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Abstract

A bottom-up approach to emulating emotions is expounded in this thesis. This

is intended to be useful in research where a phenomenon is to be emulated but

the nature of it can not easily be defined. This approach not only advocates

emulating the underlying mechanisms that are proposed to give rise to emotion

in natural agents, but also advocates applying an open-mind as to what the

phenomenon actually is. There is evidence to suggest that neuromodulation

is inherently responsible for giving rise to emotions in natural agents and that

emotions consequently modulate the behaviour of the agent. The functionality

provided by neuromodulation, when applied to agents with self-organising bio-

logically plausible neural networks, is isolated and studied. In research efforts

such as this the definition should emerge from the evidence rather than postu-

late that the definition, derived from limited information, is correct and should

be implemented. An implementation of a working definition only tells us that

the definition can be implemented. It does not tell us whether that working

definition is itself correct and matches the phenomenon in the real world. If this

model of emotions was assumed to be true and implemented in an agent, there

would be a danger of precluding implementations that could offer alternative

theories as to the relevance of neuromodulation to emotions. By isolating and

studying different mechanisms such as neuromodulation that are thought to give

rise to emotions, theories can arise as to what emotions are and the functionality

that they provide. The application of this approach concludes with a theory as

to how some emotions can operate via the use of neuromodulators. The theory

is explained using the concepts of dynamical systems, free-energy and entropy.
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Chapter 1

Introduction

This thesis argues that emotions are phenomena that emerge from the interac-

tion of certain subcomponents within a natural agent and to properly under-

stand what emotions are and recreate them, one must first model these sub-

components and their interactions in order to understand why they exist and

how they are useful.

This contrasts with existing top-down approaches which give agents symbolic

representations of, or discrete functions that emulate, the observed effect of

emotions without considering how they were originally produced.

Biologically plausible models of the subcomponents are created in order to

increase our understanding of the environmental and functional requirements

for such emotions to emerge. Specifically the work attempts to explain the

functional use of neuromodulation when applied to neural networks.

1.1 The bottom-up approach

The work does not attempt to mimic complex higher-level human emotions and

feelings. These require consciousness and the awareness of emotions. Instead

the work emulates and analyses the roles and interactions of the primary mech-

anisms suggested as being responsible for emotions and which allow animals to
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react and adapt to noisy and changing environments. This is achieved using a

non-symbolic animat approach adapting via a self-organising system.

In her PhD thesis, Gadanho [Gad99] pp5 writes:

Although the ”emotions” [her quotation marks] used were much

simplified, they were still named emotions as they tried to capture

more functional aspects than those provided by a traditional rein-

forcement function. Moreover, calling them emotions enables this

research to be identified with other emotion research so that de-

velopments in the field may be brought together and integrated to

produce further richness of emotions functionality and added com-

plexity of artificial agent’s behaviour.

The use of quotation marks shows that she acknowledges that the term

”emotions” is equivocal and that there is room for debate as to whether these

really are emotions. Whilst it is true that her work can be identified as being

relevant to other emotions research, it is not required for certain functions to be

labelled as emotions to make this so. Presentation of evidence suggesting that

these functions are somehow relevant to emotions in natural agents is sufficient.

It is also true that not labelling some part of the system as an emotion of

some kind leaves one open to the danger that others fail to see how the work

applies to emotions research. For example, the work presented here could be

taken as little more than an exploration into the functional uses of neuromod-

ulation with all discussion regarding emotions as a distraction. But something

in the brain produces emotions. Not once has a neuro-anatomist been able to

point to an emotion when cutting up a brain1. So if this does not happen in

real brains then why make it so in artificial ones?

Nevertheless, certain neurotransmitters have been identified as having possi-

ble roles in emotion. For example, drugs that inhibit the re-uptake of serotonin

are used to treat depressive disorders [ERKJ00] pp295 & pp1224.

1. . . or a symbol for that matter.
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Emotions, as with intelligence and life, are emergent phenomena, with the

label being applied by an observer2. Referring to a black box in an agent as an

emotion is simply a useful way of avoiding a description of the functionality it

provides. But if the raison d’être of the work is to describe this functionality,

then the label is not required.

Grand et al [GCM97] state that the agents in the game ”Creatures” can

plausibly be argued to be instances of ”strong” artificial life. As with Gadanho

and her instances of ”emotions”, the authors have not formally argued that

they are alive, because again, it is obvious that the argument will be a contro-

versial one. For example, Boden dismisses this claim on the premise that life

requires a metabolism for the budgeting and usage of energy for behaviour and

maintenance of the body [Bod99] 3.

Being in the position to make a controversial scientific statement is accept-

able, possibly even desirable, if the evidence backs it up. But the terms ”Emo-

tion” and ”Alive” are subjective and undefined laymen terms that have not yet

succumbed to scientific rigour, despite valiant attempts from researchers and

philosophers such as Boden.

There is little scientific value in trying to convince others of a particular sub-

jective viewpoint. Even if more were understood about what emotions are and

how to create them, the problem could well remain unsolved indefinitely. The

”Uncanny Valley” phenomenon [Mor70] could become relevant as we progress

in this field. This is the situation whereby the closer an artificial model of some

human quality is to being mistaken for the real thing, the more odd it feels to

a human observer4.

2One can argue that any neural functionality is emergent because it arises from the inter-
action of a number of neurons but is neither predictable nor reducible to those neurons. This
though, is not a useful distinction of emergent phenomena in the brain. But at what other
point should a distinguishable function of a number of neural cells be considered emergent?
Emotions are described here as being emergent phenomena because unlike a single neuron or
axon, there is not a single physical manifestation that can be pointed to and described as an
emotion. It is a label applied to an overall effect.

3She does claim though that the model provides a good test bed for further research in
artificial life, particularly with regard to implementing ideas on motivation and emotion.

4A plausible explanation for the uncanny valley is that when it is unmistakable that an
agent is artificial, observers notice the human qualities it appears to have. As the agent
becomes more similar to humans, observers tend to focus on the differences between it and
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Instead the work presented here attempts to add to body of evidence of what

emotions are and are not, so that in time others can review the larger picture.

No matter how successful or otherwise the research turns out to be, never at

any point will it be said that something is or is not an emotion. No parts of an

implemented system will be labelled or described as an emotion.

Following the preaching of McDermott [McD81], labels will be as unambigu-

ous and unequivocal as possible. When an anthropomorphic label is used5, then

it will be made explicitely clear that the label is nothing but a useful handle for

the sake of convenience. The work is not concerned about semantics, except to

argue that they are currently a distraction at this early stage of the field.

1.2 Why emotions?

Natural agents have evolved emotions. This has occurred because at some point

in evolutionary history either emotions, or whatever gives rise to emotions, have

provided an increase in evolutionary fitness for the species. Humans are the most

intelligent and adaptive animals known to science, and they have emotions.

Because emotions bear such an influence upon the behaviour of an agent, and

consequently its fitness levels, they have so far provided an advantage. If they

had not then there would have been evolutionary pressure to minimise their

influence.

A significant research effort in the field of artificial intelligence has been

spent in solving the action selection problem. How can an artificial agent be

designed to select the actions that maximise resource gain, minimise resource

cost and achieve certain goals given its environment?

The one constant throughout the evolutionary history of any species is the

need to maintain certain resource levels by staying well fed and hydrated, and to

achieve certain goals such as to survive and to breed. Considering the influence

that emotions have on our behaviour and choice of action selection, and also

themselves.
5Namely ”Hunger” and ”Thirst”.
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that they have been evolved, it is reasonable to suggest that emotions may have

some relevance to solving the action selection problem.

Arzi-Gonczarowski [AG02] argues that emotions have evolved and therefore

must be useful for the purposes of survival but warns that this by itself is not

sufficient reason for giving emotions to artificial agents6. Instead a systems ap-

proach is proposed. Returning to first principles it should be recognised that

an agent is primarily concerned with survival and the satisfaction of particu-

lar goals. The process of evolution in natural agents has resulted in intelli-

gence and emotions. The proposed systems approach starts with basic reactive

mechanisms and then repeatedly applies improvements and upgrades. Arzi-

Gonczarowski asks in what form emotions would exist in artificial agents and

whether they would be recognised as emotions.

1.3 Why neuromodulators?

The majority of research on neural networks applied to autonomous and intelli-

gent agents is generally concerned with the interconnectivity of neurons. There

are a number of reasons why neuromodulators should be researched when at-

tempting to create artificial emotions. Neuromodulation exists in the brains of

natural agents and may provide a number of functional advantages. Kaczmerak

and Levitan [KL87] pp3 define neuromodulation as:

. . . the ability of neurons to alter their electrical properties in

response to intracellular biochemical changes resulting from synap-

tic or hormonal stimulation. Defined this way, neuromodulation is

one of the most important intrinsic properties of individual neurons.

This property not only allows the nervous system to adapt its con-

trol of physiological functions to a continually changing environment,

but it is also the basis for many long-lasting changes in animal be-

havior. Changes in behavior that can be related directly to changes

6After all, flies are not normally considered to have emotions, although this thesis will not
deny the possibility that they have ’fly’ emotions that we do not currently recognise.
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in the electrical responses of specific neurons include the triggering

of long-lasting, but relatively fixed and innate, behaviors, such as

feeding and reproductive behaviors . . . Because the modulation of

neuronal electrical activity results in the choice of different patterns

of behavior at different times, it is a fundamentally important aspect

of neural activity.

This suggests that neuromodulation may provide some useful functionality

that could be employed when creating artificial agents. This alone makes them

a worthwhile phenomenon to study.

Emotions can be influenced by altering the levels of neuromodulators in a

brain [Kel05]. Does this mean that neuromodulators are primarily responsible

for giving rise to emotions? Or is it simply that altering the levels of neuromod-

ulators in our brain is an easy and non-invasive way of altering its emotional

state? Is Fellous [Fel99] correct when he proposes that emotion can be seen as

continuous patterns of neuromodulation of certain brain structures?

In the brain, different levels of neuro-active substances modulate the sensitivity-

to-input of neurons that have receptors for them [Koc99] pp94. Could this bring

into play different maps from the same neural network? If so, this could allow

the most effective and relevant behaviours and sensory interpretations to be

adopted in order to adapt to the current environment.

Because neuro-modulators such as hormones are relatively long lasting, can

they allow for a continuous transition between behaviours and internal states

to occur? This would probably be similar to that of a dynamical system rather

than that of a discrete change or flip between behaviours. Understanding an

agent as a self-organising dynamical system removes the question of when to

switch behaviours as the transition happens continuously over time. It also

means that it is more appropriate to think of attractive and aversive external

stimuli than positive or negative reinforcement. The system can therefore be

self-organising and more autonomous. Self-organisation removes the question of

when to teach the network and when to recall information encoded in it.
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Can emulating neuro-modulators allow us to create neural systems that

adapt over longer time frames than if we simply relied upon the topology of

neurons and their connections? It is also possible that they could provide other

functions that are not proposed here.

1.4 Why Artificial Intelligence?

The two fields of artificial intelligence and computational neuroscience have

much to offer each other. Research in artificial intelligence provides the questions

and an appreciation of the answers found by computational neuroscience.

By attempting to create and place in an environment the functionality that

we see achieved by the brain, we can gain an appreciation of the need for that

functionality and the key environmental factors for such functionality to be

effective.

If we know what is required for an agent to carry out a certain computation

then it will also help direct further research into how the brain is actually

performing it. This is particularly important for emergent properties of the

mind. How such properties emerge can not be adequately understood unless

observed in-vivo or the underlying mechanisms are modelled. We can verify how

the functionality is performed in the brain by modelling an explicitly stated set

of underlying mechanisms that are theorised to give rise to it.

Scheutz [Sch04] uses an artificial life approach when investigating basic emo-

tions. His framework allows analysis at the level of implementation, at the level

of the individual and at the social level. In the framework, different emotion

models can be compared and it is suggested that an artificial life approach may

inform clinical researchers interested in lesion studies.
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1.5 The unique contribution of this thesis

Emotions are emergent phenomena and they come in many different recognisable

forms such as happiness, sadness, fear, anger etc. There are many aspects

to emotions that are poorly understood and the similarities shared between

each form of emotion are equivocal. Because of this, there are many ways of

researching the emotions.

Probably the most established method is to observe the emotions exhibited

by humans and animals [Dar72] and the consequence of emotional impairment

or imbalence [Dam94]. Another approach is to research which parts of the brain

are responsible for particular emotions. This would traditionally involve lesion

studies, matching observed impairment of functionality to precise lesions. Ad-

vances in technology have recently provided non-invasive scanning techniques

to show which parts of the brain are active during particular emotional states.

For example, based on the knowledge that localised lesions to the human amyg-

dala impair the recognition of fearful facial expressions, Morris et al [MFB+88]

have investigated the role of the amygdala more thoroughly using functional

neuroimaging.

Once enough data has been obtained from observation of specific parts of

the brain, computational models can be created to test specific hypotheses as to

the functionality provided by these structures. An example of this is Morén and

Balkenius [MB00]. A computational model that partially matches the charac-

teristics of the amygdala and orbitofrontal cortex is presented. The functional

model of emotional learning is tested using three classical conditioning experi-

ments.

The ideal proof that the simulation matches the functioning of the real-world

system would be obtained by substituting the real world system being modelled

with the simulation. This is not practical, or for the most part even possible.

But we can take a step closer to this ideal by placing the computational model

within the context of an artificial agent and seeing how well it works in a real-

8



world environment Prescott et al have taken this approach with a computational

model of the vertebrate basal ganglia [GPG+00][PGG+02a]. They tested the

theory that the basal ganglia provides functionality for solving the action selec-

tion problem in natural agents. The computational model was used to control

a small mobile robot given the task of foraging within its environment. Varying

the level of dopamine within the architecture results in similar behaviour as that

observed in animals with insufficient or excessive dopamine levels. They suggest

that the computational model could be used for testing theories regarding basal

ganglia dysfunction [PGG+02b].

This approach has demonstrated its worth for increasing our understanding

of parts of the brain whose functionality can be observed directly in a physical

environment. It is easier to determine whether an agent, either natural or artifi-

cial, is adapting successfully to an external environment than it is to determine

whether an agent is acting emotionally.

This thesis proposes a complimentary approach. The parts of the brain

that aid in the production of emotion are a result of an evolutionary process.

The traditional approach tries to determine the function of these parts and the

evolutionary pressures that produced them. We may settle upon a theory that

seems to explain why evolution has given us what we observe, but we can never

preclude alternative theories that we have not yet thought of.

The complimentary approach proposed in this thesis determines the func-

tionality available to us as agent designers. Rather than work back from an end

product left for us by natural evolution, the approach proposed here advocates

working forwards and seeing what we can produce. This can be by a process of

artificial evolution or by design.

This first requires seeing what can be achieved using the underlying building

blocks of the brain and understanding the functionality that they provide us as

agent designers. If we end up with a neural network that is functionally and

structurally similar to observed parts of the brain, then we can state with more

confidence the evolutionary pressures that produced those neural structures. If
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we end up with something different, then this also helps us refine our ideas as

to how the evolutionary pressures have shaped the natural brain.

This thesis applies this proposed approach specifically to understanding the

possible uses of neuromodulators in biologically plausible artificial neural net-

works. By doing so it is hoped that a number of questions can be answered.

What functionality can neuromodulators provide us? How can we use them for

creating artificially intelligent agents? And does the use of neuromodulation

help explain the emergent phenomena of emotions?

1.6 Layout

Chapter two reviews the literature, explaining why natural agents have emo-

tions and why artificial agents should also have them. It then discusses in more

depth the problem of defining what emotions are and suggests a solution. The

chapter then discusses the various theories regarding emotions and the func-

tional roles ascribed to them before moving onto published research concerning

neuromodulation.

The third chapter describes the tools and procedures used in this work. It

starts by suggesting a role for the much maligned grid world before discussing

the environment to be used to test various modulating agents. The agent, its

neural network, actions and senses are described. This is then followed by a

description of the tools and procedures used to optimise parameter sets. These

allow fair comparisons to be made. The chapter ends with a description of a

tool to visualise the structure and activity of the neural networks. This chapter

explains the reasoning behind the design of the tools as well as technical details.

Depending upon your intentions, it may prove useful to skim over certain details,

returning to them if or when they are needed.

Chapter four contains details of the experiments that have been run and their

results. The first experiments start with agents that cannot sense or act and are

not situated within an environment. These are internal sensing agents with a
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single body and actions to immediately alter the internal state of that body. It is

shown that these agents adapt. This is followed by experiments using extended

tests, tests with increasing noise levels and an analysis of how the networks

adapt. The experiments are then performed again, but this time for agents

with a single modulator rather than with two modulators. The chapter ends by

describing the performance of the agent when situated within the environment

described in chapter three.

The work ends with chapter five. This chapter reflects upon the work and

draws conclusions from it. Ways in which the work can be extended are de-

scribed.
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Chapter 2

Emotions in Natural and

Artificial Agents

This chapter reviews research and theories regarding the use, implementation

and functionality of emotions that occur in, or have been given to, natural and

artificial agents.

2.1 Why natural agents should have emotions

2.1.1 The evolutionary pressure for emotions

Nesse [Nes90] defines emotions as specialised states of operation that give an

evolutionary advantage to an agent in particular situations. Emotions in a

natural agent are either pleasant or unpleasant, but never neutral. Natural

selection is argued to shape emotions only for situations that contain threats

or opportunities. Understanding this allows the characteristics of an emotion

to be analysed as possible ”design features” that increase an agent’s ability to

adapt to the situation that provided the evolutionary pressure for the emotion

to develop.
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2.1.2 Emotion in the society of the mind

When discussing whether agents should be given emotions, Minsky [Min88]

is frequently cited as evidence that emotions are a fundamental property of

intelligent and adaptive agents. In reality, Minsky poses a question as to how

fundamental emotions are:

In any case, no matter how neutral and rational a goal may

seem, it will eventually conflict with other goals if it persists for

long enough. No long-term project can be carried out without some

defence against competing interests, and this is likely to produce

what we call emotional reactions to the conflicts that come about

among our most insistent goals. The question is not whether intel-

ligent machines can have any emotions, but whether machines can

be intelligent without any emotions.

In the hypothetical task of building an artificial animal 1 Minsky refers to

how the different needs of the animal, such as thirst, hunger, warmth etc, need

to be met. With the exception of multi-bodied ’animals’ such as swarms of bees

and ants, an animal must economise and share sensors and effectors between

different needs. It is argued that an animal can only move in one direction at

any one time and is therefore normally constrained to working towards only one

goal at a time. If several needs are of an urgent priority then the competition

between them needs to be resolved.

Each agent in Minsky’s society of mind tries to inhibit all the other agents.

The more inhibited an agent, the less able it is to inhibit others and therefore

the more inhibited it becomes. This avalanche effect uses the same principle be-

hind the competitive neural networks described in [HKP91] and [Gro92]. This

cross-exclusion, and the other mechanisms that Minsky describes such as the

conservation of global resources and the use of global inhibitory signals to regu-

late activity, are in effect global modulatory systems. If it proves useful to draw

1[Min88] was first published a few years before the pursuit of implementing artificial life
properly emerged as a field in its own right.
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inspiration from biological systems to create competitive agents and neural net-

works, then it could prove fruitful to examine how the brain broadcasts global

signals using neuromodulators.

2.1.3 Emotions and consciousness

There is an area of common interest between those wanting to create artificial

emotions and those wanting to create artificial consciousness. Shanahan [Sha05]

implements a cognitive architecture inspired by the brain to anticipate and

simulate future interactions with the environment. He implements analogies

with the functional roles that have been attributed to consciousness, emotion

and imagination.

Bosse et al [BJT05] explore Damasio’s theory on core consciousness. Dama-

sio describes an emotion as an unconscious neural reaction to a stimulus which

leads to a change in body state. A feeling is an unconscious sensing of this

new body state; and core-consciousness, or ’feeling a feeling’, is the conscious

recognition of this change, via a change to the proto-self, or representation of

the body.

Aleksander et al [IML05] state that emotions and feelings seem to be a

required property for being a conscious human being and that from this it can

be inferred that it is also a fundamental property of machine consciousness. As

a result, the claim of a machine being artificially conscious should be met with

suspicion if it is does not have mechanisms emulating the role of emotions in

living organisms.

2.2 Why study emotions?

There are many reasons why emotions should be studied with a view to im-

plementation within an artificial intelligence or artificial life system. There are

various reviews detailing these reasons and others such as [Sch02] and [Gad99].

Reasons that are relevant to the research carried out in this thesis are expounded
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here in more depth.

2.2.1 Emotions and rationality

The classical view of an agent or artificial intelligence is one consisting of logical

inference and reasoning within a deterministic environment with clearly salient

and defined variables and symbols. The history of the field has shown this to

be inadequate for noisy and variable environments in which feature extraction

is required before adaptation can occur. But even within these environments an

agent must still act rationally inasmuch as its actions, behaviour and adaptation

must have a high utility and low cost.

Ventura et al [VCPF99] state that apart from intellectual and academic

curiosity, emotions should be studied and implemented if it leads to better per-

formance than agents without emotions. Although emotions have a significant

influence upon the behaviour of humans they claim that it is not clear whether

emotions should be implemented in agents. Behaviours resulting from artificial

emotions are argued to not be explainable2, a crucial property when faced with

convincing others about the decisions being made. This is a problem shared by

the neural net community as a whole. But recognising that the mechanisms of

emotions do play an essential role in human rationality, they may prove useful

in agent adaptation and their benefit should be ascertained.

Evans [Eva02] discusses how emotions can help the reasoning process in the

form of the search hypothesis. A rational agent makes a decision based upon the

highest expected utility. A conditional probability is assigned to the outcome

of each action that can be performed. But that requires all possible outcomes

to be listed. In an open-ended and partially unknown environment this list can

be indefinitely long. This process needs a cut-off point. The search hypothesis

proposes that emotions constrain the range of outcomes to be considered and

2A controversial argument if one properly understands the underlying mechanisms and
has adequate instrumentation. Although an emotional agent is clearly harder to explain
than a purely deterministic one, this characteristic also applies to any non-trivial adaptive
system situated in a noisy and dynamic environment; or indeed to any complex system whose
behaviour depends upon the history of its input.
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subjectively applies a utility to each. This avoids analysis paralysis and allows

the agent to more rapidly settle upon a decision and act.

There are other ways in which irrationality is required in order to behave

rationally. Nesse [Nes90] relies upon the concept of irrational behaviour in order

to explain the rationality of the emotion of anger. In a long term, committed

social partnership where one party is tempted to defect, the threat of an irra-

tional and spiteful retaliation because of the betrayed partner’s anger decreases

the likelihood of a defection continuing or even taking place at all.

Rational is defined in the dictionary [SSH01] as:

adj. 1 being based on reason; a rational explanation. 2 able to

think sensibly or logically.

Given that the agent controllers implemented in this research are non-symbolic

and do not perform any logical inference or deduction, it can be questioned as

to whether the advantage of rationality conferred by emotions is relevant. A

distinction must be made between an action being performed because of some

logical reasoning or cognition, and an action being performed that can later be

judged as being rational. As Ledoux points out [LeD98], the real reason for an

emotion or action may be very different from the rational explanation that we

later provide ourselves and others.

2.2.2 Artificial Life and Virtual Reality

The two fields of artificial life and virtual reality have much to offer each other.

Artificial life attempts to explore the underlying biological principles uncon-

strained by the real environment. Rather than only studying life as we know it,

it is open to life as it could be [Lan96]. This means that new, rich and complex

environments can be explored.

Artificial intelligence also benefits from a bottom-up approach whereby agents

should be physically embodied in noisy and realistic environments [Bro91b].

However what constitutes realism depends upon the target environment of the
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agent. Etzioni [Etz93] claims realism at every stage by using softbots in a work-

ing Unix operating system. Experiments using physical and mobile robots it is

argued, are lengthy and difficult. They do not provide the only route to creating

artificial intelligence.

The desired application of artificial intelligence should determine the envi-

ronment in which it is created and the methods used, whether that be a robot

maintaining an office, a softbot maintaining an operating system or an expert

system in a doctor’s office.

The introduction of [TT94] discusses the need to populate virtual reality en-

vironments with virtual plants, trees, animals and humans. Artificial emotions

can be used to make animals and humans more convincing and can provide a

mechanism by which designers can influence the emotional state of the user.

Johnson and Jones [JJ99] discuss communication of affective information in vir-

tual environments between all permutations of human and agent interactions.

They stress the importance of affective states in making a virtual environment

truly realistic. Gratch and Marsella [GM01] discuss the critical role of emo-

tions in making virtual humans convincing and be able to hold the interest of

the user. They increase empathy and attachment in the user to the virtual

humans. Their application is the Mission Rehearsal Exercise system in which

trainee users are immersed in a resource allocation scenario typically found in

a military peace-keeping exercise.

Given that realism and convincing behaviour are common justifications for

implementing artificial emotions, one can assume that it is also important to

realistically emulate the underlying mechanisms that cause emotions.

2.3 The difficulty in defining emotions

When attempting to understand and recreate a phenomenon, it is intuitive to

define it first. This focuses the research effort and helps to determine what is

and is not worth the attention of the researcher. This increases the likelihood
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of some worthwhile results being obtained and conclusions drawn. Ordinarily

this is a useful endeavour; that is, for phenomena for which definitions can be

unequivocally decided upon.

Humankind has long attempted and failed to decide what emotions are and

the function they fulfil, or indeed whether they do at all. Modern science has

not yet produced a consensus on what emotions are. If this was achieved then

the next step would be to create artificial versions of emotions. The lack of

consensus suggests that we do not yet understand enough about emotions to

create a single definition. Whilst very possibly true, this might not be the only

reason.

It is futile to repeatedly ask the same question if it cannot yet be answered

because of insufficient knowledge. More knowledge regarding the problem do-

main needs to be obtained before the question is repeated again. And so it is

with asking what defines an emotion. Unfortunately this means that we have

to find another way of understanding and recreating emotions.

2.3.1 Phenomena or epiphenomena?

Sloman [SC81] argues that the mechanisms that give rise to emotions are also

the same mechanisms that an intelligent system requires in order to be flexible

in a complex environment. The case argued is that if an intelligent system

has multiple motives and limited powers then that system is likely to also have

emotions. Conversely, emotions can be understood by examining the motives

and types of processes that they can produce. An emotional state normally

involves at least one strong motive.

Sloman attempts to create a grammar of artificial and natural minds by

laying out the possible constraints on the design of intelligent systems, the

internal processes involving motives and the types of motives that an intelligent

system may have. This provides a spectrum of intelligent systems from the very

simple to those containing the full complexity of the grammar. It is argued that

within this spectrum it is pointless to draw a line as to what is and is not real
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intelligence. The analogy made is that if one player accepts the handicap of

playing chess without a queen then it is still a game of real chess.

A seemingly opposing view is taken by [Sch02]. Scheutz reviews the emerging

research on the design of emotional agents. A criticism is made of the common

practice of labelling agents as having emotions when it is not clear whether or

not they really do. It is argued that describing agents as having such properties

without due justification is counter-productive to the quest to understand and

model emotions. Highly abstracted causal descriptions lack the low-level details

and mechanisms that give rise to emotions in natural agents in the first place.

It may be that the missing low-level details are what is required for an agent to

have actual emotions.

In McDermott’s classic rant [McD81], it is argued that labelling some code

as being a property of the larger system does not mean that it actually is that

property. It is suggested instead that labels should be as unambiguous and

unequivocal as possible and that the author should convince themselves and

anybody else, that the code does indeed provide the property that is intended.

So for example, Gadanho [GH98] did not implement the emotions of happiness,

sadness, fear and anger in an agent. What was actually provided were four

modules defining dependency and bias constants.

2.3.2 Classical concepts and cluster concepts

Scheutz makes a distinction between classical concepts and cluster concepts.

Classical concepts have well-defined boundaries and a set of conditions that can

be used to determine whether something is a member of that class. Emotions

belong to cluster concepts. No one single definition of emotion can be applied

to all different subspecies of emotion even though most emotions have enough

in common to be grouped as a class. This shows itself in the field as a lack of

agreement on what constitutes an emotion.

Bedau [Bed96] writes that a cluster concept provides no explanation as to

why such properties should make up such ubiquitous and fundamental natural
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phenomena. But then neither will a single encapsulated definition; observation,

hypothesising and evaluation will achieve that. Bedau’s main argument against

cluster concepts is that they make the properties of life seem arbitrary. Seeming

is not the same as being. The fact that it is more difficult for us to reason about

a cluster of properties that co-exist does not detract from the possibility that dif-

ferent aspects of the same cluster are involved with the different manifestations

of the emergent phenomena.

The difficulty of the cluster concept does not just affect the field of emotions

research. For example similar problems surround the definition of life and of

intelligence. The first chapter of [Ste00] discusses the concept of intelligence,

first from the lay person’s point of view and then from an expert’s point of view.

The chapter starts:

Looked at in one way, everyone knows what intelligence is; looked

at in another way, no one does. Put another way, people all have

conceptions . . . but no one knows for certain what it actually is.

The argument can be made that the concepts of lay-people are not relevant

because they do not need to rigorously define or apply their concepts. For

example Bedau, when reviewing the differing definitions of life in the literature,

writes that ”we want to know what life is, not what people think life is” [his

emphasis]. An analogy is made with how chemists define glass as a liquid even

though the everyday concept of it is as a solid object. But what is life but

a handle that we use to refer to some natural phenomena? In which case the

common usage of this handle is relevant. You can still study the nature of this

phenomena regardless of the definition that you use.

In exploring the definition of a game, Wittgenstein [Wit58] considers the

different examples of games; board-games, card-games, ball-games, the Olympic

games, ring-a-ring-a-roses etc. and challenges us as to what common feature

links them all. Instead of finding one definition to include all the examples there

is a complicated network of similarities, best characterised in Wittgenstein’s
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view as ”family resemblances”. If there is a special need for a boundary to

be drawn then one can be, for that purpose only. A boundary can not be

unambiguously defined. But a boundary is not required in order to make the

concept usable.

If there is one underlying feature of many games that Wittgenstein does

not consider then it is that the term ”game” is used to describe an activity

which is relatively less consequential than the alternative. For example, a nation

losing at the Olympic games is less consequential than if it had lost a war. For

the purpose of teaching, a game can be less consequential than practising an

activity for real. The child’s game of ring-a-ring-a-roses is less consequential

than schooling, eating, drinking and sleeping.

By itself this feature is not complete enough to form a definition and is

too contrived for some examples so Wittgenstein’s point is still valid. But

it is interesting to point out that Wittgenstein is comparing all the examples

together and each one out of context. When considering whether something fits

a definition it may prove useful to take into account the context.

One might argue that a set of variables or lines of code are not emotions,

intelligence or life. But then one could argue that neither are a set of neuro-

chemicals, neurons or DNA sequences. It is the effect of these things within an

entity and its environment that provides us with evidence of these phenomena.

2.3.3 Graded levels of phenomena

The problem of creating a definition does not just come from cluster concepts,

but also because we are trying to apply a discrete classification to a continuous

phenomena. Can an artificial agent be intelligent? No if we take intelligence

to mean human intelligence because an artificial agent is not human. Yes if we

use a working definition and see that the agent is effectively adapting within its

own, partially unknown, environment.

Kak [Kak96] argues that we can test for levels of artificial intelligence rather

than for a discrete property. Not all animals are equally as intelligent at all
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tasks. Experiments on the ability of pigeons to learn concepts have shown

that gradations of cognitive function can be defined. In one experiment the

pigeons were shown to have a similar performance to pre-school children. But

all animals can be argued to be sufficiently intelligent to survive within their

ecological niche. They are intelligent within their own environment. They are

as intelligent as their environment, physical bodies and senses require them to

be.

2.3.4 Working definitions

A useful approach is to find a working definition, such as Wang [Wan95]. This

does not attempt to provide an unequivocal definition for everyone, but does

provide a definition that can be used, and worked with, for a specific research

effort. Wang points out that a concept is meaningless if it encompasses ev-

erything. Therefore a useful complimentary question is, what characterises the

absence of intelligence?

Taylor [Tay98] argues the importance of being explicit as to what high-level

phenomenon is being researched and the underlying mechanisms believed to

be responsible for it. Referring specifically to the phenomenon of life, Taylor

calls for an explicit definition of it when building investigative models. It is not

required for the definition to be unequivocal.

Unequivocal definitions that are explicitely stated for the purpose of the

research are working definitions. These are useful when employing a top-down

approach. They provide a goal to aim for so that you know when you have

made progress. If a bottom-up approach is used to identify and test each form

of functionality that it is proposed that emotions gives us, then in essence we

are using and testing a different working definition of emotions each time. No

single working definition need then be decided upon to encompass the entire

work. This does not solve the problem of how to unequivocally define the

phenomena being emulated but it allows for different aspects to be researched

until enough is understood to achieve this.
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But how can high-level natural phenomenon be explicitly defined if we do not

yet understand what it is? If a scientist is trying to answer whether a specific set

of low-level mechanisms is directly responsible for a particular instance of some

high-level phenomenon then Taylor’s argument holds true. But understanding

how the low-level mechanisms interact and can be used, without any specific

result being intended, can also be a useful exercise. This is on-a-par with the

way that mathematicians play with formulas without specific relevance to any

real world phenomena.

It is useful to see what high-level phenomena can arise from those explicitly

stated low-level mechanisms. This allows new avenues of research and engineer-

ing to be opened up that were not previously thought of. It cannot be assumed

that all possible applications of the low-level mechanisms can be envisaged a-

priori with limited knowledge.

2.3.5 Finding the boundaries of definitions of emergent

phenomena

Fellous [Fel04] suggests that the focus of study should be on the function of

emotions rather than on what they are. Seen in this way, animals can be

seen functionally as having emotions, whether or not we empathise with them.

Given this, robots can functionally have emotions as well. One function of

emotions mentioned that has a robotic counterpart is to achieve a multi-level

communication of simplified but high impact information.

So applying these lessons to the emergent phenomena of emotions, can we

have graded levels of emotions? What is not an emotion? Can the concept of

emotions be extended and applied to robots?

Even with humans we recognise that some people are more emotional than

others. We also recognise when something obviously does not have emotions, for

example an inanimate object such as a chair. The difficulty lies in the grey areas

when there are no clear cut boundaries to the concept. The question becomes

one of how far to extend the concept.
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I would like to suggest a maxim:

When a scientific community cannot agree upon the scope of some

emergent phenomena, they are only debating the boundaries of a

definition.

We must not be distracted by a need to create precise definitions. There

is a saying relevant to the field of artificial life that if it looks like a duck,

walks like a duck and quacks like a duck then in the absence of any compelling

evidence to the contrary, it probably is a duck. We need to look beyond the

question of whether this is a justifiable argument and recognise the true goal

and achievement of creating such a duck-like agent in the first place.

If we manage to isolate the various functions provided by the natural phe-

nomena, the bottom-up processes that provide them and emulate these in an

artificial agent to the same effect that they are found in natural agents; then

we need not care whether or not people extend their own definitions to include

them. Are we trying to evolve agents with artificial emotions, intelligence, con-

sciousness, life etc? Or are we concerned only with convincing others that we

have?

2.3.6 Phenomena relative to the environment and agent

Pattee [Pat96b] attempts to distinguish between computer simulations, and re-

alisations of life. Computer simulations are stated to be metaphorical models

and no matter how life-like, they will never be realisations of life. Realisations

are defined as being literal and material. The simulation of a trajectory never

results in a realisation of motion. It is proposed that the requirements for being

an AL realisation of life are that the agent should be a situated model that is

a phenotypic expression of a genotype that is subject to mutability, heritability

and natural selection. Rather than just adapt to its environment, the realisation

should also display emergent behaviour.

Sober [Pat96a] argues that a computer can be used to simulate stresses
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upon a bridge, but no matter how sophisticated the simulation, the computer

simulation itself will never be a bridge. Computer simulations are at heart

nothing more than representations and that there is no need for overstatement

in the field of artificial life.

But Sober is applying a definition of a bridge, obtained from the real world

and arguing that the definition should not be applied to the simulated world.

Within that simulation and context, the simulated bridge has the definition of

being a bridge. For example, it could be a bridge across a chasm in a virtual

environment providing the same function as a real-world bridge. But it does

not fit the definition of a real-world bridge because it does not match the exact

subset of conditions for it to be so, even though both definitions are drawn from

the same cluster concept.

If a metaphorical and a material model have the same list of properties, both

of which fulfil Pattee’s requirements above, then the former is only a simulation

and the latter a realisation because Pattee has defined it to be so. Both are

instances that fulfil a definition of artificial life. They are not instances that

fulfil the definition of natural life.

Yet an instance of artificial life and an instance of natural life will both fulfil

some of the conditions of the cluster concept. The scope of a definition should

be decided by the environment of the agent or phenomena and the underlying

materials and mechanisms which have produced it, whether it be lines of code

or a biophysical expression of DNA. Definitions supply a context within which

a condition can be determined as being true or false. The scope of the context

supplied by the definition should match the scope of the environment of the

agent or phenomena.

2.3.7 Emergence of precisely bounded definitions

As will be discussed later in section 2.5, this does not mean to say that we need

to totally discard definitions. Definitions are a tool that allows us to discuss and

reason about a subject, nothing else. Instead we should abandon the practice of

25



attempting to apply precise constraints to an inherited layman term. Let new

precisely bounded definitions arise through the bottom-up process of finding out

what works and from the observations of natural phenomena when they can be

made.

The new precise definitions should be created for the grey areas to which

the layman terms cannot be easily applied. This leaves free the original layman

terms to be applied to what everyone originally understood them to be meant.

An example can be drawn from the relatively young field of Geology, the begin-

nings of which are attributed to James Hutton of Edinburgh in the late 18th

Century. ”Granite” used to be a layman term. The common usage of the term

was clearly understood. But the characteristics that determine whether a rock

is made up of granite can also be found to a greater or lesser extent in rock that

is not granite. Yet the field now has a precise definition of what granite is, based

upon the relative amounts of quartz, K-feldspar, plagioclase and feldpathoids

that make up the rock [Nes00].

How did mineralogists manage this when practitioners in the field of artificial

intelligence and artificial life argue how far to extend their definitions? The grey

areas that surround the space of what is generally known as granite also have

their own, newer, definitions derived from observation.

Why these definitions have arisen is beyond the scope of thesis and of course

the comparison can only be taken so far. Mineralogists are observing quantifi-

able physical characteristics as opposed to emergent phenomena, the functions

of which are still being determined. But the boundaries of the definition were

not determined with a view to distinguishing between rock that was and was not

granite. Instead the boundaries were determined with a view to distinguishing

between rock that was granite, quartz syenite, anorthosite, alkali feldspar gran-

ite, granodiorite, quartz-rich granitoids etc. It became possible to determine the

boundaries of the definition by observing and learning about the characteristics

of the space outside of it.

What emotions researchers are doing is the equivalent of attempting to pre-
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cisely apply the term ”Granite” to a boundary definition such as ”granodiorite”,

a rock that would originally have been classed as granite by laymen. But doing

this ignores all the other boundary definitions. Instead each functional class

of emotions should be given their own specific definition. We may not end up

with a single definition of emotion but we will gain precise and unambiguous

definitions that serve as a common point of reference.

2.4 The functionality provided by emotions in

natural agents

2.4.1 The need to understand the functionality of emo-

tions

Nesse [Nes90] argues that in order to understand emotions, we need to under-

stand the functionality that they provide, the selective evolutionary forces that

have shaped each emotion and the situations in which having these emotions

have increased the Darwinian fitness of the agent.

In order to formulate explicit evolutionary explanations of emotions, Nesse

advocates an adaptionist approach in which emotions are explained in terms of

the resulting functionality that increases Darwinian fitness.

Rolls [Rol99] also advocates furthering our understanding of emotions by

increasing our understanding of their function. Doing this increases our un-

derstanding of the brain mechanisms that give rise to emotions. But Nesse’s

stance is stronger on the importance of functionality, stating that no definition

of emotions can be agreed upon until their function can be fully conceptualised.

Scheutz [Sch02] also states that emotions should be defined in terms of their

functional role.

If we fully understand the functionality of an emotion, the mechanism by

which it fulfils its role, and can model this in an agent, then all that is different

is the medium in which it is implemented. Maybe like Wang we should some-
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times assume an inverse stance on our questioning. Instead of asking whether

our models are also emotions, we should ask why they are not emotions and

determine the significance of any differences between the two.

2.4.2 The functionality of emotion

Rolls describes ten functions of emotions in natural agents.

• Autonomic and endocrine responses

• Flexibility of behavioural responses to reinforcing stimuli

• Motivation

• Communication

• Social bonding

• Hedonism

• Cognitive evaluation of events and memories

• Facilitation of memory storage

• Persistence

• Facilitation of memory recall

2.4.3 Complex functionality

Some of the above functions have more prerequisites than others and are there-

fore more complex and time consuming to implement in an artificial agent.

Autonomic and endocrine responses require the implementation of an ar-

tificial body and an environment in which it can be situated. An example of

an autonomic response would be a change of heart beat in a natural agent, or

perhaps a change in performance and power consumption for a CPU in a robot.

An example of an endocrine response in a natural agent would be the release of

adrenaline. In an artificial agent this could be a global signal for the state of a
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resource, such as power level, which alters the behaviour and immediacy of the

agent’s goals.

Communication and social bonding requires a multi-agent system with a rich

environment and senses, a means to communicate about the environment and

a shared need for communication.

One suggested role of emotions is to provide a flexibility of behavioural

responses to reinforcing stimuli. This assumes that all emotions are either

rewarding and pleasurable, or punishing and unpleasurable, as advocated by

Rolls and Nesse. Instead of learning a fixed behavioural response to a stim-

ulus it is suggested that learning takes place in two stages. The first stage

associates emotional states with the rewarding or punishing stimulus, and the

second stage makes use of previously learned strategies to obtain the reward or

avoid the punishment. Implementing a biologically plausible two-stage process

will always be a significantly more complex task as both stages have to work

together. This may have advantages to an adaptive agent and the fact that it

appears to have evolved in natural agents suggests that this is so. Such an ar-

chitecture could possibly be advantageous in a complex environment with many

concurrent stimuli and goals.

Porr and Wörgötter implement a similar two-stage system in a physical robot

[PW03] [PW02]. In their experiment, a robot can sense a collision with another

object. This causes a reflex action in the robot, causing it to retract. The robot

is also equipped with range finders. These respond to obstacles earlier than

the collision sensors. Without supervision, the robot learns a causal relation

between the two sensor modalities and reacts to the earliest incoming signal.

Different strategies emerge to avoid obstacles depending on the initial conditions

of the robot.

Implementing biologically plausible cognitive processes and selective memory

storage and recall are ambitious projects in themselves and distracts from the

aim of implementing the functionality of emotions in an artificial agent. It is

therefore considered out of the scope of this thesis.
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2.4.4 Simple functionality

A simple form of action selection can be substituted for cognitive processing.

Instead of performing a fixed behavioural response to a stimulus, an agent can

make an appropriate response according to its current emotional state. For

example, a dark corner is attractive for prey that is being chased and is scared,

yet may not be so attractive for an agent that is hungry and needs to explore.

Other functions are easier to implement. One suggested function of emotions

is to motivate an agent to act to obtain a reward or avoid a punishment. This

raises the question of whether an agent should only act because it is in an

emotional state or whether emotions should function as a signal to prioritise

certain actions.

Hedonism comes from the generalisation that anything that is pleasurable

and is positively reinforcing has survival value. There are obvious exceptions to

this. Brains can be deceived and manipulated into providing pleasure when it is

detrimental to survival to do so. But when taking into account the environment

that natural agents have evolved for, on the whole pleasure can be used to signal

and to motivate the agent towards stimulus and behaviours that have a high

survival value for the agent and its genes. In essence, emotion can be used to

provide reinforcement learning for agents [Gad99] [SB98].

Some behaviours require persistence before their utility is realised even

though the initiating stimulus is no longer present. For example, prey may

still be in danger even though it no longer sees the predator that has narrowly

missed catching it.

2.5 Previous definitions of emotions

The history of emotions research has been left until now so that it can be

reviewed within the context of current scientific thinking on the subject.

As described above, Nesse [Nes90] defines emotions as specialised states of

operation that give an evolutionary advantage to an agent in particular situa-
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tions. LeDoux [LeD98] pp16 describes a distinguishing characteristic of cogni-

tive processing as flexibility of response to the environment. Emotions provide

a counter-balance to this by narrowing the response of an agent in ways that

have a greater evolutionary fitness.

If each phenomenon that we may or may not recognise as an emotion has

evolved to fulfil its own specialised role, then what makes us think that there is

much in common between all emotions? Fear and joy fulfil vastly different roles

and cannot be viewed as merely negative and positive emotions at opposite ends

of a single spectrum. LeDoux [LeD98] writes that ”emotion” is nothing more

than a label that allows us the convenience of discussing aspects of the brain

and mind.

In the literature, different roles have been assigned to emotions. They have

been explained as mechanisms to appraise the environment or to make salient

features within it, or states produced by reward and punishment. Emotions

have been described in terms of body responses or as a form of modulation.

Each claim is plausible when discussed in terms of specific emotions, but none

are applicable to all emotions. Given that each emotion has evolved for a specific

reason, it may be that there is no single role that can be applied to all emotions.

Instead it should be recognised that there are different classes of emotions. We

should be wary of attempts to constrain the label of ”emotion” to one particular

class. If some specific functionality is observed to be common to a class of

emotions, then this class needs its own new label with an unambiguous meaning.

2.5.1 Body-centric emotions

Early ideas

Throughout the ages philosophers have been asking what emotions are but

science first started to tackle the subject with an article by William James

[Jam84] in 1884. This resulted in what is known today as the James-Lange

theory of emotions because Lange [Lan85] proposed a similar argument a year

31



later which attributed a greater role to autonomic feedback in creating the

experience of emotions.

It was argued that emotions were generated by sensing changes occurring in

the body such as the heart rate or changes in the skeletal muscles and responding

to those changes.

In the scenario of meeting a bear and running away from it, it was proposed

that we feel fear because we are running away rather than the running being

a symptom of being afraid. It is because of the changes in the body that the

experience of having an emotion is different to those of other states of the mind.

Unfortunately it was never explained why we should be running away in the

first place.

This view was largely accepted until challenged by Cannon [Can27] who

researched the responses of the body when hungry or acutely emotional. Cannon

argued that the responses were the same regardless of the emotional state and

that these responses were also too slow to be the cause of the emotional state.

Cannon denied that a response from the body was required for an emotional

state, which instead originate within the brain. But Cannon did agree that

emotional states were distinguished from non-emotional states because of the

accompanying bodily responses.

Schachter and Singer [SS62] added to the debate by suggesting that cognitive

processing determined what emotion was being experienced by interpreting the

non-specific response of the body in the context of the information sensed from

the environment. Their theory did not tackle the question of why the body was

responding in such a manner in the first place.

The Somatic-marker hypothesis

Damasio [Dam94] also took a body-centric view when explaining how emotions

are required for a human to be a rational agent, a view later espoused by the

search hypothesis [Eva02].

Damasio describes how nearly every part of the body can send a signal to the
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brain via the peripheral nerve to the brain stem or spinal cord. The body can

also communicate to the brain chemically by the bloodstream. This influences

the brain directly or by activating the subfornical organ, a neuronal structure

that senses low levels of angiotensin II, a blood-borne molecule, in order to

regulate thirst [ERKJ00] pp1006. The subfornical organ then communicates this

to the hypothalamus. The brain can also influence the body, either chemically

or by the use of nerves.

The brain is grounded in the body. It senses and interacts with the envi-

ronment from within the body. There are many requirements that an organism

must fulfil in order to survive and to pass on its genes. It needs a supply of

oxygen, water and nutrients. Predators need to be avoided and genes need to be

passed on through sexual behaviour and care of kin. A brain cannot exist with-

out a body but some simpler, evolutionarily older, organisms can exist without

a brain. Damasio writes:

I see the essence of emotion as the collection of changes in body

state that are induced in [the] myriad of organs by nerve cell ter-

minals, under the control of a dedicated brain system, which is re-

sponding to the content of thoughts relative to a particular entity

or event.

A body-loop is described in which a signal from the brain is sent to the

body and then received back by the brain. The brain waits for a report from

the body. The report is an evaluation of the current, or predicted, situation. It

frames rational searches. Damasio uses two examples. He asks us to imagine

being the owner of a large business, approached by a lucrative potential client

who is the arch-enemy of a long term friend. You have two options. Lose the

client or lose your friendship. Before any reasoning and a cost / benefit analysis

is mentally performed, when a negative situation is imagined as a result of a

choice, an unpleasant gut feeling occurs in the body. This focuses the brain’s

attention and acts as an alarm signal. This may lead to an immediate rejection
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of that option.

In another example, a squirrel in Damasio’s backyard sees a black cat, and

before any cost / benefit analysis or mental reasoning is performed, the squirrel

is jolted by a body state to run up the nearest tree.

The counter-argument to the Somatic-marker hypothesis

Rolls [Rol99] lists a number of reasons why the James-Lange theory of emo-

tions is implausible and sees Damasio’s somatic-marker hypothesis [Dam94] as

a weakened version of this theory but one which still suffers from many of the

same fatal flaws.

• What is the cause of the original body response? Why are we running

from James’ bear or the squirrel running up the tree?

• The peripheral changes are too indistinct to encode the information re-

quired to have subtly different emotional feelings to such a large range of

different stimuli.

• Emotions evoked by imagery are accompanied by weaker and more in-

distinct peripheral responses than those evoked by external stimuli. The

emotion may be just as strong for an evoked image but the need for a

bodily response is reduced.

• Emotional responses are still possible and can still be perceived even when

there is a disruption of peripheral responses and feedback, for example by

spinal cord injury, surgery or blocked by drugs.

• Autonomic changes artificially induced by injections of substances and

hormones such as adrenaline, do not produce particular emotions, they

can only modulate the extent to which existing emotions are felt.

• Emotional behavioural expressions such as smiling, more often occur as

a result of social communication rather than as an expression of one’s

emotional state.
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• Once the need for a response has been determined, it is inefficient and

noisy to have a peripheral response and then a transducer to measure

that response in the execution of an emotion.

A resolution between the Somatic-marker hypothesis and its critics

Johnson [Joh04] questions why somatic-markers need to be confined to the body.

The somatic-marker hypothesis is considered from an alternative perspective us-

ing the concept of Dawkin’s extended phenotype [Daw82] to create the extended

somatic marker. Johnson suggests that one convincing use of somatic markers

is to allow simultaneous and co-ordinated communication with multiple brain

regions. But non-somatic neuromodulation can achieve this too.

Johnson also questions why it is not sufficient for a marker to be a mental

marker only and suggests the functional analogy of the hardware interlock, an

independent safety-device outside of the main system that monitors one small

aspect of it.

What I suggest is that somatic feedback is an epiphenomena of emotion

rather than a prerequisite for it. If there is continuous feedback from the body

to the brain as Damasio suggests, then it is not appropriate to think of the body-

loop as a sequence with the brain communicating with the body and waiting

for feedback before evaluating a response. Instead it is a continual stream of

sensory information no different from the other external senses. The continual

feedback from the body should be seen as updating the current emotional state.

This is no different to any other new external sensory information updating the

evaluation of a situation.

Upon seeing a cat, the squirrel becomes fearful and wants to keep a distance

from it. The brain of the squirrel sends a signal to its body to prime itself. If

the squirrel has plenty of energy then a jolt signifies that it is plausible to run

away while it can. Indeed, a sufficient response from the body resulting in a jolt

may make it necessary to run away as the movement will attract the attention

of the cat.
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But if the squirrel is tired after a day of foraging, the poor response of the

body suggests that running away and drawing the attention of the cat is not

guaranteed to save the squirrel. Instead, the squirrel may well freeze hoping not

to be seen. It is because the squirrel is fearful that the signal and the response

from the body occurs.

It makes sense that because the brain has evolved to maintain homoeostasis

of the body there will in some cases be a signal / response loop between the

two. But this does not mean that somatic feedback is essential to all emotions.

Somatic feedback carries a cost and so why should it exist in situations that do

not directly affect or rely upon the state of the body when the processing can

occur fully in the brain? It may be that with some emotions, the body-loop

only exists to be used in cases of extreme emotion, possibly acting much like a

hardware interlock, but is not relevant for the normal case. There needs to be a

distinction drawn between emotions that require immediate and strong somatic

feedback, such as hunger, thirst, fear, anger, disgust and sexual arousal, and

those which do not such as love and pity.

2.5.2 Environment-centric appraisal emotions

Not everyone agrees that emotions originate from the body, for example Rolls

[Rol99] pp65 argues that emotional states are normally initiated by reinforcing

stimuli that have their origin in the external environment. 3

The body-centric theories of emotion in general ignore one fundamental ques-

tion. What makes the body respond in the first place? For emotions that signal

a particular state of the body, such as hunger, satiation or pain, this is not such

an issue. But when the theories are applied to emotions that have their impetus

in the environment that the organism is situated in, such as social emotions,

fear and anger, then this question needs to be addressed.

The appraisal theory of emotions, as discussed by Magda Arnold [Arn60]

3He admits that there is room for further refinement to this idea of emotions and ignor-
ing pleasure from satiation, that some people may say that they experience emotion when
savouring food.
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attempts to address this issue. The organism mentally and unconsciously ap-

praises the desirability of its situation. This biases the actions of the organism

to what it perceives as good and away from what it perceives as bad. It is this

bias that the organism consciously feels as emotion. In the scenario of meeting

a bear in the woods, the bias to run away is consciously felt as fear.

The idea that emotions are appraisals is still supported by researchers to this

day. For example, Goldie and Döring [GD05] state that emotions necessarily

involve evaluation but deny that this necessarily leads to a desire to act. Rolls

[Rol99] pp60 proposes that emotions are states elicited by rewards and punishers

and changes in reward and punishment.

Evaluation by itself is not sufficient to describe what an emotion is. The

raison d’être of action selection is to increase the current or future well-being

of an agent and performed in an unknown environment will involve evaluation.

This does not necessarily involve what we recognise as emotion, but the ability

to discern between what is beneficial or otherwise to an agent is a common

characteristic of many theories about emotions.

2.5.3 The Interrupt theory of emotions

The Interrupt theory of emotions postulates that the role of emotions is to

interrupt the on-going behaviour of an agent in its satisfaction of goals. New

goals are then set according to the emotion that has been activated. The idea

was first introduced by Simon [Sim67]. It was later developed by Oatley and

Johnson-Laird [OJL87] who among other things, ascribe to emotions the role

of non-propositional communication. These are non-symbolic signals that have

no denotations. A similarity is drawn with hormones, which function purely

causally.

Interruption can be seen as an extreme form of modulation; a particular in-

stance where there is one overriding strong emotion or need, and a corresponding

clear transition in behaviour and goals for the agent. For instances where there

is more than one competing emotion or need, or the emotions and needs are less
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strongly felt, then the same mechanisms can be seen as modulating the agent’s

goals and behaviour.

To suggest that emotions function solely as an interrupt is an example of

electrocentrism4, inherited from the field of computer science from which the

quest for artificial intelligence developed. It is a viewpoint grounded in discrete

binary logic rather than one that sees natural computation as consisting of

complex and noisy dynamical systems interacting with one another to produce

emergent phenomena.

2.6 Neuromodulation

One way of studying the functionality of emotions, is to identify the extra func-

tionality provided by the mechanisms that give rise to emotions in natural agents

compared to solutions that do not have those mechanisms. One such mechanism

is neuromodulation.

2.6.1 Neuromodulation in natural agents

Fellous [Fel99] proposes that emotion can be seen as continuous patterns of neu-

romodulation of certain brain structures. It is argued that theories considering

emotions to emanate from certain brain structures and from non-localised diffuse

chemical processes should be integrated. Three brain structures are considered

in this way: the hypothalamus, amygdala and prefrontal cortex.

Given that functionality implemented using neuromodulation can also be

implemented using only neurons and synaptic connections, this leads to the

question of what practical benefits are gained from using one over the other.

For example Rolls [Rol99] refers to how hunger and satiety are signalled

by the body. The duodenum contains receptors sensitive to the chemical com-

position of food draining from the stomach. Receptors responsive to glucose

contribute to satiety by passing signals via the vagus nerve to the brain. Fat

4A term coined by Brookes [Bro91a], see section 2.6.2 for further discussion on this.
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infused in the duodenum can also produce satiety but this is likely to be sig-

nalled by the use of hormones. The candidate hormone for this is Leptin, or OB

protein. The hypothesis being that this is responsible for longer term regulation

of body weight and body fat rather than regulation on a meal-to-meal timescale.

Kelley [Kel05] argues that in their broadest possible sense, emotions are

required for any organism or species to survive. They allow animals to satisfy

needs and act more effectively within their environment. If robots are to survive

as effectively then they also need equivalent systems. She writes:

The basic premise . . . is that emotions are derived from complex

neurochemically coded systems, structured by evolution, that are

present in one form or another from single-celled bacteria to pri-

mates.

It is discussed how the function of a peptide can change throughout evo-

lutionary history and between species. For example serotonin biases dominant

behaviour in lobsters, whereas in humans it is known to modulate impulsive-

ness and aggression. Yet peptides can have many functions throughout the

same brain. Serotonin is a good example of a peptide that fulfils many different

roles and for which a wide variety of receptors have been evolved. Oxytocin

is another example. Three ways that chemical compounds can be used are de-

scribed. As synaptic transmitters, as modulators of postsynaptic receptors and

as neurohormonal signals released and acting at sites distal from one another.

Koch [Koc99] pp93 describes neuromodulators as being the brain’s closest

equivalent to a global variable. In a computer program, a global variable can

be read or changed from any part of the code. In the brain a neuromodulator

can affect any neuron that has receptors for it within a certain distance of the

release site. Receptors for a variety of neuromodulators and neurotransmitters

can be found on most neurons. In effect this allows each neuron to be addressed

with some degree of specificity using a combination of neuromodulators.
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2.6.2 Neuromodulation in artificial agents

The Von Neumann legacy

In the classic paper [Bro91a], Brooks argues that the Von Neumann model of

computation has traditionally led research in the field of artificial intelligence

in particular directions, even though the architecture of intelligent biological

systems is completely different. Even when researchers in the field of artificial

intelligence look to neuroscience for answers, the brain is seen as an electrical

machine with electrical inputs and outputs to the sensors and actuators of the

body. Brooks argues against this:

The brain is situated in a soup of hormones, that influences it

in the strongest possible ways. It receives messages encoded hor-

monally, and sends messages so encoded throughout the body. Our

electrocentrism, based on our electronic models of computation, has

lead (sic) us to ignore these aspects in our informal models of neu-

roscience, but hormones play a strong, almost dominating, role in

determination of behavior . . .

Perhaps it is unsurprising that this fundamental characteristic of the brain is

largely ignored when computational neuroscientists also talk about assemblies of

synapses as circuits, likening them to assemblies of transistors and microcircuits

performing logic operations in computers [She98].

Artificial hormones

There has been little work exploring the dynamics of neuromodulators in artifi-

cial agents. Shen et al [SSW00] describe a distributed control system for use in

self-reconfigurable robots inspired by hormones in biological systems. Hormones

are used as global signals that select and trigger actions in different subsystems.

This is used for motion co-ordination and re-configuration. Execution of the

selected action is left up to the subsystem. This reduces the cost of communi-

cating globally. Hormones are described as messages that are broadcast rather
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than have a specific destination. They have a finite lifetime and can trigger

different actions at the different sites where they are received.

Shen and Chuong later generalise the control system to produce the Digi-

tal Hormone Model [SC02]. This is a cellular automaton and reaction-diffusion

model which matches the self-organisation of homogenous skin cells into feather

buds. Living cells release activator hormones and inhibitor hormones. Released

hormones diffuse throughout the cellular automata and can react with one an-

other.

Gadanho [GH01] tests whether emotions can be used for a continuous state

and behavioural transitions. This is achieved by having the influence of the

sensory input upon the system of an agent persist until after the cause of that

sensory input has disappeared from the immediate environment.

She uses a non-symbolic bottom-up animat approach, although her emotion

model is not based on any biological mechanism. Instead she uses black box

functions that are described as emotions, feelings and hormones. These func-

tions emulate the primitive emotions of happiness, sadness, fear and anger; and

the feelings of hunger, pain, restlessness, temperature, eating, smell, warmth

and proximity.

Sensory inputs to the system are described as sensations. These are summed

with the outputs of the hormones and are inputted to the feelings. The feelings

connect to the emotions. If an output from the emotions reaches a threshold

then it increases the associated hormone, which is then fed back to be summed

with the current incoming sensations. A selection threshold is also used to

determine which is the dominant emotion of the agent.

”Creatures” [GCM97] is a computer game in which characters learn about

their environment, interact with the player, breed and die. A simple biochem-

istry is used, consisting of chemicals, emitters, reactions and receptors. Chemi-

cals are implemented as a number between 0 and 255 and an associated strength

increased by emitters. Chemicals can be transformed using reactions and are

genetically specified. Chemical strengths are read by receptors so as to allow
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parts of the creature to become responsive to that chemical. This simulated bio-

chemistry influences the operation of the underlying neural network, and is also

used to simulate a simple metabolism and immune system. The biochemistry

is used to control the flow of information within the creature, synaptic atrophy

and migration, drive-reduction and reinforcement learning.

Cañamero has applied the hormone concept to help solve the action-selection

problem [Cañ97]. She uses a bottom-up ”nouvelle AI” approach [Bro91b]. She

also argues that in order to understand emotions, the underlying biological

mechanisms that give rise to them must also be understood along with how

they evolved.

Recognising that different emotions evolved for different reasons in different

parts of the brain, an architecture inspired by Minsky’s Society-of-mind [Min88],

in which an agent is made up of a society of subagents 5, is used. Each sub-

agent fulfils the role of a basic emotion; that is, an emotion that is necessary

for survival. The mix of concurrently active basic emotions leads to complex

emotions.

In this architecture, emotions are seen as modifiers and modulators of the

agent’s behaviour and motivations. Each emotion is implemented as a different

subagent. Emotions can release hormones at a strength corresponding to their

level of activation. Motivations are seen as drives that maintain the homoeosta-

sis of the agent’s body. Somatic variables that need to be maintained within a

certain homoeostatic range have corresponding internal sensors. Internal sen-

sors have receptors for hormones so that the variable can be acted upon. As an

example, insulin decreases blood sugar levels and glucagon increases it.

Taking into account Kelley’s description of neuromodulators fulfilling dif-

ferent roles depending on where in the brain they are received, and Koch’s

analogy of a bar-code like system, it can be argued that hormones often have

fewer functions than neuromodulators 6

5The term ”subagents” rather than ”agents” is used here to avoid confusion with the single
agent whose ’mind’ hosts the society

6Because hormones modulate the response of neurons they are technically neuromodulators
too. An artificial distinction is drawn here between hormones and neuromodulators to dis-
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This is because hormones are transported via the bloodstream and ordinarily

signal a change of body state. Hormones can therefore be seen as having a far

more reaching effect than neuromodulators. Neuromodulators can be seen as

having a more localised effect because of the possibility of multiple functions

being performed depending on where they are released and received in the brain.

Therefore with neuromodulators, it is more appropriate to see them purely as a

signal and the modulation of neuronal behaviour as a function of the receptor.

Cañamero also uses a second group of hormones that are not released by

emotional subagents but which modulate the arousal of the agent. Because this

second group is not based on a change of body state, they would probably more

likely be described within a real, or biologically plausible model of a brain as

neuromodulators rather than hormones.

Cañamero’s work can be seen as experiments in achieving more complex

dynamics within an agent controller by the addition of simple mechanisms in-

spired by hormones. This is an experiment with practical engineering benefits

rather than an academic model of specific biological mechanisms. For example,

if modulation were to be used in an agent situated in a computer game, then

considering how efficiency of computation and memory capacity is more impor-

tant than realism, Cañamero’s architecture would be ideal. Nonetheless, such

work can also improve our understanding of the natural phenomena that it is

inspired by.

When discussing the scientific status of the field of artificial life (AL), Noble

[Nob97] argues that AL simulations cannot prove theories concerning the real

world. They are not tools for empirical study as the results only apply to the

artificial worlds that have been run.

AL models can however clarify the logical implications of a set of assump-

tions. The function of an AL model then is to establish the plausibility of a

theory. This theory can then be referred back to the relevant empirical science

tinguish between neuromodulators that primarily signal changes in somatic states and those
that are local only to the brain. However some neuromodulators fulfil both roles depending
on their release site.
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in order to be proven in the ”real” domain. AL is an analytical tool for science

in the same way that mathematics is. It determines whether the axioms that

make up the model lead to the predicted outcomes but is indifferent to the truth

of the axioms in any other environment. But if the result of an AL simulation

is corroborated by empirical study of the real world, the simulation may help

to explain why.

Noble draws a distinction between two classes of research efforts in the field

of artificial life. One uses biology to inspire new methods for engineering, as

Cañamero has done, and the other aims to improve our understanding of natural

phenomena.

It is this latter class of work that Noble discusses. But the technical class of

research can also overlap with the empirical. As part of the process of referring

the findings back to the relevant empirical science, more complex and plausible

models can be created to further test our conclusions concerning the phenomena.

For example, modulation could be applied to agent controllers that are more

biologically plausible so that not only do we have an increased understanding

of the phenomena of modulation, but we can also test whether it applies to

what we currently understand of the brain. This in turn might lead onto better

engineering techniques.

Avila-Garćıa and Cañamero [AGC05] later apply the hormone concept to

modulating the salience of percepts. They demonstrate how modulating the

salience of what the agent perceives can alter its behaviour. An architecture

reactive to internal and external stimuli is used to maintain the homoeostasis

of internal resources. A biologically plausible model of hormonal modulation is

used to directly modulate variables within the architecture that correspond to

the agents perception. These include cues from the external environment, such

as the perception of obstacles and predators, as well as internal cues such as the

integrity of its bodily structure.

Although internal variables are directly modulated instead of biologically

plausible neural networks, it is not hard to imagine how neuromodulators could
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be used for the same purpose in a natural agent. Neurons that respond to

certain internal or external stimuli could be excited by increased levels of a neu-

romodulator. Although the model of modulation may be biologically plausible,

it cannot automatically be assumed that the underlying architecture works in

the same fashion as a real brain. Consequenty, it can neither be assumed that a

brain will need the same functionality provided by modulation as the architec-

ture of the agent. But experiments using biologically plausible neural networks

can provide further evidence as to whether or not this is the case. If this appears

to be so, then these experiments increase our understanding of another aspect

of how the brain can possibly work.

Artificial neuromodulators local to a neural network

A more biologically plausible model is used by Husbands et al [HSJO98], [HSO+98]

and [Hus98]. They artificially evolve robot controllers built from networks in-

spired by the modulatory effects of freely diffusing gases in real neuronal net-

works. The models are particularly inspired by the modulatory gas nitric oxide.

Results show that gas modulation considerably speeds up evolutionary runs to

produce successful controllers.

The evolutionary approach in the field of artificial intelligence assumes that

agent control systems are too hard to design and therefore must be evolved

[HHC93]. Therefore the above use of modulation for artificial evolution is indif-

ferent to how the robot controller works internally or how it adapts.

Reynolds [Rey94] describes a limitation to the use of artificial evolution for

the generation of robot controllers. They evolve to use brittle strategies that

depend upon the subtleties of the environment that the evolutionary run takes

place in. The difficulty lies in creating the right environment for the agent to

be evolved in. This requires exactly modelling the features that the agent will

encounter in its destination environment and substituting other features that

would be present in your model with noise. This is described by detail by Jakobi

in [Jak98a] and [Jak98b].
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The complexity of the GasNet model is increased in [PSHO99], and [PHO98].

Previously, two gases were used to modulate a single parameter in the neuron

transfer function. One to increase the parameter and the other to decrease,

the change being dependent upon the concentration of modulator. Four gases

were used in [Hus98]. The modulatory effects were gas-specific. These gases are

replaced by a single gas whose effect depends upon the site where it is received.

This is more analogous to the way in which secondary messengers can determine

the effect upon a neuron. To allow this there is a wider range of parameters

that have the potential to be modulated. Gas diffusion and decay rates are also

modelled in a more realistic way leading to interesting time delay and reservoir

effects of the gas.

Neuromodulation has been used solely for evolving neural networks. French

and Cañamero used neuromodulation in a Braitenberg vehicle controlled by

a manually crafted artificial neural network consisting of eleven non-spiking

neurons and twelve synapses. Neuromodulation is used to provide a robot with

foraging behaviour.

2.6.3 Modulation emerging as a new definition of emo-

tions

In section 2.5.3 the Interrupt theory of emotions was discussed with regard to

how it was a particular, yet extreme, instance of modulation. So the idea of

emotions fulfilling the function of modulating the agent’s goals and behaviours is

not entirely new, albeit not necessarily recognised by proponents of the Interrupt

theory of emotions. But there is now an increasing body of recent research that

has embraced the idea that emotions modulate the behaviour, needs and goals of

the agent. Whether this becomes the predominantly attributed role of emotions,

or whether it becomes yet another avenue of ideas that is researched and bears

influence upon the future course of emotions research remains to be seen. This

shall be largely determined by how widely the function of modulation can be

attributed to being provided by the heterogenous set of emotions; each one
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having been evolved because of a distinct and specific need.

Both emotions and neurochemicals are fundamental to how living organisms

have evolved. They are also fundamental to how they operate within rich and

unknown environments. It is well known that a change in the level of a neu-

rochemical can have a significant effect upon the emotional state of a living

organism. In order to understand what emotions are, we first need to under-

stand the functionality that emotions provide. One way of doing this is to

understand the functionality that neuromodulation provides to an agent.

2.7 Summary

This chapter started by explaining that each emotion has evolved to satisfy

a particular need or to guide living organisms in particular situations. The

discussion of how emotions, or a mechanism similar to them, are relevant to

an agent satisfying needs within a rich and unknown environment has been

explored. Emotions are mechanisms that are fundamental to many aspects

of both natural and artificial agents. Research in this area has relevance to

our understanding of consciousness, rationality and helps in creating virtual

realities.

Recognising the importance of emotions in creating adaptive agents, the

chapter then moved onto the issue of what emotions actually are. There is an

assumption that in order to create emotions you first need to know what they

are. The problem of how to define an emotion has plagued the literature and dif-

ferent solutions to this issue have been proposed. None have been unanimously

agreed upon.

Because of this there have been concerns that the wrong question is being

asked. We should instead be increasing our understanding of the functionality

that emotions provide. Taking this further, I have proposed that not only is the

wrong question being asked but that creating definitions before we understand

what we are trying to define leads to a mire of semantics and is a distraction
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from our original intention. Definitions are nothing more than a tool, not an end

in themselves. If we increase our understanding of the domain then we are more

likely to decide upon many useful definitions that map the space of functionality

provided by emotions. This is in contrast to current efforts to apply one precise

definition to the whole of the domain.

The chapter then discussed the functions that have been attributed to emo-

tions and the different theories regarding how they work. In the literature,

emotions have been reasoned as being body-centric, environment-centric and

also attributed the function of being an interrupt mechanism. Problems with

these theories were also discussed. The chapter ends by reviewing a new area

in emotions research, emotions as a form of modulation of an agents behaviour,

needs and goals. In the same way that emotions are fundamental to how natu-

ral agents have evolved, chemical and neuro- modulation is also fundamental to

how they operate. This requires a significant shift in thinking compared to the

mathematical and logical heritage of computer science and mathematics that

has allowed us to so far reason about complex systems.
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Chapter 3

Tools and procedures

As explained in the previous chapter, emotions and neuromodulation are fun-

damentally linked. To understand the functionality provided by emotions we

need to understand the functionality provided by neuromodulation. In order to

do this we first need to isolate the effects of neuromodulation.

3.1 Requirements

3.1.1 The agent approach

We are trying to understand why natural adaptive agents have emotions. It is

impractical, if even possible, to implement in an artificial system the complexity

of real-world natural agent-environment interaction1. Doing so achieves little

while we are still postulating the functionality of emotions. An agent approach

allows us to model and observe the interaction of properties that we consider

fundamental to a phenomenon. These properties can be used to test the logical

implications of what we postulate.

Because adaptation can take so many forms the tasks set for the agents need

to be well-defined. This allows us to be specific about the functionality provided

by neuromodulation as well as its costs and limitations. The simpler the agent

1Animals can be observed in the wild if such complexity is required.

49



and task that it is set, the easier it will be to understand any functionality that

we discern. The simplest tests may not by themselves reveal the full nature of

neuromodulation but they do provide a good starting point from which to make

further, more sophisticated investigations.

3.1.2 Discerning the functionality of neuromodulation

In order to isolate the functionality that is provided by neuromodulation, we

must compare how an agent adapts using modulation with one that adapts with-

out it. Sheutz advocates this approach to systematically determine the utility

of emotions in artificial agents but does not apply it to biologically plausible

models [She04].

Modulation must not be seen as an external property that can be applied to

an agent. Rather, the use of modulation must be fundamental to how the agent

adapts if the mechanism and the functionality that it provides is to be used

to its fullest extent. Comparing the performance before and after removing a

mechanism intrinsic to how an agent adapts will inevitably show the mechanism

to be useful. This by itself provides little information if we already know that the

mechanism is relied upon for adaptation. We need to compare two agents, one

that is designed to use modulation and the other designed to adapt without the

use of modulation. Comparisons between two such agents will be meaningful.

There is a fundamental difficulty in comparing two agents that are otherwise

equivalent except for the way in which they adapt. How do we test for equiv-

alence? If they are equivalent because of their performance levels, how else do

we compare the two agents? Comparing the behaviour of two agents leads to

the difficult task of quantifying how they act. Or perhaps the use or otherwise

of modulation stops the two agents performing equally well in which case how

can we say that they are equivalent?

If we use a working definition of intelligence as being the ability to adapt to

an unknown environment2, then the agents can be compared by testing them

2If an agent never has to adapt to an unknown environment then it can perform equally
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in an environment different to that for which they were designed. This allows

us to test the scope, scalability and robustness of any adaptive mechanism.

3.1.3 Requirements of an agent

There are a number of basic requirements that agents must commonly satisfy.

They are listed here in order of importance. The latter requirements often help

to fulfil the former ones, if they are applicable.

• Maintain homoeostasis and keep replete the critical resources.

• Adapt to an external environment and learn the value of properties within

it.

• Learn and adapt to the temporal properties of an environment.

If an agent fails to maintain its critical resources then it will effectively die

and not be able to satisfy any other requirements3. Adapting to an external

environment aids in maintaining homoeostasis and resource levels, and in all but

the simplest environments is required to keep the agent alive4. If an agent is to

be anything other than a complex set of sensorimotor associations then it needs

to learn cause and effect within its environment. This is required if the agent is

to prepare for future situations before they occur, or to deliberately move into

desirable states of the environment other than by chance. The environment in

which an agent is placed will determine how well the model of adaptation is

tested5.

well, or better, by merely following hard coded rules. It is difficult to argue that such an agent
is acting intelligently.

3In some agents this requirement is not applicable, for example, because it is in a virtual
environment or because it has a guaranteed or non-rechargeable power source.

4Adapting to an external environment is taken here to include learning to sense and act
within that environment. Because doing this concerns different parts of the brain to that of
action selection, and because such functionality requires testing in a rich, preferably real-world
environment, this is beyond the scope of this thesis.

5The term environment here is used in its loosest sense to include all uses that an agent
can be put to.
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3.1.4 How the agents adapt

The underlying architecture

There are a myriad examples existing in the natural world of emotional and

intelligent agents using neuromodulation as an adaptive mechanism. There are

two possible reasons why the brain might have evolved to consist of neurons,

synapses, neurotransmitters, neuromodulators etc. Either because this form

makes the most effective and efficient use of the material that is available, or

because they allow for the most effective adaptive techniques to be performed.

Computers use silicon circuit boards and most commonly implement the Von

Neumann architecture. The most effective and efficient model of adaptation for

a computer may be unlike any form found in wetware. But increasing our

understanding of the functionality being performed by the brain will eventually

allow us to translate its fundamental adaptive properties into a computational

model most suitable for the computer architectures that we currently use.

The choice of underlying model to be modulated can affect the functionality,

costs and benefits that come from using modulation. Modulating a model of

adaptation that has no known equivalent in wetware will tell us little about

the logical implications of any theory regarding emotions in natural agents.

Therefore the agents implemented here adapt using biologically plausible neural

networks.

As with most simulations and artificial life experiments, there is a compro-

mise between resources6 and the complexity of the model to be implemented.

The model must capture all the properties of the natural system that allow

for the desired functionality to occur, while at the same time abstracting over

properties that add little or nothing to our understanding of the phenomenon

being modelled.

6i.e. implementation effort, processing power and capacity of the computer.
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Biologically plausible use of the model

Not only must the model be biologically plausible, but so too must the way in

which it is used. Applying where possible the same requirements and constraints

as faced by adaptive models in nature will allow us to more greatly appreciate

the method by which the functionality is provided and the benefits afforded by

its use.

Therefore it was known from the outset that supervised learning techniques

were not adequate. This meant that the agent would adapt using unsupervised

learning techniques. But this by itself does not necessarily mean that the agent

must use a self-organising system.

Reinforcement learning or a self-organising system

When introducing the topic of Reinforcement learning, Sutton and Barto [SB98]

describe how an infant learns by interacting with its environment; by observa-

tion and play. The infant has a sensorimotor connection to its environment

rather than to an explicit teacher. Reinforcement learning is described as be-

ing different from supervised learning because the latter entails learning from

examples provided by an external teacher.

It is commonly known that animals can be trained using reinforcement learn-

ing. Thorndike’s ’Law of effect’ describes the effect of reinforcement on animal

action selection [Tho11]. The classic experiments by Pavlov [Pav27] show us

that temporal sequence learning exists in natural agents, that they can learn

cause-and-effect and associate environmental cues preceding significant occur-

rences. But the biological mechanisms of reinforcement learning are still not

fully understood. For example, there is debate as to whether dopamine is used

as a reinforcement signal in the brain, or as a preparatory ’Go’ signal. Rolls

[Rol99] chapter 6 provides an overview of the supporting evidence for both sides

of the argument.

The efficacy of reinforcement learning in training animals is by itself in-

sufficient evidence to infer that this is the sole or primary means by which
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animals learn. Kaelbling et al [KLM96] conclude their overview of reinforce-

ment learning by remarking on the scalability issues that affect the majority of

the presented algorithms. These issues arise because of the difficulty of solving

arbitrary problems using a generalisable technique.

Although reinforcement learning may not require an explicit supervisor ex-

ternal to the agent, some part of the agent must act as an implicit supervisor in

order to determine the utility of the environmental state and to produce a re-

ward or error signal. This signal cannot come directly from the environment but

must be deduced from it. This sentiment was first expressed by Klopf [Klo88]

with regard to Temporal Difference learning. Natural autonomous and adaptive

agents cannot normally rely on evaluative signals from the environment.

Regardless of the environment, an animal has constant needs. It must eat,

drink, breed and survive. Instincts and biophysical mechanisms have evolved to

recognise when those needs are satisfied. The failure to satisfy these needs can

form the largest determinant of the evolutionary fitness of an agent. Instincts,

the need for play, excitement, love etc, have all evolved because they directly or

indirectly satisfy our base needs. In terms of evolutionary fitness, the utility of

all acts can ultimately be determined according to how well they allow an agent

to satisfy its base needs7.

An explicit reward signal that is derived solely from how well a base need

or goal is likely to be satisfied will be reduced for acts less directly involved

with the satisfaction of that need. This by itself is a limiting factor in how

well such a model can scale. But some natural agents, at least with humans,

can find intermediate goals and needs more attractive than their base needs;

sometimes even foregoing them as a consequence. Can reinforcement learning

model such phenomena? Or can it be better understood as an attractor in a

dynamical system? If an internal reinforcement signal is present in an agent with

only environmental and somatic stimuli as input and choice of motor action as

7For example, obtaining money is essentially a worthless act, except when used as part
of a monetary system whereby it becomes a very desirable act because of its effectiveness at
satisfying many base needs. But if you give a dog some cash it will probably try to eat it.
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output, are we just labelling it as such? The reinforcement signal can be seen as

merely part of a larger self-organising system. As Rolls suggests when weighing

up the argument about a functional role of dopamine [Rol99] pp178:

. . . the dopamine projection to the striatum may act as a ’Go’ or

’preparation’ signal to set the thresholds of neurons in the striatum,

and / or as a general modulatory signal that could help to strengthen

synapses of conjunctively active pre- and postsynaptic neurons. In

such a system, what is learned would be dependent on the presy-

naptic firing of all the input axons and the postsynaptic activation

of the neuron, and would not be explicitely guided by a reinforce /

teacher signal that would provide feedback after [his emphasis] each

trial on the degree of success of each trial as in the reinforcement

learning algorithm.

Rolls also suggests a similar role for dopamine in the basal ganglia in which

it is used to set the learning threshold, pp197. The functioning of the brain can

be understood as a process of self-organisation, Kelso [Kel95].

Although it is important for the underlying model of adaptation to be bio-

logically plausible, the primary concern here is with the functionality provided

by modulation. An in-depth comparison between reinforcement learning tech-

niques and self-organising systems is out of the scope of this thesis. Therefore

both models of adaptation were tried and the agent environments were created

with this in mind.

3.2 The initial test environment

The objective of any experiment performed here is to isolate the effects of neu-

romodulation in order to discover its uses and costs. The intention is to increase

our understanding of the nature of emotions and its relationship with neuro-

modulation. This will be achieved by comparing one agent that adapts with

the use of modulation, with another that adapts without. In essence this is

55



the equivalent of asking whether apples are better than oranges. The proposed

solution is to compare the agents in environments, and under constraints, that

they were not optimised for.

A decision needed to be made as to how complex and realistic the adaptive

models needed to be. The choices were:

• Non-embodied neural networks.

• Embodied neural networks.

• Agents in an artificial and virtual environment.

• Agents in a physical environment.

• Agents in a virtual reality environment.

Comparing neural networks without the need to maintain the resources of a

body allows their application to a wide range of non-biologically plausible uses.

But this tells us little about the nature of emotions.

Section 3.1.3 listed some basic requirements commonly asked of an agent.

These were to maintain homoeostasis and to adapt to both the immediate and

temporal properties of an external environment. Constraining adaptation to

tasks more commonly demanded of wetware requires the networks to first be

able to maintain the resources of a body. This by itself does not require the use

of an external environment inasmuch as a body, sensors and actions to read and

change the state of the body are external to the neural network.

Once this is achieved an agent approach can used to apply further con-

straints. This allows for the possibilities of testing in a physical, artificial or

virtually real environment. Choosing to situate an adaptive agent in a physical

environment is more costly and creates many problems that require solving be-

fore any comparisons can be made8. While this is an important and necessary

endeavour for more proven adaptive algorithms, it is particularly risky when it

8Problems such as learning to sense and perform actions within the environment etc.
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is not known from the outset whether adaptation will occur at all using modula-

tion. Situating an adaptive algorithm in a physical environment also carries an

increased cost in time, effort and hardware which can be better spent checking

whether or not the algorithm adapts in the first place. The added complexity

involved in adapting to a physical environment means that it is harder to isolate

and understand any functionality provided by modulation.

This left two options. To implement in either a simple artificial and virtual

environment such as a grid world, or to use a more complex virtual environment

such as a virtual reality model or simulation of a physical environment. It was

decided that all the reasons that apply to implementing in a physical environ-

ment also apply, albeit to a far lesser extent, to implementing in a simulation

of a physical environment. The first step was to develop the modulating and

non-modulating neural networks, and then find interesting comparisons.

3.2.1 Grid worlds

The term ’grid world’ is commonly used to describe a simple environment in

which adaptive agents are situated. The world forms a grid, normally toroidal

to avoid edges. It is made up of discrete squares in which an agent can be

placed. Because of the simplicity of the environment, the agents are normally

given magic actions and magic sensors9. Grid worlds normally run in discrete

rather than continuous time and this removes some temporal problems for the

agent, such as when to choose a new action.

History of grid worlds

Grid worlds were initially used in the field of artificial life to demonstrate ba-

sic principles of single-life adaptation and artificial evolution for agents, self

organisation using cellular automata, group social dynamics and language ac-

quisition of multiple agents. While useful for pedagogical reasons, these worlds

9 The functionality of sensors and actions is implemented externally to the agent, therefore
from the agent’s perspective they happen by ’magic’.
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will always be ’toy’ applications. Due to their simplicity, the agents evolved or

adapted within them are not transferable to a more complex environment.

Yaeger [Yae94] adds complexity to the grid world format in the form of

PolyWorld. He attempts to emulate all the principle components of real, living

systems and to bring them together in a single artificial environment. Rather

than aiming to transfer agents to a more complex environment, Yaegar claims

that PolyWorld may serve as a tool for further research into evolutionary biology,

behavioural ecology, ecology and neurophysiology.

Tools such as evolvable hardware and Khepera robots were later used to

allow adaptation and evolution to occur in a real world environment. This

made the limited use of grid worlds, even complex ones, less attractive. The

relative ease with which an agent could be made to adapt within these simplistic

environments meant that if work was based solely on a grid world then it made

for a less convincing argument.

The advantages of using an initially simple environment

It is argued here that, while of limited use, the simplicity of grid worlds is still

useful in modern research for the purpose of prototyping.

• If a new idea or technique to solve the action-selection problem cannot

work in a simple environment then it is almost certain not to work in a

more complex target environment.

• A simple environment with fewer parameters is more easily understood

by the designer than a real-world environment, and more easily adapted

to by the agent. If an agent is initially developed for a complex target

environment and it does not adapt, then there are more parameters that

need to be looked at and controlled before it is understood why adaptation

does not occur.

• Behaviour that arises from a complex environment can be an emergent

phenomenon, which can be better understood when the agent has previ-
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ously been seen acting in a simpler environment.

• Because an agent adapts to an environment, the environment influences

the behaviour of the agent. Therefore finding the right environment to

adapt to can unambiguously demonstrate the validity of a new idea. A

grid world can be used to prototype the environment to adapt to.

• The mechanisms and variables that are fundamental to some emergent

phenomenon must be isolated from any extraneous features if the phe-

nomenon is to be truly understood. It is more practical to start with

simple systems and to add complexity than to start with more complex

systems that then need to be simplified.

A simple grid world is inadequate for artificially evolving an agent intended

for a complex target environment, or for exploring techniques of complex sen-

sory interpretation or motor co-ordination. They can be useful to understand

abstract intelligent functions such as action selection or emergent phenomena

such as social group dynamics.

Physical robots, such as Khepera robots, in simple environments may be

used instead of grid worlds for research into abstract intelligent functions and

social group dynamics. They may seem more impressive but they are still placed

in abstract and simplified environments and may be given semi-magic actions.

Keijzer [Kei98] discusses how the use of wheeled robots still side-steps a core

problem of understanding adaptive behaviour due to a tendency to simplify the

sensory-motor control of robots.

One major difference between virtual environments and simple physical ones

containing wheeled agents is that the robot is acting within the environment in

continuous rather than discrete time. But robotic agents are still digital and

still perform binary logic. Therefore they are still, at their core, discrete. They

sample the world at a finer granularity than agents in a grid world with magic

sensors and actions. Software environments can be implemented to be more

realistic so as to emulate this finer granularity.
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There is one fundamental difference in that even though the agent is dis-

cretised, real environments are not. But from the agent’s perspective, this

difference equates to uncertainty and noise. Noise can be artificially added to

the senses and actions of an agent in a virtual environment, or the environment

can be modelled to be more realistic beyond a level that an agent can sense.

Taken to its logical conclusion this leads on to the field of Virtual Reality. Such

environments can be used for second stage prototyping.

3.2.2 HelloWorld

HelloWorld is a framework to create environments designed for the initial testing

of adaptive agents. The key features of HelloWorld are simplicity and expand-

ability. It allows the creation of environments intended to prototype new ideas

that might help solve the action-selection problem before greater effort is ex-

pended in applying them to a more complex target environment.

It was written from the very beginning not to solve one particular problem

but to be expandable. The motivation was to quickly and easily create environ-

ments and to rapidly prototype new ideas. It is not intended to be used as a

substitute for the final adaptation in a complex target environment.

The aims of HelloWorld are to:

• Rapidly and initially test new ideas or techniques that require high level

and abstracted sensor input and motor output.

• More easily deduce the key features that are required for a particular

emergent phenomenon or adaptation to occur.

• Allow for greater understanding of these key features through visualisation

and parameter manipulation.

• Allow for the initial searching of high level system parameters before adap-

tation takes place in a more complex environment.
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3.2.3 The environment of agents with external senses and

actions

In HelloWorld an object can either be an entity or an agent, the difference

being that an entity does not sense the outside world. Everything within a

HelloWorld environment has three attributes; energy, water and density. These

are merely labels for scalar values and are not meant to model any real-world

complexity10. Everything in HelloWorld has these three attributes, whether or

not they adapt. Setting a high density is useful when creating entities that are

not meant to be eaten. Energy and water levels are useful as resources that the

agents must replenish. Two resources are provided so that independent needs

can be intelligently balanced. The standard agent body constantly loses energy

and water over time through the actions the agent undertakes. When one of

these levels drops to zero the agent dies. An agent can choose an action every

turn. If it fails to do so then the default inactive action is chosen for it. This

carries the maximum cost. See section 3.2.5 for further details about how these

attributes are used within the environment.

3.2.4 Requirements of the environment

So as to be rich enough to test for non-trivial adaptation rather than mere

sensor-motor association, it was decided that an initial test environment would

need to meet the requirements set out below. If adaptation does not make

full use of the opportunities that the environment provides then this shows the

limit of the adaptive technique in its current form. This knowledge can help

decide the focus of future research. Therefore it is useful to have an environment

slightly richer than that expected to be required.

• There must be multiple contexts for the objects within the environment

so that the agent can learn to react to them in different ways according

to its needs.

10Labels such as this shall not be written in quotes for the sake of intelligibility but they
will always be explicitely defined when first introduced.
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• Intermediate states must exist that allow an agent to gain access to many

more directly beneficial states. An intelligent agent can then distinguish

these from intermediate states with low utility.

• The environment must allow the opportunity for an agent to learn a spe-

cific sequence of actions, that when performed in certain states, can lead

to a long term increase in resources. This demonstrates temporal action

selection.

3.2.5 Description of environment

The environment proposed for comparing modulating and non-modulating agents

will consist of three types of objects. They shall be referred to here as ’food’,

’rock’ and the agent itself. The agents shall be tested alone within the environ-

ment. The grid world used in this research is 30 x 30 squares and is toroidal.

Food

The term ’food’ is used here to describe an entity that an agent is able to gain

energy and water from given that the correct actions are used at the correct

time. Food has a low density level.

The food entity cannot act and does not spread or produce more food. It has

constantly increasing energy and water levels which saturate at a point, after

which they will no longer increase. If either level is decreased below a threshold,

in this environment by an agent performing an eat or drink action on it, then

no more of that resource shall be gained from that entity until the level has

climbed back past the threshold again. The food entity waits for a period of

time before starting to increase its resource level again. This means that it is

more beneficial for the agent to search for food elsewhere rather than subsist

upon a safe bet by continually eating or drinking from the same depleted food

entity.

Because a food entity can release either energy or water according to whether
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an eat or drink action is performed on it, this allows the agent to react to its

environment in different ways according to its current needs. If an agent is

hungry but not thirsty and the food in front of it will only release water, then

if the agent moves to another food object to eat then this demonstrates the

ability to arbitrate between needs. If the agent is hungry but not dangerously

so, and is also somewhat thirsty and drinks from the food in front of it, then

this demonstrates that the agent is responding to its environment intelligently.

An eat or drink action performed on the food shall release a percentage of

that food entity’s available resource for the agent. This means that if an agent

moves elsewhere in search of new food that has not been eaten for a long period

of time, then it will probably benefit more in the long run. This satisfies the

third requirement of the environment that the agent has the opportunity to

learn a specific sequence of actions for certain states to increase resources in the

long term.

Rocks

The term ’rock’ is used to describe an entity that has a high density and low

energy and water levels. Surrounding each food object, except for a single square

which will allow access for an agent, will be a wall of rock objects, see figure 3.1.

This ordinarily hides the food from the view of the agent but does allow the

agent the chance to initially find some food via a random walk. This affords the

agent the chance to learn to move into indirectly beneficial states that can lead

to multiple directly beneficial states. Learning this will result in behaviour such

as moving towards rocks, then following them round until locating the entrance

to the food.

3.3 The agent

The agent is entirely software based and is made up of a body, actions, senses

and a neural network, see figure 3.2. The body is used to simulate an internal
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Empty Wall Food

Figure 3.1: The grid world is a toroidal grid of squares. Each square can have
only one object in it at any one time. Black squares consist of ’rock’ entities
which are inedible. They hide ’food’ entities from the view of an agent (grey
squares). White squares are empty.

state that needs to be maintained in order for the agent to survive. The neural

network decides which actions to call based upon the inputs it receives through

its senses and body. Actions directly alter the body state and can also change

the environment if the agent is situated within one. If this is the case then the

actions can also indirectly change what the agent senses in the next cycle.

3.3.1 Body

An adaptive agent needs a reason to adapt in order to do so. A common

reason is to maximise and retain resources. In this context a resource is a single

continuous scalar value that can correlate with a characteristic of the state of
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Senses

Neural net

Actions

Body

Figure 3.2: The neural network takes as input signals from the body and senses
and performs one action. This directly alters the body state and the environ-
ment of the agent if it is situated within one. Actions can therefore indirectly
alter the senses of the agent.

the agent or environment. A resource can correlate with a single quantifiable

level such as the charge of a battery for a physical robot, or be an estimation of a

virtual non-measurable level such as utility or safety. An adaptive agent is faced

with two tasks when maximising these resources, that of learning to perform

actions which result in an increase in a resource level and that of learning not

to perform actions which result in a decrease of resource.

The agent has a body that requires two resources, energy and water. It keeps

track of the largest increase and decrease of each resource. The current change

in resource level is then scaled to these maximums to be within the range [0,1]

before being passed to an adaptive controller.

3.3.2 Actions

In order to change its body state, an agent needs to trigger an action. These

are ’magic’ actions, as defined in footnote 9. In any network topology, there

will be an output layer of neurons. Each neuron in that layer corresponds to a

different action. The action corresponding to the winning neuron in that layer

is then performed.

The agent uses a feed-forward neural network of spiking neurons. The net-

work can be iterated over a number of times within a single turn. The number

of iterations is determined by evolution and is constrained below a certain spec-

ified maximum. Hard coding the network to only have a single iteration would
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involve making an a-priori assumption about how it would best adapt.

After iterating through the network, the winning output neuron is chosen.

Which neuron wins is determined by summing up the total activation of each

neuron over all the iterations and choosing the neuron with the greatest sum.

This stops a neuron with strong inputs from losing because it has just spiked

and thus has low activity or is in a refractory period.

Situated agents

What actions were provided to an agent depended on whether it was evolved

to be situated within a grid-world environment, or whether it was evolved to

adapt to internal sensory input only.

If the agent was evolved to be situated within an environment, then the

actions carried a cost in bodily resources. This meant that an agent needed

to adapt in order to replenish its resources and survive. This cost is carried

regardless of whether the net effect of the action benefitted the agent’s body

state.

• Do nothing

• Move (one cell forward that the agent is facing)

• Turn right

• Turn left

• Consume energy

• Consume water

Non-situated agent

Agents that were not evolved to be situated within an environment were given

actions that had an immediate effect on either the energy or water resource level

of the agent’s body. Actions either increased or decreased the resource by a one,

two or zero points.
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• -2 Energy

• -1 Energy

• +0 Energy

• +1 Energy

• +2 Energy

• -2 Water

• -1 Water

• +0 Water

• +1 Water

• +2 Water

3.3.3 Sensors

If the agent is situated within an environment then it is given a sensor. The

sensor used in this research is uni-directional and the agent ’view’ spreads much

like the light from a torch, see figure 3.3. If a square is inhabited by an entity

then information regarding anything that inhabits the squares behind this is

filtered out by the sensor.

3.3.4 The neural network

The agent adapts using a feed forward network of adaptive leaky integrate-and-

fire neurons based on the model described in [WDKvE89] and [Koc99] pp339.

Each neural network is made up of three distinct layers; input, middle and

output layer. Where an agent has two or three input layers (hunger, thirst and

sometimes ian external stimuli), this is no different to grouping all the neurons

into a single input layer. See figure 4.1 for an example of a neural network.

67



Figure 3.3: Agents that are evolved to adapt to a grid-world environment are
given a uni-directional sensor. This sensor provides information to the agent
regarding the contents of the cells it can sense. In the example above, the black
square is inhabited by the agent that is using the sensor and is shown here only
to show where the agent is relative to what it is sensing. The dark grey square is
inhabited by another entity viewed by the agent. The light grey square behind
it is obscured from the view of the agent and information regarding this square
is filtered out by the sensor before being passed to the agent.

Spiking neurons were used in the neural network, each one acting as a ca-

pacitor to integrate and contain the charge delivered by synaptic input. This

charge slowly leaks away over time. The neurons have a fixed voltage threshold

and base leakage which are genetically determined.

The neurons also have an adaptive leakage to account for how frequently

they have recently spiked. If a neuron spikes then its leakage is increased by a

genetically determined amount. If the neuron does not spike then the leakage is

decreased by that same amount 11. Resistance is constrained within the range

[0, 1].

The spiking threshold is the same for all neurons in the network and is

constant. The neurons are stochastic so that once the spiking threshold has

been reached, there is a random chance that a spike will be transmitted along

the output weights. Either way the cell loses its activation12.

The neurons send out a stereotypical spike. This is implemented as having a

binary output. The weights connecting the neurons are constrained within the

range [0, 1]. The learning rule employed uses spike timing-dependent plasticity

11It was not known whether separate increment and decrement parameters were required.
To keep the number of attributes to a minimum it was decided that two parameters would be
used only if it was found to be required. The network evolved well with only one parameter.

12This model of stochastic firing is a simplified one. In real neurons there is both both a
possibility that a spike is passed down the axon to the target cells and a possibility of vesicle
release once a spike has reached a synapse.
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[BW02] 13.

3.3.5 Spike timing-dependent plasticity (STDP)

STDP rules increase or decrease weights according to the order of pre- and post-

synaptic spikes. The timing of the spike dictates the change that takes place.

Weight increase occurs if the spiking of a post-synaptic neuron is preceded by

the spiking of a pre-synaptic neuron. Decrease occurs if the order is reversed14.

As described by Bi and Wang [BW02], this is close to the original postulation

of Hebb that the synapse from cell A to B is strengthened only if A takes part

in firing B.

Izhikevich et al [ID03] relate STDP learning to a standard implementation of

the LTP / LTD learning rule called the BCM formulation (Bienenstock-Cooper-

Munro). Rather than update the synaptic weight due to the timing of single

spikes, BCM compares spike-trains. If pre-synaptic input results in high post-

synaptic firing rates then the synaptic weight increases. Input that results in

low firing rates decrease the synaptic weight.

Properties

Some STDP rules such as those modelled by Turrigano and Rossum [MCWvR00]

are based on experimental evidence that the amount of change also depends on

the initial synaptic size. They observe that strong synapses are potentiated

relatively less than weak ones but that depression is independent of synaptic

strength. They also make the assumption that only the first synaptic event

after a given spike depresses the synapse. Depression does not result from

further synaptic events until a postsynaptic spike occurs.

Although it is useful to understand how such rules can be used, it is also

13It was unknown from the outset which hebbian learning algorithm to use. Evolutionary
runs initially consisted of a choice of different algorithms. At the time the agents were not
adapting and it was felt that the choice was reducing the likelihood of convergence and subse-
quent optimisation. It was decided that one algorithm that could be acted upon by evolution
in a number of ways would be better used throughout the population.

14This order is set by a genetically encoded parameter so that it is possible for networks to
be evolved that use anti-hebbian learning rules.
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useful to understand what can be done without such constraints. This may in

future help provide clues as to why these rules are constrained in such ways.

The rule employed in this model is relatively free of such constraints. It is not

based upon the current synaptic size, whether for depression or potentiation,

but solely on the timing of the spiking of the pre- and post-synaptic neurons.

Nor does it involve activity-dependent scaling [MCWvR00], -adjustment of the

synaptic weights used to regulate post-synaptic activity.

Implementation

The STDP rule used here is implemented using a two-coincidence-detector

model [KNB02] [KB02] based on [SMA00] and later evolved for use in robots by

[DP03]. Each neuron has its own post-synaptic recording function that is incre-

mented when the neuron spikes and which decays over time in-between spikes.

This is compared to the pre-synaptic recording function of the neuron that has

transmitted the activation. Each layer of neurons has its own increment and

decay rates determined prior to testing via automated parameter optimisation.

3.3.6 Modulation

The network can be influenced by modulators. A modulator is a global signal

that can influence the behaviour of a neuron if that neuron has receptors for

it. The signal decays over time, as specified by the re-uptake rate, and can be

increased by firing neurons that have secretors for it.

Which receptors the neurons have is stochastically determined according to

genetically set parameters. Depending on whether it is excitatory or inhibitory,

a receptor can accentuate or attenuate the total input of a neuron, or increase

or decrease the probability of an activation being transmitted when a neuron is

fired. Whether the receptor modulates the input or probability of transmitting

an activation is genetically determined.
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3.4 The evolutionary mechanisms

3.4.1 The need for automated optimisation

A complex neural network has a number of parameters which must be set cor-

rectly for it to adapt successfully. These are parameters that have no obvious

value to which they should be set. When manually designing a neural network

architecture, it can be difficult to know whether the new design is an improve-

ment upon another design unless it is also known whether both networks are

performing at maximum efficacy.

Hooker [Hoo96] argues against the competitive testing of algorithms. One

of the many issues raised is the problem of how much to tune the parameter

set of each algorithm. Rather than manually adjust the set of parameters until

the network performs as intended, it was decided to automate the search using

evolutionary techniques. Applying the same automated approach to different

versions of the same network to optimise the parameter sets allows all versions to

be compared fairly. Meaningful comparisons can be made as a result. Another

requirement for automating the search was due to the large number of param-

eters that would otherwise need to be manually adjusted when time could be

better spent evaluating and analysing the performance of the model.

The downside of automating the optimisation of the parameter set is that

all the disadvantages of artificial evolution can also occur if the agent is too

configurable. For example, the search may settle upon a solution that relies

upon unforeseen characteristics of the fitness function or test procedure.

The alternative to designing a neural network architecture and automating

the optimisation of the parameter set is to rely solely upon unconstrained ar-

tificial evolution. If successful, then this approach provides the architecture of

the neural network and its optimal parameter set. The disadvantage of this

approach is that the resulting neural network can be too large and complex to

easily understand.

If modulating and non-modulating versions of an agent controller were to be
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meaningfully compared so as to increase our understanding of the functionality

provided by modulation, then the agent controller had to be fully understood.

This is frequently not the case with agent controllers whose design is the result

of artificial evolution. If we fully understand how an agent controller works and

we see some new functionality being provided by modulation, then we have a

chance of understanding how that new functionality came about. This increases

our understanding of the possible roles of neuromodulation in real brains.

The design process used in this thesis was a mixture of the two. The archi-

tecture was manually designed and the parameter set optimised using artificial

evolution. Automated optimisation was constrained so as not to alter the orig-

inal architecture. If the neural network performed poorly then an alternative

design was tested.

Alongside this, unconstrained artificial evolution was used as a form of ex-

ploration only. It helped determine what could possibly be achieved with the

underlying neural building blocks and how the agent could function. The agents

resulting from unconstrained evolution were not otherwise used. All the agents

tested in this thesis were manually designed and optimised using constrained

artificial evolution.

3.4.2 Methods of evolutionary adaptation in HelloWorld

Artificial evolution is used to search the space of parameters for the most effec-

tive set of values. This is then hard-coded into a single agent so that comparisons

can be made fairly between modulating and non-modulating agents. There are

three methods of evolutionary adaptation within the HelloWorld framework.

These are listed in the order in which they were developed:

• Endogenous evolution.

• Genetic algorithm using an explicit fitness function.

• Mutation-based online evolution.
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Endogenous evolution

The original method was by use of endogenous evolution without the use of an

explicit fitness function. Although it was not expected to be useful for parameter

optimisation per se, it had previously been used for open-ended evolution and

had demonstrated that solutions could be developed.

Evolution occurs when a breeding action is given to the agents. The agents

that do not initially choose to breed do not pass on their genes. The only genes

that survive are those of the agents who attempt to breed and survive using

other actions. The symptom of artificial evolution successfully starting in the

first few iterations of a world is a population that grows massively, reduces to a

minimum and then gradually proceeds to grow.

Any fitness function present is therefore implicit in the configuration of the

environment and the actions given to the agents. Although useful for toy and

pedagogical applications this form of evolution can only be used for spatial

environments. It is also less easy to tailor an environment to produce a specific

behaviour or solution than it is to hard-code an explicit fitness function.

Because no explicit fitness function is present, the following information is

not available to an agent developer:

• Fitness of the population.

• How well evolution is proceeding.

• When to stop the evolutionary run.

• Which is the fittest solution within the population.

• How often the fittest solution has been tested.

If the environment is a dynamic one, which it needs to be if the adaptation

is to be interesting, then an implicit fitness function will change throughout the

course of an evolutionary run. This is in contrast to an explicit fitness function.
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Cliff and Miller [CM95] describe the Red Queen effect where the fitness land-

scape15 of a population can be altered by other populations that it is interacting

with. Rather than leading to smooth evolutionary progress, the Red Queen ef-

fect can result in the repetition of evolutionary strategies long since discarded.

An example would be in the co-evolution of predator and prey. The population

of prey develop a strategy to evade predators. Predators adapt to this and the

benefit to prey following this strategy is negated. The prey population then

evolve a second strategy, only for the predators to adapt to this too. Because

the prey no longer use the first strategy, predators no longer need to adapt to it

and it soon becomes forgotten by them. This means reverting back to the first

strategy becomes viable again for the prey.

Genetic algorithm

The second method of evolutionary adaptation is via a genetic algorithm. The

agents can be spatially situated within the world and tested for a specified finite

time. The result of their interactions with the world are used by an explicit

fitness function to determine their fitness. For non-spatial genetic algorithms,

agents are stripped of all senses and only given actions that have an effect upon

the internal state of the agent.

Although genetic algorithms have been proven to be useful as a search tech-

nique, it was felt that their use here should not be taken for granted. Aside from

the problem of premature convergence, the classic genetic algorithm showed it-

self to have two major disadvantages. It’s use led to ambiguity as to the average

fitness of each solution and also to computational inefficiency.

The assumption underlying genetic algorithms is that a useful gene, or set

of genes, provides an increase in the fitness of an agent allowing it to breed

more. The gene is then more likely to spread throughout the population and

15The fitness landscape model is described in Kauffman [Kau93] and Depew and Weber
[DW95]. The space of potential genotypes that may occur in a population can be mapped
onto a hyper-dimensional landscape. The axes correspond to particular qualities that the
genotype may provide for the phenotype. The height of the land denotes the fitness that a
genotype will possess if it is mapped to that location.
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the average fitness of the population increases.

But when we are trying to find the optimal solution or parameter set we

are concerned with the fitness of a solution in its entirety and not with the

fitness of the individual genes that it is formed from. If there is a stochastic

mapping between genotype and phenotype, as there is for the agents used in

this research16 then we also want to know the average fitness of the solution

over multiple expressions. This is also the case for any environment in which

the starting conditions of each evaluation may differ17.

This by itself is an insufficient reason to abandon the classic genetic algorithm

as once it is assumed that fitness levels will no longer increase, each solution

in the final generation can be tested an equal number of times with the fittest

solution being picked. The assumption here though is that we know when the

genetic algorithm has finished because the population has converged. As shall

be seen later, this is not necessarily the case.

Despite the widespread use of genetic algorithms, they have been accused

of being computationally expensive in certain domains, such as when applied

to the MAX-CLIQUE problem [CP93]. Moriarty and Miikkulainen [MM99]

describe how premature convergence reduces the speed of a genetic algorithm

as it moves from performing parallel searches to a random walk using mutation.

Convergence, whether premature or otherwise, results in the majority of

agents within a generation being identical so that the use of recombination and

selection becomes a computationally expensive form of duplication.

Efforts to maintain population diversity to prevent premature convergence

can also prove to be computationally expensive. Miller and Shaw [MS96] cre-

ated dynamic niching to reduce the computational cost of conventional sharing

techniques. The sharing technique alters the fitness of genotypes depending on

how dissimilar they are to each other. The aim is to reduce the redundancy of

highly converged populations by increasing the fitness of novel genotypes. The

16See section 3.5.6.
17Such as with online evolution whereby a single agent sequentially evaluates each solution

in a generation.

75



computational cost lies in comparing the similarity of multiple members of a

population.

Leung et al [LGX97] prove that when a genetic algorithm is run with a zero

mutation rate, population diversity will inevitably decrease to zero variation and

premature convergence will occur. Premature convergence is directly caused

by a decrease in population diversity. Even if the genes required to create

the global optimum are available in the initial population, it is possible that

they will be lost by the selection and crossover operators during the course of

convergence. Adapting the probability of crossover provides no help in avoiding

premature convergence. It is discussed how existing methods to avoid or delay

premature convergence are heuristic in nature. They propose further research

to investigate adapting the population size and mutation rate in relation to

population diversity so as to prevent premature convergence.

Harvey [Har94] describes how convergence normally occurs early on in an

evolutionary run. When premature convergence occurs it is often seen as unde-

sirable. Harvey has a different attitude when discussing variable length geno-

types. He describes how progress can continue afterwards via the spread of

beneficial mutations throughout a population. Mutation acts as a counter-

balance to convergence and increases the variability of the gene-pool. It allows

a population to spread out along the fitness landscape and to find new peaks.

But if the mutation rate is too high then the search becomes a random one and

any convergence upon hill-tops will be lost.

This attitude is at odds with that of Moriarty and Miikkulainen who see a

highly converged population as redundant and slow. They maintain diversity by

using symbiotic evolution to encourage speciation. This is achieved by applying

the fitness function to individual parts of an agent to determine how well it

performed, on average, with other available parts. Which parts are evaluated

together is randomly determined.

Harvey and Thompson [HT97] argue that in practice most landscapes, par-

ticularly for the evolution of hardware, contain neutral networks that allow for
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escape from local maxima. They advocate encouraging the formation of neutral

networks by allowing for the equivalent of junk DNA in the genotype. While a

population searches the ridges of a neutral network within a fitness landscape,

it can be seen as being highly converged and having little or no discernable in-

crease in fitness. Convergence occurs naturally, even when using a function that

assigns random fitness scores. Even if the landscape consists of multiple peaks,

each of an equivalent fitness, a genetic algorithm will converge upon only one

[MS96]. It is after convergence has occurred that the evolutionary run can prop-

erly get underway. Mutation is seen by Harvey and Thompson as the primary

operator.

Barnett [Bar01] also views mutation as the genetic operator of primary im-

portance in an evolutionary run. As for the purpose of crossover, Barnett opines:

. . . at best recombination will function as a macro-mutation [Bar-

nett’s emphasis] operator - a ”leap in the dark” across the fitness

landscape.

But even this function of recombination can be questioned. When the opera-

tor is applied to genotypes from different niches of the population, the resulting

genotype often has a low fitness [MS96].

What are we trying to do when we use a genetic algorithm that does not

prematurely converge? We are trying to have it converge upon the highest peak

of a fitness landscape. The alternative is to produce the optimal solution by a

purely random process. But until the genetic algorithm reaches that optimum

there is no way of knowing whether the peak that it is converging upon is a

global maxima. Therefore some method of escape from local maxima is required,

whether by backtracking to a previous col and trying another peak, or by a

random walk along a neutral network.

If we assume from the outset that a search method needs to climb to the top

of a peak in order to determine whether it has found the global maxima, and

also that a search method relies upon mutation to find new slopes and move up
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them, then a more efficient form of search can be implemented.

Barnett describes an algorithm consisting of a single agent that makes no

use of the recombination operator. The genotype of the agent is replicated

and mutated. If this results in a higher fitness then the mutated copy is kept,

otherwise the agent reverts back to the original genotype. The process is then

repeated. By this method the netcrawler performs a random walk along a

neutral network until it finds access to a network of a higher fitness. Two

mutation modes are described for use with the netcrawler. Each point on a

genotype can either have an equal chance of mutation, or there can be a constant

number of mutations applied to the genotype as a whole.

Unfortunately the netcrawler is not applicable to the optimisation of geno-

types that stochastically map to phenotypes. A symptom of this mapping is

that the average fitness of the most successful genotype often rapidly decreases

through repeated trials until it falls below that of a previous genotype originally

deemed less fit. The reason is that the often genotype only becomes the most

successful because the mapping, or the starting conditions of its evaluation,

happens to be particularly good by chance.

Online evolution

The third form of adaptation is the one that is predominantly used in the

research described here. It is described here as ’online evolution’ because a

single agent is situated within an environment and interacts with it while the

search progresses.

Barnett refers to an ethos at Sussex university whereby artificial evolution

is used for the solving of real-world problems. This results in an alternative

understanding of artificial evolution. The third method described here is still

being developed. It has been applied to the solving of practical problems as

this provides a reliable indicator of its usefulness. The method is described

not to advocate a certain method of parameter optimisation or evolutionary

adaptation, but for completeness and to describe how the parameter sets were
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Figure 3.4: After a new solution has been added to the queue and evaluated,
the fittest solution is then re-evaluated and the queue re-ordered if necessary.

obtained.

A mutation-based strategy is used to find the optimal solution. As with a

genetic algorithm, a fitness function and mutation genetic operator is used, but

there is no sexual reproduction or cross-over18. How the genetic operators are

applied to the genotypes is described in more detail in section 3.4.4.

The agent has a queue of genotypes that encode neural networks. The queue

is ordered according to average fitness. The agent generates a neural network

from the fittest genotype and uses it to control its behaviour for a period of

time. The average fitness of the genotype that the network was generated from

is then updated accordingly. If the average fitness decreases to below that of

another solution then the queue is re-ordered (see figure 3.4).

This backtracking is required to prevent a genotype that would normally lead

to a high average fitness being replaced by another genotype, that by chance,

happens to be mapped to a fitter phenotype. When it is discovered that the

search has moved downhill, backtracking allows the search to revert back to a

previous position.

If the genotype of the current neural network still has the highest average

fitness then the agent copies and mutates a new version of it. The new version is

then tested. It deletes the least fit network in order to save memory (see figure

3.5).

The mutation and recombination operators in a genetic algorithm are com-

monly seen as two opposing forces acting upon the diversity of a population.

18Other genetic operators such as duplication were not required to search for the optimal
parameter set. It is not known how online evolution copes with open-ended search problems.
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f=12

7

Delete
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Figure 3.5: A new solution has been copied and mutated from the current
fittest solution with a fitness of 10. It uses the temperature of the solution 6
but decreases it by a random amount. After evaluation the fitness of the new
solution is determined to be 12 so it stays at the top of the queue. It is likely
that more evaluations will bring this average fitness down. The worst solution,
with a fitness of 1, is deleted.

Mutation increases diversity whilst recombination decreases it. If the use of the

recombination operator in the absence of mutation inevitably leads to conver-

gence, then it can be seen as acting in a similar way to the temperature rating

used in the simulated annealing algorithm [RN95].

A genetic algorithm can be seen as a process of convergence to a single,

hopefully optimal solution, whereby the run is finished and the best solution

is picked. A temperature rating is used here much to the same purpose. It

determines how great a percentage of the new solution is mutated. The search

starts off with a temperature rating of 100% so that each new solution is com-

pletely random 19. A minimum for the temperature rating is set so that each

new genotype will have at least one new mutation to test.

Inspiration for a temperature rating came from the simulated annealing algo-

rithm [RN95], a computational analogy of the process of freezing a liquid. With

simulated annealing, the temperature rating allows a search to move slightly

downhill when faced with the prospect of converging upon a local maxima.

This is an alternative to starting the whole search again at a random position.

Simulated annealing is complete and optimal if the temperature rating decreases

slowly enough.

19In order to improve the effectiveness of the search technique, the search starts with the
queue filled with completely random solutions that are evaluated once each.
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Unlike the temperature rating for simulated annealing, the temperature rat-

ing for online evolution can revert back to a previous level. Each new solution

uses the temperature rating of the previous solution that it is copied and mu-

tated from, but decreases it by a random amount. This allows the search to

backtrack to higher temperature ratings when the queue needs re-ordering. This

means that the setting of the cooling schedule is not dependent upon how many

times the search has to backtrack. Because a variable percentage of the solu-

tion can be mutated at each turn, there always exists the possibility that the

search can find a spot higher up on another peak elsewhere on the landscape.

As the search progresses and the temperature decreases, less of the genotype is

mutated, effectively decreasing the search radius. New genotypes will be more

similar to their parents. If they are found to be an improvement then they will

more likely be an optimisation of their parents, higher up the same peak.

At the end of the search, the queue is iterated over so that each solution

has been evaluated the same number of times. The fittest solution can then be

picked by the designer.

The use of online evolution provides the following practical advantages:

• It is easy to record how often an entire genotype has been evaluated and its

average fitness. This is of particular importance for stochastic genotype-

phenotype mappings.

• The temperature rating indicates the progress of the evolutionary run.

• It is known exactly which genotype in the final population has the highest

average fitness.

• The memory requirements of online evolution are lower. Only the current

best genotype, and at times a mutated version of it, need to be present in

the physical RAM of a computer. It is more practical to swap the rest of

the queue to non-transient memory20.

20Compare this to a genetic algorithm in which many members of the population need to
be accessed multiple times to breed with each other so as to create the next generation. Only
after the selection and replacement is completed can the previous generation be deleted.
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3.4.3 Fitness function

Agents were allowed to perform for a set period of time, after which their fitness

level was determined. The fitness of an agent is determined by

Energy + Water + Age− | Energy − Water |

The values for Energy and Water are those held by the agent at the end of its

evaluation period. This provides information as to the agent’s efficacy over the

course of its entire evaluation period. It was decided that this was the simplest

method of determining an agent’s fitness level. Adding in complexity before

it was deemed to be necessary would introduce more opportunity for artificial

evolution to converge upon a local maxima. Evaluating the agent upon its

average resource levels was also considered but this raised the question as how

best to calculate an agent’s average resource level at any point in time.

The absolute difference between the energy and water resource is subtracted

from the fitness as both resources are essential for the agent to stay alive. This

decreases the chance of an evolutionary run settling into a local maxima whereby

a strategy is discovered that reduces the difference between the two resources

at the expense of increasing both resource levels. Subtracting the absolute

difference between resources also decreases the chance of an agent evolving to

only concentrate on one resource.

3.4.4 Hierarchical genotypes

The problem

For an agent controller to be evolved artificially, it needs to be represented in

two different forms. The first form consists of a set of instructions or parame-

ters which define the characteristics of the agent controller (the genotype). This

maps onto a second form, the phenotype, which is the implementation of the

agent controller. Coding a phenotype is like coding any other computer pro-
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gram, but there is often very little variety when it comes to how the genotype

is coded.

The conventional form that a genotype takes is that of a one-dimensional

string separated by markers, such as [HHC93]. This requires a complex mapping

from a single string of real or boolean values to a multi-dimensional aggregate

of functional components, each with their own unique set of parameters.

Operations performed on a string of values may not equate to a valid config-

uration in the corresponding phenotype. Or a small change in the genotype may

result in a large, disruptive change in the phenotype. Constraints applied to the

phenotype may also be difficult to encode in the one-dimensional genotype.

Rules governing such constraints must be coded as part of the mapping pro-

cess from genotype to phenotype. The more rules there are the more complex

and computationally expensive the mapping process becomes. Unless the rules

can be isolated from one another then the mapping process will suffer from poor

scalability in such regard. If such rules are not encoded then the evolutionary

process may well be hampered as alterations to the genotype may be too dis-

ruptive. This raises the question. If biological plausibility is not a requirement,

are there better ways to represent a genotype?

A solution

Computer programs are most often hierarchical in nature. Functions are encap-

sulated as small chunks of code, which are called alongside other functions by

higher level client. The same applies to machines and other everyday objects.

A car may have four wheels, but each wheel consists of a tyre, inner tube, wheel

cap, bolts etc. Each subcomponent performs a particular function so that the

larger, encapsulating component can perform its function.

The same can be argued of the brain. As humans we do not just ’see’. We

detect colours, edges, we recognise objects regardless of what angle they are to

us and their position within our field of view. We also interpret what we see

and apply emotional salience to objects.
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An artificial or real neural network can also be seen as being hierarchical to

some extent. It consists of layers or areas, with different types of neurons per-

taining to particular areas and connecting to neurons elsewhere. Neurons using

different learning rules, releasing and responsive to different neuromodulators.

So if what we are evolving is hierarchical in nature, why represent it using

a one dimensional genotype? The genotypes used in this research are both

hierarchical and recursive. Hierarchical so that each part of the genotype more

closely and more intuitively matches the part of the phenotype being evolved.

And recursive to allow a function or component to be used multiple times while

only needing to be evolved once.

Genotypes are represented as tree structures where each gene contains fur-

ther genes that can be evolved. This allows genetic operators to generally be

used in a progressively less disruptive way as the evolutionary run progresses

and the fitness of the agents increases. The benefits of this approach are two-

fold; primarily to how the genotypes are engineered but it is also hoped that it

will allow for both exploration of the fitness landscape and optimisation of the

genotype to the peak that is being climbed.

Engineering benefits

What a hierarchical genotype structure can evolve, a single dimensional geno-

type can do too. The advantage of using a hierarchical structure is that it is

easier to engineer and use than a one dimensional genotype. This is because it

conforms to certain established principles of software engineering; namely en-

capsulation, one-point-of-maintenance etc. A hierarchical genotypic structure

can also be more easily compared to the structure of an expressed hierarchically

structured phenotype than can a genotype consisting of a string of bits or real

numbers. This simplifies the genotype-phenotype mapping process.

Because each gene of a genotype can itself contain multiple genotypes and

parameters, it is ideally suited to being implemented using a object-oriented

programming methodology and can benefit from all the advantages that such an
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approach brings. The genotypic encoding is more easily expandable when new

parameters or new genes are required as changes to the structure are contained.

Because the gene is written as an encapsulated class, the effect of mutation

and duplication on the gene’s parameters can be written in a type- and gene-

specific way. The encoding of types and values can also be re-used for other

applications.

Hierarchical design

Yoshimura and Izui [YI02] propose the use of a hierarchical genetic representa-

tion for the artificial evolution of machine products. They recognise that design

problems for machine products are generally hierarchically expressed and their

system matches the structure of the genotype to that of the phenotype. They

note that because the search space is larger and optimisation is more complex

when using hierarchical genotype representations, that the search is computa-

tionally more expensive and superior solutions are not always obtained. This

requires the use of parallel processing in order to shorten calculation times.

Phenotypes are often aggregates of components and subcomponents. Each

subcomponent needs to be expressed from its own section of a genotype. Making

the genotype hierarchical allows each gene to contain other sub-genotypes to

encode its parameters. These sub-genotypes can be used to map directly to

sub-components in the phenotype. The higher in the tree the genes are, the

larger the effect they have on the expressed phenotype.

The genotype encodes, amongst other things, a topology of the neural net-

work using recursion 21. This is achieved by having the genes that encode the

information that is needed to express a layer of neurons, contain other genes of

the same type. The crossover, mutation and duplication genetic operators can

be applied to these structures. The structures are of variable length and depth.

The genotype therefore allows for both the use of sexual reproduction, such as

in a genetic algorithm, and the mutation of copies, as used in the mutation

21But without specifying neuron-to-neuron connections
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based search described in section 3.4.2.

Evolutionary progress

There has been much discussion in the literature concerning the rate of evolu-

tionary change. Green et al [GNK00], when discussing neo-Darwinism, describe

the assumption of what is known as the gradualistic theory of a population

slowly and gradually changing over time. An alternative form of gradualism is

Punctuated equilibria [EG72]. This recognises the transient periods of extreme

change that occur infrequently during the course of evolution. Harvey [Har94]

discusses the need for small mutation rates in artificial evolution to balance be-

tween exploration by the population and dispersal away from a local maxima.

Progress in evolution is seen as slow and gradual and is commonly under-

stood to be a form of hill climbing. In keeping with this is the common assump-

tion that changes to the genotype need to be small. The larger the change the

more disruptive and less likely it will be to lead to an increase in fitness. On

the whole this is correct, except at the beginning of an evolutionary run when

only the base of the hills in the fitness landscape have been climbed and little or

no optimisation has taken place. At such stage in an evolutionary run there is

a far greater probability that a random placement in the fitness landscape will

lead to an increase in fitness than if the genotype is already on top of one of the

highest peaks.

There are two assumptions underlying the use of hierarchical genotypes.

First, that optimisations works most effectively by making gradual changes, the

extent of which is proportional to how much more a genotype can be improved.

Second, that in the absence of neutral networks, exploration of the fitness land-

scape may require larger changes so that the search can leave the local maxima

that is on.
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Optimisation

When used with online evolution, see section 3.4.2, the hierarchical genotype is

used in much the same way as a flat genotype would be. Each gene has the same

chance of mutation. When used with classic genetic algorithms or endogenous

evolution which rely upon the crossover operator, the genetic operators need to

be adapted for use with hierarchical genotypes.

The hierarchical structure of the genotype means that evolution initially

progresses via the changes that have a large effect on the resulting phenotype

while the fitness of the population is still relatively low. Large changes will

be more likely to survive and spread at the beginning of an evolutionary run

than near the end when genotypes are being more greatly refined. As the

evolutionary run progresses further refinements that have a smaller effect upon

the expressed phenotype are allowed to be made. This increases the likelihood

of future genotypes surviving because they are not significantly weaker than the

rest of the population.

This is achieved in a genetic algorithm by applying operators to the tree

in a top-down manner, stopping at the level in which the genotypes differ in

such a way that crossover is meaningless. For example, a genotype for a layer of

neurons may encode a gene for the type of hebbian learning rule to be employed,

a decision with a relatively large effect on the phenotype’s fitness. The genes

that encode the hebbian learning rules may need to encode different parameters

specific to each rule. It would therefore be meaningless to apply crossover to

the parameters of different hebbian learning rules. The genetic operators would

only be applied to the parameters if both parents were expressing the same

hebbian learning rule.

Exploration

This technique allows a population to climb gradually up a slope of a fitness

landscape, but what about local maxima? It was reasoned that a hierarchical

genotype would allow both exploration and optimisation to occur depending on
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where a mutation occurred in the structure.

Even though genotypic convergence through the use of crossover may have

refined the genotype down to the lowest level in the tree, other genetic operators

such as mutation and duplication can still occur at any level. This means that

the possibility will always exist that a mutation will occur at a high level in

the tree, causing a change large enough for a new genotype to be produced on

another part of the fitness landscape.

The probability of this high level change being beneficial depends upon the

height of the current local maxima compared to the other maxima in the fitness

landscape, and how far the evolutionary run has progressed. Because con-

vergence occurs only at the lowest level of the genotype in which crossover is

meaningful, the high level change can still spread throughout the population.

Exploration and optimisation occur contemporaneously. As convergence

progresses, mutations can occur at a lower level of the hierarchy, therefore hav-

ing a smaller effect and allowing the genotype to climb the peak it is on.

3.4.5 Mutation and duplication

The occurrence of mutation or duplication is tested for during crossover. If it

occurs, a gene will mutate any of the parameters on which further crossover

cannot be applied. If mutation or duplication were to be applied to parameters

that were also subject to the crossover genetic operator, then the chance of

mutation and duplication occurring would be doubled.

Duplication occurs according to the neutral gene model advocated by [THH96].

It must have little effect on the fitness of the genotype and should produce a

largely redundant extension to the phenotype. The redundant part should only

duplicate the functionality of the original. This allows mutation to then be ap-

plied to one of the copies of the genotype in further generations so that extra

functionality can be evolved from it.
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3.4.6 Crossover

A sequence of genes is stored in a single dimensional container class. Because

of the variable length of these genotypic strings and because of the hierarchical

nature, crossover is more complex than merely slicing at a random position and

copying part of one parent’s genotype and part of the other’s.

The size of the genotype is chosen according to the following rules:

• If both parent’s genotypes are empty then an empty genotype is expressed

in the offspring.

• If one parent’s genotype is empty and the other is not then the non-empty

genotype is expressed in full. This is so as to encourage the growth of

genotypes within a population.

• If both parent’s genotypes happen to be the same size then a random

position is chosen. The first parent copies their genes from left of that

position and the second parent copies their genes from right of it.

• If the genotypes are of different lengths then crossover occurs with the

smallest genotype being examined first. A random position on this geno-

type is chosen and those genes are copied. A random length of the re-

maining longer genotype is then expressed from after that split. This may

result in a genotype being expressed that is smaller than both parent’s or

up to as long as the longest parent’s genotype.

As discussed above, if the genes from both parents are compatible, i.e of

the same type, then crossover occurs on the parameters contained within these

compatible genes and a hybrid of the two is copied instead.

3.4.7 Control genes

Information specifying how other genes are expressed can also be evolved. This

is encoded using control genes.
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There is only one type of control gene used by the genotype. This specifies

how many times a single gene is expressed. This information is stored in a

control gene as many different genes make use of this information, albeit in

different ways.

The control gene contains a single real value. The integral part of the value

specifies how many times the gene that the control gene applies to is expressed.

How the fractional part of the value is expressed, if at all, is dependent upon

the gene that uses this control gene. It is normally used as a probability of

the gene being expressed. This allows a smoother evolutionary transition when

increasing the number of times that a gene is expressed. This is especially so

for genes that can be partially expressed. An example being a fibre gene that

specifies how two layers connect.

3.5 Implementation

The genotype has been implemented in C++ with each gene defined as a sep-

arate class. This allows for code re-use and common code has been shared

between different agents in HelloWorld. Rather than a single dimension geno-

type consisting of only floating point values, the most apt primitive types were

chosen according to their intended use. The genotype hierarchy is shown in

figure 3.6.

3.5.1 TreeGene

Each class inherits from the TreeGene base class which specifies the functions

and genetic operators that each gene must implement.

3.5.2 GeneTree

The GeneTree class is a container class that stores a sequence of genes of the

same type in a vector. It is this class that implements the functionality, de-

scribed in section 3.4.6, of applying genetic operators to variable length gene
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sequences.

3.5.3 BioNetGene

At the top of the hierarchical tree is a BioNetGene object. This gene contains

the rest of the genotype and encodes the neural network.

There are three global parameters that can be optimised.

• Neuron threshold.

• Modulator re-uptake rate, ignored for non-modulating networks. (stored

in the EndocrineSystemGene.)

• Number of iterations made through the network each turn.

3.5.4 EndocrineSystemGene

The BioNetGene contains an EndocrineSystemGene which contains information

global to the entire neural network. The only parameter the EndocrineSystem-

Gene has is how fast the modulator levels decrease in the absence of any more

being produced; the re-uptake rate.

3.5.5 BioLayerGene

The BioNetGene contains a single BioLayerGene. The BioLayerGene encodes

the values for the parameters of a group of neurons as well as genes to encode the

hebbian learning rule, receptors and production of modulators. It also contains

a sequence of genes specifying the inputs to it.

The following parameters are genetically determined. All neurons within the

same layer will share the same values for these parameters.

• Base leakage of the leaky integrate-and-fire neuron.

• Spike-dependent change to leakage.

• Base probability of firing if spike threshold is reached.
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• Length of refractory period

• Learning rate applied to the STDP level to determine the change in synap-

tic weight

• Increment to STDP recording function.

• Decay over time for STDP recording function.

• Whether the STDP rule is hebbian or anti-hebbian.

3.5.6 BioFibre

The BioFibre class encodes the information used to express the pattern of con-

nections between two layers. As these are stored in a BioLayerGene class the

layer to output to is already known. Which layer that the fibre connects from

and any offset that is used to connect to other parts of the neural network is

encoded in this gene

Connections expressed by BioFibre genes are uni-directional and have a ge-

netically encoded value that specifies how long a spike will take to reach the

other neuron. This is implemented as a queue of a specified length. In prac-

tise it was found that this feature was not required for any of the implemented

agents. Therefore all connections are of equal length so there is no delay with

an activation being transmitted.

All connections between layers are excitatory and modifiable. Parameter

searches were conducted to see whether inhibitory connections would be useful

but they were not. Non-modifiable connections were avoided to help minimise

the risk that evolution would hard-code the network topology to increase the

average fitness.

Real value connectivity

The multitude of connectivity between two layers is open to optimisation. This

is a continuous value whereby the fractional part determines the chance of a
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connection between two neurons being made. So for example, a multitude of

1.5 would mean that every neuron in a source layer was connected to every

neuron in the target layer at least once, but with a 50% chance of being made

a second time. Parameter optimisation most often selected multitudes of less

than 1.

Stochastic mapping

Because the multitude of connectivity between layers is a continuous value the

mapping between genotype to phenotype becomes stochastic. This means that

the same genotype is able to produce a different phenotype each time it is used.

As a result a fit genotype cannot be guaranteed to express a fit phenotype.

There may be many reasons why a stochastic mapping process has advan-

tages over a deterministic one. For example, it may allow for an overlap in the

space of possible phenotypes between two different genes, thus allowing muta-

tions to be less disruptive. But only one reason demanded its use here. The

majority of what the genotype encodes can be deterministically mapped to a cor-

responding phenotypic component. The only part that does not is the encoding

of the connectivity between neurons. It was crucial that any resulting behaviour

was the result of the agent learning rather than it being due to evolution hard-

coding the network topology. Hard-coding of the network topology would mean

that it could not be guaranteed that the modulating and non-modulating agents

were an otherwise equivalent design.

If the connectivity between neurons was specified at a neuron-to-neuron

level, then not only would this result in a very large and inefficient genotype,

but it would also be very easy for brittle, hard coded agent controllers to be

produced by artificial evolution whose inner-workings were not fully understood.

It could also lead to different strategies being evolved for modulating and non-

modulating agents making comparisons between the two meaningless.

A stochastic mapping also has disadvantages. A genotype must be judged

according to its average fitness so as to prevent a fit genotype being lost, or
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a poor genotype being retained because the phenotype it was mapped to was

unrepresentative of its quality. As a consequence, evolutionary searches be-

come computationally more expensive and it becomes harder to be sure which

genotype is overall the best one to use.

An alternative to using real valued connectivity would be to enforce that

every neuron in a destination layer mapped to every neuron in the target layer

once and once only. But the connections would still require to be randomly

weighted at the beginning of the evaluation and the mapping would still effec-

tively be stochastic. Real valued connectivity between layers, in effect, is merely

a more extreme form of stochastic weighting.

Less disruptive mutations

Another reason for a layer-to-layer mapping to be encoded in the genotype, and

as a continuous value, was to decrease the probability that mutations would

be disruptive. Thompson et al [THH96] describe mutations as ”often delete-

rious, and occasionally advantageous.” Mutations to the genetic encoding of a

neuron-to-neuron mapping could potentially have very large effects if evolution

had produced a brittle strategy by hard-coding the network topology. This

would reduce the probability of those mutations increasing the fitness of the

genotype. A layer-to-layer mapping means that if two layers are specified as

being connected, then they will continue to be connected throughout the evolu-

tionary run. Evolution merely decides how connected the layers should be. The

connectivity being encoded as a real value allows for smaller and less disruptive

mutations to be made. A minimum connectivity of 0.3 was specified to further

constrain the parameter search.

3.5.7 ConnectivityGene

The ConnectivityGene is stored in the BioFibre class. It specifies the pattern of

connectivity between the neurons of two layers. In practise a control gene may

specify that there is only a probability of each connection being made, or that
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they should be made multiple times. Therefore the actual connectivity may

develop differently to that which is specified in the genotype. This allows for a

smoother transition between types of connectivity genes. The only connectiv-

ity found to be useful in this research is full connectivity, where every neuron

connects to every other neuron in the other layer.

3.5.8 ModulatorGene

ModulatorGenes are used to encode the types of modulators available for use

by the system. In practise a type is specified using a single integer value that

can be incremented or decremented by mutation. A ReceptorGene or Endocri-

neGene has a ModulatorGene to specify which modulator it will react to or

produce. If any of these ModulatorGenes contains an integer value that no

other ModulatorGenes have then a new modulator is added to the system.

There exists a coupling between EndocrineGenes and ReceptorGenes, in that

they both need to have mutated the same ModulatorGene in order for a new

modulator to be usefully added to the system. If either gene, but not both,

mutate a new modulator gene then it has no effect on the system. Even though

it will not have a direct benefit to the agent, the mutation may have a benefit

to future generations. For example, a layer in one agent is expressed with the

ability to produce a new type of modulator but no other parts of the system have

receptors for that modulator. An offspring in a future generation may develop a

receptor elsewhere in the system that responds to that modulator in a beneficial

way. So mutating a new modulator is the equivalent of branching into a new

area of search space. It is similar to the functionality of duplicated neutral genes

in that the benefit comes from being able to use future mutations. Open-ended

evolutionary runs with unconstrained mutation and duplication result in many

different modulators being evolved.

The identifier of the modulator is a one-dimensional value; an integer. In-

creasing the dimensionality of the identifier, such as using a string of values,

will decrease the chance of independent modulator genes being mutated twice
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the same way and therefore will decrease the chance that a new modulator will

be added to the system.

3.5.9 EndocrineGene and ReceptorGene

An agent has a set of modulators that any neuron in the system can be influ-

enced by if it expresses a ReceptorGene. A neuron can also increment the level

of a particular modulator if it expresses an EndocrineGene. Both the Endocrine-

Gene and ReceptorGene carry a single floating point value. The EndocrineGene

specifies the increment that it makes to the strength of the modulator when the

host neuron spikes. The ReceptorGene specifies the modulation rate, or the

influence that the modulator has on the activation of a neuron with a receptor

for it.

A neuron will pass a value describing its current activation to its receptors

and add up all of the returned values before applying that change to itself.

A receptor determines the change that needs to be made to the activation by

modulating the passed value with the modulation rate. It then modulates the

level of change by the level of the modulator in the system. This modulated

change to the passed value is then returned.

A number of receptors and secretors can be genetically specified for all the

neurons within a layer. These contain the following parameters:

• What to modulate (probability-of-firing or sensitivity-to-input).

• Modulation rate.

• Secretion rate.

3.5.10 Automated parameter set optimisation in practise

If a new idea for an agent controller failed to work then it was unknown whether

the fault lay in the design or the parameter set. Genetic algorithms were ini-

tially used for parameter optimisation but they proved too slow for use in rapid
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Figure 3.6: The BioNet is the agent controller and contains the neural net
which is created from the BioNetGene. Each neuron in a layer is the same
and is genetically encoded in the BioLayerGene. The BioFibre genotype maps
stochastically to its phenotype. The EndocrineGene encodes secretion rate of a
modulator, the type of modulator is encoded in the ModulatorGene. The Recep-
torGene encodes modulation rate and the whether the probability of a neuron
firing is modulated or its sensitivity-to-input. The EndocrineGene encodes the
system-wide re-uptake rate of all modulators.
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prototyping of agent controllers. Genetic algorithms were also used for open-

ended evolution whereby they were given a free-reign as to the size and type

of agent controller produced. Although the fitness levels increased to a certain

extent, very little interesting behaviour could be discerned.

Because the duplication operator was used during unconstrained evolution,

the neural networks would grow in complexity over time regardless of whether

the fitness levels increased. So even though the population size remained con-

stant, the memory requirements of the evolutionary run would increase. The

runs were stopped when the agent controllers grew too complex and the mem-

ory requirements of the whole population exceeded the capacity of the computer

that it was run on. Once the computer began to swap physical memory to disk

progress slowed down sufficiently that the evolutionary run had to be prema-

turely ended.

These difficulties prompted the development of online evolution. It was

immediately found to be significantly faster than using a genetic algorithm for

parameter optimisation. And no matter how large the queue was, only two

agents ever needed to be stored in physical RAM at any one time.

The first attempt at online evolution resulted in an agent that worked in a

similar way to Barnett’s netcrawler [Bar01]. Only two solutions were stored,

the current best solution and the newly mutated solution being evaluated. The

temperature rating initially mutated 100% of the genotype and slowly decreased

to 1% over the course of the run, decremented each time a better agent was

discovered. Although the technique was initially fast, the final genotype could

not be relied upon to be the fittest genotype because of the stochastic mapping

being used between genotype and phenotype. If the agent did find a good

solution then it was likely to be replaced by a poorer solution that happened

to be mapped to a more successful phenotype. It was realised that because of

this, genotypes needed to be evaluated multiple times and an average fitness

recorded. This meant some form of backtracking was required as the average

fitness fell below that of a previous version.
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This slowed down the technique, but it was still faster than using a genetic

algorithm. Setting a higher decrement to the temperature rate allowed for faster

runs but meant that the agent was less likely to settle upon a good solution.

Several evolutionary runs were made in parallel to find the optimal parameter

sets, each using a different random seed. Some runs were stopped shortly after

starting because their progress was poor. If the decrement to the temperature

rating was reduced then this was less likely to happen. The downside to this

was that all the runs would then take longer to complete. The runs that were

not stopped were run to completion and then compared. These runs all reached

similar levels of fitness.

Knowing how to set the temperature rating was the key to using online

evolution most effectively but other techniques were found to help as well. Filling

the queue full of completely randomised solutions at the beginning of the run

before the temperature was lowered, each evaluated once, helped reduce the

likelihood of reaching a local maxima. Using a larger population meant that

the agent was more likely to find a good solution, but it took significantly

longer for the temperature to decrease to the final point whereby the run could

be ended22.

At the time of writing, the temperature only decreases when mutating a new

solution. If backtracking occurs, the temperature rating returns to that of the

current best solution. The current best solution often requires many copies to

be made from it and mutated before a better solution is found. But a certain

number of improvements need to be made before the temperature drops to a cut-

off point and this is dependent upon the chosen decrement to the temperature

rating. If ran to completion, the majority of the processing is spent reducing the

temperature rating the last few percent. Therefore reducing the temperature

rating of the current best solution each time it is used for copying and mutating

a new solution may increase the chance of finding a better solution and also

22Runs were finished when the average temperature of the queue was ≈1%, i.e. each member
of the queue mutated on average 1% of it’s genotype. A larger population meant that it took
longer to reach this average.
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shorten the length of the evolutionary run.

It is not known how the use of hierarchical genotypes affected the perfor-

mance of the evolutionary techniques, but they proved useful on a practical level

for prototyping new ideas.

3.6 The need for a visual display

One problem that was foreseen as potentially occurring, was the lack of informa-

tion about how a neural network was adapting. Printing out logs of run-time

values can show that a particular component of a network is working within

a set range, but not whether it is providing the functionality intended of it.

Run-time values were displayed as graphs and proved invaluable for debugging

components, such as the models of neurons or levels of modulators. The graphs

did not show whether the components were working together as intended or how

they were interacting within a larger system. The dimensionality of the data

was high because of the large number of interacting components that made up

the network. This had to be presented in a way that was simple and intuitive

for a human to understand.

The original hope was that established evolutionary techniques, such as ge-

netic algorithms could be used for finding the correct set of parameters of the

system in order to make it work as intended. This would save spending signif-

icant time and effort developing a visual display. It was found that this alone

was not sufficient and could only be used to optimise what already worked to

some degree23.

A visual display allowed unintended bugs and incorrect assumptions made

during development to be discovered. This provided an understanding of the

functioning of the system as a whole. This is particularly important for demon-

strating the system to others and in allowing them to also understand it. But

23This is because evolution had to be constrained to reduce the risk that it would produce
hard-coded solutions that were difficult to understand and which did not allow fair comparisons
to be made between modulating and non-modulating agents.
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most importantly, the visual display allowed verification that the simulation was

functioning as intended.

3.6.1 The visual display system

The run-time data was collected and used to create an animated three dimen-

sional view of the model, output in VRML [ANM97]. User configuration allows

the model view to be animated to varying degrees. If very little is being dis-

played then a non-animated view is useful to display the structure of the neural

network. This can determine whether the model is small in size or whether it is

lacking activity. Connections between neurons can be displayed either accord-

ing to their weight, or only when they are activated by a firing neuron. The

former can indicate adaptation throughout the lifetime of the agent, the latter

can indicate how much input a neuron receives.

It was not possible to easily show the level of modulation that each neuron

receives without compromising the presentation of other information. The size

of a neuron indicates its current activity and its colour helps identify it as being

part of a particular layer. Because there can be more than one modulator

exciting or inhibiting a neuron in various ways, presenting this information

would clutter the display and make it more complex. It was easily possible to

show the level of a modulator on a global scale. How the modulator is used

can be inferred from understanding of the model and other information gleaned

from the display.

3.6.2 Model view consistency

A significant effort was spent in making the view consistent regardless of the

size and complexity of the model given to it. This was important as it was not

initially known whether the designed models were to be compared against those

produced by open-ended evolution.

The two main problems were how to spatially position the layers and how to

colour their weights and neurons so that they were distinct from those of other
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Figure 3.7: Java implementation. Random graph before sorting. Nodes are of
a constant size. Although the nodes are positioned here in an orderly fashion,
spreading out along each dimension in turn, they could also be positioned ran-
domly. Nodes are coloured randomly by the algorithm. The edges represent
connectivity present in the data. In this example, which nodes are connected is
randomly determined. The length of an edge between nodes carries no meaning.

layers. If the spatial co-ordinates of the layers were chosen at random then it

would mean that it would be more difficult to make sense of the view. The same

applies to weights from different layers having the same colour.

Spatial distribution

The spatial layout was computed using a variant of the Spring-Embedder model

[Che99]. The model view can be seen as a graph whereby the edges are of a

variable length. All nodes are repelled away from each other, but an attractive

force exists between nodes that are connected by an edge. These forces are

applied until the entire structure reaches an equilibrium.

The algorithm was first developed for an existing Java program previously

written by the author. This produces graphs similar to [WBDH95] whereby the

forces act in all three dimensions. Once it was shown to be scalable and consis-

tent, it was re-implemented in C++ and applied to visualising the modulated

networks.

In the final implementation, the forces only act in two dimensions. Each layer
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Figure 3.8: Same graph after sorting in three dimensions. Nodes that are con-
nected together are drawn together. All nodes repel all other nodes. This
results in connected nodes forming clusters, and clusters distancing themselves
from other clusters. Nodes within the same cluster share a similar colouring.
Nodes that link clusters share the colouring of both clusters.

acts as a single node and all the connections between two layers count as one

edge in the graph. The x-axis is used to spatially distribute the neurons within

a layer as a row. Because the attractive and repulsive forces are constrained

to act in only two dimensions, along the y- and z- axis, there is an added

requirement to apply a repulsive force between nodes and edges that has not

yet been implemented. This is especially important when considering that the

edges of the graph are displayed as intersecting planes through space because

they extend along the x-axis. This application can lead to the development of

significantly novel variants of the algorithm if work continues on this. It is an

interesting possible line of research in data visualisation but is not followed up

further in this thesis.

Node and edge colouring

Colour encoding is one way in which information can be easily represented

without increasing the complexity of a visual display. Or it can be used to make

some information that is already represented more obvious. In the model view,

drawing connected nodes closer together shows the clusters that they form.
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Having all nodes within a cluster coloured the same makes the clusters more

obvious to the human eye. It can also show how related partial clusters are if

there are many links between them as the colouring can change subtly.

There were two requirements for colouring when visualising the neural net-

work. These were that layers that were connected, and also different connections

to the same layer, should be coloured as differently as possible. If not, then if a

layer of neurons is connected to multiple layers elsewhere in the network then

it becomes difficult to discern which connection is output from which layer.

Colouring connected layers as differently as possible also helps discern which

neuron belongs to which layer for small networks as the layers are drawn closer

together.

Essentially this is a variant upon the classic map-colouring problem [Pre00].

How do you colour all the adjacent bounded areas on a map using as few colours

as possible? The difference here being that using as few colours as possible is

not a constraint required for visualising the neural network.

This was achieved by diverging the red, green and blue values (dyes) of the

colours of two layers connected by weights, or weights that were connected to

the same layer. A percentage of the difference between the same dyes of two

RGB values is added or subtracted from each in order to drive them further

apart.

3.6.3 The visual display saves the day

One major disadvantage with relying solely upon black box adaptation occurred

when artificial evolution persisted in converging upon local maxima in the fitness

landscape. It was necessary to constrain the ways that the network architecture

of the agents could be adapted.

The three dimensional model view proved invaluable for debugging the code,

testing every assumption and for showing new ways that evolution needed to be

constrained. This led to improved confidence in the software and tools, and a

better understanding of how they can be used.
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One example of this was that the number of neurons in the output layer

was reduced to zero through mutation so as to make it more probable that the

agent would choose the default ’Do Nothing’ action which conserved resources

and allowed the agents to live longer. 24 Once the population converged upon

this easiest solution for increasing their fitness, it was difficult for the population

to use a different evolutionary strategy without lowering their fitness first.

When it was noticed that this was happening, adaptation was constrained so

that the number of neurons in a layer could not be mutated during the course of

an evolutionary run. The number of neurons in the input and output layers were

fixed. For middle layers, which did not require a specific size, each agent was

given a random number of neurons and the population was allowed to converge

upon a single number.

The result of this was that the population converged upon middle layers

having a very small number of neurons between one and three. This meant that

information from the input layer was lost so as to allow the agents to evolve

pattern generators that produced the same output regardless of sensory input.

This suggested that the sensory input was too complex and not being interpreted

because it was too difficult to do so. This conclusion would not likely have been

made had the system not been visualised as a whole25.

It was noticed that the neural networks would only evolve or adapt to per-

form the ’Do Nothing’ action. This lowered certain internal sensor levels. It was

because of this that it was discovered that the network worked best as a mini-

mal disturbance system. Rather than change the pattern by which the sensory

signals were applied to the input layer, their strength were instead increased or

decreased according to the result of previous actions.

Developing a useful visual display carries a significant cost in time and effort

that distracts the researcher from their original interest. As adaptive systems

24To avoid this agents who do not decide on an action now have a default inactive action
chosen for them. This carries with it the maximum cost in resources

25Incidentally, these seem to fit the description of central pattern generators that occur in
natural brains, as described by Kelso [Kel95] pp239–243. Even though sensory input was
required to drive the CPGs, information from the input was lost.
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become more complex this will become more of an issue as there will be a greater

need for appropriate information visualisation. Yet developing them will carry a

greater cost as they need to present ever more complex systems in a simple way

that is intuitive for a human to understand. This suggests that as research into

computational intelligence develops, there will be a growing need for generic

and re-usable tools for information visualisation.

3.7 Summary

In order to understand the functionality provided by neuromodulation, we must

first isolate it. This endeavour calls for simplicity where possible and is the

primary reason for the initial use of non-situated software-based agents. The

isolation of the functionality provided by modulation shall be achieved by com-

paring equivalent modulating and non-modulating agents in environments that

they were not designed for.

Requirements commonly satisfied by using an agent approach were described,

and then discussed in relation to the agents to be used in this research. The

chapter then proceeded to discuss the need for biological plausibility when un-

derstanding the role of emotions and neuromodulation in natural agents. Un-

derstanding the functionality provided by neuromodulation may help us create

artificial mechanisms more suited to the silicon-based computer architectures

that underly artificial agents. This discussion led onto the question of what the

primary mechanism is that allows agents to adapt to an environment. Should

the agents be seen as learning by reinforcement? Or should they be seen as

self-organising systems within an environment? This question is relevant to the

understanding of functionality provided by certain forms of neuromodulation,

such as the role of dopamine in the basal ganglia.

The discussion returned to the need for simplicity, this time in the context of

the environment that the agents are to be evaluated in. The use of a grid world

was justified on the grounds that it helped for the purposes of prototyping and
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isolating observed functionality. A simple environment was then described that

agents could be situated within.

The agent controller was then described in detail. Biologically plausible

neural networks are to be used for this purpose. These have many parameters

that must be correctly set for fair comparisons to be made between equivalent

modulating and non-modulating agents. The optimisation of agent parameter

sets is automated using evolutionary techniques. Three methods of optimisation

were discussed; endogenous evolution, genetic algorithms and online evolution.

This was followed by discussion of the use of hierarchical genotypes.

The chapter ended by describing the visual display developed for use in

understanding the functioning of the neural networks. An example of its use

and the practical benefits that it provides was then described.
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Chapter 4

Experiments and results

4.1 The plan and its rationale

As described in section 2.6, this thesis proposes increasing our understanding

of emotions by studying the the underlying mechanisms that help give rise to

them in natural agents. The mechanism that this thesis focuses on is neuromod-

ulation. This will be achieved by identifying the extra functionality provided

by neuromodulation by comparing modulating and non-modulating agents that

are otherwise equivalent.

Functionality provided by neuromodulation can also be implemented using

only neurons and synaptic connections. This leads to the question of what

practical benefits are gained from using one over the other. The experiments in

this chapter will seek to help answer this question.

As described in section 3.1.2, the agents will be tested for how well they

adapt to environments that they were not specifically designed for. This allows

us to compare attributes of the adaptive agents such as the robustness and

scalability of the solutions employed by them.
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4.2 Implementation

For the first experiments, the agents shall be tested on the first requirement

listed in section 3.1.3. This is to maintain homoeostasis and keep replete its

critical resources. The artificial life animat concept shall be abstracted to pro-

vide the simplest possible context for testing the effect of neuromodulation when

applied to an artificial neural network. Therefore the agents shall not be situated

within an environment.

4.2.1 Actions and senses

The agent can neither sense an environment nor be affected by one. The only

thing that it interacts with is a body with two resources, energy and water. The

choice of output directly and immediately alters the level of a resource. This

consequently alters the strength of the input signal to the network.

The agent is given a set of actions that increase or decrease by one or two

resource points 1, or are neutral to, either the energy or water level in the body.

There is one action for each permutation, effectively making 9 in total even

though there are ten possible actions to choose from. There are two neutral

actions, one for energy and one for water, but as neither have any effect on

the state of the agent’s resources they are effectively the same. It is useful to

have one, preferably neutral action, duplicated because if either action is used

differently to the other then it throws doubt on how well the agent is adapting.

The actions provided to the agents are listed in section 3.3.2,

The inactive action is used by default when an agent does not choose for

itself. This results in the resources of the agent being reduced by two points

each. The effect of this is more costly to the agent than if it deliberately chose

the most costly action available to it as that would only result in a reduction of

one resource. This effectively encourages the agent to make a choice.

1Points are used as it is an arbitrary level that has no correlation with any real physical
quantity.
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4.2.2 The system

The agent has a body that requires two resources, labelled ’Energy’ and ’Water’.

Each change in resource level is passed to a feed-forward neural network as an

input signal. Before being input, they are scaled to the largest increase and

decrease that has occurred to each resource so as to be within the range [0,1].

They are then inverted so that desirable changes such as increases to a resource

level, result in a reduced signal to the neural network.

The network learns which outputs should be most frequently and strongly

fired to minimise the level of input signal. There is one output per action and

this has an effect on the internal state of the agent. The change in internal state

determines the strength of the input signal to the network in the next turn. If

the action has a desirable effect2 then decreasing the strength of the input signal

the next turn increases the likelihood of that action being used again.

The network consists of three layers of adaptive leaky integrate-and-fire neu-

rons (section 3.3.4) learning via spike timing-dependent plasticity [BW02]; see

figure 4.1 and 4.2.

Figure 4.1: The structure of a typical modulating network. Clockwise from
top left; (top left) hunger signal layer, (top right) thirst signal layer, (middle)
hebbian middle layer, (bottom) anti-hebbian output layer, (left box) hunger
modulator, (right box) thirst modulator.

2. . . for the agent or for whatever other purpose the network is put to.
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Figure 4.2: A modulating network in action. Neuron size shows level of acti-
vation, width of weights show synaptic strength. Each upper cube corresponds
to a modulator, the height of which is animated to show the changing global
strength of that modulator. The non-animated numbered cube underneath is
used to identify the modulator.

For each resource the input layer has two neurons that output to the middle

layer. One neuron signals the need for the resource and the other neuron sig-

nals the satisfaction of that need. If a previous action performed by the agent

results in a decrease in hunger or an increase in resource satiation, then the

corresponding input signal is decreased until the next turn.

There are situations in which an effective behaviour for an agent may de-

crease a need but not satisfy it. For example, if it is in an environment which

is temporarily bereft of resources then waiting and conserving its current levels

may be the optimal behaviour. Alternatively there may be situations in which

an agent needs to store more resources than it is used to doing. In this case

the need for the resource will be signalled despite that need being signalled as

satisfied. An example would be an agent expecting to soon find itself in an

environment bereft of resources.

For the modulating network, the input layer neurons increase corresponding

modulator strengths when fired, while the middle layer neurons have receptors

for those modulators.
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The network is iterated over a number of times within a single turn, after

which the winning output neuron is chosen. The agent then executes the action

corresponding to the winning neuron. Which neuron wins is determined by

summing up the total activation of each neuron over the iterations and choosing

the neuron with the greatest sum. This stops a neuron with strong inputs from

losing because it just has spiked and thus has low activity or is in a refractory

period.

The number of iterators of the network is determined by the automated

parameter optimisation. There is an upper limit of ten iterations. The modu-

lating agent performed nine iterations each cycle and the non-modulating agent

performed six.

4.2.3 Modulators

Two variants of the network were created; modulating and non-modulating.

They were the same except that the modulating network had in addition two

modulators, one used to signify energy and water levels.

The secretors increase an associated modulator. Each input layer neuron

has one secretor for the modulator that corresponds to the resource being sig-

nalled. Neurons within the middle layer are given a random subset of receptors.

These can therefore be modulated by neurons in the input layer. The recep-

tors modulate either the neuron’s sensitivity to input or probability of firing.

The extent of this is determined by the level of the associated modulator and

whether the receptor is inhibitory or excitatory. The modulation rate of the

receptors and the increment rate of the secretors is determined by the initial

parameter search. For a schematic of the modulating system, including body

and actions, see figure 4.3.
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Figure 4.3: The agent consists of a body that contains water and energy levels.
The change to these, made by the previous action performed by the agent, is fed
to the input layer of the network. This consists of two neurons for each level.
One neuron signals the need for an increase to a resource, the other signals the
satisfaction of that need. The strongest output neuron fires the corresponding
action. There is one output neuron for each action (not all are shown for the sake
of simplicity). Neurons in the input layer secrete a modulator corresponding to
the resource they represent. Neurons in the middle layer have a random subset
of excitatory and inhibitory receptors for these modulators.

4.3 Initial tests

As discussed in section 3.4.1, there were certain parameters that needed to

be set; for example the number of neurons in the middle layer. It was not

obvious what values these parameters should be given so a parameter search

was performed.

Once completed, a modulating and a non-modulating genotype were picked

for comparison against one another. The fitness of the genotypes were similar

and both were typical of the kind of solutions that were evolved. Because there

was a stochastic mapping from genotype to phenotype, and to provide multiple

evaluations, the genotypes were hard-coded so that they could be tested as a

population.
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Examination of the genotypes showed that parameter optimisation had con-

verged upon a fully hebbian network for the non-modulating network, and a

hybrid anti-hebbian / hebbian network for the modulating network. The mod-

ulating and the non-modulating genotype produced agents of similar perfor-

mance. The first thing to check was whether the agents were learning and

adapting, and if so, how well they were adapting. This was to make sure that

their behaviour was not hard-coded.

4.3.1 Initial results

Figure 4.4 is an example of how frequently the different actions were performed

by a population of phenotypes throughout their lifetime. The example is typical

of both modulating and non-modulating agents regardless of the random seed

they are run with.
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Figure 4.4: Frequency of each action chosen by a population of hard-coded
modulating agents.

When viewed over the course of the agent lifetime it can be seen that a

typical agent learns which actions result in reduced input levels. In the example

shown in figure 4.5, the agent initially settles on a neutral action before settling
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on the most rewarding water action. The agent then alternates between this

and the most rewarding energy action. Figure 4.6 shows the initial learning

process before one output neuron wins over all the overs.
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Figure 4.5: Actions chosen over the lifetime of a typical single modulating agent.
This is typical of most of the agents in the population.

The performance of the non-modulating and the modulating agents were

similar, although on average the non-modulating network would reach higher

levels of fitness and would be optimised by the parameter search more quickly.

The initial tests showed that both agents were learning and adapting which

actions would minimise cost and maximise reward of their resource levels.

Even though the agents were optimised for the full set of actions, they

were also tested with a subset of actions to show that they could perform

cost-minimisation as well as reward-maximisation. The results of the cost-

minimisation show that the network has difficulty minimising cost but nev-

ertheless does consistently manage it to some degree.
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Figure 4.6: The first 40 cycles of the run in figure 4.5 showing the initial learning
process.

Inactive...0.0714989%

Cost-2Enery...14.6167%

Cost-1Enery...15.3653%

Neutral_Enery...17.7995%

Cost-2Water...16.5317%

Cost-1Water...17.4343%

Neutral_Water...18.181%

Reward maximisation is significantly more successful:

Inactive...0.0715556%

Neutral_Enery...2.16822%

Reward+1Enery...5.61711%

Reward+2Enery...42.5876%

Neutral_Water...2.04333%
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Reward+1Water...6.39622%

Reward+2Water...41.116%

4.3.2 Hebbian and anti-hebbian

Two variants of the model were found by evolution. An entirely hebbian vari-

ant, and another in which an anti-hebbian rule was used by the output layer.

The non-modulating network used an entirely hebbian solution whereas the

modulating network used the hybrid.

Anti-hebbian STDP is used here to describe the increase of a synaptic weight

if the spike of a pre-synaptic neuron is preceeded by the spike of a post-synaptic

neuron. If the order is reversed then a decrease occurs. Therefore if cell A does

not take part in strengthening cell B then the synapse is strengthened.

Lisman [Lis89] describes a model of the mechanism underlying hebbian and

anti-hebbian learning rules, although different terminology is used. The hebbian

process used increases the synaptic weight when presynaptic and postsynaptic

activity occur together. The anti-hebbian process decreases the weight when

activity does not occur together. This is further defined as post-not-pre anti-

hebbian process and pre-not-post anti-hebbian process. These decrease the

synaptic weight according to the absence of either pre- or postsynaptic activity,

but not the other.

4.3.3 Extended tests

During parameter optimisation, each genotype was tested for 1,000 turns be-

fore being evaluated by a fitness function. The evaluation was cut short if the

genotype proved to be of exceptionally poor performance. This was determined

by allocating a small level of resources at the beginning of each evaluation pe-

riod3. If either the energy or water resource declined to zero then evaluation

of the genotype was halted. The early death results in a lower age value when

calculating the fitness level.

3In practise this was 500 points per resource.
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During the initial examination of how well the agents performed, it was

noticed that network activity would decrease over time for the non-modulating

agents. This did not happen for the modulating agents. Further tests were made

to compare the performance of the modulating and non-modulating agents for

evaluation periods exceeding that for which they were evolved for.

The average performance of two populations were compared. One popula-

tion was made up of modulating agents, the other of non-modulating agents.

All members of a population were created from a single optimised hard-coded

genotype.

When testing a population of non-modulating agents for longer than 1,000

turns, spiking-activity in the network would cease over time. This led to the

weights freezing because the STDP learning rule only updated the weights when

spikes occurred. The activation of the output neurons would slowly decay over

time with the winning action remaining the same in the absence of any change

in the effect of that action; see figure 4.7. The limited use of artificial evolution

for parameter optimisation had settled upon a brittle strategy which depended

on how long each agent was evaluated for.

A population of modulating agents were then tested for the same extended

period of time. They were shown to continue transitioning between the same

two winning output neurons that caused a maximum increase in energy and

water, with other neurons very occasionally being chosen; see figure 4.8.

Unlike the non-modulating agent, spiking activity did not cease. Conse-

quently the weights continued to be updated. Modulation had prevented arti-

ficial evolution, used for the parameter optimisation, from overfitting the test

environment. It had achieved this by exciting the neurons and causing them to

continue spiking even when the absence of any modulators would have caused

spiking-activity to cease.
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Figure 4.7: Non-Modulating agent run over an extended period of time (10,000
turns). The x-axis denotes the number of turns that the agent was evaluated for,
at each turn the agent could choose a different action. The y-axis denotes the
frequency of that action. Choosing an action increases its frequency resulting
in the decrease of frequency for the other actions.

119



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

P
re

fe
re

nc
e

Time

Inactive
Neutral_W
Neutral_E

Cost-2W
Cost-1E

Reward+2E
Cost-1W

Reward+1W
Cost-2E

Reward+2W
Reward+1E

Figure 4.8: Modulating agent run over the same extended period of time and
using the same axes as in figure 4.7.
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4.3.4 Re-optimisation

In the previous experiment it was shown that optimising parameter sets using

fixed length evaluations led to a difference between how the modulating and

non-modulating agents functioned. In order to make the agents more similar,

new evolutionary runs were started, this time using variable length evaluations.

Variable length evaluations would allow further comparisons to be made between

modulating and non-modulating agents that could not be ascribed to the time

period of the evaluation.

During automated parameter optimisation, a genotype would be mapped

to an agent and run for a randomly determined period of time up to 1,000

cycles. At the end of the evaluation period the fitness of the genotype would

be determined. The score was then divided by the number of cycles that the

genotype was evaluated for so as not to give an unfair advantage to genotypes

that were evaluated for longer.

With the non-modulating genotype, this produced a hybrid anti-hebbian

/ hebbian solution as originally evolved for the modulating agent. Both the

modulating and non-modulating agent performed the maximum of ten allowed

iterations of the network per cycle. Comparisons between the newly evolved

genotypes showed that the non-modulating version slightly out-performed the

modulating version.

This shows that although neuromodulation can decrease performance it

stopped evolution from overfitting the environment in which it occurred. Mod-

ulation had stopped the agent from settling into a stable state and caused it

to constantly re-learn its environment. But when both modulating and non-

modulating agents were evolved for environments that required them to con-

stantly re-learn throughout their lifetimes, modulation was no longer needed to

provoke activity within the network.
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4.3.5 Analysis of initial results

It was discovered that the network performed most effectively when the actions

it chose could minimise input activity. Wörgötter and Porr [WP04] provide an

overview of the field of temporal sequence learning. They discuss how the learn-

ing paradigm of disturbance minimisation, as opposed to reward maximisation,

removes the problem of credit structuring and assignment. The two paradigms

are not equivalent. Whereas maximal return is associated with a few points

on a decision surface, minimal disturbance uses all of the points. In a minimal

disturbance system, every input into the system drives the learning process. If

there is no signal then the system is seen as being in a stable state. Rewards and

maximal return are not sought, as is the case with credit assignment learning.

Instead, any disturbance-free state is satisfactory.

With the non-modulating network, a decrease in input activity eventually

leads to a decrease in output activity. If an action results in the lowest possible

strength of input signal and spiking-activity in the network has already declined

to the minimum threshold required for learning, then the network settles into a

stable state. This occurs in the absence of any changes external to the system,

such as the effect of an action changing or noise being added to the input signals.

Modulation agitates the network, stopping it from settling into a stable state

where activity declines to a point whereby the network stops alternating between

actions. When tested using an extended run, the modulating network, unlike

the non-modulating version, continues to alternate between the actions causing

the least input disturbance throughout its lifetime. Figure 4.8 shows that other

actions always have a chance of being selected.

When comparing the modulating and non-modulating agents in environ-

ments that they were not evolved for, in this case evaluated for a variable or

extended length of time, then it is shown that modulation makes the agent more

robust. This robustness carries with it a performance cost.

This suggests that one functional use of neuromodulation is to provide agita-

tion to the agent in order to not let it settle into a stable state; even though the
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environment may allow for it or make this the optimal behaviour. An explana-

tion for this could be that natural agents have not evolved for such environments

because they rarely exist and cannot be relied upon to last.

4.3.6 Discussion of initial results

The use of hunger and thirst input signals are not intended here to be analo-

gous to emotions. They should instead be seen as inputs that drive the agent

to perform certain actions. Each drive increases the level of a corresponding

modulator. Each modulator decays slowly over time and therefore temporally

regulates the initiating drive by inhibiting and exciting the neurons that re-

ceive those input signals. The modulator accentuates activity and continues to

agitate the agent when it would otherwise be too low to fire neurons. It also

attentuates activity when it would otherwise saturate the network. In effect

modulators are acting here as a narrow band activity filter.

Minsky argued that an agent will eventually suffer from goals that compete

with one another if they persist for long enough [Min88]4. Section 2.6.3 discusses

how emotions can be seen as fulfilling the function of modulating the goals,

needs and behaviours of an agent. It has been shown here that modulators can

arbitrate between competing actions, letting less successful actions be executed

when the agent would otherwise perform only the most successful ones. It is

also plausible to suggest that as modulators persist over time, they could also

be used to focus the agent upon one set of actions or behaviour to the exclusion

of others when they would otherwise need to compete.

4.3.7 Variance of fitness

The mapping from genotype to phenotype is stochastic. Therefore an average

fitness derived from an equal number of evaluations is required in order to

make fair comparisons between different agents or different genotypes. But how

do the fitness levels vary throughout the population? For example, is it the

4The full quote by Minsky can be found in section 2.1.2.
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case whereby there are only a few good genotypes in the population but their

fitness levels are sufficiently large to increase the average fitness by an inordinate

amount? Or are all the agents within the population able to adapt and survive

in the environment to some extent? The latter case is preferable to the former

so that the correct selection of the fittest agent from the population becomes

less critical.

To test for this, rather than use a population of 450 phenotypes, a single

agent was tested 450 times. Each time a different random seed was chosen and

the genotype was mapped to a new phenotype and run. The resulting fitness

level was plotted each time. The genotype chosen had been optimised using

variable length evaluations 5. Both the modulating and non-modulating agent

were tested, see figure 4.9. In order to more clearly discern the distribution,

the fitness levels were sorted in ascending order and re-plotted, see figure 4.10.

The graph shows an even distribution of fitness throughout the population with

only a slight difference between the non-modulating and modulating agent. The

genotype of the non-modulating agent has a slightly higher fitness on average

than the modulating agent, but it also produces phenotypes of poorer fitness

levels. The genotype of the modulating agent will more likely be expressed as a

phenotype with an average fitness level than that of the non-modulating agent.

Although the difference is minimal and by itself not sufficient evidence to draw

any conclusion, it is in keeping with the idea of modulation acting as a form of

regulation; stopping an agent from overfitting its environment or letting activity

die out.

4.4 Tests with noise

4.4.1 Reasons for testing

To show that the network was adapting to its inputs and not merely creating

a standard pattern generator to poll particular outputs, noise was added to

5See section 4.3.4.
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Figure 4.9: A single modulating and non-modulating agent were both tested 450
times, each time with an incremented random seed. The fitness of the agent
was recorded.

the input signals. A gradual degradation in performance correlating with an

increase in noise would be further proof that learning was occurring.

Because the networks were optimised in a noise-less environment, testing

them in this way would show how robust they were. If they were not robust to

noise at all then case selection using programming logic would be simpler and

more efficient.

Another reason was to test whether modulation made an agent more or less

robust to noise. Although the initial tests show that modulation agitates the

network to stop evolution from overfitting the environment, this does not nec-

essarily mean that the effect of modulation upon the network is the same as

that of noise applied to the input signals. Noise is random whereas modulator

strengths are increased for a reason and decay consistently over time. Because

neuromodulators have a longer lasting effect than neurotransmitters and influ-
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Figure 4.10: Figure 4.9 sorted in order of ascending fitness.

ence a larger area, it was originally suspected that they may provide a stabilising

influence with regard to erroneous input signals. Alternatively, if the function

of modulation is to agitate and destabilise the neural network so as to stop it

settling into a stable state, then modulation could be largely redundant within

a noisy environment. Comparing the two agents would show which, either or

both, is the case.

4.4.2 The tests

In the following tests, noise is added to the input signals before being passed to

the network. Internal sensory signals are constrained within the range [0:1].

The level of noise to be added to the internal sensory signal is specified by a

single parameter to be within the range [−P :+P ]. A random number is drawn

from this range and applied to the input signal. This results in the error either

decreasing or increasing the signal.

126



Four agents were tested; modulating and non-modulating agents evolved

using fixed length evaluations and the same again evolved using variable length

evaluations. All four are the same agents that were tested in sections 4.3.1 and

4.3.3.

An agent is tested 101 times with the noise level P incremented each time

by 0.01 in the range [0:1]. At the end of the run the total resources gained or

lost by the agent at the end of its lifetime, is plotted against the noise level.

Because the genotype is stochastic the results are averaged over a population of

450 phenotypes6.

4.4.3 The effect of increasing noise levels

The total resources of an agent, gained by the end of its lifetime and averaged

over a population of 450 phenotypes, can be seen in figure 4.11. The two graphs

compare the modulating and non-modulating agents first evolved using fixed

length evaluations and discussed in section 4.3.1.

With little or no noise the non-modulating phenotypes perform better on

average than the modulating phenotypes. But when subjected to higher levels of

noise7 the modulating phenotypes perform better than the non-modulating ones.

It can clearly be seen that there is a more graceful degradation of performance

with the modulating phenotypes when faced with increasing levels of noise than

that of non-modulating phenotypes.

Although the benefit of this only applies to noisy environments with the

costs being incurred when in the absence of noise, this is still a useful feature

of modulation. It is plausible to design an agent that can increase its level of

modulation to cope with increasing levels of noise encountered in the environ-

ment. An increase in modulation by the agent may even appear to an observer

as being similar to an emotional response as the agent increasingly ignores the

subtleties sensed in its environment.

6’Agent’ is used here not to describe a specific instance but the architecture and set of
parameters encoded in the genotype. A phenotype is an instance of this.

7Much higher in the case of the modulating agent evolved using fixed length evaluations.
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Figure 4.11: Noise applied to agents evolved using fixed length evaluations. Non-
modulating agent (Highest=1658, Lowest=262, Range=1396) and Modulating
agent (Highest=1538, Lowest=533, Range=1005). The total resources gained
by the agent (energy + water), averaged over a population of 450 phenotypes,
is read at the end of each run. The y-axis corresponds to resource level, the
x-axis corresponds to noise. Even though the modulating agent performs worse
in the absence of noise, it copes significantly better than the non-modulating
agent as the noise increases significantly.

An interesting feature gleaned from the graph is that both agents, especially

the modulating agent, perform at their best when noise is added to the input

signal in small amounts. Better than in the absence of any noise at all. This

is an example of self-organisation being facilitated by random perturbations

[Hey00].

Although the degradation of the modulating agent for variable length evalua-

tions is not as graceful as that for fixed length evaluations, it still performs signif-

icantly better than the non-modulating agent for almost all levels of noise. The

non-modulating agent performs marginally better than the modulating agent in

the presence of low levels of noise.
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The exact values can be compared below. Both modulating agents, evolved

using fixed and variable length evaluations, outperform the non-modulating

agents at higher levels of noise. The agent most robust to noise, and the best

performing in the presence of high noise levels is the modulating agent evolved

using fixed length evaluations.

Highest Lowest Range

Non-modulating fixed 1658 262 1396

Modulating fixed 1538 533 1005

Non-modulating variable 1552 227 1325

Modulating variable 1535 334 1201

The performance of both the modulating and non-modulating agents de-

grades gracefully under the increasing presence of noise. This is further proof

that the network is adapting and that learning is taking place. The tests pro-

vide evidence of another function that can be ascribed to modulation, that of

increasing robustness to the effect of noise. And if modulation increases ro-

bustness to noise, this rules out the idea that it stops a network overfitting its

environment by providing noise. Instead it is better to think of modulation as

providing agitation to a system that seeks to minimise disturbance to its input.

4.5 Tests with rates set at zero

4.5.1 The original investigation

Up to this point the modulators had been constrained to modulating, by use of

receptors, either the sensitivity of a neuron to its input or its probability of firing.

Doya describes how adaptive agents rely upon a number of parameters in order

to adapt successfully [Doy00] [Doy02]. These are referred to as metaparameters

because of how they regulate the way that other parameters of the system change

as learning takes place. In artificial agents, these metaparameters need to be

tuned by a human. Doya argues that this is not the case with natural agents
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Figure 4.12: Noise applied to agents evolved using variable length evaluations.
Non-modulating agent (Highest=1552, Lowest=227, Range=1325). Modulating
agent (Highest=1535, Lowest=334, Range=1201). The modulating agent per-
forms significantly better than the non-modulating agent for almost all levels
of noise, only performing marginally less well in the presence of low levels of
noise. Performance degradation is more graceful for increasing levels of noise
than with the non-modulating agent.
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which adapt to unknown environments without supervision.

The metaparameters used in the experiments in this thesis were tuned using

automated optimisation. The closest equivalent of this occurring for a natu-

ral agent would be the evolution of its species. Doya proposes that the brain

has the capability to adapt its metaparameters and that its neuromodulatory

systems fulfill this role. The roles of dopamine, seratonin, noradrenaline and

acetylcholine are theorised about within the reinforcement learning framework.

If this is true then not only is it an important area of research that needs further

exploration, but it might also simplify the process of automated optimisation.

The STDP hebbian learning rate was picked as the first metaparameter to

try modulating. If successful this would provide a means for using emotion to

determine the importance of what an agent should learn. Hasselmo proposes a

way that acetylcholine might modulate memory formation in the hippocampus

[Has99].

The experiments failed, but for a surprising reason. The network still

adapted even with a zero hebbian learning rate. To make sure, the tests were

re-run with all code updating the synaptic weights commented out. The result

was confirmed.

Up to this point it had been assumed that the agents adapted by setting

their synaptic weights using hebbian learning. If this was not the case then how

the agent functioned was misunderstood. This situation needed to be rectified if

the functionality provided by neuromodulation was to be properly understood.

Further tests were carried out to explore how well an agent could adapt with a

hebbian learning rate set to zero.

4.5.2 Hebbian learning rate

In these tests the hebbian learning rate of the agents were set to zero. Cost

actions were tested each turn to see if their effect would be randomly changed.

So for example, an action that previously increased the energy resource of an

agent by one amount could change to decreasing the water resource by another
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Figure 4.13: Random cost actions in tests using a population of 450 phenotypes.
Hebbian learning rate is fixed at zero. Agents were evolved using fixed length
evaluations. The non-modulating agent copes better with having to re-learn the
effect of an action than the modulating agent.

amount. This change applied to the entire population of 450 phenotypes. This

was a difficult test for the agent. Given that there were 10 actions to choose

from, if there was a 10% probability of a change occurring then there was on

average one action every turn that changed its effect.

The modulating agent evolved using fixed length evaluations showed a de-

crease in performance compared to its non-modulating counterpart, see figure

4.13. The performance of both modulating and non-modulating agent evolved

using variable length evaluations were comparable, see figure 4.14.

4.5.3 All rates set to zero

In order to understand how the networks were still adapting despite not being

able to update their synaptic weights, it was decided that all possible learning
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Figure 4.14: Random cost actions in tests using a population of 450 phenotypes.
Hebbian learning rate is fixed at zero. Agents were evolved using variable length
evaluations. The performance of the modulating agent and the non-modulating
agent are comparable.
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mechanisms should be switched off so that adaptation could no longer occur.

Once this was achieved, the different mechanisms could be switched on in order

to discern the exact effect that they had. The STDP hebbian learning rate, the

increment / decrement rate to the spike-dependent leakage and the modulation

rate were identified as potential learning mechanisms. Ordinarily each layer of

neurons would use their own evolved rate.

Tests resetting individual rates to zero were inconclusive and suggested that

the agents were learning via more than one mechanism. A further experiment

was run whereby all the rates, the hebbian learning rate, spike-dependent leak-

age rate and the modulation rate, were set to zero.

Again the results were surprising in that the agents still showed signs of adap-

tation, albeit with a significantly reduced level of performance and consistency.

The networks consisted of fixed synaptic weights and neurons with leakage lev-

els fixed regardless of how frequently they spiked. Synaptic weights and leakage

levels were randomly set when the connections or neurons were initially created

and remained unchanged throughout the lifetime of the phenotype.

Disabling modulation by setting the modulation rate to zero showed that

even though to some extent the modulating agent still adapted, the modulators

were relied upon to sustain activity in the network. The disabled modulating

agent performed worse than a control agent would that chose actions purely at

random. This is because approximately 50% of the time, the disabled modu-

lating agent did not choose an action and therefore the maximum cost default

action was chosen for it instead. When re-tested with the evolved modulation

rates, the agent had a performance similar to that of the non-modulating agent.

This use of modulation to sustain activity in the network was seen earlier

when the agents evolved using fixed length evaluations were tested for an ex-

tended period of time, see figures 4.7 and 4.8.

Yet for agents evolved using fixed length evaluations the non-modulating

agent is more likely to cope better than the modulating agent in changing en-
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Figure 4.15: Random cost actions in tests using a population of 450 phenotypes.
Hebbian learning rate, spike-dependent leakage and modulation rate are all fixed
at zero. Modulation rate is set to those evolved for each layer for the enabled
modulating agent. Agents were evolved using fixed length evaluations. The non-
modulating agent copes better with having to re-learn the effect of an action
than the modulating agent.
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Figure 4.16: Random cost actions in tests using a population of 450 phenotypes.
Hebbian learning rate, spike-dependent leakage and modulation rate are all fixed
at zero. Modulation rate is set to those evolved for each layer for the enabled
modulating agent. Agents were evolved using variable length evaluations. The
modulating agent copes better with having to re-learn the effect of an action
than the non-modulating agent.
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vironments, see figures 4.13 and 4.158. This suggests that the non-modulating

agent is constantly perturbed by the changes in the environment, forcing it to

re-learn. Modulation perturbs the network regardless of how frequently the en-

vironment changes and can be used as a tool to stop agents overfitting their

sensory inputs.

For agents evolved using variable length evaluations, the modulating agent

was either comparable to (figure 4.14) or better than (figure 4.16) the non-

modulating agent. Figure 4.17 shows how the agent evolved using variable

length evaluations relies more upon modulation than its counterpart evolved

using fixed length evaluations. This suggests that modulation has been useful

in coping with unpredictability in the environment. This is probably because

activity was sustained within the network, perturbing the agent to switch more

rapidly between the two actions required to maximise resources. This would

reduce the probability of an evaluation being stopped while one resource was

significantly larger than the other, thus reducing fitness.

When the probability of change is too high for the agents to adapt, they

perform worse than a purely random agent that chose an action every turn. If

an agent does not choose an action then the inactive action is chosen for it by

default. The default inactive function is more costly than if the agent chose an

action itself. The base performance of the agents when tested with random cost

actions at the highest probability of change is approximately a net loss of 500

resource points throughout the lifetime. This shows that the the agents are not

adapting in such an environment and also not always choosing an action.

4.5.4 Stopping adaptation

Weight distribution

If the agents could still adapt without updating their synaptic weights and

without using a spike-dependent leakage, then this raised the question of how

8A negative resource rating shows a net loss of energy and / or water over the course of
the lifetime.
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Figure 4.17: Agents evolved using variable length evaluations rely more on
modulation than agents evolved using fixed length evaluations.
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they were adapting. Finding out what stopped the agents from adapting would

answer this question.

It was found that adaptation stopped when all the synaptic weights were

initialised to the same fixed value, in this case 1. Ordinarily they would be

initialised to a random value. Each action was performed approximately the

same number of times, much the same as if a control agent chose its actions at

random.

The performance of the agents could also be significantly compromised by

disabling partial connectivity between layers. This meant that every neuron in

a layer connected the same number of times as its neighbours to every neuron in

a target layer. This did not fully stop the agent from adapting but did inhibit

it from performing both cost minimisation and reward maximisation for both

resources. This is more evidence that the randomness of the weight distribution

is fundamental to adaptation occurring.

Isolating the adaptive mechanisms

Once adaptation had been stopped, each potential adaptive mechanism was

used in isolation. This showed whether they were enabling the agent to adapt,

whether they were ignored or whether they provided another function. The

weights were fixed at 1 for each test and the initial leakage was fixed at 0.

When testing the effect of STDP in isolation, the weights were only initially set

to 1 and were allowed to change thereafter. The results were averaged over a

population of 450 agents. Further tests using just a single agent showed that

although the results were less consistent, adaptation still occurred through the

use of these mechanisms.

Figure 4.18 shows the result of how frequently each action was performed

throughout the course of a run. The results are from tests involving a population

of non-modulating phenotypes mapped from a genotype evolved using fixed

length evaluations. The sum frequency of all the actions totals 100% or less.

The frequency of the default inactive action, chosen for the agent when it does
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Figure 4.18: Non-modulating agent evolved using fixed length evaluations. Av-
erage proportion of actions performed over a population of 450 phenotypes.
Both mechanisms are used for adapting to both resources. Synaptic weights
and initial leakage are fixed in order to stop adaptation without these mecha-
nisms.

not choose itself, is not shown.

The agent uses STDP hebbian learning and spike-dependent leakage to

adapt. This shows that both hebbian learning and spike-dependent leakage

provide the same function. Spike-dependent leakage allows adaptation to occur

as much as with hebbian-learning even though all the weights are fixed at 1

throughout the test.

The non-modulating agent evolved using variable length evaluations adapts

using spike-dependent leakage; see figure 4.19. Hebbian learning makes no dif-

ference to how well it adapts. The agent probably evolved to not make use of

hebbian learning so as to stop it adapting too much and overfitting the environ-

ment.

The converse is the case with the modulating agents. For the agent evolved

using variable length evaluations, both mechanisms are used for adapting and

increasing both resources, see figure 4.20. Interestingly, for the modulating agent

evolved using fixed length evaluations, both mechanisms are still used, but each
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Figure 4.19: Non-modulating agent evolved using variable length evaluations.
Average proportion of actions performed over a population of 450 phenotypes.
The agent adapts using spike-dependent leakage. Hebbian learning makes no
difference to how well it adapts. Synaptic weights and initial leakage are fixed
in order to stop adaptation without these mechanisms.

mechanism provides adaptation for only one resource. For this agent, hebbian

learning is used for adapting which energy actions are used, and spike-dependent

leakage is used for adapting which water functions are used; see figure 4.21. At

first glance it seems as if modulation is allowing the agent to adapt more in a

dynamic environment than compared to a static one, but this might not be the

case.

The non-modulating agent evolved using fixed length evaluations was allowed

to overfit its environment. Evolution using variable length evaluations prevented

the other non-modulating agent from doing the same. That agent evolved to

only use spike-dependent leakage and to not use hebbian learning. Fixed length

evaluations allowed for the full use of all adaptive mechanisms, whereas evolu-

tion using variable length evaluations required the adaptive mechanisms to be

partially inhibited. There is no reason to suggest that this was any different for

the modulating agents.
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It is plausible to argue that a mechanism can allow for more effective adap-

tation if it only has to learn to increase one resource rather than two. In this

case, the modulating agent evolved using fixed length evaluations can be seen

as adapting more fully because it can devote each mechanism to a different

resource. The fact that the non-modulating agent does not do this as well sug-

gests that modulation is performing the function of context-switching. This

raises the question as to why the non-modulating agent performs better than

the modulating agent. This is probably because modulation also acts to agitate

the network and this stops it from adapting fully to its input signals.

This still leaves the question as to why the modulating agent evolved us-

ing variable length evaluations can use both mechanisms for adaptation, unlike

its non-modulating counterpart. Modulation can regulate spiking-activity, both

exciting it when it would otherwise decrease, or inhibiting it when the network

threatens to overreact to the input signals. Because both the adaptive mecha-

nisms, hebbian learning and spike-dependent leakage, rely upon spiking activity,

it can be argued that modulation inhibits both mechanisms from overfitting the

input signals by increasing or decreasing spiking-activity.

Figure 4.22 shows the effect of modulation by itself in the absence of any

other adaptive mechanisms. As with the other tests, all synaptic weights are

fixed at 1 in order to stop adaptation. This is compared to the same agent being

used without modulation. Modulation excites spiking-activity in the network

and makes the agent more likely to choose an action rather than have the default

inactive action chosen for it (not shown on the graph). Unlike hebbian learning

and spike-dependent leakage, modulation does not enable the agent to learn the

effect of its actions. This shows that modulation is used purely for regulation

of a system that is already adapting.

Adaptation through inhibition

How can the network adapt without any of the adaptive mechanisms, spike-

dependent and hebbian learning, being enabled? The answer lies in asking
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Figure 4.20: Modulating agent evolved using variable length evaluations. Aver-
age proportion of actions performed over a population of 450 phenotypes. Both
mechanisms are used for adapting to both resources. Synaptic weights and ini-
tial leakage are fixed in order to stop adaptation without these mechanisms.
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mechanism provides adaptation for only one resource. Hebbian learning is used
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Figure 4.22: Top: Modulating agent evolved using fixed length evaluations.
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proportion of actions performed over a population of 450 phenotypes. The ef-
fect of modulation by itself in the absence of any other adaptive mechanisms.
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another question; what does it mean to adapt?

Adaptation requires at a minimum, some internal state or variable to change

in response to the external environment. Hebbian learning changes the state of

the synaptic weights, and spike-dependent leakage changes the leakage of the

neuron to carrying a charge. But these are not the only internal variables. Input

signals also change the voltage levels of the neurons and the timing of the spikes

can vary.

Adaptation only stops when all the weights are fixed at 1. This means that

all the neurons reach the voltage threshold and fire at the same time. When

the voltages of the neurons are varied, whether by randomising or updating the

synaptic weights or by adapting the level of leakage, the neurons fire at different

times. Some neurons have less leakage of their synaptic inputs and can reach

the voltage threshold sooner, some later because of greater leakage.

When input signals are first applied to the network, because the neurons fire

at different rates due to their varying resistances, some output neurons will fire

before the others. If these do not lower the input signals in the next round then

eventually the signals from the other neurons will filter through the network and

cause other output neurons to fire. If an output neuron fires and subsequently

causes the input signals to be reduced, then this reduces the input signals for

other, possibly faster firing neurons. Adaptation is performed by indirectly

inhibiting the other output neurons. Faster firing neurons that do not lower

the input signals may have an initial advantage, but because of the connectivity

between the three layers, are also likely to activate other weaker output neurons

as well.

If the voltages of the neurons in the network were to be mapped onto a hyper-

dimensional landscape with resulting spiking-activity leading to higher or lower

peaks and basins, then adaptation can be seen as the process of moving into

the lowest part of the landscape. Modulation agitates the network sufficiently

so as to stop it settling into a single basin.

Using an analogy of a ball rolling along a peak, ridge or plateau, then given
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sufficient energy it will eventually roll down a slope. The ball will not be able to

later return unless its kinetic energy is first increased. This process will continue

until the ball comes to a stop at the bottom of the landscape, or within a local

depression that requires too much kinetic energy for it to escape from.

Modulation can agitate the network by increasing or decreasing the sensi-

tivity of a neuron to input or its probability of firing. This is the equivalent

of increasing the kinetic energy of the ball by shaking it out of local minima

and pushing it off course until it finds the lowest point on the landscape9. At

this point the ball would come to a rest when using a non-modulating network,

but with a modulating network the ball is still being shaken around within the

depression 10.

This is not a new concept in neural network theory, an energy function

was first used with Hopfield networks [HKP91] pp21. This allows an ’energy

landscape’ to be imagined whereby patterns memorised, being attractors in the

system, can be seen as local minima in the landscape. As with the analogy of

the ball, assuming the influence of gravity, a particle placed anywhere on this

imaginary surface will roll down to the nearest basin.

Heylighen describes the two concepts of a fitness landscape and an energy-

potential landscape as being equivalent [Hey00]. Biology conventionally uses

the former concept whilst physics uses the latter. The energy landscape can be

used to describe the dynamics of self-organising systems. Valleys correspond

to attractors in a dynamical system11, the speed that the system moves into

them being determined by the steepness of the slope. If the landscape remains

unchanged then the system will remain in the first minima that it settles in

unless random perturbations or noise is used to push the system temporally

upwards and out of it. Noise is generally more able to push a system out of

local minima than out of the deepest valleys and therefore enables a system

9Modulation can be seen to increase the activity of a network in figures 4.15 and 4.16.
10This effect can be seen in figures 4.7 and 4.8. Activity in the non-modulating agent

decreases to zero, whereas the modulating agent continues to try other actions throughout
the course of the evaluation.

11Kauffman uses the landscape concept to describe dynamical systems[Kau93] pp176. At-
tractors, disjoint from each other in state space, can be seen as lakes with drainage basins.
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to find the global minima. But noise also stops a system from settling at the

bottom of a global minima once it has been found. If this is desired then the

level of noise has to be reduced over time to allow the system to settle.

This helps explain why modulating agents perform optimally when a certain

amount of noise is added to their input signals, see section 4.4.3. The optimal

level of noise allows the system to find the global minima in the energy land-

scape, possibly by temporarily overcoming any dampening effect of modulation,

yet not be sufficiently strong to escape from it. The non-modulating agent per-

forms optimally at the same level of noise but the increase in performance is not

significant. The difference between the performance of the modulating and the

non-modulating agent decreases at this point. This suggests that at lower noise

levels, the non-modulating agent can settle within the global minima more easily

than the modulating agent, but at higher noise levels the modulating agent is

better able to regulate its activity and not be pushed out of the global minima

completely.

Adaptive mechanisms

The middle layer can be thought of as providing ’activity diffraction’ to allow

the signals to filter through the system at different speeds. The output layer can

be thought of as providing ’activity integration’, integrating those signals back

into combinations that allow particular output neurons to fire more frequently

than others.

How well adaptation occurs in a single agent without the use of adaptive

mechanisms depends heavily upon the random seed that is used. This is due to

the stochastic mapping from genotype to phenotype and how the weights are

randomly initialised. Spike-dependent leakage and hebbian learning removes

this dependency.

How the adaptive mechanisms improve the performance of the network de-

pends upon where they are used and for which agent. They generally provide

two different roles; to either strengthen the activity patterns that have been
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learned (exploitation) or to counter-balance this so that other neurons have a

chance to fire (exploration).

For example, hebbian learning from the input to the middle layer strengthens

the effect of ’activity diffraction’ by moving individual weights towards either

end of the synaptic weight range. Spike-dependent leakage counter-balances this

effect with the levels staying at maximum most of the time and occasionally

dropping to allow a spike to occur.

Spike-dependent leakage and anti-hebbian learning between the middle layer

and output layer inhibit faster firing output neurons. But if these output neu-

rons subsequently reduce the input signals and are less likely to fire, then the

adaptive mechanisms will decrease the leakage of the activation delivered by

synaptic input in order to make them more likely to fire in future. Synaptic

weights between these two layers are more likely to be evenly spread over the

synaptic weight range.

From the perspective of modulating neuronal activity

When introducing the electrical properties of neurons, Koch [Koc99] starts by

discussing the RC circuit as the simplest model of a neuron. This is a unit

that consists of a single leakage and capacitance. If given a synaptic input

then the RC circuit can be used to perform the nonlinear functions of divi-

sive normalisation and gain control. Keeping this perspective it can be argued

that synaptic update, spike-dependent leakage and global neuromodulation all

perform the same function; that of modulating the charge contained in this ca-

pacitance. The difference between these methods of modulation lies not just in

how widespread their sphere of influence is but in how widespread their sphere

of receptiveness is.

The modulatory effect of a spike-dependent leakage is influenced by the spik-

ing of a single neuron. The modulatory effect of synaptic update is influenced

by the spiking of all the pre-synaptic neurons that connect to the post-synaptic

neuron. The modulatory effect of global neuromodulators is influenced by any
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part of the system that can increase the level of that neuromodulator.

When an animated display is produced of the neural network in action,

it can be seen that spike-dependent leakages, synaptic weights and levels of

neuromodulator can change rapidly and continuously. This is not consistent

with the idea of synaptic update acting as a slow and permanent method of

learning. It may be the case that learning in an agent can be implemented

using slow changes to synaptic weights, but it must not be assumed that that

this is the only function provided by synaptic update.

All three forms of modulation, spike-dependent leakage, synaptic update

and global neuromodulation can regulate the firing rate of a neuron based upon

the history within its sphere of receptiveness. A spike-dependent leakage can

be used to regulate the firing of a neuron to stop it firing too much or too

little. These experiments have shown how the use of neuromodulators stop a

network from overfitting the sensory input signals, and also to sustain activity

within the network when it would otherwise desist. In these networks synaptic

update performs a similar regulatory function as spike-dependent leakage. The

difference between the three forms of activity regulation lie in the scale of their

use. Spike-dependent leakage, synaptic update and neuromodulation inhabit

different parts of the same spectrum.

4.6 Other agents

The agents in this section are more complex than the internal-sensing agents

described earlier in this chapter. There are various reasons why they have not

been written up in-full. Some were successful but time constraints meant that

they could not be fully analysed. Others adapted but have not yet produced

results interesting enough to be written up. Some ideas were simply not fruitful.

It is important to write up failed scientific endeavours if it can be shown why

they are failures because this stops other researchers making the same mistake.

But if it is not known why the experiment has failed, it may still be of interest

149



to other researchers, if only to warn that the endeavour may be more difficult

than first anticipated.

4.6.1 Context switching

It was originally envisaged that if neuromodulators can be seen as the brain’s

closest equivalent of global variables [Koc99], then they might be useful as a form

of context switching. For example, if an agent’s energy level reaches dangerously

low levels then the hunger modulator is increased and the agent changes its

behaviour in order to find food. This is why the internal-sensing agents were

given two modulators instead of one. With these agents, the modulator levels

were observed to change rapidly and continuously, as with the synaptic weights.

This did not match with what one would expect from a neural network that used

modulators as global signals and synaptic weights to encode learnt patterns.

Real neuromodulators diffuse in the brain and are relatively slow. To allow

for this a reuptake rate was used which decreases the strength of the modu-

lator by a fixed ratio over time. Evolution decided upon reuptake rates that

were faster than expected. If spike-dependent leakage, hebbian learning and

modulation can be seen as regulating the activity of the network using different

scales of influence and receptiveness, then it can be expected that their levels

will change continuously over time.

Although the diffusion of neuromodulators, and any messengers that are

triggered by metabotropic receptors, is relatively slow compared to neurotrans-

mitters, their rate of diffusion can still range over several orders of magnitude.

This can be from hundreds of milliseconds to minutes, Koch [Koc99] pp97.

Evolution was constrained to the use of only two modulators in the experiments

described in this chapter. The strength of these modulators were increased only

by input neurons, and receptors for them were used only in the middle layer.

When unconstrained evolution was used, the number of modulators per agent

grew dramatically. It is possible that adding more modulators to the system

would allow them to be optimised by evolution to work over a wider range of
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time scales, especially if their use is not fixed to two specific sites in the network.

To test for whether modulators could be used for context switching, an agent

was created that could accept signals as to which resource to increase. After a

set period of time, it was randomly determined which would be the next resource

to signal. The parameters for the agent were optimised using a modified fitness

function. If the agent increased the resource that it was told to, then it would

consequently be given a higher fitness rating.

After the parameter sets were optimised and hard-coded, the agents were

tested by plotting 1,000 runs of 1,000 turns each, with each run averaged over a

population of 450 agents. The first run randomly determined each turn which

resource to signal. The period of time that a resource was signalled for was

increased for each run. The last run had only one resource being signalled.

The results were not interesting. It is likely that more interesting results

would have been achieved had a better fitness function been used. But with

complete evolutionary optimisation taking a significant time to complete there

was not enough time left to re-start it12. Penalising the fitness level of agents

for increasing the wrong resource would probably have helped.

The lesson learned from this endeavour was that the agents should first be

roughly evolved to see if they perform as expected. Once the concept is proven,

the evolutionary run can be re-started with significant processor time expended

to evolve the optimal parameter sets.

4.6.2 Single modulator agent

Once the role of modulators in internal-sensing agents was better understood,

the agents were re-evolved using one instead of two modulators. Is the only use

of modulators to agitate the network and stop it settling into a stable state? If so

then only one modulator is required in an agent. Although there was evidence

12It is expected that reducing the temperature rating of a solution each time it is re-evaluated
will dramatically speed up the search process. This stops the search from having to find a
high number of improvements even though it has already found a very fit solution relative to
the rest of the fitness landscape.
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gained from unconstrained evolutionary runs that agents could benefit from

more than one modulator, comparing the performance of a single modulator

agent to a two modulator agent would help isolate the functionality provided

by modulation. An increase in performance from using two modulators instead

of one would provide further evidence that an agent would benefit from being

given more than two modulators.

The single modulator was increased by both hunger and thirst neurons in

the input layer. Neurons in the middle layer had receptors only for this modu-

lator. Two versions of the single modulator agent were evolved, one using fixed

length evaluations and another using variable length evaluations. Both agents

evolved to use hybrid hebbian / anti-hebbian learning. The agent evolved us-

ing fixed-length evaluations performed the maximum of ten allowed iterations

of the network per cycle. The agent evolved using variable length evaluations

performed eight iterations per cycle. The experiments carried out using the two

modulator agents were repeated using the single modulator agent.

The first experiment consisted of extended evaluations of 10,000 cycles, even

though the single modulator agents were evolved using a maximum of 1,000 cy-

cles. As with the two modulator agents, spiking activity continued throughout

the evaluation for both single modulator agents. But there was a marked differ-

ence in how the two single modulator agents performed. The agent evolved using

fixed length evaluations performed significantly better than the agent evolved

using variable length evaluations, see figure 4.23.

It was not that the agent evolved using variable length evaluations was in-

consistent in deciding which actions were beneficial and which were otherwise.

Unlike the agent evolved using fixed length evaluations, the agent did not dis-

tinguish between actions that were the most beneficial and exploit those to the

exclusion of all others. This is a valid evolutionary strategy when one consid-

ers that the fitness of the agent was partially determined by how similar the

resource levels were to one another and that it could not rely upon the evalua-

tion lasting a fixed length of time. It is interesting to note though that the two

152



Fixed length evaluations
Variable length evaluations

0

5

10

15

20

25

30

35

40

45

+2W+1W0W−1W−2W+2E+1E0E−1E−2E

F
re

qu
en

cy

Action

Fixed length evaluations and Variable length evaluations

Figure 4.23: Frequency of each action chosen by a population of hard-coded
single modulator agents.

modulator agent evolved using variable length evaluations did not rely upon the

same strategy. This suggests that having a modulator for each resource is useful

in signalling the level of that resource. This further suggests that modulators

can be used for context switching and have more uses than to merely agitate

the network.

The performance of the fittest phenotypes of each agent was then examined

in further detail. The agent evolved using fixed length evaluations can be seen

performing the two optimal actions, once learnt, throughout its evaluation to the

exclusion of all other actions, see figure 4.24. In contrast, the agent evolved us-

ing variable length evaluations continues to try all the other actions throughout

its evaluations 4.25. Although these are the fittest examples of these two agents,

their behaviour matches the rest of their respective populations. It is particu-

larly interesting to note though, that the fittest example of the agent evolved

using variable evaluations still excludes the two costliest actions throughout the

course of its evaluation. This further suggests that the strategy is indeed the op-

timal one for the agent, rather than because the evolutionary parameter search
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was unable to escape a local maxima.

This was backed up by evaluating the ability of the two agents to re-learn

the effects of their actions. Because the agent evolved using variable length

evaluations continued to try other actions throughout its evaluation, it was

suspected that it would perform better in this test. This was indeed the case,

see figure 4.26.
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Figure 4.24: Actions chosen over the extended lifetime of the fittest example of
a single modulator agent evolved using fixed length evaluations.

The different adaptive mechanisms were then isolated to examine which

ones the agents were using. Both agents used both spike-dependent leakage and

hebbian learning for adaptation, see figures 4.27 and 4.28. This is in contrast to

the two modulator agent evolved using fixed length evaluations. This agent used

spike-dependent leakage to maximise its water resource and hebbian learning to

maximise its energy resource. Both agents evolved using fixed length evaluations

had the chance to fully exploit their environment. The only difference between
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Figure 4.25: Actions chosen over the extended lifetime of the fittest example of
a single modulator agent evolved using variable length evaluations.

the two agents was that the two modulator agent increased the strengths of

its modulators by using different input neurons for each one. It is not known

whether this would allow for resource-specialisation of adaptive mechanisms.

4.6.3 External-sensing agent

The agents were originally intended to be run whilst situated in the environment

described in section 3.2.5. The second requirement of an agent listed in section

3.1.3 is that an agent should be able to adapt to an external environment and

learn the value of properties within it. This is a common requirement of an

agent and therefore it was important to determine whether modulation could

provide any extra functionality for this purpose.

As the agents were situated in an external environment, they were provided

with the actions described in section 3.3.2. Most of the agents that were initially
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Figure 4.27: Single modulator agent evolved using fixed length evaluations.
Both mechanisms are used for adapting to both resources. Synaptic weights
and leakage are fixed in order to stop adaptation without these mechanisms.
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Figure 4.28: Single modulator agent evolved using variable length evaluations.
Both spike-dependent leakage and hebbian learning independently provide adap-
tation for all the beneficial actions available to the agent. Synaptic weights and
leakage are fixed in order to stop adaptation without these mechanisms.
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designed rarely adapted to the environment. They mostly performed actions at

random. The few times an agent did adapt, it was to perform the ’DoNothing’

action slightly more often than any other action. This action conserved resources

and led to a decrease in input signal to the neural networks. Yet the agents did

not perform either the ’ConsumeEnergy’ or ’ConsumeWater’ action any more

than any other action. These actions increased the strength of input signals. As

a result the internal-sensing agent was created to investigate further and this

avenue of research proved the most fruitful.

After it was found that the agents performed as minimal disturbance sys-

tems, new agents were later evolved to adapt whilst situated in the grid world.

They were given a layer of 48 neurons to accept the external senses. Senses

were input into the network as a vector of binary values that corresponded to

the type of entity observed and its position relative to the agent. The distance

the agent could scan determined the number of neurons in this layer.

The external-senses layer fed into the middle layer. Because the agents

were understood to increase the strength of output neurons that subsequently

minimise input signals, it was assumed that the agent would not be able to adapt

to a layer of 48 neurons that were fed binary values. Therefore the internal-

senses layer13 fed into the external-senses layer as well as the middle layer in

order to apply a value to the external senses. With the modulating agents this

connection was implemented by giving the external-senses layer receptors for

the modulators produced by the internal-senses layer.

Three agents were evolved, a non-modulating agent, a modulating agent

with a single modulator to be increased by both hunger and thirst neurons, and

another with two modulators. The agents adapted to the environment, per-

forming the ’DoNothing’, ’ConsumeEnergy’ and ’ConsumeWater’ actions more

often than actions to move or turn.

It was then discovered that the agents did not need to have the internal-

senses layer connect to the external-senses layer, whether by synaptic weights

13Previously referred to as the input layer when talking about the internal-sensing agent.
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or modulators. It was sufficient for both layers to connect to the middle layer.

Because a full analysis was not performed on the agent it is not known whether

the agent was adapting to both the external and internal senses, or simply the

internal senses. It is suspected to be the latter because although the perfor-

mance of the agents was better than a random agent, it was not impressively

so. The performance of the agents with and without the internal-senses layer

being connected to the external-senses layer was equivalent. It is not yet clear

how value can be applied to the external-senses with such a system. This is a

necessary step for the agent to be situated in an environment.

4.7 Evaluation of modulation

Modulation, when applied to local learning neural networks, provides some ben-

efits but also carries some costs. Overfitting is a problem common to many

techniques that seek to emulate an unknown function or data set; whether this

technique be curve fitting, neural networks or genetic algorithms etc. This hap-

pens when an adaptive process adapts more than is necessary to approximate

the use of the underlying variables and proceeds to match characteristics specific

to the training data.

Modulation inhibits a local learning neural network from fully adapting to

its sensory inputs or environment. Such a network will more likely be able to

generalise over other environments or data sets. A non-modulating neural net-

work may find it difficult, impossible or be slow to adapt to other environments

or data sets. The network may be relying upon non-existent characteristics

specific to the training data or environment.

But this increase in robustness carries a cost. The same mechanism that

stops a neural network from overfitting its training data or environment, also

inhibits performance when there is no need to. For example, the training data

or environment can be processed to only include the underlying characteristics

that require adaptation, such as [Rey94]. A rapidly changing environment in
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which an agent needs to quickly re-learn the effects of its actions may be best

adapted to by a non-modulating network. But this advantage disappeared for

the agents evolved using variable length evaluations; a characteristic specific to

their initial training environment was removed.

But is it always possible or practical to constrain a neural network to such

generalised training data? We may not be able to train an agent to an environ-

ment if it is largely unknown to us. Or the environment may be noisy. In such

cases, the increased robustness provided by modulation may outweigh the cost

of how well the agent adapts.

Modulation can not be seen as merely a compromise to a network’s ability to

adapt. It also acts as a form of regulation; stopping the network from adapting

too much to noise, but also stopping adaptation from ceasing all-together when

the network threatens to enter a stable-state.

When seen in relation to spike-dependent leakage and synaptic update via

spike timing-dependent plasticity, global modulation can be seen as another

way to regulate the activity of a neuron. All three mechanisms can be seen

as differing by degrees of locality in their areas of influence and receptiveness.

Spike-dependent leakage is local to a single neuron, STDP is local only to con-

nected neurons, and modulation relates groups of neurons that have secretors or

receptors for it. Spike-dependent leakage and STDP allow for learning to take

place, whereas modulation regulates the overall activity of the network. Modu-

lation is of little practical use without other more local forms of adaptation in

place. The effects of modulation are too widespread for it to be of much use

by itself; it should be used for regulating a network at a greater scale than can

easily be done using intra-neuronal mechanisms or inter-neuronal connectivity.

But maybe this is a perspective limited by the use of a single neural network.

Spike-dependent leakage regulates the activation of a single neuron according

to how frequently it has spiked in the past. Hebbian learning regulates the

activation of a neuron according to the historical activity of the neurons con-

necting to it. These two mechanisms when combined in a greater system allow
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for learning to take place. Modulation regulates the activity of a single neural

network. Perhaps modulation can also allow for a form of learning to occur

when combined with other modulated networks?

There is also evidence that modulation can be used as a selection mecha-

nism, as postulated by Koch [Koc99]. Not necessarily by bringing into play

different maps from the same set of neurons, but by selecting different adaptive

mechanisms or parts of the network. This can be used to promote exploration

over exploitation. Output neurons or actions that would normally be ignored

may be selected by modulation.

The evidence suggests that local learning neural networks can benefit from

multiple modulators. This is plausible when modulators are seen as acting in a

similar way to hebbian learning and spike-dependent leakage, but over a larger

area of influence and receptiveness. Future research should experiment with

modulator sets ranging over different time courses. Or the neurons producing

modulators could themselves be modulated so as to regulate the benefits and

costs of modulation according to whether the agent needs to exploit or explore

its environment.

4.8 Summary

The chapter presented a set of experiments to isolate the functionality provided

by neuromodulation. This was achieved by comparing the performance of a

modulating agent alongside its non-modulating counterpart. In order to make

fair comparisons, the fitness of both agents needed to be the same, or similar,

when run in the same way as when they were originally evolved. But in order

to discern the functionality provided by neuromodulation, the agents needed to

be tested in novel ways.

The agents were originally evolved with a set of cost and reward actions

that had the direct effect of increasing or decreasing either the energy or water

level of the agent’s body. This change was then passed as an input signal to the
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network in the next turn. The agent learnt how to both choose the actions that

led to the biggest increase in a resource, and to avoid choosing actions that led

to the biggest decrease.

The first difference that was noted between the modulating and non-modulating

agent was when they were both run for an extended period of time. The spiking-

activity of the non-modulating agent ceased early on in the run whereas it con-

tinued throughout the run for the modulating agent. Two new agents were then

evolved, this time using variable length evaluations, so that both agents could

adapt regardless of how long it was tested for.

All four agents were then tested to see how they adapted to increasing levels

of noise added to the input signals. It was discovered that modulation made

the agents more robust to increasing levels of noise. Even though the modu-

lating agents performed worse than the non-modulating agents for low levels

of noise, the performance of the modulating agent declined less as the noise

increased. The difference was more marked for the agents evolved using fixed

length evaluations than for those evolved using variable length evaluations.

It was then discovered that adaptation could continue, albeit at greatly

reduced levels of performance, in networks in which synaptic update, spike-

dependent leakage and modulation were disabled. Adaptation ceased when all

synaptic weights were fixed at 1. Enabling each of these three mechanisms

in turn for each agent showed the effect that the learning mechanisms had on

the network. Modulation increased the probability of an action being chosen

by the network and stopped the network from reacting too strongly to the

input signals. Spike-dependent leakage and synaptic update both allowed for

adaptation to occur. All three adaptive mechanisms can be seen as performing

similar functions but at different scales of specificity.

Further tests using single modulator agents suggested that agents could ben-

efit from being evolved with multiple modulators and that modulation can be

used as a selection mechanism rather than to merely agitate a network.

To summarise the key functionality found to be provided by modulation:
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• Modulation acts as a form of regulation, preventing the network from fully

adapting to its sensory input or environment. It also stops adaptation from

ceasing all-together when the network threatens to enter a stable-state.

• Modulators prevent a neural network from overfitting its training data or

environment. Modulation inhibits performance when there is no danger

of overfitting.

• Modulation allows for arbitration between explorative and exploitative

actions.

• A modulating agent can devote spike-dependent leakage and hebbian learn-

ing to maximise different resources.

• Modulation can make an agent more robust to increasing levels of noise

but decreases performance for low levels of noise.

• Without other more local forms of adaptation in place modulation is of

little practical use.

• Neural networks can probably benefit from multiple modulators.
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Chapter 5

Discussion

5.1 Overview

The fields of artificial intelligence and artificial life have their own unique prob-

lem not normally found in other scientific fields. They often attempt to both

understand and then recreate a natural phenomenon for which there is no un-

equivocal definition. Examples include intelligence, life, emotions, consciousness

etc.

A field that attempted only to understand such phenomena would proceed

by studying it and distinct definitions would emerge as more was understood.

An example of this can be found in the field of geology regarding granite, as

described in section 2.3.7. A field that sought only to engineer phenomena,

without regard to how well it matched the closest natural equivalent, would

have their own definitions emerge to describe the technology as it developed.

In order to solve this problem, a bottom-up approach has been proposed and

tested in this thesis when attempting to understand and create artificial emo-

tions. This approach not only advocates emulating the underlying mechanisms

that are proposed to give rise to the natural phenomenon, but also advocates

delaying for as long as possible the temptation to define the phenomenon.

Neuromodulation is one mechanism that has been proposed as being respon-
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sible for emotions. This thesis has researched some of the functionality that this

mechanism can provide. This has been achieved by comparing modulating and

non-modulating agents that adapt using self-organising biologically plausible

neural networks.

5.2 Understanding natural phenomena in terms

of computation

5.2.1 Historical comparisons between computers and bio-

logical phenomena

It is relatively easy to look back on the history of a scientific field and under-

stand how the paradigms established throughout it were eventually found to

be inadequate in some regard. When a new paradigm becomes established, its

improvements upon the previous paradigm are well understood. It is also rela-

tively easy to envisage future developments based upon the current paradigm.

While an established paradigm still has much to offer, and until its limitations

are recognised and understood, it is often difficult to envisage the next paradigm

to replace it.

Because the brain can compute the same problems as a computer, it would at

first seem plausible that given enough processing power and capacity, human-

level intelligence can be created using conventional programming techniques.

Initial success makes it seem plausible to reverse the translation process and

apply an understanding of silicon-based computing back to the brain, as with

[Sim67]. While understanding the brain in such computational terms has its

uses, the limitations of this approach lay in a failure to appreciate the difference

in underlying architectures, as well as how and why the brain developed.

When the limitations of classical artificial intelligence using a top-down ap-

proach were better understood [Bro91b] [Bro91a], the new paradigm of bottom-

up development was established. Inspiration was taken from natural and bio-
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logical phenomena to create neural networks, evolutionary algorithms, artificial

immune systems [Das98] etc. This bought further success and again our under-

standing of the original natural phenomena has increased as a result1.

In section 1.4, research in artificial intelligence was described as providing

the questions for, and an appreciation of, the answers found by computational

neuroscience. It was also argued that conclusions reached in modelling and

verifying the underlying assumptions of a function performed by the brain can

be used to help direct further research into the brain. While to some extent this

is true, are biological phenomena best understood in this way? They are at heart

physical systems subject to the same laws of thermodynamics as they were when

they first evolved as a small collection of cells. They can be understood using the

same theories of complexity that can be applied to all other natural phenomena.

Can this perspective be applied to the computational models described here?

5.2.2 Minimal energy networks

Boden [Bod99] proposes metabolism as a defining criterion for life. Although

the validity of using such a definition of life is of no concern here, it is relevant

to note that the flow and use of energy can be used as an explanation of life

and intelligence.

Boden refers to how researchers in the field of artificial life predominantly

think in terms of information and computation rather than in terms of energy

and matter2. She describes three senses of metabolism, ranging from the weakest

to the strongest. The first sense defines metabolism simply as energy depen-

dency. The second sense specifies energy consumption, storage and budgeting

for driving the behaviour of an agent. The third sense adds energy usage for the

maintenance of a body to the list. Metabolism, when referring to it in the third

sense, continuously exchanges energy between the agent and its environment.

1A more thorough review of how the paradigms of connectionism, artificial life and dy-
namical systems relate to the previous paradigm of understanding the human brain in terms
of computer programming can be found in [Elm99].

2This could be ascribed to the influence of computer science because computers and elec-
tronics currently provide the primary means of implementation.
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External energy is converted into ’currency’ so as to deliver it to the internal

processes of the organism.

The idea of a currency in energy is pertinent to the use of modulators for

the agitation of a neural network. To recapitulate the findings of this research,

designing an architecture to adapt using unsupervised learning proved harder

than first envisaged. A number of different architectures, encodings and heb-

bian learning rules were used in the attempt. It was discovered that the neural

network worked best as a minimal-disturbance system. This required the input

levels to be reduced according to how beneficial the previous action was to the

agent. Modulation was understood to function primarily by providing agitation

and what can be seen as an increase in ’energy’ to these minimal disturbance

systems. Spiking activity was shown to globally decrease when the use of modu-

lators was removed. Receptors responding to modulators were shown to agitate

the network so as to stop it settling into a stable state. But receptors activated

by modulators can also inhibit neurons. This causes the firing of neurons with

inhibitory receptors to be delayed, and in effect, the activity or ’energy’ of the

neural network is budgeted.

Boden proceeds by making references to the work of Maturana and Varela

[MV80], one of which is of particular relevance here. Her succinct summary is

quoted rather than ”Maturana and Varela’s often tortuous prose”:

Maturana and Varela’s avoidance of informational concepts leads

them to deny also that organisms have any inputs from or outputs to

the environment. They speak only of ”perturbations” of the system

itself. They grant that an observer may find it useful to distin-

guish between ”internal” and ”external” perturbations, but insist

that for the autopoietic system itself these are indistinguishable. A

state of the system is a state of the system: It does not carry a

label announcing its causation. In reality, then, they are all internal

perturbations. (Moreover, they are all perturbations in the present

tense: an observer may say that the system has ”learnt” something,

167



but the system merely does what its state at that moment leads it

to do.)

There are several reasons why this passage is of relevance here. It describes

perfectly the functioning of the neural networks developed here and can be used

to explain how the agent can continue to adapt even without the use of hebbian

learning or spike-dependent leakage. It may seem like the system has learnt,

but to re-use the analogy of the ball on a mountainous landscape, the ball has

rolled down a slope and settled into a basin.

It is also interesting to note the similarity to McDermott’s rant concerning

the indiscriminant use of labels [McD81]. But Maturana and Varela go further

by saying that the function that we ascribe to a system is also merely a label.

Therefore, if we are to describe the functionality provided by neuromodulation

then we must also understand and describe the system being modulated.

5.2.3 Information and energy

Avery [Ave04] (chapter 4) describes how information theory was derived from an

understanding of free-energy and entropy in physical systems. A short summary

is provided here.

James Clerk Maxwell established a relationship between entropy and the

concept of information by proposing a now famous thought experiment. This

involved imagining a closed box partitioned into two halves and sorting faster

and slower moving particles from a gas of a uniform temperature into either side

of the partition. Information regarding each molecule of gas is needed to sort

the gas. Removing the partition separating the two halves of a box mixes the

sorted particles resulting in a loss of information. Szilard later analysed the re-

lationship between energy and missing information using Boltzmann’s constant.

The concept of entropy was used by Shannon to explain his formula quantifying

missing information. Shrödinger used the concept of entropy and Gibbs free-

energy to explain life. He started by questioning why food is required to keep
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us alive and explained how life increases entropy by the act of feeding. Food is

relatively ordered and after being used to produce energy for the organism is

returned in a relatively simple state to the environment.

So although information theory was derived from an understanding of free-

energy and entropy in physical systems, information is nothing more than a

human concept. Even though it is an extremely useful concept, we cannot

assume that it will always provide the most apt explanation of a naturally

evolved physical system. As with definitions, it is a tool that we should not feel

compelled to immediately use without question.

Avery finishes the chapter with an excellent summary of the process to which

Shrödinger refers to:

A flood of information-containing free energy reaches the earth’s

biosphere in the form of sunlight. Passing through the metabolic

pathways of living organisms, this information keeps the organisms

far away from thermodynamic equilibrium (”which is death”). [His

parenthesis] As the thermodynamic information flows through the

biosphere, much of it is degraded into heat, but part is converted

into cybernetic information and preserved in the intricate structures

which are characteristic of life. The principle of natural selection

ensures that as this happens, the configurations of matter in living

organisms constantly increase in complexity, refinement and statis-

tical improbability. This is the process which we call evolution, or

in the case of human society, progress.

Heylighen describes how variety can be encouraged within a system by keep-

ing it far from thermodynamic equilibrium [Hey00]. The modulating agent con-

tinued to try other actions throughout the extended evaluations whilst spiking

activity ceased for the non-modulating agent, see section 4.3.3. Modulators were

used to keep the agent sufficiently far from equilibrium.
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5.2.4 Neuromodulation understood in context

Chaisson [Cha03] proposes that life be defined as:

. . . an open, coherent spacetime structure kept far from thermo-

dynamic equilibrium by a flow of energy through it - a carbon-based

system operating in a water-based medium with higher forms of me-

tabolizing oxygen.

Chaisson does not merely explain why life should be defined in terms of the

flow of energy, he also describes why life exists because of it. The principles

behind the formation of life are proposed to be the same as those that create

and maintain all other structures in the universe [Cha05] [Cha01] [Cha06]. He

explains how order emerges from energy and how complexity has developed since

the very beginning of the universe3. Even though the mechanisms involved may

be different, the same process underlies the vastly more complex environments

that we are more familiar with.

Open structures, complex and ordered relative to their environment, produce

entropy by maintaining order. Resources rich in energy flow in and low-energy

waste flows out4. Entropy local to the system decreases at the expense of the

entropy of the environment. Order is created because of the flow of energy.

Describing the process as self-organisation implicitly and inappropriately sug-

gests that the system is closed. The process is better understood as the flow of

energy into an open system and its dissipation out of it. Perturbations happen

by chance to any natural open system that consists of many degrees of freedom.

The ordinary case is for these perturbations to dissappear over time but if the

perturbations are too large to be damped by the system and not too large to

completely destroy the structure, then the system will become re-ordered. En-

ergy acts as a selective force, pruning away weak structures and leaving behind

those that are able to utilise the energy. Continual reordering in this manner

3Kauffman devotes the second part of his book to the possibility that life ”. . . crystallized
as a self-reproducing metabolism in a space of possible organic reactions” [Kau93] pp285.

4As with a metabolism.
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results in increased complexity. This results in greater instability and therefore

increases the chance of further re-ordering occurring. This process increases lo-

cal complexity and energy consumption in the presence of optimal energy flow;

too little and the system will starve, too large and it will be destroyed.

If one were to set about designing components that could be ordered using

such a process for the purpose of adaptively controlling an agent, then it is likely

that they would be very similar to the ones used in this research. If a single

artificial cell were to be designed for this purpose then it would probably adapt

to temporary saturation from excess activation by attenuating its input signals.

This conversely requires decreasing the attenuation during periods of lesser ac-

tivity effectively accentuating the input signals. Such a cell would improve the

survival rate of a host organism for environments that at times resulted in ex-

cessive input signals. In the networks used in this research, spike-dependent

leakage would function adequately in this manner.

For a system to break apart and re-order itself because of an excess inflow

of energy, the components need to connect to each other in patterns that suf-

ficiently dampen, or make optimal use of the energy. The system must have

the ability to prune away connectivity that does not allow for this. This would

require a mechanism such as STDP. The effective existence or strength of a

connection would be determined by whether the activation of both components

help to dampen or make optimal use of the excess activation. This may require

an effect upon the environment of the system in order to regulate the inflow of

energy. In an agent this would take the form of an action.

In the same way that a single cell may be either insufficiently sensitive to

input or continuously saturated and therefore not able to aid in the survival of

the host organism, the activity of the entire network may need to be regulated.

This would require mechanisms such as modulators. For an agent, the effect of

this is to regulate its behaviour.

More complex environments might require different orderings of the system

to be frequently selected and used. Rather than break down the ordering of the
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system each time, i.e. relearn the environment, the system may need to select

different subsystems to cope with the excessive inflow of energy. This would

require a global signal to activate or deactivate, excite or inhibit, parts of the

system. For an agent, such a mechanism would in effect be a global modulator.

An agent that could select a subset of subsystems rather than just one at a

time would be more adaptable. Such an agent would also make more efficient

use of its brain. It could have a greater variety of subsystems, each performing a

more specialised function. The subset of subsystems that provides the optimal

behaviour to aid the survival of the agent given a particular environmental state

could be selected using global modulators5. This suggests that modulators are

most suited for selection of parts of a network or agent controller, as suggested

by the results in section 4.6.2, instead of activating different maps from the same

network, as questioned in section 1.3.

If this theory is found to hold true in natural agents, then it explains why

emotions are so difficult to define by merely observing them. This suggests that

”emotions” is a label that we as observers (whether conscious observers of our

own internal state or of the external behaviour of others) effectively apply to the

activation of a class or subset of neural functions that work towards a distinct

and discernable effect. This would explain why it is so difficult to define exactly

what is and is not an emotion. Each emotion would merely be a particular

subset of neural functions found by evolution to provide the optimal behaviour

for an agent given a certain environmental or bodily state.

For an observer, this by itself may not be sufficient to distinguish an emotion

from other evolved responses or behaviours. It may be that an evolved response

or behaviour needs to hold sufficient influence upon the actions of an agent for

it to warrant being labelled as part of a distinctive class. What we label as

being an emotion or otherwise, may rest upon the subjective judgement of how

distinctive and how much of an effect the corresponding subset of subsystems

has on the behaviour of an agent.

5The optimum subset for a given environmental state being found using evolution.
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5.2.5 The relevance of modulation to (some) emotions

LeDoux [LeD98] pp16 characterises cognitive processing as increasing our range

of responses to our environment whereas emotions decrease the range to those

that have been selected by evolution.

The non-modulating agents tested in this thesis overfitted their sensory input

and were less resistant to the effects of noise. Spiking-activity ceased in the

non-modulating agent evolved using fixed length evaluations when tested for an

extended period of time. Modulation allowed the agents to be less sensitive to

their sensory input. This is the reason why the two-modulator agent evolved

using variable length evaluations did not overfit its input signals despite using

both spike-dependent leakage and synaptic update for adaptation.

If modulation can make an agent less sensitive to its sensory input then it

could perhaps be used to influence the behaviour of an agent regardless of its

current environment. For example, it makes sense for prey grazing safely to be

sensitive to its sensory input. It needs to sense and taste food and it needs to

be alert to the presence of predators. But if it senses a predator nearby then

it needs to avoid moving and drawing the attention of the predator, or failing

that, it needs to flee.

Predator avoidance is an ideal behaviour to be selected for and optimised

by evolution. It is also a behaviour that needs to be maintained in the absence

of any further sensing of the predator. Relying upon a continual sensing of the

predator to drive the fleeing behaviour until the prey reaches safety will more

than likely result in the prey being eaten. Nor will the prey benefit from being

distracted by less important sensory input while it is still in danger, such as

pain, discomfort or the smell of another food source. Modulation can be used

to select for specific output neurons, or parts of the neural network or brain,

that are responsible for fleeing behaviour. Exploration of different actions to

satisfy different needs would cease and exploitation of learned strategies for a

successful escape would be given priority.

Kelso discusses Central Pattern Generators, or CPGs; neural circuits that
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can produce complex behaviours in an absence of sensory input [Kel95] pp239–

243. Neuromodulation can be used by CPGs to switch between different pat-

terns and to create new ones. So even though the experiments in this thesis

failed to bring into play different maps from the same neural network, instead

seeming to work as a form of selection instead, physiological evidence suggests

that this may be the case for real brains. But perhaps the two postulated func-

tions of neuromodulation are not too different. Would CPGs not be reconfigured

by selection of different components and neurons anyway?

By hormonally modulating the sensory input, Avila-Garćıa and Cañamero

have shown that the principle of using modulation to change the behaviour

of action-selection architectures is possible [AGC05]. In one experiment, the

salience of a prey agents level of well-being is increased using hormonal modula-

tion the moment a predator has been sensed. The prey then behaves accordingly.

The agents used in this thesis are too simple to allow direct comparison with

complex natural agents. In reality, prey need to be more aware of their sensory

input in order to judge where a predator may be and to react more quickly

to their environment. Prey agents also need to be more selective as to what

senses they react to. For example, adrenaline heightens sensory awareness in

humans, but also leads to a focusing of attention. In such a situation the prey is

motivated to perform a behaviour and actively senses the environment as part

of that behaviour.

It is plausible to suggest that neuromodulation can be used as a mechanism

to activate certain behaviours attributable to emotions. Evolution hard-codes

the recognition of certain sensory features to trigger the release of a neuromod-

ulator. This excites parts of the brain responsible for an evolved behaviour to

bias the actions of the agent.

So given what we have learnt about the use of modulation when applied

to neural networks, can we present a theory as to how emotions might emerge

from, or be implemented by the use of neuromodulators? With the example of a

natural or artificial prey agent, whilst grazing peacefully it is not in any strong
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emotional state and therefore can concentrate on exploiting its environment

to its fullest. Possibly sensing a predator it enters into a strong emotional

state. This comes from the levels of the prey’s neuromodulators being increased,

agitating its brain and pushing it out of a stable state. This gives other actions

a chance to be performed and increases the salience of the prey’s somatic and

external sensory input. Up to this point the prey might not be sure of the best

cause of action or indeed whether it is in danger. Fleeing might draw attention

to the prey whereas freezing might mean that it is losing valuable time to escape.

Let us say that a predator leaps at the prey. There is not enough time to think

but an evolved instinct to jump back kicks in. The prey flees and the levels of

other neuromodulators are increased making the prey enter a different emotional

state. The evolved emotional behaviour narrows the options of the prey, this

time giving precedence to parts of its brain that performs a specific evolved

fleeing behaviour.

This would concur with the argument of Fellous [Fel99] that emotion can be

seen as a continuous patterns of neuromodulation of certain brain structures.

The results of this thesis suggest that emotions would operate in this way by

using neuromodulators to regulate the activity of neural circuits according to

the needs of the agent. This would probably happen as a smooth transition

rather than as a discrete change or flip between behaviours.

5.3 Further work

Most scientific research creates as many new questions as old questions are

answered. This thesis is no exception. Now that it has been established that

modulation of local learning neural networks can be functionally useful, further

work is required to understand the extent of this usefulness.

For the neural network to be of wide-spread practical use it is necessary to

increase the chance of a phenotype with good performance levels being produced

from a genotype. A stochastic mapping from genotype to phenotype was used
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for this research in order to improve the odds of evolution finding a system that

worked. Now that it has, will deterministic synaptic connectivity reduce the

variability of phenotypic performance levels? 6 This by itself will not make the

mapping from genotype to phenotype deterministic as it has been shown that a

random distribution of synaptic weights is required for adaptation to take place.

Stochastic connectivity was originally used to reduce the reliance upon a single

random number generator to sufficiently randomise the synaptic weights.

But is it biologically plausible to have each neuron in one layer connect to

each neuron in another layer the same number of times? Could the connectivity

of the network be learnt as part of adaptation?7 Adaptation of synaptic weights

occurred rapidly and continuously as a form of local modulation during the ex-

periments conducted for this research. It is possible that forming and removing

synaptic connections or vesicle release sites throughout the lifetime of an agent

could be used as a more permanent form of adaptation that occurs over longer

time scales.

Many models of hebbian learning were implemented and tested in order

to make the system adapt. It was then discovered that the neural network

worked best when used as a minimal disturbance system. Synaptic update is

currently implemented using spike timing-dependent plasticity, but this is not

the sole means by which adaptation can occur in a neural network; for example,

adaptation still occurs when using spike-dependent leakage. How would more

traditional forms of hebbian learning such the BCM learning rule [ID03] relate

to the functioning of the network as it is currently understood?

What other functions can modulation perform? One way of researching

this is to compare more complex modulating and non-modulating agents. For

example, agents that can learn effective sequences of actions. In the current

models, only the middle layer has receptors for modulators. Could receptors be

6In other words, each neuron in a source layer connects to each neuron in a target layer a
genetically determined number of times.

7It is unwise to evolve specific connections between neurons as the chances of evolution
producing a solution that cannot be understood, allows for no adaptation throughout the
lifetime of the agent, and of evolution becoming stuck on a local maxima, will be increased.
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used for the external senses layer or the output layer?

Can an agent be given multiple neural circuits evolved for different purposes

such as to breed, with each circuit excited by increasing the strength of a corre-

sponding modulator when needed or relevant to the current environment? This

would be especially useful for agent needs which do not correspond directly to

an internal resource level. Further work in this area could start by evolving two

specialised neural networks, one for cost minimisation and one for reward max-

imisation. A modulator could then be used to alter the influence or activation

of either network.

The evidence suggests that internal sensing agents could benefit from being

evolved to use more modulators 8. Asking how many more modulators would

be useful, what extra functionality they would provide and how the evolved

modulators are used would increase our understanding of their role.

Because neuromodulators trigger receptors whose effects can vary over a

wide range of time scales, future research could focus on the use of modulators

in neural networks that temporally adapt.

Ultimately all methods of adaptation have to be applied in order to be useful.

As discussed in section 4.6.3, an agent needs to learn the relative value of what

it is sensing. Can modulation help with this by making certain senses more

or less salient? What benefits can modulation bring when used in a physically

situated robot with noisy sensors and actuators, where an action or behaviour

is performed over a period of time rather than as a discrete step?

8As suggested by the number of modulators selected by unconstrained evolution, compar-
isons between single modulator agents with two-modulator agents and by the huge numbers
of neuromodulators found in natural agents.
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5.4 Conclusion

5.4.1 Understanding emotions by understanding neuro-

modulation

The premise behind the thesis was that emotions are phenomena that emerge

from the interaction of certain subcomponents within a natural agent. Be-

fore one can properly understand what emotions are and recreate them, one

must first model these subcomponents and their interactions to increase our

understanding of why they exist and how they are useful. The subcomponent

emulated in this research was neuromodulation.

What the thesis has achieved is to increase our understanding of how some

natural emotions could possibly operate using neuromodulation. Confirming

whether they do or not requires further study using natural agents and is beyond

the scope of this thesis. It has been argued here that modulation should not

be seen as an exotic mechanism which can be added to a hebbian learning

neural network. It functions by regulating neuronal activity, much like hebbian

learning and spike-dependent leakage, but at a different scale of use. Specifically,

the research has shown that modulation is a useful mechanism to incorporate

into a network of artificial leaky conductance-based integrate-and-fire neurons,

regardless of whether the designer intends to emulate certain emotions or not.

5.4.2 A bottom-up approach

At the beginning of this research effort, the author had a fixed idea as to what

was required of an agent and how it would work. This overly complex idea

was derived from what was understood second-hand from the literature and

with limited first-hand experience. Progress was only made when this idea was

significantly simplified and an open-mind was adopted to determine how the

system ’wanted’ to work. It was intuitively envisaged that the agent would act

as a dynamical system[D.B95] at the start of the research. But the idea of a

minimal-disturbance system was never thought of until it was discovered that
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this provided the greatest levels of performance. Nor did the final system work

in any way similar to what was envisaged at the beginning of the research. It was

assumed that the system would work by associating patterns of synaptic weights,

as described in [RT98], rather than by using the random distribution of weights

to spread the activations out over many neurons and filter spiking activity.

Ironically, this is more in-keeping with the idea of an agent as a dynamical

system.

It is very easy to evolve an agent whose internal workings are fiendishly

difficult to understand. We already have such agents in the form of naturally

evolved wetware and there is a limit to how much we can understand from this

alone. First-hand experience gained from this research has shown that biologi-

cally plausible self-organising neural networks are difficult to design. Evolution

allows for alternative and better designs to be found that the designer may never

have thought of. But this research has also shown the utility of understanding

how those evolved networks provide the functionality that they do.

Whilst it is useful to design agents to be wholly situated in an environ-

ment [Bro91b], it is also useful to research and fully understand the underlying

mechanisms that can aid in this endeavour. But rather than have independent

research teams attempt to build single parts of a system and assume that com-

bining these parts into a whole agent will be a trivial matter, these underlying

mechanisms can be useful by themselves. This means that the input, output

and functional constraints of the mechanism can be clearly understood through

extensive use before being added to the palette of the designer of wholly situated

agents.

The experience gained from this research has suggested that a useful ap-

proach is to evolve neural networks to provide functions that fulfil well-defined

requirements. These networks can then be researched and fully understood, al-

lowing them to be used in many different areas. The more network architectures

that a designer has to hand, the more functional requirements can be met when

designing an agent to adapt to real environments.
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