (55°C, 
1044 bp); Lane 2 – CuA4-F and Cterm-R (49.4°C, 1341 bp) and Lane 3 – contains 1 
µl of a 1:10 dilution of the M. sexta PPO1 clone plasmid as a control for subsequent 
hybridisation steps. PCR marker sizes in Lane M are indicated to the left. Each PCR 
reaction used a 2.5°C/sec annealing touchdown ramp to increase primer annealing 
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specificity. Southern blotting of this gel and subsequent membrane manipulation 
resulted in the membrane found in Panel C, Figure 33. _____________________ 93 

Figure 27: PCR reaction products selected for Southern blotting and subsequent 
membrane probing. All reactions used the Spodoptera littoralis L5p cDNA library 
as the template DNA. The reaction products in each numbered lane are the result of 
the following primer pair combinations (reaction annealing temperature and 
expected product size are shown in brackets): Lane 1 – CuA-F and MIELD-R 
(40°C, 987 bp); Lane 2 – CuA-F and MIELD-R (44.4°C, 987 bp); Lane 3 – CuA2-F 
and CuB2-R (40°C, 606 bp); Lane 4 – CuA2-F and CuB2-R (50°C, 606 bp); Lane 5 
– CuA2-F and MIELD-R (40°C, 987 bp); Lane 6 – CuA2-F and MIELD-R (50°C, 
987 bp); and Lane 7 – contains 1 µl of a 1:10 dilution of the M. sexta PPO1 clone 
plasmid as a control for subsequent hybridisation steps. PCR marker sizes in Lane 
M are indicated to the left. Each PCR reaction used a 2.5°C/sec annealing 
touchdown ramp to increase primer annealing specificity. Southern blotting of this 
gel and subsequent membrane manipulation resulted in the membrane found in 
Panel A, Figure 34._________________________________________________ 94 

Figure 28: PCR reaction products selected for Southern blotting and subsequent 
membrane probing. All reactions used the Spodoptera littoralis L5p cDNA library 
as the template DNA. The reaction products in each numbered lane are the result of 
the following primer pair combinations (reaction annealing temperature and 
expected product size are shown in brackets): Lane 1 – GELF-F and Cys-R (55°C, 
1044 bp); Lane 2 – CuA4-F and Cterm-R (49.4°C, 1341 bp); Lane 3 – CuA4-F and 
Cterm-R (45°C, 1341 bp); Lane 4 – GELF-F and Cys2-R (55°C, 1044 bp); Lane 5 – 
GELF-F and Cys2-R (60.9°C, 1044 bp); Lane 6 – CuA-F and Cys-R (40°C, 1155 
bp); and Lane 7 – CuA-F and Cys-R (50°C, 1155 bp). PCR marker sizes in Lane M 
are indicated to the left. Each PCR reaction used a 2.5°C/sec annealing touchdown 
ramp to increase primer annealing specificity. Southern blotting of this gel and 
subsequent membrane manipulation resulted in the membrane found in Panel B, 
Figure 34. ________________________________________________________ 95 

Figure 29: PCR reaction products selected for Southern blotting and subsequent 
membrane probing. All reactions used the Spodoptera littoralis L5p cDNA library 
as the template DNA. The reaction products in each numbered lane are the result of 
the following primer pair combinations (reaction annealing temperature and 
expected product size are shown in brackets): Lane 1 – MsextaPPO1-F and 
MsextaPPO1-R (35°C, 1158 bp); Lane 2 – MsextaPPO1-F and MsextaPPO1-R 
(40.6°C, 1158 bp); Lane 3 – MsextaPPO2-F and MsextaPPO2-R (35°C, 1179 bp); 
Lane 4 - MsextaPPO2-F and MsextaPPO2-R (45°C, 1179 bp). PCR marker sizes in 
Lane M are indicated to the left. Each PCR reaction used a 1°C/sec annealing 
touchdown ramp to increase primer annealing specificity. Southern blotting of this 
gel and subsequent membrane manipulation resulted in the membrane found in 
Figure 35. ________________________________________________________ 96 

Figure 30: DIG-labelled heterologous prophenoloxidase probe synthesis. The successful 
incorporation of DIG-11-UTP into amplified M. sexta PPO1 and PPO2 clones 
during PCR is determined by electrophoresis. The resulting DIG-labelled PPO1 and 
PPO2 probes (Lanes 1 and 3 respectively) show an apparent increase in their base 
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pair size compared to the corresponding non-labelling reactions (Lanes 2 and 4 
respectively). _____________________________________________________ 98 

Figure 31: DIG-labelled PPO-1 probe hybridised dot blot spotted with a series of 
dilutions of the M. sexta PPO1 clone plasmid. This method provides a control to test 
the sensitivity of the DIG-labelled PPO1 probe, and also to determine whether the 
NBT/BCIP colourimetric detection method is suitable. 2 µl of each of the dilutions 
of the M. sexta PPO1 clone plasmid was spotted onto the membrane as detailed. _ 98 

Figure 32: DIG-labelled PPO1 probe hybridized membranes. Membranes were subjected 
to 60˚C hybridisation and low and moderate stringency washes prior to Anti-DIG-
AP antibody incubation and BCIP/NBT colorimetric detection protocols. 
Membranes A and B contain bound DNA transferred by Southern blotting from the 
gels shown in Figure 22 and Figure 23 respectively. ______________________ 100 

Figure 33: DIG-labelled PPO1 probe hybridized membranes. Membranes were subjected 
to a 65˚C hybridisation step and low and moderate stringency washes prior to Anti-
DIG-AP antibody incubation and BCIP/NBT colorimetric detection protocols. 
Membranes A, B and C contain bound DNA transferred by Southern blotting from 
the gels shown in Figure 24, Figure 25 and Figure 26 respectively.___________ 101 

Figure 34: DIG-labelled PPO1 probe hybridized membranes. Membranes were subjected 
to a 65˚C hybridisation step and low and high stringency washes prior to Anti-DIG-
AP antibody incubation and BCIP/NBT colorimetric detection protocols. 
Membranes A and B contain bound DNA transferred by Southern blotting from the 
gels shown in Figure 27 and Figure 28 respectively. ______________________ 102 

Figure 35: DIG-labelled PPO1 probe hybridized membrane. Membranes were subjected 
to a 65˚C hybridisation step and low and high stringency washes prior to Anti-DIG-
AP antibody incubation and BCIP/NBT colorimetric detection protocols. Membrane 
contains bound DNA transferred by Southern blotting from the gel shown in Figure 
29._____________________________________________________________ 103 

Figure 36: Plaque lift membranes from a screen of the S. littoralis L5p cDNA library. 
Plaque lifts were conducted on each of six plates in duplicate. All were hybridised 
with the DIG-labelled PPO1 probe at 65°C and washed under low and moderate 
stringency conditions. The duplicate membranes above are representative of all the 
membrane pairs resulting from screening of the cDNA library. They show no small 
dots of staining representing DIG-labelled PPO1 probe binding, suggesting perhaps 
that the cDNA library was of poor quality and therefore did not contain any 
representative PPO cDNA or that S. littoralis does not contain a PPO gene.____ 105 

Figure 37: Check of S. littoralis genomic DNA integrity. Genomic DNA was isolated 
from S. littoralis hemocytes by Nairn (2003, unpublished work). Prior to its use in 
restriction digest reactions, 4µl of each DNA sample (1A, 2A and 2B) was 
electrophoresed on a 0.8% agarose 1X TBE 0.2 µg/ml EtBr gel to check its integrity. 
Lane ‘M’ contains the 1kb DNA ladder markers (New England BioLabs Cat# 
N32325). The resulting gel shows that each sample had remained intact during 
storage, but DNA sample 1A has a higher yield. _________________________ 105 
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Figure 38: DIG-labelled PPO1 probe incubated nylon membranes generated by Southern 
blotting of agarose gels containing the separated products of a series of S. littoralis 
genomic DNA restriction digest reactions. Membranes A and B were generated by 
repeats of the methods. Membranes were hybridised at 65°C and washed using low 
and high stringency wash conditions. The lane contents are as follows: EcoR1 digest 
products (Lane 1), HindIII digest products (Lane 2), EcoR1/HindIII digest products 
(Lane 3), non-digested S. littoralis hemocyte genomic DNA (Lane 4),  and the M. 
sexta PPO1 clone plasmid from which the DIG-labelled probe used was synthesised 
(Lane 7). DIG-PPO1 probe binding could only be detected in that lane (Lane 7) 
which contained the M. sexta clone PPO1 plasmid DNA – the template DNA of the 
probe. Binding of the DIG-PPO1 probe to the marker DNA is visible in Lane M of 
membrane A (circled). _____________________________________________ 107 

Figure 39: Probing of duplicate membranes with the DIG-PPO1 or DIG-PPO2 DNA 
probe to determine which was the more sensitive and specific in the recognition and 
binding of a PPO sequence heterologous to its own. Replica membranes A and B 
contain PCR markers (Lane 1), products of a PCR reaction amplifying the M. sexta 
PPO1 clone using CuA3-F and Cys-R primers (Lane 3) and products of a PCR 
reaction amplifying the M. sexta PPO2 clone using CuA3-F and Cys-R primers 
(Lane 5). In replica membranes C and D the lane contents are 1 – PCR markers, 2 – 
products of a PCR reaction amplifying the M. sexta PPO1 clone using M. sexta 
PPO1-specific forward and reverse primers, 3 – products of a PCR reaction 
amplifying the M. sexta PPO2 clone using M. sexta PPO2-specific forward and 
reverse primers, 4 – a 1:10 dilution of the M. sexta PPO1 clone, and 5 – a 1:10 
dilution of the M. sexta PPO2 clone. All four membranes were hybridised at 65ºC 
and washed under low and moderate stringency washes. Ultimately the DIG-PPO2 
probe was the most sensitive of the two probes however neither probe demonstrated 
any specificity solely for PPO DNA, evidenced by their binding to marker and non-
specific PCR product DNA bands ____________________________________ 110 

Figure 40: Probing of duplicate membranes using the DIG-PPO2 probe at 68ºC 
hybridisation and using low and high stringency washes. Probing and bound probe 
detection methods were also identical. Lane contents of membranes A and B above 
are as described in Figure 39 for membranes A and B respectively. The conditions 
used here included a higher hybridisation temperature and higher wash stringency 
than was used in probing of the membranes in Figure 39, in an attempt to eliminate 
binding of the DIG-PPO2 probe to marker DNA and other non-PPO DNA PCR 
products. Unfortunately these efforts failed to reduce the non-specificity of the DIG-
PPO2 probe, and as is evident, probe binding to markers and other DNA bands 
remains an issue even under these higher stringency conditions. _____________ 111 

Figure 41: Spodoptera littoralis larvae display a characteristic known as density 
dependant phase polyphenism. Individuals reared in high density populations have 
darker cuticles and head capsules due to enhanced cuticular melanisation (left), 
compared to those reared in low density populations, which are usually pale 
brown/green with pale brown head capsules. Scale shown is in centimetres. ___ 118 

Figure 42: A photographic record of the growth phases of solitary Spodoptera littoralis 
larva over a 14 day period. By day 14/15 larvae were ready for bleeding (3 – 4 cm 
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length), and depending on health, were bled once each day for two days. The scale 
shown is in centimetres. ____________________________________________ 123 

Figure 43: Spodoptera littoralis larvae reared under conditions designed to recreate high 
density population, had slower development rates and smaller larval size than those 
reared in solitary conditions. A typical example of a high population density 
(gregaria phase) culture pot from this experiment is shown above, and illustrates the 
great difference in size between individuals by the age of 14 days. Whilst the larva 
nearest the scale bar is of expected size, that to the centre left is equivalent in size to 
that of a 10 day old larva. 1 in 4 fatalities occurred in gregarious larvae and many of 
the surviving gregarious larvae had melanised hemolymph indicative of active PO. 
The fatalities were generally among the smaller larvae and appeared to be a result of 
cannibalistic behaviour. The scale shown is in centimetres._________________ 124 

Figure 44: Total RNA integrity check. The sample in Panel A was the most successful of 
five RNA isolation attempts. The sample was separated in a native 1% agarose gel. 
In panel B, examples of fully degraded and intact total RNA samples are shown in a 
1.5 % denaturing agarose gel (Taken from (Ambion, Accessed: 2006.)). These 
illustrate that the 28S and 18S ribosomal RNA (rRNA) bands in panel A are not as 
sharp and clear as is desirable, although they can still be identified. The sample is 
therefore too degraded to provide a reliable source of mRNAs for synthesis of a 
complete S. littoralis hemocyte first strand cDNA mix.____________________ 127 

Figure 45: Quaternary structures of the 4x6-meric hemocyanin subunits from Limulus 
polyphemus (Panel A) and Eurypelma californicum (Panel B). The subunits shown 
in red are those known to possess phenoloxidase activity. The complete native L. 
polyphemus hemocyanin is composed of two superimposed 4 x 6-mers (Adapted 
from (Decker et al., 2001)). _________________________________________ 139 

Figure 46: Tertiary structure of subunit II of Limulus polyphemus hemocyanin. The three 
domains are coloured green (domain I), cyan (domain II) and magenta (domain III). 
CuA and CuB are shown as orange spheres. Image generated using PDB file 1LLA 
and Pymol molecular graphics software. _______________________________ 141 

Figure 47: The binuclear copper site of Limulus polyphemus hemocyanin subunit II. CuA 
and CuB (orange) and their coordinating His (shown in stick format) are 
highlighted. View shown is perpendicular to the Cu-Cu axis. Image produced as in 
Figure 46. _______________________________________________________ 143 

Figure 48: Active site of Limulus polyphemus subunit II hemocyanin showing the 
orientation of the ‘placeholder’ amino acid, phenylalanine-49 (magenta coloured 
residue shown in stick format in domain I), in the entrance to the dicopper centre. 
Domains are highlighted in green (domain I), cyan (domain II) and magenta 
(domain III). Copper ions are shown as orange spheres and their coordinating 
histidine residues in yellow stick format. Note the differing domain location of the 
dicopper centre and Phe-49 residue. Image produced as in Figure 46._________ 145 

Figure 49: Ion binding sites in Limulus polyphemus hemocyanin subunit II. The chloride 
ion (blue sphere) binding site is positioned at the interface of domain I (green) and II 
(cyan), whilst the putative calcium ion (purple sphere) binding site is located at the 
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subunit surface near two flexible regions of domain III (magenta). Both chloride and 
calcium ions are known to be important effectors of cooperative oxygen binding by 
the L. polyphemus hemocyanin complex (Sullivan et al., 1974; Hazes et al., 1993). 
The copper ions of the dicopper centre are represented by orange spheres at the core 
of domain II. Image produced as in Figure 46.___________________________ 146 

Figure 50: Phenoloxidase catalyses a two-step reaction which incorporates molecular 
oxygen into phenolic molecules at its dicopper centre. Crustacean Hcs are thought 
only to possess o-diphenoloxidase activity (only one exception has been found), 
whilst chelicerate hemocyanins have been shown to exhibit both tyrosinase and o-
diphenoloxidase activity (Decker and Jaenicke, 2004). ____________________ 152 

Figure 51: Induced phenoloxidase activity of hemocyanin from Limulus polyphemus, 
Pandinus imperator and Eurypelma californicum. Typical assays included 2 mM 
dopamine hydrochloride plus hemocyanin (concentrations in legend) in 1 ml of 100 
mM sodium phosphate buffer, pH 7.5. Phenoloxidase activity (expressed in units 
where 1 unit = formation of 1 µmol of dopachrome per minute) was initiated by the 
addition of SDS, and after 5 minutes, followed by monitoring an increase in 
absorbance at 475 nm resulting from the formation of dopachrome and its 
derivatives. Inset provides clearer detail of the region of the main plot contained 
within the red box, and shows PO activity expressed as a percentage of the 
maximum activity achieved by each hemocyanin. A full version of the inset plot 
including data for SDS up to 40 mM can be found in Section 9.4 – Appendix D. 169 

Figure 52: ITC data for binding of SDS to Limulus polyphemus hemocyanin. Upper trace 
in top panel shows a control in which SDS was injected into buffer alone to 
determine the CMC of SDS in 100 mM sodium phosphate buffer, pH 7.5, and also 
to correct for heat of dilution of the ligand. Lower trace in upper panel presents the 
data for injection of 30 mM SDS (0.15 mM per injection) into 0.77 ± 0.015 mg/ml 
(10 µM) L. polyphemus hemocyanin monomers (equivalent to 210 nM of the 8 x 6-
meric unit). The lower panel shows the calculated binding isotherm (integrated heat 
data), corresponding to the lower trace in the upper panel, and the best-fitted curve 
of the data. The calorimetry data shown were analysed by nonlinear regression in 
terms of a sequential binding site model using the MicroCal ORIGIN software 
package. ________________________________________________________ 171 

Figure 53: ITC data for binding of SDS to Pandinus imperator hemocyanin. Upper trace 
in top panel shows a control in which SDS was injected into buffer alone to 
determine the CMC of SDS in 100 mM sodium phosphate buffer, pH 7.5, and also 
to correct for heat of dilution of the ligand. Lower trace in upper panel presents the 
data for injection of 30mM SDS (0.15 mM per injection) into 0.77 ± 0.015 mg/ml 
(10 µM) P. imperator hemocyanin monomers (equivalent to 420 nM of the 4 x 6-
meric unit). The lower panel shows the calculated binding isotherm (integrated heat 
data), corresponding to the lower trace in the upper panel, and the best-fitted curve 
of the data. The calorimetry data shown were analysed by nonlinear regression in 
terms of a sequential binding site model using the MicroCal ORIGIN software 
package. ________________________________________________________ 172 
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Figure 54: ITC data for binding of SDS to Eurypelma californicum hemocyanin. Upper 
trace shows the control in which SDS was injected into buffer alone to determine the 
CMC of SDS in 100 mM sodium phosphate buffer, pH 7.5, and also to correct for 
heat of dilution of the ligand. Lower trace presents the data for injection of 75mM 
(0.375 mM per injection) SDS into 0.77 ± 0.015 mg/ml (10 µM) E. californicum 
hemocyanin monomers (equivalent to 420 nM of the 4 x 6-meric unit). As is evident 
from this lower trace, no heat changes occurred as a result of SDS injection into the 
protein, therefore no data was available for analysis. ______________________ 173 

Figure 55: Determination of the critical micelle concentration of SDS in 100 mM 
TrisHCl pH 7.5 buffer, which was used in ICP OES experiments. The trace shows 
data for the injection of 20 mM SDS (0.1 mM per injection) into 100 mM TrisHCl 
pH 7.5 buffer alone. _______________________________________________ 174 

Figure 56: Far UV CD spectra of 0.3 mg/ml Limulus polypemus hemocyanin following 5 
minute incubations with SDS across the range 0 – 3.5 mM. ________________ 177 

Figure 57: Far UV CD spectra of 0.3 mg/ml Pandinus imperator hemocyanin following 5 
minute incubations in SDS across the range 0 – 2.0 mM. __________________ 178 

Figure 58: Far UV CD spectra of 0.3 mg/ml Eurypelma californicum hemocyanin in the 
absence of SDS and following a 5 minute and 16 hour incubation in 5.0 mM SDS.
_______________________________________________________________ 179 

Figure 59: Fluorescence emission spectra of 0.1 mg/ml Limulus polyphemus hemocyanin 
in 100 mM sodium phosphate buffer pH 7.5, excited at 290 nm, following 5 minutes 
incubation in SDS across the range 0 – 2.7 mM. _________________________ 182 

Figure 60: Fluorescence emission spectra of 0.1 mg/ml Pandinus imperator hemocyanin 
in 100 mM sodium phosphate buffer pH 7.5, excited at 290 nm, following 5 minutes 
incubation in SDS across the range 0 – 2.0 mM. _________________________ 183 

Figure 61: Fluorescence emission spectra of 0.1 mg/ml Eurypelma californicum 
hemocyanin in 100 mM sodium phosphate buffer pH 7.5, excited at 290nm, in the 
absence of SDS and following 5 minutes or 16 hours incubation in 5.0 mM SDS.184 

Figure 62: Fluorescence emission spectra of 2 µM N-acetyl tryptophan amide in 100 mM 
sodium phosphate buffer pH 7.5 at 290nm, in the absence of SDS and following 5 
minutes incubation in 2.7 mM SDS.___________________________________ 187 

Figure 63: Near UV circular dichroism spectra of 0.3 mg/ml Eurypelma californicum 
hemocyanin in 100 mM sodium phosphate buffer pH 7.5, in the absence of SDS and 
following either 5 minutes or 16 hours incubation in 5.0 mM SDS. Molecular 
ellipticity at 260 - 305 nm is associated with the microenvironment of protein 
aromatic residues. The 340 nm peak is a characteristic near UV signal of the Type-3 
copper centre. ____________________________________________________ 189 

Figure 64: Near UV circular dichroism spectra of 0.3 mg/ml Limulus polyphemus 
hemocyanin in 100 mM sodium phosphate buffer pH 7.5 following 5 minutes 
incubation in SDS across the range 0 – 3.5 mM. Molecular ellipticity between 260 - 
305 nm is associated with the microenvironment of protein aromatic residues. The 
340 nm peak is a characteristic near UV signal of the Type-3 copper centre. ___ 190 
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Figure 65: Near UV circular dichroism spectra of 0.3 mg/ml Pandinus imperator 
hemocyanin in 100 mM sodium phosphate buffer pH 7.5 following 5 minutes 
incubation in SDS across the range 0 – 2.0 mM. Molecular ellipticity at 260 - 305 
nm is associated with the microenvironment of protein aromatic residues. The 340 
nm peak is a characteristic near UV signal of the Type-3 copper centre._______ 191 

Figure 66: Near UV circular dichroism spectra of 0.3, 0.6 and 0.9 mg/ml Limulus 
polyphemus hemocyanin in 100 mM sodium phosphate buffer pH 7.5 following 5 
minutes incubation is SDS at 0, 1.4 and 3.5 mM. Molecular ellipticity at 260 - 305 
nm is associated with the microenvironment of protein aromatic residues. The 340 
nm peak is a characteristic near UV signal of the Type-3 copper centre. The spectra 
indicate that protein concentration had no effect on the circular dichroism spectra at 
the wavelengths and SDS concentrations concerned.______________________ 193 

Figure 67: Determination of the stability of Pandinus imperator and Eurypelma 
californicum hemocyanin upon incubation with sub-micellar and micellar 
concentrations of SDS. Dynamic light scattering was used to monitor changes in 
particle size (diameter) over 24 hours, of 1 mg/ml hemocyanin samples in 100 mM 
sodium phosphate buffer pH 7.5, incubated with 0.5 mM SDS, 2.0 mM (P. 
imperator Hc only) or 5.0 mM (E. californicum Hc only) SDS. _____________ 195 

Figure 68: Determination of SDS critical micelle concentration (CMC) in 100 mM 
sodium phosphate buffer pH 7.5. Dynamic light scattering was used to record 
changes in particle size (diameter and width) of SDS when present at increasing 
concentrations in this buffer. The results show that the CMC of SDS in this buffer 
lies between 1.00 and 1.05 mM. ______________________________________ 196 

Figure 69: Absorbance spectra of 0.3 mg/ml Limulus polyphemus hemocyanin in 100 
mM sodium phosphate buffer pH 7.5 following 5 minutes incubation in SDS across 
the range 0 – 2.7 mM.______________________________________________ 198 

Figure 70: Absorption spectra of 0.3 mg/ml Pandinus imperator hemocyanin in 100 mM 
sodium phosphate buffer pH 7.5 following 5 minutes incubation in SDS across the 
range 0 – 2.0 mM._________________________________________________ 199 

Figure 71: Absorption spectra of 0.3 mg/ml Eurypelma californicum hemocyanin in 100 
mM sodium phosphate buffer pH 7.5 following 5 minutes incubation in SDS across 
the range 0 – 10 mM. ______________________________________________ 199 

Figure 72: Absorption spectra of 0.3 mg/ml Eurypelma californicum hemocyanin in 100 
mM sodium phosphate buffer pH 7.5 following 5 minutes or 16 hours incubation in 
the absence or presence of 5.2 mM SDS. _______________________________ 200 

Figure 73: Fluorescence spectra of 0.1 mg/ml Limulus polyphemus hemocyanin in 100 
mM sodium phosphate buffer pH 7.5 excited at 330 nm following 5 minutes 
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Chapter 1 : Thesis Overview 

Proteins containing a binuclear copper centre, in which each copper ion is coordinated by 

three histidine residues, belong to a group known as the Type-3 copper proteins. 

Examples from this group include the mammalian tyrosinases and plant catecholoxidases. 

Those of interest and relevance to the subsequently presented research, however, are the 

insect phenoloxidases and arthropod hemocyanins, which each contain a single Type-3 

copper centre per protein subunit. 

1.1 Insect phenoloxidase 

Under normal in vivo conditions, insect phenoloxidase (PO) exists as a zymogen known 

as prophenoloxidase (PPO). Upon wounding or immune challenge, PPO is converted to 

its active form for the catalysis of defence reactions which generate compounds which 

afford the insect protection from infection. PO is also important developmentally, as 

products of its catalysis are responsible for hardening of the insect cuticle following each 

moult. The mechanism of PPO activation is poorly understood, although a number of 

components of the so called PPO cascade have been characterised more recently. Further 

discussions of these points are presented in Chapter 2. 

 

To date, the complete sequence of approximately 55 PPOs from a number of insect 

species have been submitted to the global database. However no sequence for a 

Spodoptera littoralis PPO has been elucidated despite published research demonstrating 

the presence of PO activity in the hemolymph of the larvae of this Lepidopteran species. 

Spodoptera littoralis, more commonly known as the Egyptian Cotton Leafworm, is an 



 

 2

economically important crop pest in many regions of Africa and Asia, the larvae of which 

are responsible for the destruction of entire crop harvests. Research aimed at unravelling 

the mechanisms by which these and other pest insects protect themselves from disease 

and environmental damage may well provide new opportunities for the development of 

species specific pest control. Structural and functional characterisation of the molecules 

involved in these mechanisms, one of which is PO, will be the first step towards this goal. 

1.2 Arthropod hemocyanin 

Arthropod hemocyanin (Hc) is a very large respiratory protein found in chelicerates, 

crustaceans, and more recently an insect model. The three dimensional structure of the 

dicopper centre of Hc is virtually super imposable with that of another Type-3 copper 

protein, catecholoxidase, and therefore it is hypothesised that all Type-3 copper proteins 

share this dicopper centre structure. The focus of the current research is the existence of a 

mechanism which, when triggered in vitro, elicits an intrinsic PO-like enzymatic activity 

in hemocyanin. This potential dual-functionality of Hc is very unusual. It has been known 

for some years that the anionic detergent sodium dodecyl sulphate (SDS), can induce PO-

type activity in arthropod Hc. Structural analyses have suggested that the presence of 

SDS causes a conformational change which opens the entrance to the dicopper centre of 

the Hc subunits, allowing larger phenolic substrates to enter. However, until now there 

have been no published results from experiments designed to characterise these SDS 

induced conformational changes in arthropod Hc. Discussions focusing on the structure 

and function of arthropod hemocyanin, as well as what was known of the effect of SDS 

to date, are presented in Chapter 6. 
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1.3 Research Objectives 

The presented research was based on two core objectives, the first of which was aimed at 

isolating, sequencing and characterising a PPO gene, from larvae of the insect crop pest 

S. littoralis (Figure 1 Panel A). A range of molecular techniques were used in 

experiments designed to address this aim, the results of which are presented in Chapter 3, 

Chapter 4 and Chapter 5. The second objective was to conduct a biophysical 

characterisation study of the mechanism of SDS induced PO activity in hemocyanin from 

the chelicerates (Phylum Arthropoda) Limulus polyphemus, Pandinus imperator and 

Eurypelma californicum (Figure 1, Panels B, C and D respectively). Some preliminary 

experiments were also conducted in attempts to determine a possible in vivo explanation 

for the effect that SDS has on Hc. The data and discussions for these experiments are 

presented in Chapter 7. The final chapter (Chapter 8) of this thesis draws together the 

main points established from the research and suggests possibilities for future work, as 

well as highlighting the importance of continuing to research the structure and function of 

Type-3 copper proteins. 
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A  B  

C  D  

Figure 1: Research study species, which were the source of the cDNA library, genomic DNA or 
total RNA (Panel A: Spodoptera littoralis (Egyptian Cotton Leafworm) larva), or the purified 
hemocyanins (Panel B: Limulus polyphemus (North Atlantic Horseshoe Crab); Panel C: Pandinus 
imperator (Emperor Scorpion); Panel D: Eurypelma californicum (North American Tarantula))
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Chapter 2 : Phenoloxidase in Insect Immunity – A Review of the 

Literature 

2.1 Introduction to Insect Immunity 

Insects (Phylum: Arthropoda; Class: Insecta) are extraordinary animals that have adapted and 

evolved to inhabit almost every environment on earth (Söderhall and Cerenius, 1998), 

including deserts and the Antarctic. Only in the oceans are insects less commonly found 

(Weeden et al., Accessed: 2003.). This success is believed to depend to a large extent on their 

defence systems against, and very efficient means of recognising, various potentially harmful 

micro-organisms and parasites, as many insects live in environments where micro-organisms 

are thriving (Söderhall and Cerenius, 1998).  

 

An insects’ first line of defence against invading organisms is afforded by a hard chitinous 

armour-like exoskeleton known as the cuticle (Sugumaran, 2001; Asano and Ashida, 2001a). 

The cuticle is a matrix of protein and carbohydrate secreted from an underlying monolayer of 

epidermal cells that features the body plan of the insect, covering its entire surface including 

respiratory trachea, reproductive ducts and anterior and posterior portions of the digestive 

tract (Asano and Ashida, 2001a; Asano and Ashida, 2001b; Ashida and Brey, 1995). Once 

considered inert, a view now changing dramatically with the demonstration of its active 

participation in defence reactions against invading pathogens (Asano and Ashida, 2001a), the 

cuticle provides a physical barrier between the internal tissues of the insect and the external 

environment (Ashida and Brey, 1995), protecting the animal from both physical damage and 

pathogenic attack (Ottaviani, 2005). If the cuticle is circumvented, organisms entering the 
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soft body of an insect face a highly effective arsenal of cellular (non-targeted) and humoral 

(targeted) immune defence reactions (Sugumaran, 2001), which have evolved the capacity to 

discriminate between self and non-self (Ottaviani, 2005; Richman and Kafatos, 1995). 

Insects do contain proteins with immunoglobulin domains (Söderhäll and Cerenius, 1998), 

but lack true antibodies (immunoglobulins) and other complicated proteins found in 

vertebrates, and as such lack an adaptive (or aquired) immune system (Sugumaran, 2001; 

Müller et al., 1999). They therefore have to rely solely on these cellular and humoral innate 

immune systems (Müller et al., 1999; Söderhäll and Cerenius, 1998). Despite their 

segregation into two different groups, there is evidence that the cellular and humoral 

components of the insect immune response in fact function cooperatively in the destruction 

and clearing of pathogenic micro-organisms from the insect body (Park et al., 2005; Lavine 

and Strand, 2002). 

 

Cellular defence reactions are hemocyte mediated responses which include phagocytosis, 

trapping of bacteria by nodule formation, and encapsulation of larger objects such as 

parasitoid eggs. In Lepidoptera, most of these cellular responses involve two hemocyte types: 

granular cells and plasmatocytes (Lavine and Strand, 2002). Phagocytosis, illustrated in 

Figure 2, is a function performed by hemocytes found circulating the insect soft body. These 

cells act to efficiently eliminate smaller pathogenic micro-organisms such as bacteria, and 

also to ‘clean up’ self dead cells and tissue debris from the hemolymph (Ling and Yu, 2005). 

Aggregations of bacteria are bound by multiple hemocytes during nodule formation whilst 

larger parasitic organisms entering the soft body are usually destroyed by encapsulation. 

Both response types result in the formation of overlapping layers of hemocytes which 
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Figure 2: Phagocytosis of fluorescently labelled yeast by hemocytes from the insect Manduca sexta. 
Phase-contrast (left) and fluoresced hemocytes containing multiple engulfed yeast cells are indicated by 
arrows (Yu, Accessed: 2003.). 
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 surround the target. In some species encapsulation is accompanied by melanisation (Ling 

and Yu, 2005; Lavine and Strand, 2002) and so the process was subsequently termed 

melanotic encapsulation, details of which are discussed in Sections 2.2 and 2.5.1. In such 

instances, oenocytoid hemocytes are likely to be involved as these cells contain the 

precursors of the melanisation reaction (Lavine and Strand, 2002). 

 

An important factor in insect humoral immunity is the rapid expression of a broad spectrum 

of potent antimicrobial peptides in response to infection and injury (Yu et al., 2003). These 

peptides have unique structural properties which enable them to permeate and disrupt target 

membranes such as those of bacterial and fungal pathogens (Schmidt et al., 2005). 

Phenoloxidase and its activation pathway are also key elements of the insect humoral 

immune response (Park et al., 2005; Lee et al., 1999), and discussions on this topic form the 

remaining sections of this review. 

2.2 Insect Phenoloxidase 

Despite all that is known about its biological functions, and the sequencing of approximately 

55 of its gene sequences from various insect species by 2006, the molecular mechanism and 

regulation of phenoloxidase (PO) are not well understood because of a lack of any known 

structure (Decker and Rimke, 1998). This is primarily due to studies being hampered by POs 

instability, ‘stickiness’, loss of activity during purification, insolubility, inactivation during 

reaction (Hall et al., 1995a) and spontaneous activation during collection of hemolymph 

through integumental incisions (Ashida and Brey, 1997). These problems have been 

overcome by studying the pro-form of the enzyme, prophenoloxidase (PPO). More recently 

an insect PPO has been expressed in an E. coli system which has inducible catalytic activity 
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(Rajagopal et al., 2005), offering the opportunity to study various aspects of PO activation 

and improve our understanding of this poorly studied area of insect biology. 

2.2.1 Phenoloxidase Types and their Functions 

PO is present throughout the life stages of insects (Sugumaran and Nellaiappan, 2000), and 

circulates throughout the insect body (Sugumaran et al., 2000a). It is found, mostly in 

hemolymph but also in the cuticle (Kawabata et al., 1995; Fujimoto et al., 1995), as a soluble 

inactive pro-form or zymogen known as prophenoloxidase (PPO) (Chosa et al., 1997), which 

is activated as the need arises (Sugumaran, 1998a; Sugumaran and Nellaiappan, 2000). Four 

types of PO - wound, granular, hemolymph and a laccase-type PO - are present in most 

insects (Ashida and Brey, 1997) and are named according to their functions. Wound PO (also 

referred to as cuticular or injury PO), granular PO and laccase-type PO are all located in the 

cuticle. Hemolymph PO, as the name suggests, is found in the hemocoel (Asano and Ashida, 

2001a). Wound PO appears to become activated at sites of cuticular damage, acting to seal 

off the injury and generate cytotoxic quinones to destroy opportunistic micro-organisms 

(Asano and Ashida, 2001a) – a mechanism detailed further in Section 2.5.1. Granular PO is 

involved in pigmentation of the insect body wall (Ashida and Brey, 1997), developing colour 

patterns by synthesising melanin during the course of normal development (Asano and 

Ashida, 2001a). PO granules are formed in the epidermal cells and transported to the cuticle 

in response to a hormonal signal, demonstrating that the enzymatic activity of granular PO is 

under hormonal control (Ashida and Brey, 1997). Laccase-type PO is important in 

sclerotisation of newly formed cuticle (Section 2.5.2), and would also appear to be under 

hormonal control with laccase activity becoming detectable in the cuticle soon after each 

moulting cycle (Ashida and Brey, 1997). And finally, hemolymph PO, on which most PO 
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studies have been carried out in the past 10-15 years (Ashida and Brey, 1997), is that 

responsible for synthesising melanin during the melanisation reaction. 

2.2.2 Site of Synthesis of Phenoloxidase 

In Lepidopteran insects, all four types of PPO are synthesised constitutively by specialized 

types of hemocytes called oenocytoids (Müller et al., 1999). However the specific hemocyte 

type involved can vary amongst arthropods; for example crystal cells and granular cells are 

responsible for the bulk of PPO synthesis in the fruit fly and crustaceans respectively 

(Cerenius and Söderhäll, 2004). Studies of hemocytes and epidermal cells at the protein and 

RNA levels have demonstrated that although PPO protein is present in both hemolymph and 

cuticle, PPO mRNA can be localised only in hemocytes (Ashida and Brey, 1995; Asano and 

Ashida, 2001b). Further to this, immunofluorescence labelling of isolated Manduca sexta 

hemocytes detects PPO protein only in oenocytoids (Jiang et al., 1997b). These findings 

imply all types of PPO are synthesised in oenocytoids and released into the plasma. If 

destined for the cuticle, PPO will perhaps undergo a post-translational modification and be 

transported into the epidermal cells for storage until its activity is required (Ashida and Brey, 

1997; Söderhäll and Cerenius, 1998; Ashida and Brey, 1995). 

2.2.3 Structural Features of Phenoloxidase 

PPO preferentially exists as a heterodimer (Asano and Ashida, 2001b), although, depending 

on ionic strength, it can monomerise or polymerise into multi-subunit molecules (Chase et 

al., 2000; Jiang et al., 1997b). Each PPO type can also exist in different forms, or 

isoenzymes, depending on their constituent subunits (Asano and Ashida, 2001a). 

Hemolymph PPO from the silkworm, Bombyx mori, for example, exists in two forms named 
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PPO-HS and PPO-HF, distinguishable by differences in their mobility in native PAGE. One 

of the two subunits from each isoenzyme is identical, but the other is different in five amino 

acids (Asano and Ashida, 2001b).  

 

Each PPO polypeptide (monomer) has a molecular weight between 70 - 90 kDa and contains 

approximately 685 amino acids, depending on the species from which it originates (Söderhäll 

and Cerenius, 1998; Sugumaran, 2002; Fujimoto et al., 1995; Jiang et al., 1997a; Jiang et al., 

1997b). Amino acid sequence similarity amongst the PPOs of different insect species ranges 

from 40 to 80% (Hall et al., 1995a). An alignment of a number of insect PPOs (Figure 3) 

indicates most contain a conserved C-terminal thiol-ester bridge motif (Jiang et al., 1997b), a 

conserved C-terminal site (Sugumaran, 2002) whose role is unknown, and an N-terminal RF 

(arginine-phenylalanine) cleavage site for activation (Müller et al., 1999). A second potential 

cleavage site, with the conserved sequence REE has also been identified further downstream 

of the RF site (Müller et al., 1999). The amino acid sequences of the two copper binding sites 

(named CuA and CuB) in each PPO monomer are also conserved amongst insect species, 

although CuA appears more conserved than CuB (Fujimoto et al., 1995). 
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                     10        20        30        40        50        60 
                      |         |         |         |         |    ^^   | 
TmolitPPO5   ----MAS-KKNILLLFDRPREPVFIAKGSKKAVFSVPNEYLADKYKPLGVALTNRFGEDA 
SbullPPO1    ----MAD-KHDLLLLFERPNEPVFMEKGKTITVFDIPDKFLTDRYRPIGSEVQSRFGEKA 
GmellonPPO   ----MSDSKSRLLLFFDRPSEPCFLQKGDDNVAFEVPDHYYSDKYKSLTNTLANRFGSGE 
BmoriPPO1    ----MSDAKNNLLLFFDRPSEPCFMQKGEEKAVFEIPDNYYPEKYQRVSNAIGHRFGSNA 
SlituraPPO   MSDMSGDVVEHPKLLFDRPNEPLITPKGDNKAVFQLSEKLVPPEYANNGVELNDRFGDDA 
HcuneaPPO2   ----MADIVDNLSLLFDRPNEPMIIPKGDDKALFELTEEFLPPGYENNGVELNNRFGDEA 
 
                     70        80        90       100       110       120 
                      |         |         |         |         |         | 
TmolitPPO5   --DERIDVKKIS-IPPFGEILELSRDENFSLFIPKHRRIAGRLIDIFLGMR--NVDDLVS 
SbullPPO1    --EKRIPVKDIS-LPDLRIPMSLGRDEQFSLFVPRHRRIAGRLIDIFMGVR--TIDDLQS 
GmellonPPO   --VRTIPVKNIA-LPDLSLPLQLPYNDQFSLFVAKHRRMAGKLIDIFINMR--DVDDLIS 
BmoriPPO1    --CRMIPIRNIA-LPNLDLPMELPYNEQFSLFVPKHRKLAGRLIDIFMGMR--DVEDLQS 
SlituraPPO   --TEKIPLKTLDSYPAFTKASQLPSDADFSLLLPKHQEMATEVIDAFMNVPLNQLQDFLS 
HcuneaPPO2   DISRKIPIENLKRKVNFKLATQLPVDADFSLFLPKHQDMATEVIDVLMGVPEGQTQQFLS 
 
                    130       140       150       160       170       180 
                      |         |         |         |         |   ^^^   | 
TmolitPPO5   VAVYARDRVNPYLFNYALSVAILHRPDTQDVDLPSFIESFPDKYVDAKVFAQAREQATVV 
SbullPPO1    IAVYAHDRINPFLFNYALSVALLHRSDTKNLDLPSFAQNFPEKFVDSQVFRKVREEATVV 
GmellonPPO   LCSYCQMRVNPYMFNYCLSVAILHRPDTKGLQVPPVVETFPDKFMDPKVFRKARETTTVN 
BmoriPPO1    VCSYCQLRINPYMFNYCLSVAILHRPDTKGLSIPTFAESFPDKFMDPKVFRQAREVSSVV 
SlituraPPO   TCVYARANLNPQLFNYCYSVALMHRDDTKNVPIQNFAETFPSKFMDSQVFQRAREVTAVL 
HcuneaPPO2   TCVFSRSNLNPQLFNYCFTVALMHRRDTRQVPVANFAESFPAKFMDSRVFQKAREVAAVL 
 
                    190       200       210       220       230       240 
                      |         |         |        ∆|  ∆      |         | 
TmolitPPO5   PEGS-RAPIEIPKDYTASDLEEEHRLAYFREDLGINLHHWHWHLVYPFEA-AREVVAKNR 
SbullPPO1    SEGS-RMPITVPRDYTASDLDPEHRLWYFREDLGINLHHWHWHLIYPFEAGDRAIVNKDR 
GmellonPPO   ASGN-RMPITIPTNYTASNSEPEQRVAYFREDIGINLHHWHWHLVYPFEAA-REIVKKDR 
BmoriPPO1    PSGA-RMPIVIPSNYTASDAEPEQRVAYFREDIGTNLHHWHWHLVYPFDAADRALVNKDR 
SlituraPPO   PQNVPRIPIIIPRDYTATDLEEEHRLAYWREDIGVNLHHWHWHLVYPFTASQRSIVAKDR 
HcuneaPPO2   PRDVPRTPIIIPRDYTATDLEDEHRLAYFREDLGINLHHWHWHLVYPFAASQREIVAKDR 
                                                    CuA-binding site 
                    250       260       270       280       290       300 
                     ∆|         |         |         |         |         | 
TmolitPPO5   RGELFYYMHQQIIARYNFERLCNKLKRATRFNDFKQAIQEAYFPKLDSLVASRSWPARVG 
SbullPPO1    RGELFYYMHQQVVARYNLERFSNNLARVTRLNDFRQPIAEGYFPKMDSLVASRAWPPRFD 
GmellonPPO   RGELFYYMHQQIIARYNAERLCNGLGRVTRYSDFRAPIGEGYFPKLDSQVASRSWPPRFA 
BmoriPPO1    RGELFYYMHQQMIARFNIERFCNDLKKVETYSDFRGPIKEGYFPKMDSQVASRAWPPRFA 
SlituraPPO   RGELFFHMHQQLIARYNCERLNHSLKRVKKFSNWREPIPEAYFPKLDSLTSARGWPPRQA 
HcuneaPPO2   RGELFFYMHSQMIARYNGERLNSALKRVKKFSNWREPIPEAYFPKLDSLTSSRGWPPRQA 
 

Figure 3: Multiple alignment of amino acid sequences of PPO polypeptides from six insect species. 
These are Bombyx mori PPO1 (BmoriPPO1), Galleria mellonella PPO (GmellonPPO), Sarcophaga 
bullata PPO1 (SbullPPO1), Tenebrio molitor PPO5 (TmolitPPO5), Hyphantria cunea PPO2 
(HcuneaPPO2), and Spodoptera litura PPO (SlituraPPO). The NCBI Genbank accession numbers for 
these sequences are NM_001043870, AF336289, AF161260, AB020738, AF020391 and AY703825 
respectively. The two copper-binding sites are singly underlined and labelled, and the 3 conserved 
histidines in each are highlighted with ‘∆’. The conserved RF and REE cleavage sites are marked with 
‘^’, the conserved thiol-ester motif is double underlined ‘=’ and the conserved C-terminal site is 
underlined with ‘~’. (Multiple alignment constructed using MULTALIN (pbil) available via the ExPASy 
online Proteomics Server and the NCBI PubMed nucleotide databank). 
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                    310       320       330       340       350       360 
                      |         |         |         |         |         | 
TmolitPPO5   NQRLKDLNREVDQIKQDVDDLKRWSDRIYAAIHQGSATDERGRKIELTENEGIDILGNMI 
SbullPPO1    NTKLSDLNRELDQINLDIADLERWRDRIFEAIHQGFVVDESGNRVPLDEQRGIDILGNIL 
GmellonPPO   NTVIRDIDRPVNEIKIDVFQLETWRDRFLQAIDSNAINMPNGRKVPLNEETGIDELGNLM 
BmoriPPO1    GTTIRDLDRPVDQIRSDVSELETWRDRFLQAIENMSVMLPNGRQLPLDEETGIDVLGNLM 
SlituraPPO   NMYWQDLNRPVDGLNITINDMERWRRNVEEAISTGRVTKADGSSAELD----IDTLGNML 
HcuneaPPO2   NMTWQDLNRPVDGLLVTIDDMERWRRNIEEAISTGRVTTADGRTIDLD----IDILGNMM 
 
                    370       380       390       400       410       420 
                      |     ∆   ∆         |         |         |     ∆   | 
TmolitPPO5   ESSILSPNRTFYGDMHNMGHVFISYVHDPDHRHLESFGVMGDSATAMRDPIFYRWHSYID 
SbullPPO1    ESSITSVNRSLYGDLHNMGHVFISYAHDPDHRHLESFGVMGDSATAMRDPVFYRWHAFVD 
GmellonPPO   ESSILSLNRGYYGDLHNMGHVFIAYSHDPDHRHLEEYGVMGDSATAMRDPVFYRWHAYID 
BmoriPPO1    ESSIISRNRPYYGDLHNMGHVFISYSHDPDHRHLEQFGVMGDSATAMRDPVFYRWHAYID 
SlituraPPO   EASILSPNRELYGSIHNNGHSFAAYMHDPTHRYLESFGVIADEATTMRDPFFYRWHAWID 
HcuneaPPO2   EASILSPNRELYGSIHNNGHSFSAYMHDLQHRYLESFSVIADEATTMRDPFFYRWHAYID 
                                        CuB-binding site 
                    430       440       450       460       470       480 
                      |         |         |         |         |         | 
TmolitPPO5   DIFQEYKAT--LPRYTENQLNFPGVTVSKVEVQVQGGSANTLNTFWQQSDVDMSRGMDFQ 
SbullPPO1    DMFQEHKTR--LTSYTLPQLQYDGITIGGIQVASDGGRPNVLSTFWQQSDVDLSRGMDFV 
GmellonPPO   DIFNLYKSK--LTPYGDSQLDYPGIRVSSISVE-GPAGANRFATQWQQSLVELSQGLDFT 
BmoriPPO1    DIFHLYKYK--LTPYGNDRLDFPNIRVSSVSIE-GGGTPNTLNTLWEQSTVDLGRGMDFT 
SlituraPPO   DTCQRHKESAYVRPYTRSELENPGVQVTSVSVETAGGQPNTLNTFWMSSDVDLSKGLDFS 
HcuneaPPO2   DTFQRHKESPYVRPYTRSELENPGVRLTSIAIESSNNQMNTLNTFWMSSDVDLSRGLDFS 
 
                    490       500       510       520       530       540 
                      |         |         |         |         |         | 
TmolitPPO5   PRGSVFVRFTHLQHQPFTYKITVKNSSNGNRKGTCRIFIAPKLDERGNPWLYRDQKNMFV 
SbullPPO1    PRGNVFARFTHLQHTPFTYTINVNNSSGAQRFGTVRIFLGPKTDERGQPMLLSDQRLLMI 
GmellonPPO   PRGSVLAKFTHLQHEEFTYVIEVNNTSGQSKMGTFRVFMAPKTDERGQPLAFEDQRRLMI 
BmoriPPO1    PRGSVLARFTHLQHDEYNYVVEVNNTGGSSVMGMFRIFIAPTVDESGKPFSFDEQRKLMI 
SlituraPPO   DRGAVYARFTYLNNRPFRYVININN-TGSARRTTVRIFMAPKFDERNLVWSLADQRKMFI 
HcuneaPPO2   ERRPVYARFTHLNHTPFRYVIKVNN-TGSARRTTVRIFIAPKFDERNLTWALADQRKMFV 
 
                    550       560       570       580       590       600 
                      |         |         |         |         |         | 
TmolitPPO5   ELDKFTVNLKQGQNNITRASSQSSVTIPFERTFRNLDLNRPQGG-EELAQFNFCGCGWTQ 
SbullPPO1    ELDKFVVALNPGQNTIRRRSTDSSVTIPFERTFRNLDANRPAAGSAEELEFNFCGCGWPQ 
GmellonPPO   ELDKFTRGLKPGNNTIRQRSLDSSVTIPFERTFRNQANRPGDPGSATAAEFDFCGCGWPH 
BmoriPPO1    ELDKFSQGVKPGNNTIRRKSIDSSVTIPYERTFRNQADRPADPGTAGAAEFDFCGCGWPH 
SlituraPPO   EMDRFVQPLNAGQNTITRNSTDSSVTIPFEQTFRDLSPQGSDPRRTSLAEFNFCGCGWPQ 
HcuneaPPO2   EMDIFVTPLNAGENTITRLSTQSSVTIPFEQTFRDLSPQSGDPRRTNLAAFNFCGCGWPQ 
                                                                   ====== 
 

Figure 3: Continued 
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                    610       620       630       640       650       660 
                      |         |         |         |         |         | 
TmolitPPO5   HMLIPKGTPEGMPCQLFVMISNYEDDKVNQSTEG--VCNDAGSYCGIKDKLYPDRRSMGY 
SbullPPO1    HMLIPKGLPEGMRCELFVMISNYEDDRVDQQLVG--ACSDAASFCGVRDRLYPDRRPMGY 
GmellonPPO   HMLIPKGTEQGYPVVLYVMVSDWNADKIEQDTVG--ACNDAASYCGLRDRKYPDKRHMGF 
BmoriPPO1    HMLVPKGTTQGYPMVLFVMVSNWNDDRVEQDLVG--LCNDAASYCGIRDRKYPDRRAMGF 
SlituraPPO   HMLVPKGTEAGAAYQLFVMLSNYDLDSVDQPGGNQLSCVEASSFCGLKDKKYPDRRSMGF 
HcuneaPPO2   HMLVPKGNEAGVTYQFFVMLSNYELDRIEESSNVQSNCVEASSFCGLRDRKYPDRRAMGF 
             ==                                          ~~~~~~~~~~~~~~~~ 
                    670       680       690       700 
                      |         |         |         | 
TmolitPPO5   PFDRMPRNGVDTLQQFLTSNMRVQDVTIKFTNRTVRPKSRN------ 
SbullPPO1    PFDRLPRAGADRLVN-------------------------------- 
GmellonPPO   PFDRRS--EARNLTDFLKPNMATRDCTIKFTDAIREGTQRQ------ 
BmoriPPO1    PFDRPAP-AATTLSDFLRPNMAVRDCIVRFTDGTRQRGQQG------ 
SlituraPPO   PFDRPSS-IATNIEDFILPNMALQDITIRLSNVVEQNPRNPPSAV-- 
HcuneaPPO2   PFDRPST-TAANIEDFILPNMGLQDITIRLRNETIPNPRNPVTQTPQ 
             ~~~~ 
 

Figure 3: Continued 
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Interestingly insect PPO polypeptides lack the hydrophobic N-terminal signal sequence 

required for secretion, and this has raised a debate over how PPO, synthesised in hemocytes, 

arises in the hemolymph plasma (Ashida and Brey, 1997). Earlier discussion (Section 2.2.2) 

pointed out that PPO is synthesised in particular subsets of hemocytes depending on species, 

with the oenocytoid hemocytes being responsible in Lepidoptera insects. Ultra-structurally, 

oenocytes are non-typical in that they are almost entirely composed of ribosomes and 

mitochondria, with no evident rough endoplasmic reticulum. Therefore it is now generally 

assumed that the cell membranes of oenocytoid hemocytes, rupture to release PPO, although 

there is no experimental evidence to prove this (Ashida and Brey, 1997; Cerenius and 

Söderhäll, 2004; Kawabata et al., 1995). 

2.3 Phenoloxidase is a Type-3 Copper Protein Similar to Arthropod 

Hemocyanin 

PO is a bi-functional enzyme possessing both tyrosinase (EC 1.14.18.1) and o-

diphenoloxidase (EC 1.10.3.1) activity (Hall et al., 1995a; Jiang et al., 1997a), catalysing the 

incorporation of oxygen from molecular O2 (Solomon et al., 1996) into phenolic molecules, 

in a two step reaction (Decker and Terwilliger, 2000) that generates reactive quinonoid 

compounds: firstly the ortho-hydroxylation of monophenols into o-diphenols and secondly 

the oxidation of o-diphenols into o-quinones (Ashida and Brey, 1997) (Kawabata et al., 

1995). 
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These functions are attributed to PPOs oxygen-binding binuclear dicopper active site, which 

contains two copper atoms (CuA and CuB) each coordinated by three histidine residues; this 

is known as a Type-3 copper centre (Decker and Tuczek, 2000). The peptide sequences of 

each copper binding site have been found to be similar, not only amongst those insect PPOs 

so far sequenced, but also with the dicopper centers of arthropod hemocyanin (Hc) (Ashida 

and Brey, 1997), another Type-3 copper oxygen-binding protein. It has been hypothesised, 

therefore, that during catalysis molecular oxygen bridges the two copper atoms in PO in a 

side-on configuration as in arthropod Hc (Figure 4). 

 

 

Figure 4: Dioxygen bridges the two copper atoms of the Limulus polyphemus hemocyanin Type-3 copper 
oxygen-binding site in a side-on configuration. Due to the identity between the copper-binding site 
sequences of insect prophenoloxidase and arthropod hemocyanin, it is likely this arrangement exists in 
phenoloxidase during the incorporation of oxygen into phenolic compounds (taken and adapted from 
(Decker and Terwilliger, 2000)). 
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The sequence alignment in Figure 5 demonstrates identities and similarities between the 

residues of the Hc and PPO copper binding sites and highlights the perfect alignment of the 

copper-coordinating histidine residues which are conserved throughout. Nevertheless, it 

should be noted that full length sequence similarity between PO and Hc is < 30%  
 
 
                    200        210       220      230       240       250 
                      |        ∆ | ∆       |        |         ∆         |       
B.moriPPO1   EPEQRVAYFREDIGTNLHHWHWHLVYPFDAADRAL-VNKDRRGELFYYMHQQMIARFNIE 
A.gambPPO4   EPEQRVAYFREDIGINLHHWHWHLVYPFEAA-REI-VKKDRRGELFYYMHQQIIARYNAE 
G.melloPPO   VDEQRLAYWREDIGVNLHHWHWHLVYPARGPNR-I-VRKDRRGELFYYMHQQTMARYNIE 
L.polyHcII   DPEYRLAYYREDVGINAHHWHWHLVYPSTWNPKYFGKKKDRKGELFYYMHQQMCARYDCE 
                    CuA-binding site 
                    370       380       390       400       410       420 
                   ∆  |∆        |         |         |      ∆  |         | 
B.moriPPO1   PYYGDLHNMGHVFISYSHDPDHRHLEQFGVMGDSATAMRDPVFYRWHAYIDDIFHLYKYK 
A.gambPPO4   GYYGDLHNMGHVFIAYSHDPDHRHLEEYGVMGDSATAMRDPVFYRWHAYIDDIFNLYKSK 
G.melloPPO   QYYGDLHNNGHNILGYIHDPDNSFLEGFGVVGDNTTAMRDPVFYRWHQHIDDIFVRHKQR 
L.polyHcII   EYYGNLHNWGHVTMARIHDPDGRFHEEPGVMSDTSTSLRDPIFYNWHRFIDNIFHEYKNT 
                                   CuB-binding site 

Figure 5: Multiple alignment of amino acid sequences of the CuA (top) and CuB binding sites of 
prophenoloxidase from three insect species, Bombyx mori PPO1 (B.moriPPO1), Anopheles gambiae 
PPO4 (A.gambPPO4) and Galleria mellonella PPO (G.melloPPO), and hemocyanin subunit II from 
Limulus polyphemus (L.polyHcII). The NCBI accession numbers for there sequences are 
NM_001043870, AJ010193, AF336289 and AM260213 respectively. CuA and CuB binding sites are 
singly underlined and labelled, and the conserved coordinating histidines are highlighted by ‘∆’. 
Alignment constructed as in Figure 3. 

(Decker, 2005). Arthropod PO and Hc also share several physico-chemical properties 

(Decker and Terwilliger, 2000) - both are extra-cellular proteins that exhibit PO activity after 

proteolysis or treatment with detergents, and both bind dioxygen at their dicopper centers 

(Decker et al., 2001; Nagai and Kawabata, 2000). As such, although the structure of an insect 

PPO has not yet been elucidated, its dicopper active site is probably similar to the dicopper 

center of the well characterised Hc from the ancient chelicerate Limulus polyphemus, 

(Atlantic horseshoe crab) (Figure 6) (Ashida and Brey, 1997; Decker and Terwilliger, 2000). 
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Figure 6: The dicopper oxygen-binding site from subunit II of Limulus polyphemus hemocyanin. CuA 
and CuB and their coordinating histidines are labelled. Image generated using file 1LLA from the protein 
data bank (PDB) and Pymol molecular graphics software. 
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These similarities suggest a common evolutionary ancestor for arthropod PPO and Hc. Hc is 

speculated to have evolved from an ancestral mono-copper protein by gene duplication and 

subsequent gene fusion. PPO is thought to have evolved from two separate mono-copper 

proteins by a single gene fusion step (Kawabata et al., 1995). This perhaps explains why 

there is greater sequence similarity between the CuB binding site, compared to the CuA 

binding site, of arthropod PPO and Hc (Ashida and Brey, 1997). Despite the similarities in 

dicopper center structure and activation of PPO activity, when one compares arthropod Hc 

with PPO, it becomes apparent that they are very different proteins in respect of size, 

quaternary structure, native physiological function and distribution among subphyla (Decker 

and Tuczek, 2000; Decker and Terwilliger, 2000). Arthropod Hc is characterised by a very 

complex quaternary structure composed of multiple kidney-shaped subunit types, each with 

three domains, which form a basic hexamer (Decker and Terwilliger, 2000). These hexamers, 

depending on the species, can then form high molecular mass aggregates ranging from 

1x6mers to 8x6mers (Decker and Terwilliger, 2000; Zlateva et al., 1996). PPO on the other 

hand most commonly occurs as a dimer of two subunit types, although it is known to form 

monomers, trimers or tetramers under specific conditions (Decker and Tuczek, 2000; Chase 

et al., 2000). Under normal physiological conditions, Hc functions as an oxygen transport 

protein that can reversibly bind dioxygen without modifying it (Nagai and Kawabata, 2000) 

and has been found in crustaceans and chelicerates (Decker and Tuczek, 2000), and more 

recently in an insect species, Perla marginata (Stonefly) (Lee et al., 2004). PPO however has 

been found only in crustaceans and insects (Decker and Tuczek, 2000), and when active, 

utilises one of the oxygen atoms from the bound dioxygen to catalyse important immune 

defence reactions (Decker and Terwilliger, 2000).  
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In the absence of an insect PPO structure, the remarkable similarities between arthropod PPO 

and Hc justify the use of the structure of arthropod Hc as a model for experiments aimed at 

determining the secondary, tertiary and quaternary structure of PPO, understanding which 

regions of the PPO protein are important in the formation of multimers, and in site-directed 

mutagenesis studies designed to analyse PPO’s catalytic and binding sites (Jiang et al., 

1997b). 

2.4 The Prophenoloxidase Activation Cascade 

2.4.1 Introduction. 

PPO can be activated directly, in vitro, by proteolytic cleavage of the proenzyme into its 

active form, or by adding specific detergents (the cationic detergent cetyl pyridinium chloride 

activates PPO most specifically (Sugumaran, 1998b)), phospholipids or fatty acids (Chosa et 

al., 1997; Sugumaran, 2002) which are thought to cause a conformational change in the 

proenzyme exposing the active site and eliciting PO activity without cleaving any peptide 

bond (Sugumaran, 1998b; Sugumaran, 2001). Phospholipid activation perhaps has 

physiological relevance, since during immune challenge the insect phopholipase pathway is 

also activated. This pathway is involved in triggering the immune response, but more 

importantly it generates phospholipids and lysophospholipids which may provide the insect 

with an alternative PPO activation mechanism (Sugumaran, 2002). 

 

In vivo activation of PPO, generally referred to as the PPO activaton cascade, is a system 

triggered by invasion of the insect’s soft body by foreign organisms (Kopácek et al., 1995). 

The components of this cascade may already be present in the hemolymph or released from 
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hemocytes or the fat body when pathogens or parasites are encountered (Jiang et al., 2003). 

The only identified natural activator of PPO in insects is a trypsin-like serine protease known 

as the PPO activating enzyme (PPAE; sometimes referred to as PPO activating proteinase or 

PAP) (Jiang et al., 1997a; Chosa et al., 1997), which is itself present as a zymogen 

(proPPAE) (Ashida and Brey, 1997) secreted from hemocytes and activated by another as yet 

uncharacterised serine protease that also exists in a proform (Sugumaran, 2001). The little 

understood PPO cascade (a proposed outline is illustrated Figure 7) was thus named since the 

activation of subsequent serine protease zymogens following an initial trigger, culminates in 

activation of PPO. 
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Figure 7: Proposed overview of the insect prophenoloxidase (PPO) activation cascade. Polysaccharides 
present at the surface of micro-organisms and other compounds released upon self-tissue damage, are 
bound by pattern recognition proteins (PRPs) in the insect soft body. It has been hypothesised that 
binding of PRP and elicitor causes a conformational change in the PRP allowing its interaction with the 
first protease of the PPO cascade, perhaps resulting in its auto-activation. Subsequent activation of a 
cascade of proteases culminates in the activation of phenoloxidase (PO). PO is activated from PPO by 
the prophenoloxidase activating enzyme (PPAE) which may or may not, depending on species, require to 
be associated with one or more serine protease homologues (SPHs) to perform this function efficiently. 
‘n’ represents an unknown number of proenzymes/active proteases. Adapted from (Cerenius and 
Söderhäll, 2004). 
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2.4.2 Pattern Recognition Proteins. 

The most widely studied and understood elicitors of the PPO cascade are foreign pattern 

molecules such as β-1,3-glucan, peptidoglycan and lipopolysaccharide (LPS) (Kopácek and 

Sugumaran, 1998), which are cell wall components of fungi, Gram-positive bacteria and 

Gram-negative bacteria respectively (Park et al., 2005). One of the links between these 

elicitors and activation of the first protease in the cascade is the recognition of non-self 

molecules, termed pattern recognition. A group of proteins known as pattern recognition 

proteins (PRPs) perform this function (Figure 7) and can be either humoral or cellular in 

form (Yu et al., 2002). As insects lack true antibodies (aquired immune system), and these 

PRPs do not possess the specificity of antibodies, they function instead by recognising and 

binding to different classes of polysaccharides, such as those mentioned above, which are not 

found in the host (Yu et al., 2002). Humoral PRPs function as ‘biosensors’ to detect non-self 

molecular patterns (Ma and Kanost, 2000) and in their bound form relay the infection signal 

by binding to a surface protein of immune cells which will direct the appropriate immune 

responses (Söderhäll and Cerenius, 1998). Less is known of the cellular PRPs, although a 

search of the Drosophila genome database has revealed several genes with sequence 

similarity to humoral PRPs that possess transmembrane domains, suggesting they may be 

cellular PRPs. Nonetheless, they are understood to function similarly to humoral PRPs, 

except that they are found at cell surfaces and thus bind non-self molecules directly to 

immune-responsive cells (Lavine and Strand, 2002). 

 

There are a number of humoral PRPs in insects, and each type recognizes and binds a 

particular class of polysaccharide. In the Silkworm, Bombyx mori, for example, only two 
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classes of polysaccharide have been identified which can initiate the PPO cascade, β-1,3-

glucans and peptidoglycans (Ashida and Brey, 1997). PRPs that exist separately in the 

hemolymph have been shown to interact with either β-1,3-glucan or peptidoglycan, and were 

named β-1,3-glucan recognition protein (βGRP – 62 kDa) and peptidoglycan recognition 

protein (PGRP – 19 kDa) respectively (Ashida and Brey, 1997). βGRP and PGRP 

demonstrate high levels of specificity in B. mori, with activation of the PPO cascade 

observed only on βGRP binding with glucans possessing β-1,3-linkages or PGRP binding 

peptidoglycans with a glycan portion larger than two repeating units (Ashida and Brey, 

1997). Manduca sexta (the Tobacco Hornworm), however, has been shown to possess four 

different classes of PRPs that are involved in immune responses. These are βGRP and PGRP 

as in B. mori, as well as hemolin and immulectins (C-type lectins) (Yu et al., 2002). An 

interesting point to note here is that the PRPs from M. sexta display a level of redundancy in 

their specificity i.e. they can recognize and bind more than one class of microbial 

polysaccharide (Table 1). 

 

Table 1: Pattern recognition proteins found in the hemolymph of the tobacco hornworm, Manduca sexta. 
A level of redundancy is displayed in the binding specificities of these PRPs, with some recognising 
more than one microbial polysaccharide (constructed using data from (Yu et al., 2002)). 

 

It must be emphasised that it is unlikely that insects possess an array of PRPs each tailored to 

recognise only a particular group of non-self molecular patterns. As a range of targets such as 

protozoans, nematodes, parasitoids and damaged self-tissues elicit similar immune responses, 

Protein Molecular Mass (kDa) Microbial Polysaccharide Recognised 
βGRP 53/54 Β-1,3-glucans and Lipoteichoic acid 
PGRP 19 Peptidoglycan 

Hemolin 48 LPS and lipoteichoic acid 
Immulectins 35/36 LPS and other unidentified polysaccharides 
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it seems reasonable to assume that insect PRPs have redundancy in their binding properties, 

enabling them to recognise and bind a variety of molecules not normally found in the 

hemocoel (Lavine and Strand, 2002). 

 

As yet it is not understood how the signal produced by the binding of PRPs to elicitors is 

transduced to trigger an immune response in insects. It is most likely, however, that there are 

a number of different signalling pathways, each of which induce a different type of immune 

response e.g. phagocytosis or melanin synthesis. It has been hypothesised that the bound 

polysaccharides cause a conformational change in the PRP allowing it to interact with the 

first protease of the PPO cascade, perhaps leading to its auto-activation (Yu et al., 2002). 

Suggestions from research of cell-mediated immunity in the Medfly, Ceratitis capitata, 

imply that the change in conformation of humoral or cellular PRPs in response to microbial 

infection causes induction of a mitogen activated protein (MAP) kinase pathway in 

hemocytes. The signal is thought to be transduced from elicitor-bound PRPs either directly, 

as in the case of cellular PRPs, or via binding of humoral PRPs to a hemocyte cell surface 

protein. The MAP kinase pathway is then thought to regulate subsequent immune responses. 

One example may be the regulation of PPAE secretion from hemocytes which is a 

prerequisite to the activation of PPO (Mavrouli et al., 2005; Foukas et al., 1998). 

2.4.3 PPAE Activation and its Activation of Phenoloxidase. 

PPAE is a serine protease responsible for the activation of PO from its zymogen, and is the 

earliest component of the enzymatic PPO cascade to have had any characterisation studies 

performed so far. It is synthesized constitutively by circulating hemocytes, and its secretion, 

which is suggested to be regulated by a MAP kinase pathway, increases in response to the 
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presence of LPS or bacterial cells (Mavrouli et al., 2005; Foukas et al., 1998). It exists 

primarily as a zymogen, activated by another as yet uncharacterised serine protease by 

proteolysis at a conserved RI/KI site (Sugumaran, 2001). Very little is currently known of the 

exact number of proteases which may be involved in the PPO cascade (Yu et al., 2003). 

 

Since 1998, PPAEs have been purified and cloned from Bombyx mori, Holotrichia 

diomphalia, Pacifastacus leniusculis and Manduca sexta (Zou et al., 2005). In fact, three M. 

sexta PPAEs have been purified, one of which, PAP-1 (PPO activating protease-1), has been 

found to be expressed constitutively in the insect fat body during all larval, pupal and adult 

phases, although to varying degrees. During periods of immune challenge, PAP-1 expression 

levels increase markedly in this tissue, as well as in hemocytes. However, PAP-1 mRNA is 

detectable during different stages, in differing quantities, in numerous tissue types including 

the trachea, nerve tissue, integument, hemocytes and midgut of the M. sexta larval and adult 

phases. These findings suggest that the PAP-1 gene (and possibly all other PPAE genes) is an 

immune-responsive gene, whilst perhaps also under hormonal control (Zou et al., 2005; Jiang 

et al., 2003). 

 

All PPAEs belong to the clip-domain serine protease family, and proPPAE contains one or 

two amino-terminal clip-domains connected to a carboxyl-terminus catalytic serine protease 

domain (Sugumaran, 2001). It is postulated that the clip domain has a regulatory function or 

may control the interactions between PPAE and its substrate and/or other proteins (Jiang et 

al., 1998). ProPPAE has a molecular weight of 40 kDa which, after cleavage at its conserved 

RI/KI proteolytic activation site, is reduced to the 28 kDa PPAE active form (Sugumaran, 

2001). PPAEs purified from M. sexta larvae have each been found to require two clip-domain 
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serine protease homologues (SPHs) in order to successfully activate PO, which in turn also 

require cleavage to elicit their intrinsic function (Wang and Jiang, 2004; Zou et al., 2005). 

SPHs are similar in structure to PPAEs with the exception that their catalytic domain active 

site contains a glycine residue in place of a serine (Jiang et al., 2003). PPAE associates with 

these SPHs, and also the C-type lectin immulectin-2, to form a ternary complex that 

hydrolyses the peptide bond at the carbonyl side of arginine-51 in the sequence –Asn-Arg-

Phe-Gly- (conserved RF site) of both subunits of PPO (Müller et al., 1999). Immulectin-2 is 

in fact a pattern recognition protein, and its association with PPAE via the SPHs may act to 

ensure localised activation of PPO to sites of infection (Jiang et al., 2003) (Ling and Yu, 

2005). Furthermore, the clip domain of the crayfish PPAE interacts with Gram-negative 

bacteria exerting an antibacterial function and also possibly acting to anchor the PPAE 

catalytic domain onto the bacterial surface where it will activate PPO, thus localising PO 

activity to the area it is required (Jiang et al., 2003). In the absence of its cofactor, M. sexta 

PPAE still cleaves PPO on the carbonyl side of Arg-51, however, the product is catalytically 

inactive. In contrast B. mori PPAE does not require such cofactors to activate PPO (Wang 

and Jiang, 2004). 

 

Removal of the N-terminal segment at the conserved RF site converts inactive PPO to active 

PO with a concurrent reduction in the molecular mass of each polypeptide by about 6 kDa 

(Figure 8) (Kawabata et al., 1995). A second potential cleavage site, with the conserved 

sequence REE, has also been identified in PPO from a number of insect species (see 

alignment in Figure 3), suggesting that there may be more than one PPAE responsible for 

activating PPO (Müller et al., 1999). The action of PPAE thus activates the endogenous PO 



 

 28

activity of PPO, enabling this enzyme to participate in various physiologically important 

reactions. 

 

 

 

Figure 8: Proteolytic cleavage of PPO by PPAE at the conserved arginine-phenylalanine (RF) activation 
site. PPAE cleaves the bond at the carbonyl side of the arginine in both subunits of PPO, converting it to 
its active form – PO. Removal of this N-terminal segment causes a reduction in the molecular mass of 
PPO by approximately 6 kDa (Müller et al., 1999; Kawabata et al., 1995). 
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2.5 Physiological Roles of Active Phenoloxidase in Insects 

2.5.1 Melanisation – Melanotic Encapsulation and Wound Healing 

When a foreign organism which is too large to be phagocytosed, e.g. a nematode or 

parasitoid egg, enters the soft body of an insect, a process known as cellular melanotic 

encapsulation takes place (Sugumaran and Nellaiappan, 2000). Melanotic encapsulation is a 

well regulated, complex yet common immune response in insects (Richman and Kafatos, 

1995). Rapid deposition of a layer of melanin pigment around the foreign body (Sugumaran 

et al., 2000b) occurs through the action of many plasma proteins, including those involved in 

pattern recognition and the phenoloxidase activation cascade (Section 2.4) (Ling and Yu, 

2005). Also required is the coordinated effort of hemocytes to form a capsule in order that a 

physical barrier is erected between self and non-self (Ling and Yu, 2005; Sugumaran, 1998a; 

Sugumaran et al., 2000a). This is an effective means of arresting the growth of, and limiting 

the damage caused by, invading pathogens (Sugumaran and Nellaiappan, 2000). 

 

Melanin is one of the most widely distributed and visible of the biological pigments, and is 

an important, insoluble, phenolic biopolymer found in the hair, feathers and skin of animals 

as well as in plants, fungi and some bacteria (Sugumaran et al., 2000a; Hall et al., 1995a; 

Decker et al., 2001). Most melanins appear to be mixed polymers based on indoles but also 

contain variable quantities of other pre-indolic products from earlier steps in its synthetic 

pathway, making many regions of the polymer unpredictable (Riley, 1997). 
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In insects, melanin synthesis (Figure 9) is initiated by the product of the PPO cascade - the 

activity of PO (Sugumaran and Nellaiappan, 2000). During melanin synthesis, also called the 

melanisation reaction, PO hydroxylates the monophenolic compound tyrosine, to the 

diphenol dopa (3,4-dihydroxyphenylalanine) (Shiao et al., 2001), and oxidizes this dopa to 

dopaquinone (Lee and Anstee, 1995). Dopaquinone rapidly transforms non-enzymatically by 

cyclisation into dopachrome (Zou et al., 2005) which is subsequently acted upon by 

dopachrome isomerase (a second enzyme involved in the melanisation reaction) to produce 

5,6-dihydroxyindoles. Further oxidation and polymerisation of these indoles produces 

melanin pigment (Sugumaran and Nellaiappan, 2000; Zou et al., 2005). The reactive 

electrophilic quinone intermediates of the melanisation reaction are propsed to have 

deleterious effects on cellular macromolecules (Sugumaran et al., 2000a), and hence would 

be highly cytotoxic to foreign organisms possibly functioning to kill them (Jiang et al., 

1997a). 

 

Figure 9: Steps of the melanin synthetic pathway in insects. Phenoloxidase hydroxylates tyrosine to dopa 
and immediately oxidises the dopa to dopaquinone. Dopaquinone then non-enzymatically transforms 
into dopachrome which is converted to 5,6-dihydroxyindole. Further oxidation and polymerization steps 
result in the formation of melanin pigment (adapted from (Blois, 1978)). 
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Whilst there is overwhelming evidence to support the importance of melanin in innate 

immunity, there is currently very little evidence to allow the role of melanin and its 

quinonoid precursors to be accurately defined (Nappi and Christensen, 2005). What is 

understood however, is that the cytotoxicity of the products of melanogenesis requires that 

the process must be well regulated, localised and target specific, to avoid fatal systemic 

damage to the host organism. 

 

In a manner similar to melanotic encapsulation, wound healing in the insect cuticle requires 

active PO for the synthesis and subsequent mass deposition of melanin and its intermediates 

at the wound site. Along with hemolymph clotting and hemocyte aggregation (Lavine and 

Strand, 2002) this creates an impervious scab (Decker and Terwilliger, 2000) which prevents 

continuous loss of hemolymph and blocks the entry of opportunistically invading pathogens 

(Hall et al., 1995a). It was initially suggested that melanin and cytotoxic quinonoid 

compounds, generated as a result of the melanisation reaction, may act as a second line of 

defence at the wound site, killing any such opportunistic microorganisms (Sugumaran et al., 

2000b; Sugumaran, 2001). However, since this time, investigations of clot formation in 

native and mutant forms of Drosophila melanogaster and Galleria mellonella larvae (Bidla 

et al., 2005) infer that the action of PO has no effect on bacterial survival at clotting wound 

sites, and may therefore function only to generate the cross-linking agents to solidify the clot 

and seal the wound. 

2.5.2 Sclerotisation 

Due to the rigid nature of the insect exoskeleton, periodical shedding of old cuticle and 

development of a new larger cuticle is necessary to allow for normal growth and 
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development. Freshly formed cuticle is soft however, and leaves the insect exposed and 

vulnerable. In addition to its critical role in cellular melanotic encapsulation and wound 

healing, PO is also important in another physiologically crucial process in insects known as 

cuticular sclerotisation (Kopácek and Sugumaran, 1998). Sclerotisation of the cuticle is a 

vital process essential for the survival of all insects (Saul and Sugumaran, 1988), with arrest 

or even delay of this process having detrimental consequences (Sugumaran, 2002). The 

sclerotisation reaction (Figure 10) is responsible for hardening the newly ecdysed larval and 

adult cuticle, egg cases and pupal cases of most insects (Saul and Sugumaran, 1988). The 

catecholamine precursors of the sclerotisation reaction, N-acetyldopamine (NADA) and N-ß-

alanyldopamine (NBAD), are stored in large amounts in the insect hemolymph. PO is 

important during cuticular hardening as it oxidises these precursor molecules into their 

corresponding quinones (Sugumaran et al., 2000b; Sugumaran, 2002). 
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Figure 10: Mechanism for sclerotisation of the insect cuticle. The lettered arrows represent a reaction 
catalysed by phenoloxidase (A), quinone isomerase (B) or quinone methide isomerase (C). D highlights 
non-enzymatic reactions (Sugumaran et al., 2000b). Quinones rapidly form adducts with the amino acids 
present in cuticular structural proteins, which ensures the hardening process. Quinone methides also 
perform this chemical process, but due to their more reactive nature, they also form adducts with the side 
chain hydroxyl groups of chitin polymer in the cuticle. Quinone methide imine amides go one step 
further and can perform this function whilst also acting as the cross-linking agents necessary for 
complete hardening of the newly ecdysed cuticle (Sugumaran, 2002). 
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Quinones are either directly involved in quinone tanning (one of the mechanisms of cuticular 

hardening in insects (Chase et al., 2000)), or further metabolised by a second enzyme 

involved in the sclerotisation reaction, quinone isomerase, which converts long-lived N-

acyldopamine quinones to short-lived quinone methides (Sugumaran et al., 2000b). Once 

again, these quinone methides either participate in a second mechanism of tanning, quinone 

methide sclerotisation (Chase et al., 2000), or serve as substrates for the third sclerotising 

enzyme - quinone methide isomerase (Hall et al., 1995a). Quinone methide isomerase 

synthesises 1,2-dehydro-N-acyldopamines. These are further oxidised by PO to ultimately 

generate quinone methide imine amides that serve as bifunctional cross-linking agents 

(Sugumaran et al., 2000b). The reactive quinones thus formed are necessary for adduct 

formation and the cross-linking of cuticular structural proteins and chitin rendering them 

insoluble (Kopácek and Sugumaran, 1998; Sugumaran, 2002; Sugumaran and Nellaiappan, 

2000). The hard cuticle that results performs a number of functions including acting as a 

physical barrier to the environment whilst providing waterproofing, points of muscle 

attachment and sites of waste disposal (Sugumaran, 2002).  

2.6 Control of Phenoloxidase Activity in vivo 

2.6.1 Introduction 

It has already been established that active PO participates in steps of pathways, such as 

melanin synthesis, which generate cytotoxic quinonoid compounds, toxic not only to 

invading micro-organisms but also to the cells of the host insect i.e. self-cells (Sugumaran et 

al., 2000a; Yu et al., 2003). It thus seems that systemic activation of the PPO cascade would 
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be deleterious to the insect, so it is reasonable to assume factors/biochemical mechanisms are 

present in insects to regulate the activity of PO (Ashida and Brey, 1997). There are indeed 

numerous control mechanisms of the PPO cascade (Table 2) functioning either prior to, or 

following, the activation of PPO. Some of the control mechanisms utilised before activation 

of PPO, i.e. protease mediated activation of PPO and preservation of PO and its’ activating  

 

Table 2: Examples of the mechanisms insects utilise for the control of phenoloxidase activity. Such 
mechanisms function to regulate production of cytotoxic quinones that are by-products of the reactions 
catalysed by phenloxidase (Sugumaran, 2001). 

Control Mechanisms of the PPO Cascade 
Before PPO activation After PPO activation 

Preservation of the enzyme in its inactive proform 
(PPO). 

 
Protease mediated activation of PPO. 

 
Preservation of PPAE in its inactive proform 

(proPPAE). 
 

Use of proteinase inhibitors to control the activating 
proteases. 

 
Compartmentalisation of enzymes and substrates. 

Protection of substrates against PO action. 
 

Self inactivation of PO. 
 

Metabolon formation – multi-enzyme complexes 
with each enzyme catalysing steps in a particular 

reaction pathway 
 

Localisation of enzyme activity by 
- complex formation with accessory proteins 

and/or – aggregation/stickiness of PO. 
 

Use of specific PO inhibitors (Serpins). 

 

enzyme, PPAE, in an inactive form, were discussed earlier. Here, however, we will 

concentrate on two post-activation control mechanisms: the formation of multi-enzyme 

complexes known as metabolons and localisation of PO activity to the surfaces of 

hemocytes/pathogens during melanisation, via protein-protein interactions. 
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2.6.2 Metabolon Formation 

Active PO appears to carry out multiple tasks, and in order to perform such diverse functions, 

this enzyme employs the unique strategy of forming specific complexes called metabolons 

(Sugumaran, 1998a). Metabolons are composed of enzymes that catalyse sequential 

metabolic transformations such as those in the melanotic and sclerotinogenic pathways 

(Sugumaran et al., 2000a). Investigations have identified three different PO complexes 

responsible for either cellular melanotic encapsulation, sclerotisation or melanogenic 

reactions in insects, and one thing common to all is lack of stoichiometry, i.e. the ratios of the 

different protein components in different complexes has yet to be established (Sugumaran, 

1998a; Sugumaran et al., 2000b). The melanotic encapsulation metabolon or defence 

complex (400 kDa) is one which forms in the hemolymph only under non-sterile conditions, 

e.g. after infection by micro-organisms, and is composed of PO, PPO (2 – 3-fold more than 

PO), dopachrome isomerase (although not found in all defence complexes) and an 

interleukin-1-like molecule (IL-1) (Söderhäll and Cerenius, 1998; Sugumaran, 1998a). The 

interaction of IL-1 with PO seems to be specific to formation of the melanotic encapsulation 

metabolon as it does not associate with PO in any other known instance (Sugumaran, 1998a). 

The melanogenic metabolon is another high molecular weight complex localised to the insect 

cuticle and composed of PO and dopachrome isomerase (Sugumaran et al., 2000a). The 

component enzymes of this metabolon clearly demonstrate it functions to synthesise melanin, 

but whether it is involved in melanotic encapsulation, cuticular pigmentation or wound 

healing is not clear (Sugumaran, 1998a). Sclerotinogenic complexes (620-680 kDa) possess 

the activities of the three enzymes of the sclerotinogenic pathway: PO, quinone isomerase 

and quinone methide isomerase (Sugumaran et al., 2000b). They are evidently quite different 
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from the defence and melanogenic complexes, functioning to harden newly formed cuticle to 

reduce an insects susceptibility to microbial attack and dehydration (Sugumaran, 1998a).  

 

Metabolon formation offers several advantages to insects and seems to be a physiologically 

significant process providing a unique way of attributing different properties to a single 

enzyme, in this case PO, allowing its use in a number of different biochemical reactions 

(Sugumaran et al., 2000b). PO metabolon formation allows better control of PO activity and 

the subsequently generated reactive intermediary quinones, which can be channelled and 

safely transformed into non-toxic compounds (Sugumaran et al., 2000a). It has also been 

found that complexed PO is remarkably stable in comparison to free PO, which is unstable 

and loses its activity rapidly after activation (Sugumaran et al., 2000b; Sugumaran et al., 

2000a). It has been reported that PO complexed with quinone isomerase appears to be 

stabilised via an inhibitory effect on its activity by up to 50% (Sugumaran and Kanost, 1993). 

A final advantage is that when a biochemical is synthesised solely to be the substrate of the 

next enzyme in a pathway, e.g. as in the melanisation reaction, complex formation can 

prevent the loss/dilution of these substrates whilst raising their concentration in the vicinity 

of the next enzyme to achieve high metabolic turnover (Sugumaran et al., 2000b; Sugumaran 

et al., 2000a). 

2.6.3 Hemocyte Surface Phenoloxidase 

It was noted earlier that PO is a ‘sticky’ protein in its active form, and is one of the reasons it 

has been so difficult to study. However, it is this adhesive nature that allows PO to bind to 

pathogenic organisms and cause their melanisation and destruction. This characteristic has 
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further advantages to the insect as a whole, as it allows the enzymatic activity to be restricted 

to the immediate vicinity of an infection. 

 

Research by Ling and Yu, 2005, indicates that PO also adheres to the surface of self 

hemocytes, triggering theories that such hemocyte-surface PO may be the enzyme activity 

involved in melanisation during the cellular melanotic encapsulation response (Section 

2.5.1). Ling and Yu (2005) addressed this theory by investigating which particular hemocyte 

types from M. sexta possess surface bound PPO/PO, and the roles such hemocyte surface 

PPO/PO have in cellular melanotic encapsulation. One of the conclusions of their study 

contradicted the well documented occurrence of active PO binding to foreign surfaces and 

hemocytes. Instead they found that in M. sexta larvae, it is the stable inactive pro-form of PO 

that binds to hemocyte surfaces. This was also described earlier by another group working on 

the Medfly, C. capitata who found surface PPO to be constitutively present on hemocytes 

(Mavrouli et al., 2005). PPO does not exhibit the adhesive properties of its active form and 

therefore binding of PPO to hemocytes must involve either its direct binding to surface 

receptors or the formation of protein complexes which would include other plasma proteins 

acting as accessory proteins. The pattern recognition protein immulectin-2 is probably one 

such accessory protein which, as described in Section 2.4.3, associates with PPO and PPAE 

through its SPH cofactors, to facilitate PPO activation. Immulectin-2 can bind to the surface 

of hemocytes as well as pathogenic organisms, so it seems plausible that such protein 

complexes could form to recruit hemolymph PPO to hemocyte surfaces for activation and 

involvement in the cellular melanotic encapsulation response. A further possibility is that 

once PO has been activated, the accessory proteins will dissociate and PO will complex with 
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the necessary enzymes to form the melanotic encapsulation and/or melanogenic metabolons 

as discussed in section 2.6.2. 

 

Further results from the investigations conducted by Ling and Yu (2005) indicated that the 

only hemocyte types possessing surface bound PPO/PO were spherule cells and 

granulocytes, not oenocytoids which are the site of synthesis of PPO in insects. During 

cellular melanotic encapsulation, it is proposed that a monolayer of granulocytes possessing 

surface-bound PPO forms around the hemocyte capsule which is surrounding a pathogen. 

Activation of granulocyte surface PPO results in melanisation of the capsule. The nature of 

active PO dictates its tendency to aggregate with other active PO. Therefore active surface-

bound PO recruits free hemolymph PO and further hemocyte surface PO causing systemic 

melanisation of the capsule. 

 

Discussions here demonstrate that localising PO to sites of infection by interactions with 

accessory proteins provides another level of control over its activity. This, like metabolon 

formation, reduces the risk of systemic activation of PO during responses to immune 

challenge and any unwanted damage which would arise as a consequence. Instead the 

activity of the enzyme is limited to the immediate area of an infection where its function is 

required. 

2.7 Phenoloxidase as an Indicator of Immune Function in the 

Lepidoptera 

PO has been demonstrated to be a good indicator of ability to cope with infection in 

Lepidopteran insects. Higher levels of PO activity are present in individuals which display 
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greater resistance to infection (Cotter and Wilson, 2002; Cotter et al., 2004). Resistance to 

pathogenic micro-organisms is a very costly system to maintain and express, so it is expected 

that insects invest in resistance only when required (Barnes and Siva-Jothy, 1999). The 

likelihood of an insect encountering a pathogen or parasite often increases with population 

density, and the transmission of disease is also usually density-dependant. One could predict, 

therefore, that insects living in high density (HD) populations will have invested more in 

resistance than those in low density (LD) populations (Reeson et al., 1998). This pattern is in 

fact the case with many species of Lepidoptera (Reeson et al., 1998).  

 

In situations where population density fluctuates between generations, individuals must rely 

on a form of phenotypic plasticity known as density-dependant phase polyphenism or 

density-dependant prophylaxis (DDP), which allows them to match their phenotype to the 

surrounding environment (Wilson et al., 2001; Barnes and Siva-Jothy, 1999). Some species 

of larval Lepidoptera display this phenotypic plasticity, with HD and LD forms displaying 

differences in colour, behaviour and development time (Reeson et al., 1998). Dark cuticular 

pigmentation, for example, is a common characteristic of the HD form not displayed in the 

LD form (Reeson et al., 1998). The difference in colour is therefore very clear (Figure 11)  
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Figure 11: Density-dependant phase polyphenism is a form of phenotypic plasticity displayed by some 
species of larval Lepidoptera. Shown above is the high density (top) and low density forms of the larvae 
of the moth species Spodoptera exempta. Cuticular melanisation, a characteristic of the high density 
form, results in a distinctive blackening of the insects cuticle (Wilson et al., 2001).  

 

enabling the two forms to be easily distinguished. Pigmentation, also referred to as cuticular 

melanisation, results from the synthesis and deposition of melanin and a number of 

quinonoid tanning agents generated during sclerotisation of the newly formed cuticle 

(Sugumaran, 2002). Melanisation and sclerotisation reactions are catalysed partly by the 

action of PO, an enzyme important in insect immune reactions, particularly during the 

encapsulation of foreign organisms in the hemolymph (as discussed in Sections 2.2 and 

2.5.1) (Barnes and Siva-Jothy, 1999). This suggests that the cuticular melanisation occurring 

in individuals from HD populations may be a useful indicator of enhanced immune 

function/PO activity (Reeson et al., 1998; Cotter et al., 2004). Reeson et al (1998) have in 

fact demonstrated a positive correlation between resistance and both hemolymph PO activity 

and cuticular melanisation in Spodoptera exempta (African armyworm) larvae. They found 

that larvae reared in HD populations were more resistant to nuclear polyhedrosis virus 

(NPV), and had elevated PO activity and levels of cuticular melanisation when compared to 

larvae from LD populations. 
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This characteristic trait of Spodoptera species presents a controllable system which can be 

used to study the synthesis and activation of PO and forms the rationale of the research 

presented in Chapter 3, Chapter 4 and Chapter 5. If the activity of PO is influenced by 

organism population density then perhaps the control occurs at the level of transcription. It 

was thus hypothesised that variations in transcription levels between the different PO genes 

would arise as a consequence of population density. This project was designed with the aim 

of sequencing the first PO gene from larvae of the Egyptian Cotton Leafworm, Spodoptera 

littoralis, before using this sequence to screen for further PO genes. By rearing S. littoralis 

larvae under LD and HD conditions, it was hoped that any effect population density had on 

the transcription of the different PO genes identified in this species could be established. 

Unfortunately, despite efforts to isolate the first PO gene from S. littoralis, none could be 

identified. Nonetheless, the following three chapters detail the attempts made and discuss 

possible explanations for the outcome. 
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Chapter 3 : Sequencing and analysis of a putative 600 bp  

Spodoptera littoralis phenoloxidase gene fragment . 

3.1 Introduction 

By 2006 the complete or partial sequence of 55 different prophenoloxidase (PPO) genes from 

a number of insect species had been characterised. Indeed some of these sequences represent 

different PPO genes from the same source species. For example, Bombyx mori and Manduca 

sexta (Order: Lepidoptera) each have two PPO genes, whilst Armigeres subalbatus and 

Anopheles gambiae (Order: Diptera) have four and nine, respectively. This implies that 

perhaps all insect species possess more than one gene coding for phenoloxidase (PO) 

enzymes. Whilst the reason for having more than one PPO gene is not currently understood, 

studies using Anopheles gambiae PPO 1 to 6 (Müller et al., 1999) have revealed that each 

PPO has a distinct temporal and spatial expression pattern arising during larval development. 

It has been suggested that each PPO may have a unique role to play throughout development 

or may be activated in response to specific triggers. As discussed in the literature review in 

Chapter 2, different PPO types perform different functions, such as wound healing and 

cuticle pigmentation, and it may be the case that each PPO type is encoded by a unique gene. 

 

The species in this study is Spodoptera littoralis (Insecta: Lepidoptera: Noctuidae), more 

commonly known as the Egyptian Cotton Leafworm. The larval stage of this insect is one of 

the most destructive agricultural Lepidopteran pests within its subtropical and tropical range, 

which covers Africa, Asia and southern-most parts of Europe (DEFRA, Accessed: 2003.; 

Smith et al., 1997). Whilst four full length Spodoptera PPO sequences are known (Figure 12) 
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(NCBI Accession numbers DQ289581, DQ289581, EF684939 and AY703825), to date, no 

PPO sequence has been elucidated for S. littoralis. Prior to the onset of this research, a 600 

bp stretch of DNA had been amplified and isolated from the genomic DNA of S. littoralis 

larval hemocytes by Dr. Jacqueline Nairn (2003 unpublished data). Subsequently, the aim of 

this research was to purify and sequence this DNA fragment, before subjecting the sequence 

to further analyses to determine whether it was in fact a fragment of a S. littoralis PPO gene. 
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                     10        20        30        40        50        60 
                      |         |         |         |         |    ^^   | 
SfrugiPPO2   ----MGDVVEHLKLLFDRPNEPLITPKGDNKAVFQLSEKLVPPEYANNGVELNDRFGDDA 
SlituraPPO   MSDMSGDVVEHPKLLFDRPNEPLITPKGDNKAVFQLSEKLVPPEYANNGVELNDRFGDDA 
SexiguaPPO   ----MGDVVEYLKLLFDRPNEPLITPKGDNKAVFQLSEKLLPPEYANNGVELNDRFGDDA 
SfrugiPPO1   ----MSDAKKNLLLFFDRPSEPCFMQKGEEKAVFEIPEHYYPEKYKALTSTIANRFGDDA 
 
                     70        80        90       100       110       120 
                      |         |         |         |         |         | 
SfrugiPPO2   TEKIPLKTLDSYPSFSKASELPRDADFSLFLPKHQEMATEVIDAFMNVPQNQLQDFLSTC 
SlituraPPO   TEKIPLKTLDSYPAFTKASQLPSDADFSLLLPKHQEMATEVIDAFMNVPLNQLQDFLSTC 
SexiguaPPO   TEKIPLKTLNSYPAFTKASELPTDADFSLFLPKHQEMATEVIDALMNVPQNQLQDFLSTC 
SfrugiPPO1   GRSIPVRNIA-LPNLAQPMELPYNDQFSLFVPKHRRLAGKLIDIFMGMR--DLEDLQSVC 
 
                    130       140       150       160       170       180 
                      |         |         |         |         | ^^^     | 
SfrugiPPO2   VYARANLNPQLFNYCYSVALMHRDDTKNVPIQNFAETFPSKFMDSQVFQRAREVTAVLPQ 
SlituraPPO   VYARANLNPQLFNYCYSVALMHRDDTKNVPIQNFAETFPSKFMDSQVFQRAREVTAVLPQ 
SexiguaPPO   VYARANLNPQLFNYCYSVALMHRDDTKNVPIQNFAETFPSKFMDSQVFQRAREVTAVVPQ 
SfrugiPPO1   SYCQLRINPYMFNYCLSVAILHRPDTKGLNIPTFAETFPDKFMDPKVFRKAREVSNVVTS 
 
                    190       200       210       220       230       240 
                      |         |         |      ∆  |∆        |         | 
SfrugiPPO2   NVPRIPIIIPRDYTATDLEEEHRLAYWREDIGVNLHHWHWHLVYPFTATQRSIVAKDRRG 
SlituraPPO   NVPRIPIIIPRDYTATDLEEEHRLAYWREDIGVNLHHWHWHLVYPFTASQRSIVAKDRRG 
SexiguaPPO   NVPRIPIIIPRDYTATDLEEEHRLAYWREDIGVNLHHWHWHLVYPFTASQRSIVAKDRRG 
SfrugiPPO1   GV-RMPVTIPVNYTANDSEPEQRVAYFREDIGINLHHWHWHLVYPFDSADRSIVNKDRRG 
                                                     CuA-binding site 
                    250       260       270       280       290       300 
                   ∆  |         |         |         |         |         | 
SfrugiPPO2   ELFFYMHQQLIARYNCERLNNSLKRVKKFSNWREPIPEAYFPKLDSLTSARGWPPRQANM 
SlituraPPO   ELFFHMHQQLIARYNCERLNHSLKRVKKFSNWREPIPEAYFPKLDSLTSARGWPPRQANM 
SexiguaPPO   ELFFYMHQQLIARYNCERLNNSLKRVKKFSNWREPIPEAYFPKLDSLTSSRGWPPRQANM 
SfrugiPPO1   ELFYYMHQQIIARYNMERMCNGLSRVARYQNFRDPIEEGYFPKLDSQVASRAWPPRFAGT 
 
                    310       320       330       340       350       360 
                      |         |         |         |         |         | 
SfrugiPPO2   YWQDLNRPVDGLNVTINDMERWRRNVEEAISTGRVTLTDGTSTDLT----IDILGNMLEA 
SlituraPPO   YWQDLNRPVDGLNITINDMERWRRNVEEAISTGRVTKADGSSAELD----IDTLGNMLEA 
SexiguaPPO   SWQDLNRPVDGLNITINDMERWRRNVEEAIATGRVTREDGTTADLD----IDTLGNMLEA 
SfrugiPPO1   TIRDLDRPVDQIRADVSQLETWRDRFVQAVETLSVTLPNGRQMPLDEERGIDILGNMMES 
 
 

Figure 12: Multiple alignment of amino acid sequences of the four known full length Spodoptera PPO 
polypeptides. These are Spodoptera frugiperda PPO2 (SfrugiPPO2 – DG289582), Spodoptera litura 
PPO (SlituraPPO – AY703825), Spodoptera exigua PPO (SexiguaPPO – EF684939) and Spodoptera 
frugiperda PPO1 (SfrugiPPO1 – DG289581). The eight digit letter and number codes in brackets are the 
NCBI accession numbers for each respective sequence. The two copper-binding sites are singly 
underlined and labelled, and the 3 conserved histidines in each are highlighted with ‘∆’. The conserved 
RF and REE cleavage sites are marked with ‘^’, the conserved thiol-ester motif is double underlined ‘=’ 
and the conserved C-terminal site is underlined with ‘~’. (Multiple alignment constructed using 
MULTALIN (pbil) available via the ExPASy online Proteomics Server and the NCBI PubMed 
nucleotide databank). 
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                    370       380       390       400       410       420 
                      |   ∆   ∆ |         |         |         |   ∆     | 
SfrugiPPO2   SILSPNRDLYGSIHNNGHSFAAYMHDPTHRYLESFGVIADEATTMRDPFFYRWHAWIDDT 
SlituraPPO   SILSPNRELYGSIHNNGHSFAAYMHDPTHRYLESFGVIADEATTMRDPFFYRWHAWIDDT 
SexiguaPPO   SILSPNRELYGSIHNNGHSFSAYMHDPTHRYLESFGVIADEATTMRDPFFFRWHAWIDDT 
SfrugiPPO1   SIISPNRGYYGDLHNMGHVFISYSHDPDHRHLEQFGVMGDSATAMRDPVFYRWHSYIDDL 
                                      CuB-binding site 
                    430       440       450       460       470       480 
                      |         |         |         |         |         | 
SfrugiPPO2   CQRHKESQYVRPYTRSELENPGVQVTSIAVETAGGQPNTLNTFWMSSDVDLSKGLDFSDR 
SlituraPPO   CQRHKESAYVRPYTRSELENPGVQVTSVSVETAGGQPNTLNTFWMSSDVDLSKGLDFSDR 
SexiguaPPO   CQKHKESPYVRPYTRSELENPGVQVTSVSVETPGGQPNTLSTFWMSSDVDLSRGLDFSDR 
SfrugiPPO1   FQLYKVK--LTPYGDDKLDFPGVRVSSVSLEGAAGR-NTLGTFWELSTVDLGRGLDFTPR 
 
                    490       500       510       520       530       540 
                      |         |         |         |         |         | 
SfrugiPPO2   GAVYARFTHLNNRAFRYVIKVNNT-GSARRTTVRIFMAPKFDERNLVWSLADQRKMFIEM 
SlituraPPO   GAVYARFTYLNNRPFRYVININNT-GSARRTTVRIFMAPKFDERNLVWSLADQRKMFIEM 
SexiguaPPO   GPVYARFTHLNNRPFRYVINVNNT-GSARRTTVRIFIAPKYDERNLVWSLADQRKMFIEM 
SfrugiPPO1   GSVLARFTHLQHQDFNYVIEVNNTSGQSVMGTVRIFMAPVQDERGAPLSFDDQRRSMIEL 
 
                    550       560       570       580       590       600 
                      |         |         |         |         |         | 
SfrugiPPO2   DRFVHPLNAGENTITRSSTDSSVTIPFEQTFRDLSPQGSDPRRTSLAEFNFCGCGWPQHM 
SlituraPPO   DRFVQPLNAGQNTITRNSTDSSVTIPFEQTFRDLSPQGSDPRRTSLAEFNFCGCGWPQHM 
SexiguaPPO   DRFVQPLNAGQNTITRMSTQSSVTIPFEQTFRDLSVQGNDPRRTSLAEFNFCGCGWPQHM 
SfrugiPPO1   DKFTAGLRPGNNTIRHRSVDSSVTIPYERTFRDQSARPGDPGSEEAAEFDFCGCGWPHHM 
                                                                 ======== 
                    610       620       630       640       650       660 
                      |         |         |         |         |         | 
SfrugiPPO2   LVPKGTEAGAAYQLFVMLSNYDLDSVDQPDGTQLSCVEASSFCGLKDKKYPDRRAMGFPF 
SlituraPPO   LVPKGTEAGAAYQLFVMLSNYDLDSVDQPGGNQLSCVEASSFCGLKDKKYPDRRSMGFPF 
SexiguaPPO   LVPKGTEAGAPYQLFVMLSNYDLDSVDQPDGSQLSCVEASSFCGLKDKKYPDRRSMGFPF 
SfrugiPPO1   LIAKGNQQGYPVVLFAMVSNWAEDRVEQDLVG--SCNDAASYCGIRDRKYPDRRAMGFPF 
                                                       ~~~~~~~~~~~~~~~~~~ 
                    670       680       690       700 
                      |         |         |         | 
SfrugiPPO2   DRPSSIATNIEDFILPNMALQDITIRLSNVVEPNPRNPPSTV 
SlituraPPO   DRPSSIATNIEDFILPNMALQDITIRLSNVVEQNPRNPPSAV 
SexiguaPPO   DRPSSTATNIEDFILPNMALQDITIRLSNVVEPNPRNPPSAV 
SfrugiPPO1   DRPS-PAQSLTDFLRPNMAMQNCSIRFTDTTIPRQQRR---- 
             ~~ 

Figure 12: Continued 
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3.2 Methods 

3.2.1 Preparation of purified plasmid containing the 600 bp insert. 

A 600 bp DNA fragment believed to be that of a PPO from S. littoralis, had been previously 

isolated by Dr Jacqueline Nairn from purified S. littoralis larval hemocyte genomic DNA, 

using primers designed to anneal to regions of the PPO gene which form the active site CuA 

(CuA’03-F) and CuB (PO2-R) binding sites (unpublished work). For details of these primers 

please refer to section 9.1 - Appendix A. The fragment had been subcloned into a pDrive 

cloning vector (Figure 13) and transformed into competent NM522 bacterial cells using the 

QIAGEN PCR Cloning Kit (Cat #231124). Successfully transformed colonies were selected 

by plating onto LBA/IPTG/X-Gal plates, 20 of which were picked for further culture and 

plasmid purification, using the protocol described in the QIAGEN QIAprep Miniprep Kit 

Handbook under the heading ‘QIAprep Spin Miniprep Kit Protocol: Using a Centrifuge’. A 

series of clones resulted which contained the 600 bp DNA fragment as confirmed by 

performing EcoR1 digests of the purified plasmids and PCR amplification of the DNA 

fragment from each clone. 



 

 48

 

Figure 13: pDrive Cloning Vector Map. The 600 bp DNA fragment isolated by Dr Jacqueline Nairn 
(unpublished data 2003) was cloned into this plasmid between the EcoR1 restriction sites before 
transformation into competent NM552 bacterial cells. 

To generate purified stocks of the 600 bp clones labelled 2 and 10, a culture loop-full of the 

original transformed NM552 cells was mixed into two sterile glass universal tubes per clone 

(‘a’ and ‘b’), each containing 5 ml of LB broth plus 50 µg/ml of ampicillin (LBamp). The 

tubes were sealed and the cells cultured overnight in a 37˚C orbital incubator. 1 ml of each 

culture (2a, 2b, 10a and 10b) was transferred into a fresh 1.5 ml Eppendorf tube then 

centrifuged for 5 minutes at 13000 rpm to pellet the bacterial cells. The remaining 

supernatant was aspirated and discarded. The protocol followed for purifying the plasmids 

was the same as that detailed above using the QIAGEN QIAprep Miniprep Kit. 

3.2.2 PCR amplification of the 600 bp DNA fragment. 

Four 100 µl reactions containing final concentrations of the following reagents were 

prepared: 1 X Taq PCR Master Mix (QIAGEN Cat #201443), 25-fold dilution of the 
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template DNA (600 bp clone 2a, 2b, 10a or 10b from section 3.2.1) and 1.25 µM M13 

forward (5’-G-TAA-AAC-GAC-GGC-CAG-3’) and reverse (5’-A-ACA-GCT-ATG-ACC-

ATG-3’) primers. Each reaction was subjected to the following PCR conditions: 2 minutes at 

95˚C followed by 30 cycles of: 30 seconds at 95˚C, 45 seconds at 50˚C and 45 seconds at 

72˚C. To each tube, 20 µl of 6 X Type-II Loading Buffer was added before the PCR products 

were loaded onto a 1 X TBE, 1 % agarose, 0.2 µg/ml EtBr gel. The PCR products were 

electrophoresed alongside PCR Markers (Sigma Cat #P-9577) at 50 V for 1.5 hours, and the 

DNA bands visualised by exposing the gel to UV light. 

3.2.3 Gel slice clean-up of the amplified 600 bp DNA fragment. 

Extraction and purification of the 600 bp DNA fragment from the agarose gel resulting in 

Section 3.2.2, was conducted following the protocol described in the QIAGEN QIAquick 

Spin Handbook for the QIAquick Gel Extraction Kit (Cat #28304). Variations of the standard 

protocol used were as follows: the QIAquick column was allowed to stand for 5 minutes after 

the addition of Buffer PE before centrifugation, and in the final step, the DNA concentration 

was increased by adding 30 µl of elution buffer to the QIAquick membrane, and allowing the 

column to stand for 5 minutes before centrifugation. To check the success of the clean-up 

process, a small aliquot of each extracted and purified DNA sample was run on a 1 X TBE 1 

% agarose 0.2 µg/ml EtBr gel. 

3.2.4 Sequencing the 600 bp DNA fragment. 

Prior to sequencing, gel extracted PCR products were used in a second round of PCR to 

generate copies of the clone 600 bp DNA fragment with incorporated synthetic ddNTPs. 

Four 20 µl reactions (two for each of the 600 bp clones 2a and 10a) were prepared using 
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reagents from the DYEnamic ET Terminator Cycle Sequencing Kit (Amersham Pharmacia 

Biotech Cat #US-81050). Each reaction contained 10 µl SDW, 1 µl of gel extracted and 

purified 2a or 10a 600 bp DNA fragment and 8 µl of sequencing reagent premix. One of each 

pair of reactions contained 1 µl of 5 µM M13 forward primer and the other 1 µl of 5 µM M13 

reverse primer, which were added immediately prior to the reactions being placed in the 

thermocycler. PCR reaction conditions were 25 cycles of 20 seconds at 95˚C, 15 seconds at 

50˚C and 1 minute at 60˚C. An initial longer denaturing step was not required as extended 

periods at this temperature can prematurely inactivate the DNA polymerase and ultimately 

produce weak signals. 

 

Immediately following the final cycle, the PCR reaction tubes were placed on ice. To each 20 

µl reaction, 2 µl of 3 M sodium acetate, pH 5.2 and 50 µl of 95 % ice cold ethanol were 

added, before vortexing (Nickel Electro Ltd. WhirliMixer). This was left on ice for 5 minutes 

to allow the DNA to precipitate and then centrifuged at 13000 rpm for 20 minutes. The 

supernatant was carefully aspirated and the pellet washed in 190 µl of ice cold 70 % ethanol 

(or the maximum volume the reaction tube will hold). The tube was centrifuged for a further 

5 minutes and the supernatant removed as before, ensuring that minimal ethanol was left. The 

tubes were placed in a pre-heated 60˚C heating block (Techne Dri-Block DB.2D) for a 

maximum of 5 minutes, avoiding over-drying, and if any ethanol was still present the tubes 

were left open and on their side to air dry. Once all trace of ethanol had been removed, the 

tubes were placed back on ice and 2 µl of formamide loading buffer was added to each pellet 

ready for sequencing. The DNA was stored at -20˚C until ready for sequencing. The samples 

were loaded into and analysed by an ABI 377 DNA sequencer, through a service operated by 

Stephen Powell of the Institute of Aquaculture, University of Stirling. The protocol used was 
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as described in literature accompanying the ABI 377 sequencer and DYEnamic ET 

Terminator Cycle Sequencing Kit. 

3.2.5 Sequence analysis. 

DNA sequencing produced a raw nucleotide sequence and an original sequence trace for 

each sample. Prior to analysis, the raw nucleotide sequences were compared to their original 

sequence traces, and any discrepancies between the two were noted and confident changes 

made in the raw nucleotide sequence. The sequence used for further analysis was that which 

had the least discrepancies between its raw nucleotide sequence and sequence trace and also 

the least unidentified ‘N’ nucleotides in the main stretch of sequence. Following removal of 

the C- and N-terminal unidentified ‘N’ nucleotides, the sequence was submitted to a BLAST 

Nucleotide-Nucleotide search (blastn), using default search parameters, except the search and 

format options were limited to the Arthropoda. Subsequently, the nucleotide sequence was 

translated in all six reading frames to its corresponding amino acid sequence using the online 

ExPasy proteomics server DNA to protein ‘Translate’ tool. Each reading frame amino acid 

sequence was finally subjected to a Protein-Protein BLAST (blastp) search, using default 

search settings, once again limiting the search and format options to the Arthropoda. 

3.3 Results 

3.3.1 Successful PCR Amplification and Gel Slice Clean-up of the 600 bp Plasmid 

Insert. 

PCR and gel extraction protocols were utilised to amplify and purify a cloned 600 bp DNA 

fragment, believed to be that of an S. littoralis PPO gene, from a pDrive cloning vector. 
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Duplicate PCRs for amplification of the 600 bp fragment from two different clones (labelled 

2 and 10) produced three out of four successful reactions (Figure 14 – Panel A) – 2a, 10a and 

10b. Following gel extraction and purification of the PCR products (Figure 14 – Panel B), 

only reactions 2a and 10a were selected for subsequent sequencing steps due to the apparent 

higher yield of DNA. 

 

 

A   

 
 
 

B   

Figure 14: Panel A: Amplification of the 600 bp plasmid insert. The 600 bp insert was successfully 
amplified by PCR from clones 2a, 10a and 10b. The reaction to amplify clone 2b was unsuccessful and 
shows a staining pattern characteristic of unincorporated primers and dNTPs. Panel B: Gel extraction 
and ‘clean-up’ of the amplified 600bp DNA fragment from each clone. The lanes in the gel shown were 
loaded with 5µl of the amplified and purified 600 bp DNA fragments from clones 10b, 10a and 2a, to 
ensure the extraction and clean-up steps were successful. The lanes marked ‘M’ contain PCR markers. 
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3.3.2 Analysis of the 600 bp DNA fragment sequence.    

The raw sequence of clones 2a and 10a in both the forward and reverse direction, as derived 

by the ABI 377 DNA sequencer, can be found in section 9.2 - Appendix B. Whilst all four 

reactions generated some stretch of sequence, the reverse reaction containing clone 10a 

produced the most reliable and complete sequence with the longest stretch of A, T, G or C 

nucleotides unbroken by ‘N’ which represents an undefined nucleotide. The final nucleotide 

sequence of clone 10a reverse is shown in Figure 15 with its N- and C-terminal ‘N’ 

nucleotides removed. 

 
TTGAAACGCCACTTCAAATACGACTCACTGATAGTCCAAGCATCGGTGACCACGCATGCTGC

AGACGCGTTATCGTATCGGATCCAGAATTCGTGATTCACCACTGGCACTGGCACCTGGTCTG

CGCGTTCGGAGATAAAAGGCGTGATGTTATATGAGTGGTCTTATAACCAAAGCATTATATTT

ATTTAATTAATCACTTAATTGTCAAATCTGATTATAAGTGCTGTGAATGGGCCTTAAAATCT

TTGTTTGCTATCCAGGTAGAAAATGAGTACGGTAGCTATGGCAACAACATGAACTATCGAGT

CCAAGTCCGCAACATGCTGCAGAACCACGTCGGTACCAACGCTCTCCTCTACACTACTGACG

GGAATGCAATTTCTTTCTTCAGAAATGGTGCCGTTCCTAACACTCTCATCACCATCGATTTT

GGTCCCCACTCAAGTCAGTATAATTTTTAATAATGTATTTACATAATTATGTAGACTTTTTT

CCCCAAAACTTAAATTATAATATAATACCTACCTTGGAGTCCTTCGGTGTCATCGCCAAATC

TGAATTCGGTCGACAAAGCTTCTCGAAGCCCTAGCGCGCTTAA 

Figure 15: Finalised nucleotide sequence of the 600 bp DNA fragment from clone 10a, produced in a 
sequencing reaction containing the M13 reverse primer. The sequence was finalised by comparison of 
the raw outputted sequence with its corresponding original sequence trace and any necessary changes 
then made. The sequence was also clipped at both the N- and C-termini to remove undefined (N) 
nucleotides from the sequence. The highlighted portion indicates the only stretch of sequence which, 
when subjected to a blastn search, showed identity with the lowest Expect value to another 
prophenoloxidase gene sequence. The lower the Expect value the less likely that the similarities are 
random. 

To determine whether this nucleotide sequence shared any similarities with the PPO 

sequences from other insect species, a blastn search was conducted using default parameters 
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with the exception that the search and format options were limited to the Arthropoda. The 

search hit with the lowest Expect (E) value for a PPO was the Tribolium castaneum pro-

phenol oxidase subunit 2 mRNA (E value = 0.006), where the lower the E value the less 

likely that the similarities are random and occurring by chance. The only region of identity 

however, was that highlighted in Figure 15. Whilst there was 100% identity across this 

stretch of sequence with T. castaneum PPO2, which forms part of the nucleotide sequence 

encoding the PPO Cu-A binding site, this was also the sequence of the forward primer used 

in the original gene amplification from genomic DNA. A number of different insect and 

crustacean PPO nucleotide sequences, as well as chelicerate hemocyanin sequences, were 

also hits resulting from this search with E values ranging from 0.023 for Galleria mellonella 

(Wax moth) PPO mRNA to 5.7 for Armigeres subalbatus (mosquito) PPO. Whilst these 

insect PPOs shared 100% identity to the putative PPO sequence, it should be noted that 

where search hits were arthropod PPOs or hemocyanins, the identity was limited only to the 

region highlighted in Figure 15. All also possessed similarly high E values indicating random 

similarities. 

 

For further analysis, the amino acid sequence of the 600 bp DNA fragment was deduced, in 

all six reading frames, using the ‘Translate’ tool available via the online ExPasy proteomics 

server (Table 3). It was evident upon examination that all six reading frames had multiple 

stop codons randomly dispersed throughout the sequence. Despite this, each reading frame 

(stop codons removed) was submitted to a blastp search using default search and format 

options limited to the Arthropoda. Frame 3 translated in the 5’ 3’ direction was the only 

sequence to produce hits during the blastp search which were arthropod PPOs or 

hemocyanins. Again, as with the blastn search, the only region to generate hits which were 
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insect PPOs, was that with identity to the PPO CuA binding site of these proteins (shown 

highlighted in Table 3). 
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Table 3: The nucleotide sequence of the 600 bp DNA fragment from clone 10a was translated in all six 
reading frames to its corresponding amino acid sequence. The translation was conducted using the 
‘Translate’ tool available online via the ExPASy proteomics server. Compact output format is shown where 
‘#’ represents a stop codon. The sequence highlighted in yellow indicates the only region out of all six of the 
reading frames that showed identity/similarity to phenoloxidases from other arthropod species. The red 
underlined sequence is that which generated the hit with the lowest E value, sharing 40% identity to its 
respective matched sequence, and contained a putative glycosyl hydrolase domain, characteristic of beta-
galactosidase enzymes. The double underlined amino acids have the sequence of the forward (5’3’ Frame 3) 
and reverse (5’3’ Frame 2) primers and represent those parts of the sequence from which strand extension 
was initiated.  

Frame Amino Acid Sequence 
5’3’ Frame 1 L K R H F K Y D S L I V Q A S V T T H A A D A L S Y R I Q N 

S # F T T G T G T W S A R S E I K G V M L Y E W S Y N Q S I 
I F I # L I T # L S N L I I S A V N G P # N L C L L S R # K 
M S T V A M A T T # T I E S K S A T C C R T T S V P T L S S 
T L L T G M Q F L S S E M V P F L T L S S P S I L V P T Q V 
S I I F N N V F T # L C R L F S P K L K L # Y N T Y L G V L 
R C H R Q I # I R S T K L L E A L A R L 

5’3’ Frame 2 # N A T S N T T H # # S K H R # P R M L Q T R Y R I G S R I 
R D S P L A L A P G L R V R R # K A # C Y M S G L I T K A L 
Y L F N # S L N C Q I # L # V L # M G L K I F V C Y P G R K 
# V R # L W Q Q H E L S S P S P Q H A A E P R R Y Q R S P L 
H Y # R E C N F F L Q K W C R S # H S H H H R F W S P L K S 
V # F L I M Y L H N Y V D F F P Q N L N Y N I I P T L E S F 
G V I A K S E F G R Q S F S K P # R A # 

5’3’ Frame 3 E T P L Q I R L T D S P S I G D H A C C R R V I V S D P E F 
V I H H W H W H L V C A F G D K R R D V I # V V L # P K H Y 
I Y L I N H L I V K S D Y K C C E W A L K S L F A I Q V E N 
E Y G S Y G N N M N Y R V Q V R N M L Q N H V G T N A L L Y 
T T D G N A I S F F R N G A V P N T L I T I D F G P H S S Q 
Y N F # # C I Y I I M # T F F P K T # I I I # Y L P W S P S 
V S S P N L N S V D K A S R S P S A L 

3’5’ Frame 1 L S A L G L R E A L S T E F R F G D D T E G L Q G R Y Y I I 
I # V L G K K V Y I I M # I H Y # K L Y # L E W G P K S M V 
M R V L G T A P F L K K E I A F P S V V # R R A L V P T W F 
C S M L R T W T R # F M L L P # L P Y S F S T W I A N K D F 
K A H S Q H L # S D L T I K # L I K # I # C F G Y K T T H I 
T S R L L S P N A Q T R C Q C Q W # I T N S G S D T I T R L 
Q H A W S P M L G L S V S R I # S G V S 

3’5’ Frame 2 # A R # G F E K L C R P N S D L A M T P K D S K V G I I L # 
F K F W G K K S T # L C K Y I I K N Y T D L S G D Q N R W # 
# E C # E R H H F # R K K L H S R Q # C R G E R W Y R R G S 
A A C C G L G L D S S C C C H S Y R T H F L P G # Q T K I L 
R P I H S T Y N Q I # Q L S D # L N K Y N A L V I R P L I # 
H H A F Y L R T R R P G A S A S G E S R I L D P I R # R V C 
S M R G H R C L D Y Q # V V F E V A F Q 

3’5’ Frame 3 K R A R A S R S F V D R I Q I W R # H R R T P R # V L Y Y N 
L S F G E K S L H N Y V N T L L K I I L T # V G T K I D G D 
E S V R N G T I S E E R N C I P V S S V E E S V G T D V V L 
Q H V A D L D S I V H V V A I A T V L I F Y L D S K Q R F # 
G P F T A L I I R F D N # V I N # I N I M L W L # D H S Y N 
I T P F I S E R A D Q V P V P V V N H E F W I R Y D N A S A 
A C V V T D A W T I S E S Y L K W R F 
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However, a hit also generated from Frame 3 translated in the 5’ to 3’ direction, which had a 

very low E value of 4e-10, was that of the Ect3 gene (beta-galactosidase) from Apis melliferis 

(Honey bee), which shared ~40% identity to the red underlined (RU) sequence in Figure 15. 

A number of the other hits from this frame with similarly low E values and higher percentage 

identities were also insect beta-galactosidases (Drosophila melanogaster and Aedes aegypti). 

Furthermore this RU sequence was predicted to contain a putative glycosyl hydrolase 

domain, characteristic of the beta-galactosidases. To illustrate the similarities, the RU 

sequence was aligned with the known sequences of the D. melanogaster Ect3 (beta-

galactosidase) and A. aegypti beta-galactosidase genes (Figure 16). The 67 amino acid RU 

sequence was found to align with amino acids 192 – 261 of the known beta-galactosidases. 

 
 
 
 
                        190       200       210       220       230       240 
                          |         |         |         |         |         | 
A.aegypti        LTPYMYGNGGPIIMVQLENEYGAFGKCDKPYLNFLKEETEKYTQGKAVLFTVDRPYGNEM 
D.melanogas      MNKYLYGNGGPIIMVQVENEYGSFYACDLNYRNWLRDETESHVKGQAVLFTNDGPS--VL 
RU Sequence      -----------LFAIQVENEYGSYGN-NMNYRVQVRNMLQNHVGTNALLYTTDGNAISFF 
 
                        250       260       270       280       290       300 
                          |         |         |         |         |         | 
A.aegypti        ECGQVPGVFVTTDFGLMTDEEVDTHKAKLRSVQPNGPLVNTEFYTGWLTHWQESNQRRPA 
D.melanogas      RCGKIQGVLATMDFGATN--DLKPIWAKFRRYQPKGPLVNAEYYPGWLTHWTEPMANVST 
RU Sequence      RNGAVPNTLITIDFGPHS--S--------------------------------------- 
 

Figure 16: Amino acid sequence alignment of the red underlined (RU) sequence in Table 3 and the 
known sequences of the D. melanogaster Ect3 (beta galactosidase) and A. aegypti beta-galactosidase 
genes (UniProtKB/TrEMBL Accession numbers Q9VGE7 and Q17CH4 respectively). The alignment 
has been truncated to show only amino acids 181 – 300, as this is the region within which the RU 
sequence aligns with the known sequences. The RU sequence shares 40-50% identity with the two 
known sequences, which in turn is the range of identity shared between the full length sequences of 
known insect beta-galactosidases.  
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In a bid to establish a reason for the amplification of a beta-galactosidase gene sequence 

rather than a PPO sequence, alignments were performed using the same alignment tool and 

known beta-galactosidase sequences as above, but instead of the RU sequence, either the 

CuA’03-F or PO2-R primer sequence (see section 9.1 – Appendix A) was included in the 

alignment (primers used by Nairn, 2003 unpublished data, for the amplification of a PPO 

gene from S. littoralis larval hemocyte genomic DNA). However, neither primer 

demonstrated any confident alignment within the predicted region of the two known beta-

galactosidase genes. 

3.4 Discussion 

Earlier work by Nairn (2003, unpublished work) generated a series of clones containing a 

600 bp DNA fragment, amplified from S. littoralis larval hemocyte genomic DNA using 

PPO specific primers. Using genomic DNA as a template in PCR has an inherent 

complication due to the presence of introns and the problem of crossing them during the 

extension phase of PCR. Only one PPO gene structure is available, and is that of the African 

malarial mosquito, Anopheles gambiae (Ahmed et al., 1999). This gene is composed of five 

exons and four introns as shown in Figure 17. The five exons are labelled I, II, III, IV and V, 

and span 447, 683, 440, 197 and 670 base pairs respectively. The length of each intron 

 

 

Figure 17: Structure of the Anopheles gambiae prophenoloxidase 1 gene (AgPPO1). The gene spans 10 
kb and is composed of five exons (I – V, blue rectangles) separated by introns i, ii, iii and iv (solid black 
horizontal lines). The lengths depicted are simply for illustrative purposes and are not to scale. Diagram 
has been adapted from that shown in (Ahmed et al., 1999). 
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also varies (i - 2831 bp, ii - 74 bp, iii - 2175 bp and iv - 101 bp). The highly conserved 

characteristic CuA and CuB binding sites are located within exons II and III respectively and 

the forward and reverse primers used during amplification of the 600 bp DNA fragment from 

S. littoralis genomic DNA were based on these regions of the PPO gene sequence. Assuming 

a similar structure for all insect PPO genes, the expected length of the amplified fragment 

when using this primer combination was approximately 600 bp; this includes the length of 

intron ii (74 bp). In this case, the problem of crossing introns was expected to be minimal as 

the intron was short requiring minimal strand extension. Ultimately, the length of the DNA 

fragment expected was in fact that which resulted in the original PCR. 

 

Sequencing and subsequent analysis of the 600bp stretch of DNA led to the conclusion, 

however, that the fragment was not that of a PPO. This conclusion was based on a lack of 

substantial similarity between the deduced nucleotide sequence of the 600 bp fragment and 

that of known PPO genes. Despite one small stretch of the DNA fragment having a striking 

resemblance to the CuA site of insect PPO and arthropod Hc, it seemed the sequence shared 

greater similarity to the insect beta-galactosidase gene.  

 

Amplification of this particular non-PPO stretch of DNA was perhaps as a result of non-

specific priming of the primers (designed to amplify a PPO gene from genomic DNA) to the 

source genomic DNA. The forward primer had the nucleotide sequence 5’-CAC-CAC-TGG-

CAC-TGG-CAC-CT(AGCT)-GT(AGC)-TAC-CC-3’ (HHWHWHLVYP), and the reverse 

primer 5’-GGC-GAT-GAC-ACC-GAA-(AG)GA-CTC-CAG-GTA-3’ (YLESFGVIA), which 

are regions of the PPO CuA and CuB binding sites, respectively, and are highly conserved 

amongst arthropod PPOs. Further investigation, using the A. aegypti beta-galactosidase and 
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D. melanogaster Ect3 gene sequences, failed to reveal any short stretch of these sequences 

which could potentially have been a site recognised and bound by the primers. However, as 

genomic DNA was used as the template there is the possibility that they annealed to intron 

regions of a beta-galactosidase gene, subsequently amplifying the region coding for the 

putative glycosyl hydrolase domain. 

 

The possibility that the amplified stretch of DNA could have been a pseudogene was also 

considered. Pseudogenes are stretches of genomic DNA with a similar sequence to that of 

known functional genes. They arise via retrotransposition or duplication, but as a result of 

mutations, they are considered functionally inactive. Typical modifications which affect 

functionality involve insertion of stop codons and alterations to other regulatory elements. 

The presence of numerous stop codons in the currently analysed 600 bp DNA fragment 

became apparent upon translation of the nucleotide sequence, with all six reading frames 

containing multiple methionine residues (Table 3). It may be proposed therefore that the 

isolated DNA fragment was an insect β-galactosidase pseudogene, or perhaps even a PO or 

another copper binding protein pseudogene with a different function. 

 

Despite unsuccessful attempts to amplify a stretch of PPO DNA, the primers and 

experimental design utilised were appropriate for their purpose. Performing an alignment of a 

number of arthropod PPO sequences, see Figure 3, Chapter 2, demonstrates that the sequence 

regions on which the forward and reverse primers were designed, are conserved both within 

and between species. To further emphasise the validity of the  primer design, amplification of 

a PPO gene from other insect species such as Apis mellifera (Lourenco et al., 2005), 

Sarcophaga bullata (Chase et al., 2000) and Anopheles gambiae (Müller et al., 1999) has 
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been achieved successfully using forward primers with a similar sequence to the CuA’03-F 

primer used here. Subsequently there were no reasons to assume that the primers utilised 

would not be suitable for their intended purpose. 
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Chapter 4 : Screening for a Prophenoloxidase Gene in a 

Spodoptera littoralis cDNA library. 

4.1 Introduction 

During earlier work (Chapter 3) to sequence a PPO gene fragment, it became apparent that 

the isolated fragment was in fact not that of a PPO gene, but rather a stretch of DNA which 

appeared to have some similarity to a region of an insect beta - galactosidase. In the 

following chapter, a different approach was adopted. This method made use of a Spodoptera 

littoralis cDNA library and a number of molecular techniques, ultimately aiming to identify 

and isolate a PPO cDNA. 

 

The cDNA libraries (gifted by Beatrice Lanzrein, University of Berne, Switzerland), L5p and 

XL6, were generated from homogenised whole S. littoralis larvae, parasitized by either non-

irradiated (L5p) or X-ray irradiated (XL6) female Braconid parasitoid wasps, of the species 

Chelonus inanitus (Johner and Lanzrein, 2002). Endoparasitoids are parasites which infect 

and develop within the bodies of host insects, and therefore must be able to protect 

themselves from the hosts’ natural defence systems. Successful parasitisation thus requires 

host immune depression and developmental arrest to protect the wasp egg/larva and divert 

host nutrients for the support of wasp development (Bae and Kim, 2004). Larval 

endoparasitic wasps, such as C. inanitus, possess host immune system avoidance 

mechanisms which exist in the form of venoms, ovarian proteins and polydnaviruses (PDVs), 

injected into the host at parasitisation (Bae and Kim, 2004). Polydnaviruses (PDVs) are a 

group of viruses which have formed an endosymbiotic relationship with some parasitic 
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ichneumonid and braconid wasps (Lavine and Beckage, 1995). The two PDV groups – the 

ichnoviridae or the bracoviridae – show morphological differences in packaging of their viral 

DNA, and use different mechanisms to disable host immune and development systems 

(Lavine and Beckage, 1995). The PDV genome (both the proviral DNA segments integrated 

into the wasp genome and the circular extra-chromosomal viral segments) is replicated and 

packaged into virions solely within the calyx cells of the female wasps’ reproductive tract 

(Doucet and Cusson, 1996; Lavine and Beckage, 1995). The process of budding from 

(ichnoviruses), or cell lysis of (bracoviruses), calyx cells, allows accumulation of mature 

PDVs to a high concentration in the ovarian calyx lumen (Lavine and Beckage, 1995). These 

are subsequently introduced into the host Lepidoptera egg/larva during oviposition, along 

with the wasp egg, venom and ovarian proteins (Shelby and Webb, 1999) (Figure 18). At this  

 

 

Figure 18: The life cycle of a bracoviridae polydnavirus (PDV). During parasitisation of Lepidoptera 
larvae by Braconid parasitoid wasps, PDVs are injected into the host hemocoel along with the egg, 
venom and ovarian proteins. These function to inhibit normal cellular and humoral immune responses 
thus protecting the wasp egg and allowing development of the wasp larvae in the hemocoel. Taken from 
(Shelby and Webb, 1999). 
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time, no evidence exists for PDV replication within host Lepidopteran larvae. PDV DNA is, 

however, actively transcribed within the host. Along with venom components and ovarian 

proteins, the PDV genome encoded proteins rapidly cause an array of alterations and 

disruptions to the host immune and physiological systems (Lavine and Beckage, 1995). 

Examples include a reduction in growth, developmental arrest, altered metabolism, inhibition 

of encapsulation, inhibition of antimicrobial peptide synthesis and elimination of hemolymph 

melanisation (Shelby et al., 1998; Doucet and Cusson, 1996; Bae and Kim, 2004; Lavine and 

Beckage, 1995). Ultimately these effects on the host facilitate the uninterrupted development 

of the wasp eggs and larvae. 

 

Research has suggested that microbially immune challenged insects display greater levels of 

detectable PPO mRNA transcripts and hemolymph PO activity (Rajagopal et al., 2005). 

Conversely, host larvae parasitized by parasitoid wasps show evidence of greatly reduced 

hemolymph PO activity, predominantly due to the presence of PDVs, and enhanced by the 

presence of venom (Bae and Kim, 2004; Doucet and Cusson, 1996; Zhang et al., 2004). 

PDVs are believed to function at the post-transcriptional/translational step of gene 

expression, a common mechanism utilised by other viruses to regulate cell physiology. Such 

translational regulation of insect host immune response and development-associated proteins 

was previously demonstrated during the parasitisation of Heliothis virescens (Lepidoptera: 

Noctuidae) by the ichneumonid wasp Campoletis sonorensis (Shelby et al., 1998). PDV post-

transcriptional control was found to be responsible for reducing the levels of three storage 

proteins, juvenile hormone esterase and lysozyme present in the hemolymph. 
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It therefore seemed likely that whilst the PO activity of parasitized larvae was limited, PPO 

gene transcripts would still be abundant in the parasitized individuals used for synthesis of 

the L5p and XL6 cDNA libraries. These cDNA libraries presented potential for isolating an 

S. littoralis PPO gene. 

4.2 Methods 

4.2.1 Polymerase chain reaction and Southern blotting. 

4.2.1.1 Primer design. 

A range of forward and reverse degenerate primers were designed for the amplification of a 

S. littoralis PPO cDNA. The amino acid sequences of highly conserved regions of arthropod 

PPOs were identified, and the subsequent nucleotide sequence was determined with reference 

to the S. littoralis codon usage table (available online at www.kazusa.or.jp/codon/). Primers 

were synthesised by MWG at a scale of 0.01 µmol and purified by HPSF. Section 9.1 - 

Appendix A lists all primers designed and used throughout this research. Nucleotide and 

amino acid sequences are provided along with an indication of their location on the PPO 

gene sequence. 

4.2.1.2 Generating stocks of the plasmid vector containing a clone of the Manduca 

sexta PPO1 or PPO2 gene. 

Lyophilised cDNA clones of Manduca sexta PPO1 and PPO2 genes were kindly gifted from 

Michael Kanost and Mary Everhart of Kansas State University, Manhattan, USA. These 

cDNAs had been cloned using EcoR1 and Xho2 (5’ – 3’) and packaged into the pBluescript 

cloning vector. To re-suspend the clones, 100 µl of TE buffer was added to each and 
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centrifuged for 1 minute at 13000 rpm then stored on ice. 300 µl of competent E. coli NM552 

cells in 0.1 M calcium chloride was transferred into eight sterile culture tubes. To the first 

four aliquots of competent cells, 0 (control), 1, 10 or 50 µl of clone plasmid PPO1 was 

added, and to the second four aliquots, the same volumes of clone plasmid PPO2. All tubes 

were swirled gently to ensure even dispersion of the plasmids and left on ice for 1 hour. The 

cells were heat shocked in a 42˚C water bath for 2 minutes before 5 ml of sterile LB broth 

was added and the culture placed in an orbital incubator at 37˚C for 1 hour. The cells were 

centrifuged for 10 minutes at 4˚C and 2100 rpm and the pellet re-suspended in 60 µl of sterile 

LB broth. For each dilution of each clone, two volumes (10 and 50 µl) were transferred onto 

separate 90 mm round 50 µg/ml ampicillin LB agar plates. The plates were inverted and 

incubated overnight at 37˚C. 

 

Approximate colony counts were conducted on each overnight plate. Plates with counts of 

100 - 400 colonies were chosen for colony picking. Colonies selected were preferably those 

with smaller satellite colonies, and were ejected into 5 ml of 50 µg/ml ampicillin sterile LB 

broth. Following an overnight incubation in an orbital incubator at 37˚C, 1 ml of each culture 

was transferred into each of two fresh 1.5 ml Eppendorf tubes then centrifuged for 5 minutes 

at 13000 rpm to pellet the bacterial cells. From this point, the protocol for purifying plasmids 

was exactly as described in the QIAGEN QIAprep Miniprep Handbook under the heading 

‘QIAprep Spin Miniprep Kit Protocol: Using a Centrifuge’. 

4.2.1.3 Gradient PCR. 

PCR reactions were prepared with the following final concentrations of components: 1X 

PCR buffer (1.5 mM MgCl2), 2.5 U Taq DNA Polymerase (both from QIAGEN Cat 
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#201205), 200 µM dNTPs, 1 µM forward and reverse primers and template DNA (plasmid 

DNA (Section 4.2.1.2) or cDNA library (details in Sections 4.1 and 4.2.3.2)). Final reaction 

volumes were made up with sterile distilled water. Reactions were vortexed briefly and 

centrifuged at 6500 rpm for 1 minute at 4˚C. Utilising separately provided components for 

the PCR reactions turned out to be the most efficient method, although during earlier 

attempts, either Taq PCR Master Mix (QIAGEN Cat #201443) or HotStarTaq PCR Master 

Mix (QIAGEN Cat #203443) was used, at a final concentration of 1X, which contain PCR 

buffer, Taq polymerase and dNTP components.  

 

Each PCR reaction was typically performed over a 10˚C gradient of annealing temperatures 

(which generally included a temperature 10˚C lower than the Tm values of the primer pairs). 

Reaction conditions were as follows: 95ºC for 2 minutes, followed by 30 cycles of 95ºC for 

30 seconds, selected temperature gradient for 45 seconds and 72ºC for 1 minute. The rate of 

temperature change between the denaturing and annealing step (the touchdown ramp) varied 

between reactions, at either 5ºC, 2.5ºC or 1ºC/second. A small aliquot of each PCR product 

was separated by electrophoresis in a 1X TBE, 1 % agarose, 0.2 µg/ml EtBr gel and 

visualized under UV light. The reaction generating the most intense, correctly sized product 

band was designated as having the optimal annealing temperature. If any combination of 

template DNA and primer pairs produced a product band of the expected size at a particular 

temperature, these reaction products were run on a second gel for Southern blotting. 

4.2.1.4 Southern blotting via the capillary method 

Each gel to be blotted was trimmed to the minimum possible size leaving the wells intact. A 

corner was cut away to record gel orientation for comparison to the resulting blot. If the gel 
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contained genomic DNA where large fragments were to be transferred to a membrane (such 

as genomic DNA restriction digest products), the gel was soaked for 10 minutes in 200 ml of 

depurination buffer (0.125 M HCl). When small DNA fragments and plasmids were 

involved, this step was not necessary. The gel was soaked in denaturation buffer (1.5 M NaCl 

and 0.5 M NaOH) for 30 minutes, then neutralization buffer (for alkaline transfer of DNA to 

nylon membranes - 1.5 M NaCl, 0.5 M Tris, pH 7.5) for a further 15 minutes. The gel was 

equilibrated in 10X SSC (20X SSC = 3.0 M NaCl and 0.3 M sodium citrate) for 5 minutes, 

prior to assembly of the blotting apparatus shown in Figure 19. 

 

Figure 19: Apparatus used for Southern blotting of nylon membranes by the capillary method. To allow 
full transfer of DNA from the gel to the nylon membrane the apparatus was left at room temperature for 
12 – 16 hours. 

Following overnight transfer of DNA to the membrane, the apparatus was dismantled. On the 

non-DNA-side of the nylon membrane, the position of each well was marked using a lead 

pencil, and the corner which corresponds to the cut corner of the gel was cut away. The 

membrane was placed DNA-side up between two sheets of Whatmann 3MM paper until dry, 
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and the DNA was fixed by exposing the membrane to UV light for 1 minute. The blot was 

transferred into 2X SSC, washed for 3 minutes and dried as above. 

 

To ensure that complete DNA transfer from gel to membrane had occurred, the blotted gel 

was submerged in 20 ml of 1X TBE buffer with 20 µl of 15 mg/ml EtBr for 10 minutes. This 

would stain any DNA remaining within the gel. A lack of any visible DNA bands was used 

as an indicator that all DNA had been successfully transferred to the membrane. 

4.2.2 DIG-labelled probe membrane hybridisation. 

4.2.2.1 DIG-labelled phenoloxidase DNA probe synthesis. 

Two forward and two reverse primers were specifically designed to anneal to clones of the 

Manduca sexta PPO1 and PPO2 genes in the plasmid vector pBluescript, purified in Section 

4.2.1.2. Primers were synthesised by MWG at a scale of 0.01 µmol and purified by HPSF. 

They were named MsextaPPO1-F, MsextaPPO1-R, MsextaPPO2-F and MsextaPPO2-R (See 

section 9.1 - Appendix A for sequences). Prior to the DIG-labelling step, gradient PCR 

reactions using separate reaction components were conducted as in Section 4.2.1.2 to 

establish the optimal annealing temperature for these primer pairs. 

 

DIG-labelling of PCR products requires reactions that contain DIG – 11- UTP in place of 

some TTP. Therefore two reactions were set up for each PPO gene – one standard and one 

DIG-labelling reaction – containing the following final concentrations of each component: 1 

X PCR buffer (1.5 mM MgCl2), 2.5 U/reaction Taq polymerase, 0.5 ng/µl template Manduca 

sexta PPO1 or PPO2 clone plasmid, 1 µM of the respective clones’ specific forward and 
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reverse primers, and 200 µM ATP, GTP and CTP. The standard reaction contained 200 µM 

TTP whereas the DIG-labelling reaction contained 130 µM TTP and 70 µM DIG -11-UTP. 

Reactions were prepared to their final volumes with sterile distilled water. PCR reaction 

conditions were: 2 minutes at 95˚C, followed by 30 cycles at 95˚C for 30 seconds, 55˚C for 

45 seconds and 72˚C for 1 minute. A small aliquot of each reaction was loaded onto a 1X 

TBE, 1% agarose, 0.2 µg/ml EtBr gel, and the products separated by electrophoresis and 

visualised under exposure to UV light. Successfully labelled products were observed to have 

slower electrophoretic mobility than the native products, and were named DIG-PPO1 and 

DIG-PPO2 according to the M. sexta PPO clone from which they were derived. 

4.2.2.2 Dot blot preparation. 

A series of 10-fold dilutions of the M. sexta PPO1 clone plasmid DNA was prepared in 

sterile distilled water, covering the range 20 ng – 2 pg. The samples were heated to 95˚C then 

chilled immediately on ice. 1 µl of each dilution was transferred to a fresh Eppendorf tube on 

ice, and 1 µl of 20X SSC mixed gently into each. Using a lead pencil, five 8 mm diameter 

circles were drawn at regular intervals along the length of a strip of positively charged nylon 

membrane (Roche Cat# 1 417 240). Each circle was labelled with the DNA concentration to 

be spotted into it. The membrane was soaked in 2X SSC firstly by floating it on the solution 

surface for a few seconds then submerging it completely for 2 minutes. The membrane was 

dried on a sheet of Whatmann 3MM filter paper for 20 minutes. Each 2 µl sample of the 

plasmid DNA dilutions prepared above was spotted into the centre of its relevant circle on 

the membrane. Between each spot the membrane was allowed to dry for 30 seconds. The 

membrane was soaked in denaturing buffer (1.5 M NaCl and 0.5 M NaOH) for 5 minutes by 

transferring it DNA-side up, onto a block of Whatmann 3MM filter paper soaked in the 
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solution. The membrane was then transferred to a second block of filter paper soaked in 

neutralizing buffer (1.5 M NaCl, 0.5 M Tris, pH 7.5) for another 5 minutes. The membrane 

was dried for 20 minutes, DNA-side up between two sheets of filter paper, before being 

exposed to UV light for 2-3 minutes to fix the DNA. 

4.2.2.3 Hybridisation of nylon membranes with DIG-labelled PPO1 DNA probe. 

Dry DNA-bound membranes were re-wetted in 70 ml of 2X SSC for 5 minutes and 

transferred DNA-side up into a hybridisation tube. 5 ml of hybridisation solution (6X SSC, 1 

% Blocking reagent, 0.1 % Sarkosyl, 0.02 % SDS) per membrane was added to the 

hybridisation tube(s), which were sealed tightly and placed in a rotating hybridisation 

chamber pre-warmed to the desired hybridisation temperature (between 60 - 68˚C). 3 hours 

were allowed for pre-hybridisation of the membranes. 

 

The pre-hybridisation solution was discarded. A further 5 ml per membrane of fresh 

hybridisation solution was added to each tube which was placed back into the hybridisation 

oven to re-warm to the desired hybridisation temperature. Meanwhile, the DIG-labelled 

probe generated from the M. sexta PPO1 plasmid (DIG-PPO1) in Section 4.2.2.1, was 

prepared for incubation with the membranes. DIG-PPO1 was chosen as the probe for use as 

its parent DNA, a clone of the M. sexta PPO1 gene, showed slightly higher identity than the 

M. sexta PPO2 clone, to the overall amino acid sequences of eight other Lepidoptera 

phenoloxidases (SwissProt/TrEMBL database accession numbers: Q9GU89, Q9GU90, 

Q964D5, Q6UEH6, O77002, O76208, Q9Y0B4 and Q9Y0B3). The DNA concentration of 

the probe was estimated from the resulting mini-gel produced in section 4.2.2.1, based on the 

fact that the smallest quantity of DNA that can be visualized in a gel after EtBr staining is 



 

 72

approximately 10 ng. From this, the volume of probe required per membrane, where 

approximately 50 ng of DIG-labelled probe per membrane is optimal, was mixed with 0.5 ml 

of hybridisation solution and boiled in a water bath for 10 minutes. The denatured probe was 

diluted immediately in the pre-warmed hybridisation solution present in each of the 

hybridisation tubes. These were sealed tightly and placed back into the hybridisation oven for 

an overnight incubation at the desired hybridisation temperature. 

4.2.2.4 Post hybridisation washes. 

The probe-hybridisation solution was discarded and a moderate or high stringency wash 

solution (moderate - 1X SSC and 0.1 % SDS; high - 0.1X SSC and 0.1 % SDS) was pre-

warmed to the hybridisation temperature used previously. Each membrane was washed twice 

for 5 minutes in 100 ml of a room temperature low stringency wash solution (2X SSC and 

0.1 % SDS), followed by three 15 minute washes in 80 ml of pre-warmed moderate or high 

stringency wash solution at the hybridisation temperature.  

 

Detection of membrane bound DIG-labelled probe was performed using either the 

BCIP/NBT colourimetric or CDP-Star chemilluminescent method. In preparation for the 

former, each membrane was submerged for 2 minutes in 100 ml of 0.3 % Tween-20 in 

Malate buffer (0.1 M Maleic Acid; 0.15 M NaCl; pH 7.5 - sterile) then incubated for 1 hour 

in 50 ml of 1% Blocking solution (Blocking reagent (Roche Cat #1 096 176) in Malate 

buffer). Alternatively, for the CDP-Star method, each membrane was transferred into 100 ml 

of Malate buffer for 5 minutes and finally incubated for 1 hour in 50ml of 1 % Blocking 

solution. 
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4.2.2.5 Incubating probe hybridized membranes with an Anti-DIG-Alkaline 

phosphatase antibody. 

Blocking solution was recovered from section 4.2.2.4 in 50 ml aliquots. 2 µl of Anti-DIG-AP 

antibody (Roche Cat# 1 093 274) was added to each and inverted a number of times to 

ensure dispersal. Each membrane was incubated in one of these antibody solutions at room 

temperature for 30 minutes. The membranes were then transferred to and washed two 

(NBT/BCIP colourimetric detection) or three times (CDP-Star chemilluminescent detection) 

in 50 ml of 0.2 % Tween-20 in Malate buffer. 

4.2.2.6 Detection of membrane bound DIG-labelled DNA probe. 

When applying the NBT/BCIP colourimetric detection method, each membrane was 

transferred into 50 ml of Detection buffer (0.1 M Tris-HCl; 0.1 M NaCl; pH 9.5) for 3 

minutes to equilibrate at room temperature. 2 ml per membrane of NBT/BCIP solution was 

prepared as described in the product data sheets (NBT – Roche Cat# 1 383 221; BCIP – 

Roche Cat# 1 383 213). The solution was wrapped in tinfoil to protect it from light exposure. 

Each membrane was removed from the Detection buffer and placed DNA side up onto the 

inside leaf of a cut open A4 clear plastic poly-file. 2 ml of NBT/BCIP solution was quickly 

dispensed over the entire surface of each membrane. The poly-file was closed over and 

wrapped in tinfoil before gently smoothing over the membranes to disperse the colourimetric 

detection solution and displace any air bubbles. The membranes were incubated at room 

temperature for 16 hours. To stop the reaction, the membranes were rinsed in 50 ml of TE 

buffer for 5 minutes at room temperature, and the staining pattern recorded by scanning the 

wet membranes. 
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Application of the CDP-Star chemilluminescent detection method required the following 

modifications: firstly, each membrane was transferred into 50 ml of Equilibration buffer (0.1 

M Tris-HCl; 0.1 M NaCl; 0.05 M MgCl2; pH 9.5) for 10 minutes to equilibrate at room 

temperature. For each membrane, 497.5 µl of Equilibration buffer and 2.5 µl of the CDP-Star 

detection mix (Roche Cat# 1 685 627) was transferred onto the inside leaf of a cut open clear 

A4 poly-file. The Equilibration buffer was drained and each membrane placed DNA-side up 

onto the detection solution in the poly-file. The poly-file was closed over and wrapped in 

tinfoil, before gently smoothing over the membranes to disperse the chemilluminescent 

detection solution and displace any air bubbles. The membranes were incubated for 5 

minutes and then heat sealed DNA-side up in a fresh clear plastic poly-file. In a dark room, 

each membrane was placed DNA-side up under a sheet of x-ray film for 30 - 60 minutes. The 

film was developed and fixed. 

4.2.3 Screening a Spodoptera littoralis cDNA library for a prophenoloxidase cDNA. 

4.2.3.1 Preparation of E. coli Y1090 viable working and glycerol stocks. 

E. coli Y1090 cells were kindly gifted by the Institute of Aquaculture, University of Stirling. 

They had been stored in glycerol at -40˚C. The original glycerol stock was thawed on ice and 

a loop-full of the cells spread onto each of two LB ampicillin agar plates. The glycerol stock 

was quickly refrozen and the agar plates inverted and incubated at 37˚C overnight. After 

approximately 16 hours, the plates were checked for colony formation. To build a viable 

working cell stock, a core of agar containing a single colony of cells was picked from one of 

the overnight agar plates and added to each of two 5 ml aliquots of LB broth containing 50 
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µg/ml ampicillin. The cultures were sealed and placed in a 37˚C orbital incubator overnight. 

A sterile colony spreader was used to spread one loop-full of each overnight culture onto 

each of four LB 50 µg/ml ampicillin agar plates. The plates were inverted and placed in a 

static incubator overnight at 37˚C. Each plate was checked for colony formation before being 

sealed and stored inverted at 4˚C. 

 

Fresh glycerol stocks of the E. coli Y1090 cells were prepared by inoculating two 5 ml 

aliquots of LB 50 µg/ml ampicillin broth with a viable colony grown on an LB ampicillin 

plate in the final step above. These inoculums were incubated at 37˚C overnight in an orbital 

incubator. 350 µl of cells from these overnight cultures was mixed with 150 µl of sterile 

glycerol in 5 separate 1.5 ml Eppendorf tubes. To ensure the culture cells and glycerol were 

mixed thoroughly, each was repeatedly vortexed and chilled, then stored at - 40ºC. 

4.2.3.2 cDNA library titration. 

Gifted cDNA libraries L5p and XL6 had been cloned into the Lambda gt11 phage vector and 

subsequently packaged into competent E. coli Y1090r- cells. Both were generated from 

homogenised whole S. littoralis larvae parasitized by either non-irradiated (L5p) or X-ray 

irradiated (XL6) female brachonid parasitoid wasps, of the species Chelonus inanitus (Johner 

and Lanzrein, 2002). A series of dilutions (1:100 – 1:10 million) of both cDNA libraries were 

prepared in chilled SM buffer (0.1 M NaCl, 8.0 mM MgSO4, 0.05 M Tris-HCl pH 7.5, 0.01 

% gelatin). Dilutions of the libraries proved to be rather unstable and therefore fresh dilutions 

were prepared for each titer or screening procedure. 
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Prior to incubation with either of the Lambda gt11 packaged cDNA libraries, two centrifuge 

tubes containing 10 ml of sterile LB broth with final concentrations of 50 µg/ml ampicillin, 

10 mM sterile MgSO4 and 0.2 % filter sterilized maltose, were inoculated with an E. coli 

Y1090 colony from the viable stock plates prepared in Section 4.2.3.1 . These cells were 

placed in an orbital incubator overnight at 30˚C and allowed to grow to an OD600 of no more 

than 1.0. The overnight cultures were centrifuged at 2000 rpm and 4˚C for 10 minutes to 

pellet the bacteria. The pellets were re-suspended with half the original volume of filter 

sterile 10 mM MgSO4. 1 ml of one of these re-suspended pellets was transferred to a fresh 

centrifuge tube and diluted with filter sterile 10 mM MgSO4 to a final OD600 of 0.5. These 

diluted cells were used immediately in the following steps, whilst the remaining undiluted 

cells were placed in an orbital incubator at 37˚C for 1 hour. These cells were then stored at 

4˚C and were regarded as viable for titering and screening for up to 2 weeks after 

preparation. 

 

Nine 10 ml culture tubes were prepared (1 control and 4 for each dilution of both Lambda 

gt11 phage packaged cDNA libraries), as were nine room temperature LB 50 µg/ml 

ampicillin agar plates. 200 µl of E. coli cells diluted in 10 mM MgSO4 were transferred into 

each culture tube followed by 1 µl of the relevant cDNA library dilution. For the control, 1 µl 

of SM buffer was used instead. All nine culture tubes were incubated at 37˚C for 20 minutes 

to allow the phage to adsorb to the bacteria surface. After incubation, 4.5 ml of molten LB 

top agar containing 50 µg/ml ampicillin was added to each tube one at a time, swirled gently 

and immediately poured onto the surface of the corresponding room temperature agar plate. 

The plates were allowed to dry for 5 minutes before being inverted and incubated at 37˚C for 

12 - 16 hours (Plaques first became visible after approximately 7 hours). The following 
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morning plaque counts were performed where feasible and the average titer of each library 

was calculated. 

4.2.3.3 Plaque lifts for screening. 

Prior to screening, the required number of 95 mm squares of positively charged nylon 

membrane (Roche Cat# 1 417 240) were cut. Each membrane was soaked in sterile distilled 

water for 2 minutes, and then placed on top of one another alternating with slightly larger 

pieces of Whatmann filter paper. The membrane stack was wrapped loosely in tinfoil and 

autoclaved. 

 

E. coli cell cultures were prepared overnight for incubation with the Lambda gt11 phage 

packaged L5p cDNA library as described in Section 4.2.3.2. This library was chosen for its 

greater stability when diluted and its higher plaque forming unit count. The overnight 

cultures were centrifuged, resuspended and diluted as outlined in section 4.2.3.2. Seven 100 

mm LB ampicillin agar plates were brought to room temperature and a fresh 1:10000 dilution 

of the L5p cDNA library was prepared in chilled SM buffer and kept on ice for 1 hour before 

storing at -20˚C. 

 

Seven plastic 10 ml culture tubes and seven 100 mm LB agar plates were labelled ‘1’ – ‘6’ 

and one a ‘control’. To the bottom of tube ‘1’, 1200 µl of the diluted E. coli cells and 60 µl of 

the fresh 1:10000 cDNA dilution was pipetted whilst 200 µl of cells and 10 µl of SM buffer 

was pipetted into the control tube. Both were swirled gently and incubated at 37˚C for 20 

minutes. Whilst incubating, ampicillin was added to liquified LB top agar to a final 

concentration of 50 µg/ml. 



 

 78

 

After 20 minutes, the 1260 µl incubation volume was split 6 x 210 µl between the six 

labelled culture tubes. 4.5 ml of LB top agar was added to each tube (including the control) 

one at a time, swirled and poured evenly over each corresponding plate. Once dry, the plates 

were inverted and incubated at 37˚C until plaques had formed which were no larger than 1 

mm in diameter (approximately 4 hours). The plates were then stored inverted overnight at 

4˚C to ensure full hardening of the top agar for performing plaque lifts. 

 

Each sterile nylon membrane square prepared earlier was labelled using lead pencil at one 

corner. A labelling system of 1A, 1B, 2A, 2B, 3A etc. was employed as replica lifts were to 

be taken from each of the six numbered plates. One at a time, each plate prepared the 

previous day was removed from the fridge and subjected to the duplicate plaque lifts. The 

first membrane was left for 2 minutes, during which time a needle was used to stab though 

the membrane into the agar below in a 3 corner asymmetrical pattern. These points were also 

marked on the base of the plate using a permanent marker. Blunt ended forceps were used to 

carefully peel back the membrane from the agar. The membrane was transferred plaque-side 

up onto a wad of Whatmann filter paper soaked in denaturing solution (1.5 M NaCl and 0.5 

M NaOH), ensuring that no solution flooded over the membrane, and left for 5 minutes. It 

was then transferred plaque-side up, to a second wad of filter paper soaked this time in 

neutralizing solution (1.5 M NaCl and 0.5 M TrisHCl, pH 7.5) for a further 5 minutes. 

Finally this membrane was transferred to another wad of filter paper soaked in sterile 2X 

SSC (20X SSC = 3.0 M NaCl and 0.3 M sodium citrate, pH 7.0) and retained there until all 

membranes were ready for DNA fixing. The replica plaque lift membrane was left on the 

agar surface for 4 minutes and soaked in denaturing solution, neutralising solution and 2X 
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SSC as above. The agar plate was immediately returned to 4°C. This process was repeated 

for all other plates; with membranes 2A and 2B being replica lifts of plate 2 and so on. 

 

Following completion of all plaque lifts, the membranes were allowed to air dry on a fresh 

sheet of filter paper for 20 minutes. Each was placed plaque-side down onto a UV light box 

and exposed to UV light for approximately 2 minutes to fix the DNA. The membranes were 

then stacked between alternating squares of filter paper and stored dry at room temperature 

wrapped in tin foil. 

4.2.3.4 DIG-labelled PPO1 DNA probe hybridisation of cDNA library plaque lifts. 

Each plaque lift membrane was subjected to hybridisation with the DIG-PPO1 probe and 

subsequent washing, antibody incubation and bound probe colourimetric detection steps as 

outlined in Sections 4.2.2.3 to 4.2.2.6. As a control for the hybridisation procedure, a dot blot 

was prepared as described in Section 4.2.2.2, and probed alongside the plaque lift 

membranes. 

4.2.4 Restriction digest of Spodoptera littoralis genomic DNA. 

4.2.4.1 Restriction digest. 

Genomic DNA had been isolated and purified from S. littoralis hemocytes by Nairn (2003, 

unpublished work), and stored at -40°C. To check the DNA was still intact, 4 µl of each of 

the three isolated samples, 1A, 2A and 2B, was mixed with 2 µl of 6X Type-2 loading buffer 

and electrophoresed at 50 V for 2 – 3 hours in a 20 cm, 1X TBE, 0.8 % agarose, 0.2 µg/ml 

EtBr gel. Reference DNA bands were provided by 1 µl of 1 kb DNA Ladder (New England 
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Biolabs Cat# N32325) mixed with 2 µl of the above loading buffer. The sample with the 

highest yield of good quality genomic DNA was used in each subsequent restriction digest. 

 

For each restriction enzyme used (EcoR1 and HindIII separately, and also in combination), a 

fresh 0.2 ml PCR tube was labelled and placed on ice. 10 µl of 50 ng/µl S. littoralis genomic 

DNA was added to each tube along with 2.3 µl of the relevant restriction enzyme buffer. The 

mixture was stirred gently, and then left to stand on ice for approximately 3 hours. Keeping 

all on ice, 1 µl of each restriction enzyme was added to the appropriately labelled PCR tube 

and the mixture stirred gently on ice for 2-3 minutes. The digests were warmed slowly to 

37˚C in a water bath, left at 37˚C for 30 minutes, then placed back on ice, and a second 1 µl 

aliquot of the appropriate restriction enzyme was added and stirred on ice as before. Once 

again each digest was warmed slowly to 37˚C in a water bath, and then left at that 

temperature for 12 - 18 hours. 

 

The overnight digest reactions along with a sample of non-digested genomic DNA, the clone 

Manduca sexta PPO1 plasmid and Lambda HindIII markers (ABgene, Cat# AB-0200), were 

prepared and loaded onto a 20 cm, 1 X TBE, 0.8 % agarose, 0.2 µg/ml EtBr gel, and 

separated by electrophoresis at 50 V for approximately 2 hours. The gel was visualized under 

UV light exposure and used for subsequent Southern Blotting. 

4.2.4.2 Southern blotting via the capillary method. 

Southern blotting was performed to transfer the digest fragments and control DNA onto a 

sterile nylon membrane as described in Section 4.2.1.4. 
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4.2.4.3 DIG-labeled PPO1 DNA probe hybridisation of restriction digest 

membrane. 

The DNA fixed southern blot membrane was subjected to hybridisation with the DIG-PPO1 

probe and subsequent washing, antibody incubation and bound probe detection steps as 

outlined in Sections 4.2.2.3 to 4.2.2.6. The clone Manduca sexta PPO1 plasmid sample 

loaded onto the blotted restriction digest gel acted as the control for these steps. 

4.2.5 Comparing the sensitivity of DIG-labelled PPO1 and DIG-labelled PPO2 

DNA probes. 

To compare the specificity of two DIG-labelled DNA PPO probes in the recognition and 

binding of a heterologous PPO DNA sequence, a number of duplicate gels were prepared.. 

The first two gels (Gel 1-PPO1 and Gel 1-PPO2) each contained 10 µl of the products of two 

PCRs which used CuA3-F and Cys2-R primers and a 1:10 dilution of either the M. sexta 

PPO1 or M. sexta PPO2 clone plasmid as the template DNA. PCR conditions were 95ºC for 

2 minutes, followed by 30 cycles of 30 seconds at 95ºC, 45 seconds at 52ºC and 1 minute at 

72ºC. An annealing touchdown ramp of 1ºC/second was employed. All components were at 

final concentrations as described in section 4.2.1.3. The second pair of gels (Gel 2-PPO1 and 

Gel 2-PPO2) both contained 0.5 µl of a 1:10 dilution of the M. sexta PPO1 and M. sexta 

PPO2 clone plasmids, and 5 µl of the products of a further two PCR reactions. These were 

prepared as before, with one containing MsextaPPO1-F and MsextaPPO1-R primers and a 

1:10 dilution of the M. sexta PPO1 clone plasmid as the template DNA, and the other 

containing the MsextaPPO2-F and MsextaPPO2-R primers and a 1:10 dilution of the M. 

sexta PPO2 clone plasmid as the template DNA. PCR conditions for these reactions were as 
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above with the exception that the annealing temperature and touchdown ramp used were 

55ºC and 5ºC/second respectively. The gels were run at 50 V for 1.5 hours, and photographed 

under UV light exposure.  

 

The gels were subjected to Southern blotting, membrane hybridisation and probe detection 

protocols as described in sections 4.2.1.4 and 4.2.2.3 to 4.2.2.6, with the exception that the 

membranes resulting from the blotting of Gel 1-PPO1 and Gel 2-PPO1 were hybridised with 

the DIG-PPO1 probe and those membranes generated from Gel 1-PPO2 and Gel 2-PPO2 

were hybridised with the DIG-PPO2 probe. 

4.3 Results 

4.3.1 Gradient PCRs using degenerate primers generated numerous products of 

varying size. 

Prior to conducting PCR reactions for the amplification of a PPO cDNA from the L5p and 

XL6 cDNA libraries, the viability of each Spodoptera littoralis cDNA library was 

determined. Primers designed for the amplification of actin were used in control PCR 

reactions which contained either the L5p or XL6 library. As can be seen from Figure 20, the 

400 bp actin product bands are approximately 50-fold brighter in reactions containing library 

L5p as compared to library XL6, where reaction and staining conditions were constant. Two 

repeats of these control PCRs produced similar outcomes. It was therefore assumed that 

cDNA library L5p was the more viable of the two libraries, and was used in all further PCRs. 
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Figure 20: Amplification of actin cDNA from Spodoptera littoralis L5p and XL6 cDNA libraries. A 
DNA fragment of approximately 400 bp was generated across the full temperature gradient indicated, 
although the product band was approximately 50-fold brighter when the L5p library was the template 
DNA. This suggested that the L5p library was more viable and thus more suitable for use in PCR 
reactions aimed at amplifying a phenoloxidase cDNA. Two further repeat reactions produced the same 
results. 
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For the amplification of a S. littoralis PPO cDNA, a series of forward and reverse degenerate 

primers were designed based on the highly conserved regions of previously sequenced 

arthropod PPO gene sequences (Section 9.1 - Appendix A). To determine which 

combinations of these primers could successfully amplify Lepidoptera PPO DNA, a series of 

PCR reactions were conducted using the M. sexta PPO1 clone as the template DNA. Four 

primers with varying degrees of degeneracy had been designed on the basis of the sequence 

HHWHWHLVYP from the CuA binding site of PPO (CuA-F, CuA2-F, CuA3-F and CuA4-

F). To conserve reaction components and reduce the required time, only one of these – 

CuA4-F – was tested in the control PCRs in combination with all possible reverse primers. It 

was chosen as it was the shortest of the four primers, with the sequence 5’-CA(CT)-CA(CT)-

T(AG)(GCT)-CA(CT)-TGG-CA-3’ (HHWHWH), which is completely conserved 

throughout all known Lepidoptera PPOs. The remaining three contained some or all of the 

latter part of this CuA binding region sequence – LVYP – which occasionally shows 

variation amongst species, and therefore were each used only once in combination with a 

single selected reverse primer. The nucleotide sequences of these other primers can be found 

in Chapter 9 - Appendix A. 
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Figure 21: Determining the suitability of various degenerate primer pair combinations for the 
amplification of an S. littoralis PPO DNA fragment. Each lane shows products formed in PCR reactions 
which contained the M. sexta PPO1 clone as the template DNA and one pair of degenerate primers. 
Lanes marked ‘M’ contained PCR markers with sizes as detailed in the top right image. Primer 
combinations and expected fragment size (in brackets), as determined from the known sequence of the 
M. sexta PPO1 clone, were as follows: Lane 1 – MsextaPPO1-F and MsextaPPO1-R (1155 bp); Lane 2 – 
CuA4-F and CuB2-R (606 bp); Lane 3 – CuA4-F and MIELD-R (969 bp); Lane 4 – CuA4-F and Cys2-R 
(1131 bp); Lane 5 – CuA4-F and Cterm-R (1317 bp); Lane 6 – GELF-F and CuB2-R (534 bp); Lane 7 – 
GELF-F and MIELD-R (897 bp); Lane 8 – GELF-F and Cys2-R (1059 bp); Lane 9 – GELF-F and 
Cterm-R (1245 bp); Lane 10 – CuB2-F and MIELD-R (387 bp); Lane 11 – CuB2-F and Cys2-R (549 
bp); Lane 12 – CuB2-F and Cterm-R (735 bp); Lane 13 – CuA4-F and Cys-R (1131 bp); Lane 14 – 
GELF-F and Cys-R (1065 bp); Lane 15 – CuB2-F and Cys-R (555 bp); Lane 16 – CuA-F and Cterm-R 
(1317 bp); Lane 17 – CuA2-F and Cterm –R (1317 bp); Lane 18 – CuA3-F and Cterm-R (1317 bp). 
Control PCR reactions were performed to ensure primers could not generate products alone. Lanes C1 – 
C11 contained only CuA4-F, CuB2-R, MIELD-R, Cys2-R, Cterm-R, GELF-F, CuB2-F, CuA-F, CuA2-
F, CuA3-F or Cys-R respectively. Reactions containing no template DNA generated no products (data 
not shown). 



 

 86

The outcomes of the various control PCRs, shown in Figure 21, demonstrated firstly that not 

all primer combinations resulted in successful amplification of fragments of the M. sexta 

PPO1 clone. Also evident was that some reactions generated a range of non-specific 

products, either in addition to or not including the band of expected size. The absence of 

template DNA resulted in no products being formed (data not shown). Furthermore, it 

appeared that a number of the degenerate primers were capable of acting alone in the 

amplification of DNA fragments from the template DNA. These results have been 

summarised in Table 4, where the primer combinations have been arranged into categories 

according to the products formed. 

Table 4: Primer pairs categorized according to the DNA products formed during PCRs in which each 
primer pair was used to amplify a particular stretch of a M. sexta PPO clone. Those which were 
successful in the amplification of a DNA fragment of the expected size, as well as those generating non-
specific products in addition to this expected fragment, were utilized as primer pairs in subsequent 
rounds of PCR designed to amplify a PPO gene fragment from an S. littoralis L5p cDNA library. The 
number in brackets alongside each primer pair indicates the lane number in Figure 21 which illustrates 
the products formed. 

Successful  Amplification 
of Desired Product Size 

Non-specific product 
Amplification 

Unsuccessful 
Amplification of 

Desired Product Size 
CuA4-F & CuB2-R (2) CuA4-F & Cys2-R (4) CuA4-F & Cterm-R (5) 

CuA4-F & MIELD-R (3) GELF-F & Cys2-R (8) CuB2-F & Cterm-R (12) 
CuA4-F & Cys-R (13) GELF-F & Cterm-R (9)  
GELF-F & CuB2-R (6) CuB2-F & Cys2-R (11)  

GELF-F & MIELD-R (7) CuA-F & Cterm-R (16)  
GELF-F & Cys-R (14) CuA2-F & Cterm-R (17)  

CuB2-F & MIELD-R (10) CuA3-F & Cterm-R (18)  
CuB2-F & Cys-R (15)   

MsextaPPO1-F & 
MsextaPPO1-R (1) 

  

 

Primer pairs which generated non-specific products were still considered as potential 

combinations for the amplification of an S. littoralis PPO, as modifications to reaction and 

PCR cycle conditions could potentially resolve this issue. Therefore, those primer pairs 
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which were found to successfully amplify the expected size of DNA fragment (with or 

without additional non-specific products) during PCR, were used in a series of PCR reactions 

for the amplification of a PPO cDNA, using the L5p cDNA library as the template DNA. To 

optimise amplification of any PPO cDNA present within this library, and to reduce non-

specific product formation, a number of variations in the reaction conditions were tested. 

These included the use of (a) different Taq polymerase enzymes, (b) PCR reaction pre-mixes 

or separate components, (c) various annealing temperature gradients, (d) various annealing 

touchdown rates, (e) differing concentrations of the cDNA template and (f) PCR extension 

phases of differing lengths. Ultimately, using a standard Taq DNA polymerase (QIAGEN 

Cat# 201205) in PCR reactions prepared using separate buffer and dNTP components, 

resulted in more successful product formation. Also, using an annealing touchdown ramp of 

2.5°C/second increased the specificity of primer pairs. 

 

A number of selected PCR reactions, which generated product bands of the expected size, 

were repeated to ensure reproducibility, before the DNA products were transferred to nylon 

membranes via Southern blotting. It was apparent that whilst product bands were formed 

which approximated the expected size there were many other non-specific products. 

Although reaction conditions were modified in attempts to eliminate this non-specific cDNA 

amplification, no particular set of conditions could eliminate the problem. By performing 

blotting and DIG-labelled probing of the membranes, it was predicted that any PPO DNA 

amplified during the PCRs could be identified amongst these multiple product bands. The gel 

images shown in Figure 22 - Figure 29, show those selected PCR reactions which potentially 

contained a fragment of DNA with the sequence of a PPO. Following Southern blotting of 

these gels, each membrane was hybridised with the DIG-labelled PPO1 probe, washed, 
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incubated with the Anti-DIG AP alkaline phosphatase antibody and subjected to NBT/BCIP 

colourimetric detection protocols, generating the membrane probe-binding patterns discussed 

in section 4.3.2. 
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Figure 22: PCR reaction products selected for Southern blotting and subsequent membrane probing. All 
reactions used the Spodoptera littoralis L5p cDNA library as the template DNA. The reaction products 
in each numbered lane are the result of the following primer pair combinations (reaction annealing 
temperature and expected product size are shown in brackets): Lane 2 – CuA4-F and Cterm-R (45°C, 
1341 bp); Lane 4 – CuA4-F and Cterm-R (49.4°C, 1341 bp). PCR marker sizes in Lane M are indicated 
to the left. Each PCR reaction used a 2.5°C/sec annealing touchdown ramp to increase primer annealing 
specificity. Southern blotting of this gel and subsequent membrane manipulation resulted in the 
membrane found in Panel A, Figure 32. 
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Figure 23: PCR reaction products selected for Southern blotting and subsequent membrane probing. All 
reactions used the Spodoptera littoralis L5p cDNA library as the template DNA. The reaction products 
in each numbered lane are the result of the following primer pair combinations (reaction annealing 
temperature and expected product size are shown in brackets): Lane 1 – CuA4-F and Cterm-R (55°C, 
1341 bp); Lane 2 – GELF-F and Cys2-R (55°C, 1044 bp); Lane 3 – GELF-F and Cys2-R (59.4°C, 1044 
bp) Lane 4 - CuA-F and Cys-R (40°C, 1155 bp); Lane 5 – CuA-F and MIELD-R (40°C, 987 bp); Lane 6 
– 1 µl of a 1:10 dilution of the M. sexta clone plasmid; Lane 7 – 5µl of a 1:10 dilution of the M. sexta 
clone plasmid. PCR marker sizes in Lane M are indicated to the left. Each PCR reaction used a 2.5°C/sec 
annealing touchdown ramp to increase primer annealing specificity. Southern blotting of this gel and 
subsequent membrane manipulation resulted in the membrane found in Panel B, Figure 32. 
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Figure 24: PCR reaction products selected for Southern blotting and subsequent membrane probing. All 
reactions used the Spodoptera littoralis L5p cDNA library as the template DNA. The reaction products 
in each numbered lane are the result of the following primer pair combinations (reaction annealing 
temperature and expected product size are shown in brackets): Lane 1 – CuA-F and Cys-R (40°C, 1155 
bp); Lane 2 – CuA-F and Cys-R (44.4°C, 1155 bp); Lane 3 – CuA-F and Cys-R (50°C, 1155 bp); Lane 4 
– CuA-F and MIELD-R (40°C, 987 bp); Lane 5 – CuA-F and MIELD-R (44.4°C, 987 bp); Lane 6 – 
CuA-F and MIELD-R (50°C, 987 bp). PCR marker sizes in Lane M are indicated to the left. Each PCR 
reaction used a 2.5°C/sec annealing touchdown ramp to increase primer annealing specificity. Southern 
blotting of this gel and subsequent membrane manipulation resulted in the membrane found in Panel A, 
Figure 33. 
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Figure 25: PCR reaction products selected for Southern blotting and subsequent membrane probing. All 
reactions used the Spodoptera littoralis L5p cDNA library as the template DNA. The reaction products 
in each numbered lane are the result of the following primer pair combinations (reaction annealing 
temperature and expected product size are shown in brackets): Lane 1 – CuA2-F and CuB2-R (40°C, 606 
bp); Lane 2 – CuA2 and CuB2-R (44.4°C, 606 bp); Lane 3 – CuA2-F and CuB2-R (50°C, 606 bp); Lane 
4 – CuA2-F and MIELD-R (40°C, 987 bp); Lane 5 – CuA2-F and CuB2-R (44.4°C, 987 bp) Lane 6 – 
CuA2-F and MIELD-R (50°C, 987 bp). PCR marker sizes in Lane M are indicated to the left. Each PCR 
reaction used a 2.5°C/sec annealing touchdown ramp to increase primer annealing specificity. Southern 
blotting of this gel and subsequent membrane manipulation resulted in the membrane found in Panel B, 
Figure 33. 
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Figure 26: PCR reaction products selected for Southern blotting and subsequent membrane probing. All 
reactions used the Spodoptera littoralis L5p cDNA library as the template DNA. The reaction products 
in each numbered lane are the result of the following primer pair combinations (reaction annealing 
temperature and expected product size are shown in brackets): Lane 1 – GELF-F and Cys-R (55°C, 1044 
bp); Lane 2 – CuA4-F and Cterm-R (49.4°C, 1341 bp) and Lane 3 – contains 1 µl of a 1:10 dilution of 
the M. sexta PPO1 clone plasmid as a control for subsequent hybridisation steps. PCR marker sizes in 
Lane M are indicated to the left. Each PCR reaction used a 2.5°C/sec annealing touchdown ramp to 
increase primer annealing specificity. Southern blotting of this gel and subsequent membrane 
manipulation resulted in the membrane found in Panel C, Figure 33. 
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Figure 27: PCR reaction products selected for Southern blotting and subsequent membrane probing. All 
reactions used the Spodoptera littoralis L5p cDNA library as the template DNA. The reaction products 
in each numbered lane are the result of the following primer pair combinations (reaction annealing 
temperature and expected product size are shown in brackets): Lane 1 – CuA-F and MIELD-R (40°C, 
987 bp); Lane 2 – CuA-F and MIELD-R (44.4°C, 987 bp); Lane 3 – CuA2-F and CuB2-R (40°C, 606 
bp); Lane 4 – CuA2-F and CuB2-R (50°C, 606 bp); Lane 5 – CuA2-F and MIELD-R (40°C, 987 bp); 
Lane 6 – CuA2-F and MIELD-R (50°C, 987 bp); and Lane 7 – contains 1 µl of a 1:10 dilution of the M. 
sexta PPO1 clone plasmid as a control for subsequent hybridisation steps. PCR marker sizes in Lane M 
are indicated to the left. Each PCR reaction used a 2.5°C/sec annealing touchdown ramp to increase 
primer annealing specificity. Southern blotting of this gel and subsequent membrane manipulation 
resulted in the membrane found in Panel A, Figure 34. 
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Figure 28: PCR reaction products selected for Southern blotting and subsequent membrane probing. All 
reactions used the Spodoptera littoralis L5p cDNA library as the template DNA. The reaction products 
in each numbered lane are the result of the following primer pair combinations (reaction annealing 
temperature and expected product size are shown in brackets): Lane 1 – GELF-F and Cys-R (55°C, 1044 
bp); Lane 2 – CuA4-F and Cterm-R (49.4°C, 1341 bp); Lane 3 – CuA4-F and Cterm-R (45°C, 1341 bp); 
Lane 4 – GELF-F and Cys2-R (55°C, 1044 bp); Lane 5 – GELF-F and Cys2-R (60.9°C, 1044 bp); Lane 
6 – CuA-F and Cys-R (40°C, 1155 bp); and Lane 7 – CuA-F and Cys-R (50°C, 1155 bp). PCR marker 
sizes in Lane M are indicated to the left. Each PCR reaction used a 2.5°C/sec annealing touchdown ramp 
to increase primer annealing specificity. Southern blotting of this gel and subsequent membrane 
manipulation resulted in the membrane found in Panel B, Figure 34. 
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Figure 29: PCR reaction products selected for Southern blotting and subsequent membrane probing. All 
reactions used the Spodoptera littoralis L5p cDNA library as the template DNA. The reaction products 
in each numbered lane are the result of the following primer pair combinations (reaction annealing 
temperature and expected product size are shown in brackets): Lane 1 – MsextaPPO1-F and 
MsextaPPO1-R (35°C, 1158 bp); Lane 2 – MsextaPPO1-F and MsextaPPO1-R (40.6°C, 1158 bp); Lane 
3 – MsextaPPO2-F and MsextaPPO2-R (35°C, 1179 bp); Lane 4 - MsextaPPO2-F and MsextaPPO2-R 
(45°C, 1179 bp). PCR marker sizes in Lane M are indicated to the left. Each PCR reaction used a 
1°C/sec annealing touchdown ramp to increase primer annealing specificity. Southern blotting of this gel 
and subsequent membrane manipulation resulted in the membrane found in Figure 35. 
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4.3.2 DIG-labelled PPO1 probe hybridisation to membrane bound PCR product 

DNA could not conclusively identify any prophenoloxidase DNA. 

Whilst a single, PCR amplified DNA band on an agarose gel may appear to have the 

approximate base pair size predicted from the primer combination used, one cannot assume it 

represents the desired DNA fragment. Furthermore, as was the outcome of section 4.3.1, 

PCRs may generate multiple products of varying size as a result of non-specific primer 

annealing and strand amplification. Southern blotting of DNA gels and membrane 

hybridisation using a labelled probe, heterologous to the gene of interest, enables more 

confident identification of DNA fragments amplified during PCR which represent the target 

DNA. Two heterologous DIG-labelled PPO probes were successfully generated, from a clone 

of either M. sexta PPO1 or PPO2, during PCRs in which some TTP was replaced with DIG-

11-UTPs. Successfully labelled probes were identified on the basis of their apparent slower 

electrophoretic mobility compared to the corresponding non-labelled probe reactions (Figure 

30). 

 

The DIG-labelled PPO1 probe was initially used in hybridisation of a dot blot, spotted with 

serial dilutions of the M. sexta PPO1 clone plasmid. This procedure allowed determination of 

the probes sensitivity and also demonstrated whether the colorimetric system was effective 

enough for bound probe detection. The resulting membrane (Figure 31) indicated that the 

DIG-PPO1 probe was capable of detecting PPO DNA at concentrations as low as 2 pg and 

was therefore suitable for use in probing for PPO DNA. Similarly, the NBT/BCIP  
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Figure 30: DIG-labelled heterologous prophenoloxidase probe synthesis. The successful incorporation of 
DIG-11-UTP into amplified M. sexta PPO1 and PPO2 clones during PCR is determined by 
electrophoresis. The resulting DIG-labelled PPO1 and PPO2 probes (Lanes 1 and 3 respectively) show 
an apparent increase in their base pair size compared to the corresponding non-labelling reactions (Lanes 
2 and 4 respectively). 

 

 

 

Figure 31: DIG-labelled PPO-1 probe hybridised dot blot spotted with a series of dilutions of the M. 
sexta PPO1 clone plasmid. This method provides a control to test the sensitivity of the DIG-labelled 
PPO1 probe, and also to determine whether the NBT/BCIP colourimetric detection method is suitable. 2 
µl of each of the dilutions of the M. sexta PPO1 clone plasmid was spotted onto the membrane as 
detailed. 
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colourimetric system was suitable for the detection of membrane bound probe, with no 

evidence of background staining or non-staining at low probe binding levels. 

 

The PCR product-bound membranes, generated by Southern blotting of the gels shown in 

Figure 22 to Figure 29, were subjected to hybridisation and colourimetric detection protocols 

like those used in production of the dot blot above, producing the membranes shown in 

Figure 32 to Figure 35. The precise hybridisation conditions are detailed within each figure 

caption. Upon first glance it was immediately evident that probe binding to membrane-bound 

DNA was highly non-specific. Whilst, as expected, the DIG-PPO1 probe bound strongly to 

bands in the lanes containing its own parent DNA (the M. sexta PPO1 clone), DNA marker 

and multiple PCR product band binding also occurred, even under high stringency 

conditions. Ultimately, the non-specificity of the DIG-PPO1 probe binding presented the 

problem that any DNA bands which may have contained PPO DNA could not be identified 

conclusively. 
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B 

Figure 32: DIG-labelled PPO1 probe hybridized membranes. Membranes were subjected to 60˚C 
hybridisation and low and moderate stringency washes prior to Anti-DIG-AP antibody incubation and 
BCIP/NBT colorimetric detection protocols. Membranes A and B contain bound DNA transferred by 
Southern blotting from the gels shown in Figure 22 and Figure 23 respectively. 
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A B C 

Figure 33: DIG-labelled PPO1 probe hybridized membranes. Membranes were subjected to a 65˚C 
hybridisation step and low and moderate stringency washes prior to Anti-DIG-AP antibody incubation 
and BCIP/NBT colorimetric detection protocols. Membranes A, B and C contain bound DNA transferred 
by Southern blotting from the gels shown in Figure 24, Figure 25 and Figure 26 respectively. 
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A 

 
B 

Figure 34: DIG-labelled PPO1 probe hybridized membranes. Membranes were subjected to a 65˚C 
hybridisation step and low and high stringency washes prior to Anti-DIG-AP antibody incubation and 
BCIP/NBT colorimetric detection protocols. Membranes A and B contain bound DNA transferred by 
Southern blotting from the gels shown in Figure 27 and Figure 28 respectively. 
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Figure 35: DIG-labelled PPO1 probe hybridized membrane. Membranes were subjected to a 65˚C 
hybridisation step and low and high stringency washes prior to Anti-DIG-AP antibody incubation and 
BCIP/NBT colorimetric detection protocols. Membrane contains bound DNA transferred by Southern 
blotting from the gel shown in Figure 29. 
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4.3.3 cDNA library screening and genomic DNA digests, initially suggest 

Spodoptera littoralis does not contain a prophenoloxidase gene. 

Southern blot analysis of attempts to amplify the S. littoralis PPO gene, using specifically 

designed degenerate primers, failed to reveal whether any PPO cDNA had been amplified 

from the S. littoralis L5p cDNA library. This was despite control experiments demonstrating 

that particular combinations of degenerate primers successfully amplified a PPO DNA 

fragment from M. sexta. 

 

To further test whether or not the cDNA library contained any PPO cDNA, a library screen 

was performed as described in methods section 4.2.3. Assuming a fully intact cDNA library, 

it was hypothesised that DIG-labelled probe hybridisation of the resulting plaque lift 

membranes, would result in membranes with small regions of staining representing those 

plaques on the original plates which contained PPO cDNA. As can be seen in Figure 36, the 

cDNA library screening process produced no evidence of staining suggesting no PPO cDNA 

was present. 

 

In a bid to rule out the possibility that S. littoralis has no PPO gene in the first instance, a 

restriction digest of S. littoralis hemocyte genomic DNA was performed. As discussed in 

Chapter 2, hemocytes are believed to be the source of PPO in insects. Prior to conducting the 

digest reactions, the integrity of the isolated genomic DNA was tested by electrophoresis of a 

small aliquot of each sample (1A, 2A and 2B) in an agarose gel. This gel (Figure 37)  
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A  B  

Figure 36: Plaque lift membranes from a screen of the S. littoralis L5p cDNA library. Plaque lifts were 
conducted on each of six plates in duplicate. All were hybridised with the DIG-labelled PPO1 probe at 
65°C and washed under low and moderate stringency conditions. The duplicate membranes above are 
representative of all the membrane pairs resulting from screening of the cDNA library. They show no 
small dots of staining representing DIG-labelled PPO1 probe binding, suggesting perhaps that the cDNA 
library was of poor quality and therefore did not contain any representative PPO cDNA or that S. 
littoralis does not contain a PPO gene. 

 

Figure 37: Check of S. littoralis genomic DNA integrity. Genomic DNA was isolated from S. littoralis 
hemocytes by Nairn (2003, unpublished work). Prior to its use in restriction digest reactions, 4µl of each 
DNA sample (1A, 2A and 2B) was electrophoresed on a 0.8% agarose 1X TBE 0.2 µg/ml EtBr gel to 
check its integrity. Lane ‘M’ contains the 1kb DNA ladder markers (New England BioLabs Cat# 
N32325). The resulting gel shows that each sample had remained intact during storage, but DNA sample 
1A has a higher yield. 
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confirmed that the genomic DNA in all three samples was intact; although sample 1A 

appeared to have a higher yield, so was that used for subsequent restriction digests. 

 

The restriction enzymes EcoR1 and HindIII were used separately and in combination during 

both first and second attempt genomic DNA digest reactions, the products of which were 

separated by electrophoresis and transferred to the surface of a nylon membrane by Southern 

blotting. DIG-labelled probe hybridisation, washing, antibody incubation and bound probe 

detection produced the membranes shown in Figure 38. During both the first and second 

attempts at probing the digest products, the DIG-labelled PPO1 probe bound only to those 

regions of the membranes which contained the M. sexta clone PPO1 plasmid DNA – that is, 

the probes parent DNA which was used as a control for the hybridisation and detection steps. 

No genomic DNA digest fragments showed any evidence of probe binding, which suggests 

that S. littoralis hemocyte genomic DNA contains no stretch of sequence with identity to the 

M. sexta PPO probe.  
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A  B  

Figure 38: DIG-labelled PPO1 probe incubated nylon membranes generated by Southern blotting of 
agarose gels containing the separated products of a series of S. littoralis genomic DNA restriction digest 
reactions. Membranes A and B were generated by repeats of the methods. Membranes were hybridised at 
65°C and washed using low and high stringency wash conditions. The lane contents are as follows: 
EcoR1 digest products (Lane 1), HindIII digest products (Lane 2), EcoR1/HindIII digest products (Lane 
3), non-digested S. littoralis hemocyte genomic DNA (Lane 4),  and the M. sexta PPO1 clone plasmid 
from which the DIG-labelled probe used was synthesised (Lane 7). DIG-PPO1 probe binding could only 
be detected in that lane (Lane 7) which contained the M. sexta clone PPO1 plasmid DNA – the template 
DNA of the probe. Binding of the DIG-PPO1 probe to the marker DNA is visible in Lane M of 
membrane A (circled).  
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Analogous to the non-specificity of the probe highlighted in section 4.3.2, there is evidence 

of probe binding to the DNA marker bands. Once again this suggests non-specificity in the 

binding of the DIG-labelled PPO1 probe to DNA. Whilst a dot blot had been conducted 

(Methods 4.2.2.2 and Results 4.3.2) which demonstrated that the DIG-PPO1 probe was 

sensitive enough for its designed use, continued speculation over its specificity deemed it 

necessary to perform much more rigorous control experiments in an attempt to establish 

whether either of the probes synthesised in section 4.2.2.1 (DIG-PPO1 or DIG-PPO2) had 

suitable specificity in the recognition and binding of heterologous PPO sequences. The 

results of these controls form the basis of the following section. 

4.3.4 Neither DIG-labelled probe is suitably sensitive or specific enough for its 

intended use. 

An alignment of the amino acid sequence of either M. sexta PPO1 or M. sexta PPO2 with the 

sequences of eight different Lepidoptera PPOs, showed that M. sexta PPO1 shared a slightly 

higher percentage identity to these other PPO sequences than M. sexta PPO2. It was 

hypothesised that the probe generated from the clone of M. sexta PPO1, would therefore have 

a sequence with a higher percentage identity to a PPO from S. littoralis. Numerous rounds of 

M. sexta PPO1 probe hybridisation and detection were performed to identify any PPO DNA 

present amongst: (i) the products of PCR reactions using an S. littoralis cDNA library and 

different combinations of specifically designed degenerate primers for PPO amplification; 

(ii) S. littoralis cDNA library plaque lifts and; (iii) the products of S. littoralis genomic DNA 

digests. Consequently, no S. littoralis PPO DNA was identified, as noted in sections 4.3.2 
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and 4.3.3, and suspicions were raised over the probes’ ability to detect and specifically bind 

to PPO sequences heterologous to its own sequence.  

 

Results are presented (Figure 39 and Figure 40) of a control experiment, performed to 

elucidate which of the two DIG-labelled probes was the more specific, and therefore which 

was the most suited to its designed purpose. Duplicate membranes were probed with one or 

the other of the DIG-labelled probes (DIG-PPO1 or DIG-PPO2), and compared on the basis 

of their bound probes’ sensitivity and specificity towards PPO DNA. The membranes 

indicated that the DIG-PPO2 probe was more sensitive for detecting PPO DNA heterologous 

to its own sequence, and not the DIG-PPO1 probe as initially hypothesised. This was 

surmised on the basis that the DIG-PPO2 probe shows the ability to recognise both M. sexta 

PPO1 and PPO2 DNA at suitably high levels at both 65ºC and 68ºC hybridisation 

temperatures, whilst the DIG-PPO1 probe shows strong recognition of M. sexta PPO1 DNA 

but only very weak recognition of M. sexta PPO2 DNA. More importantly however both the 

DIG-PPO1 and DIG-PPO2 probes demonstrated high levels of non-specificity in their 

binding to PPO DNA. In both cases, the probes bound to the DNA markers and non-specific 

PCR products, as well as the probes parent DNA. Ultimately, these results revealed that the 

DIG-PPO2 probe was the more sensitive of the two probes for the detection of heterologous 

PPO DNA sequences, however, the demonstration of persistent non-specificity by both 

probes, under high stringency conditions, made it clear that neither was suitable for its 

intended use. 



 

 110

 

 
A – DIG-PPO1 probed 

 

 
B – DIG-PPO2 probed 

 

 
C – DIG-PPO1 probed 

 
D – DIG-PPO2 probed 

Figure 39: Probing of duplicate membranes with the DIG-PPO1 or DIG-PPO2 DNA probe to determine 
which was the more sensitive and specific in the recognition and binding of a PPO sequence 
heterologous to its own. Replica membranes A and B contain PCR markers (Lane 1), products of a PCR 
reaction amplifying the M. sexta PPO1 clone using CuA3-F and Cys-R primers (Lane 3) and products of 
a PCR reaction amplifying the M. sexta PPO2 clone using CuA3-F and Cys-R primers (Lane 5). In 
replica membranes C and D the lane contents are 1 – PCR markers, 2 – products of a PCR reaction 
amplifying the M. sexta PPO1 clone using M. sexta PPO1-specific forward and reverse primers, 3 – 
products of a PCR reaction amplifying the M. sexta PPO2 clone using M. sexta PPO2-specific forward 
and reverse primers, 4 – a 1:10 dilution of the M. sexta PPO1 clone, and 5 – a 1:10 dilution of the M. 
sexta PPO2 clone. All four membranes were hybridised at 65ºC and washed under low and moderate 
stringency washes. Ultimately the DIG-PPO2 probe was the most sensitive of the two probes however 
neither probe demonstrated any specificity solely for PPO DNA, evidenced by their binding to marker 
and non-specific PCR product DNA bands 
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Figure 40: Probing of duplicate membranes using the DIG-PPO2 probe at 68ºC hybridisation and using 
low and high stringency washes. Probing and bound probe detection methods were also identical. Lane 
contents of membranes A and B above are as described in Figure 39 for membranes A and B 
respectively. The conditions used here included a higher hybridisation temperature and higher wash 
stringency than was used in probing of the membranes in Figure 39, in an attempt to eliminate binding of 
the DIG-PPO2 probe to marker DNA and other non-PPO DNA PCR products. Unfortunately these 
efforts failed to reduce the non-specificity of the DIG-PPO2 probe, and as is evident, probe binding to 
markers and other DNA bands remains an issue even under these higher stringency conditions. 
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4.4 Discussion 

The results presented within the current chapter were the outcome of experiments designed 

for the purpose of isolating, amplifying and characterising a PPO gene from the Lepidoptera 

insect S. littoralis. A range of molecular methods were employed, each generating DNA-

bound membranes which were subsequently hybridised with a heterologous DIG-labelled 

PPO DNA probe. Despite numerous efforts, no PPO gene fragment could be conclusively 

identified amongst multiple PCR products or during library screening and genomic DNA 

digests. The following sections discuss the results and offer possible explanations, considered 

during the progress of the research, as to why no PPO gene could be identified. 

4.4.1 PPO gene transcription may be inhibited in Braconid wasp parasitised 

Lepidoptera larvae. 

The larval cDNA library utilised during PCR and library screening procedures had been 

generated from whole S. littoralis larvae, parasitized by the Braconid wasp, C. inanitus. It 

was initially proposed that this cDNA library would be enriched with PPO cDNA, and 

therefore suited to its intended use. Following analysis of the results from PCR product 

probing and cDNA library screens (presented in sections 4.3.2 and 4.3.3), it seemed, 

however, that the S. littoralis cDNA library contained no identifiable PPO cDNA. 

 

Consideration was given to the possibility that parasitisation of S. littoralis larvae by C. 

inanitus, may cause temporary cessation of transcription of the insects PPO gene(s). Reports 

have provided evidence for the negative effects of parasitisation on immune response 



 

 113

mechanisms (Lavine and Beckage, 1995; Amaya et al., 2005) and although there is evidence 

that the effects of parasitisation on other immune response and development-associated 

proteins are at some post-transcriptional step (Shelby et al., 1998), it was deemed feasible 

that host biological pathways could be controlled at various gene expression steps, to 

optimise conditions for the growth and development of the parasitoid wasp egg. 

 

A recent publication (Schlenke et al., 2007) has provided new evidence to suggest that 

control of PO activity in parasitoid wasp infected Drosophila melanogaster larvae can vary 

depending on the parasitoid species involved. Furthermore, Schlenke et al, 2007 report that 

the normal upregulation of PPO gene expression resulting during immune response can be 

blocked by an as yet unidentified pathway, upon parasitisation of D. melanogaster by 

Leptopilina boulardi. This implies a transcriptional level of control over the action of PO in 

this particular host-parasitoid system. 

 

At this time there is no conclusive evidence to suggest that PPO gene transcription in 

Lepidoptera is affected by parasitisation. However amongst the different host-parasitoid 

systems thus far studied, the hosts immune response and physiology have been shown to be 

impaired to various extents and at different transcriptional, translational and protein levels. 

The molecular mechanisms underlying the effect of PDVs, ovarian and venom proteins on 

Lepidoptera host immune systems and physiology, nonetheless remain largely undetermined 

(Zhang et al., 2004). Subsequently, before any confident conclusion can be made as to 

whether or not the parasitized larvae cDNA library used here would have contained any PPO 

cDNA, a greater understanding of these mechanisms is necessary. 
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4.4.2 The cDNA library may have been synthesised from a low PPO transcript 

copy number or degraded RNA source. 

Research using Spodoptera litura has demonstrated that PPO mRNA transcripts vary in 

abundance in native non-immune challenged hemocytes during the course of larval 

development (Rajagopal et al., 2005). Larvae used in those experiments were only large 

enough to bleed during the 4th, 5th and 6th instars, but it was noted that PPO transcript levels 

increased at the start of the 4th instar, peaked during the 5th, and fell during the 6th. Therefore, 

it may be proposed that hemocyte PPO mRNA is present at its maximal concentration during 

the active feeding stage of all Spodoptera spp. larvae. The cDNA library utilised (L5p) was 

from 5th instar S. littoralis larvae, so provided parasitisation does not affect PPO gene 

transcription, PPO mRNA was hypothesised to have been abundantly present for isolation 

prior to the synthesis of the cDNA library.  

 

RNA isolation and cDNA synthesis are, however, very difficult tasks to achieve successfully 

unless the laboratory environment is free from RNase contamination. RNase enzymes act to 

degrade RNA molecules, and therefore any cDNA synthesised from a degraded mRNA 

source will not be a complete representation of all the transcripts present in the tissue or 

organism at the time of RNA isolation. Consequently, despite confidence that the cDNA 

library was viable (as demonstrated in section 4.3.1 during amplification of actin) and had 

been synthesised from a PPO mRNA rich source, it cannot be dismissed that the isolated 

RNA was partially degraded during any of the preparative steps of cDNA library synthesis, 

leading to a reduction in, or complete loss of, intact PPO mRNA. 
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4.4.3 No PPO DNA could be identified due to the low sensitivity and high non-

specificity of the DIG-labelled probe. 

The next phase of experiments addressed the persistent problem of DIG-labelled PPO1 probe 

non-specificity. The DIG-PPO1 probe was chosen for use in all membrane hybridisation 

steps, as M. sexta PPO1 demonstrated slightly higher identity than M. sexta PPO2 to a 

number of other Lepidoptera PPO sequences. It was thought this would increase the 

likelihood of specifically identifying an S. littoralis DNA fragment. However, following 

numerous attempts to hybridise a probe to a PCR product or DNA digest band, it became 

apparent that this was not the case. It was evident that the DIG-PPO1 probe lacked the 

specificity required of a probe used for identification of a particular DNA. A control 

experiment was conducted to evaluate the nature of each DIG-labelled probes sensitivity and 

specificity towards heterologous PPO DNA. These control membranes (Figure 39, section 

4.3.4) demonstrated that the DIG labelled PPO2 probe was in fact the more sensitive of the 

two probes, binding substantially to both a heterologous PPO DNA (M. sexta PPO1 clone) as 

well as its own parent DNA (M. sexta PPO2 clone). Nonetheless, neither of the probes 

possessed any kind of specificity solely towards PPO DNA, binding also to marker and non-

specific PCR product DNA, even under high stringency hybridisation and membrane wash 

conditions. It therefore cannot be dismissed that PPO DNA fragments were present amongst 

the cDNA library screening plaques, PCR or restriction digest products. Based on the 

evidence provided from these control experiments, the poor specificity displayed by the DIG-

PPO1 probe was deemed the most feasible explanation for the unsuccessful attempts to 

identify an S. littoralis PPO DNA. 
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4.4.4 Summary of conclusions. 

Despite efforts to identify a PPO gene fragment from the parasitized S. littoralis cDNA 

library, none were identified by either cDNA library screening or Southern blotting of gel 

separated PCR or restriction digest products. A number of possible explanations have been 

offered including the possibility that parasitisation blocks the normal upregulation of PPO 

gene transcription in S. littoralis, as has been shown to be the case with the Drosophila 

melanogaster-Leptopilina boulardi host-parasitoid system. It is highly unlikely that S. 

littoralis lacks any PPO gene as previous research has demonstrated that the hemolymph of 

this insect species possesses PO activity (Cotter and Wilson, 2002; Lee and Anstee, 1995; 

Cotter et al., 2004). In addition, PPO has previously been purified from S. littoralis and 

identified by peptide mass fingerprinting (Nairn, 2003, unpublished data). However, 

evidence suggests the most likely reason was that neither of the DIG-labelled PPO probes 

used during hybridisation possessed sufficient specificity to identify heterologous PPO DNA. 

On the basis of sequence identity amongst a number of Lepidoptera PPOs, it was proposed 

that S. littoralis PPO would share approximately 30 - 40% identity with M. sexta PPO. 

Manduca sexta PPO1 and PPO2 are approximately 50% identical in amino acid sequence. 

Given that, under high stringency conditions, the DIG-labelled probe generated from one 

could not recognise the other with high specificity, and both still bound to the DNA markers, 

it became clear these probes would be unlikely to recognise and bind heterologous PPO 

sequences from any closely related species. Ultimately, even if the cDNA library screening 

plaque lift, restriction digest or PCR gel membranes had contained PPO DNA bound at their 

surfaces, using the currently discussed DIG-labelled probes would not have enabled 

confident identification of a PPO DNA. 
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Chapter 5 : Steps towards isolating a Prophenoloxidase Gene 

from Spodoptera littoralis hemocytes. 

5.1 Introduction 

Current research suggests that PPO is synthesised solely in insect hemocytes, or more 

specifically, the oenocytes (Müller et al., 1999). Subsequently PPO gene transcripts can be 

found only in this cell type. In Chapter 4, the cDNA library used to screen for a PPO gene 

had been generated from whole larvae preparations, and consideration was given to the 

possibility that PPO mRNA was in low abundance relative to the transcripts of the genes in 

other insect tissues. This may have contributed to the difficulties encountered during attempts 

to isolate a PPO gene. Also discussed in Chapter 4 was the possibility that Brachonid wasp 

parasitized S. littoralis larvae, such as those used for synthesis of the cDNA library, 

experience a reduction in the transcription of a number of immune system and 

physiologically important genes, including PPO. Evidence suggests that the effects of 

parasitisation on the host can occur at multiple points during the steps from gene to DNA to 

protein in order to disrupt host immune function and physiology. These effects also appear to 

vary between host-parasitoid systems. It is therefore possible that C. inanitus parasitized S. 

littoralis may display reduce PPO mRNA levels. This would increase the technical 

difficulties associated with PPO gene isolation from such a source. 

 

Spodoptera sp. exhibit a trait known as density dependent phase polyphenism, where larvae 

reared under conditions of low population density (LD) during development appear pale 
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brown/green in colour with light brown head capsules, and those which develop under high 

population density (HD) have very dark brown cuticles and head capsules (see Figure 41).  

 

 

Figure 41: Spodoptera littoralis larvae display a characteristic known as density dependant phase 
polyphenism. Individuals reared in high density populations have darker cuticles and head capsules due 
to enhanced cuticular melanisation (left), compared to those reared in low density populations, which are 
usually pale brown/green with pale brown head capsules. Scale shown is in centimetres. 

Research has directly correlated these phenotypes to the level of PO activity detectable in the 

hemolymph of representatives of each population density (Cotter et al., 2004). HD larvae are 

proposed to invest more in immune function as they are more likely to encounter infection. 

Enhanced immune function results in higher levels of PO activity and the subsequent 

deposition of melanin leading to the darkening of the insects’ cuticle. LD larvae experience 

the opposite. 

 

The aim of the following research was to generate first strand cDNA from RNA isolated 

from the hemocytes of non-parasitised S. littoralis larvae. This cDNA was intended to act as 

the template DNA for real time PCR experiments designed to amplify a PPO gene. It was 
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hypothesised that using hemocytes from a non-parasitised larval source would eliminate the 

possible difficulties mentioned above. Problems encountered during attempts to isolate intact 

total RNA from S. littoralis hemocytes, and time constraints on the project limited the 

progress of these experiments. 

5.2 Methods 

5.2.1 Spodoptera littoralis larvae culture. 

3 - 4 day old S. littoralis larvae were initially derived from a laboratory colony held by Dr. 

Kenneth Wilson at the University of Lancaster. Individuals were selected at random for 

solitary rearing (representing low density population, solitaria phase) whilst 5 larvae from 

the same family were used to recreate a high density scenario (gregaria phase). Larvae were 

reared in 50 ml culture pots on a semi-artificial wheatgerm-based diet (Reeson et al., 1998). 

Up to 4 days old, larvae were maintained under a 14 hours of light: 10 hours of dark regime 

at a constant temperature of 25˚C. From day 5 onwards, larvae were reared to a suitable size 

for hemolymph collection at 22 ± 2˚C under an approximately 12/12 hour light/dark cycle. 

5.2.2 Hemolymph collection and isolation of hemocytes. 

Larvae were sedated by chilling at 4˚C for approximately 1 hour. 800 µl of RNase-free sterile 

de-coagulation buffer (10 mM NaCac, 20 mM CaCl2, pH 6.5 - 0.1 % DEPC treated) was 

pipetted into RNase-free sterile 1.5 ml Eppendorf tubes, then placed on ice. Wearing gloves 

and handling carefully between the thumb and forefinger, a sterile syringe needle was used to 

puncture the sedated larvas’ pro-leg. Any hemolymph which bled from the wound was 

collected into one of the Eppendorf tubes containing cold de-coagulation buffer. Bled larvae 
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were returned to their respective diet pots and gloves were rinsed with ethanol prior to 

handling the next larvae. The hemolymph from a number of larvae was pooled (solitary pale, 

solitary dark and gregarious larval hemolymph were pooled separately) so that 200 µl was 

collected into each 800 µl of de-coagulation buffer. The diluted hemolymph was gently 

mixed by inverting the Eppendorf tube and then stored on ice. 

 

Following hemolymph collection from all of the larvae, hemolymph samples were 

centrifuged at 3,500 rpm and 4˚C for 5 minutes. Inspection of a sample of the pellet and 

supernatant under 40X magnification revealed that this method suitably removed hemocytes 

from suspension without damage. All of the supernatant was removed and the remaining 

hemocyte pellet was re-suspended, using gentle fingertip agitation, in 200 µl of de-

coagulation buffer (equal to the volume of hemolymph they originated from).  

 

For storage, the re-suspended hemocytes were pooled into 1 ml batches and centrifuged again 

at 3500 rpm, 4˚C for 5 minutes. Most of the supernatant was aspirated, leaving 

approximately 200 µl above the pellet. The pellet was re-suspended up to 1 ml in RNALater 

(Ambion Cat# 7020) to stabilise the hemocyte RNA prior to its isolation. The hemocyte 

samples were then stored at -70˚C until use. 

5.2.3 Total RNA isolation from hemocytes. 

As the presence of RNase results in unwanted degradation of isolated RNA, all solutions, 

plastic ware, glassware, work surfaces and equipment to be used during RNA isolation were 

treated appropriately to eliminate ribonuclease (RNase) contamination using detergent, 
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ethanol, 0.1% DEPC and/or an autoclave. Guaranteed RNase free plastic-ware and solutions 

were used where possible. 

 

Total RNA was isolated from hemocytes of S. littoralis larvae using Ambions’ RiboPureTM 

Kit (Cat# 1924). A minimum of  5 x 106 hemocytes were required for each RNA isolation 

(considered necessary to yield sufficient RNA), therefore isolated RNALater re-suspended S. 

littoralis hemocytes were pooled on the basis that 1 ml of hemolymph contains 

approximately 4 x 106 hemocytes. Due to the viscous nature of RNALater, the sample was 

centrifuged at 10,000 rpm and 4˚C for 5 minutes to pellet the hemocytes. The protocol 

provided with the RiboPureTM Kit was conducted as outlined from Part B, Step 1b for cells in 

suspension, with the following modifications: (i) the additional centrifugation step in Part B, 

Step 3 was conducted to remove insoluble material from the homogenate, (ii) 200 µl of 

chloroform (without isoamyl alcohol) was used in Part C, Step 1 instead of the preferred 100 

µl of bromochloropropane (BCP), and (iii) the repeat application of 100 µl of Elution Buffer 

suggested in Part D, Step 4 was not conducted to prevent any further dilution of the RNA. 

 

A sample of the eluted RNA was diluted 1:50 with ddH2O (0.1 % DEPC-treated and 

autoclaved) and the A260 recorded. 40 µg/ml of pure ssRNA in water has an A260 = 1, and 

from this the approximate concentration of RNA was calculated. To estimate the purity of the 

isolated RNA, A280 measurements were recorded. The A260:A280 ratio of suitably purified 

isolated RNA should be between 1.8 and 2.1. To determine the integrity of the isolated RNA, 

a volume of the sample containing approximately 2 µg of RNA was mixed with Type-II 6X 

Loading Buffer and loaded onto a native, 1X TBE, 1 % agarose, 0.2 µg/ml EtBr gel. 

Alongside 5 µl of Lambda HindIII Markers (ABGene, Cat# AB-0200), the RNA samples 
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were electrophoresed in 1X TBE at 5 V/cm until the bromophenol blue had migrated 

approximately two thirds through the length of the gel. The gel was visualized under UV 

light and its image captured. Any RNA sample identified as being intact and pure, had its 

remaining volume divided into 10 µl aliquots and stored at -20˚C (short term) or -80ºC (long 

term) until use. 

5.3 Results 

5.3.1 Larvae culture. 

Spodoptera littoralis larvae were gifted at 4 days old, from which time they were reared to a 

suitable size for hemolymph collection (approximately 14 - 15 days old). Isolated larvae 

(phase solitaria) and groups of 5 larvae (phase gregaria) were reared, and an example of the 

development of one of the solitary larvae is shown in Figure 42. Whilst the environmental 

conditions were not optimal, most solitary larvae and some of the gregarious larvae 

developed successfully and, once ready, were bled once each day for 2 days until pupation. 

On average each healthy larva provided between 50 and 200 µl of hemolymph, where 

approximately 1.25 ml was required for each total RNA isolation attempt. 
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 5 days  6 days 

 7 days  10 days 

 12 days  14 days 

Figure 42: A photographic record of the growth phases of solitary Spodoptera littoralis larva over a 14 
day period. By day 14/15 larvae were ready for bleeding (3 – 4 cm length), and depending on health, 
were bled once each day for two days. The scale shown is in centimetres. 
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However, a number of points were noted during the rearing and bleeding of these S. littoralis 

larvae. All solitary larvae developed successfully with no fatalities recorded. Most exhibited 

the pale brown/white cuticular colouration expected, although approximately one third 

displayed evidence of enhanced cuticular melanisation and darkened head capsules. Their 

appearance was therefore more similar to that of gregarious larvae. None of the gregarious 

larvae, however, exhibited pale colouration – all possessed very dark cuticular pigmentation 

and head capsules as expected. Unlike the solitary larvae, in general, most of the gregarious 

larvae exhibited slower rates of development and an overall smaller final instar larval size. 

Within each high density culture pot, a drastic variation in the growth rate between 

gregarious individuals became apparent and was most notable by the final instar/14 days old 

(Figure 43). 

 

Figure 43: Spodoptera littoralis larvae reared under conditions designed to recreate high density 
population, had slower development rates and smaller larval size than those reared in solitary conditions. 
A typical example of a high population density (gregaria phase) culture pot from this experiment is 
shown above, and illustrates the great difference in size between individuals by the age of 14 days. 
Whilst the larva nearest the scale bar is of expected size, that to the centre left is equivalent in size to that 
of a 10 day old larva. 1 in 4 fatalities occurred in gregarious larvae and many of the surviving gregarious 
larvae had melanised hemolymph indicative of active PO. The fatalities were generally among the 
smaller larvae and appeared to be a result of cannibalistic behaviour. The scale shown is in centimetres. 
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The smaller individuals in each high density culture pot appeared to become victims of 

cannibalism; however the cannibals could not be identified. It was estimated, assuming that 

the ‘missing’ larvae had not died from another cause before their bodies were consumed, that 

25 % of the gregarious larvae were lost as a result of cannibalistic behaviour. The surviving 

group reared larvae were bled in a manner similar to the solitary larvae; however, 

approximately 50 % of these survivors had hemolymph which appeared blackened and 

grainy. This suggests that these particular larvae had activated hemolymph PO making their 

hemolymph unsuitable for collection. These larvae tended to have almost completely black 

cuticles and were not as active as those gregarious larvae which possessed ‘normal’ non-PO-

activated pale blue hemolymph. The combination of cannibalistic behaviour, and survivors 

with melanised hemolymph, consequently had a large impact on the total volume of 

hemolymph which could be pooled from the gregarious larvae. It was therefore necessary to 

repeat larval culture. 

5.3.2 Total RNA isolation. 

The first step towards generating first strand cDNA is the isolation of total RNA from the 

selected tissue or cell type, which in this instance was the hemocyte from S. littoralis larvae. 

Achieving the expected yield of total RNA from the isolation process, initially presented a 

problem. Using the protocol accompanying the Ambion RNA isolation kit as a guide, it was 

predicted that approximately 125 µg of total RNA could be yielded from the estimated 

number of hemocytes pooled for total RNA isolation (5 x 106 cells). The calculated quantity 

of RNA in each of the first three RNA isolation attempts was, however, never any greater 

than 74 µg. This problem was overcome in later attempts by using a more rigorous 

mechanical shearing method to disrupt the hemocytes and release the RNA. 
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A persistently encountered problem however, was retaining total RNA integrity during 

isolation. Completely intact mRNA is paramount for the synthesis of first strand cDNA or 

cDNA libraries, as experiments using degraded sources are unlikely to be fruitful. Five 

attempts were made to isolate total RNA from S. littoralis hemocytes (photographs of 

attempts 2 - 5 can be found in Section 9.3 - Appendix C); however, none resulted in 

completely intact total RNA. Figure 44 Panel A shows a native agarose gel electrophoresed 

sample from the first total RNA isolation attempt. Whilst the 28S and 18S ribosomal RNA 

bands (rRNAs) are identifiable, smearing indicates degradation of the RNA sample. rRNA 

from completely intact total RNA appears as two sharp, clear bands (example in Figure 44 

Panel B), which was clearly not the case with this, or any of the other four, isolated samples. 

None of the isolated hemocyte total RNA samples were therefore suitable for use in the 

synthesis of first strand cDNA. 
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Panel A 

 

Panel B 

Figure 44: Total RNA integrity check. The sample in Panel A was the most successful of five RNA isolation 
attempts. The sample was separated in a native 1% agarose gel. In panel B, examples of fully degraded and 
intact total RNA samples are shown in a 1.5 % denaturing agarose gel (Taken from (Ambion, Accessed: 
2006.)). These illustrate that the 28S and 18S ribosomal RNA (rRNA) bands in panel A are not as sharp and 
clear as is desirable, although they can still be identified. The sample is therefore too degraded to provide a 
reliable source of mRNAs for synthesis of a complete S. littoralis hemocyte first strand cDNA mix. 
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5.4 Discussion 

Research conducted in this chapter was designed with the aim of isolating a PPO gene from 

S. littoralis hemocytes, using molecular methods including RNA isolation, first strand cDNA 

synthesis, and reverse transcription and real time PCR. The second, longer term aim was to 

identify, by 2D-gel electrophoresis, any variations between proteins present in the 

hemolymph of low and high density reared S. littoralis larvae. 

 

In Chapter 4, the S. littoralis cDNA library used throughout the experiments had been 

generated from preparations of whole larvae, earlier parasitized by the Braconid parasitoid 

wasp Chelonus inanitus. Subsequent discussions suggested that such a source may have been 

low in PPO cDNA and so not ideal for its intended purpose. The approach described here 

involved rearing S. littoralis larvae, which had not been exposed to parasitoids, viruses or 

microorganisms, and bleeding them for isolation of their hemocytes. By removing the 

‘infection’ variable from the experiment, and isolating the cell type believed to be the site of 

synthesis of all PPOs, this approach was considered to present greater opportunity for the 

isolation of a PPO gene. 

 

However, problems encountered during the rearing of larvae and total RNA isolation from 

their hemocytes, along with time limitations on the project, resulted in neither of the above 

aims being achieved. These points are discussed in the following sections. 
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5.4.1 Solitary larvae display variation in their level of cuticular melanisation. 

Solitary larvae presented no significant problems during their growth and development, and 

all reached a suitable size for bleeding at around 14 days old. Whilst some solitary larvae 

bled smaller volumes of hemolymph than others, all of their hemolymph was opaque pale 

blue in colour indicating no PO activation and thus that the larvae were not experiencing any 

infection.  

 

It was however noted that approximately one third of the solitary larvae developed melanised 

cuticles and blackened head capsules, akin to the phenotype of gregarious larvae. As 

described in section 5.1, S. littoralis exhibits a trait known as density dependent phase 

polyphenism. Under constant optimal environmental conditions, individuals have either light 

or dark cuticular pigmentation depending on whether they are reared in low or high 

population density respectively. It was therefore considered unusual that some of the solitary 

larvae should have the dark pigmentation expected of gregarious larvae. There is evidence, 

however, that rearing temperature can have a notable effect on the level of cuticular 

melanisation amongst larvae of another Noctuidae moth, Spodoptera exempta (Gunn, 1998). 

In these experiments, larvae were subjected to either a lower (20°C) or higher (35°C) 

temperature than their optimal rearing temperature (27 ± 1°C) from the second instar 

onwards. Amongst their observations, Gunn (1998) recorded that solitary larvae reared at the 

lower temperature had enhanced cuticular melanisation and black head capsules, resulting in 

their resemblance to gregarious larvae. Gregarious S. exempta larvae were found to show no 

real change in colour at this lower rearing temperature. This may perhaps explain the 

observation made during the experiment conducted here, as both the solitary and group 
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reared larvae experienced rearing temperatures, from day 4 onwards, between 20 - 24°C, 

which is lower than the optimal 25°C at which they had been previously reared. 

 

Also noted from this same published research using S. exempta (Gunn, 1998) was the 

tendency for larvae to adopt and retain the colouration typical of gregarious larvae, rather 

than that of solitary larvae, even following alterations to their rearing conditions. The S. 

littoralis larvae used in the experiments conducted here were exposed to high density rearing 

conditions until they were 4 days old. It may be suggested, therefore, that a number of the 

larvae which were randomly selected for solitary rearing had already begun to adopt the 

gregarious cuticular colouration by the time they were transferred into solitary conditions. 

These individuals subsequently retained the gregarious characteristics during their solitary 

development. 

5.4.2 Slowed development, cannibalism and hemolymph melanisation in 

gregarious Spodoptera littoralis larvae. 

Whilst the solitary larvae displayed two obvious phenotypes, all of the gregarious larvae 

possessed very dark cuticular pigmentation and head capsules, as expected. Unlike the 

solitary larvae, the gregarious larvae in general exhibited slower rates of development and an 

overall smaller final instar larval size. Furthermore, variation in the growth rate between 

gregarious individuals from the same culture pot became apparent and was most notable by 

the final instar/14 days old (Figure 43). The smaller individuals in each high density culture 

pot seemed to fall victim to cannibalistic behaviour by the larger larvae. It was estimated, 

assuming that the cannibalized larvae did not die from another cause before their bodies were 

consumed, that 25% of the gregarious larvae were lost as a result of this behaviour. Further 
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reading has revealed that cannibalism is a frequent, well documented behaviour in larval 

Lepidoptera (Chapman et al., 1999b; Chapman et al., 2000). It may be speculated that 

cannibalism confers direct and/or indirect nutritional benefits by increasing survival and 

development rates whilst reducing predation and competition for food sources. There can 

also be assumed to be disadvantages for the cannibal such as the risk of injury or death from 

the defensive responses of victims, or the transmission of pathogens during consumption of 

the victim. Indeed the latter of these potential ‘costs’ has already been demonstrated as a 

possibility with respect to transmission of nuclear polyhedrosis virus (Chapman et al., 

1999a). However, the exact benefits and costs of cannibalism remain to be elucidated 

(Chapman et al., 1999b). 

 

The surviving group reared larvae were bled as the solitary larvae; however, approximately 

50% of these survivors had hemolymph with a grainy black appearance. This suggested that 

these particular larvae had activated hemolymph PO, indicative of infection, rendering their 

hemolymph unsuitable for collection. These larvae generally had almost completely black 

cuticles and were not as active as those gregarious larvae which possessed non-PO activated 

pale blue hemolymph. It is possible that pathogens may be transmitted from victim to 

cannibal. Whilst no steps were taken to determine whether the remaining larvae with 

melanised blood were carrying pathogens, it may be the case that the smaller, less well 

developed larvae, which became victims of cannibalistic behaviour, were weakened by 

infection. Their subsequent consumption by any of the remaining larger larvae may have led 

to spread of the infection to these cannibals. 
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5.4.3 RNA degradation 

Hemolymph pooled from S. littoralis larvae, was used to isolate hemocytes from which 

attempts were made to isolate total RNA. The aim was to use the mRNA from this total RNA 

for the synthesis of first strand cDNA, and perform real time PCR using specifically designed 

degenerate primers for the amplification of a PPO cDNA. Unfortunately, the process of RNA 

isolation was unsuccessful.  

 

Synthesis of first strand cDNA requires RNA of extremely high integrity, which in turn 

requires that the sample should never become contaminated with RNases. RNases are 

ubiquitously present in the environment, and it is therefore essential that all laboratory work 

surfaces, equipment and materials are treated to remove such RNA degrading enzymes. To 

reduce RNA degradation prior to isolation, hemocytes were stored in RNALater at -70°C. 

During the RNA isolation steps, all the recommended precautions outlined in the protocol 

accompanying the RiboPureTM total RNA isolation kit were taken, in order to eliminate 

RNase contamination. Furthermore, thorough sample homogenisation was performed to 

reduce RNA degradation whilst maximising the recovery of RNA. 

 

Despite these efforts, all five attempts to isolate fully intact total RNA were unsuccessful. 

RNase contamination was clearly an issue during these experiments and whilst all possible 

steps to eliminate RNases were taken, the equipment and laboratory environment where the 

experiments were conducted were perhaps not suitable for conducting RNA based research. 
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Chapter 6 : Arthropod Hemocyanin – An introduction to 

structure and function. 

6.1 Introduction 

Arthropod hemocyanins (Hcs) are members of the non-haem metallo-enzyme protein 

subclass known as the Type-3 copper containing proteins (Maddaluno and Faull, 1999; 

Decker and Tuczek, 2000; Bak et al., 1986). Further examples from this group include 

tyrosinase and arthropod phenoloxidase (PO) (see Table 5). All Type-3 copper proteins 

contain a highly conserved binuclear copper active-site, in which each copper is coordinated 

and tightly bound by three histidine residues (Decker and Tuczek, 2000; Lee et al., 2004). 

However, their physiological functions can vary widely as demonstrated in Table 5. The 

primary biological function of Hc is as a respiratory protein, and it is found in molluscs and 

the arthropod classes Crustacea, Chelicerata and more recently Insecta (Decker et al., 2001; 

Möller and Decker, 2004; Zlateva et al., 1996; Hagner-Holler et al., 2004). They are 

important for efficient aerobic metabolism, just as haemoglobins are important oxygen 

carrier proteins in many species, including humans (Lee et al., 2004). It should be noted that 

an arthropod-type Hc has been identified out-with the Arthropoda and Mollusca, in the phyla 

Onychophora – the velvet worms. Despite conserved sequence and structural characteristics 

important for oxygen binding function, analyses have shown that this member of the Hc 

superfamily acts more like a PO (Kusche et al., 2002; Decker, 2005). In recent decades, 

however, arthropod and mollusc Hcs have demonstrated they can be irreversibly 

transformed, under physiological conditions, to function as a PO  
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Table 5: Examples of proteins containing the Type-3 copper centre, and their location, activity and 
function within biological systems. Phenoloxidase (Ashida and Brey, 1997; Decker and Tuczek, 2000; 
Sugumaran et al., 2000b; Sugumaran and Nellaiappan, 2000), tyrosinase (Sugumaran et al., 2000a; 
Decker and Jaenicke, 2004) and catecholoxidase (Greving et al., ) possess the Type-3 copper centre only, 
whereas ceruloplasmin (Maltais et al., 2003) and laccase (Garcia-Pineda et al., 2004; Santagostini et al., 
2004) also contain the Type-2 copper centre. 

E.C. Number and 
Name 

Location Activity Function 

E.C. 1.10.3.1  
Phenoloxidase 

(insect/arthropod)  

Synthesised in 
hemocytes and released 

into hemolymph. 
 

May also be transported 
to cuticle via epidermal 

cells. 

Hydroxylation of 
monophenols to o-

diphenols 
 

Oxidation of o-
diphenols to o-quinones 

Initiates pigment (e.g. 
melanin) and other 

polyphenolic compound 
formation  

Roles in insects include 
sclerotisation, wound 
healing and primary 
immune response. 

E.C. 1.14.18.1 
Tyrosinase 

 
Also referred to as 

phenoloxidase. 

Mammalian equivalent 
of phenoloxidase. 

Confined to specialised 
cells called melanocytes. 

Also found in bacteria 
and fungi 

Hydroxylation of 
monophenols to o-

diphenols 
 

Oxidation of o-
diphenols to o-quinones 

Initiates pigment (e.g. 
melanin) and other 

polyphenolic compound 
formation. 

 
Melanin involved in 

browning of hair and skin 
in mammals. 

E.C. 1. 10. 3. 1 
Catecholoxidase 

Found in higher plant 
tissues. 

Membrane bound until 
cellular damage causes 

its release. 

Oxidation of o-
diphenols to o-quinones 

A role in photosynthesis 
proposed 

Plant defence against 
insects and disease. 

E.C. 1.16.3.1 
Ceruloplasmin 

 

Secreted by hepatocytes 
into mammalian blood 

serum. 
 

Also expressed in the 
mammalian nervous 

system. 

Possesses ferroxidase 
activity, catalysing the 

oxidation of Fe2+ to Fe3+. 
 

Also possesses 
antioxidant capacities. 

Exact function uncertain. 
Roles in inflammation, 

angiogenesis, iron 
homeostasis, neuronal 

development and 
protection against oxidative 

stress have been implied. 
E.C.  1.10.3.2 

Laccase 
 
 

Plants, fungi and more 
recently found in 

bacteria. 

Usually phenolic in 
nature, substrates are 
oxidised to provide 
electrons for the co-

occurring reduction of  
O2  H2O. 

 

Exact function uncertain. 
Implicated in the synthesis 

and/or degradation of 
lignin, wound response 

mechanisms and the 
morphogenesis of 
microorganisms. 

E.C. 1.10.3.3 
Ascorbate oxidase 

Cell walls and cytoplasm 
of higher plants 

Catalyses the aerobic 
oxidation of L-ascorbate 
to dehyroascorbate with 

the simultaneous 
reduction of O2  H2O 

via a single electron 
transfer system. 

Biological function 
unknown, although activity 
is known to increase during 

plant stress conditions. 
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(Zlateva et al., 1996; Decker and Rimke, 1998; Decker et al., 2001; Decker and Jaenicke, 

2004; Nagai et al., 2001), and also be processed to produce antimicrobial peptides (Lee et al., 

2004). This intrinsic PO activity can also be elicited in vitro by incubation with substances 

such as detergents, salts and lipids (Nagai et al., 2001). It has therefore been speculated that 

Hc may have a second role in humoral immunity, being converted from Hc to a PO-type 

enzyme when the animal is wounded or subject to infection (Lee et al., 2004). There are 

however currently no conclusive lines of evidence for the activation of Hc PO activity in 

vivo, although one recent report claims that, together, beta-1,3-glucans and hemocyte 

components can elicit PO activity in Hc from the crustacean Penaeus japonicus (Kuruma 

prawn). Further experiments to corroborate this could indicate that Hc is involved in the 

melanisation of microorganisms (Cerenius and Söderhäll, 2004; Adachi et al., 2003). Whilst 

both arthropod and mollusc Hcs possess inducible PO activity, sequence comparisons show 

arthropod POs share greater sequence similarity to arthropod Hcs than mollusc Hcs (Lee et 

al., 2004), and, unless otherwise stated, arthropod Hcs will be the focus of the remaining 

discussion. 

6.2 A History of the Studies of Hemocyanin 

Hcs have been identified in a number of arthropod subphyla, including the Myriapoda and 

Hexapoda, however they have been studied most extensively only in the Chelicerata, where 

they are found widespread, and the malacostacan Crustacea (Burmester, 2001). These studies 

form attempts to understand the mechanism involved during molecular dioxygen activation 

of non-haem systems (Maddaluno and Faull, 1999). However, for some time, the structure of 

Hc (arthropod and mollusc) remained elusive as a result of the great length of its polypeptide 

chains, heterogeneity of subunits and complex quaternary structure. Despite these factors, the 
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1970s and 80s saw the chemical and spectroscopic characterisation of the nature of the Hc 

active site (Tamburro et al., 1976; Kuiper et al., 1980; Volbeda et al., 1989; Hwang and 

Solomon, 1982). Furthermore, since c1980 amino acid sequences have been elucidated, a 

great deal of primary structure information has become available, and the three dimensional 

structures of a number of Hc types have been proposed (Mangum et al., 1985; Bak et al., 

1986; Voit et al., 2000; Decker, 2005). The earliest recognizable images of Hc, captured in 

1964 by Van Bruggen, were electron microscope images of Hc from the ancient chelicerate 

Limulus polyphemus (the Atlantic horseshoe crab) (Taveau et al., 1997). Pioneering studies 

by Sullivan et al (Sullivan et al., 1974; Sullivan et al., 1976) were however the first step 

towards resolving the structure of Hc. Sullivan fractionated L. polyphemus Hc on a DEAE-

Sephadex column after EDTA treatment, and concluded that it consisted of at least five 

different subunit types, termed I to V. Later work by Lamy et al (1979) used immunological 

techniques to show that some of these fractions were heterogeneous and that L. polyphemus 

Hc in fact consisted of eight subunit types (Taveau et al., 1997). It was not until the early 

eighties that qualitative data about the three dimensional arrangement of these subunits was 

discovered by Van Heel and Frank using multivariate statistical analysis of negatively stained 

half-molecules (Taveau et al., 1997). At the same time, X-ray crystallography provided the 

first three dimensional reconstruction of a hexameric Hc (from the lobster Panulirus 

interruptus), a structure which was readily accepted as the building block of all arthropod 

hemocyanins and provided an understanding of their general organization (Taveau et al., 

1997). Between the early 1990’s and the present day, high resolution 3-D structures have 

become available, including that of the hexameric subunit LpII from L. polyphemus Hc, 

resolved at atomic resolution (Hazes et al., 1993; Decker, 2005). The most recent focus of 

research is in the area of characterising Hcs function, and has demonstrated unarguably that 
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this protein has an intrinsic inducible phenoloxidase-type activity with which there are 

proposed associated conformational changes taking place (Decker, 2005). 

 

Although there has been a rapid enhancement in our understanding of the structure and 

function of arthropod Hcs, the very complex nature of this protein means there is still much 

for us to learn before we can confidently state its physiological role. The ensuing discussion 

reviews our current understanding of Hcs structure and function. 

6.3 The Structure of Hemocyanin  

6.3.1 Quaternary Structure 

Hcs are high molecular weight, extracellular, copper-containing glycoproteins composed of 

multiple subunits of differing types (Decker and Jaenicke, 2004; Decker et al., 2001; Ali et 

al., 1995). With regards to quaternary structure, subunit size and composition, arthropod and 

mollusc Hcs differ considerably (Voit et al., 2000), and are in fact now considered as two 

distinct proteins, originally given the same name because of similarities in oxygen binding 

(Cuff et al., 1998; van Holde et al., 2001). At the quaternary level arthropod (chelicerate and 

crustacean) Hcs are composed of 3-15 heterogeneous, kidney shaped subunits (Ali et al., 

1995; Decker and Tuczek, 2000), which combine to form a regular cubic hexamer with 

dimensions of approximately 10 x 10 x 10 nm (Möller and Decker, 2004). Depending on 

species or physiological conditions, multiples of these hexamers (1x6-mer to 8x6-mers) are 

formed, with total molecular weights ranging between 4x105 and 4x106 Da (Voit et al., 2000; 

Maddaluno and Faull, 1999; Meissner et al., 2004). Typically, crustacean Hcs are composed 
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of 1x or 2x6-mers (although there are exceptions), whilst chelicerate Hcs form larger 

assemblages of 4x, 6x or 8x6-mers (Ali et al., 1995; Meissner et al., 2004). 

 

Limulus polyphemus has the largest and most complex of the known arthropod Hcs (Hazes et 

al., 1993). It is composed of eight immunologically distinct subunit types, arranged into two 

superimposed 4x6-meric structures to form the 8x6-mer Hc particle, which has a molecular 

weight of approximately 3.6x106 Da (Voit et al., 2000; Taveau et al., 1997; Liu and Magnus, 

2002). Each of the eight subunit types exists at particular locations within the quaternary 

structure of the hemocyanin molecule (van Holde et al., 2001; Hazes et al., 1993), as a result 

of the considerable specificity of inter-subunit interactions (van Bruggen et al., 1980). This 

specific arrangement is a necessity for full biological activity (Voit et al., 2000), and the non-

covalent interactions between the subunits are key elements in maintaining the overall Hc 

fold (Gatto et al., 2004).  Figure 45A shows the quaternary arrangement of the different 

subunit types within the L. polyphemus Hc 4x6-mer half-molecule. The eight subunit types 

have been termed LpI, II, IIA, IIIA, IIIB, IV, V and VI, and are present in a ratio of 

3:4:1:4:4:4:2:2 (Decker et al., 2001). The 4x6-meric structures make contact and connect via 

subunit LpIV on each half molecule (Taveau et al., 1997). 
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A 

B 

Figure 45: Quaternary structures of the 4x6-meric hemocyanin subunits from Limulus polyphemus (Panel 
A) and Eurypelma californicum (Panel B). The subunits shown in red are those known to possess 
phenoloxidase activity. The complete native L. polyphemus hemocyanin is composed of two 
superimposed 4 x 6-mers (Adapted from (Decker et al., 2001)). 
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Another well studied arthropod Hc is that from the North American tarantula Eurypelma 

californicum. This 4x6-meric Hc (Figure 45B) has a molecular weight of approximately 

1.8x106 Da, and comparable structure to that of the L. polyphemus Hc half-molecule (Decker 

et al., 2001). However, E. californicum Hc is composed of only seven immunologically 

distinct subunit types, which have been assigned as a, b, c, d, e, f and g, and formation of the 

24-mer complex requires the aggregation of these seven subunits in a constant stoichiometric 

ratio of 4:2:2:4:4:4:4 respectively (Voit et al., 2000). The assembled 24-meric subunit of E. 

californicum has its 4 hexamers bound together tightly by two non-covalent bonds which 

form between the linker subunits b and c of each 2x6-meric half molecule (Adachi et al., 

2003; Decker, 2005) 

6.3.2 Tertiary Structure 

Arthropod Hc subunit structure was first suggested during studies using L. polyphemus 

subunit LpII (Taveau et al., 1997; Sullivan et al., 1974). Arthropod subunits range from 70 – 

75 kDa (Möller and Decker, 2004; Decker et al., 2001), and possess three domains (Lee et 

al., 2004) arranged to form the subunit’s characteristic ‘kidney’ shape (Figure 46). Domain I 

(residues 1 - 154) in LpII lies at the N-terminus and contains between 7 and 8 α–helices. 

Domain II (residues 155 - 380) is also highly helical and holds the dicopper centre copper 

pair buried within its core. This domain is also important structurally as it dominates the 

inter-subunit contacts within each Hc hexamer. Finally, domain III (residues 381 - 628), 

which lies at the C-terminus, has a seven stranded antiparallel Greek key ß-barrel topology, 

with two loops extending from its centre. These later structures appear to function as arms 
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Figure 46: Tertiary structure of subunit II of Limulus polyphemus hemocyanin. The three domains are 
coloured green (domain I), cyan (domain II) and magenta (domain III). CuA and CuB are shown as 
orange spheres. Image generated using PDB file 1LLA and Pymol molecular graphics software. 
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holding the three domains together (Decker and Jaenicke, 2004; Bak et al., 1986; Voit et al., 

2000; Ali et al., 1995; Cuff et al., 1998; Hazes et al., 1993). 

 

As discussed earlier, arthropod Hc subunits are heterogeneous, and this property is thought to 

be important for establishing the proper aggregation state of the molecule and ensuring the 

subunits cooperative binding properties (Decker and Jaenicke, 2004). Despite their 

heterogeneic nature, the polypeptide sequences are sufficiently similar that all arthropod Hc 

subunits probably have a tertiary structure similar to the LpII subunit of L. polyphemus Hc 

(Decker and Jaenicke, 2004). 

6.3.3 Active Site Structure 

Arthropod Hcs are Type 3 copper proteins, and as such contain a highly conserved dicopper 

centre, with each copper (CuA and CuB) having an approximate trigonal planar coordination 

by the Nє atom of three histidine residues (Decker and Tuczek, 2000; Hazes et al., 1993). 

These coordinating histidines are provided by a four α-helical bundle, with the four structural 

elements locating to different regions of the protein fold of domain II (Gatto et al., 2004; van 

Holde et al., 2001). In arthropod Hc (Figure 47), two histidines binding CuB are provided by 

successive turns of one α-helix and the third by a second helix. CuA histidines are provided 

in a similar fashion, but by alpha helices which run antiparallel to those providing the CuB 

coordinating histidines (Decker and Tuczek, 2000). 
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Figure 47: The binuclear copper site of Limulus polyphemus hemocyanin subunit II. CuA and CuB 
(orange) and their coordinating His (shown in stick format) are highlighted. View shown is 
perpendicular to the Cu-Cu axis. Image produced as in Figure 46. 
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Another feature of arthropod Hcs is the presence of a ‘placeholder’ amino acid situated in the 

entrance, at a distance of 4.9Å, to the dicopper centre (Decker and Tuczek, 2000) (Figure 

48). This placeholder originates from domain I, and is a phenylalanine residue in L. 

polyphemus (Phe49) and Tachypleus tridentatus (Japanese Horseshoe crab) (Decker and 

Rimke, 1998; Nagai et al., 2001). Placeholder amino acids are believed to function to block 

the entry of larger substrates to the dicopper centre whilst the Hc is functioning solely as an 

oxygen transporter. Under particular conditions, this placeholder can be pulled out of the 

dicopper centre to elicit a secondary function. 

 

The two copper ions of the Hc dicopper centre have great importance in the function of the 

Hc molecule; however they are also important from a structural perspective. As the copper 

ions of each subunit are coordinated by ligands (histidines) provided by structural elements 

from various regions of the protein fold, it can be expected that they will have a role as a 

tertiary structural element. Recent experiments using a number of biophysical and 

biochemical techniques and Hc from the crustacean Carcinus aestuarii (Mediterranean Shore 

crab), have in fact shown that the copper ions play a stabilizing role on the proteins tertiary 

structure. Removal of these coppers results in the loss of some domain-domain interactions 

whilst secondary structure remains essentially unchanged (Gatto et al., 2004). 
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Figure 48: Active site of Limulus polyphemus subunit II hemocyanin showing the orientation of the 
‘placeholder’ amino acid, phenylalanine-49 (magenta coloured residue shown in stick format in domain 
I), in the entrance to the dicopper centre. Domains are highlighted in green (domain I), cyan (domain II) 
and magenta (domain III). Copper ions are shown as orange spheres and their coordinating histidine 
residues in yellow stick format. Note the differing domain location of the dicopper centre and Phe-49 
residue. Image produced as in Figure 46. 
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6.3.4 Ion Binding Sites 

As well as possessing a functionally and structurally important dicopper centre, arthropod 

Hcs also possess a binding site for a chloride ion and a putative binding site for a calcium ion 

(Figure 49). Such sites have been identified in L. polyphemus Hc subunit II. Chloride and 

calcium are known to be important heterotrophic allosteric effectors of cooperative oxygen 

binding by the L. polyphemus Hc complex (Hazes et al., 1993). 

 

Figure 49: Ion binding sites in Limulus polyphemus hemocyanin subunit II. The chloride ion (blue 
sphere) binding site is positioned at the interface of domain I (green) and II (cyan), whilst the putative 
calcium ion (purple sphere) binding site is located at the subunit surface near two flexible regions of 
domain III (magenta). Both chloride and calcium ions are known to be important effectors of cooperative 
oxygen binding by the L. polyphemus hemocyanin complex (Sullivan et al., 1974; Hazes et al., 1993). 
The copper ions of the dicopper centre are represented by orange spheres at the core of domain II. Image 
produced as in Figure 46. 
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The chloride site binds one chloride ion and is located at the interface of the first and second 

domains of the LpII subunit. Chloride ions are allosteric effectors of O2 binding in Hc. It has 

been proposed that chloride ions reduce the affinity of Hc for O2 via differential binding to 

the oxy- and deoxy- forms of Hc, or by causing a change in the ligand-linked aggregation 

state, or both (Sullivan et al., 1974; Hazes et al., 1993). Chloride ions have also been shown 

to reduce O2 affinity by binding more tightly to Hc in the low affinity state than the high 

affinity state. This is proposed to be as a result of a structural change in the chloride binding 

site at the tertiary level during the transition between low and high oxygen affinity states 

(Sullivan et al., 1974; Hazes et al., 1993). An important point to note however is the non-

uniform effect of chloride ions on different subunits within one Hc type. For example, only 

subunits II, IIA, IIIA and IIIB exhibit the chloride effect in L. polyphemus Hc (Sullivan et al., 

1974). 

 

The putative calcium site binds one metal ion and is located at the subunit surface, near two 

flexible regions in domain III of the LpII subunit type. It has both a regulatory and structural 

role in L. polyphemus Hc. Given that calcium binding is important for stability, and along 

with the two disulphide bridges present in each subunit, it is thought that this ion acts to 

stabilise the structure of both the hexamer and the native multi-hexamer (Hazes et al., 1993). 

Calcium also acts to decrease the O2 affinity whilst increasing the cooperativity of the Hc 

multi-hexameric complex (Hazes et al., 1993). 
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6.3.5 Primary Structure  

At the primary structural level each arthropod Hc subunit is composed of approximately 660 

amino acids per polypeptide chain (Ali et al., 1995). Except for a region of 42 amino acids 

that is involved in CuB coordination, there is little sequence similarity between arthropod and 

mollusc Hcs (Cuff et al., 1998). Amongst arthropod Hcs there are greater sequence identities, 

most notably in domain II which carries the dicopper centre (Decker, 2005). When the 

known sequences of all seven E. californicum subunits are compared, 52-65% sequence 

similarity is observed, with 32% being strictly conserved throughout (Voit et al., 2000). 

 

Although arthropod Hcs are extra-cellular, no signal peptides have ever been identified in 

chelicerate Hcs. The available amino acid sequences from the N-terminal ends of the native 

polypeptides of E. californicum Hc corroborate this result and show only the removal of the 

first (initiator) methionine (Voit et al., 2000). This is consistent with the fact that in 

chelicerates, Hcs are synthesised by free ribosomes and released via cell rupture (Voit et al., 

2000). A signal peptide sequence has however been identified in Hc from the crustacean 

Penaeus vannamei (a penaeid shrimp) (Sellos et al., 1997). Once again, this is consistent with 

the site of synthesis of crustacean Hc and its proposed method of release into the 

hemolymph, as is discussed in section 6.4.1. 

6.4 Arthropod Hemocyanin – a multifunctional protein? 

6.4.1 Site of Hemocyanin Synthesis 

The site of synthesis of Hc appears to vary amongst the arthropod subphyla, as was noted in 

section 6.3.5. In the chelicerate E. californicum for example, Hc is synthesised by free 
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ribosomes in hemocytes which are attached to the inner wall of the heart (Voit et al., 2000). 

On the other hand, studies using the crustaceans Penaeus monodon (Black Tiger shrimp) and 

Cancer magister (Dungeness crab) define the site of biosynthesis of Hc as the 

hepatopancreas. More specifically in P. monodon, the F-cells, or epithelium, lining the 

hepatopancreas tubules, were shown by studying the expression of mRNAs for Hc, to be the 

only tissue/cell type in the shrimp to synthesise this protein. Furthermore the synthesis of this 

protein appears to be the F-cells’ main function (Lehnert and Johnson, 2002). 

Immunofluorescence experiments using C. magister also convincingly demonstrated the 

presence of Hc in the stomach wall, reticular connective tissues and eye stalks (Durstewitz 

and Terwilliger, 1997). It remains unclear whether these are sites of Hc synthesis, storage or 

degradation, or represent tissue types containing cells filled with Hc transported there from 

other tissues. It is also possible however that these immonofluorescence results are the result 

of cross-reactivity of the antibody with cryptocyanin (Durstewitz and Terwilliger, 1997), a 

closely related non-respiratory Type-3 copper protein involved in crustacean moulting. This 

protein has lost the ability to bind oxygen, lacking three of the six highly conserved histidine 

residues present in Hc, and is present in the hemolymph of arthropods at higher 

concentrations than Hc during pre-moult (Terwilliger et al., 1999). Therefore the generally 

accepted site of synthesis of crustacean Hc is the F-cells of the hepatopancreas. Further 

studies are required to elucidate the exact mechanism by which Hc synthesised in the F-cells, 

accumulates in the hemolymph. Lehnert and Johnson, 2002, proposed that crustacean Hc 

synthesised by the F-cells’ rough endoplasmic reticulum, is processed by the Golgi apparatus 

and released from secretory vesicles into the hepatopancreas lumen. It would then, by some 

unknown process, be translocated to the hemolymph via the hepatopancreas tubule type cells. 
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Ultimately, Hc is found freely dissolved in hemolymph (Cuff et al., 1998) and forms the 

predominant protein component of the hemolymph of most arthropods (Lehnert and Johnson, 

2002). For example Hc is typically present at 5 – 120 mg/ml in the chelicerate E. 

californicum (Decker and Rimke, 1998) and approximately 6 – 38 mg/ml in the crustacean 

Cancer magister (Dungeness crab) (Brown and Terwilliger, 1998; Decker, 2005). This figure 

may reflect the importance of Hc in arthropods as an oxygen transporter protein, and also, as 

will be discussed, as a potential immune system component. Hc has a very important 

function in oxygen transport, and is capable of achieving 100% saturation during periods of 

higher oxygen demand by respiring tissues (Brown and Terwilliger, 1998). More recently, 

research has demonstrated that this protein may have additional roles in immune defence and 

wound healing (Cerenius and Söderhäll, 2004). 

6.4.2 Primary Function – Oxygen Transporter 

In arthropods, Hc functions primarily as an oxygen transporter, a role based on its capability 

to reversibly bind molecular dioxygen at its dicopper centre (Zlateva et al., 1996). One 

molecule of oxygen binds to the deoxygenated protein at the respiratory surfaces. It binds in 

a side on conformation (µ – η2: η2) forming a peroxide ion (O2
2-) bridge between the two Cu 

(I) ions, oxidizing them to the valence state Cu (II) (Dainese et al., 1998; Maddaluno and 

Faull, 1999; Durstewitz and Terwilliger, 1997; Cuff et al., 1998; Decker, 2005). The oxygen 

is then transported to respiring tissues via the circulatory system, a process essential for 

efficient aerobic metabolism (van Holde et al., 2001). 

 

As discussed in Section 6.3.2, the dicopper centre is at the core of domain II of each 

arthropod Hc subunit. In L. polyphemus subunit II, there appears to be a solvent tunnel which 
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extends from the protein surface to the dicopper centre. A glutamic acid residue (Glu-309) 

obstructs this tunnel, and may potentially function as a gate, controlling entry of O2 to the 

dicopper centre (Hazes et al., 1993). Therefore the oxygenation step may require a structural 

change to occur before O2 can reach the copper centre (Hazes et al., 1993). Small angle x-ray 

scattering (SAXS) has in fact suggested that all structural levels are involved during the 

conformational change upon oxygen binding in Hc (Möller and Decker, 2004).  

6.4.3 Secondary Function – Defensive Protein 

In most instances, a single protein performs a single well defined biological function with 

high specificity and efficiency (Decker and Rimke, 1998). However, arthropod Hc contrasts 

this theme by appearing to exhibit a secondary function as a PO-type enzyme in vitro 

(Decker et al., 2001). PO is an enzyme widely distributed amongst fauna and flora (although 

it may be referred to as tyrosinase, catecholoxidase or polyphenol oxidase depending on its 

source), and is involved in many physiologically important functions including melanisation, 

sclerotisation (cuticular hardening) and host defence (Decker et al., 2001; Decker and 

Jaenicke, 2004; Lee et al., 2004). Native PO is found only in insects and crustaceans. It 

possesses both tyrosinase and o-diphenoloxidase activity and catalyses a two-step reaction 

(Figure 50) which results in the 
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Figure 50: Phenoloxidase catalyses a two-step reaction which incorporates molecular oxygen into 
phenolic molecules at its dicopper centre. Crustacean Hcs are thought only to possess o-diphenoloxidase 
activity (only one exception has been found), whilst chelicerate hemocyanins have been shown to exhibit 
both tyrosinase and o-diphenoloxidase activity (Decker and Jaenicke, 2004). 
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incorporation of oxygen into phenolic molecules (Hall et al., 1995a; Decker and Tuczek, 

2000; Ashida and Brey, 1997; Decker and Terwilliger, 2000). Arthropod Hc (found in 

crustaceans and chelicerates and more recently in one insect species (Hagner-Holler et al., 

2004)) displays this same ability once its PO-type activity is elicited, although crustacean 

Hcs generally appear to exhibit only o-diphenoloxidase activity (Decker and Jaenicke, 2004). 

In vitro activation of Hc PO activity has been achieved via two methods: proteolytic cleavage 

and incubation with detergents, lipids or antimicrobial peptides (Decker et al., 2001; 

Nellaiappan and Sugumaran, 1996; Nagai et al., 2001). Initially it was thought that 

chelicerates possessed a distinct native PO protein, however further investigation revealed 

that this PO activity was the result of a detergent activated Hc (Nellaiappan and Sugumaran, 

1996; Decker and Tuczek, 2000).  

 

Limited proteolysis by the serine proteases trypsin and chymotrypsin induces PO activity in 

most Hcs (Decker et al., 2001; Decker and Rimke, 1998; Lee et al., 2004). Proteolytic 

cleavage of E. californicum and L. polyphemus Hc is known to remove an N-terminal 

fragment from those subunits which possess inducible PO activity – for example subunits II, 

V and VI in L. polyphemus Hc and the linker subunits b and c in E. californicum Hc (Decker 

et al., 2001; Adachi et al., 2003). This fragment includes the conserved ‘placeholder’ amino 

acid, Phe-49, and thus its removal is believed to open the dicopper centre for the entrance of 

larger phenolic substrates (Decker and Rimke, 1998; Decker and Tuczek, 2000; Lee et al., 

2004). L. polyphemus and E. californicum are ancient chelicerates with no, as yet identified, 

native PO, and their Hcs display strong PO activity in comparison to crustaceans (Decker, 

2005). Therefore if proteolysis is used in vivo, for example during an important vulnerable 
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stage in arthropod development, Hcs native function may switch to a serve as a PO. Although 

the activity may be low, this would be compensated for by the high concentration of Hc in 

the hemolymph as discussed in section 6.4.1 (Decker and Rimke, 1998). Recent research has 

indicated that cysteine proteases are potential candidates for Hc activation in vivo, as 

components of a system somewhat analogous to the insect PPO serine protease cascade 

(Adachi et al., 2003). Since removal of the conserved placeholder amino acid appears to be 

all that is necessary to elicit PO activity in arthropod Hc, this implies that no rearrangement 

of the dicopper centre is necessary to develop the proteins secondary catalytic function 

(Decker and Rimke, 1998; Decker and Tuczek, 2000; Decker and Jaenicke, 2004).  

 

It must be emphasized however that in vitro proteolysis can only elicit low levels of PO 

activity in comparison with that achieved upon incubation of Hc with detergents such as 

sodium dodecyl sulphate (SDS) or cetylpyridinium chloride (CPC) (Decker et al., 2001; 

Decker and Tuczek, 2000; Nellaiappan and Sugumaran, 1996). Although, there are instances, 

e.g. the Hc of the crustacean Pacifastacus leniusculis (crayfish), where no detectable PO 

activity arises after treatment with such substances; only proteolysis can trigger PO activity 

in this Hc species (Lee et al., 2004). As with proteolytic cleavage, PO activation by 

detergents appears to be limited to only a few of the various subunit types of each Hc 

(Decker et al., 2001). Unlike proteolysis however, detergent activation does not involve 

cleavage of a part of the protein structure. Research using Hc from L. polyphemus and E. 

californicum, suggest instead that SDS may induce a conformational change, a distortion or 

slight unfolding of the protein (Decker and Tuczek, 2000). SDS is a known denaturant and 

acts at mid to high concentrations (a range which includes CMC and above) to cause protein 

unfolding. However, at lower concentrations, SDS may perform a much more selective 
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action, causing protein folding, superactivation and/or conformational change. It must be 

noted that the actual concentration range for each of the definitions ‘low’, ‘mid’ and ‘high’ is 

dependant on a number of factors including the chemical and physical interactions between 

SDS and the protein in question (Moosavi-Movahedi, 2005). In arthropod Hc, SDS perhaps 

induces a conformational change which may pull the conserved placeholder amino acid out 

of the dicopper centre entrance, opening the dicopper centre to larger phenolic substrates for 

hours, without complete unfolding (Decker and Jaenicke, 2004). 

 

The structural changes taking place during this detergent induced activation step have not yet 

been characterized. The presented research which follows in Chapter 7 addresses this issue, 

and discusses the results of a number of biophysical methods used in a bid to provide insight 

into the structural changes taking place in three chelicerate Hcs upon incubation with 

submicellar and micellar concentrations of SDS. 
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Chapter 7 : Biophysical Characterisation of the Mode of 

Activation of Phenoloxidase Activity in Arthropod Hemocyanin 

7.1 Introduction 

7.1.1 Overview 

Characterising the structure and function of arthropod hemocyanin (Hc) has been the focus of 

a number of research groups since the late 1970’s. An oxygen transport protein under native 

conditions, Hc has been identified as possessing an intrinsic phenoloxidase (PO)-type activity 

upon in vitro incubation with denaturing agents such as perchlorate (Zlateva et al., 1996), 

proteolytic enzymes (Decker and Rimke, 1998; Lee et al., 2004; Nellaiappan and Sugumaran, 

1996), detergents such as sodium dodecyl sulphate (SDS) and cetylpyridium chloride (CPC) 

(Decker et al., 2001; Jaenicke and Decker, 2004; Nellaiappan and Sugumaran, 1996), 

phospholipids and fatty acids (Nellaiappan and Sugumaran, 1996; Nagai and Kawabata, 

2000), and antimicrobial peptides (Nagai et al., 2001). There are currently no conclusive 

lines of evidence for the activation of Hc PO activity in vivo (Cerenius and Söderhäll, 2004), 

however recently, it has been demonstrated that the PO activity of Hc from the Kumura 

prawn, Peneaus japonicus, can be elicited in vitro by β-1,3-glucans and hemocyte 

components (Adachi et al., 2003). Further experiments are required to confirm these findings, 

but if found to be true, could indicate a role for arthropod Hc in the melanisation of invading 

micro-organisms (Cerenius and Söderhäll, 2004). 

 

Reports on the PO activity of arthropod Hcs have concentrated on a number of key areas; 

these include determining the level of PO activity which can be triggered by various 
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treatments, identifying the specific subunits which display inducible PO activity, and 

attempting to identify possible components involved in conversion of Hc to PO in vivo. 

There are however no published reports, at the molecular level, of the conformational 

changes associated with activation of arthropod Hc PO activity by artificial activators such as 

SDS. 

7.1.2 Current Knowledge of the Activation of Arthropod Hemocyanin 

Phenoloxidase Activity. 

Arthropod Hcs appear to vary in terms of the level of PO activity which can be elicited in 

response to a range of activating treatments. Chelicerate Hcs, such as Hc from Limulus 

polyphemus (Atlantic Horseshoe crab) or Eurypelma californicum (North American 

tarantula), appear to exhibit only very minimal levels of PO activity following limited 

proteolysis by trypsin. In comparison, upon incubation with the detergents SDS or CPC, 

these Hcs show very high levels of PO activity (Decker et al., 2001; Decker and Tuczek, 

2000). The PO activity of Hc from the Freshwater crayfish, Pacifasticus leniusculus 

(Crustacea), in contrast, cannot be elicited by treatment with detergents; only proteolytic 

cleavage can perform this function (Lee et al., 2004). This latter finding was unusual as SDS 

leads to activation of PO activity in a range of Hcs from arthropods (chelicerae and 

crustacea) and molluscs, as well as PPOs from plants and animals (Decker and Tuczek, 

2000). Perchlorate and hemocyte lysate supernatant components have been found to elicit 

some level of PO activity in crustacean Hc whereas they have no effect on chelicerate Hc PO 

activity (Zlateva et al., 1996; Adachi et al., 2003).  Likewise, studies of chelicerate Hc 

identified the non-proteolytic activation of PO activity by phospholipids and antimicrobial 

peptides (Nellaiappan and Sugumaran, 1996; Nagai et al., 2001). 
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In terms of the subunits of arthropod Hc which display inducible PO activity, a number of 

studies by Heinz Decker and his colleagues (Decker et al., 2001; Decker and Rimke, 1998; 

Jaenicke and Decker, 2004) have demonstrated that chelicerate Hcs show PO activity which 

is restricted to certain subunit types. Subunits II, V and VI show PO activity in L. 

polyphemus Hc, and of these V and VI bridge the four hexamers of each half molecule of this 

8 x 6-meric protein. E. californicum Hc subunits b and c share the same topological positions 

within this 4 x 6-meric molecule, and are in fact the two subunit types which were identified 

as demonstrating inducible PO activity (See Figure 45, Chapter 6 for illustration of subunit 

topology). Crustacean Hcs conversely appear to show no localisation of PO activity, but 

rather display weak enzymatic activity in all subunit types. 

 

Since the turn of the century, preliminary studies have provided some clues to the potential 

pathway for the activation of Hc PO activity in vivo (Nagai et al., 2001; Adachi et al., 2003). 

Experiments conducted in vitro by Adachi et al (2003) have demonstrated that the PO 

activity of Hc from the Kumura prawn, Penaeus japonicus (Crustacea) can be induced by 

hemocyte components in the presence of the elicitor β-1,3-glucan. The absence of hemocyte 

lysate from the reactions resulted in no significant PO activity implying no direct interaction 

between Hc and elicitor molecules. Serine/cysteine proteases were implied in the activation 

mechanism of crustacean Hc PO activity, though not directly. Rather than cleavage of the 

peptide chain, cleavage of the reductive bonds (such as disulphide bonds) within certain 

subunits of this crustacean Hc appeared necessary for induction of Hc PO activity, perhaps 

resulting in a conformational change which opens the Hc dicopper center (Adachi et al., 

2003). Hemocyte component activated Hc demonstrated the ability to catalyse the oxidation 
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of tyrosine and DOPA to dopaquinone – an early step in the melanogenic pathway. More 

recently, SDS activated Hc from the same species was found also to catalyse a later step in 

melanin synthesis; the oxidation of 5,6-dihydroxyindole (DHI) to DHI-quinone which 

produces black melanin pigment (Adachi et al., 2005). Further work is required in this area; 

however, it is very tempting to speculate that these results suggest a dual role for Hc in 

arthorpods; both as an oxygen carrier and as a defence protein involved in the defensive 

immune reactions. 

7.1.3 Hypotheses on the Structural Changes Required to Elicit Phenoloxidase 

Activity in Arthropod Hemocyanin. 

To date, there have been no reports describing experiments designed to characterise the 

artificially induced conformational changes taking place in the Hc molecule upon incubation 

with SDS. Decker and Rimke (1998) and Decker and Jaenicke (2004) have proposed that, 

regardless of the activating agent used, triggering of Hc PO activity requires removal of the 

placeholder amino acid from the entrance to the dicopper centre (Phe-49 in L. polyphemus 

and E. californicum), thus allowing entry of larger phenolic substrates. A few years prior to 

this it was suggested that a conformational change was associated with percholate and SDS 

induced activation of arthropod Hc (Zlateva et al., 1996; Nellaiappan and Sugumaran, 1996), 

and so it appears likely that non-proteolytic activation (by detergents, phospholipids, 

denaturants and antimicrobial peptides) involves a structural shift which pulls the placeholder 

amino acid out of the proteins dicopper centre. 

 

The aim of the investigation presented in the following chapter is to characterise the 

conformational changes associated with non-proteolytic activation of PO activity in 
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arthropod Hc. The results of this biophysical study provide some preliminary indications of 

the structural changes associated with SDS induced activation of PO activity, in Hc from the 

ancient chelicerates L. polyphemus and E. californicum, and the more modern chelicerate 

Pandinus imperator (Emperor scorpion). SDS is routinely used as the activating agent during 

assays of PO activity of native PO enzymes. Due to the structural and physiochemical 

characteristics shared between Hc and PO, it is proposed that the conformational changes 

identified in this current investigation will provide clues for the activation mechanism of 

native PO. 

7.2 Methods 

7.2.1 Phenoloxidase Activity Assays. 

The PO activity of arthropod Hc was measured in 1 ml assay reactions. Firstly, SDS was 

mixed with 100 mM sodium phosphate buffer (Stock: 200 mM Na2HPO4, 200 mM 

NaH2PO4) to final concentrations of between 0.25 mM and 40 mM SDS, covering the sub-

micellar and micellar range of this detergent in the above buffer. Limulus polyphemus 

(Merck-Calbiochem, No. 374804), Eurypelma californicum or Pandinus imperator Hc 

(purified protein gifted by Heinz Decker, (Nillius, 2002)) was added to the SDS/buffer mix at 

a final concentration of 1, 0.3 or 0.16 mg/ml respectively and incubated at room temperature 

for 5 minutes. The reaction was initiated by the addition of dopamine substrate to a final 

excess of 2 mM. PO activity was monitored by recording the increase in A475 (resulting from 

the formation of dopachrome and its derivatives) every 20 seconds for 3 minutes using an 

Ultrospec 2100pro UV/Visible spectrophotometer, from which the specific activity of each 

Hc was derived. Activity was expressed in units where 1 unit equates to the formation of 1 
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µmol dopachrome per minute, assuming the molar absorbtion coefficient for dopachrome is 

3600 M-1cm-1. Control assays were performed to ensure that neither Hc alone or free copper, 

could catalyse the conversion of dopamine to dopachrome under the assay conditions used. 

 

To investigate whether the induced PO activity of Hc could be reversed, 1 ml assay reactions 

were prepared as above, using only L. polyphemus or P. imperator Hcs, containing SDS at a 

final concentration of 1.1 mM (micellar concentration). Each reaction was incubated for 5 

minutes at room temperature before monitoring PO activity again as above. 300 µl of this 

reaction was then diluted 3-fold in 100 mM sodium phosphate pH 7.5, and a further 300 µl 

diluted 3-fold in 100 mM sodium phosphate pH 7.5 containing additional excess dopamine 

substrate. The PO activity of these diluted reactions was recorded following 5 minutes 

incubation at room temperature. 

 

To determine whether free phospholipids and small unilamellar phospholipid vesicles 

(SUVs) could exert an effect similar to SDS on L. polyphemus and P. imperator Hc, standard 

assays were conducted as detailed previously, with the exception that SDS was replaced with 

either free phospholipids (a 50:50 mixture of phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE)) at final concentrations of 0.5 mM or 1.0 mM, or SUVs 

(composed of a 50:50 ratio of PC and PE) containing a total phospholipid concentration of 

0.5 mM or 1.0 mM. Preparation of these phospholipids and SUVs is described in section 

7.2.8 below. Phenoloxidase activity was recorded as outlined previously. 
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7.2.2 Isothermal Titration Calorimetry. 

Hc from L. polyphemus, P. imperator and E. californicum was prepared to approximately 0.7 

mg/ml (giving a monomer concentration of 10 µM, assuming the molecular weight of a 

single Hc monomer is 72,600 Da) in 100 mM sodium phosphate pH 7.5 and dialysed for 24 

hours, against the same buffer, at 4˚C. SDS solutions of 75 mM and 30 mM were prepared in 

the remaining dialysis buffer and loaded into the 250 µl syringe of a MicroCal VP-ITC 

titration calorimeter. Immediately prior to use, the Hc solutions were degassed. Each binding 

experiment was conducted at 25˚C, and involved an initial injection of 1 µl, followed by 25 x 

10 µl injections of SDS (30 mM for L. polyphemus and P. imperator Hc and 75 mM for E. 

californicum) into a stirred ITC cell (1.4 ml volume) containing the Hc/buffer solution. 

Control experiments were conducted under identical conditions to estimate the CMC of SDS 

in 100 mM sodium phosphate pH 7.5, and also to correct for the heat of dilution of SDS and 

the protein. The integrated heat effects of binding of SDS to Hc were corrected for heats of 

dilution where necessary and analysed using a standard MicroCal Origin software package. 

The data was analysed in terms of simple single binding-site and sequential binding-site 

models. 

 

For the purposes of the ICP-OES experiments detailed in section 7.2.7, ITC was also utilised 

to gauge an accurate value for the CMC of SDS in 100 mM TrisHCl pH 7.5. This involved 

recording the heat of dilution during injection of 25 x 10 µl aliquots of 20 mM SDS into an 

ITC cell containing 100 mM TrisHCl pH 7.5 only. 
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7.2.3 Circular Dichroism Spectroscopy. 

1 ml reactions containing 100 mM sodium phosphate buffer pH 7.5 and increasing 

concentrations of SDS were prepared before adding Hc to a final concentration of 0.3 mg/ml. 

L. polyphemus, P. imperator and E. californicum  Hc were incubated at room temperature in 

the presence of 0 – 3.5 mM, 0 – 2.0 mM and 0 or 5.0 mM SDS, respectively, for 5 minutes 

(16 hours additional incubation for E. californicum Hc). Near UV CD spectra were recorded 

using a Jasco J600 spectropolarimeter over the range 250 – 400 nm in a rectangular 0.5 cm 

pathlength cell, whilst far UV spectra were recorded in a Jasco J-810 spectropolarimeter over 

180 – 260 nm in a cylindrical 0.02 cm pathlength cell. 1S-(+)-10-camphorsulphonic acid was 

used to calibrate the spectropolarimeters. Each spectrum was an average of 4 scans, recorded 

at a scan rate of 10 nm/min with a time constant of 2 seconds, corrected by subtraction of a 

spectrum of buffer alone. 

7.2.4 Fluorescence Spectroscopy. 

A series of 1 ml reactions containing SDS at final concentrations of up to 2.7 mM (L. 

polyphemus), 2.0 mM (P. imperator) or 5.0 mM (E. californicum) were prepared in 100 mM 

sodium phosphate buffer pH 7.5. Hc was added to a final concentration of 0.1 mg/ml and the 

reaction incubated until there were no further structural changes with time; generally 5 

minutes was required. Fluorescence measurements were recorded at room temperature in a 

Perkin Elmer Luminescence Spectrometer (Model: LS 50B) using a 1 ml/1 cm pathlength 

quartz cuvette. Intrinsic tryptophan fluorescence emission spectra from 300 – 510 nm were 

obtained using an excitation wavelength of 290 nm, whilst the emission fluorescence spectra 

of copper (II) quenching of the dicopper centre bound peroxide from 400 – 510 nm, were 
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obtained by excitation at 330 nm. All spectra were recorded at a scan rate of 50 nm/min with 

excitation and emission band widths set at 5 nm. A control to eliminate the possibility that a 

direct interaction between tryptophan residues and SDS could cause changes in fluorescence 

was performed. All spectra were corrected by subtracting a spectrum of buffer alone. SDS 

had no influence on the fluorescence spectra under the conditions described. 

 

Similar reactions were prepared to determine the effect of SUVs and free phospholipids on 

the tryptophan environment of arthropod Hc. Free phospholipids (a 50:50 mixture of 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE)) at final concentrations of 0.5, 

1.0 or 4.0 mM, or SUVs (composed of a 50:50 ratio of PC and PE) containing a total 

phospholipid concentration of 0.5 mM or 1.0 mM, were added instead of SDS. Preparation of 

these phospholipids and SUVs is described in section 7.2.8 below. Intrinsic tryptophan 

fluorescence emission spectra were recorded as detailed earlier. 

7.2.5 Dynamic Light Scattering. 

All dynamic light scattering (DLS) measurements were recorded using a Malvern, Nano ZS 

(Red Badge) Differential Light Scatterer (633 nm red He-Ne laser). Particle size (diameter) 

was determined for P. imperator and E. californicum Hc in the presence of varying 

concentrations of SDS. 200 µl reactions containing Hc at a final concentration of 1 mg/ml, 

were prepared in 100 mM sodium phosphate buffer, pH 7.5 containing SDS at a final 

submicellar concentration (0.5 mM for both Hc types) or micellar concentration (2.0 mM and 

5.0 mM in the case of P. imperator and E. californicum, respectively). A control reaction 

containing no SDS was prepared for each Hc type. All measurements were performed in a 

100 µl DTS2145 low volume glass cuvette. Particle size measurements were recorded using 
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15 scans of 10 s duration, at 10 minute intervals over a total period of 40 min.  A further 15 

scans of 10 second duration were recorded 24 h after the initial preparation of the reactions. 

All measurements were recorded at 20 ˚C. 

 

Dynamic light scattering was also used to confirm the CMC of SDS in 100 mM sodium 

phosphate buffer, pH 7.5. A series of SDS solutions (0.5 mM - 5.0 mM) were prepared in 

100 mM sodium phosphate buffer, pH 7.5. Particle size measurements were recorded as 

detailed above except no measurements were made after 24 hours. 

7.2.6 Absorbance Spectroscopy. 

Absorbance spectra of Hc were recorded at room temperature from 240 - 400 nm, in the 

presence of increasing concentrations of SDS (0 - 2.7 mM for L. polyphemus; 0 - 2.0 mM for 

P. imperator; 0 and 5.0 mM for E. californicum). 1 ml reactions containing 100 mM sodium 

phosphate pH 7.5 and SDS were prepared, and Hc added to a final concentration of 0.3 

mg/ml. Following 5 minutes incubation at room temperature (16 hours additional incubation 

was required for E. californicum Hc), spectra were recorded using a Jasco V-550 UV/Visible 

spectrophotometer. Changes in the binuclear copper centre were recorded by observing any 

changes in the 340 nm absorbance peak characteristic of Type-3 copper proteins. Protein 

concentrations were accurately determined by recording the absorbance at 280 nm, and using 

a value of 1.39 for the absorbance of a 1 mg/ml solution of LimHc in a cell of 1 cm 

pathlength cell, and a value of 1.10 for EuryHc and PanHc.  
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7.2.7 Inductively Coupled Plasma Optical Emission Spectroscopy. 

Due to the formation of insoluble copper phosphate upon addition of CuSO4 to the 100 mM 

sodium phosphate pH 7.5 buffer used in all other experiments, for ICP-OES analysis, 1 

mg/ml L. polyphemus Hc samples were prepared in 100 mM TrisHCl pH 7.5. Hc was 

incubated at room temperature for 5 minutes in the presence of no SDS, sub-micellar 

concentrations (1.0 mM) or micellar concentrations (2.0 mM) of SDS (the CMC of SDS in 

this buffer was determined by ITC). The protein concentration of each reaction was recorded 

before it was applied to a NAP-5 desalting column (GE Healthcare Cat# 17085301) 

equilibrated with 10 ml of 100 mM TrisHCl pH 7.5 buffer or buffer/SDS solution. 10 x 0.3 

ml fractions of eluant were collected in 0.5 ml Eppendorf tubes. The A280 of each fraction 

was recorded in a 0.5 ml quartz cuvette to determine the elution point of the protein. Protein 

peak and wash fractions were pooled to a final volume of 1 ml. Wash fractions are those 

which would contain copper were it released from the protein into solution. The elution point 

of free copper was determined from a control column to which a solution of CuSO4 in 100 

mM TrisHCl pH 7.5 was applied (contained 1000-fold more Cu (II) than 1 mg/ml L. 

polyphemus Hc, for spectroscopic detection purposes). 

 

ICP-OES measurements were recorded using a Perkin Elmer Optima DV4300 instrument. 

The machine was calibrated, and a standard curve of copper concentration constructed, using 

a series of dilutions of a CuSO4 solution, each of which was prepared in 100 mM TrisHCl, 

pH 7.5. Standards and pooled samples were diluted 5-fold with 5% Nitric acid prior to 

loading into the ICP-OES machine. Copper in each standard and sample was detected at the 
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characteristic copper emission wavelength 327.393 nm, which experienced the least 

interference from contaminating elements. 

7.2.8 Phospholipid and Small Unilamellar Vesicle Preparation. 

A solution of small unilamellar vesicles (SUVs) containing 5 mM phospholipids with a 50:50 

ratio of L-α-phosphatidylcholine (PC) (Sigma Cat # P-7443) and L-α-

phosphatidylethanolamine (PE) (Sigma Cat # P-8193), was prepared in 100 mM sodium 

phosphate pH 7.5 buffer using the Morrisey Lab protocol available online via Avanti Polar 

Lipids (Morrissey, Accessed: 2005.). The final product was a suspension of SUVs with 

diameters typically in the range of 15-50 nm (Avanti Polar Lipids Inc., Accessed: 2005.). A 5 

mM solution of phospholipids at a ratio of 50:50 PE:PC was also prepared using a similar 

protocol, with the exception that the final sonication step was not required. These SUV and 

phospholipid mixtures were used for activity assays and fluorescence spectroscopy as 

outlined in sections 7.2.1 and 7.2.4 respectively. 

7.3 Results 

7.3.1 SDS Induced Phenoloxidase Activity of Arthropod Hemocyanins. 

The SDS-induced PO activity of three arthropod Hcs was measured spectrophotometrically 

by recording the rate of formation of dopachrome and its derivatives at 475 nm. Two ancient 

chelicerate Hcs (Limulus polyphemus and Eurypelma californicum) and one more modern 

chelicerate Hc (Pandinus imperator) were used, and are referred to as LimHc, EuryHc and 

PanHc from hereon in. The CMC of SDS under the conditions used (100 mM sodium 

phosphate pH 7.5) was determined by isothermal titration calorimetry (1.085 ± 0.035 mM), 
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and verified by dynamic light scattering measurements of particle size (1.00 – 1.05 mM). For 

future purposes, CMC was taken to be 1.05 mM where the buffer used was 100 mM sodium 

phosphate pH 7.5. Each Hc was incubated for 5 minutes in the presence of SDS at a range of 

submicellar (0 – 1.05 mM) and micellar concentrations (1.05 – 40.0 mM).  

 

The results from these assays (Figure 51) indicate that for all three Hc types, SDS 

concentrations lower than approximately 0.7 mM do not elicit any significant increase in the 

detectable PO activity. At concentrations of 0.7 to 1.0 mM SDS, however, where monomeric 

SDS is assumed to predominate, PO activity is exhibited and increases to 70%, 89.2% and 

57.1% of the maximum activity in LimHc, PanHc and EuryHc respectively. 
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Figure 51: Induced phenoloxidase activity of hemocyanin from Limulus polyphemus, Pandinus 
imperator and Eurypelma californicum. Typical assays included 2 mM dopamine hydrochloride plus 
hemocyanin (concentrations in legend) in 1 ml of 100 mM sodium phosphate buffer, pH 7.5. 
Phenoloxidase activity (expressed in units where 1 unit = formation of 1 µmol of dopachrome per 
minute) was initiated by the addition of SDS, and after 5 minutes, followed by monitoring an increase in 
absorbance at 475 nm resulting from the formation of dopachrome and its derivatives. Inset provides 
clearer detail of the region of the main plot contained within the red box, and shows PO activity 
expressed as a percentage of the maximum activity achieved by each hemocyanin. A full version of the 
inset plot including data for SDS up to 40 mM can be found in Section 9.4 – Appendix D. 
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Above 1.0 mM SDS, micelles are present, and increasing SDS concentrations above 1 mM 

SDS results in the PO activity continuing to increase to a maximum activity of 2.78 units/mg 

for LimHc (at 8 – 10 mM SDS), 64.25 units/mg for PanHc (at 2 mM SDS) and 12.9 units/mg 

for EuryHc (at 3 – 10 mM SDS), where 1 unit is equal to 1 µmol of dopachrome formed per 

minute. The data demonstrates an apparent plateau of PO activity upon reaching the 

maximum activity in LimHc and EuryHc. At SDS concentrations higher than 10 mM, the PO 

activity of these Hcs decreases. The activity of PanHc, however, does not plateau but instead 

starts to decrease almost linearly at SDS concentrations above 2 mM. The activity plots of 

each Hc nonetheless take the form of a bell-shaped curve. Fewer data points are available for 

the EuryHc around the CMC of SDS due to a limited availability of stock protein. 

 

Control assays demonstrated that the conversion of dopamine to dopachrome could not be 

catalysed by (a) LimHc, PanHc or EuryHc in the absence of SDS and also (b) the presence of 

free copper in the assay solution (were it the case that copper ions were released from the Hc 

dicopper centre upon interaction with SDS). Further controls showed that the PO activity was 

directly related to the quantity of Hc present. 

7.3.2 The Binding of SDS to Arthropod Hemocyanin. 

Isothermal titration calorimetry (ITC) was used in the first instance to estimate the CMC of 

SDS in the two buffer systems used during experiments: 100 mM sodium phosphate pH 7.5 

and 100 mM TrisHCl pH 7.5. CMC was taken as the point at which no further significant 

endothermic heat changes (due to micelle dissociation) were apparent from the raw data of 

injections of micellar SDS into buffer (CMC is indicated by a blue arrow in Figure 52, Figure 

53, Figure 54 and Figure 55). 
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Figure 52: ITC data for binding of SDS to Limulus polyphemus hemocyanin. Upper trace in top panel 
shows a control in which SDS was injected into buffer alone to determine the CMC of SDS in 100 mM 
sodium phosphate buffer, pH 7.5, and also to correct for heat of dilution of the ligand. Lower trace in 
upper panel presents the data for injection of 30 mM SDS (0.15 mM per injection) into 0.77 ± 0.015 
mg/ml (10 µM) L. polyphemus hemocyanin monomers (equivalent to 210 nM of the 8 x 6-meric unit). 
The lower panel shows the calculated binding isotherm (integrated heat data), corresponding to the lower 
trace in the upper panel, and the best-fitted curve of the data. The calorimetry data shown were analysed 
by nonlinear regression in terms of a sequential binding site model using the MicroCal ORIGIN software 
package. 
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Figure 53: ITC data for binding of SDS to Pandinus imperator hemocyanin. Upper trace in top panel 
shows a control in which SDS was injected into buffer alone to determine the CMC of SDS in 100 mM 
sodium phosphate buffer, pH 7.5, and also to correct for heat of dilution of the ligand. Lower trace in 
upper panel presents the data for injection of 30mM SDS (0.15 mM per injection) into 0.77 ± 0.015 
mg/ml (10 µM) P. imperator hemocyanin monomers (equivalent to 420 nM of the 4 x 6-meric unit). The 
lower panel shows the calculated binding isotherm (integrated heat data), corresponding to the lower 
trace in the upper panel, and the best-fitted curve of the data. The calorimetry data shown were analysed 
by nonlinear regression in terms of a sequential binding site model using the MicroCal ORIGIN software 
package. 
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Figure 54: ITC data for binding of SDS to Eurypelma californicum hemocyanin. Upper trace shows the 
control in which SDS was injected into buffer alone to determine the CMC of SDS in 100 mM sodium 
phosphate buffer, pH 7.5, and also to correct for heat of dilution of the ligand. Lower trace presents the 
data for injection of 75mM (0.375 mM per injection) SDS into 0.77 ± 0.015 mg/ml (10 µM) E. 
californicum hemocyanin monomers (equivalent to 420 nM of the 4 x 6-meric unit). As is evident from 
this lower trace, no heat changes occurred as a result of SDS injection into the protein, therefore no data 
was available for analysis. 
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Figure 55: Determination of the critical micelle concentration of SDS in 100 mM TrisHCl pH 7.5 buffer, 
which was used in ICP OES experiments. The trace shows data for the injection of 20 mM SDS (0.1 mM 
per injection) into 100 mM TrisHCl pH 7.5 buffer alone. 
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On this basis, the CMC of SDS under all experimental conditions (which used the buffer 100 

mM sodium phosphate pH 7.5, except those for ICP-OES) was 1.085 ± 0.035 mM, whilst for 

ICP-OES (in which the buffer 100 mM TrisHCl pH 7.5 was used) the CMC was taken as 1.9 

mM. 
 

The binding of SDS monomers/micelles to LimHc, PanHc and EuryHc was also examined 

using ITC. Hc was titrated with SDS so that the calculated binding isotherm for each Hc was 

representative of binding of SDS to protein at concentrations ranging from below to above 

the CMC. Analyses of the data were performed by Margaret Nutley of the University of 

Glasgow Calorimetry Facility, by non-linear regression in terms of either a simple single or 

sequential binding site model, using the MicroCal ORIGIN software package. 

 

The ITC data for each Hc is presented in Figure 52, Figure 53 and Figure 54, and shows the 

binding isotherm analysed, where applicable, in terms of a sequential binding site model. 

Data analysed in terms of a single binding site model can be found in Section 9.5 – Appendix 

E. With the exception of EuryHc which produced no thermal response, binding of SDS to Hc 

at submicellar concentrations is initially mildly endothermic as a result of system 

perturbations during initial titration steps. Increasing SDS concentrations resulted in a 

biphasic exothermic response suggesting initial binding of SDS monomers to Hc followed by 

protein-micelle interactions. However due to the nature of the complexity of the binding 

isotherms no standard binding model could be used for their analysis and subsequently no 

thermodynamic data could be gleaned for the binding of SDS to Hc. 
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7.3.3 The Effect of SDS on Arthropod Hemocyanin Secondary Structure. 

Far-UV circular dichroism spectra of each Hc, in the presence of SDS at submicellar and 

micellar concentrations, were recorded to give an indication of the secondary structural 

changes elicited in Hc by monomers and micelles of this detergent (Figure 56, Figure 57 and 

Figure 58). Spectra show small yet significant changes in the secondary structure of all three 

Hcs. Changes in the molecular ellipticity at 208 nm and 220 – 222 nm are typically 

associated with alterations to a proteins α-helical content (Georgieva et al., 1998). In the 

present data, these wavelengths indicated an increase in total α-helical content of all three 

Hcs with increasing SDS concentration. This was confirmed upon analysis of the data with 

the secondary structure prediction tool DICHROWEB using SELCON 3 and reference set 3 

(kindly performed by Thomas Jess, formerly of the University of Glasgow BBSRC funded 

Circular Dichroism Facility) (Table 6). These analyses also revealed a concurrent significant 

decrease in β-sheet content, a slight increase in turns and a slight decrease in unordered 

structures for all three Hcs. Low monomeric SDS concentrations (0.4 mM) could elicit only 

minimal structural change. Upon incubation with higher monomeric SDS concentrations (0.7 

mM) 20.7 % and 42 % of the total observed change was recorded respectively. At around the 

CMC of SDS, LimHc had undergone 56.3 % of the total secondary structural change 

observed, whilst PanHc had shown between 42.0 – 69.0 % change. Only at higher micellar 

concentrations of SDS (3.5 mM for LimHc and 2.0 mM for PanHc) were there no further 

significant secondary structural changes recorded. Unlike LimHc and PanHc, EuryHc 

required a much longer incubation period with SDS in order to display similar secondary 

structural changes. Denaturation of EuryHc in the presence of SDS for 16 hours was not 

observed. 
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Figure 56: Far UV CD spectra of 0.3 mg/ml Limulus polypemus hemocyanin following 5 minute 
incubations with SDS across the range 0 – 3.5 mM. 
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Figure 57: Far UV CD spectra of 0.3 mg/ml Pandinus imperator hemocyanin following 5 minute 
incubations in SDS across the range 0 – 2.0 mM. 
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Figure 58: Far UV CD spectra of 0.3 mg/ml Eurypelma californicum hemocyanin in the absence of SDS 
and following a 5 minute and 16 hour incubation in 5.0 mM SDS. 
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Table 6: Percentage change in secondary structure content of each hemocyanin following incubation in 
SDS as detailed within the table. Secondary structure predictions were conducted on DICHROWEB, 
using SELCON 3 and reference set 3. 

Hemocyanin Strain Experimental Conditions Helix Sheet Turns Unordered 

Limulus polyphemus 0mM SDS 22.3% 25.0% 20.5% 29.2% 
Limulus polyphemus 3.5mM SDS  

– 5 minute incubation 
30.9% 17.3% 22.2% 28.8% 

Pandinus imperator 0mM SDS 26.5% 20.6% 22.6% 28.6% 
Pandinus imperator 2mM SDS  

– 5 minute incubation 
36.4% 14.6% 23.1% 26.9% 

Eurypelma californicum 0mM SDS 25.2% 21.6% 22.4% 28.5% 
Eurypelma californicum 5mM SDS  

–16 hours incubation 
37.5% 12.9% 23.1% 27.2% 
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7.3.4 The Effect of SDS on Arthropod Hemocyanin Tertiary and Quaternary 

Structure. 

Tertiary structural changes occurring in Hc upon activation of PO activity by SDS were 

investigated by recording the intrinsic tryptophan (Trp) fluorescence and near UV circular 

dichroism spectra of each Hc at sub-micellar and micellar SDS concentrations. Dynamic 

light scattering was also used to determine any changes in the particle size of PanHc and 

EuryHc under similar SDS conditions. 

7.3.4.1 Intrinsic Tryptophan Fluorescence. 

Increasing concentrations of SDS resulted in a marked 4 to 5-fold increase in the intensity of 

intrinsic Trp fluorescence of LimHc and PanHc and a 3-fold increase in EuryHc, although 

the latter required 16 hours additional incubation before displaying these spectral changes 

(Figure 59, Figure 60 and Figure 61). At low monomeric concentrations of SDS (0.4 mM) 

PanHc exhibits an increase in Trp fluorescence of 14.5% of the maximum change observed. 

LimHc is predicted to exhibit a similar increase although no data was collected at 0.4 mM 

SDS for this Hc. Upon incubation with 0.7 mM SDS, PanHc and LimHc display an increase 

in Trp fluorescence intensity of 53 % and 57.2  % of the maximum respectively. At and just 

above CMC (1.0 – 1.4 mM), the fluorescence intensity increase had almost reached the 

maximum, with LimHc showing 87.9 – 93.1% change and PanHc 91.8%. No further increase 

in Trp fluorescence intensity was observed in LimHc and PanHc upon reaching SDS 

concentrations of 2.7 mM and 2 mM respectively. 
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Figure 59: Fluorescence emission spectra of 0.1 mg/ml Limulus polyphemus hemocyanin in 100 mM 
sodium phosphate buffer pH 7.5, excited at 290 nm, following 5 minutes incubation in SDS across the 
range 0 – 2.7 mM. 
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Figure 60: Fluorescence emission spectra of 0.1 mg/ml Pandinus imperator hemocyanin in 100 mM 
sodium phosphate buffer pH 7.5, excited at 290 nm, following 5 minutes incubation in SDS across the 
range 0 – 2.0 mM. 
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Figure 61: Fluorescence emission spectra of 0.1 mg/ml Eurypelma californicum hemocyanin in 100 mM 
sodium phosphate buffer pH 7.5, excited at 290nm, in the absence of SDS and following 5 minutes or 16 
hours incubation in 5.0 mM SDS. 
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Eury Hc displayed only a minimal increase (13.0%) in Trp fluorescence intensity following 5 

minutes in the presence of 5 mM SDS, however a further incubation of 16 hours at room 

temperature resulted in an increase similar to that exhibited by LimHc and PanHc incubated 

for 5 minutes in 0.4 – 0.7 mM SDS. 

 

A blue shift was observed in the Trp fluorescence peak of both LimHc and PanHc upon 

incubation with SDS at concentrations of 0.7 mM and above (Table 7). The maximum blue 

shift recorded in each Hc was from 341 to 339 nm (0 – 2.1 mM SDS) in LimHc and from 

341 to 335.5 nm (0 – 2.0 mM SDS) in PanHc. Conversely EuryHc initially underwent a red 

shift in the Trp fluorescence peak from 337.5 nm to 347 nm following 5 minutes in the 

presence of 5 mM SDS. The peak subsequently exhibited a blue shift to 342 nm following a 

further 16 hours under these conditions. 

 

To eliminate the possibility that the changes in intrinsic Trp fluorescence intensity were due 

to local effects of SDS monomers/micelles on Trp residues, rather than conformational 

change, a control experiment was conducted in which the model compound N-acetyl-L-

tryptophan amide was incubated with SDS. The spectra recorded (Figure 62) illustrate that 

SDS had no significant effect on the fluorescence intensity or peak wavelength of this 

compound. Any change in Trp fluorescence exhibited upon incubation of Hc with SDS could 

therefore be confidently attributed to structural change. 
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Table 7: Upon excitation at 290 nm, the tryptophan fluorescence peak wavelength of Limulus 
polyphemus and Pandinus imperator hemocyanin in 100 mM sodium phosphate buffer pH 7.5, exhibits a 
blue-shift in the presence of increasing concentrations of SDS. Eurypelma californicum hemocyanin on 
the other hand exhibits a red-shift after 5 minutes incubation. Following 16 hours incubation however, 
the latter displays a blue shift in the tryptophan fluorescence peak wavelength. 

SDS concentration 
(mM) 

Limulus Hc Trp 
Fluorescence Peak (nm) 

Pandinus Hc Trp 
Fluorescence Peak (nm) 

Eurypelma Hc Trp 
Fluorescence Peak (nm)

0 341.0 341.0 337.5 
0.4 -------- 341.0 ----- 
0.7 340.5 338.0 ----- 
1.0 340.0 ----- ----- 
1.4 340.0 338.5 ----- 
2.0 ----- 335.5  
2.1 339.0 ----- ----- 
2.7 340.0 ----- ----- 
5.0 ----- ----- 347.0 

5.0 (16 hours 
incubation) 

----- ----- 342.0 
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Figure 62: Fluorescence emission spectra of 2 µM N-acetyl tryptophan amide in 100 mM sodium 
phosphate buffer pH 7.5 at 290nm, in the absence of SDS and following 5 minutes incubation in 2.7 mM 
SDS. 
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7.3.4.2 Aromatic Amino Acid Near UV Circular Dichroism Spectra. 

Near UV circular dichroism spectra recorded at 260 - 305 nm provided information on the 

effects of increasing concentrations of SDS on the microenvironment of the aromatic 

residues, and thus the tertiary structure, of each Hc. This technique was also used to ensure 

that the observed effects of SDS on Hc fluorescence were related to conformational changes. 

 

The spectra of EuryHc (Figure 63) indicated no significant tertiary structural changes in this 

protein after 5 minutes incubation in 5 mM SDS. Only following a further 16 hours under 

these conditions were there significant spectral changes, particularly at wavelengths 

associated with tryptophan (290 – 305 nm) and to a lesser extent phenylalanine (260 - 270 

nm). The overall shape of the EuryHc near UV aromatic amino acid spectrum changes 

following 16 hours incubation in 5 mM SDS, whereas following 5 minutes incubation the 

spectra of LimHc and PanHc retain their general shape undergoing only a change in 

intensity. The spectra of LimHc and PanHc (Figure 64 and Figure 65 respectively) indicated 

that SDS has an almost immediate effect on the tertiary structure of these Hcs.  
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Figure 63: Near UV circular dichroism spectra of 0.3 mg/ml Eurypelma californicum hemocyanin in 100 
mM sodium phosphate buffer pH 7.5, in the absence of SDS and following either 5 minutes or 16 hours 
incubation in 5.0 mM SDS. Molecular ellipticity at 260 - 305 nm is associated with the 
microenvironment of protein aromatic residues. The 340 nm peak is a characteristic near UV signal of 
the Type-3 copper centre. 
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Figure 64: Near UV circular dichroism spectra of 0.3 mg/ml Limulus polyphemus hemocyanin in 100 
mM sodium phosphate buffer pH 7.5 following 5 minutes incubation in SDS across the range 0 – 3.5 
mM. Molecular ellipticity between 260 - 305 nm is associated with the microenvironment of protein 
aromatic residues. The 340 nm peak is a characteristic near UV signal of the Type-3 copper centre. 
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Figure 65: Near UV circular dichroism spectra of 0.3 mg/ml Pandinus imperator hemocyanin in 100 
mM sodium phosphate buffer pH 7.5 following 5 minutes incubation in SDS across the range 0 – 2.0 
mM. Molecular ellipticity at 260 - 305 nm is associated with the microenvironment of protein aromatic 
residues. The 340 nm peak is a characteristic near UV signal of the Type-3 copper centre. 
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The presence of low monomeric SDS concentrations (0 – 0.7 mM) elicits small increases in 

the intensity of the negative aromatic residue signal of LimHc, whilst PanHc appears to 

experience a more significant increase by only 0.4 mM SDS. However, at concentrations 

approaching CMC (0.8 – 1.0 mM) and higher, SDS causes rather significant tertiary 

structural changes in both Hc types. The effect of SDS on Hc at these concentrations is the 

reverse of the lower submicellar concentrations. Micellar concentrations of SDS result in a 

reduction in the intensity of the negative spectral peaks in all regions of the near-UV circular 

dichroism spectra between 260 and 305 nm. No further change in the aromatic residue 

spectral peaks was evident in LimHc and PanHc upon incubation with 3.5 and 2.0 mM SDS 

respectively. 

 

Control experiments were performed to ensure that protein concentration did not have any 

effect on the near-UV circular dichroism spectra. Spectra were recorded of LimHc at a final 

concentration of 0.3, 0.6 or 0.9 mg/ml, each in the presence of 0, 1.4 and 3.5 mM SDS. When 

all nine spectra were overlaid (Figure 66) it was clear that the spectra were almost super-

imposable indicating no influence of protein concentration of the spectral measurements. 
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Figure 66: Near UV circular dichroism spectra of 0.3, 0.6 and 0.9 mg/ml Limulus polyphemus 
hemocyanin in 100 mM sodium phosphate buffer pH 7.5 following 5 minutes incubation is SDS at 0, 1.4 
and 3.5 mM. Molecular ellipticity at 260 - 305 nm is associated with the microenvironment of protein 
aromatic residues. The 340 nm peak is a characteristic near UV signal of the Type-3 copper centre. The 
spectra indicate that protein concentration had no effect on the circular dichroism spectra at the 
wavelengths and SDS concentrations concerned. 
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7.3.4.3 Dynamic Light Scattering. 

Dynamic light scattering was used to determine the effect of submicellar and micellar 

concentrations of SDS on the particle size of PanHc and EuryHc over a 24 hour period (1440 

minutes). Measurements of Hc particle size were recorded in the presence of 0.5 mM (both 

Hcs), 2 mM (PanHc) and 5 mM (EuryHc) over 24 hours. Figure 67 illustrates the change in 

particle diameter with time. The plots indicate that these Hcs retain a diameter of 

approximately 20 nm during the first 40 minutes incubation in either sub-micellar or micellar 

SDS, which is the time period within which most other technique measurements were 

recorded. Following a 24 hour (1440 mins) incubation period however, whilst EuryHc 

continues to retain its quaternary structure, PanHc appears to have experienced a reduction in 

particle size to approximately 10 nm diameter. 

 

DLS was used to verify the results of ITC data which were used to determine the CMC of 

SDS in 100 mM sodium phosphate, pH 7.5. ITC suggested the CMC of SDS was 1.085 ± 

0.035 mM. Figure 68 illustrates the formation of SDS micelle particles between 1.0 and 1.05 

mM. On the combined basis of ITC and DLS data, the CMC of SDS for all future 

experiments was taken as 1.05 mM. 
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Figure 67: Determination of the stability of Pandinus imperator and Eurypelma californicum 
hemocyanin upon incubation with sub-micellar and micellar concentrations of SDS. Dynamic light 
scattering was used to monitor changes in particle size (diameter) over 24 hours, of 1 mg/ml hemocyanin 
samples in 100 mM sodium phosphate buffer pH 7.5, incubated with 0.5 mM SDS, 2.0 mM (P. 
imperator Hc only) or 5.0 mM (E. californicum Hc only) SDS. 
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Figure 68: Determination of SDS critical micelle concentration (CMC) in 100 mM sodium phosphate 
buffer pH 7.5. Dynamic light scattering was used to record changes in particle size (diameter and width) 
of SDS when present at increasing concentrations in this buffer. The results show that the CMC of SDS 
in this buffer lies between 1.00 and 1.05 mM. 
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7.3.5 The Effect of SDS on the Arthropod Hemocyanin Type-III Dicopper Centre. 

7.3.5.1 Absorption spectra. 

When molecular dioxygen is bound at the dicopper centre of Hc, a unique absorption peak 

arises at ~ 340 nm as a result of the O2
2-  Cu (II) charge transfer transitions (Solomon et al., 

1990). The band at 280 nm is due to the presence of aromatic amino acid residues (Georgieva 

et al., 1998). Following a 5 minute incubation of either LimHc or PanHc with increasing 

concentrations of SDS, the intensity of the 340 nm peak of LimHc and PanHc decreased with 

increasing concentrations of SDS following a 5 minute incubation period (Figure 69 and 

Figure 70 respectively). At concentrations of SDS around the CMC (0.8 – 1.2 mM) the 340 

nm absorbance peak is reduced by 47.2% in LimHc and 28.7 - 56% in PanHc, whilst the 

signal becomes completely absent upon incubation with 2.7 mM and 2.0 mM SDS 

respectively. As in all earlier described results, EuryHc demonstrated no significant change 

in the intensity of its 340 nm absorption peak upon 5 minute incubation with either 

submicellar or micellar concentrations of SDS (Figure 71). Only following 16 hours 

incubation in SDS were comparable changes in the absorption spectra detected (Figure 72). 
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Figure 69: Absorbance spectra of 0.3 mg/ml Limulus polyphemus hemocyanin in 100 mM sodium 
phosphate buffer pH 7.5 following 5 minutes incubation in SDS across the range 0 – 2.7 mM. 
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Figure 70: Absorption spectra of 0.3 mg/ml Pandinus imperator hemocyanin in 100 mM sodium 
phosphate buffer pH 7.5 following 5 minutes incubation in SDS across the range 0 – 2.0 mM. 
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Figure 71: Absorption spectra of 0.3 mg/ml Eurypelma californicum hemocyanin in 100 mM sodium 
phosphate buffer pH 7.5 following 5 minutes incubation in SDS across the range 0 – 10 mM. 
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Figure 72: Absorption spectra of 0.3 mg/ml Eurypelma californicum hemocyanin in 100 mM sodium 
phosphate buffer pH 7.5 following 5 minutes or 16 hours incubation in the absence or presence of 5.2 
mM SDS. 
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7.3.5.2 Type-3 Copper Centre Near UV Circular Dichroism Spectra. 

The near UV circular dichroism (CD) spectra of arthropod Hc not only provided information 

about the tertiary structure of the protein (discussed in section 7.3.4.2), but also clues as to 

changes in the nature of the copper-dioxygen charge transfer at the dicopper centre. Oxy-Hc 

results in a very large distinct negative ellipticity at ~ 340 nm. 

 

From Figure 64 and Figure 65 in section 7.3.4.2, which show the near UV CD spectra of 

LimHc and PanHc respectively, it is evident that increasing concentrations of SDS have the 

effect of reducing the intensity of the 340 nm signal, similar to the effect on the 340 nm 

absorption band for these Hcs. LimHc and PanHc show no, or a minimal, reduction in the 

intensity of this peak when the concentration of SDS is below 0.7 and 0.8 mM respectively. 

Both at and above these concentrations, SDS causes a significant reduction in the intensity of 

the 340 nm near UV CD spectral peak of both Hcs. Concentrations within range of the CMC 

(0.8 – 1.2 mM) caused a 53.3 – 75.8 % reduction in the PanHc peak and a 30.0% reduction in 

the LimHc peak. No further significant reduction in the 340 nm CD signal was evident at 

concentrations above 1.6 and 3.5 mM in PanHc and LimHc respectively. The 340 nm near 

UV CD spectral peak of EuryHc (Figure 63) was not significantly affected by 5 minute 

incubations in SDS at either submicellar or micellar concentrations. However, following 16 

hours incubation in 5.0 mM SDS, a significant reduction in the signal at this wavelength was 

recorded, although the spectral pattern between 300 and 330 nm showed differences in shape 

in comparison to that of LimHc and PanHc. This may, however, have been as a result of 

increased signal contributions from the aromatic amino acids, especially tryptophan. 
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7.3.5.3 Fluorescence Spectra at 330nm Excitation. 

Type-3 copper proteins exhibit a characteristic fluorescence emission peak at 415 – 445 nm 

when excited between 325 and 345 nm. This fluorescence is in addition to the 340 nm 

intrinsic tryptophan emission peak observed when these proteins are excited at 280 -295 nm. 

Indications are that histidine carboxyl groups are responsible for the intense 415 – 445 nm 

fluorescence peak, however the close proximity or bonding of Cu (II) to these fluorophores 

in Type-3 copper proteins, results in the quenching of this fluorescence (Bacci et al., 1983). 
 

This method was used to provide preliminary indications as to whether the copper ions at the 

Hc dicopper centre were remaining bound upon incubation with SDS, since the absence of a 

340 nm absorption peak is a characteristic of apo-Hc (Georgieva et al., 1998). Upon 

excitation at 330 nm, were the histidine coordinated copper ions in Hc being lost from the 

dicopper centre, it was expected that there would be a significant increase in the intensity of 

the 415 – 445 nm fluorescence emission band with increasing SDS concentrations. However, 

neither LimHc, PanHc nor EuryHc (Figure 73, Figure 74 and Figure 75 respectively) 

demonstrated such an increase following either 5 minutes or 16 hours (EuryHc only) 

incubation in submicellar and micellar concentrations of SDS. 
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Figure 73: Fluorescence spectra of 0.1 mg/ml Limulus polyphemus hemocyanin in 100 mM sodium 
phosphate buffer pH 7.5 excited at 330 nm following 5 minutes incubation with 0 – 2.7 mM SDS. 



 

 204

4

6

8

10

12

14

16

400 420 440 460 480 500
Wavelength (nm)

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 (a
. u

.)

0mM SDS

2mM SDS

 

Figure 74: Fluorescence spectra of 0.1 mg/ml Pandinus imperator hemocyanin in 100 mM sodium 
phosphate buffer pH 7.5 excited at 330 nm following 5 minutes incubation with 0 or 2 mM SDS. 
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Figure 75: Fluorescence spectra of 0.1 mg/ml Eurypelma californicum hemocyanin in 100 mM sodium 
phosphate buffer pH 7.5 excited at 330 nm following 5 minutes or 16 hours incubation with 5 mM SDS. 
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7.3.5.4 ICP OES. 

Inductively coupled plasma optical emission spectroscopy (ICP OES) is a very sensitive 

technique which provides quantitative data on the concentration of selected ions within a 

sample. Following on from the results of fluorescence measurements presented in section 

7.3.5.3, this method was used to more confidently determine whether the dicopper centre 

copper ions remained associated with Hc during incubation with SDS. LimHc was incubated 

in either 1.0 or 2.0 mM SDS before the sample was applied to a desalting column. Fractions 

which contained the protein and those which would contain copper were it released into 

solution, were pooled separately and subjected to ICP OES analysis. 

 

The results presented in Table 8 support the results from fluorescence measurements in 

section 7.3.5.3. The actual copper concentration in each protein fraction sample was in good 

agreement with the expected concentration, which was calculated on the basis that both 

copper ions remained associated with the LimHc dicopper centre whether sub-micellar or 

micellar concentrations of SDS were present. Those fractions which would be expected to 

contain copper were it released from LimHc upon SDS incubation, generated negative values 

of copper concentration, essentially indicating that no copper was present in these fractions. 
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Table 8: ICP-OES analysis of Limulus polyphemus hemocyanin in the absence and presence of SDS. 
Hemocyanin in 100 mM sodium phosphate buffer, pH 7.5, was incubated with no SDS, sub-micellar or 
micellar concentrations of SDS, then applied to a NAP-5 desalting column equilibrated with respective 
concentrations of SDS. Protein peak and wash eluant were pooled separately and diluted 5-fold in 5% 
nitric acid prior to ICP-OES analysis. The ‘Expected’ copper concentrations shown were calculated for 
the diluted samples, and on the basis that both copper ions remained associated with each hemocyanin 
subunit upon incubation with SDS. Protein concentration was determined from UV absorbance 
measurements at 280nm using a value of 1.39 for a 1 mg/ml L. polyphemus hemocyanin solution, which 
in turn contained 1.7 mg/L Cu2+. The negative values of the ‘Actual’ wash eluant are due to the copper 
concentrations being lower than those in the 0 µg/L standard used for calibration of the ICP-OES 
equipment. Effectively there was no Cu in these washes. 

Copper concentration of 
protein peak eluant (µg/L) 

Copper concentration of wash 
eluant (µg/L) 

Sample Analysed 

Expected Actual Expected Actual 
Hemocyanin  
+ buffer only 

46.2 51.0 ± 1.9 0 -5.54 ± 0.11 

Hemocyanin  
+ 1.0 mM SDS 

51.0 55.4 ± 0.9 0 -4.07 ± 0.47   

Hemocyanin  
+ 2.0 mM SDS 

45.2 48.7 ± 0.8 0 -2.80 ± 0.18 
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For the purposes of ICP OES, it was necessary to use a 100 mM TrisHCl pH 7.5 buffer due 

to the formation of insoluble copper carbonate upon addition of copper sulphate to the 100 

mM sodium phosphate pH 7.5 buffer used in all other experiments. An assay of both LimHc 

and PanHc PO activity, in the presence of sub-micellar and micellar concentrations of SDS, 

was performed in 100 mM TrisHCl, pH 7.5 buffer to ensure equivalent activity could be 

elicited to that recorded in sodium phosphate buffer, which it could. ITC was used to 

determine the CMC of SDS in 100 mM TrisHCl pH 7.5 buffer (~1.9 mM) as detailed in 

section 7.3.2. 

7.3.6 Correlation of Data from PO Activity Assays and Fluorescence and Far UV 

Circular Dichroism Spectroscopy. 

The relationship between the data from Hc PO activity assays versus data from Trp 

fluorescence and far UV CD spectroscopic measurements with increasing concentrations of 

SDS (Figure 76), suggested that tertiary structural changes preceded secondary structural 

changes in relation to SDS concentration in both LimHc and PanHc. The plot also highlights 

the necessity for the presence of SDS micelles to induce the optimal structural change 

required to elicit the maximum PO activity in these Hc molecules. 
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Figure 76: Relationship between the phenoloxidase activity data, far UV circular dichroism 
spectroscopic data and tryptophan fluorescence data of L. polyphemus and P. imperator hemocyanin 
following incubation with submicellar and micellar concentrations of SDS. E. californicum hemocyanin 
data was not included due to a lack of any spectroscopic change in this hemocyanin over the 5 minute 
time period during which most data was collected. The percentage of maximum activity and the 
percentage of total structural change remaining are plotted against increasing SDS concentration. For 
both hemocyanin types, phenoloxidase activity was correlated with the far UV circular dichroism 
measurements made at 207 nm and the tryptophan fluorescence measurements made at λmax. 
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7.3.7 The Effect of Non-ionic Detergents on the Secondary and Tertiary Structure 

of Limulus polyphemus Hemocyanin Subunit II. 

The effect of the non-ionic detergent n-Nonyl-β-D-glucopyranoside (NBDG) on Hc 

structure, selected on the basis that it has a similar CMC value to SDS,  was investigated by 

recording the near and far UV spectra of Limulus polyphemus Hc subunit II (LpII). These 

experiments were conducted using a single subunit species of this Hc (supplied from Sigma 

as a lyophilised powder rather than a blue liquid) which did not give rise to the 340 nm near 

UV signal typical of the oxy-Hc Type-3 copper centre. Nonetheless, the effects of NBDG on 

the secondary and tertiary structure of LpII in comparison to SDS could still be investigated. 

Preliminary indications were that the secondary structure of Hc was unaffected by the non-

ionic detergent NBDG (Figure 77), whilst SDS at the same concentration caused similar 

secondary structural change to that described for the whole L. polyphemus Hc molecule 

(LimHc) in section 7.3.3. NBDG was also unable to induce similar changes to SDS in the 

tertiary structure of LpII, indicated by no decrease in the intensity of the 260 – 305 nm 

signals of the near UV CD spectra (Figure 78). 
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Figure 77: Far UV circular dichroism spectra (top panel) of Limulus polyphemus hemocyanin subunit II 
in 100 mM sodium phosphate buffer, pH 7.5 (green) and following 5 minutes incubation in the presence 
of 2.7 mM SDS (maroon) or 2.7 mM NBDG (dark blue) . 
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Figure 78: Near UV circular dichroism spectra (top panel) of Limulus polyphemus hemocyanin subunit II 
in 100 mM sodium phosphate buffer, pH 7.5 (green) and following 5 minutes incubation in the presence 
of 2.7 mM SDS (maroon) or 2.7 mM NBDG (dark blue). 
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7.3.8 Reversibility of the Effects of SDS on Arthropod Hemocyanin. 

The results presented thus far have provided an indication of the functional and structural 

changes which take place in arthropod Hc upon incubation of the protein with the ionic 

detergent SDS at both sub-micellar and micellar concentrations. Here activity assay and CD 

experiments were conducted to evaluate the reversibility of the observed changes in Hc, i.e. 

will removal of micellar SDS result in a reduction in PO activity with a concurrent reversal 

of the structural change. 

 

SDS cannot be removed from solution by simple dialysis. Therefore reactions containing 

SDS at a concentration above CMC were prepared as normal and then diluted in 100 mM 

sodium phosphate pH 7.5 buffer to reduce the SDS concentration to below CMC. Whilst this 

would also dilute the protein, earlier experiments indicated that CD spectra were unaffected 

by protein concentration and PO activity was directly related to protein concentration. 

 

Upon incubation with micellar concentrations of SDS (1.1 mM), LimHc and PanHc 

demonstrated activities of 1.11 and 59 Units/mg of protein respectively (where 1 unit = the 

formation of 1 µmol of dopachrome per minute). A 3-fold dilution of these reactions in 100 

mM sodium phosphate pH 7.5 buffer exhibited no measurable PO activity. These steps were 

repeated with the exception that an additional excess of dopamine substrate was included in 

the buffer used for dilution of the reactions, to ensure that substrate was not limiting. Once 

again there was no detectable PO activity in the diluted LimHc reaction; however the diluted 

PanHc reaction exhibited an activity of 15.6 Units/mg protein, which is comparable with the 
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activity of the non-diluted reaction allowing for errors during dilution. Whilst it may be the 

case that the induction of LimHc PO activity is reversible, it is plausible that LimHc did 

possess PO activity when additional substrate was included during dilution. Poor 

spectrophotometer sensitivity may, however, have resulted in failure to detect any very low 

levels of activity present. 

 

Near UV CD spectra were recorded for LimHc and PanHc (Figure 79 and Figure 80), whilst 

only LimHc was subjected to far UV CD (Figure 81) measurements due to a limited supply 

of PanHc. In all instances, the spectra were recorded for Hc (i) in the absence of SDS, (ii) in 

the presence of 1.1 mM SDS, following a 5 minute incubation, and (iii) 5 minutes after 

diluting reaction ‘(ii)’ 3-fold in 100 mM sodium phosphate pH 7.5 buffer. In the presence of 

0 and 1.1 mM SDS, far UV and near UV spectra were consistent with the CD data presented 

in sections 7.3.4.2 and 7.3.5.2 for these Hc types. 

 

Together the results suggested that the SDS induced PO activity and dicopper centre 

perturbations of LimHc and PanHc could not be reversed; not at least by simple dilution of 

the reaction. However the structural changes which occurred at the secondary level 

apparently could be reversed by diluting the SDS present, back to concentrations which were 

below the CMC. 
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Figure 79: Near UV CD spectra of 0.9 mg/ml Limulus polyphemus hemocyanin in 100 mM sodium 
phosphate buffer, pH 7.5, before and after 5 minutes incubation with 1.1 mM SDS, then 5 minutes after 
the solution was diluted by a third to bring the SDS concentration to below CMC (0.36 mM), 
subsequently also diluting the hemocyanin to 0.3 mg/ml. 
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Figure 80: Near UV CD spectra of 0.9 mg/ml Pandinus imperator hemocyanin in 100 mM sodium 
phosphate buffer, pH 7.5 before and after 5 minutes incubation with 1.1 mM SDS, then also 5 minutes 
after the solution was diluted by a third to bring the SDS concentration to below CMC (0.36 mM), 
subsequently also diluting the hemocyanin to 0.3 mg/ml. 
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Figure 81: Far UV CD spectra of 0.3 mg/ml Limulus polyphemus hemocyanin in 100 mM sodium 
phosphate buffer, pH 7.5, before and after 5 minutes incubation with 1.1 mM SDS then once SDS was 
diluted out to 0.36 mM, below CMC. 
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7.3.9 The Effect of Phospholipids and Liposomes on Arthropod Hemocyanin. 

Phospholipids and SDS share common structural features. The monomers of each have a 

hydrophobic tail and hydrophilic head region, and can aggregate to form larger spherical 

multimeric structures known as liposomes or micelles respectively. They are also both 

amphiphilic in nature. Therefore, given the effects that monomeric and micellar SDS have 

been shown to have on Hc structure and function, phospholipids and liposomes were 

considered as potential in vivo elicitors of Hc PO activity. To investigate this possibility, 

phospholipids and liposomes were incubated with LimHc and PanHc in activity assays and 

fluorescence spectroscopy experiments. The resulting preliminary data was compared with 

that from equivalent experiments using SDS monomers and micelles, to determine whether 

phospholipids/liposomes could induce comparable activity levels and changes in the 

tryptophan fluorescence in these Hc types. A 50:50 mixture of the phospholipids 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was used in all the 

experiments, either as monomers or in the form of small unilamellar vesicles (SUVs). The 

activity assays demonstrated that no measurable PO activity could be elicited in either 

LimHc or PanHc upon 5 minute incubation with either lipids or liposomes at either 0.5 or 1.0 

mM total phospholipid. 

 

Fluorescence spectra of LimHc and PanHc indicated that, despite no induction of PO 

activity, there are small changes in the environment of at least some of the tryptophan 

residues of both Hc types in the presence of either phopholipids (Figure 82 and Figure 83) or 

SUVs (Figure 84 and Figure 85). 
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Figure 82: Fluorescence spectra of 0.1 mg/ml Limulus polyphemus hemocyanin in 100 mM sodium 
phosphate buffer, pH 7.5 following 5 minutes incubation with a 50:50 mixture of the phospholipids 
phosphatidylethanolamine and phosphatidylcholine at final concentrations between 0 and 4 mM as 
indicated in the legend. 
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Figure 83: Fluorescence spectra of 0.1 mg/ml Pandinus imperator hemocyanin in 100 mM sodium 
phosphate buffer, pH 7.5 following 5 minutes incubation with a 50:50 mixture of the phospholipids 
phosphatidylethanolamine and phosphatidylcholine at final concentrations between 0 and 4 mM as 
indicated in the legend. 
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Figure 84: Fluorescence spectra of 0.1 mg/ml Limulus polyphemus hemocyanin in 100 mM sodium 
phosphate buffer, pH 7.5 following 5 minutes incubation with 0, 0.5 or 1.0 mM small unilamellar 
vesicles, composed of a 50:50 ratio of the phospholipids phosphatidylethanolamine and 
phosphatidylcholine. 
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Figure 85: Fluorescence spectra of 0.1 mg/ml Pandinus imperator hemocyanin in 100 mM sodium 
phosphate buffer, pH 7.5 following 5 minutes incubation with 0, 0.5 or 1.0 mM small unilamellar 
vesicless, composed of a 50:50 ratio of the phospholipids phosphatidylethanolamine and 
phosphatidylcholine. 
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The effect was however different to that exhibited upon incubation of these Hc types with 

SDS which, as detailed in section 7.3.4.1, caused a significant increase in the intensity of the 

340 nm tryptophan fluorescence emission peak with a blue-shift in the emission maximum. 

Instead the presence of increasing concentrations of phospholipids or SUVs caused a slight 

decrease in the intensity of the 340 nm emission peak, with a similar concurrent blue-shift in 

the wavelength of the emission peak maximum. Incubation of LimHc or PanHc with 

phospholipids at final concentrations of 0.5 or 1.0 mM causes a similar reduction in the peak 

intensity of approximately 50% of the maximum change seen upon incubation with 4.0 mM 

phospholipids. When similar concentrations of phospholipids in the form of SUVs were 

incubated with LimHc and PanHc, a greater reduction in the 340 nm peak intensity was 

apparent. The presence of SUVs containing 0.5 mM total phospholipid caused a peak 

intensity reduction of 67.3% for LimHc and 70.4% for PanHc respectively, where the change 

caused by 1.0 mM was taken as 100%. Similarly, the blue shift of the emission maximum is 

more profound in the presence of SUVs (Table 9) in comparison to that elicited by the 

phospholipids (Table 10). Between 0 and 1.0 mM total phospholipid, SUVs cause a 5 and 10 

nm blue shift of the peak wavelength compared to a 3 and 0.5 nm blue shift caused by the 

presence of phospholipids, in LimHc and PanHc respectively. 
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Table 9: Upon excitation at 290 nm, the emission fluorescence peak of Limulus polyphemus and 
Pandinus imperator hemocyanin exhibits a blue-shift in the presence of increasing concentrations of 
SUVs. 

SUV concentration  
(mM) 

Limulus Hc Trp Fluorescence 
Peak (nm) 

Pandinus Hc Trp Fluorescence 
Peak (nm) 

0 338.5 340.0 
0.5 338.0 333.5 
1.0 333.5 330.0 

 

Table 10: Upon excitation at 290 nm, the emission fluorescence peak of Limulus polyphemus and 
Pandinus imperator hemocyanin exhibits a blue-shift in the presence of increasing concentrations of 
phospholipids. 

Phospholipid  concentration  
(mM) 

Limulus Hc Trp Fluorescence 
Peak (nm) 

Pandinus Hc Trp Fluorescence 
Peak (nm) 

0 342.0 338.5 
0.5 339.5 340.0 
1.0 339.5 339.0 
4.0 339.0 338.0 
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Controls demonstrated that the differences in the fluorescence spectra were not a result of a 

local quenching effect of Trp residues by phospholipids or SUVs. In summary, fluorescence 

intensity changes induced by the presence of phospholipids/SUVs are the opposite of those 

reported when adding SDS to the Hc. However, akin to the effect of SDS on these Hc types, 

phospholipids and SUVs cause a blue-shift in the position of the fluorescence peak. The 

blue-shift in the presence of SUVs is greater than in the presence of phospholipids in both 

Hcs. 

7.4 Discussion 

7.4.1 Introduction 

The structural and functional changes taking place in arthropod Hc upon incubation with the 

anionic detergent SDS were investigated using a number of biophysical techniques. The 

primary aim was to characterise changes associated with the presence of SDS monomers and 

micelles, in Hc from the ancient chelicerates L. polyphemus and E. californicum and the 

more modern chelicerate P. imperator. Some additional experiments were also conducted to 

provide preliminary indications of the reversibility of the effects of SDS, and the effect of 

non-ionic detergents and phospholipids on the structure and function of arthropod Hc.  

7.4.2 The SDS Induced PO Activity of Arthropod Hemocyanin Suggests Enzyme-

Micelle Interaction. 

The effect of increasing concentrations of SDS on induction of arthropod Hc PO activity was 

investigated spectroscopically by following the formation of dopachrome at 475 nm. SDS at 
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concentrations exceeding the CMC was required to induce the maximum possible activity in 

all three Hc types. Beyond the optimal SDS concentration, activity was found to decline 

yielding a bell-shaped activity plot indicating an interaction between the protein and SDS 

micelles and/or the sequestering of substrate within micelles, during which the enzymatic 

activity reacts with free substrate (Celej et al., 2004). This was the first report of such a 

relationship between SDS concentration and the PO activity which it elicits in arthropod Hc 

in vitro.  

 

There have been a number of studies and models proposed for the mechanism of enzyme 

denaturation by surfactants such as SDS. However more recently, several papers have been 

published which report surfactant enhanced activity of some enzymes (Spreti et al., 2001; 

Spreti et al., 1999; Celej et al., 2004; Kanade et al., 2006; Chen et al., 2006; Viparelli et al., 

2003). The PO activity of arthropod Hc induced by increasing SDS concentrations, revealed 

a similar pattern to that detailed in the above papers for different enzymes in the presence of 

different surfactants. Celej et al (2004) described the superactivation of α-chymotrypsin 

activity by the cationic detergent CTABr (hexadecyltrimethylammonium bromide). Whilst α-

chymotrypsin activity increased only in the presence of CTABr micelles, the activity plot 

was nonetheless a bell-shaped curve akin to that described for the current SDS induced Hc 

PO activity. A more recent paper by Kanade et al (2006) found that the activity of field bean 

(Dolichos lablab) polyphenol oxidase is superactivated by the anionic detergent SDS. Again 

the activity measurements yielded a bell-shaped curve with activity increasing and 

decreasing almost linearly to and from the activity maximum, which was achieved at the 

CMC of SDS under the conditions used (1.19 mM). A further similarity to the present 

research was that at low monomeric concentrations, bean polyphenol oxidase demonstrated 
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only very minimal activity, which rapidly increased upon reaching a particular SDS 

concentration. In Section 6.4.3, Chapter 6, discussions comparing the proteolytic and SDS 

induced activation of chelicerate Hc have already noted that the level of activity induced by 

SDS was higher than that elicited by proteolytic cleavage of the polypeptide chain. With this 

knowledge and on the basis of the similarity between the activity plots of arthropod Hc, α-

chymotrypsin and bean polyphenol oxidase, it may therefore be proposed that SDS causes 

the superactivation of arthropod Hc intrinsic PO activity as a result of enzyme-micelle 

interactions. 

 

As mentioned above, the decrease in PO activity at higher SDS concentrations suggested a 

situation where enzyme-micelle interactions were taking place, during which the enzyme 

reacts with free substrate. The resulting bell shaped activity plot resembled the model in 

which free substrate becomes increasingly unfavourably segregated by the surfactant. In this 

model, as surfactant concentration and therefore the number of micelles in solution increases, 

substrate trapping reduces the available free substrate for the micelle bound enzyme, and so 

there is a reduction in the enzymes activity (Celej et al., 2004; Viparelli et al., 1999). Whilst 

substrate partitioning was a plausible explanation for the reduction in the PO activity of 

arthropod Hc at higher micellar SDS concentrations, as none of the structural investigations 

recorded data for Hc in the presence of higher than 2 (PanHc), 3.5 (Lim Hc) or 5 mM 

(EuryHc) SDS, the possibility could not be dismissed that the reduction in Hc PO activity 

was as a result of Hc denaturation and/or micelle substrate partitioning; at least for PanHc 

and LimHc. SAXS data presented in an upcoming collaborative paper (inserted after section 

9.5 - Appendix E) detailing the results of this present research (Baird et al., 2007), along with 
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the DLS data in section 7.3.4.3, indicates that denaturation of EuryHc is not the likely cause 

for loss of PO activity at high micellar SDS concentrations in this Hc type. 

 

Despite all three Hc types showing a reduction in induced PO activity at higher micellar 

concentrations of SDS, the concentration from which the decrease occurred and the level of 

decrease varied. PanHc PO activity decreased above 2 mM SDS, whilst LimHc and EuryHc 

began to show a decrease only upon reaching concentrations greater than 10 mM SDS. 

Furthermore, Eury Hc showed only a modest decrease in activity to 71.4% of the maximum 

activity upon incubation with 40 mM SDS. In comparison, LimHc and PanHc PO activity 

decreased to 30 and 43.2% of their maximum activity in the presence of 40 and 32 mM SDS 

respectively. Taking these points into consideration, as well as the optimal activities recorded 

for each Hc type, it appeared that EuryHc and LimHc had more restricted substrate access to 

their dicopper centres, whilst the PanHc dicopper centre was more open allowing for higher 

specific activity. The EuryHc data also suggested, that compared to LimHc and PanHc, this 

protein was more stable and resistant to any structural effects of higher (>10 mM) micellar 

concentrations of SDS. Variations in the flexibility of the dicopper centre and overall 

structural stability of these three Hc types were also revealed during structural studies, the 

results of which are discussed in section 7.4.4. 

7.4.3 The Interaction Between SDS and Arthropod Hemocyanin Demonstrates 

Very Complex Thermodynamics. 

The thermodynamics of SDS binding to each arthropod Hc type was studied using ITC. The 

resulting binding isotherm calculated for each Hc was representative of SDS binding to Hc 

when SDS was present at initially monomeric concentrations, gradually increasing to 



 

 229

micellar concentrations. However, no interpretable thermodynamic data was obtained for any 

of the three Hc types. 

 

Following incubation of EuryHc with increasing concentrations of SDS, there were no 

detectable heat changes and thus no isotherm could be calculated for this protein. It was 

considered a possibility that EuryHc may have required a longer incubation in SDS before 

any heat changes would be detectable. In fact, this was further corroborated by structural 

studies of this protein, the results of which are discussed in section 7.4.4. The nature of the 

ITC method meant it was not possible to include a longer incubation as a variable in the 

experiment. 

 

Despite heat change data being recorded for LimHc and PanHc, the biphasic binding 

isotherms obtained were too complex to be analysed in terms of either a simple single or 

sequential binding site model. Our data was kindly further analysed by Dr Alan Cooper from 

the University of Glasgow using more complex models, however still no suitable model for 

analysis of the binding of SDS to Hc could be identified.  

 

The complex nature of the thermodynamics of protein-micelle interactions has been reported 

previously (Moosavi-Movahedi, 2005), however a general schematic of the isotherm of the 

binding of ionic surfactants to proteins has been described (Valstar, 2000). This isotherm 

(Figure 86) displays four characteristic regions with increasing 
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Figure 86: Schematic binding isotherm of protein-surfactant interactions. In general, the isotherm of the 
binding of ionic surfactants to proteins displays four characteristic regions (with increasing surfactant 
concentration): (I) specific binding, (II) non-cooperative binding, (III) cooperative binding, and (IV) 
saturation. Taken from Valstar, 2000. 

surfactant concentration: (I) specific binding, (II) non-cooperative binding, (III) cooperative 

binding and (IV) saturation. The isotherm of SDS binding to either LimHc or PanHc exhibits 

little similarity to this generalised isotherm, perhaps as a result of the large number of 

potential concurrent interactions, as well as other factors, which may have had an influence 

on the heat changes recorded. As a consequence the isotherm could not be dissected into 

distinct phases for analysis. Possible factors influencing the ITC data included heat changes 

associated with (i) any structural changes taking place within the Hc molecule in the presence 

of SDS, (ii) changes in the interaction between protein and monomers/micelles as the protein 

structure changes, (iii) the interaction of SDS monomers and micelles with each other as well 

as the protein, (iv) the presence of both monomers and micelles above CMC – both may bind 

Hc at the same time and (iv) as the number of injections of SDS into the protein increased, so 

had the length of time the protein had been in the presence of SDS. Additional complexities 

may have arisen due to the large size of the arthropod Hc molecule and also because only 
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certain subunits within the complete multimeric chelicerate Hc molecule appear to exhibit 

inducible PO activity (as reported in Section 6.4.3, Chapter 6). 

7.4.4 SDS Causes Significant Structural Changes in Arthropod Hemocyanin, 

Particularly in the Region of the Dicopper centre. 

A number of biophysical techniques were employed in an attempt to identify any structural 

changes in arthropod Hc upon incubation with a range of submicellar and micellar 

concentrations of SDS. In brief, the data collected demonstrated that Hc retains its overall 

quaternary structure throughout the duration of the experiments in the presence of SDS either 

above or below its CMC. There are however significant changes in the tertiary structure and 

smaller changes in the secondary structure of the Hc molecule in the presence of increasing 

concentrations of SDS, most probably in the region of the dicopper centre, which were not as 

a result of the loss of the coordinated copper ions. The results gleaned from each technique 

applied are discussed more extensively in the following subsections, in terms of the structural 

level at which they provided information. 

7.4.4.1 Changes in Arthropod Hemocyanin Quaternary Structure. 

Dynamic light scattering is a method which measures the Brownian motion of particles 

suspended in liquid, and then relates this to the size of the particles. PanHc and EuryHc share 

similar quaternary structure, both molecules having a 4x6-meric subunit arrangement (see 

Figure 45, Chapter 6). EuryHc is stated as having approximate dimensions of 20 x 20 x 10 

nm, therefore PanHc can be assumed to have similar dimensions. DLS data for these Hcs 

indicated that the diameter of each Hc type remained at 20 nm for at least 40 minutes in the 

presence of SDS at concentrations either below or above CMC, confirming that each Hc 
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retained its full quaternary arrangement during this time. DLS provided evidence of the 

greater structural stability of EuryHc, as this Hc type could retain its native quaternary 

structure for at least 1440 minutes in the presence of submicellar and micellar concentrations 

of SDS. By comparison, after 24 hours incubation in SDS, the molecular diameter of PanHc 

decreased to approximately 10 nm, indicating that this Hc had disassociated into its 1x6-

meric form, suggesting this was a less stable protein. 

7.4.4.2 Changes in Arthropod Hemocyanin Tertiary Structure. 

Tertiary structural change in arthropod Hc upon incubation with increasing concentrations of 

SDS was investigated using a combination of two methods: intrinsic Trp fluorescence 

spectroscopy and near UV CD spectroscopy. Intrinsic Trp fluorescence was measured by 

exciting the protein at 290 nm then recording the fluorescence emission spectra between 300 

and 510 nm. Near UV CD spectra were recorded between 260 and 305 nm, which provided 

information on the microenvironment of all the aromatic residues in the Hc molecule. 

 

In reactions containing either LimHc or PanHc, increasing concentrations of SDS caused an 

increase in the Trp fluorescence intensity and a decrease in the intensity of the near UV CD 

aromatic residue spectral peaks. The non-ionic detergent NBDG was unable to elicit such 

changes in the near UV CD spectral region of LimHc. The extent of the changes in the 

fluorescence and near UV CD spectra were dependant on SDS concentration with high 

monomeric SDS concentrations (0.7 – 1.0 mM) resulting in the largest spectral changes, 

however only at concentrations above CMC were the maximum changes observed. EuryHc 

required 16 hours incubation in SDS before exhibiting equivalent changes in Trp 

fluorescence intensity. 
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LimHc subunit II and EuryHc subunits a – g, have between 5 and 8 Trp residues per subunit, 

as determined from the sequence information available for these subunits. In each subunit 

type, more than 50% of the total Trp residues are located to the copper coordination sites and 

these particular Trp are at highly conserved locations within the subunit structure (Dolashka-

Angelova et al., 2005). PanHc is expected to have a similar Trp content and distribution 

owing to the high level of conservation of copper coordination site residues between Hc 

species. In Lim Hc subunit II (Figure 87) five Trp are located in domain II within the CuA 

and CuB coordination sites. Analysis of the intrinsic Trp fluorescence spectra of multi-

tryptophan proteins is very difficult because they are an average of the fluorescence 

contributions from Trp residues at the surface and buried in the core of the molecule. 

Additional complications arise with arthropod Hc as a result of the heterogeneity of subunit 

composition; the number and distribution of Trp  
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Figure 87: Location of the eight tryptophan residues (yellow) in Limulus polyphemus subunit II. One 
tryptophan (Trp65) is located in domain I (green) and two (Trp538 and 563) in domain III (magenta) 
whilst the remaining five (Trp174, 176, 184, 326 and 363) are located at the copper A and B binding 
sites of the dicopper centre in domain II (cyan). Copper ions are shown as orange spheres. Image 
generated using PDB file 1LLA and Pymol molecular graphics software. 
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residues in each subunit may vary (Muro et al., 2002) (as has been found to be the case with 

EuryHc (Voit et al., 2000)). However, it is reasonable to draw certain conclusions on all three 

Hc types based on the data obtained. The possibility that the change in Trp fluorescence was 

due to a local effect on these residues upon binding to SDS, rather than a conformational 

change, was ruled out by means of a control which demonstrated the fluorescence spectrum 

of the model compound N-acetyl-L-tryptophan amide was unaffected by the presence of 

SDS. Protein dissociation was disregarded as a possible explanation for the observed changes 

in fluorescence, as earlier DLS had shown that the Hcs retained their quaternary arrangement 

during the timescale of these experiments. Angelova, et al. (2005) report that the dicopper 

centre of subunit II from LimHc contains two Trp (Trp176 and Trp363) located within 6 Å of 

the CuA and CuB ions respectively, and a further two (Trp174 and Trp538) also located 

close to the dicopper centre. The fluorescence of these particular Trp residues is strongly 

quenched by the copper-dioxygen interaction in oxy-Hc. This internal quenching effect is 

lost upon removal of oxygen and copper (apo-Hc) from the protein. It is possible therefore 

that the increase in Trp fluorescence intensity, in conjunction with the small blue shift in 

fluorescence peak wavelength, of the Hc types studied here, is a result of a conformational 

change in the molecules upon incubation with SDS. This conformational change perhaps 

shifted the environment of the dicopper centre Trp residues, placing them in a less solvent 

exposed, polar yet rigid environment where they experienced a reduction in the effects of 

internal quenching by the copper-dioxygen complex. These structural changes took longer to 

occur in EuryHc compared to LimHc and PanHc. 

 

Near UV CD spectra were recorded to ensure that the observed effects of SDS on the Trp 

fluorescence of Hc were related to conformational changes in the protein structure. In LimHc 
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and PanHc, the reduced intensity of the CD signals between 260 and 300 nm with increasing 

SDS concentrations, whilst the positive spectral peak at 305 remained essentially unchanged, 

suggested that the aromatic amino acids were being moved to a more flexible environment, 

reflecting the results of the intrinsic Trp fluorescence spectra. The change in intensity of the 

spectral peaks from 285 - 305 nm of EuryHc (only occurring following 16 hours incubation 

in SDS) suggested that the Trp residues in this protein were instead being moved into a more 

rigid environment, reflecting the results of the tryptophan fluorescence experiments. This 

considered, caution must be taken when proposing the effects of SDS on the 

microenvironment of the aromatic amino acids from the near UV CD data of these Hc 

molecules, as the spectral peaks above 290 nm may have been influenced by the strongly 

negative signal at 340 - 350 nm which is a characteristic contribution to the near UV CD 

spectra by the oxygen bound Type-3 dicopper centre of Hc. 

 

Together, data obtained from intrinsic Trp fluorescence and near UV CD experiments 

indicated that the environments of at least some of the arthropod Hc tryptophan, 

phenylalanine and tyrosine residues are subject to change upon incubation of the protein with 

SDS, possibly as a result of localised conformational change in the region of the Hc dicopper 

centre, rather than protein subunit dissociation. Importantly, the greatest spectral changes 

were found to occur at SDS concentrations which closely approached and included the CMC 

of SDS in the buffer system used. The maximum structural changes could however only be 

induced upon incubation of the protein with SDS concentrations exceeding the CMC. This 

indicated that the presence of SDS micelles and/or high concentrations of monomers is 

necessary to cause the structural changes which induced maximal intrinsic Hc PO activity. 
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Interestingly, the tertiary structural changes in EuryHc take much longer to respond to the 

presence of SDS, further suggesting EuryHc is a more stable, less flexible protein. 

7.4.4.3 Changes in Arthropod Hemocyanin Secondary Structure. 

Far UV circular dichroism was employed to determine quantitatively the effect of increasing 

concentrations of SDS on the overall secondary structure content of arthropod Hc. Data 

collected between 195 and 240 nm was subsequently analysed using the secondary structure 

prediction tool DICHROWEB, using SELCON 3 and reference set 3. For LimHc and PanHc, 

increasing concentrations of SDS caused small yet significant changes in the secondary 

structure composition of these molecules. These secondary structural changes appeared to be 

preceded by the tertiary structural changes discussed earlier, in terms of percentage change at 

each SDS concentration used. The most notable changes in secondary structure were an 

increase in α-helical and concurrent decrease in β-sheet content. Similar to the tertiary 

structural changes described earlier, SDS concentrations at CMC and above were required to 

induce the largest and maximum secondary structural changes respectively. The greater 

structural stability of EuryHc was again emphasised as this Hc type required 16 hours 

incubation in SDS before equivalent secondary structural changes were detected. Unlike 

SDS, however, the non-ionic detergent NBDG was unable to elicit such secondary structural 

changes in LimHc. 

 

It has been known for some time that the presence of the detergent SDS causes proteins to 

display a larger than normal amount of secondary structure. Subsequently, it has also been 

discovered that some proteins, such as trichosanthin, the A-chain of ricin and apocytochrome 

c, undergo helical folding in the presence of SDS micelles, and that these micelles are the 
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factor inducing the folding (Parker and Song, 1992). An investigation by Parker and Song 

(1992) demonstrated that a number of other proteins, namely pepsin, carbonic anhydrase and 

alcohol dehydrogenase, also respond to the presence of SDS by exhibiting an increase in 

their ordered α-helical secondary structure content in comparison to the native molecule. 

They proposed that in order to respond in such a way to the presence of SDS, it is necessary 

for a protein to contain regions of amphiphilic sequence within its primary sequence, which 

have the potential to form amphiphilic α-helices. These amphiphilic sequences should exceed 

the amount of sequence which is already involved in the formation of α-helices in the native 

structure. In such scenarios it is expected that the presence of SDS would cause an increase 

in the α-helical content of the protein. These proteins also demonstrate a decrease in β-sheet 

and unordered structure and an increase in turns. This pattern of secondary structural change 

is identical to that described in the current research for all three arthropod Hcs in the presence 

of SDS, therefore it may be the case that Hc contains a markedly high amount of primary 

sequence which has the potential to form amphiphilic α-helices, which it may do upon 

incubation with SDS. 

7.4.4.4 Changes in the Arthropod Hemocyanin Type-3 Dicopper centre. 

In a bid to determine the effect of SDS on the dicopper centre of arthropod Hc, a range of 

biophysical methods were employed. The first of these methods were absorbance and near 

UV CD spectroscopy. The absorbance spectrum of native oxygenated Hc (oxy-Hc) has two 

distinct peaks at 280 nm and 343 nm. The former is due to the presence of aromatic amino 

acids and the latter connected with the copper-dioxygen system at the dicopper centre. The 

343 nm peak is absent in Hc which lacks the two copper ions (apo-Hc) or bound dioxygen 

(deoxy-Hc) (Georgieva et al., 1998). Incubation of LimHc, PanHc or EuryHc with increasing 
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concentrations of SDS resulted in a gradual reduction in the intensity of the 343 nm peak, 

although again EuryHc required 16 hours incubation before a complete loss of the 343 nm 

absorbance signal was recorded. 

 

Near UV CD spectroscopy can provide information on non-protein components which give 

rise to CD signals in regions of the near UV spectrum well separated from those of the 

aromatic amino acids (Kelly and Price, 1997). The near UV CD spectrum of oxy-Hc contains 

a strong negative ellipticity at around 340 - 350 nm which results from the peroxide to copper 

(II) charge transfer transitions at the dicopper centre (Solomon, 1983; Georgieva et al., 

1998). Once again, apo-Hc does not exhibit this near UV spectral peak. As evidenced from 

the near UV spectra recorded in the presence of increasing concentrations of SDS, LimHc 

and PanHc exhibited a severe reduction of this characteristic oxy-Hc ellipticity. EuryHc 

again required 16 hours incubation in SDS to exhibit an equivalent loss. 

 

Following the results of the intrinsic Trp fluorescence (discussed in section 7.4.4.2), 

absorbance and near UV CD spectroscopy experiments, which could have been interpreted as 

demonstrating that oxy-Hc was becoming apo-Hc in the presence of SDS, it was considered 

necessary to confirm whether the copper ions were remaining associated with Hc upon 

incubation with SDS.  

 

Two techniques, fluorescence spectroscopy and ICP OES, were utilised to investigate 

whether the copper ions were remaining bound at the dicopper centre of Hc. Excitation of 

Type-3 copper proteins at a wavelength between 325 – 345 nm has been shown to result in 

an intense novel fluorescence band between 415 – 445 nm. This fluorescence was proposed 
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to be the result of interactions between the carboxyl groups of amino acids (most likely 

histidine residues) at, or near, the proteins dicopper centre. Importantly, however, the 

presence of the bound copper pair at the dicopper centre of these Type-3 copper proteins was 

found to significantly quench this novel fluorescence band (Bacci et al., 1983). Results of 

such fluorescence experiments using LimHc, PanHc and EuryHc in the presence of SDS (at 

concentrations which had severely reduced the 343 nm absorption and 340 - 350 nm near UV 

CD spectral peaks), suggested that the copper ions were in fact remaining bound at the 

dicopper centre of the arthropod Hc subunits in the presence of SDS, even following 16 

hours incubation in the case of EuryHc. 

 

ICP OES was used to ensure that both CuA and CuB ions were remaining bound at the 

LimHc dicopper centre, as it was considered a possibility that even the loss of a single copper 

ion may cause absorbance and near UV CD spectral changes. ICP OES results demonstrated 

that the actual concentration of copper was in good agreement with the estimated copper 

concentrations of a solution of native multimeric LimHc, which had been calculated on the 

basis that both copper ions remain bound at the dicopper centre of each LimHc subunit in the 

presence of SDS. 

 

Taking into consideration all the data collected, it was concluded that SDS was not causing 

the loss of copper ions from the dicopper centre of any of the LimHc subunits. Therefore it 

was proposed that for all three Hc types under investigation the Trp fluorescence, absorbance 

and near UV CD spectral changes were not due to the formation of apo-Hc. These spectral 

changes are suggested to be due to the formation of de-oxy Hc, or a perturbation of the 

dioxygen to copper (II) charge transfer transitions at the dicopper centre, as a result of 
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structural conformational change in the protein in the presence of SDS. This perturbation 

may be in the form of a change in the orientation, or a distortion, of the bound peroxide, or a 

modification to the mode of coordination of the CuA and/or CuB ions. Furthermore, the 

EuryHc dicopper centre structure is more resilient to the effects of SDS than LimHc and 

PanHc, suggesting that EuryHc posseses greater overall structural stability and reduced 

dicopper centre flexibility. 

7.4.5 SDS Induced Arthropod Hemocyanin Phenoloxidase Activity and the 

Associated Structural Changes Appear to Vary in their Reversibility. 

To determine whether the reported effects of SDS on arthropod intrinsic PO activity and 

structure were reversible, a preliminary investigation was conducted using LimHc and 

PanHc, and activity assay and near and far UV CD spectroscopy. Upon dilution of SDS in 

the reactions from a concentration above CMC to one below CMC, it was predicted that 

reversible reactions would show (i) the detectable PO activity levels returning to zero (or at 

least a very minimal level) and (ii) the CD spectra demonstrating a reversal in the direction of 

the spectral peak intensities. It was in fact suggested by the results of these experiments that 

SDS induced PO activity and perturbations of the dicopper centre were irreversible. 

Conversely the structural changes caused by the presence of micellar SDS at the secondary 

level could be reversed by dilution of the SDS to submicellar concentrations. 

 

The method of diluting the reaction in an attempt to ‘remove’ the presence of micellar 

concentrations of SDS was not ideal, as the protein and substrate were diluted also. 

Furthermore, SDS could not be completely prevented from interacting with the Hc molecules 

using this method. Controls had demonstrated that CD spectra were unaffected by protein 
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concentration, and Hc PO activity was directly related to protein concentration. Additional 

substrate was also added during the dilution step of the PO activity assays to account for 

substrate limitation on the reaction. However, had there been any SDS monomers and/or 

micelles remaining associated with the Hc molecules following dilution, this may have 

produced results which were not a true representation of the reversibility of the effects of 

higher concentrations of SDS. Laveda, et al. (2000) demonstrated that the SDS induced 

enzymatic activity of peach polyphenol oxidase could be fully reversed by SDS entrapment 

(stripping) by cyclodextrins. Cyclodextrins are low molecular weight, water-soluble 

oligosaccharides produced from starch, and as a result of their ‘bucket-shaped’ molecular 

structure, they can function as molecular containers to trap ‘guest’ molecules by forming 

non-covalent complexes with them (Wacker-Chemie GmbH, 2002; Laveda F. et al., 2000). 

SDS entrapment may have been a more suitable method for studying the reversibility of the 

activation of PO activity in arthropod Hc. However, the extent of the interference that 

cyclodextrins would have on the spectral measurements made in the current investigation, 

would have to be evaluated before making any assessment of their suitability for use in 

structural studies. 

7.4.6 Lipids/Liposomes and physiological relevance of SDS induced PO activity 

Thus far, the presented research has focused on the effect of the anionic detergent SDS on the 

function and structure of arthropod Hc. However, SDS is not a molecule which Hc will 

encounter in its native environment; the hemolymph of arthropods. Therefore consideration 

was given to potential candidates which could be responsible for inducing PO activity in Hc 

in vivo via a similar mechanism to that proposed for SDS. Nellaiappan and Sugumaran 

(1996) presented evidence for the existence of a PO-type enzyme in the hemolymph of L. 
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polyphemus which could be activated by phospholipids. Whilst at the time they did not 

realise this PO-type enzyme was in fact an activated Hc, they did note that phospholipid 

induced PO activity could give an additional advantage to the crab. They hypothesised that 

rupturing of membranes during infection would release phospholipids into the hemolymph 

where they could activate the PO activity of Hc for defensive melanisation and encapsulation 

reactions. In addition, there have been a number of other reports that suggest the PO activity 

of arthropod Hc can be induced by phospholipids (Nagai and Kawabata, 2000; Nagai et al., 

2001; Sugumaran and Nellaiappan, 1990; Sugumaran and Nellaiappan, 1991). 

 

Phospholipids share a number of common features with SDS (and other detergents) which 

would make it reasonable to consider them as possible in vivo elicitors of arthropod Hc PO 

activity. They are both amphiphilic in nature and possess hydrophilic head and hydrophobic 

hydrocarbon tail regions to their structure (Figure 88). As such monomers of each can form 

globular aggregates called either liposomes (phospholipids) or micelles (SDS), placing the 

hydrophilic tails out of contact with water. 

 

A preliminary investigation was therefore conducted, using activity assays and intrinsic Trp 

fluorescence, to provide initial indications as to whether phospholipids could induce similar 

PO activity levels and structural changes as SDS in LimHc and PanHc. 

Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) (source: soybean) were the 

phospholipids utilised as they are generally the first and second most common phospholipids 

in animals respectively (Christie, Accessed: 2005.; Chrissie, Accessed: 2005.), and in L. 

polyphemus they predominate the total phospholipid content of the granular amoebocyte cells 

at 36.3 and 42.4% respectively (MacPherson et al., 1998). Furthermore, PE is frequently the 



 

 244

main phospholipid component of microbial membranes (Chrissie, Accessed: 2005.), and if 

released into the hemolymph upon infection, it could be proposed that they may activate Hc 

PO activity. 

 

 

L-alpha-Phosphatidyl choline from soybean 

 

L-alpha-Phosphatidyl ethanolamine from soybean 

 

Sodium dodecyl sulphate 

Figure 88: Structure of the phospholipids phosphatidylethanolamine and phosphatidylcholine (adapted 
from Avanti Polar Lipids, Accessed: 2007.) and the detergent sodium dodecyl sulphate (SDS) (Key 
Centre for Polymer Colloids, Accessed: 2007.). ‘R’ represents the fatty acid side chains of the 
phospholipids which can range in length and may be either saturated or unsaturated. 
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Despite indications from previous investigations, the results of the current research showed 

that neither free phospholipids, nor those in the form of small unilamellar vesicles (SUVs – 

equivalent to an SDS micelle in structure though not size), could induce PO activity in 

LimHc or PanHc. It is possible that differences in the reaction conditions between the 

experiments conducted in the earlier reports and those used in the current research are 

responsible for these apparently contradicting results. In the experiments conducted by 

Nellaiappan and Sugumaran (1996), Hc PO activity assays were performed in 50 mM sodium 

phosphate pH 7.0 buffer and the reaction initiated by incubation of Hc with 5 µg of 

phospholipid which had been dissolved in ethanol. In the present investigation the assay 

buffer was 100 mM sodium phosphate pH 7.5 and Hc was incubated with either 

approximately 360 or 720 µg of phospholipid (either as monomers or SUVs) which had been 

re-suspended in assay buffer. The former earlier experimental reactions ultimately always 

contained 10% ethanol. Whilst it was reported that this had no effect on Hc PO activity, the 

presence of ethanol may have altered the nature of the interaction of the phospholipid 

molecules with each other and the protein, compared to that which would have occurred were 

ethanol not present. However, as it was deemed necessary to include ethanol in the assay in 

order to keep the phospholipids in solution, its absence from the current assays may have led 

to incomplete dissolution of the phospholipids. 

 

In terms of the structural changes elicited by either phospholipids or SUVs, it appeared that 

their presence caused an increase in the quenching effect that the copper centre copper-

dioxygen interaction had on the Trp residues at or near to the dicopper centre. As discussed 

in section 7.4.4.2, SDS causes a reduction in this quenching, resulting in an increase in Trp 

fluorescence intensity. In both instances however, there was a blue shift in the Trp 
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fluorescence peak wavelength, suggesting the Trp residues had been shifted to a less solvent 

exposed, polar yet rigid environment. It was considered a possibility that under the presently 

reported reaction conditions, phospholipids may instead have had a stabilising effect on the 

structure of LimHc and PanHc. 

 

Under native conditions, Hc from the arthropods Pacifastacus leniusculus (crayfish) (Hall et 

al., 1995b), Latrodectus mirabilis (spider) (Cunningham et al., 2000), Carcinus maenus 

(crab) (Zatta, 1981) and Polybetes pythagoricus (spider) (Cunningham et al., 1999) has been 

shown to contain a small amount of bound lipid. Lipids cannot circulate freely in an aqueous 

medium such as the hemolymph as a result of their hydrophobic nature. Instead they are 

transported from sites of uptake/synthesis to sites of storage/use via proteins called 

lipoproteins (Cunningham et al., 2000). Hall et al. (1995) noted that whilst Hc does not 

contain sufficient bound lipid to be classified as a lipoprotein, it does constitute 

approximately 90% of the total hemolymph protein. Subsequently a substantial percentage of 

the total lipids in hemolymph are associated with Hc suggesting that Hc may play an 

important role in lipid transport, perhaps indeed functioning as an apolipoprotein (the protein 

component of a lipoprotein). This would be in addition to its known native respiratory and 

proposed immune response functions, and has been suggested to offer additional structural 

stability to the protein (Zatta, 1981).  

 

An important finding was reported by Cunningham et al. (1999) which suggested that only 

the native hexameric form of Hc from P. pythagorius could bind lipids in vitro. This implied 

that native Hc multimers possessed particular characteristics which enabled them to interact 

with lipids, such as domains of low polarity. All earlier investigations which had reported 
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that arthropod Hc contained a phospholipid inducible PO activity, used monomeric forms of 

Hc in their experiments, whilst the currently presented research used native 4 x 6-meric or 8 

x 6-meric Hc. It is therefore plausible to suggest that phospholipids interact with Hc 

monomers via a different mechanism to that which they do with multimeric Hc molecules. 

The former interaction appears to result in a change of Hc function to a PO type enzyme 

whilst the interaction with the native multimer may stabilise the protein structure. This would 

perhaps help explain the varying effects that SDS and phospholipids have been shown to 

have on multimeric Hcs, and also the contrasting results between the current Hc PO activity 

assays and previously published results from investigations studying the phospholipid 

mediated activation of Hc PO activity. 

7.4.7 Summary and Conclusions 

The present investigation was designed with the aim of characterising the mode of activation 

of PO activity in hemocyanin from three arthropod species. The results have been discussed 

in more detail in earlier sections (7.4.2 through 7.4.6), however, the main findings of the 

research are summarised below. 

 

Hemocyanin from the three chelicerates L. polyphemus, E. californicum and P. imperator 

clearly possessed an intrinsic PO-type enzymatic activity which could be induced by 

incubating the protein with the anionic detergent SDS. This activation was concurrent with 

significant localised conformational changes in the protein structure most probably at, or in 

the vicinity of, the dicopper centre, causing either the formation of de-oxy Hc, or a 

perturbation of the dioxygen to copper (II) charge transfer transitions; at least in the case of 

LimHc and PanHc. Equivalent structural changes were detected in EuryHc following 16 
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hours incubation with SDS, and so it is therefore possible that the optimal PO activity of 

EuryHc may have been much larger, given a longer incubation in SDS. The changes in the 

dicopper centre were not as a result of a loss of the coordinated copper ions, but may instead 

have been due to a change in the orientation, or a distortion, of the bound peroxide, or a 

modification to the mode of coordination of the CuA and/or CuB ions. The reversibility of 

these functional and structural changes in Hc caused by SDS was also investigated 

preliminarily using LimHc and PanHc. Whilst this area needs much further work, particularly 

to clarify the reversibility of the effects of SDS on tertiary structure, early indications are that 

the induced PO activity and changes in the nature of the dicopper centre are irreversible, 

whilst the secondary structural changes can be reversed.  

 

The concentration of SDS with which the Hc molecules were incubated had a significant 

influence on the level of PO activity elicited and the conformational changes induced. Low 

monomeric SDS concentrations induced minimal activity and structural change. However at 

high monomeric to micellar concentrations (0.7 – 1.05 mM) significant PO activity and 

structural changes were recorded, although secondary structural changes were preceded by 

tertiary structural changes. This suggested an initial increase in flexibility possibly induced 

by monomeric SDS, however it was the micellar form of this anionic detergent which was 

required to cause the conformational changes necessary for optimal PO activity. Exceeding a 

particular SDS concentration (dependant on Hc type), PO activity began to decrease resulting 

in a bell shaped activity plot. This suggested that whilst monomers of SDS can interact with 

the Hc molecule to cause the discussed changes in structure and function, enzyme-micelle 

interaction is a pre-requisite of full activation of Hc enzymatic activity and complete 

conformational change. 
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Discussions in earlier sections which were based on the results of the Hc PO activity assays 

and structural studies, noted that there appeared to be variation between Hc types in terms of 

the flexibility of the dicopper centre to entry of larger phenolic substrates, and also in terms 

of the overall structural stability of the molecule in the presence of SDS. The maximum 

specific activities achieved by LimHc and EuryHc were much lower than that displayed by 

PanHc. This suggested that EuryHc and LimHc had less flexible dicopper centres resulting in 

restricted substrate access, whilst the PanHc dicopper centre was more open allowing for the 

higher specific activity. There also appeared to be a hierarchy of structural stability in these 

three Hc types with EuryHc being the most stable, followed by LimHc then PanHc. EuryHc 

required at least 16 hours incubation in SDS to induce the secondary, tertiary and dicopper 

centre structural changes seen in the other Hc types after 5 minutes. Furthermore, at the 

quaternary level, EuryHc retained its native 4 x 6meric arrangement for at least 24 hours in 

the presence of micellar concentrations of SDS, whilst PanHc disassociated into 1 x 6mers at 

between 40 minutes and 24 hours incubation. Both EuryHc and LimHc exhibited stability in 

their maximum PO activity levels in the presence of up to approximately 10 mM SDS before 

a decrease was recorded, however PanHc PO activity began decreasing above 2 mM SDS. 

EuryHc nonetheless retained higher activity levels above 10 mM than LimHc. In 

conjunction, this data indicated that Hcs from the ancient chelicerates L. polyphemus and E. 

californicum are more structurally rigid and stable than the Hc from the more modern 

chelicerate P. imperator. The extreme stability of EuryHc and LimHc has been reported 

previously in terms of high temperature exposure (Sterner et al., 1995; Georgieva et al., 

1998). The enhanced thermostability of EuryHc (4x6-mer) has been attributed to the extreme 

environmental conditions which E. californicum has to endure in its native habitat (high 
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absolute temperatures and large temperature fluctuations of more than 70˚C between day and 

night), during which the animal still requires a maintained oxygen supply. As the organisms 

respiratory protein, Hc must be highly adaptable to these drastic environmental changes, and 

in fact can remain fully functioning and structurally intact up to 90˚C, thus fulfilling its role 

in these extreme conditions (Sterner et al., 1995). The intrinsic stablilty of EuryHc may 

explain why this protein exhibited such a high level of stability in the presence of SDS in this 

study. Having a reduced maximum PO activity level is a compromise for this added stability. 

The extreme stability of proteins originating from thermophilic organisms has been known 

for many decades. Thermostable proteins are found also to be thermoactive demonstrating 

higher temperature optima than their mesophilic homologues. Under mesophilic conditions 

such thermophilic enzymes exhibit additional stability over their mesophilic counterparts; 

however they appear to have reduced activity. Only at higher temperatures can these 

thermophilic enzymes attain the flexibility in structure required to achieve optimal activity 

(Danson et al., 1996; Vieille and Zeikus, 2001). It may therefore be the case that the optimal 

temperature for eliciting PO activity in EuryHc will be somewhat higher than LimHc and 

PanHc. L. polyphemus does not inhabit such an extreme environment and therefore the 

enhanced thermostability of Hc from this species could not be similarly explained. Instead it 

has been proposed that the complex oligomeric structure of this protein (8x6-mer) was 

responsible for the extreme thermostability (Georgieva et al., 1998), and there have been 

other reports of increased stability in enzymes from thermophilic organisms being achieved 

by forming larger oligomeric structures than their mesophilic equivalents (Villeret et al., 

1998; Vieille and Zeikus, 2001). This may also explain the lower stability in PanHc which is 

a 4x6-meric molecule from a mesophilic environment. Ultimately all three Hc types 

demonstrate similar conformational changes in the presence of SDS micelles, however the 
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ancient Hc types exhibit greater stability but lower PO activity levels, whilst the modern Hc 

type has evolved to possess higher levels of PO activity but at the cost of possessing much 

reduced structural stability.  

 

Phospholipids were utilised in some final experiments to establish whether these amphiphilic 

molecules could potentially be candidates for the in vivo elicitors of arthropod Hc PO 

activity, due to their structural and physiochemical similarities to SDS. However, 

contradicting the work of earlier research, this current investigation concluded that 

phospholipids had no effect similar to SDS on the function or structure of the native Hc 

molecule from either LimHc or PanHc. It was proposed that variations in the experimental 

conditions used by each research group may have been the underlying cause for the 

contrasting results. It seemed more probable however that the differing results occurred since 

all earlier experiments were conducted using Hc in its monomeric form whilst the present 

investigation used native 4x6-meric or 8x6-meric Hc molecules. Native Hcs from the 

arthropod subphyla Crustacea and Araneae have been proposed to function as 

apolipoproteins with their bound lipid content providing a stabilising effect on the protein 

structure. Although further work is required, it was proposed that the results of the current 

research may have suggested a similar role for Hc as an apolipoprotein in chelicerates, where 

the bound lipids enhance the native proteins structural stability rather than induce its intrinsic 

PO activity. 

 

It is important to note that due to the heterogeneity of the subunits of arthropod Hc, and 

because only certain subunit types have been suggested to exhibit PO activity, this may mean 

that the functional and structural analyses conducted in the present investigations, have 
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provided data which is an average of the structural changes taking place in the whole 

multimeric molecule, and not just in those subunits found to possess inducible PO activity. 

However, in LimHc it has been suggested that all LimHc subunits function cooperatively 

during oxygen binding, undergoing similar simultaneous structural changes which remove 

the dicopper centre placeholder Phe-49 allowing oxygen to enter (Hazes et al., 1993; 

Hartmann and Decker, 2002; Decker et al., 1996). It has also been proposed that removal of 

the placeholder amino acid from the dicopper centre entrance is all that is necessary to elicit 

PO activity in arthropod Hc (Decker and Rimke, 1998; Decker and Jaenicke, 2004). 

Therefore a similar cooperative structural mechanism may apply for the induction of Hc PO 

activity by SDS, whereby all subunit types undergo similar induced structural changes 

resulting in a functional change in the hemocyanin molecule. 

 

It has become apparent that Hc is a multifunctional protein which defies the central dogma of 

‘one active site, one function’. This study has provided the first invaluable insights into the 

mode of SDS induced activation of PO activity in arthropod Hc, although it is still necessary 

to establish the optimal conditions for each Hc type. It is foreseen that a similar mechanism 

will also exist for the natural induction of PO activity in Hc. Further investigations in this 

field will however be required to confirm this expectation. 
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Chapter 8 : Summary of Research Findings and Future Work 

The presented thesis has detailed and discussed the results of experiments designed with the 

purpose of addressing the two central aims of the research. These aims were firstly to isolate 

and sequence a gene coding for the enzyme phenoloxidase (PO) from larvae of the crop pest 

insect Spodoptera littoralis (the Egyptian Cotton Leafworm), and secondly to use a range of 

biophysical techniques to characterize the mode of SDS induced activation of PO activity in 

arthropod hemocyanin (Hc). In this final chapter, the research findings are summarised and 

potential further work is described, as are reasons for the importance of continuing to study 

the structure and function of Type-3 copper proteins. 

8.1 Summary of Chapters 3, 4 and 5 – Attempts to Isolate a 

Phenoloxidase Gene from Larvae of the Egyptian Cotton Leafworm, 

Spodoptera littoralis. 

In Chapter 3, a previously isolated and cloned 600 bp putative S. littoralis prophenoloxidase 

(PPO) gene fragment was sequenced and analysed to determine its origin. Analysis revealed 

that the 600 bp gene fragment shared sequence identity to arthropod PPO and Hc only in the 

region of the CuA binding site, which was the site the forward primer had been designed to 

recognize and bind during PCR amplification. The 600 bp fragment in fact demonstrated 

greater sequence identity to insect β-galactosidase. It was concluded that non-specific 

priming by the primers was responsible for the amplification of this product. The design of 

the primers was guided by multiple alignments of a number of insect PPO gene sequences. 

Similar primers had been used previously by other research groups to successfully amplify 
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PPO genes from different insect species (Müller et al., 1999; Chase et al., 2000; Lourenco et 

al., 2005), suggesting the design was logical and the primers were fit for purpose. 

 

An alternative approach was adopted for the research presented in Chapter 4. In a further bid 

to isolate a PPO gene from S. littoralis, a range of molecular methods were employed, in 

which  restricted S.littoralis genomic DNA, amplified S.littoralis DNA fragments and 

S.littoralis cDNA libraries were prepared for subsequent hybridisation with a heterologous 

DIG-labelled PPO DNA probe. Despite efforts to identify a PPO gene fragment from an S. 

littoralis cDNA library and genomic DNA, none were identified by either cDNA library 

screening, or Southern blotting of gel separated PCR or genomic DNA restriction digest 

products. A number of possible explanations were considered to explain this outcome. 

Firstly, the cDNA library which was screened and used in many of the PCR reactions 

originated from larvae which had been parasitized by a parasitic wasp. It was initially 

hypothesised that parasitisation may inhibit the transcription of the PPO gene(s) in S. 

littoralis, as previous reports provided evidence for the negative effects of parasitisation on 

hemocyte function and other immune response mechanisms (Lavine and Beckage, 1995; Di 

Venere et al., 1998). These immune suppressive effects are proposed to optimise conditions 

for successful development of the parasitoid wasp egg (Shelby et al., 1998). However, more 

recent investigations have suggested that PO activity is controlled at some post-

transcriptional step by parasitisation (Zhang et al., 2004; Hartzer et al., 2005). Secondly, the 

possibility that the cDNA library used may have contained a low copy number of PPO cDNA 

was considered. Recent findings suggest that the larval stage, used for synthesis of the cDNA 

library, contains abundant quantities of PPO mRNA (Rajagopal et al., 2005), implying that 

PPO cDNA copy number was not a limiting factor. Finally, it was concluded that the most 
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likely explanation was the poor specificity and sensitivity of the DIG-labelled PPO DNA 

probes used during the hybridisation of DNA-bound membranes. Therefore, in the event that 

the membranes contained PPO DNA bound at their surfaces, the DIG-labelled probes used 

were not suitable for the confident identification of PPO DNA. 

 

Chapter 5 reported the attempts made to generate a non-parasitized larval S. littoralis 

hemocyte cDNA library for screening for a PPO gene. Hemocytes were chosen as the tissue 

source as they are reported to be the site of synthesis of PPO mRNA (Müller et al., 1999). 

However, problems encountered during attempts to isolate intact total RNA from S. littoralis 

hemocytes, and time constraints on the project limited the progress of these experiments.  

 

Therefore, despite the numerous efforts to isolate and sequence an S. littoralis PPO gene, the 

attempts made were unsuccessful. Continuation of this work should involve persevering with 

attempts to generate a fully intact cDNA library from larval hemocytes which are proposed to 

be an enriched source of PPO DNA. Using this cDNA library, RT-PCR experiments should 

be performed using specifically designed primers for insect PPO gene amplification. 

Successful isolation, sequencing and identification of an S. littoralis PO gene fragment would 

allow the use of 5’ and 3’ RACE experiments to generate a complete PPO gene sequence. 

This sequence could then be used as a template for the synthesis of S. littoralis specific DIG-

labelled PPO DNA probes to screen the hemocyte cDNA library for further PPO genes. 

Knowledge of the amino acid sequence of an S. littoralis PPO will enable protein structure 

prediction tools to be used to provide hypothetical models for the structure of this insect 

PPO. This predicted model could subsequently enable structural comparisons between insect 

PO and other type-3 copper proteins known capable of catalysing similar reactions, such as 
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tyrosinase, and catecholoxidase. It may also be possible to clone the S. littoralis PPO gene 

into an expression vector for expression of the gene product in E. coli. This has already been 

demonstrated possible with Spodoptera litura PO (Rajagopal et al., 2005), and may provide 

the opportunity to study the structure of this protein and its activation mechanism in vitro. 

8.2 Summary of Chapter 7 – Biophysical Characterisation of the Mode 

of SDS Induced Arthropod Hemocyanin Phenoloxidase Activity. 

Whilst the structure of arthropod PO remains elusive, another member of the Type-3 copper 

protein family, arthropod Hc, provides a suitable model upon which to base predictions of the 

structure of PO. PO and Hc contain a highly conserved sequence of amino acids at their CuA 

and CuB binding sites, indicating a similar three dimensional arrangement in the dicopper 

centre of each protein (Ashida and Brey, 1995; Decker and Terwilliger, 2000). 

Nonproteolytic activation of native PO using SDS is routinely performed to assay for PO 

activity. Since arthropod Hc possesses an intrinsic PO activity which can also be induced by 

SDS, amongst other in vitro treatments (Decker and Rimke, 1998; Decker et al., 2001; 

Decker and Jaenicke, 2004; Nagai et al., 2001; Zlateva et al., 1996; Lee et al., 2004; 

Nellaiappan and Sugumaran, 1996; Jaenicke and Decker, 2004; Nagai and Kawabata, 2000), 

it is proposed that Hc will also provide a suitable model for the mechanism of activation of 

native arthropod PO. In Chapter 7, a range of biophysical methods were employed to 

characterize the conformational changes in arthropod Hc associated with induction of its 

intrinsic PO activity by the anionic detergent SDS. Three arthropod species were used as a 

source of purified native Hc; the two ancient chelicerae Limulus polyphemus and Eurypelma 

californicum and the more modern chelicerate Pandinus imperator. The results indicated that 

the SDS induced PO activity in these Hcs is associated with localised conformational 
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changes in protein structure, most likely in the vicinity of the dicopper centre, enhancing 

access for larger phenolic substrates. These structural changes occurred at the secondary and 

tertiary levels without the loss of the associated copper ions. Variations in the required 

incubation times in the presence of SDS, optimal activities and degrees of structural change 

at higher monomeric and micellar concentrations of SDS, suggested Hc from the ancient 

chelicerate E. californicum possessed much greater structural stability but lower levels of PO 

activity, whilst that from the modern chelicerate P. imperator, appeared to have the greatest 

flexibility in its dicopper centre and subsequently exhibited the highest levels of detectable 

PO activity. A trade-off between activity and structural stability was proposed for E. 

californicum Hc as this protein requires enhanced structural rigidity in order to remain fully 

functional at the high temperatures the organisms’ environment presents. Nonetheless, for all 

three Hc types, SDS concentrations approximating the CMC appeared critical for the 

induction of the necessary structural changes required for a significant increase in the 

detectable PO activity to be exhibited, whilst maximum PO activity was only achieved in the 

presence of SDS micelles. Further experiments provided early indications that these 

functional and structural changes in Hc cannot be fully reversed and neither can they be 

induced by the non-ionic detergent NBDG or phospholipids in free or small unilamellar 

vesicle form; the latter contradicting earlier reports. 

 

The preliminary results on the reversibility of the activation of Hc PO activity by SDS 

require further investigation. As suggested in Chapter 7, the stripping of SDS from reactions 

containing Hc by using cyclodextrins may prove to be a more suitable method for 

establishing reversibility of induction of PO activity, rather than the method of ‘reaction 

dilution’ used in the current research. It would be necessary to evaluate the contributions of 
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cyclodextrins to any spectral measurements before confirming their suitability for use in 

equivalent structural studies. Demonstrating conclusively whether the PO activity and 

associated structural changes in native arthropod Hc are reversible or not, may provide clues 

concerning the mechanism and control of Hc PO activity induction in vivo. If the simple 

removal of SDS cannot fully reverse its effects on Hc, this may imply a requirement for 

additional components to assist the refolding of Hc to its native conformation in vivo. 

Alternatively it may suggest that once the function of native Hc has been shifted to that of a 

PO-type enzyme, the protein subunits involved lose their ability to function as oxygen 

transporters. Conversely, if it was found that the structural and functional changes in Hc were 

fully reversible upon removal of SDS, this may demonstrate the protein has the ability to 

refold by itself in the absence of activating agents, enabling a return to its primary function. 

 

The effects of phospholipids on arthropod Hc in the current report contradicted reports by a 

number or earlier research groups (Nagai and Kawabata, 2000; Nagai et al., 2001; 

Sugumaran and Nellaiappan, 1990; Sugumaran and Nellaiappan, 1991). Phospholipids are 

considered a potential in vivo inducer of Hc PO activity and the above earlier investigations 

corroborated the hypothesis by demonstrating that PO activity could be induced in arthropod 

Hc upon incubation with phospholipids. Presently, however, this was found not to be the 

case. Albeit that the reaction conditions were different in each published investigation, the 

factor considered most prominent was that all previous work used monomeric Hc whilst the 

present research used native multimeric Hc. It is therefore necessary to pursue this line of 

work, perhaps repeating previously published research instead using multimeric Hc, to 

determine the reproducibility of the data when the native Hc molecule is involved. Hc from 

crustaceans and spiders has been suggested to function as an apolipoprotein with its bound 
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lipid providing additional structural stability. Exploration of the role of phospholipids in the 

multimeric Hcs in this study will establish whether phospholipids are candidates for in vivo 

induction of Hc PO activity and/or important in protein stability. 

 

A further line of research on the in vivo activation of arthropod Hc PO activity which should 

be pursued is the effects of antimicrobial peptides. A recent investigation demonstrated that 

antimicrobial peptides can bind to and induce PO activity in the Hc α–subunit from 

Tachypleus tridentatus (Japanese horseshoe crab) (Nagai et al., 2001). Like SDS, 

antimicrobial peptides are amphiphilic molecules. In the chelicerate these peptides are 

secreted from the S-granules of granular hemocytes as part if the immune systems response 

to microbial infection. Antimicrobial peptides recognise foreign cells and permeabilise their 

cell walls by incorporating themselves into the lipid bilayer, forming pores or generally 

disrupting membrane integrity (Tincu and Taylor, 2004). This ultimately destroys the 

infecting cells, protecting the host from systemic infection and damage. Nagai et al (2001) 

also found that T. tridentatus Hc could bind and be activated by antimicrobial peptide-coated 

chitin (a major component of fungal cell walls and arthropod exoskeletons). They proposed 

that antimicrobial peptide-coated chitin exposed at sites of exoskeleton damage or at the 

surface of infecting fungal cells may act as a scaffold to localise peptide activated Hc PO 

activity for wound healing and host defence against infection. These results provide very 

promising indications that antimicrobial peptides function to elicit Hc PO activity in vivo. 

Future investigations could involve incubating various antimicrobial peptides with native L. 

polyphemus, E. californicum and P. imperator multimeric Hc to provide indications as to 

whether equivalent PO activity can be induced in different species of Hc and also in the 

complete Hc molecule rather than a single subunit type. By performing similar structural 



 

 260

investigations to those reported in the present thesis, it would also be possible to evaluate 

whether the effects of antimicrobial peptides caused similar conformational changes to SDS. 

 

Finally, discussions in Section 7.4.4.2, Chapter 7 outlined the problems inherent in studying 

the tryptophan fluorescence spectra of multi-tryptophan proteins such as Hc. In a bid to 

interpret the contributions of each of the Trp residues in Hc to the final spectrum, 

fluorescence tagging or mutation of specific residues could be performed. If also used in near 

UV circular dichroism experiments, these modified Hc molecules may also provide further 

information on those residues and thus regions of the Hc protein which have the most 

significant involvement in the conformational changes induced by SDS upon induction of PO 

activity. 

8.3 Research into the Structure and Function of Type-3 Copper 

Proteins has Medical, Industrial and Agricultural Importance. 

The study of the structure and function of Type-3 copper proteins is a very important field 

and has already shown potential benefits to the medical, industrial and agricultural sectors. In 

the following discussion, the underlying reasons for the interest in this area of research are 

outlined, as are some examples of how current knowledge of the structure and function of 

such proteins has been applied to the development of therapeutic, food anti-browning and 

soil detoxifying agents. 

 

Tyrosinase, like PO, catalyses reactions involved in the synthesis of melanin, and is found in 

animals, plants, fungi and bacteria. In the skin of humans melanin synthesis occurs in the 

melanocytes of the basal layers of the epidermis (Sugumaran et al., 2000b). One form of 
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melanin, eumelanin (black-brown melanin), offers protection to the skin from the harmful 

effects of solar radiation by absorbing and scattering UV light. However, chronic exposure to 

the sun can lead to the overproduction of eumelanin and results in discolouring of the skin 

from hyper-pigmentation diseases such as melasma (Jones et al., 2002). On the basis of the 

understanding of the function of tyrosinase, a specific inhibitor of tyrosinase activity, aloesin, 

has been identified with potential therapeutic applications as a depigmentation agent (Jones 

et al., 2002). This compound was found to be much safer than previously produced 

depigmentation agents which, amongst other undesirable side effects, exhibited toxicity to 

melanocytes. 

 

Tyrosinase has also been considered as a potential agent for use in soil and water clean up of 

pollutants such as xenobiotics. Xenobiotics are man-made compounds which were designed 

for use as pesticides and weed killers. These compounds have been applied to terrestrial and 

aquatic environments over the decades in damaging quantities. Whilst they do become 

harmless as a result of biotic and abiotic processes, being transformed into carbon dioxide, 

water and mineral elements, this takes a long time and often involves the formation of highly 

toxic intermediates (Bollag, 1992). Tyrosinases present in soil have recently been found to be 

involved in the random coupling of aromatic compounds in the formation of humus (Park et 

al., 2000). This has led to an interest in these enzymes from an agricultural point of view as 

potential soil and water treatments for the cleanup of xenobiotic compounds such as 

fluorophenols which are environmental contaminants that have increased in use since the 

early 1990’s (Battaini et al., 2002). Immobilised tyrosinase has in fact been described as 

being an excellent method of phenol removal from aqueous environments and soils, whilst 

reducing the costs involved by increasing the percentage recovery of the enzyme  



 

 262

 

In fruits, vegetables and mushrooms, tyrosinase is the crucial enzyme responsible for the 

browning process which occurs during product storage and upon bruising. Browning of cut 

food products is a major problem facing the food industry as it affects their appearance and 

nutritional quality (Iyengar and McEvily, 1992). On the basis of the current knowledge of the 

function of tyrosinase, this has prompted investigations into the potential use of compounds 

which inhibit the activity of tyrosinase as anti-browning agents. Methods such as thermal 

processing and exclusion of oxygen have been used to inhibit enzymatic browning, however 

the former was found to deteriorate nutritional quality and the latter loses its effect upon 

reintroduction of oxygen (Lee, 2007). A number of anti-browning agents have also been 

identified which target enzyme activity or the substrates/products of catalysis, thus inhibiting 

brown pigment formation. Examples of such anti-browning agents used in the control of 

browning of fruits and vegetables include sulphites, acidifiers, chelators, reducing agents and 

cysteine (Fu et al., 2007). However the use of such compounds has been restricted by their 

high cost and low effectiveness and with regards to sulphites, the increasing public awareness 

of their associated hazards and increased regulation of their use by the Food and Drug 

Administration (Eissa et al., 2006). It has therefore become necessary to develop safer 

alternatives which function efficiently as browning-agents. Very recently, an investigation 

conducted by Lee (2007) demonstrated the inhibitory effect of onion extract on banana 

polyphenol oxidase activity during ripening. It was found that addition of onion extract 

heated to 100ºC for 10 minutes markedly inhibited enzymatic activity. Produced from a 

natural food source, onion extract therefore has the potential for use as an anti-browning 

agent without the undesirable risks inherent in use of the previously mention sulphites. 
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In Chapter 3, Chapter 4 and Chapter 5 the insect species Spodoptera littoralis was the insect 

species from which attempts were made to isolate and sequence a PO gene. This 

Lepidopteran insect is an economically important crop pest in many regions of Africa and 

Asia. Prior to 1986, the compound methyl-parathion was used extensively to control S. 

littoralis, however development of resistance to this and other compounds, meant the 

development of alternative pest control methods was necessary (Smith et al., 1997). By 

gaining a greater understanding of the insect immune system and the key stages and 

components involved, such as PO, this may provide scope for the development of pest 

control methods which disrupt the insect immune response, perhaps even in a species specific 

manner. By inhibiting the action of PO, all developmental stages of the pest insect would be 

affected by inhibiting sclerotisation of newly formed cuticle, correct wound healing and the 

melanisation of foreign bodies. The targeted insects would subsequently suffer increased 

vulnerability to disease, damage and desiccation, reducing their chances of survival. On the 

basis of the functions of PO in insects and the structure of a tyrosinase from Streptomyces 

castaneoglobisporus (Matoba et al., 2006), Xue et al (2007) have recently identified groups 

of compounds with inhibitory effects on the enzymatic activity of PO from larvae of the 

Lepidopteran insect Pieris rapae (Cabbageworm). These compounds, which belong to the 

benzaldehyde thiosemicarbazone, benzaldehyde, and benzoic acid families, have provided a 

starting point for the development of novel PO inhibitors to function as environmentally 

friendly insecticides (Xue et al., 2007). 

 

Despite the present experimental successes, and hypothesised uses and targeting of Type-3 

copper proteins, the field still requires much further work, particularly to obtain greater 
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knowledge of the structure of PO and tyrosinase enzymes, which are of major concern in 

medical and cosmetic research and to agriculture and the food industry. 
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Chapter 9 : Appendices 

9.1 Appendix A – Primers and binding-site map. 

Table 11: Primers designed specifically for the amplification of an insect phenoloxidase sequence.  
Primers CuA’03-F and PO2-R were previously designed by Nairn 2002 (unpublished data) and used to 
amplify the putative PPO 600 bp gene fragment analysed in Chapter 3. All others were utilized during 
PCR protocols performed in the presented research of Chapter 4. The given name of each primer is 
shown along with the details of its nucleotide and amino acid sequence, and the amino acid sequence 
position it anneals to, as established form the alignment of six different arthropod PPO sequences found 
in Figure 3, Chapter 2. 

Primer Name Nucleotide Sequence Amino Acid Sequence 
(5’ – 3’) 

Designed 
Binding 
Site 

CuA’03-F 5’-CAC-CAC-TGG-CAC-TGG-CAC-
CT(AGCT)-GT(AGC)-TAC-CC-3’ 

H-H-W-H-W-H-L-V-Y-P 214 - 223 

PO2-R 5’-GGC-GAT-GAC-ACC-GAA-(AG)GA-
CTC-CAG-GTA-3’ 

Y-L-E-S-F-G-V-I-A 389 - 397 

MsextaPPO1-F 5’-CAC-CAC-TGG-CAC-TGG-CAC-TTG-3’ H-H-W-H-W-H-L 214 - 220 
MsextaPPO1-R 5’-GCC-CTT-GGG-TAT-CAG-CAT-3’ M-L-I-P-K-G 600 - 605 
MsextaPPO2-F 5’CAC-CAT-TGG-CAT-TGG-CAT CTC-3’ H-H-W-H-W-H-L - 214 - 220 
MsextaPPO2-R 5’-CGT-TCC-CTT-AGG-CAC-GAG-CAT-3’ M-L-V-P-K-G-T 600 - 606 

CuA-F 5’-CAC-CAC-TGG-CAC-TGG-CAC-CT5-
GT(AGC)-TAC-CC-3’ 

H-H-W-H-W-H-L-V-Y-P 214 - 223 

CuA2-F 5’-CAC-CAC-TGG-CAC-TGG-CAC-C-3’ H-H-W-H-W-H-L 214 - 220 
CuA3-F 5’-CAC-CA(CT)-TGG-CA(CT)-TGG-

CA(CT)-C-3’ 
H-H-W-H-W-H-L 214 - 219 

CuA4-F 5’-CA(CT)-CA(CT)-T(AG)(GCT)-CA(CT)-
TGG-CA-3’ 

H-H-W-H-W-H 214 - 219 

GELF-F 5’-GG(AGCT)-GA(AG)-(CT)T(AGCT)-
TT(CT)-T(AT)(CT)-TA(CT)-ATG-CA-3’ 

G-E-L-F-F/Y-Y-M-H 238 - 245 

CuB2-F 5’-TTC-TAC-(AC)G5-TGG-CAC-GC5-TAC-
AT(CT)-GA(CT)-3’ 

F-Y-R-W-H-A-Y-I-D 408 - 416 

CuB2-R 5’-(AG)TC-(AG)AT-GTA-5GC-GTG-CCA-
5C(GT)-GTA-GAA-3’ 

F-Y-R-W-H-A-Y-I-D 408 - 416 

MEILD-R 5’-GAA-(CT)TT-(AG)TC-CA(AG)-(CT)TC-
(AG)AT-CAT-3’ 

M-I-E-L-D-K-F 537 - 543 

Cys-R 5’-GTG-GTG-5GG-CCA-(GT)CC-(AG)CA-
(GT)CC-(AG)CA-GAA-3’ 

F-C-G-C-G-W-P-H-H 591 - 599 

Cys2-R 5’-AC(AG)-CC(AGCT)-AC(AG)-
CC(AGCT)-ACC-GG-3’ 

C-G-C-G-W-P 592 - 597 

Cterm-R 5’-TAC-CC(AGCT)-A(AT)(AG)-
GG(AGCT)-AA(AG)-CT-3’ 

M-G-F/Y-P-F-D 656 - 661 
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Figure 89: Primer binding-site map.  Each of the degenerate primers detailed in Table 11, which were 
designed specifically for the amplification of a phenoloxidase sequence, are represented as labelled black 
rectangles positioned next to the DNA strand they are designed to anneal to. Arrows associated with 
each indicate the direction of strand extension once each primer has annealed to its designed sequence. 
The numerical values alongside each primers given name indicate the amino acids of the template PPO 
DNA to which the primers are designed to anneal, as estimated from the amino acid sequence alignment 
in Figure 3, Chapter 2. 
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9.2 Appendix B - Raw nucleotide sequence of a putative 600 bp 

prophenoloxidase DNA fragment as deduced in forward and 

reverse direction for clones 2a and 10a. 

600 bp clone 2a (forward reaction) 
 
GCTNCNGCNNNNGGGNNNNNNNNNNGGGGTNTNGTATGANNNGTTTTTAAANACNTNGAAANNNNNGGNGNNAG
CTCGGGCCCCCACACGTGTGGTCTANAGCTAGCCTANGCTCGAGAAGCTTGTCGACGAATTCAGATTGGCGATG
ACACCGAAGGANTCCAGGTNGGTATTATATTATAATTTAAGTTTTGGGGNAAAAAGTTTNNATNATTATGTTAA
TNNATTNTTNAAAATTNTNATNNATTNNATNGGGNACAAAATTNANTGTTGGTGANANTGTTAGGAACGGNACC
ATTTNTGAANAAANAAATTGCNTTNCCGTCANTAGTGTAGAGGAGAGCGTTGGTACCGACGTGGTTCTGCAGCA
TGTTGCGGACTTGGACTCGATAGTTCATGTTGTTGCCATAGCTACCGTACTCATTTTCTANCTGGATAGCAAAC
AAAGATTTTAAGGCCCATTCACAGCACTTATAATCAGATTTTGACAATTAAGTGATTNATTAAATAAAATNTAA
TGGTTTTGGTTNTAAGAANNACTNATTTAANATTNANGCCTTTTTNTNTCCCGAAGGGGGTNGACCANGGTGNC
AGTGCCATTTGGTNGAATTNANNNAATTTNTTGGATTTCGGANTANNTTTNANTGCNGTTTTTGGNGGNATTGN
GTTTGGTTNNNCGGAAGCCTTNTTCCNTTTATTATTGNAGGTNTGGTATTTANAAANTC 
 
 

600 bp clone 2a (reverse reaction) 
 
GCGGCNAGGCCTNCAANNTNNACNTATAAAGCNCTCTTGAAATANNACTCACTATAGGNAAAGCTCGGTACCAC
GCATGCTGCAGACGCGTTACGTATCGGATCCAGAATTCGTGATTCACCACTGGCACTGGCACCTNGGTCTACCC
CTTTCGGAGATAAAAGGCGTNATNTATATNAATNGNCTTATNACCCAANCNTTATNTTTATTTAATTAATCNCT
TAATTGNCNAATCTGATTATAAGTGCTGTGAATGGGCCTTAAAATCTTTGTTTGCTATCCAGGTAGAAAATGAG
TACGGTAGCTATGGCAACAACATGAACTATCGAGTCCAAGTCCGCAACATGCTGCAGAACCACGTCNGTACCAA
CGCTCTCCCCTNTACNATACAGANGGAATNNGNNATNTNTCTCTNTCAAAAANGGGGNNNNCGNCCCNAACNCT
CTCCCCCANATCGATTTTTGGTCCCCACTCAAGTCNGTATAATTTTTNAATAATGGTATTGTACCATAAATTNA
TGGTNANACTTTTTTNCCCCCCAAAACTTAAANTTANNAATAATAAATACCTTACCTGGGAAGTCCTTCCGGGN
GTTCATCCGNCCAAATCTNGAAATTTCCNGTCGACAAAGCCTTCTCCGAGCCCTTANGGCTAANCTNCTAAGAA
CANCAACNCTNGTNGGGGGGGGGCCCCGNANCCTCCCCCGGGCCGGCTGGTATTCCTNNTAAGNTGGTC 
 
 

600 bp clone 10a (forward reaction) 
 
GCNNCCNNNCTCTTGAAGCGGCCNTTGAAGTTGACCCTATAGAATACACCGGCCGCGAGCTCGGGCCCCCACAC
GTGTGGTCTAGAGCTAGCCTAGGCTCGAGAAGCTTGTCGACGAATTCAGATTGGCGATGACACCGAAGGACTCC
AGGTAGGTATTATATTATAATTTAAGTTTTGGGGAAAAAAGTCTACATAATTATGTAAATACATTATTAAAAAT
TATACTGACTTGAGTGGGGACCAAAATCGATGGTGATGAGAGTGTTAGGAACGGCACCNTTTCTGAAGAAAGAA
ATTGCATTCCCGTCANTAGTGTAGAGGAGAGCGTTGGTACCGACGTGGTTCTGCAGCATGTTGCGGACTTGGAC
TCGATAGTTCATGTTGTTGCCATAGCTACCGTACTCATTTTCTACCTGGATAGCAAACAAAGATTTTAAGGCCC
ATTCACAGCACTTATAATCAGATTTGACAATTAAGNTGATTAATTNAATAAATATAATGCTTTGGGTTNTNANA
CCACCATATAACATCNCGCCCTTTTATCNTCCAAAGGGGGTAGACCAAGGTGCCCNGTGCCANNNGGTGAAATC
CACNAATTCTGGNATCCNGAATACNTTAACGCNTNTGCCANCATTGGCGTNGGTACCCGAACCNTTCCCCNATT
ANNTNGANGNCCGNCTTTTAAANCCNC 
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600 bp clone 10a (reverse reaction) 
 
NCNNGCNNGCCTCAANNGCNTTGAAACGCCACTTCAAATACGACTCACTATAGGGAAAGCTCGGTACCACGCAT
GCTGCAGACGCGTTACGTATCGGATCCAGAATTCGTGATTCACCACTGGCACTGGCACCTGGTCTACCCCTTCG
GAGATAAAAGGCGTGATGTTATATGAGTGGTCTTATAACCAAAGCATTATATTTATTTAATTAATCACTTAATT
GTCAAATCTGATTATAAGTGCTGTGAATGGGCCTTAAAATCTTTGTTTGCTATCCAGGTAGAAAATGAGTACGG
TAGCTATGGCAACAACATGAACTATCGAGTCCAAGTCCGCAACATGCTGCAGAACCACGTCGGTACCAACGCTC
TCCTCTACACTACTGACGGGAATGCAATTTCTTTCTTCAGAAATGGTGCCGTTCCTAACACTCTCATCACCATC
GATTTTGGTCCCCACTCAAGTCAGTATAATTTTTAATAATGTATTTACATAATTATGTAGACTTTTTTCCCCAA
AACTTAAATTATAATATAATACCTACCTTGGAGTCCTTCGGTGTCATCGCCAAATCTGAATTCGGTCGACAAAG
CTTCTCGAAGCCCTACGCTANCCTCTANACCANCACGTTGTGGGGGCCCCGAGCCTCGCCGGCCGCTGTATTCT
AATAGTTGTC 
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9.3 Appendix C – Integrity checks of total RNA, isolated from S. 

littoralis hemocytes. 

 
A 

 
B 

 
C 

 
D 

Figure 90: Isolated Spodoptera littoralis hemocyte total RNA integrity check. The samples shown in 
Panels A - D were the 2nd – 5th total RNA isolation attempts made, respectively, in Chapter 5. The 
samples were separated in a native 1% agarose gel. These images illustrate that the 28S and 18S 
ribosomal RNA (rRNA) bands are not sharp and clear as is desirable (see Figure 44 Panel B in Chapter 
5), and in fact cannot be identified in most of the samples. These total RNA samples were therefore too 
degraded to provide a reliable source of mRNAs for synthesis of a complete S. littoralis hemocyte first 
strand cDNA mix. 
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9.4 Appendix D – Complete activity plot of SDS induced arthropod 

hemocyanin phenoloxidase activity. 
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Figure 91: Induced phenoloxidase activity of hemocyanin from Limulus polyphemus, Pandinus 
imperator and Eurypelma californicum. Typical assays included 2 mM dopamine hydrochloride plus 
hemocyanin (concentrations in legend) in 1 ml of 100 mM sodium phosphate buffer, pH 7.5. 
Phenoloxidase activity (expressed as a percentage of the maximum activity achieved by each 
hemocyanin) was initiated by the addition of SDS, and after 5 minutes, followed by monitoring an 
increase in absorbance at 475 nm resulting from the formation of dopachrome and its derivatives. This 
plot is the complete version of the inset plot in Figure 51, Chapter 7 
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9.5 Appendix E – ITC data of SDS binding to arthropod hemocyanin, 

analysed in terms of a single binding site model. 

 

Figure 92: ITC data for binding of SDS to Limulus polyphemus hemocyanin. Upper trace in top panel 
shows a control in which SDS was injected into buffer alone to determine the CMC of SDS in 100 mM 
sodium phosphate buffer, pH 7.5, and also to correct for heat of dilution of the ligand. Lower trace in 
upper panel presents the data for injection of 30 mM SDS (0.15 mM per injection) into 0.77 ± 0.015 
mg/ml (10 µM) L. polyphemus hemocyanin monomers (equivalent to 210 nM of the 8 x 6-meric unit). 
The lower panel shows the calculated binding isotherm (integrated heat data), corresponding to the lower 
trace in the upper panel, and the best-fitted curve of the data. The calorimetry data shown were analysed 
by nonlinear regression in terms of a single binding site model using the MicroCal ORIGIN software 
package. 
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Figure 93: ITC data for binding of SDS to Pandinus imperator hemocyanin. Upper trace in top panel 
shows a control in which SDS was injected into buffer alone to determine the CMC of SDS in 100 mM 
sodium phosphate buffer, pH 7.5, and also to correct for heat of dilution of the ligand. Lower trace in 
upper panel presents the data for injection of 30mM SDS (0.15 mM per injection) into 0.77 ± 0.015 
mg/ml (10 µM) P. imperator hemocyanin monomers (equivalent to 420 nM of the 4 x 6-meric unit). The 
lower panel shows the calculated binding isotherm (integrated heat data), corresponding to the lower 
trace in the upper panel, and the best-fitted curve of the data. The calorimetry data shown were analysed 
by nonlinear regression in terms of a single binding site model using the MicroCal ORIGIN software 
package. 
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