
Genetic Management of the 
Atlantic halibut 

(Hippoglossus hippoglossus) 

 

A thesis submitted for the Degree of Doctor of Philosophy 

 

 

By 

 

Anu Samuel Frank-Lawale 

 

 

 

 

Institute of Aquaculture, 

University of Stirling, 

August 2005 

 



Declaration 

 i

Declaration 

This thesis has been composed in its entirety by the candidate. Except where 

specifically acknowledged, the work described in this thesis has been conducted 

independently and has not been submitted for any other degree. 

 
 
 
Signature of Candidate: ________________________________  
 
 
 
Signature of supervisor: ________________________________  
 
 
 
Date ________________________________  
 

 



Abstract 

 ii

Abstract 
The Atlantic halibut (Hippoglossus hippoglossus) was selected as a new aquaculture 
candidate towards diversification from salmonid culture.  The species was chosen because of 
its high market value and perceived good growth in the cold waters of the target farming 
regions.  Extensive and collaborative research efforts formed the basis for the culture of this 
benthic marine species.  Broodstock populations were established from a limited number of 
wild individuals due to the high costs involved in their capture.  First generation hatchery 
reared offspring are now being selected as replacements but with no knowledge of a 
broodstock replacement strategy to manage this valuable genetic resource and to maximize 
the potential of this species the industry runs the risk of genetic degradation with the 
associated problems of inbreeding depression.  This thesis investigates the processes involved 
with developing a genetic management strategy, using genetic profile technology, based on a 
population in Scotland at Otter Ferry Seafish Ltd.  

The level of genetic variability of 70 individuals in the parental population and 802 of 
their offspring (F1) in two year classes (1995 and 1998) was assessed at 7 microsatellite loci.  
The parental population which was comprised of three different stocks was genetically 
diverse, however, when compared with their offspring, substantial reductions in genetic 
variation, as judged by allelic diversity, were observed.  The parentage of these F1 individuals 
was determined by exclusion principles and 91% of all the offspring genotyped were 
unambiguously assigned to a single parental pair.  The assignment revealed that only half of 
the parents succeeded in contributing to the F1 generation.  This problem was compounded by 
the fact that the family sizes were highly skewed such that the entire population consisted of a 
small number of large families resulting in an unacceptably low effective population size of 
8.11.  The inbreeding coefficient in the F1 generation was 6.16% however this differed 
markedly between the 1995 (7.74%) and 1998 (10.64%) year classes.  

The repeatability of reproductive performance defined by five performance traits 
reflecting quantity and quality of eggs, frequency of stripping events and viability was 
assessed by REML using data collected over three spawning seasons from 239 F1 females.  
The phenotypic correlations obtained between quality and quantity traits were low in 
magnitude and the study showed that with the exception of seasonal activity, all traits studied 
improved with age.  There was also an effect of photoperiod in that fish kept under a 4 month-
delayed regime did not perform as well as the fish under a one-month extended regime.  Of 
all five traits, only volume of eggs collected was repeatable (r=0.37±0.07).  This suggests that 
it is the only reproductive character influenced by the fish and all other traits, especially those 
pertaining to egg quality are determined by management practices. 

The heritability of body weight at four stages in the growout phase of production was 
estimated by REML using data from 486 F1 individuals.  These animals were reared in two 
different sites, a land based tank and a sea cage. Significant effects of site, sex and grade were 
observed and by the end of the trial the average weight of fish in land based system was 
higher by 2 kg.  Females were over 3 kg heavier than males and this difference was attributed 
to precocious maturation while fish in the smaller grade were consistently though 
decreasingly lighter than their larger counterparts. Heritabilities, derived from sire, dam and 
combined estimates ranged from 0.09 to 0.53 with wide confidence intervals.  The poor 
precision of the estimates was due to the highly imbalanced family structure and the small 
number of offspring studied.  Values varied depending on the age of fish and the source of 
variance used to estimate them.  Heritabilities increased with age and although sire estimates 
were higher than dam estimates these differences were tested and the results obtained 
consistent with the conclusion that they represent nothing more than chance.  The results 
suggested that selection for increased body weight in the halibut was likely to be successful. 

Based on the findings of the study a genetic management strategy for the Atlantic 
halibut was proposed structured on controlling the rate of inbreeding and a theory of 
domestication. The need to introduce additional individuals into the population was strongly 
recommended.
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1.1 Introduction 

Fishing remains the only significant practice of hunter gathering still used today in 

man’s quest to feed an ever-expanding population. It is estimated that fishing 

communities thrived throughout the African continent as far back as 4000 BC 

(Shillington, 1995). Instead of evolving towards cultivation, as in agriculture and 

animal husbandry, methods of processing protein from the aquatic environment 

developed along a different path, towards more efficient methods of tracking and 

hunting (Pillay, 1990; Beveridge and Little, 2002).  However, reduction in fish stocks 

of desirable species, increase in fuel costs, changes in laws governing the oceans and 

in particular increase in knowledge of aquatic biology and technology led to the 

science of aquaculture.   

Aquaculture, the large-scale husbandry or rearing of aquatic organisms for 

commercial purposes (Landau, 1992), has increased at an average compound rate of 

9.2% per year since 1920 (FAO, 2003).  FAO statistics show that aquaculture 

accounted for 41% of the total world aquatic production in 2001.  In the countries of 

Northern Europe and Chile salmonid production has dominated aquaculture over the 

past 30 years. Today over one million tonnes of farmed salmon is produced 

worldwide (www. Salmonchile.cl).   This has resulted in intensive competition among 

producers forcing reduced prices to the point where salmon is no longer considered a 

luxury item and profit margins are slim. Consequently, there has been a growing 

interest in diversifying the range of species for cold water, and in particular marine, 

aquaculture (Tilseth 1990; Alvial and Manríquez, 1999).  The Atlantic halibut 

(Hippoglossus hippoglossus L.), turbot (Scophthalmus maximus), cod (Gadus morhua 

L.), ocean wolfish (Anarhichas lupus) and spotted wolfish (Anarhichas minor) were 
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considered to be the most promising marine species candidates for the aquaculture 

industry in the North Atlantic (Tilseth 1990; Olsen et al., 1999).  However, the main 

focus on domestication and cultivation was placed on the Atlantic halibut and in the 

1980s it was selected as the most suitable marine fish species for farming in the UK 

(Olsen et al., 1999; Shields et al., 1999). 

The Atlantic halibut was identified as an ideal candidate based on its high market 

value (£10/Kg compared to £2/Kg for salmon) and good growth in relatively cold 

waters.  Farmed stocks can reach the desired market weight of 3-5 kg within 3 years 

post weaning (Bromage et al., 2000; Adoff et al., 1993).  Progressive decreases in the 

wild capture of this species, especially in the past 30 years, as shown in Figure 1.1 

below, prove that wild stocks have been overexploited (Haug, 1990) and strengthens 

the market value of this fish.  Comprehensive research programmes, particularly in 

Norway, formed the basis for the commercial culture of the halibut. Today the 

Atlantic halibut is farmed in Norway, Scotland, Iceland, Ireland, Canada, USA and 

Chile (Brown, 2002; Alvial and Manríquez, 1999). 
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Figure 1.1 Graph showing the total capture of Atlantic halibut in the northeast Atlantic of the UK between 1950 and 2001 (FAO, 2003). 
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1.2 The Atlantic halibut  

The Atlantic halibut, Hippoglossus hippoglossus (L.), is a right-eye flat fish and it is 

the largest member of the Pleuronectid family.  The fish was first described by 

Linnaeus in 1758 as Pleuronectes hippoglossus but following closer observations of 

fin structure Cuvier reclassified the genus and thus the name was changed to 

Hippoglossus hippoglossus in 1885 (Bromage et al.,  2000).   The halibut is widely 

distributed in the North Atlantic Ocean and in parts of the Arctic Ocean, along the 

coasts of Norway, Iceland, southern Greenland and the East Coast of Canada, on 

occasion to as far south as the Bay of Biscay and New York (Andriyashev, 1954: as 

cited by Haug,  1990).   

Although the first description of the successful hatching of halibut eggs was reported 

by Rollefsen in 1934 (Mangor-Jensen et al., 1998b) the first attempts to rear Atlantic 

halibut larvae were carried out in Norway between 1974-1980 when ripe adult 

specimens were net caught and stripped for eggs and milt.  Researchers have since 

then pieced together the early, complex, life history and culture requirements of this 

deep-water species.   In the late 1980s and early 1990s the main focus of research was 

on the biology and rearing techniques for eggs and yolk-sac larvae.  Below is a brief 

summary of some of their main findings.  

1.2.1 Life Cycle 

In the wild, mature halibut congregate for spawning in well defined spawning grounds 

at depths between 100-700 meters.  The spawning season extends over several months 

and there are clear inter-area differences in the halibut spawning times throughout the 

North Atlantic.  Generally halibut will spawn between the months of November and 
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April at which times the bottom water temperatures are in the range of 5-7oC and 

salinity 34.5-34.9% (Haug, 1990; Neilson, et al., 1993; Arthur, 1999).   

Male halibut reach sexual maturity at a younger age and smaller size than females.  

Haug  (1990) observed that after the onset of maturity (between 6 –7 years) the total 

weight of males seldom reached 50kg whereas females as heavy as 330 kg had been 

recorded.  There also appears to be a relationship between location and maturity and 

he postulated that maturity was more a function of growth rate rather than age. This 

agrees with Roff (1982) who suggested that in some flatfish species maturity is 

governed by size and not age.   In wild Atlantic halibut from Faroese waters, which 

exhibit the best known growth rates (Kjørsvik and Holmefjord, 1995), Jákupsstovu 

and Haug (1988) observed that on average males matured at 4.5 years old, weighing 

only 1.7kg and 55cm long.  The average female matured at 7 years old, weighing 

about 18kg and between 110-115 cm in length.  

Atlantic halibut are batch spawners. Females release discrete successive batches of 

eggs over several (4-6) weeks during a single spawning season.  Sexually mature 

halibut have immense reproductive potential and under favourable conditions the 

amount of eggs released can equate to approximately 40% of body mass (Mangor-

Jensen et al., 1998a).  Their total fecundity is about half a million eggs in a single 

spawning season (Norberg and Kjesbu, 1991) giving up to 200 000 eggs per batch 

with mean inter-ovulation intervals of 70-90 hours (Norberg et al., 1991).  Each 

female can be expected to produce 6-16 batches of eggs in one season (Kjørsvik and 

Holmefjord, 1995).  The pelagic halibut egg is large, with a diameter in the range of 

3.06-3.49 mm (Haug et al., 1984), when compared with eggs of other planktonic 
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fishes such as the cod for example, which has eggs in the range of 1.13-1.50 mm 

(Kjesbu, 1989). 

After fertilisation the eggs gradually move upwards in the water column and most 

eggs in the wild are found in areas where temperature and salinity range between 4.5 

and 7.0 oC and 33.8% and 35.0% respectively.  This vertical distribution of the eggs is 

thought to be determined by their specific density and is closely related to seawater 

salinity (Haug et al., 1984).  Little is known of the pelagic larval development stage of 

the halibut in the wild. Records of the larval stage in the wild are scarce, and no more 

than 70 planktonic halibut larvae have been reported (Haug et al., 1989). This is 

because they are scattered at low density and distributed unevenly over very large 

areas (Haug, 1990).  Therefore most of our knowledge on hatching, development, 

behaviour, nutritional and environmental requirements of yolk sac larvae is based on 

observations made during rearing experiments with artificially fertilised eggs (Haug, 

1990). 

Eggs from halibut hatch when the larvae are still at an early, undeveloped, stage and 

so they are dependant on the environment for survival through this phase as well as 

transport to the photic zone where first feeding will occur (Rabben et al., 1986). 

Approximately 82 degree-days after fertilisation the halibut larva emerges from the 

egg when the ring of hatching enzymes has broken down the zona radiata in a circle 

around the region of the larval head (Pittman et al., 1990b; Mangor-Jensen et al., 

1998a).  This newly hatched larva is about 7mm long.  It is not pigmented and has a 

non-functional mouth and eyes.  The yolk sac stage in the halibut is long and it lasts 

for about 265 degree-days (50 days at 5.3oC) (Blaxter et al., 1983).  Following this 

stage the halibut metamorphose from a round shape to a horizontal flatfish shape.  
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This is a very complex stage of development during which the body twists and the left 

eye migrates to the right side of the fish while the upper body becomes gradually 

pigmented.  This brown pigment gives the halibut some camouflage and a degree of 

UV protection (Arthur, 1999).  Schmidt (1904) described the presence of minute 

orange-red chromatophores scattered over the head and abdominal region of the 

juveniles (Haug, 1990).  The transition from pelagic to bottom life probably takes 

place at a length of 34-40mm and in the wild young halibut are localised in well-

defined nursery grounds in coastal areas 20-60m deep with a sandy bottom (Haug, 

1990).  They remain in these grounds for 4-6 years after which a period of migration 

occurs and the cycle begins again when the fish mature (Arthur, 1999).  

1.2.2 Domestication and Culture of the Atlantic Halibut 

The first two metamorphosed fry were produced in 1980 at the Flødevigen Research 

station in Norway by Øiestad and Haugen from gametes acquired by stripping net-

caught mature adults (Mangor-Jensen et al., 1998a).  This breakthrough sparked a 

large-scale research programme into halibut production in Norway joined by smaller 

programmes in the UK.   

In 1983 cultivation work began in the UK, comprising a small demonstration project 

based at Sea Fish Industry Authority’s Marine Farming Unit, Ardtoe.  Initial fish 

populations were established from the wild capture of individuals from Shetland, 

Faroese and Icelandic waters. Commercial hatchery development began six years later 

in 1989 accompanied by a larger applied research programme (Shields et al., 1999).  

The commercial hatcheries were established by small independent companies making 

use of sites with existing seawater facilities and staff experienced in rearing turbot and 

salmon provided the initial nucleus of the UK workforce.  The basic husbandry 
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procedures for halibut rearing were developed during the initial collection 

programmes of the 1980s, however refinements to handling methods and holding 

conditions were constantly being made from the results of research on reproductive 

physiology and broodstock environmental requirements (Mangor-Jensen et al., 

1998a).  An overview of halibut production cycle is shown in Figure 1.2.  Rearing 

techniques and production in the UK, based on observations at the largest halibut 

hatchery in the UK, Otter Ferry Seafish, are outlined below. 
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Figure 1.2 The production cycle of the Atlantic halibut with photographs of each life 
stage.  Approximate times and/or average sizes for each stage are given.  Pictures not to 
scale (Presented with permission from Brown, 1998). 
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1.2.2.1 Broodstock maintenance 

Broodstock are held in large covered circular tanks ranging in diameter from 3.5-10m 

and depths of 1-2m.  Sex ratios are usually maintained at 1-2 females per male. Good 

stable water quality is maintained by pumping ashore water from a deep-sea water 

supply.  Salinity values of 33-34% are regarded as optimal; flow rates and water 

exchange rates should be as high as possible, however they are limited by the capacity 

of water chilling systems. Two exchanges per day appears to be sufficient in some 

systems (Shields et al., 1999). 

Light appears to be important for growth and maturation in the Atlantic halibut 

(Simensen et al., 2000; Smith et al., 1991) and low intensity artificial lights are used 

in broodstock tanks.  Results from experiments conducted by Smith et al. (1991) 

showed that manipulation of photoperiod resulted in changes of spawning time.  Thus 

lighting is artificially controlled with 12-month out-of-phase photoperiods applied to 

different broodstock populations on the farm facilitating an all year round supply of 

eggs.  Broodstock diets are prepared by wetting a formulated meal (TROUW, UK) 

with fish oil and water which is then extruded into a sausage.  This sausage meal is 

presented to the fish three times a week.  Feeding behaviour varies throughout the 

year with a minimum feeding response during the spawning season. 

1.2.2.2 Stripping and fertilisation 

Spawning performance has been shown to vary according to water temperature.  

Brown et al. (1995) showed that fish kept at 6oC during the spawning season had 

improved fecundity and egg viability compared with those held at ambient water 

temperature.  Fertilisation and hatch rate fell dramatically once water temperature 

exceeded 8oC.  Chilling broodstock water supplies is now standard practice in halibut 
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hatcheries. Two months before stripping the water temperature in the tank is lowered 

to 8oC and one month prior to stripping the water temperature is lowered to 6oC. Out 

of the spawning season stocks are maintained at ambient in order to retain a good 

feeding response.  The requirement to provide chilling adds significantly to hatchery 

installation and running costs, particularly where broodstock are manipulated to 

spawn beyond the natural winter season. 

Impending spawning time can be estimated from the visible abdominal swelling of the 

females, an indication that their ovaries are full of eggs. Although domesticated 

halibut are able to release eggs naturally in holding tanks and fertilisation rates of up 

to 90% have been reported (Holmefjord and Lein, 1990), the general method of 

gamete collection is by stripping.  Stripping is a process where fish are guided onto a 

table and pressure is applied to the abdomen to release eggs/milt.  Eggs and milt have 

to be stripped without coming into contact with water as salt water activates sperm 

motility and hardens the eggs.  

Stripping is the preferred method of gamete collection because it is difficult to obtain 

fertilised eggs from natural spawning in tanks. However, the timing of stripping is 

very important because it affects the quantity and quality of eggs as well as their 

fertilisation rates (Norberg et al., 1991; Basavaraja, 1991; Holmefjord, 1991). Egg 

viability is time restricted and eggs must be stripped and fertilised within six hours of 

ovulation at 6-7oC (Bromage et al., 1991).  Therefore the ovulatory cycle of each 

female has to be accurately estimated before stripping is attempted.  Ovulatory 

rhythms seem to be more or less constant for individual females over the whole 

spawning season (Kjørsvik and Holmefjord, 1995), however this can be disturbed by 

changes in water temperature and handling stress (Norberg et al., 1991). Egg retention 



Chapter 1 

 13

within the ovarian lumen has also been seen to be a problem, causing blockages when 

this material begins to degenerate inside the fish.  Blocked females can be injected 

intramuscularly with antibiotics which induces the release of egg debris within three 

days (Bromage et al., 2000).  

After collection gametes are transferred in the dark, because light affects the 

osmolarity of the eggs (Mangor-Jensen and Waiwood 1995) to be incubated.  1ml of 

milt is stirred into 3ml of sea water (chilled and U.V treated) to activate sperm 

motility.  Once the milt is checked for motility the solution is immediately added to 

the volume of stripped eggs in a bucket.  The eggs are left to water harden for thirty 

minutes.  After the water-hardening period all excess fluid is poured off and the 

fertilised eggs are poured into an incubator (egg conical).  A sample of the fertilised 

eggs from each bucket is collected in a 250ml beaker; the volume is topped up with 

chilled water and kept overnight.  After 24 hours each sample is checked for 

fertilisation rate.  This is done by counting the number of eggs showing symmetric 

division at the 4 or 16 cell stage under a microscope, as described by Shields et al.  

(1997).  It is not unusual, in fact it is common practice, to keep the eggs in their 

buckets overnight until the fertilisation rate is checked before incubating them.  

Samples that have less than 60% fertilisation will be discarded.  These are always 

recorded.  The volume of eggs that go into a conical (incubator) is called a “BATCH”.   

Towards the end of the spawning season male and female gamete production becomes 

unsynchronised, in that milt becomes viscous and difficult to express with poor 

fertilisation properties while females continue to produce good quality eggs.  

Vermeirssen et al. (2004) describe a method of implanting Gonadotrophin-releasing 
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hormone antagonist (GnRHa) into male muscle tissue, resulting in increased fluidity 

of the milt. 

1.2.2.3 Egg room 

Traditional down-welling incubators used for turbot eggs are unsuitable for halibut 

eggs because of their high density and so egg incubation is carried out in up-welling 

cylindro-conical tanks with volumes of 450 litres.  Mangor-Jensen et al. (1998b) 

described the design and operation of halibut egg incubators. The architecture of these 

incubators is such that they mimic the conditions found in the wild.  Strict 

temperature control is important, salinity must be in a narrow range and maintenance 

of good water quality is required as sub-optimal conditions can cause developmental 

abnormalities and / or mortalities (Pittman et al., 1990a).  Light also has a direct effect 

on egg buoyancy as it causes an increase in osmotic water loss thereby increasing 

overall density.  Total darkness is maintained in hatcheries because of the increased 

ease of handling low-density buoyant eggs (Mangor-Jensen and Waiwood, 1995; 

Mangor-Jensen et al., 1998a) 

The incubation water is filtered to 5 µm and UV-sterilised. Temperature is maintained 

between 5-6oC.  Due to the high cost of ensuring a supply of seawater at this 

temperature it is recycled without detriment to egg survival rates. Eggs are maintained 

in the water column using an up-welling flow of 1-4 litres per min with stocking 

densities of 200-1000 eggs per litre.  Dead eggs are removed daily in order to prevent 

bacterial activity.  This is done by means of a hypersaline (40 ppm) salt plug.  This 

procedure was described by Jelmert and Rabben (1987: as cited by Bromage et al., 

2000; Shields et al.,1999 ; Mangor-Jensen et al., 1998a).  It relies on the fact that dead 

eggs are non-buoyant and will sink rapidly through a salt plug whereas live eggs do 

not pass into this layer and rest on the pychnocline.  In order to reduce bacterial 
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infection, every three days each incubator is disinfected using peroxyacetic acid.  The 

eggs are kept in the egg room for 10 days or up to 65 degree-days.  At 65 degree-days 

eggs are gently siphoned from their incubators. They can be successfully transported 

without causing any damage at this stage (Holmefjord and Bolla, 1988).  The eggs are 

then disinfected in peroxyacetic acid at 250:1 concentration for one minute to prevent 

carry over of bacterial contamination, after Harboe et al. (1994).  They are then 

transferred to the yolk sac room.  The volume of eggs transferred is measured and 

recorded.  Generally this reflects the fertilisation rate (usually 5% lower than the 

fertilisation rate).  At this stage to justify the larger incubators yolk sac batches, may 

be mixed. 

1.2.2.4 Yolksac 

Hatching occurs 16-19 days post-fertilisation at 5oC (Kjørsvik and Holmefjord, 1995), 

however it is influenced by external factors such as oxygen, turbulence and light 

(Helvik and Walther, 1993).  Light arrests the hatching of halibut eggs and hatching 

can be synchronised by applying light regimes (Bromage et al., 2000; Kjørsvik and 

Holmefjord, 1995). The yolk sac stage in the halibut lasts for 265 degree-days 

(Opstad et al., 1998).  It is very long compared to other cultured species and this 

developmental phase has represented a major bottleneck in the establishment of a 

reliable production system.  Intensive culture systems routinely exhibit elevated and 

highly variable mortality, up to 50% (Opstad et al., 1998; Shields, et al., 1999), and a 

large fraction of larvae develop deformities.  There is a high frequency of jaw 

deformity which is thought to be related to abrasion of the head by contact with the 

rearing container followed by the penetration of eroded tissue by bacterial and fungal 

organisms present in the water (Morrison and MacDonald, 1995).  The fragile yolk 

sac larvae are very sensitive to both physical and microbial conditions and therefore 
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must be handled with care (Opstad et al., 1998; Rabben et al., 1986).  During this 

period larvae are held in conditions similar to those in the egg room.  Large conical 

(silo) shaped flow through systems are used with volumes of 1750 litres.  Water 

temperature is maintained at 5-6oC for reasons similar to those in the egg room (Lein 

et al., 1997); temperature also appears to affect muscle growth in yolk sac larvae 

(Galloway et al., 1999).  Stocking densities of 10–20 larvae per litre are generally 

used.  Water flow rates are relatively low, in the order of 1-2 litres per min, as this has 

been shown to be negatively correlated with larval survival (Opstad et al., 1998). 

After hatch the dead material is removed daily by opening a valve at the bottom of the 

conicals and allowing 4 litres of water to pour out.  An estimate of the dead material 

components is recorded daily (eggs, shells, larvae). 

Soon after 150 degree-days post hatch substantial losses have been known to occur.  

In response to this phenomenon UK operators have adopted an early transfer 

procedure that involves stocking the yolk sac larvae into feeding tanks before 200 

degree days post hatch (Shields et al., 1999). 

1.2.2.5 First feeding 

At 150 degree-days the larvae are attracted to the surface using a torchlight and 

transferred to tanks containing similar temperatures and treatment to the conicals.  

First feeding tank design was described by Harboe et al. (1998).  4 metre tanks are 

used. They are covered and the water is chilled until the fish are 215 degree-days old.  

Unlike the other developmental stages the first-feeding yolk sac fry require light to 

feed. The photoperiod is 24 hr continuous light  regime (Bromage et al., 2000).  At 

215 degree-days the covers are taken off and live algae added to the water to make it 

turbid.  The presence of algae has been shown to improve growth and survival as well 

as having a positive effect on feeding frequency (Gulbrandsen et al., 1996; Nass et al., 



Chapter 1 

 17

1991). Algae seem to help with the perception of light by the larvae and the 

development of normal patterns of feeding behaviour.  Ambient water is added to the 

tanks at 1oC per day until ambient temperature is reached.  At this stage the fish are 

still absorbing their yolk sac. 

First feeding starts at 240-250 degree-days. A major constraint in the commercial 

production of the halibut has been the onset of exogenous feeding.  The rate of initial 

feed uptake is low with typically only 30% of the larval population accepting live 

diet.  Like several marine fish species the halibut requires live foods at this stage.  

This low uptake represents the main bottleneck in the hatchery process for UK 

operators (Shields et al., 1999). Artemia and copepods form the basis of larval diets in 

most cases. 

Initial rearing attempts used the rotifer/Artemia systems developed for the turbot but 

they resulted in high mortality of larvae (Shields et al., 1999).  Presenting Artemia 

only at the onset of exogenous feeding gave positive results with initial rapid feed 

intake and growth rate (Næss et al., 1995; Næss and Lie, 1998).   However, over the 

course of the 60-day live feed period the fish developed problems with 

malpigmentation, failure of eye migration and poor growth.  The reason for this is 

thought to be due to the absence or shortage of certain essential nutrients, especially 

the polyunsaturated acids (Næss et al., 1995).  Halibut larvae have a high requirement 

for decosahexaenoic acid, 22:6 n-3, (DHA), and the supply of DHA through Artemia 

is a major problem because of the high DHA catabolism of Artemia (Evjemo, 2001; 

Olsen et al., 1999).  Artemia has been shown to rapidly metabolise DHA for energy 

production (Evjemo et al., 1997).   In order to prevent the problems associated with 

nutritional deficiencies of Artemia, most halibut producers use large amounts of 
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copepods supplemented with Artemia.  Copepods are known to be nutritionally 

superior to Artemia (Evjemo, 2001), however it is difficult to secure a reliable supply 

of the organisms and there are concerns about pathogen and parasite transmission 

because they are grown in open systems. 

The juveniles are fed Artemia and copepods daily while keeping high levels of algae 

at the same time. The age of the juveniles determines the type of live feed they are 

presented with in Otter Ferry.  At 230-350 degree-days they are fed copepod nauplii; 

at 350-450 degree-days they are fed juvenile copepods and post 450 degree-days they 

are fed copepod adults.  All the time they are supplemented with Artemia.  However, 

there is a lot of variation in the quality of live feed (copepods) produced and this 

affects the performance of the juveniles. Consequently there has been a significant 

research effort into manipulating and enriching the nutritional composition of Artemia 

particularly with respect to essential fatty acids. Gara et al. (1998) demonstrated a 

method of achieving normally metamorphosed fry using enriched Artemia as the 

exclusive food source.  In their study up to 60% of fry exhibited excellent 

metamorphosis characteristics.  Næss et al. (1995) and Næss and Lie (1998) found 

that normally metamorphosed fry can be produced using a straightforward enriched 

Artemia diet provided that copepods are supplied during part of the larval phase 

where pigmentation is thought to be determined.  This larval phase, called a “copepod 

window”, was found to be after 19 days of feeding or after the larvae are 16 mm long. 

The period of development up to weaning from first feeding is often problematic.  

The energy demand of the larvae is very high in order to achieve good growth.  In this 

phase of the production cycle heavy demands are placed on the hatchery in terms of 

labour, facilities, live feed and enriched media (Brown, 1998). Most mortalities occur 
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during the initial phases of first feeding and after 350 degree-days losses are minimal, 

however morphological abnormalities are often encountered, even when they are fed 

copepods. Failure of eye migration, elongated body shape, malpigmentation, 

abnormal jaws, fins and lateral line canals, are examples (Pittman et al., 1998).  By 

600-700 degree-days the fish are fully metamorphosed and they start to settle on the 

bottom of the tanks (Bromage et al., 2000). The quality of the juveniles is assessed in 

this stage by the behaviour of the fish. If they settle at the bottom when they are 650 

degree-days old they are considered “good”. At this stage a report is made on the 

behaviour and appearance of the batch this is recorded.  

1.2.2.6 Weaning 

When the fish are 650 degree-days old, which is about 3 months, they are transferred 

to weaning systems. Poor batches will be held back and may be mixed.  

Approximately 15,000-25,000 fish are put into a weaning tank.  The tanks are brushed 

daily. Initially the juveniles are fed Artemia in the evening and artificial diets are 

presented ad libitum all day long.  The tanks are treated with formalin every three 

weeks and mortalities are recorded daily.  Average weight in each tank is measured 

and recorded every 2 weeks from 1g.  At 2g the juveniles are well established and 

they are graded to prevent problems of cannibalism. Growth rate at this stage is 

significantly influenced by temperature and photoperiod (Jonassen et al., 1999; 

Jonassen et al., 2000a).  Optimum conditions were found to be water temperature of 

between 12 oC and 15oC under continuous light. 

1.2.2.7 Grading & Nursery 

Fish are graded at 1500-2000 degree days post hatch. The fish in all tanks are 

standardised according to four grades: Large, Medium, Small, Runt.  Pigmentation 

and metamorphosis are recorded.  At 5g, approximately 5 months old, the fish are 
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graded once again and at 100-150 g they are ready to be dispatched to growout 

systems.  

1.2.2.8 Growout 

The on growing stage of production is usually done by salmon producers who wish to 

diversify their production.  Once weaned, the halibut is a robust animal and the 

growout phase is done in either land-based tanks (Adoff et al., 1993) or in sea cages 

(Martinez Cordero et al., 1994).  Difficulties with cage design are often encountered 

because of the bottom dwelling habit of the fish and mortalities resulting from 

excessive current speeds, high water temperatures and sunburn are common 

(Bromage et al., 2000; Brown, 2002).  Surface cages are the most commonly used and 

they are constructed from a variety of materials.  Cages are generally 3-7 m deep and 

net bases are fabricated from 6–15mm netting.  Predator netting is essential and 

problems associated with fat cell necrosis following sunburn are avoided by the use of 

shade netting (Brown, 2002).  In both land-based and sea cage ongrowing systems 

shelving is used to increase the available substrate area to enhance the carrying 

capacity of facilities.   

In the ongrowing facilities halibut exhibit good growth in temperate waters and mean 

growth rates of 3.2 Kg/yr and 1.4 Kg/yr have been reported for females and males 

respectively (Björnsson, 1995).  As observed in the wild by Jákupsstovu and Haug 

(1988) and Haug and Tjemsland (1986), males also tend to grow slower than females 

in captivity.   They mature at a smaller size and earlier age. Björnsson (1995) 

observed that males matured at an average weight on 3.2 Kg while females matured at 

12.7 Kg. However, there tended to be variation in the age at which males matured.  

Growth rate was seasonally dependent and the fish grew slower between the months 
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of December and March (Haug et al., 1989). This was thought to be as a result of 

photostimulation.   

From the industry perspective, eliminating the effect of early sexual maturity in males 

by the production of all female stocks would undoubtedly have significant economic 

benefits.  Triploidy has been successfully induced in halibut using temperature cold 

shocks (Holmefjord and Refstie, 1997) and pressure shocks (Brown, 1998).  Hendry 

et al. (2003) reported the successful feminisation of males using sex steroids.  Though 

it is questionable whether such fish would be suitable for commercial culture in the 

European Union due to legislation, it allows the investigation into the possibilities of 

creating “neomales” (hormonally masculinised females) for the production of all-

female offspring for commercial ongrowing.  The use of photoperiod in order to 

control sexual maturation in male halibut is well documented (Björnsson et al., 1998; 

Norberg et al., 2001).  However the effects of photoperiod in delaying maturity were 

not conclusive. 
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1.3 Closing the production cycle and broodstock 
replacement (selective breeding) 

Despite the strong interest and significant investment in research the growth of the 

Atlantic halibut industry has been slow.  Survival through the egg and yolk-sac 

incubation periods and the times to first feeding and metamorphosis up to weaning 

has been poor, unpredictable and disappointing. Historically survival rates have been 

0.5-2% from egg incubation to weaning (D. Patterson pers comm).  Consequently 

there has been only a limited growout of the fish and therefore small quantities of 

farmed product have reached the market.  Commercially the high costs of running a 

hatchery that requires strict environmental controls and intensive labour increases the 

investment risk and the initial enthusiasm and sharing of experience has been 

tempered by the need to recoup investments. Notwithstanding, there is an urgent need 

within the industry to close the production cycle (Figure 1.2) and identify individuals 

from within the first generation farmed population to replace the ageing wild caught 

broodstock. 

1.3.1 Selective Breeding and Aquaculture 

A breeding program is often considered after other problems associated with 

production have been solved.  On the contrary, Shultz (1986) argues that “Genetics 

begins at the beginning”. This is because success in any aquaculture enterprise 

depends on organisms genetically suited for the production systems.  Moreover in any 

production system some genotypes will make success come easy while others will 

make the job difficult if not impossible.  

 In agricultural and livestock production systems the infrastructure exists, and is 

utilized, for the farmer to replace his parental generation.  This is done frequently and 

efficiently to maintain and often improve average yields.  This replacement with 
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better performing parents was made possible by the application of principles of 

animal breeding. The application of animal breeding theory to the genetic 

improvement of breeds has been the primary method for increasing production in 

farmed populations, consequently agriculture productivity of mammals and birds is 

often at least 3-5 times higher than that of their wild progenitors (Bentsen and Gjerde, 

1994; Knibb, 2000). 

Until recently selective breeding has rarely been practiced in aquaculture and 

Gjedrem (1997) estimated that only about 2% of the world fish and shellfish stocks 

are genetically improved.   This contrasts immensely to animal production where the 

world supply of animal protein is mostly dependent on the genetically enhanced 

farmed species.  Most aquaculture production relies completely on wild broodstock, 

and the majority of the genetic material used in fish farming has not been definitely 

separated from the wild populations to form specialised domesticated breeds, e.g. 

several marine populations are refreshed by introducing wild spawners (Bentsen, 

1990; Bentsen and Gjerde, 1994; Gjedrem, 2000).  

This slow application of selective breeding mirrors the general trend in the 

development of aquaculture as a science in that it was or rather has been limited by 

technology and an understanding of the biology of the species of interest.  The 

genotype-phenotype relationships in fish are different from those of other vertebrates 

and the fact that fish live in water makes it difficult to observe them and to obtain 

estimates of the basic genetic parameters needed for planning breeding schemes 

(Allendorf et al., 1987). In order to develop breeding programmes the reproductive 

biology of the species must be understood and their production cycles closed. The 

inability to control mating and reproduction were identified as significant hindrances 
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to the development of breeding programmes in aquaculture (Bentsen and Gjerde, 

1994; Bentsen and Olesen, 2002). Furthermore breeders were faced with the problem 

of choice.  Compared with other vertebrates breeders were presented with a very wide 

range of inter and intra specific variation from which to select.  This contrasts to 

livestock production where many of the progenitors of chickens, cattle and pigs no 

longer existed at the onset of selective breeding as a significant science within the 

field of agriculture. Finally early breeding experiments showed a lack of, or variable, 

selection response and formed a school of thought that there was little or no additive 

genetic variance in fish (Gjedrem, 1998). 

1.3.2 Genetic Improvement 

Genetic improvement is the process of selecting animals of higher genetic merit than 

average, to be the parents of the next generation, such that the average genetic merit 

of their progeny will be higher than the average of the parental generation (Cameron, 

1997). The process of genetic improvement begins with a breeding goal.  This reflects 

the ultimate aim of the breeding programme and concerns the decision of which 

trait(s) to select for or improve the selection objective.  Once the selection objectives 

have been defined the second step is to evaluate the available breeding candidates for 

genetic merit.    

The best measurement(s) on the animal that reflects the trait(s) of interest, the 

selection criteria, are determined.  In animal production one of the most important 

selection objectives is improved growth rate. The selection criterion is often live 

weight at a certain age.  In beef production for example birth weight and 200-day 

weight are measured and the growth rate is then calculated. Often it is not possible to 

measure desired traits directly on the selection candidates, for example reproductive 
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performance in a young animal.  Selection must therefore be made on the basis of 

either information from relatives or from correlated measurements that can be made 

on the live animal.  The next step is to develop a system of testing the candidates in 

order to determine which individuals from within the population perform significantly 

better than average.  The selection regimes, the set of conditions under which animal 

are tested and how they are tested in a particular programme are then fashioned to suit 

the selection criteria.  Having obtained measurements on the animals this information 

is used to predict their genetic merit or their breeding values.  The breeding value of 

an animal is a measure of its genetic superiority or inferiority relative to the 

population to which it belongs (Gall, 1990). It cannot be measured directly but it is 

predicted from the measurements made on the animal and or that of its relatives. 

The whole focus of a breeding programme is to identify animals with high genetic 

merit that can be used to produce the next generation; the processes outlined above 

are usually conducted within the nucleus of a breeding company.  The final stage of a 

breeding programme is to disseminate the genetic material of superior animals to the 

farmer, because improvement is only worthwhile if it is of benefit to the producer and 

the consumer.  Depending on the species this is usually done through 2-4 tiers of a 

pyramid of multipliers, where the genetic material is amplified to meet the numbers 

required by the producers. 

Selective breeding in aquaculture is a relatively new practice; most breeders within 

the field were trained in agriculture and resisting the temptation to reinvent the wheel 

based their programmes on traditional poultry and pig breeding schemes. The first 

breeding programmes were established in Norway for salmon and trout in 1971 
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(Refstie, 1990) and they formed the template on which subsequent programmes were 

fashioned.   

Fish and shellfish present geneticists with several advantages over other livestock 

species (chickens, pigs and cattle), mainly due to their reproductive biology.  Firstly 

compared to terrestrial animals they are highly fecund.   Even tilapias (Oreochromis 

spp.) that are infamous in aquaculture for having low fecundity (Little et al., 1993) 

can produce up to 2,400 eggs in a single spawning (Campos-Mendoza et al., 2004).  

Secondly, fertilisation is external and in many species it presents the possibility to 

obtain a wide variety of family group designs.  A large number of maternal and/or 

paternal half sib groups may be produced in hierarchical or factorial designs by 

stripping and collecting eggs and milt (Bentsen and Gjerde, 1994; Gjerde and Rye 

1998). To the animal breeder, the advantage that aquatic organisms possess over 

farmed terrestrial animals is demonstrated in the calculation of response to selection, 

R. 

R= i h2 σp 

Where: 

i= selection intensity 

h2= heritability 

σp = phenotypic standard deviation 

The response to selection, R, is the difference between the mean performance of the 

progeny and parental generations (Cameron, 1997).  The high fecundity of fish allows 

higher genetic gains to be obtained through high selection intensities (within and 

between families). Also fish typically exhibit higher levels of variation both within 

and between populations than other vertebrates (Allendorf et al., 1987; Gjedrem, 

1998; Kinghorn, 1983; Friars and Bailey, 1990). However, Allendorf et al. (1987) 
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suggest that the larger phenotypic variation observed in fish species is not necessarily 

associated with greater genetic variability but highlights the greater susceptibility of 

fish to environmental factors, a fact that seems obvious because they are 

poikilothermic.  This contrasts with conclusions by Bentsen and Gjerde (1994) who 

argue that the differences are indeed genetic.  Nonetheless, from the equation above, 

provided that the heritability is moderate, higher levels of variation will result in a 

greater response to selection. It should be noted though that because aquatic animals 

are highly fecund only a small number of animals might be used as parents for 

subsequent generations. This could result in a high rate of inbreeding and have 

deleterious effects on the breeding programme, a point that will be discussed later. 

The extremely high fecundity in fish species ensures that the genetic gains achieved in 

the nucleus have an extensive and immediate impact on the industry with minimum 

time and money spent in the dissemination process.  In developed aquaculture 

breeding systems the genetic lag, the number of years of selection that a production 

animal is behind an elite animal in the nucleus of a breeding programme, is often 

comparable with the generation interval.  Large family sizes negate the need to 

amplify the genetic material for the industry and so genetic improvement reaches the 

producers with a minimum delay through zero, or one level of multipliers (Gjerde et 

al., 2002). 

Finally fish species have been proven to be more tolerant than higher animals to 

manipulations of the reproductive and early developmental processes. Viable and 

often fertile hybrids between related species are well known; this increases the range 

of combinations that may be tested for commercial hybrid production (Bakos, 1994).  

Induced triploidy may be applied to prevent sexual maturation.  Gynogenesis (all 
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maternal inheritance) and androgenesis (all paternal inheritance) may be used for 

rapid development of inbred lines.  Phenotypic sex reversal may be induced in both 

sexes to produce monosex offspring, as these are highly relevant in the culture of 

several species that show large sexual differences in productivity (Mair et al., 1995; 

Beardmore et al., 2001). 

1.3.3 Selective Breeding in Aquaculture 

The breeding goals in aquaculture must be defined for each species and each 

population due to the diverse range that exists.  However, historically most fish 

breeding programmes start with improved growth rate, defined by weight at harvest as 

the selection criterion (Refstie, 1990; Knibb, 2000) and then other traits are included 

in subsequent generations.  In general all economically important traits should be 

included in the breeding goal and Gjedrem (2000) outlined the traits most commonly 

selected for. They include feed conversion efficiency, disease resistance, survival, 

flesh quality, fecundity and age at sexual maturation.   

In order for selection to be successful genetic variation must exist within the 

population for the trait(s) of interest.  If there is no genetic variation between animals 

for the traits of interest, there can be no improvement as there will be no genetically 

superior animals to select. 

The phenotypic (physical) differences (variation) observed between individuals are 

due to genetic and environmental influences: 

VP= VG +VE+VGE 

Where: 

VG= Variation due to the action of genes 

VE= Variation due to environmental factors 

VGE= Variation due to the interaction of genetic and environmental factors 
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VP= Total phenotypic variation  

Genetic variation, differences due to the action of genes, is caused by segregation of 

genes and differences in allele frequency.  It can be further divided into three 

components, each due to different types of gene action.  These are additive, 

dominance and epistasis (interaction) 

VG= VA +VD+VI 

Where 

VG= Variation due to the action of genes 

VA= Variation due to the additive effect of genes 

VD= Variation due to the action of dominance 

VI= Variation due to the interaction of genes (epistasis) 

In selective breeding probably the most important component of genotypic variation 

is that due to the additive effect of genes.  This is because most traits of economic 

value, breeding objectives, are inherited quantitatively due to the action of additive 

effects of genes (Falconer and Mackay, 1996).  Consequently a first step for many 

fish selection projects is to estimate heritabilities for economic traits (Knibb, 2000). 

The heritability (h2) of a trait is the proportion of the total phenotypic variation of that 

trait among individuals in a population attributable to the additive effect of genes. It 

provides an estimate of the degree to which differences between animals are repeated 

in their progeny and it tells us to what extent the differences we observe in animal 

performance are due to genetics (Falconer and Mackay, 1996).  Some estimates of 

heritabilities of economically important traits are given in Table 1.1 below.   

In their reviews of the literature, Toro and López-Fanjul (1998) and Gjedrem (2000) 

concluded that most heritability estimates for body weight were intermediate (0.2-

0.3).   These estimates are similar to those established in traditional farmed terrestrial 
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species and therefore the prospects for improving productivity in aquaculture by 

selective improvement are very good.  Disease resistance when measured by 

challenge tests also showed high heritability, however, estimates for survival were 

low.  Feed conversion efficiency is a difficult and expensive trait to measure, thus 

with the present technology it is recommended that the trait should not be measured in 

a breeding programme (Gjerde et al., 2002). 
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Table 1.1 Heritability estimates of some economically important traits in aquaculture. 

Simm (1998) outlined the three main strategies that have been used for the genetic 

improvement of livestock. These are: 

a) Selection between strains: substituting one strain for another that is recognised to 

have a better performance under local conditions. 

b) Selection within strains: choosing better parents within a particular strain to 

improve performance. 

c) Crossbreeding: mating parents of two or more complementary strains or species 

together that will give a lift in performance through hybrid vigour. 

In aquaculture it is common practice to use a combination of at least two methods for 

genetic improvement. Usually selection between strains precedes either selection 

within strains or crossbreeding.  Due to the amount of variation that exists between 

Species Trait Heritability 
Estimate 

Reference 

Rainbow trout Body weight 0.35±0.30 Henryon et al. (2002)  
Rainbow trout Body length 0.53±0.27 Henryon et al. (2002) 
Rainbow trout Disease resistance 0.13 Henryon et al. (2002) 
Rainbow trout Body weight 0.41 Gjerde and Schaeffer (1989) 
Rainbow trout Flesh colour 0.29 Gjerde and Schaeffer (1989) 
Rainbow trout Spawning time 0.66 Quinton et al. (2002)  
Rainbow trout Carcass yield 0.50 Chevassus et al. (2002) 
Atlantic salmon Body weight 0.22-0.34 Rye and Mao (1998) 
Atlantic salmon Body weight 0.24 Gjerde et al. (1994) 
Atlantic salmon Growth rate 0.04-0.26 Gjerde et al. (1994) 
Atlantic salmon  Sexual maturity 0.34 Gjerde et al. (1994) 
Coho salmon Alevin weight 0.52-0.80 Martínez et al. (1999)  
Marron Growth rate 0.35 Henryon et al. (1999) 
Marron Survival (eggs) 0.02 Henryon at al. (1999) 
White shrimp Harvest weight 0.70 Argue et al. (2002) 
Tilapia Body weight 0.55 Bolivar and Newkirk (2002) 
Catfish Body weight 0.27-0.62 Bondari (1986) 
Turbot Body weight 0.70 Gjerde et al. (1997) 
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captive and wild strains for many species, all breeding programmes should start with 

the collection, comparison and selection of the best genetic material available 

(Refstie, 1990; Dunham and Liu, 2003).  Choosing the best strains at the start of a 

breeding programme could equal the genetic gains made by years of within-strain 

selection using inferior strains (Kinghorn, 1983; Knibb, 2000).  The Norwegian 

national salmon breeding programme began with the testing of 40 different strains 

(Gjøen and Bentsen, 1997).  The GIFT (genetically improved farmed tilapia) project 

started with eight different strains of tilapia and comparison tests showed that some 

wild stocks performed better than farmed stocks in culture (Eknath et al., 1993). The 

choice of multiple lines at the start of a breeding programme not only allows the 

testing of various strains but also develops the platform for a founding population 

with a broad genetic base, the base population.  If this base population is made up of 

different strains as seen in the establishment of the GIFT tilapia it is referred to as a 

synthetic population. 

1.3.3.1 Selection within strains 

When selecting within strains the aim is to increase the frequencies of the favourable 

genes controlling the desired trait(s).  The choice of animals to breed from may be 

based solely on their appearance or on a subjective assessment of their own, or their 

relatives’ performance (Simm, 1998).  Methods used for selection depend on several 

factors based on the nature of the trait(s).  The heritability of the trait(s), whether the 

trait is normally distributed or binary and if records can be obtained on live 

individuals are considered to be some of the most important factors.  Due to the high 

fecundity in aquaculture species the methods used are individual selection (mass 

selection), family selection or a combination of the two (combined selection) (Gjerde 

and Rye, 1998).  When the heritability of the trait is approximately 0.5 both family 
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and individual selection are equally efficient.  When the heritability is lower, family 

selection is more efficient and when it is higher individual selection is a more efficient 

method of selection.  For binary traits such as age at sexual maturity and survival, 

family selection should be chosen (Gjedrem, 2000). 

The most common system in aquaculture is mass selection, where breeding stocks are 

chosen on the basis of individual performance (Toro and López-Fanjul, 1998; 

Lymbery, 2000).  This method is widely used, probably because it is simple to apply 

and has the advantage that individuals reared from different families can be mixed in 

the same environment just after fertilisation.   It is however limited in that it can only 

be applied for traits that can be recorded on live breeding candidates. This method is 

thus difficult to practice for carcass quality traits and will also be inefficient for binary 

traits like age at sexual maturity and survival. It is of paramount importance when 

applying mass selection that the environmental influences are kept the same for all 

individuals that are being compared at any stage of the life cycle.  To obtain the most 

equal environmental conditions possible and prevent bias, all individuals should be 

hatched on the same day or within a few days of each other and thereafter reared 

under identical conditions.  Individual selection requires substantial precautions in 

order to avoid inbreeding, which are often not taken or have been uncontrollable until 

recently. 

When traits such as carcass quality that cannot be measured on a live animal are 

included in the breeding objective, family selection may be successfully applied using 

information from relatives.  Selection is then made either within-families, between-

families or a combination of the two.  Family identification must, however, be 

maintained either by tagging or stocking in separate units.  The emphasis on 
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developing family selection also reflects concerns over inbreeding that may arise 

through mass selection (Lymbery, 2000).   

Within-family selection is simply individual selection applied within family groups, 

resulting in each family contributing the best individual(s) from that group.  Between-

family selection on the other hand is the method in which family groups are ranked 

according to the mean performance of each family and whole families are rejected or 

selected as units. 

Between-family selection is efficient because random environmental effects that 

affect individuals will tend to cancel each other out when the family mean is 

calculated.  It is especially important when environmental deviations constitute a large 

part of the phenotypic variance i.e. when the heritability is low (Gjerde, 1993).  

Because the selection is among whole families, the selection differential is a function 

of the differences among families, not differences among individuals.  Therefore to 

obtain an acceptable rate of genetic gain and to keep inbreeding low the number of 

family groups tested must be high (>100) (Gjerde and Rye, 1998).  It should be noted 

however that environmental variation common to members of the same family can 

mask the true genetic potential and impair the efficiency of family selection.  If 

common environmental effects are large they can conceal the true genetic differences 

between families and prevent the accurate ranking of the families according to their 

genetic values.  As such the environment for all family groups should be standardised 

as much as possible in order to reduce the common environmental component to a 

minimum. 

A combination of between- and within-family selection will almost always provide 

the most efficient method of genetic improvement, however it requires individual 
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identification and pedigree determination (Gjedrem, 1983; Gall, 1990).  By 

combining between- family and within-family selection, the additive genetic variance 

both between and within families will be utilised in an optimal way.  Families may be 

ranked on a continuous scale even for discontinuous traits like mortality and sex-

limited traits like fecundity (Bentsen and Gjerde, 1994). 

1.3.3.2 Crossbreeding 

The objective in crossbreeding is to exploit non-additive genetic variance (VD).  The 

resulting hybrid vigour is produced by the interaction of alleles at each locus and 

therefore varies with genotype and is often unpredictable (Clayton and Price, 1994).  

It requires the maintenance of pure species lines and the degree of differentiation 

between lines to produce measurable hybrid vigour appears to be important 

(Beaumont, 1994).  Very closely related strains may produce none while more 

distantly related groups may suffer from outbreeding depression, probably brought 

about by the break-up of co-adapted gene complexes or other changes in gene 

architecture (Gharrett et al., 1999).  Crossbreeding should be considered if non-

additive genetic variance exists for traits included in the breeding goal (Refstie, 1990).  

The hybrid performance should not only exceed the best parent strain, but also all 

other available purebred stocks. It is however, considered to be a short-term measure 

as it does not produce any additive genetic improvement over time and there are 

conflicting data on the importance of heterosis effects in aquaculture species e.g. the 

common carp (Dunham et al., 1990; Eknath et al., 1998; Knibb, 2000).  It has been 

suggested that it should be seen as a supplement to a programme for additive genetic 

improvement and be used at the start of a within strain scheme in order to make new 

synthetic populations (Gjedrem, 1983; Gjerde, 1993). 
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1.3.3.3 Breeding programmes and selection experiments in aquaculture 

The quintessential example of a selective breeding programme in the literature will 

probably be the Norwegian Atlantic salmon breeding scheme.  A summary of this 

programme described by Gjøen and Bentsen (1997) is summarised below. 

The Norwegian Atlantic salmon breeding programme utilises all the methods of 

selection outlined above and has been running now of about 30 years.  A base 

population was established by testing strains from 40 different rivers (between strain 

selection).   Due to the fact that little heterosis was found between the strains, pure 

breeding was chosen as the breeding method for the scheme.  However, synthetic 

lines were made by crossing some of the strains (crossbreeding) in order to avoid 

inbreeding and secure a broad genetic base.    Family selection is used for all traits in 

the breeding goal, while individual selection is used within families for growth rate 

(combined selection).  The breeding goal started with growth rate and expanded to 

include other traits as stated above.  Their research facility allows the testing of 200 

families each year. A hierarchical mating system is used (one male is mated to two or 

three females) and full sib families are kept separate until they are tagged at about 

20g.  Electronic PIT (Passive Integrated Transponder) tags are used to identify each 

fish and the 120 best ranked full sib groups are mixed together to avoid common 

environmental effects influencing selection.  One hundred fish from each full sib 

group are evenly distributed among three or four private farms to allow testing under 

ordinary conditions. Growth rate is recorded as body weight at slaughter.  Family 

averages of frequency of early sexual maturation after one year in sea cages and 

survival rates after challenge tests to infectious salmon anaemia (ISA) and 

Furunculosis are also recorded.  Flesh quality is measured by computerised 

tomography for fat content and distribution.  A Minolta Chroma Meter CR-300 is 
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used to measure flesh colour.  When all records have been collected, a selection index 

is used to calculate breeding values and the families are ranked according to their 

breeding value.  In the index, each trait is weighted by its variance, heritability and 

economic value.  Males are selected from the 10-15 highest ranking families and 

females from the top 15-20 families. When the fourth generation of selected fish were 

compared with their wild progenitors they grew 77% faster, giving a mean genetic 

gain per generation of greater than 15%.  For reduced frequency of early maturation 

the improvement was estimated at 22% per generation (Gjedrem, 2000).  Estimates 

from 1994 indicated that flesh pigmentation was improved at approximately 8-10% 

per generation (Gjøen and Bentsen, 1997).  In the trout enterprise of the Norwegian 

National Breeding programme, Gjerde (1986) reported a 26% improvement in growth 

rate after only 2 generations of selection. 

A similar breeding programme was established in Canada for Atlantic salmon in 1984 

using a synthetic base population from crosses between fish from seven different 

rivers (Friars et al., 1990).  O’Flynn et al. (1999) reported significant gains for 

survival after a BKD challenge test and growth rate in that population.  The mean 

harvest weight of the selected fish was 0.88 Kg higher than the control line after 2 

generations of selection, a gain of 0.83 standard deviations. Other salmonid breeding 

programmes include the coho salmon selective breeding program developed in 1977 

by the University of Washington (Hershberger et al., 1990). Hershberger at al. (1990) 

and Myers et al. (2001) described how they achieved a 60% improvement in weight 

after 4 generations of selection using a combined selection technique. The 

“PROSPER” (a French acronym for Optimised Individual Selection Procedure with 

Repeated Challenges) breeding programme was developed in France to improve 

growth rate in Brown trout (Vandeputte et al., 2002; Chevassus et al., 2003). Using 
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mass selection with a large population they were able to obtain a mean response to 

weight of 6.3% per generation in one of their selected lines.   

Selective breeding has been successfully practiced in the catfish industry in the USA.  

The catfish genetic improvement program at Auburn University in Alabama uses an 

integrated method of genomics, hybridisation and selective breeding to develop 

superior lines.  Mass selection for body weight has resulted in up to a 55% increase 

after four generations (Dunham and Liu 2003).  The interspecific hybrid between the 

female channel catfish and the male blue catfish is known to show improved growth 

rate, increased tolerance to low oxygen levels and survival.  However, there appears 

to be a genotype-environmental interaction with rearing conditions (Dunham et al., 

1990). 

Despite early reports that mass selection is ineffective for the improvement of growth 

in the tilapia (Hulata et al., 1986; Huang and Liao, 1990) and evidence of stock 

genetic deterioration (Eknath et al., 1993) the GIFT project was established in 1988.  

Eknath et al. (1998) described the structure of the breeding programme, modelled on 

the Norwegian salmon programme.  Eight different strains from different countries 

were used to establish a base population.  64 hybrid and pure strain combinations 

were made and the top performing 25 groups were selected.  Using a combined 

selection technique Bentsen et al. (2003) reported an estimated 88% accumulated 

improvement relative to the base population, about 12-17% per year (Eknath et al., 

1998).  The response to selection in the GIFT project were similar to those obtained 

by Bolivar and Newkirk (2002) who used a within-family selection method while 

selecting for growth rate in Nile tilapia. The results of some other selection 
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experiments and selection responses in breeding programmes are shown in Table1.2 

below. 

Table 1.2 Results of some selection experiments and selection responses in  aquaculture 
breeding programmes. 

Species Trait Gain (%) No. 
Generations 

Selection 
method 

Reference 

White Shrimp Growth rate 21 one Combined Argue et al. 
(2002)  

White Shrimp Disease 
resistance 

18.4 one Combined Argue et al. 
(2002) 

Penaid Shrimp Growth rate 21 five Mass Goyard et al. 
(2002) 

Red Sea Bream Body weight 66.46 eight Mass Murata et al. 
(1996) 

Rainbow trout Body weight 27 two Combined Hörstgen-
Schwark 
(1993) 

Channel catfish Body weight 29 three Mass Rezk et al. 
(2003) 

Common carp Growth rate 25 one Crossbreeding Bakos (1994) 

1.3.3.4 Inbreeding in aquaculture 

The long term selection goal for any breeding programme should be sustainable 

genetic gain for the traits in the breeding goal (Gjøen and Gjerde, 1998).  In order for 

this to be achieved programmes will have to be managed so that the additive genetic 

variation is maintained in every generation.  Avoidance of inbreeding and the use of 

breeding schemes to avoid inbreeding are critical for the maintenance of genetic 

variance. 

Inbreeding means the mating of individuals that are related to each other by ancestry 

(Falconer and Mackay, 1996).  It results in a reduction in the amount of genetic 

variation and therefore reduces the response to selection. Even when steps are taken to 

avoid it some inbreeding in closed populations is inevitable (Kincaid, 1983).  In 

closed populations, such as those in most aquaculture production systems, the 
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probability that inbreeding will occur depends on the size of the population and when 

selection is practiced it is increased.  This is because related animals have genes in 

common and their performance or breeding values will be more alike (Simm, 1998). 

Any fish production system that results in a limited number of fish being available to 

produce progeny for broodstock in the next generation can lead to a constriction in the 

gene pool and thus inbreeding. Kincaid (1983) identified several reasons why this 

should occur in fish production systems.  They include selection of superior 

performing individuals, use of fish from a small segment of the spawning season and 

the use of a small number of broodstock because they provide adequate numbers of 

eggs to meet management requirements. 

Aquaculture species are highly fecund and so extremely high selection intensities may 

be applied in breeding programmes, however this will result in only a few animals 

being selected as parents for the next generation.  For production and commercial 

purposes this does not pose the problem of few progeny that other livestock 

production systems have, as only a few paired matings are sufficient to reproduce a 

population.  But this will inevitably result in high rates of inbreeding.  The rate of 

inbreeding will not only be determined by the number of spawners but also by the 

relationships between them. 

Inbreeding is measured by the inbreeding coefficient, F.  The inbreeding coefficient is 

the probability that two alleles at any locus are identical by descent and values range 

from 0-1.  Inbreeding coefficients express the amount of inbreeding that has 

accumulated from a specific point in the ancestry of a population.  Within a specific 

population the rate of inbreeding is a function of the base population and the 

population sizes of subsequent generations (Falconer and Mackay, 1996). 
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Inbreeding not only results in a loss of genetic variation but generally also in a 

reduction in performance.  This decline in performance is known as inbreeding 

depression.  Inbreeding depression is measured as the average performance difference 

between an inbred population and the base population (Kincaid, 1983).  Traits that 

frequently exhibit inbreeding depression are quantitative traits associated with fitness 

(reproductive capacity, disease resistance and survival) and physiological efficiency 

(fry deformities and growth rate).  The effects can be explained by the phenotypic 

expression of increased numbers of masked recessive alleles and reduced frequency 

of heterozygous loci expressing dominance.  Reproductive traits such as egg size and 

hatchability are doubly sensitive to inbreeding depression.  This is because of the 

negative influences, not only of the inbred genotype of the individual, but also that of 

its mother as this affects the embryonic developmental stages. 

Estimates of the deleterious effects of inbreeding in aquaculture species in the 

literature are mostly limited to salmonids and often based on a small number of 

families (Toro and López-Fanjul, 1998; Pante et al., 2001).  Inbreeding is a particular 

consideration in rainbow trout due to the length of time they have been domesticated 

(Lutz, 2002).  Gjerde et al. (1983) estimated reduced performance of up to 9% on 

survival of fry with an inbreeding coefficient of 0.25 equivalent to a full-sib mating.  

Over three successive generations this accumulated to a reduced survival of over 

18%.  Su et al. (1996a) found that for a 10% increase in inbreeding coefficient, 

spawning age of females was delayed by 0.53% and egg number decreased by 6.10%.  

Pante et al. (2001) studied the effect of inbreeding on harvest weight in rainbow trout 

and estimated that for a 10% increase in inbreeding coefficient a reduction of between 

1% and 5% resulted.   In Atlantic salmon, Rye and Mao (1998) reported a 0.6%-2.3% 

reduction in growth per 10% increase in inbreeding coefficients.  Inbreeding 
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depression has also been documented for growth and reproduction traits in the coho 

salmon (Myers et al., 2001; Gallardo et al., 2004) 

Inbreeding depression can reduce production considerably and the lack of response to 

selection in experiments with tilapia by Hulata et al. (1986) has been explained by the 

depletion of genetic variation due to inbreeding (Bentsen, 1990; Gjedrem, 1998).  

Eknath and Doyle (1990) estimated the rate of inbreeding in 18 polyculture systems in 

Indian carp and found that inbreeding increased at rates of between 2-17% per year.  

It should be stressed that steps must be taken to control inbreeding because without 

formal genetic programmes local industries attempting ‘in house’ selection with few 

broodstock inevitably result in severe inbreeding (Knibb, 2000). Kincaid (1983) 

outlined three approaches to avoid inbreeding: the use of large random mating 

populations, the use of systemic line crossing schemes to eliminate the mating of 

close relatives and strain crossing to produce hybrid populations. 

When starting a breeding programme establishing a wide genetic base cannot be 

overemphasised.  Synthetic populations have been used to secure genetic variability in 

several breeding schemes as outlined above but maintaining this variation has been 

the focus of fish breeders in recent years.  Their work has been aimed at either 

reducing the rates of inbreeding while keeping genetic gains at the same level, or by 

increasing selection response under a restriction on inbreeding.  Simulation studies by 

Bentsen and Olesen (2002) and Gjerde et al. (1996) examined optimum mating 

designs in mass selection schemes. Bentsen and Olesen (2002) found that to keep 

inbreeding rates low, at about 1% per generation, a minimum of 50 pairs of breeders 

should be selected.  The number of progeny tested should also be restricted and 

should be standardised to not less than 30-50 progeny per pair. Testing hierarchical 



Chapter 1 

 43

designs, where each male was mated to more than one female, Gjerde et al. (1996) 

found that in order to keep the rate of inbreeding at 1% per generation the number of 

matings were 50-100 at a ratio of 1 male: 2 females and when each male was mated to 

10 females the numbers rose to 150-250 matings.  Results by Bentsen and Olesen 

(2002) are in agreement with recommendations by Kincaid (1983), who stated that the 

minimum number of breeding adults for maintaining a random mating broodstock 

should be at least 50 pairs. Generally, if the rate of inbreeding is to be kept constant, 

the number of individuals that may be selected per family will be reduced as the 

number of families in the test decreases.  Consequently the selection intensity 

between families will be reduced but the intensity within families will increase 

(Bentsen and Gjerde, 1994). 

In order to prevent accumulation of inbreeding the number of selected individuals per 

sib family should be restricted and pooling a restricted number of individuals from 

each family shortly after or at fertilisation can resolve this. The main requirement of 

this strategy is that all breeding candidates are individually tagged or branded.  In fish 

external tags or brands may only be applied after a certain growth period because of 

the small size of fry at hatching.  Up until recently one of the biggest problems with 

applying efficient selective breeding programmes for fish is that newly born 

individuals are too small to be tagged physically and so family groups need to be 

reared separately until individuals are large enough to be tagged (Gjerde and Rye, 

1998; Villanueva et al., 2002).  This method of genetic improvement is not only 

costly; it can induce environmental effects common to members of the same family 

(Doyle and Herbinger, 1994). 
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1.3.3.5 Identification in aquaculture breeding schemes 

The ability to uniquely identify individuals or families is key to any selective breeding 

programme.  In aquaculture this appears to be more important due to problems 

associated with inbreeding caused by high fecundity.  Emulating livestock breeding 

schemes where all individuals purposed for selection are tagged at, or shortly after, 

birth using a variety of external tags probably caused the limitations imposed on the 

aquaculture breeding schemes.  Aquaculture breeding programmes presents a 

distinctive opportunity to merge various disciplines within the field of genetics: 

molecular genetics, population genetics and quantitative genetics. 

Molecular genetics approaches were first applied to fisheries, and the techniques 

developed over the years were then applied to aquaculture.  In breeding programme 

applications the interest is in their use as markers or tags.  The problem of individual 

identification of fish can be solved by using nuclear DNA (nDNA) polymorphic 

markers.   

DNA profiling has been used as a tool for reconstructing the pedigree of communally 

reared aquaculture populations (Herbinger et al., 1995). This not only allows the 

rearing of different families in the same tank from hatching but also provides the 

necessary pedigree information required to avoid inbreeding.   A wide range of 

genetic markers is available for studying genetic variation, mitochondrial DNA and 

nuclear DNA, which can either be studied directly or indirectly through the use of 

proteins (allozymes).  At present it can be argued that the most useful markers to 

assess genetic parentage are microsatellite DNA loci (O'Connell and Wright, 1997).  

Microsatellites are a class of co-dominant DNA markers, which are inherited in a 

Mendelian fashion.  They are widely dispersed throughout the genome and each locus 

is characterised by a known sequence (DeWoody and Avise, 2000). These sequences 
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consist of both unique DNA and repetitive DNA motifs.  The repetitive elements 

consist of tandem repeats of two (AT)n or four (GATTA)n nucleotides where n varies 

between individuals  ranging from 5 to 50 (DeWoody and Avis, 2000).The variation 

in the length of the repetitive section (polymorphisms) can be amplified by 

Polymerase Chain Reaction (PCR), using primers in the unique flanking sequences, 

and the individual sizes (alleles) scored exactly on high resolution sequencing gels.   

 Molecular markers provide the tools to measure variation directly at the DNA level. 

This allows the impact of selection on the genetic diversity of a farmed population to 

be monitored and thus enables better tools for managing the breeding population.  

1.3.3.6 Selective breeding and the Atlantic halibut 

A selective breeding programme is structured around the existing production system 

of the animals.  The production system of the halibut outlined in section 1.3 above 

brings to light the fact that individual rearing of families with this species is very 

difficult. 

Egg volumes are variable and the cost of maintaining 250 litre egg incubators for a 

single batch of eggs of less that 1 litre cannot be justified.  Therefore several batches 

(families) are mixed repeatedly as they progress through the system and by the time a 

batch of fertilised eggs advance to the weaning stage of production they would have 

been combined with at least seven other batches.  Thus the halibut production system 

as it stands resembles a mass spawning structure of the cod or sea bream, as far as 

breeding is concerned, especially when the repeat egg batches of females are 

considered.  Due to the fact that the cost of producing halibut juveniles is so high it 

leaves very little margin for error so the costs of building new hatchery facilities with 
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smaller egg incubators that facilitate separate family tanks cannot be justified, at least 

until problems with juvenile production are solved. 

In agreement with the statement by Shultz (1986) that genetics begins at the 

beginning, the application of genetics to the culture of the halibut is imminent.  This is 

because the establishment of breeding stocks was difficult due to the expense 

involved in capturing individuals, the low abundance of mature individuals in the wild 

and the time taken for acclimation. Therefore only a small number of wild individuals 

formed the base population within the U.K industry.  Wild fish do not thrive in 

captivity as they are not accustomed to artificial food and high densities in narrow 

enclosures (Gjedrem, 1990), therefore only a proportion of the existing broodstock 

will succeed in breeding and be represented in the next generation.  This 

domestication selection effect has been demonstrated in salmon culture (Cross and 

King, 1983; Norris et al., 1999; Koljonen et al., 2002).  Also the generation interval in 

the halibut is long, 5 years, therefore early problems of inbreeding, if they exist, need 

to be identified and dealt with as soon as possible. 

1.3.4 Aims of the Study 

The overall purpose of this PhD study is to develop ways to manage this rare and 

valuable genetic resource.  In order to prevent the deleterious effects of inbreeding 

that comes with the mating of closely related individuals within the F1 generation 

broodstock population, the parentage of individuals identified as potential broodstock 

needs to be known.  This study focuses on the use of microsatellite markers for 

pedigree analysis as a tool to identify selected individuals within a population in the 

establishment of a sustainable selective breeding programme for the Atlantic halibut 

industry in the UK. 
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The structure of the base population on the farm will be characterised and the level of 

genetic variation after one generation of hatchery rearing will be determined (in 

Chapter 2). 

The parentage assignment of the previously selected F1 potential replacement 

broodstock from the 1995 and 1998 year class will be the focus of Chapter 3. 

Some of the problems associated with deformities in the juvenile stage of production 

have been attributed to poor egg quality (Pittman et al., 1998).  Thus the repeatability 

of reproduction traits will be examined in Chapter 4. 

Growth rate has been identified as the most desirable trait for improvement by 

members of the British Marine Finfish Association (BMFA).  A significant amount of 

variation in growth has been reported by various authors (N Jordan pers comm.) 

however the heritability has yet to be estimated in this species.  The heritability of 

body weight will be investigated in Chapter 5. 

Based on the outcomes of work conducted in Chapters 2 to 5 a breeding programme 

or broodstock management and replacement strategy will be designed. 
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Chapter 2  

Genetic characterisation of the founder 

population and the effect of hatchery 

practises on genetic variability after 

one generation 
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2.1 Introduction 

The primary resource for the success of any animal breeding programme is genetic 

variation.  Consequently the number of individuals and the level of variability 

present in the base population is crucial when establishing a hatchery population.  

This is because, without the introduction of new individuals, the alleles present 

therein, and any subsequent mutations, represent the upper limit of allelic variation 

available for selection in subsequent generations (Allendorf and Ryman, 1987). A 

genetic improvement strategy aimed at selecting “better” performing individuals 

will inevitably change the genetic composition of the population by reducing its 

genetic variability as “poor” alleles are replaced with “good” ones. Thus the 

conservation, i.e. preservative management of genetic variation, becomes an 

essential component of broodstock management and regular monitoring of hatchery 

stocks is necessary to check that breeding programmes are not leading to 

inappropriately rapid erosion of genetic variability (Ward and Grewe, 1995; 

O’Connell and Wright, 1997).  The high fecundity of many aquaculture species and 

small sizes of offspring at hatching makes genetic identification of 

individuals/families a fundamental requirement for effective genetic management in 

any aquaculture programme.  An important route to achieving this objective, 

particularly where pedigree is difficult, is the analysis of distinct alleles at defined 

loci (Ferguson, 1995). The technology and its effectiveness of accomplishing this 

goal has evolved over the past 50 years. 

2.1.1 Molecular Markers  

 Molecular genetics approaches to the study and management of fish populations 

were first applied to fisheries in the 1950s (Utter, 1991).   For the first time it was 
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possible to look beyond the phenotype in order to discriminate between fish stocks.  

Early studies involved the use of blood group polymorphisms to discriminate 

between different fish populations. However, fish erythrocytes were more fragile 

than those of birds and mammals and difficulties arose in producing and preserving 

discriminating antisera (Utter, 1991). The procedures were labour intensive, 

expensive and results were unreliable because patterns were difficult to interpret and 

the variation identified could not be attributed to any single locus (Utter et al., 1987; 

O’Connell and Wright, 1997). Electrophoretic procedures were then developed 

which permitted the rapid and reliable identification of protein variations reflecting 

simple genetic differences (Utter et al., 1987; Ward and Grewe, 1995; Ferguson et 

al., 1995).   

2.1.1.1 Allozymes 

Allozymes were the first generation of widely used genetic markers used in 

aquaculture.  They are the products of genetic variation at enzyme-encoding loci.  

They arise from heritable, electrophoretically detectable differences in the amino 

acid composition of enzymes that share a common substrate.  In order to identify 

and score allozymes, a piece of tissue is obtained from an organism and is ground 

up with buffer solution to release proteins from the cells.  After centrifugation, these 

proteins present in the supernatant are subject to gel electrophoresis that separates 

the proteins on the basis of charge and size.  This technique is relatively inexpensive 

to perform because reagents are cheap and there are few requirements for 

specialised equipment, making it possible to assay large numbers of samples 

quickly and easily.  Their codominant nature is well suited to population studies 

allowing the estimation of gene frequencies and heterozygosity thus they provide 
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estimators of genetic differentiation and population structure in relation to the 

Hardy-Weinberg concept (Carvalho and Hauser, 1995).  

The use of allozyme markers for describing population structure often assumes that 

they are selectively neutral and that genetic drift is responsible for population 

differentiation.  However, there is evidence that some allozymic differentiation is 

determined by locus-specific selection, arising from forces that may be independent 

of mating patterns and gene flow (Utter, 1991; Carvalho and Hauser, 1995).  The 

selection-neutrality controversy remains unsolved but is has become clear that if 

selection pressures operate they are generally small in magnitude (Ward and Grewe, 

1995)  

Allozyme electrophoresis has certain limitations.  The resolution of this method is 

not always adequate for detecting differences between populations or individuals. 

Many genetic variants are not detected by protein electrophoresis and only proteins 

detectable with histochemical stains can be examined thereby limiting the 

proportion of the genome to only enzymatically active proteins (Park and Moran, 

1995).  In addition only fresh or freshly frozen tissue can be used.  Furthermore, a 

relatively large amount of tissue is sometimes required and many important loci are 

assayed from organs such as the heart or liver and thus may require killing the 

animal (Ferguson et al., 1995; Park and Moran, 1995).   

In aquaculture allozyme electrophoresis has been used to assess the level of genetic 

variation in hatchery stocks (see section 2.2 below) but in recent times its use has 

been limited.  One of the main limitations of allozymes as genetic markers in 

aquaculture is the low level of observed polymorphism. Only a small fraction of 

enzyme loci appear to be polymorphic in many species (Magoulas, 1998), 
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prompting a continued search for markers with greater genetic resolution. Allozyme 

studies provided limited information on how the loci related to each other and thus 

no indication of genomic organisation or metabolic pathways.  In the late 1970s to 

1980s as molecular techniques developed, workers turned to a direct investigation 

of DNA sequence (Ferguson et al., 1995; O’Connell and Wright, 1997).  

2.1.1.2 DNA markers 

Rather than the indirect method of examining gene products, direct assessment of 

DNA variability came about with the isolation of restriction endonucleases that are 

capable of cutting DNA at specific nucleotide sequences (Ward and Grewe, 1995). 

The fragments produced are of variable size and can be separated on electrophoretic 

gels allowing the direct study of DNA sequence variation.  Genetic variation 

identified in this way is called restriction fragment length polymorphism (RFLP).  

With this technology the number of markers available for the genetic study of 

populations increased dramatically.  RFLP markers were very popular because they 

are codominant and easy to score.    The major disadvantages of this technique were 

that it is time consuming and observed polymorphisms were low.   

2.1.1.2.1 Mitochondrial DNA 

When the target molecule is the mitochondrial DNA (mtDNA) rather than nuclear 

genomic DNA the markers are known as “mitochondrial DNA markers”.  The 

mitochondria is a discrete organelle that could be isolated and mtDNA analysis 

became popular for genetic studies, particularly in studies designed to answer 

questions about phylogeny and population structure (Ward and Grewe, 1995; 

Magoulas, 1998; Liu and Cordes, 2004).  MtDNA markers were seen to be more 

powerful for such studies for various reasons not least because mtDNA has a 

mutation rate about an order of magnitude higher than that of nDNA (Dunham, 
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2004).  MtDNA is haploid and has a near exclusive maternal mode of inheritance.  

It therefore has an effective population size approximately only one quarter that of 

nDNA, resulting in greater genetic differentiation due to drift, making it more likely 

to provide population specific markers. MtDNA also exhibits a lack of 

recombination therefore using mtDNA markers individuals can be organised into 

matriarchal lineages even after inbreeding has taken place (Ferguson et al., 1995; 

Ward and Grewe, 1995).  MtDNA analysis was hailed as a more powerful tool than 

allozyme electrophoresis, often revealing genetic differences among populations of 

fish that were homogeneous for isozyme variability (Dunham, 2004; Reilly et al., 

1999), and from a practical perspective analysis could be carried out on fresh, 

frozen or alcohol preserved samples. 

MtDNA marker analyses have made a significant contribution to the management 

of cultured fishes. The technique has been used extensively to investigate stock 

structure and is quite popular among aquaculture geneticists due to their use in the 

identification of broodstocks (Liu and Cordes, 2004). However due to its non-

Mendelian mode of inheritance, mtDNA is usually treated as a single character and 

does not permit the examination of independent loci.  Furthermore, because mtDNA 

is maternally inherited, the phylogenies and population structure derived from 

mtDNA data may not reflect those of the nuclear genome due to gender-based 

migration (Birky et al., 1989: as cited by Liu and Cordes, 2004). 

2.1.1.2.2 Random amplified polymorphic DNA 

In 1990 random amplified polymorphic DNA (RAPD) markers were first developed 

(Welsh and McClelland, 1990: as cited by Liu and Cordes, 2004).  Analysis using 

these markers involves the use of random oligonucleotide primers (8-12 base pairs 
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(bp) long) in a polymerase chain reaction (PCR) to amplify anonymous regions of 

genomic DNA.  Amplified products are then separated by gel electrophoresis and 

scored for the presence or absence of each product indicating changes in the DNA 

sequence of target loci.  RAPD polymorphisms occur as a result of base 

substitutions at the primer binding sites or insertions in the regions between sites 

(Liu and Cordes, 2004).   RAPD markers are easy to develop, economical, quick to 

analyse and are highly polymorphic but these markers have significant drawbacks.  

Even though they are inherited in a Mendelian fashion, they are genetically 

dominant and a single band is produced for homozygotes and heterozygotes alike, 

making scoring difficult.  Also they are subject to low reproducibility due to the low 

annealing temperatures used in the PCR amplification (Liu and Cordes, 2004; 

Dunham, 2004).  Because they are cheap and easy to analyse, RAPDs expanded the 

scope of DNA studies in aquaculture; whilst they are useful in gene mapping studies 

the fact that they are not codominant has severely restricted their use in population 

analyses. 

2.1.1.2.3 Variable number of tandem repeats markers 

Since 1985 attention turned from the analysis of changes in the DNA sequence as a 

result of point mutations to differences in the number of repeated copies of a 

segment of DNA.  Spread throughout the genomes of most eukaryotic organisms 

are regions that contain tandem repeats of specific DNA motifs.  These sequences 

may contain very long (100 to 5000 bp) repeated units termed satellites, short repeat 

units (5 to 100 bp) termed mini satellites or very short repeat units (2 to 4 bp) called 

microsatellites or STR (Beaumont and Hoare, 2003).  Individual alleles at a locus 

differ in the number of tandem repeats of the unit sequence and can be easily 

differentiated by gel electrophoresis according to size; the observed variation in the 
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number of repeats at these loci can be very extensive in populations and provide a 

valuable tool for investigation of population genetic changes.  These markers, 

collectively called VNTRs (variable number of tandem repeats), were initially 

discovered in 1980 (O’Connell and Wright, 1997) however it was not until 1990 

that they were first used as molecular markers in aquaculture.  Following work by 

Jeffreys et al. (1985) on multilocus DNA fingerprinting using minisatellite loci for 

paternity tests in humans, Fields et al. (1989) and Taggart and Ferguson (1990) 

pioneered this technology in aquatic organisms- applied to three salmonid fish 

species. Although multilocus DNA fingerprinting gave complex banding patterns 

unique to each individual difficulties in the interpretation of results instigated a 

move to single locus VNTR markers (reviews by O’Reilly and Wright, 1995).  

Over the past decade it has became apparent however, that the most popular DNA 

Mendelian markers are microsatellites because they are, arguably, the most 

powerful marker type (Jarne and Lagoda, 1996; Liu and Cordes, 2004).   The power 

of a molecular marker for detecting polymorphism in a population and thus their 

usefulness can be measured based on their polymorphic information content (PIC).   

Microsatellites have the highest PIC values of any DNA marker (Liu and Cordes, 

2004). The PIC reflects the fraction of heterozygotes and is dependent on the 

number and frequency of alleles.  Microsatellites differ from minisatellites in size 

and contents of repeat; microsatellite repeat units are simpler and the lengths of the 

loci are much shorter.  They are also much more abundant in the genome, 

particularly in vertebrates (Magoulas, 1998). In fishes microsatellites have been 

estimated to occur as often as once every 10 kb (Wright, 1993).   
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2.1.1.2.4 Microsatellites 

Microsatellites consist of multiple copies of tandemly arranged simple sequence 

repeats that range in size from 2 to 4 base pairs.  However the most common are 

dinucleotide repeats (Jarne and Lagoda, 1996; Schlötterer, 1998).  Each 

microsatellite locus is flanked by a sequence that is assumed to be unique.  If the 

sequences flanking the microsatellite are known, primers can be synthesized 

complementary to these flanking sequences such that the tandem array of the 

microsatellite locus can be amplified by the polymerase chain reaction (PCR) 

(Wright and Bentzen, 1995). Microsatellite markers are ideal molecular markers 

because they are highly polymorphic, codominantly inherited, abundant and evenly 

distributed in genomes (Dunham, 2004).  In addition microsatellite loci are 

relatively short in size ranging from a few to a few hundred repeats; this 

characteristic facilitates rapid genotyping by PCR from small or even degraded 

quantities of DNA, negating the need to sacrifice or biopsy animals.  Furthermore 

specimen samples need not be fresh and can be stored in alcohol, dried or frozen 

which makes the transport of samples much easier. 

Microsatellite polymorphism is based on size differences due to varying numbers of 

repeat units contained by alleles at a given locus.  The length of each allele can be 

accurately determined by electrophoresis.  Slippage during DNA replication is 

believed to be the main mutational process accounting for this change in the length 

of repeat units (Wright, 1993; Schlötterer, 1998).  The high rate of mutation at many 

of these loci leads to extensive allelic variation and high levels of heterozygosity 

making them useful for population genetic analysis, strain and individual 

identification.  The drawbacks with using microsatellites are that a large amount of 

investment and effort is required in designing primers.  Each microsatellite locus 
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has to be identified and its flanking region sequenced before a microsatellite locus 

can be amplified.  This involves constructing genomic libraries, isolating loci by 

screening DNA libraries with repeat motif probes, and sequencing clones that 

hybridise to the probes.  Finally effective PCR primers need to be designed.  For the 

most part microsatellite scoring is generally reproducible and accurate however, it is 

important to note that additional bands, called stutter bands, may be present and 

some alleles may not amplify.  These alleles, termed null alleles, occur if a deletion 

or point mutation in the primer binding site of a specific allele interferes with 

priming.  The presence of null alleles is suspected if a surplus of homozygous 

individuals in observed (Schlötterer, 1998). 

2.1.1.2.5 Single Nucleotide polymorphisms (SNPs) 

Despite the dominance of microsatellites over the past decade, another marker type, 

Single nucleotide polymorphism (SNP), is beginning to gain popularity.  The 

interest in these markers developed from the need for a higher density of genetic 

markers for gene mapping as they are the most abundant polymorphism in any 

organism, occurring approximately 1 every 1000 bases (Dunham, 2004; Hayes and 

Andersen, 2005).  Although sequence differences resulting from base substitutions 

have been characterised for over 25 years, the ability to identify, isolate and 

genotype SNPs rapidly in large quantities has only recently been made possible (Liu 

and Cordes, 2004).   

SNP polymorphisms are caused by point mutations that give rise to different alleles 

containing alternative bases at a given nucleotide position within a locus (Liu and 

Cordes, 2004).  In order for a base position with sequence alternatives in genomic 

DNA to be considered as an SNP, the least frequent allele should have a frequency 
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of 1% or greater (Vignal et al., 2002).  In principle a SNP within a locus can 

produce as many as four alleles, each containing one of the four bases: A, T, G and 

C, however in practice they are usually bi-allelic, comprised of either the two 

purines (A&G) or the two pyrimidines (C&T) (Vignal et al., 2002; Liu and Cordes, 

2004).  SNPs are inherited as co-dominant markers and they can either be in non-

coding regions or in specific genes.  This single base variation can be determined by 

DNA sequencing, primer extension typing, the designing of allele-specific oligo and 

gene-chip technology (Dunham, 2004). 

Due to the fact that a maximum of only two alleles are present with these markers, 

they are not as polymorphic as microsatellites but this drawback is balanced by their 

high abundance.  Furthermore, unlike with microsatellites, allele definition is much 

simpler with SNPs so automation is expected to be less problematic and 

comparisons between laboratories more likely (Vignal et al., 2002).  The cost of 

genotyping SNPs can also be comparatively lower than microsatellites, using high 

throughput technology such as mass arrays for genotyping large numbers of animals 

for large numbers of markers (Vignal et al., 2002).  SNP analysis does however 

have several disadvantages including the need for sequence information, the 

necessity of probes and hybridization, high expense involved with specialised 

equipment and difficult genotyping (Liu and Cordes, 2004; Dunham, 2003). 

2.1.2 Molecular Markers in Fisheries and Aquaculture 

The ability to detect, visualise and quantify DNA level polymorphisms has 

revolutionised the field of aquaculture genetics. By detecting genetic variations at 

the DNA level aquaculture geneticists are able to provide information on and 

address various important issues that would otherwise have been impossible. 
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Studies in several species have been conducted in areas related to population 

structure in various species including salmonids (e.g. McConnell et al., 1995; 

Wenburg et al., 1996; Colihueque et al., 2003; Tessier et al., 1997; Nelson et al., 

1998; Heath et al., 2002) carps, (Gross et al., 2002), cyprinids (Salgueiro et al., 

2003), gadoids (Ruzzante et al., 1999) and tunas (Appleyard et al., 2002), 

phylogenetic relationships (Hansen et al., 1999), linkage mapping and identification 

of quantitative trait loci for facilitating marker assisted selection (Danzmann et al., 

1999; Sakamoto et al., 2000; Palti et al., 2002; Sakamto et al., 1999) as well as 

parentage assignment (Norris et al., 2000; Taggart et al., 2001; Jerry et al., 2004).  

Whilst various molecular markers have been applied to these areas with varying 

degrees of success the current study is focused on their use in monitoring gene flow 

within and between cultured and wild populations in order to detect any changes in 

genetic variation that might occur as a consequence of artificial or selective 

breeding strategies in the farming environment. Table 2.1 below gives a summary of 

the markers discussed and their uses in aquaculture. 

The origin of these techniques lie in fisheries science where the most common 

objective is often to determine if samples from culture facilities or natural 

populations are genetically differentiated from each other. The resolution of these 

studies usually involves an analysis of allele frequencies and levels of 

heterozygosity. 

Farming production practices or the effect of the hatchery environment often cause 

losses of genetic variability in cultured populations (Allendorf and Ryman, 1987).  

Reduced variability can result from genetic drift promoted by the use of small 

numbers of breeders used as replacements, particularly in species with high 
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fecundities, resulting in inbreeding and inbreeding depression. The effect of 

inbreeding depression and reduced genetic variation is expressed as poor phenotypic 

performance and limited potential for future responses to selection (Kincaid, 1983). 

Genetic variability within populations is usually considered in terms of average 

heterozygosity.  Since genetic drift will lead to a loss of rare alleles and a reduction 

in heterozygosity, molecular markers are used to quantify how much degradation, if 

any, has occurred.  Levels of inbreeding can be calculated by examining decreases 

in heterozygosities in and between populations using Wight’s F statistics (Hartl and 

Clark, 1989). 

Studies examining the levels of genetic variation in hatchery populations started 

using allozymes to compare levels of heterozygosity between farmed and wild 

strains.  A number of these studies demonstrated significant differences in allele 

frequencies and reductions in mean heterozygosity between wild and farmed 

population in various species: Atlantic salmon (Cross and King, 1983; Verspoor, 

1988; Cross and Challanain, 1991), Turbot (Bouza et al., 1997), Pacific oyster 

(Hedgecock and Sly, 1990) and tilapia (Macaranas et al., 1995) amongst others.  

Allozyme electrophoresis has also been used to determine levels of genetic 

variability in successive years of hatchery stocks (Butler and Cross, 1996) and to 

establish links between lower levels of heterozygosity with reduced fitness 

(Danzmann et al., 1989). 



 

 

Table 2.1 A comparison of molecular markers, their characteristics and potential applications. 

Characteristics Allozymes RFLPs MtDNA RAPDS Minisatellites Microsatellites SNPs 
Abundance in 
genome 

Low High  High Medium High High 

Level of 
Polymorphism 

Low Low Low Medium High High Low 

Likely allele 
numbers 

2-6 2 Multiple 2 Multiple Multiple 2 

Codominance Yes Yes No No No/Yes Yes Yes 
Reproducibility High High High Low High High High 
Labour 
intensity 

Low High Medium Low High Low Medium 

Set-up  Cost Low Medium-High Medium-High Low Medium-High High High 
Running costs Low High Low-Medium Low High Low-Medium Medium-High 
Technical 
demands 

Low High High Low High Low-Medium High 

Neutrality Questionable Yes Yes Yes Yes Questionable Yes/No 
Major 
applications 

Population 
studies 

linkage mapping 
 

Maternal lineage 
Phylogeography 

Population 
studies 
Hybrid 
identification 
Linkage mapping 

Parentage 
analysis 

Linkage mapping 
Population 
studies 
QTL studies 
Parentage 
analysis 

Linkage mapping 
QTL studies 
Parentage 
analysis 

 



Chapter 2 

 62

Although mitochondrial DNA and RFLP markers have been used to study the 

genetic variation between wild and cultured species (e.g. Hilsdorf et al., 2002; 

Reilly et al., 1999; Romana-Eguia et al., 2004) the marker of choice for these 

studies is usually microsatellites.  This is because their very high polymorphism 

enables the detection of genetic variation between populations where differences 

may be limited.  

Studies monitoring the levels of genetic variability by comparing levels of 

heterozygosity, allelic frequencies, allelic diversity and the number of alleles per 

locus at microsatellite loci between hatchery and wild stocks are becoming common 

in the literature, particularly in the Atlantic salmon.  Reilly et al. (1999), Norris et 

al. (1999),  Koljonen et al. (2002) and Spidle et al. (2004)  all observed differences 

in genetic variability between cultured and wild populations of Atlantic salmon 

based on one or more of the criteria outlined above.  Was and Wenne (2002) 

compared polymorphisms in 5 microsatellite loci between hatchery reared and wild 

sea trout.  They found that while heterozygosity levels were similar between both 

populations allelic diversity was significantly lower in the hatchery population.  

Such reductions in genetic variability have also been reported in invertebrates such 

as shrimp (Xu et al., 2001) and abalone (Evans et al., 2004).  On the contrary 

Romana-Eguia et al. (2004) compared the levels of heterozygosity between hybrid 

strains of tilapia developed for aquaculture production and their wild progenitors.  

They found that the levels of genetic variation were higher in the hybrid populations 

indicating good genetic management practises and the success of the introgression 

programmes used in establishing the improved lines.   
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In flatfish both Coughlan et al. (1998) and Stefánsson et al. (2001) observed 

reduced levels of variability between hatchery and wild populations of turbot.  

However, whilst the study by Stefánsson et al. (2001) revealed reductions in both 

heterozygosity and allelic diversity, Coughlan et al. (1998) noted only changes in 

allelic diversity.  Sekino et al. (2002) reported similar result to Coughlan et al. 

(1998) in the Japanese flounder. 

2.1.2.1 Molecular markers and the Atlantic halibut 

Research involving the use of molecular markers in the Atlantic halibut began in the 

1980s when the studies involved using both morphological characters and 

allozymes in population studies.  The emphasis was placed on testing the hypothesis 

that the species consisted of several reproductively isolated populations. Studies by 

Haug and Fevolden (1986) and Fevolden and Haug (1988) comparing fish from 

Greenland and Norway did not reveal significant genetic differences between fish 

from both areas. However, a more extensive study by Foss et al. (1998) examined 

fish from Norway, Faroe, Iceland and Greenland and genetic variation at four 

enzyme loci revealed deviations from Hardy-Weinberg equilibrium, suggesting that 

the populations were not from a single panmictic population. 

A series of studies involving fish from different geographical sites revealed 

performance differences in a range of commercial traits.  Jonassen et al. (2000b) 

studied the growth patterns of juvenile halibut from Canada, Iceland and Norway at 

four different temperatures (8, 12, 15 and 18oC). Their results intimated that 

Norwegian and Icelandic fish demonstrated superior growth capacities than the 

Canadian fish and also that the Norwegian animals had better feed conversion 

efficiencies across all temperatures.  Their results agree with a hypothesis of 

countergradient growth where more northerly populations need to be able to grow 
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quickly during a relatively short growing season.  The Norwegian fish had a 

decreased temperature interval that shifts the growth curve to the left enabling them 

to grow quicker at all temperatures. 

Hoare et al. (2002) examined the susceptibility, immune response, of halibut from 

off the coast of the three countries to Vibrio anguillarum at optimal (12oC) and 

super optimal (18oC) growth temperatures.  The results of their experiment showed 

that Canadian and Icelandic fish were significantly more susceptible to infection at 

18oC than Norwegian fish. In addition, the total mortality at 18oC for the Canadian 

and Icelandic fish was almost double that at 12oC whereas there were no significant 

differences in Norwegian fish at both temperatures.  Specific antibody levels 

increased with rising temperatures and differences between strains were observed.  

The main antibody was specific for Lipopolysaccharide (LPS) and the immunoblot 

reactions were stronger in the Norwegian fish suggesting that this may account for 

the difference in strain resistance. 

Imsland et al. (2002) also analysed the performance of juvenile halibut from the 

three countries.  They assessed the fish for growth performance and disease 

resistance to Vibrio anguillarum. Again differences in performance were observed 

among the strains.  Norwegian fish showed the best growth rates followed by the 

Icelandic fish and the Canadian fish ranked lowest.  The Icelandic fish were the 

most susceptible to the bacterial infection while again the Norwegian fish showed 

the best survival rates of all three.  In general they observed that the fish which 

survived the disease challenge were those that had grown fastest in the growth trial, 

however, this varied across strains.  The Canadian fish showed no correlation 

between either size or growth and survival while size was correlated with survival 
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in the Icelandic group.  In the Norwegian fish both size and growth were correlated 

with survival. 

2.1.2.1.1  Microsatellites and the Atlantic halibut 

The Atlantic halibut karyotype consists of 24 pairs of subtelocentric chromosomes 

(Brown et al., 1997).  The first microsatellite loci identified in the Atlantic halibut 

were isolated by McGowan and Reith (1999).  They developed five loci; HhiC17, 

HhiI29, HhiD34, HhiJ42 and HhiA44, which were tested on 55 individuals from the 

Bay of Fundy in Canada.  A total of 76 alleles were observed over all five loci and 

apart from one locus, HhiJ42, were found to be in apparent Hardy-Weinberg 

equilibrium.  HhiJ42 had a significant excess of homozygotes suggesting the 

presence of a null allele at this locus within the population.  The loci were tested 

successfully for cross-amplification on three other species of flatfish; the winter 

flounder (Pleuronectes americanus), the yellowtail flounder (Pleuronectes 

ferrugineus) and Canadian plaice (Hippoglossoides platessoides). 

Coughlan et al. (2000) developed 11 more microsatellites for the species and tested 

them on 20 Icelandic individuals.  All loci were in Hardy-Weinberg equilibrium and 

a total of 95 alleles were observed. 

To date, two studies on the application of microsatellites to the monitoring of 

genetic variability in the halibut have been published.  Using six microsatellites (4 

from Coughlan et al. (2000), one from McGowan and Reith (1999) and one 

unpublished locus developed for the Pacific halibut (Hippoglossus stenolepis), Hst-

16), Stefánsson et al. (2001) investigated the effect of artificial rearing on genetic 

variability in the halibut.  They did this by comparing levels of heterozygosity, 

number of alleles and allelic variation between wild-caught broodstock from 
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Canada, Iceland and Norway, some of which were used as parents, and their F1 

hatchery reared offspring. They found significant reductions between parental and 

offspring populations for the mean number of alleles in the Canadian and Icelandic 

populations.  Only allelic diversity was significantly lower in the Canadian group 

while only observed heterozygosity was significantly lower in the Icelandic group.  

It appears that there were no significant reductions in any of the parameters used to 

estimate genetic variability in the Norwegian population. 

Jackson et al. (2003) conducted a similar study within the Canadian halibut 

industry.  Using the five microsatellites isolated by McGowan and Reith (1999), 

they examined the same three parameters between 149 F1 individuals from 27 

potential parents.  They found that although there were no significant differences in 

heterozygosity there were significant reductions in the number of observed alleles 

and allelic diversity.  

Results from studies such as these emphasise the need to assess and monitor the 

amount of genetic variation present within captive populations in aquaculture 

broodstock replacement or selective breeding programs.  The aim of the current 

chapter is therefore to assess the level of genetic variability within the parental 

population using microsatellite loci and evaluate the success of the hatchery 

practices, within the UK industry, at maintaining the genetic variation by comparing 

this with the observed levels in their offspring. 
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2.2 Materials and Methods 

2.2.1 Broodstock Origin and Husbandry 

The study was carried on in a converted salmon farm on the West Coast of 

Scotland, 130 km west of Glasgow on the East coast of Loch Fyne, Otter Ferry 

Seafish Limited. The parental population on the farm was started in 1987 and 

established over a period of five years based on wild caught fish acquired from 

Icelandic and Shetland waters and first generation farmed stock from the United 

Kingdom Sea Fish Industry Authority research facility in Ardtoe, Scotland.  At the 

start of the study 70 individuals were left on the farm, 28 males and 42 females.  33 

individuals (47%), 12 males and 21 females, were wild caught from Icelandic 

waters.  11 individuals (16%), 6 males and 5 females, were wild caught from 

Shetland.  The remaining 26 individuals (37%), 10 males and 16 females, were first 

generation farmed stock acquired from Sea Fish Authority Ardtoe.  Each fish was 

identified using a Passive Integrated Transponder (PIT) tag number. 

The fish were held in covered 5m diameter raceway tanks.  Water depth was kept at 

80cm.  Oxygen saturation of the water was maintained at above 90% with a flow 

rate of 2.5 litres per minute.  Artificial lighting was applied using 8.5 lux under a 

simulated natural photoperiod.  Fish were fed an industry composite diet (Trouw) of 

64% protein, 9% fat, 13% ash, 7% N.F.E (Nitrogen Free Extract) and 7% moisture.  

The feed was presented to the animals three times a week and stocking density kept 

at 26 fish per tank. Although the fish matured in 1994 a potential replacement F1 

broodstock population was not established until 1995.   

The F1 population used in this study comprised fish from the 1995 and 1998 year 

classes.  About 350 individuals were selected by farm managers as potential 
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broodstock replacements from the 1995 spawning season.  The animals were 

selected based on size at three years old (see Chapter 4).  The fish from the 1998 

year class were a random sample of 532 individuals taken from a group of fish 

chosen at the nursery stage for a PhD study by Nigel Jordan, University of St 

Andrews, aimed at comparing the growth performance between fish reared in sea 

cages and fish reared in land based tanks through the grow-out period (see Chapter 

5).  Some of the fish reared in the land based tanks would later be selected as 

replacement broodstock on the farm.  Throughout the text all the offspring in both 

the 1995 and 1998 year classes will be referred to as “F1” fish as they were the first 

generation hatchery reared stock on the farm.  

2.2.2 Sample Collection and Storage 

 In 1999 blood samples were collected from seventy of the parental broodstock 

using heparin treated syringes.  The samples were put in 1ml microcentrifuge tubes 

(Alpha) and spun down to separate the serum from the red blood cells. The serum 

was discarded and the cells were stored –20oC.   

In 2001 before the onset of the breeding season fin clips were taken from all the F1 

individuals within the 1995 year class (350).  The samples were taken from the 

pectoral fins and each sample was placed in an Eppendorf (Thermo Life Sciences) 

tube containing approximately 1ml 95% ethanol (Sigma).  At the same time that the 

fin clips were collected the fish were tagged using Trovan® ID-100 protocol PIT 

tags (Identify UK limited, Hessle, East Yorkshire, HU13 0RD, UK). Each sample 

was subsequently identified by the PIT tag number.  The fin samples were stored at 

4oC. 
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At the last stripping event of each group in the 2001/2002 spawning season, 

following anaesthesia with phenoxyethanol, blood samples were taken from a 

random sample of 351 fish from the 1995 year class.  However, only tissue samples 

from a random sample of 270 individuals were analysed.  Approximately 300µl of 

blood was extracted from the caudal vein and immediately fixed in 700µl 100% 

ethanol (Sigma) in an Eppendorf tube (Thermo Life Sciences).  Again each sample 

was placed in an individual tube and the tubes were identified using the PIT tag 

numbers of the fish.  They were stored at 4oC.  Blood samples were also collected 

by Nigel Jordan from 532 individuals from the 1998 F1 year class using a similar 

protocol.  All these samples were processed and analysed. 

2.2.3 DNA Extraction 

As the fish were the initial base for the UK halibut industry and because of the use 

of molecular genetic approaches in the future, such as QTL analyses, it was 

important to acquire good quality DNA for archiving.  Therefore DNA was 

extracted from samples using a phenol-chloroform protocol modified from Taggart 

et al. (1992).  All attempts to extract good quality DNA from fin clips using this 

technique were unsuccessful (Figure 2.1). 

Using the blood samples fixed in ethanol, 70µl of each solution was aliquoted into 

sterile Eppendorf tubes (Thermo Life Sciences).  Each tube was placed in a 

centrifuge (MSE Micro Centuar) and pulse spun at maximum speed for 30 seconds. 

Excess ethanol was taken off the top of the solution and the tubes were left open to 

air dry on the bench for 5-10 minutes.   

After the ethanol had evaporated, 10µl proteinase K (ABgene, 20 mg/ml) and 340µl 

of TEN (50mN Tris HCl pH 8.0; 100mM EDTA pH 8.0; 100mM NaCl; 1% SDS 



Chapter 2 

 70

(Sodium Dodecyl Sulfate)) buffer was added to each tube. The SDS causes the cells 

to rupture and initiates protein denaturation while the proteinase K reduces proteins 

to their component amino acids. The tubes were vortexed for 30 seconds and 

incubated at 55oC in a rotating oven (Techne Hybridiser HB-1) for 4-6 hours.  After 

incubation 10µl RNAase (DNAse Free, Abgene, 2mg/ml) was added to each tube 

and incubated at 37oC, also in a rotating oven, for one hour in order to digest and 

remove traces of RNA. 

Following the incubation period 370µl of phenol was added to each tube to extract 

the denatured protein from the DNA solution. The solutions were mixed vigorously 

for 10 seconds and shaken gently every 5 minutes for 20 minutes.  After the 20 

minute period an equal volume of chloroform was added to the tubes to absorb and 

eradicate traces of phenol.  The solutions were again mixed vigorously for 10 

seconds and then shaken gently every 5 minutes for another 20 minutes. Each tube 

was then spun for 5 minutes at 10,000g.  This causes the solutions to separate into 

two distinct layers. 270µl of the top aqueous layer, which contains the DNA, was 

removed and pipetted into a new tube, using a wide-bore tip.  870µl of 92% ethanol 

(Sigma) was added to the aqueous solutions and each tube was mixed by vigorous 

inversions, causing the DNA to precipitate out of the solution.  After 3 minutes the 

tubes were pulse spun (10s at 10,000g) to form a DNA pellet at the bottom of the 

tube.  The ethanol was decanted off and 1ml of 70% ethanol was added to each tube 

to wash the pellet.    

Tubes were placed in a rotator overnight and the alcohol was removed using a 

micropipette, after which they were then left open to air dry for 10-15 minutes. The 
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pellets were then resuspended in 100µl TE pH 8.0 (10mM Tris, 1mM EDTA) 

buffer.  

The same protocol was followed for the frozen blood samples collected from the 

parents in 1999, however because the samples were not diluted in alcohol only 35µl 

of the each sample was used. 

2.2.3.1 Quantifying extracted DNA 

The extracted DNA was allowed to dissolve for 24-48 hours. Half the volume 

(50µl) of the resuspended DNA in TE pH8.0 buffer was taken out of each tube and 

put in a new tube.  This formed a “working solution” on which subsequent analysis 

was performed.  The remaining 50µl in the original tube contained the “stock 

solution” and was archived at –20oC. 

The amount of DNA in all the “working solutions” was quantified using 

spectrophotometry (GENEQUANT, Pharmacia Biotech). The quantities obtained 

were highly variable between samples and ranged from 29-1940µg/ml.  The 

concentration of each sample was then made up to 100µg/ml with the addition of 

TE pH 8.0 buffer.  The quality of each sample was checked on a 0.8% agarose gel 

against a ØX74 RF DNA Hae III Ladder (ABgene) and revealed that, as desired, the 

majority of the DNA samples extracted were of high molecular weight (Figure 2.2).  
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Figure 2.1 0.8% Agarose gel of Ethidium bromide stained DNA extracted from fin 
clips fixed in ethanol.  Lane 16 contains the DNA ladder, ØX74 RF DNA HaeIII 

 

Figure 2.2 0.8% Agarose gel of Ethidium bromide stained DNA extracted from from 
blood fixed in ethanol.  Lane 16 contains the DNA ladder, ØX74 RF DNA HaeIII 
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2.2.4 Polymerase Chain Reaction (PCR) 

Large fragment sizes and high concentrations of DNA, of the sort obtained from 

blood in the current study, have been found to inhibit PCR reactions.  It was 

therefore necessary to reduce the concentration of each sample to 20µg/ml.  This 

was done by diluting 10µl of 100µg/ml DNA stock solution with 40µl PCR grade 

water (dH20) in 100µl non-skirted PCR plates (Abgene).  The DNA was then 

denatured by heating to 95oC for 15 minutes, and the plates were subsequently 

stored at –20oC until they were used in PCR reactions. 

Five microsatellite loci previously characterised by McGowan and Reith (1999), 

HhiA44, HhiJ42, HhiD34, HhiI29 and HhiC17, were chosen for the present study 

(details are presented in Table 2.2).  Forward primers for all five microsatellite loci 

were fluorescently labelled with one of three fluorescent dyes: 6-FAM, HEX and 

TET (MWG Biotech).   

The decision was taken to follow the McGowan and Reith (1999) protocol of single 

locus PCR.  This approach was followed because initial multiplex reactions 

produced inconsistent results and optimising the multiplex reaction for all five loci 

would have added to the analysis time, which would have resulted in a long delay in 

applying parentage data to farm management procedures.  

Each PCR reaction consisted of 1.5mM MgCl2 (Abgene), 150µM of each dNTP 

(Abgene), 1.0 µM of each forward and reverse primer,1x reaction buffer (Buffer II, 

Abgene: 75mM Tris-HCl, 20mM (NH4)2SO4, 0.01% (v/v) Tween® 20), 0.2 units of 

Taq DNA polymerase (Abgene) and 50ng genomic DNA template. The total 

volume of every reaction was 10µl.  Reactions were conducted in a Biometra 

Gradient PCR machine under the following thermal cycling protocol: 
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Initial denature step of 3 minutes at 96oC 

30 cycles of  

30 seconds at 94oC (denaturing) 

40 seconds at 55oC (primer annealing) 

60 seconds at 72oC (extention)  

A final extension step at 72oC for 10 minutes to promote 3’ adenylation. 

PCR products were stored at –20oC immediately after the reactions were completed. 

Products were visualised on agarose gels in order to check the success of the 

reactions (1.2% agarose gels in a 1X TAE buffer were run at 2.5 volts/cm for 45 

minutes). 

Following preliminary analyses two more loci were employed in the analysis. Hhi-3 

and Hhi-53 isolated by Coughlan et al. (2000) were selected because they were 

highly polymorphic and robust (Jamie Coughlan pers comm.). Forward primers 

were fluorescently labelled using TET (Hhi-3) and FAM (Hhi-53) (see Table 2.2).  

All parents and 121 F1 offspring were genotyped at these loci.  PCR conditions were 

the same as those used for the first five loci. 
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Table 2.2 Nucleotide sequences, repeat motifs, fluorescent dye labels and published allele size ranges of microsatellites used in the current study. 

Locus Primer sequence (5’-3’) Repeat motif Fluorescent Dye Allele size range Source 
Hhi-3 F:GGAATAAAAGAAGGGGGTGCG 

R:TGTGGTGGGTGGCAGTGGCTA 
(CA)32 TET 175-217 bp Coughlan et al.(2000) 

Hhi-53 F:ACCAACAGTGACACATAGCTCCT 
R:ATGCTAATGGGCTCTAAAATC 

(CA)29 FAM 226-270 bp Coughlan et al.(2000) 

HhiC17 F:TTAGGTCTGATCACCGCTATG 
R:GTTTACAAAGGTTTCTGATGGC 

(AC)24 FAM 114-168.bp McGowan and Reith (1999) 

HhiI29 F:GCTTCGGTTACSCCTTTGC 
R:AGGACAGTGAGGATGTCCG 

(GT)25 (GTGTG) HEX 98-134 bp McGowan and Reith (1999) 

HhiD34 F:GCCTGGTCTCATTGTGTTCC 
R:AGGTTAAATGATTTCCTGAAGCTG 

(CA)12 FAM 184-226 bp McGowan and Reith (1999) 

HhiJ42 F:CACAAACTCAAGATGTTGCG 
R:AAGCTCACTGGAAAATAATACCC 

(ACACACACAG) (AC)20 
(ACACA) 

TET 112-144 bp McGowan and Reith (1999) 

HhiA44 F:CAACTGTGGGTATGTGCCTG 
R:GTGTCAGCACTGTGCTTAAACC 

(GTGTGCGTCT) (GT)27 TET 136-234 bp McGowan and Reith (1999) 
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2.2.5 Microsatellite Screening: Genescans 

A 50ml polyacrylamide gel solution was prepared using 18g of Urea (Bio-Rad), 

5.2mls Long Ranger® solution (Cambex) and 27.5mls MilliQ dH2O.  0.5g mixed 

bed resin beads (Sigma) was then added to deionise the solution.  The gel mix was 

stirred using a magnetic stirrer for about 25 minutes after which 5mls 10x TBE 

buffer was added to it and then it was filtered through a 0.2µm Whatman filter to 

remove the beads.  The filtered gel mixture was de-gassed for 4 minutes to remove 

air bubbles, then 35µl TEMED and 250µl APS (Ammonium Persulphate solution; 

0.1g in 1ml dH20) were added to initiate polymerisation.  The gel mix was injected 

between two 36cm glass plates using a 50ml syringe through an injection clamp.  

The plates were already assembled on a standard ABI cassette separated by  0.2mm 

plastic spacers. Once the gel was poured it was left for 2-3 hours at room 

temperature to polymerise fully. 

Polymerisation was checked by expressing the excess gel from the syringe.  After 

the gel had polymerised the injection clamp was removed and the plates were wiped 

clean.  A disposable cardboard sharks tooth well comb (Web Scientific) was 

inserted into the top of the cleaned gel slot and the cassette was placed inside the 

ABI 377 DNA sequencer and clamped into place.  A plate check module was run to 

check that the read region had no gel residues and there were no scratches on the 

plates, as these would influence the results of the run. A 1X TBE solution was 

added to the buffer tanks and the wells of the comb were flushed with the buffer 

solution using a 50ml syringe and 23mm gauge needle, in order to remove excess 

fluid, air bubbles and crystals of urea from the wells. The pre-run module was then 

run for 10 minutes in order to warm the gel to about 42oC, the machine was then 

paused and the wells flushed again. 
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A loading buffer was prepared using 1.40µl deionised formamide, 0.30µl 50 mg/ml 

blue dextran dye, 25mM EDTA buffer and 0.3µl TAMRA 350 internal size standard 

(Genpak).  0.5µl of PCR product was added to this 2µl buffer, the mixture was 

denatured for 4 minutes at 95oC and kept on ice until loading was complete.  

Samples were loaded manually using a single pipette.  Odd numbers were loaded 

first followed by a 1-minute pre-run period.  The wells were flushed again using a 

dripping pipette and then the even numbers were loaded.  The volumes loaded 

depended on the size and number of the wells in the combs used.  When a 48 well 

comb was used 1.20µl was loaded in the wells and when a 64 well comb was used 

0.85µl was loaded.  Gels were run for 2.2 hours at 3000volts, 50mA, with a gel 

temperature of 51oC and 1200 laser scans per hour using filter set C.   

2.2.5.1 Multiplex screens 

PCR products from each individual were mixed prior to loading on the gene 

sequencer. The use of fluorescent markers made the simultaneous analysis of two or 

more different loci possible. This “multi-loading” technique of PCR products is 

appealing because of the considerable saving of time and resources, offered by 

reducing the number of gene scan runs needed for the analysis of several 

microsatellite loci.   

In the first round of the analysis two runs were performed for each individual.  The 

runs were a triplex of HhiC17, HhiI29 and HhiA44 and a duplex of HhiJ42 and 

HhiD34.  Samples were diluted using the following protocol: for the triplex 2µl 

each of HhiC17 and HhiA44, 4µl HhiI29 and 1µl dH20.  For the duplex 2µl each of 

HhiJ42 and HhiD34 were diluted in 6µl dH20.  Two control samples were used on 

every PCR plate and genotyping run.   In the second round of the analysis only one 

run was performed because both primers were labelled with different dyes. Data 
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collection and analysis was performed using Genescan™ and Genotyper™ 

softwares.   

2.2.6 Genotype Analysis 

Gel data were analysed using GenescanTM Analysis Software v3.2.1 (Applied 

Biosystems) and fragments were sized using the Local Southern method.  Following 

the installation of a gel matrix, the matrix compensates for some fluorescent 

emission in the detection ranges of other dyes being detected in the wavelengths of 

each specific dye. The lanes on the gel images were tracked, cross checked and 

extracted using automated procedures of the Genescan collection software. The size 

standard in each lane was aligned to standardise the size calling between lanes.  

Extracted lanes containing fragment size data for each sample were exported into 

Genotyper™ Analysis software V3.21 (Applied Biosystems).   

Genotyper is a software application that enables the analysis and interpretation of 

nucleic acid fragment size and quantifies data by converting it into user defined 

results. Allele sizes were determined manually and data for each allele at each locus 

from all individuals in the wild broodstock population was used to define a bin size 

for each allele.  Bin sizes were created in order to account for the slight changes that 

occur in fragment sizes between gels and thus ensure a measure of consistency 

between results.  Fragment sizes of the two controls were compared across all five 

loci after every Genescan run with the results from the first run and the bin sizes 

were adjusted accordingly if there was a need to do so.   

2.2.7 Statistical Analysis 

Allele frequencies and observed and expected heterozygosities for all loci were 

calculated using the programme GENEPOP 3.3 (Raymond and Rousset 1995). 
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Assumptions for Hardy-Weinberg equilibrium (HWE), genic and genotypic 

differentiation between all parental and offspring populations were also tested using 

GENEPOP 3.3 (Raymond and Rousset 1995).  Exact P values were determined 

through a Markov chain process using the default settings in the programme (1000 

dememorisations, 100 batches and 1000 iterations per batch) for all tests.  

Polymorphic Information Content (PIC) was estimated using the allele frequency 

analysis option in Cervus (Marshall et al., 1998). 

F-statistics (FST and FIS values) were calculated for each locus, across generations 

and populations according to Weir and Cockerham (1984) using the programme 

Fstat (Goudet, 1995).  Significance values for each locus and test were determined 

by bootstrapping over samples.  

Effective Number of Alleles (ae) allows the comparison of two or more different 

populations where the numbers and frequencies of alleles differ.  It was calculated 

using the formula from Ferguson (1980): 

ae= 2

1

iqΣ
 

Where: 

 qi= Frequency of the ith allele at a locus. 

Allelic Diversity (Ad) is a measure of the proportion of genetic variation remaining 

in reared strains from founding populations based on the number of alleles (n’) 

retained at a polymorphic locus (Allendorf and Ryman, 1987).  This value was 

calculated using the formula: 

Ad= 
1
1'

−
−

n
n  
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Where n is the initial number of alleles present in the base population.  Allelic 

diversity ranges from 1, where all alleles are retained, to 0 where all alleles but one 

are lost (Allendorf and Ryman, 1987). 
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2.3  Results 

Genotypic data was successfully collected for all but one of the individuals in the 

parental population.  Data for 69 individuals was collected over all seven loci 

through singleplex PCR and gel electrophoresis.  No data was generated for one 

female from the wild Icelandic population: this was because the frozen tissue 

sample was compromised and several attempts to extract DNA from it were 

unsuccessful.  However, the genotype of a missing female parent was derived based 

on observations of offspring genotypes.  This female was assumed to be of wild 

Icelandic origin based on data acquired from the farm.  The reconstruction of the 

unknown female’s genotype is discussed in Chapter 3.  Genotypic data was 

collected from a total of 802 F1 animals. 

2.3.1 Levels of Genetic Variability in the Parental Population 

In order to conduct population genetic analysis successfully the loci employed 

should be robust and polymorphic.  Both of these conditions were found to be true 

for all loci used in this study.  Observed heterozygosities at all loci were greater that 

70% and the number of alleles detected ranged from a minimum of ten in HhiD34 

to a maximum of twenty-six in HhiC17.  These as well as other indicators of the 

levels of polymorphism are shown for each locus in Table 2.3 below. 
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Table 2.3 Polymorphic indicators for each locus in the parental population; Number 
of allele(A), effective number of alleles (ae), observed heterozygosity (Ho), expected 
heterozygosity (He) and Polymorphic Information Content (PIC). 

 Locus Hhi-3 Hhi-53 HhiC17 HhiI29 HhiD34 HhiJ42 HhiA44
A  24 20 26 17 10 15 23 
ae  13.55 11.85 13.53 9.95 3.73 4.21 5.05 
Ho  0.971 0.857 0.871 0.957 0.743 0.786 0.857 
He  0.933 0.922 0.933 0.906 0.737 0.768 0.808 
PIC  0.924 0.908 0.921 0.891 0.692 0.745 0.789 

The most polymorphic loci in this study averaged across all criteria were Hhi-3, 

HhiC17 and Hhi-53.   Even though the number of alleles present at HhiA44 was 

high the effective number of alleles was, by comparison, very low. This was due to 

the high incidence of a common allele, 143. The disproportionate frequencies of 

alleles in the population and consequent low effective number of alleles was also 

observed at HhiD34 and HhiJ42 as shown in Figures 2.3 and 2.4 below.  

The ratio of the actual number of alleles to the effective number of alleles for each 

locus shows that HhiA44, HhiD34 and HhiJ42 (4.55, 2.68 & 3.56) are likely to be 

less informative in a pedigree analysis.  This is also reflected in their relatively low 

PIC values. 
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Figure 2.3 Frequency distribution of alleles in parental population for loci :Hhi-3, 
Hhi-53, HhiC17 and HhiI29. 
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Figure 2.4 Frequency distribution of Alleles in parental population for loci: HhiD34, 
HhiA44 and HhiJ42. 

141143 146148 152154156 160162164166168 173175 181183185 191 215217 222 230 233

Fr
eq

ue
nc

y

0.0

0.1

0.2

0.3

0.4 HhiA44 

111 116 118 120 122 124 126 128 130 132 134 136 138 143 147

Fr
eq

ue
nc

y

0.0

0.1

0.2

0.3

0.4
HhiJ42 

184 190 192 194 196 203 205 209 211 228

Fr
eq

ue
nc

y

0.0

0.1

0.2

0.3

0.4 HhiD34 

Alleles (BP)



Chapter 2 

 85

2.3.2 Hardy-Weinberg Equilibrium in the Parental Generation 

In order to determine if the bands identified as alleles in the programme Genotyper 

were acting in a Mendelian fashion, Hardy–Weinberg equilibrium (HWE) tests were 

conducted.  Global tests across all loci did not reveal significant departures from 

HWE (P=0.700) i.e. the parental population as a single entity was in HWE.  Tests 

for individual loci, however, showed that one locus, HhiC17, was not seen to be in 

HWE.  Exact P values and their standard errors for each of the loci are shown in 

Table 2.4 below.  

The Departure from HWE at HhiC17 was due to an excess of homozygotes for six 

alleles; 123, 127, 139, 147, 151 and 153.  Observations of this nature can imply 

large allele drop out but this was not evident in the parentage assignment (see 

Chapter 3).  It could also indicate, amongst other things, that the sample is a mixture 

of genetically distinct populations or point to the influence of selection on a locus 

(Ferguson et al., 1995). 

Table 2.4 Summary of Hardy-Weinberg analysis in the parental generation. 

Locus Probability Value Standard Error 
Hhi-3 0.418 0.037 
Hhi-53 0.089 0.019 
HhiC17 <0.0005 <0.0005 
HhiI29 0.051 0.013 
HhiD34 0.334 0.024 
HhiJ42 0.459 0.036 
HhiA44 0.944 0.019 

The parental population in Otter Ferry was made up of three separate groups; 33 

individuals from Icelandic waters, 11 individuals from Shetland and 26 F1 

(Icelandic fish) from Ardtoe.  Due to the fact that three separate populations made 

up the parental population each population was examined separately.  The levels of 
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polymorphism within each population and the exact test for HWE are shown in 

Table 2.5 below. 

Table 2.5 Comparison between groups in the parental population. 

Origin Hhi-3 Hhi-53 HhiC17 HhiI29 HhiD34 HhiJ42 HhiA44 
Iceland n=33       
A 22 17 24 16 10 12 20 
ae 13.79 10.37 15.90 10.23 3.90 5.93 5.78 
Ho 
(S.E) 

1.00 
(0.00) 

0.906 
(0.052) 

0.940 
(0.042) 

0.970 
(0.030) 

0.788 
(0.071) 

0.879 
(0.057) 

0.849 
(0.062) 

He 0.945 0.916 0.951 0.916 0.755 0.844 0.840 
P 0.100 0.550 0.018 0.754 0.264 0.684 0.766 
Shetland n=11       
A 17 14 11 9 5 8 8 
ae 15.13 10.52 6.72 6.54 3.36 4.94 4.65 
Ho 
(S.E) 

1.00 
(0.00) 

0.818 
(0.12) 

0.818 
(0.12) 

0.818 
(0.12) 

1.00 
(0.00) 

0.909 
(0.09) 

1.00 
(0.00) 

He 0.978 0.948 0.918 0.887 0.736 0.836 0.823 
P 1.000 0.181 0.720 0.167 0.513 0.510 0.714 
Ardtoe(F1) n=26       
A 15 16 13 11 6 9 10 
ae 9.20 7.60 6.60 8.40 3.23 2.36 3.69 
Ho 
(S.E) 

0.923 
(0.052) 

0.808 
(0.077) 

0.808 
(0.077) 

1.00 
(0.00) 

0.577 
(0.097) 

0.615 
(0.095) 

0.808 
(0.077) 

He 0.909 0.885 0.865 0.898 0.704 0.587 0.743 
P 0.011 0.081 0.714 0.417 0.408 0.484 0.931 
N: Number of individuals in sample, A: Number of alleles, ae: Effective number of alleles, Ho: 
Observed heterozygosity, He: Expected heterozygosity, P: Probability of exact test for departure from 
HWE (Considered significant at P<0.05). 

Having separated the parental population into its three composite fractions it would 

seem that the significant deviation from HWE was caused by an excess of 

homozygotes at alleles at the HhiC17 locus in the Icelandic group. It is important to 

note though that the sample sizes are relatively small thus inferences made should 

be treated with caution.  Significant deviations from HWE were also observed at 

both Hhi-3 and Hhi-53 in the group from Ardtoe.  There was an excess of 

heterozygotes with Hhi-3 and a deficit in Hhi-53.  These deviations from Hardy-

Weinberg equilibrium were not unexpected as these animals were first generation 
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farmed stock from parents that had been subject to some level of artificial selection 

and thus non-random mating.   

The table also shows that, on average, both wild parental populations, Iceland and 

Shetland, are more polymorphic than the individuals from the Ardtoe group.  All the 

polymorphic indicators were markedly different between the Icelandic group and 

the Ardtoe group, however the differences between the Shetland and F1 Ardtoe 

group were not as large.   

The Icelandic parental group had a higher number of effective alleles than the 

Shetland but this was not significantly different.  The number of alleles (A) was 

notably different between the Icelandic and Shetland group but this could be due to 

the fact that there were more representatives in the Icelandic group (more than 

double the number).  It should however be noted that the number of alleles across 

all loci in the Shetland group were very high considering the small number of fish 

within the group. Also the apparent reduction in levels of polymorphism between 

the first generation farmed fish from Ardtoe and wild groups suggest that a level of 

selection might have occurred in the parental population at Ardtoe. 

2.3.3 Allelic Frequencies in the Parental Generation 

Comparisons of allele frequency distributions between each of the parental 

populations are presented in Figures 2.6 and 2.7 below. The histograms for a few of 

the loci suggested differences between the parental stocks. Thus tests to assess both 

genic and genotypic differentiation between each pair of populations were 

conducted using GENEPOP version 3.3 (Raymond and Rousset 1995). Across all 

loci the only significant differences detected were between the Ardtoe group and 
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both wild groups (P<0.001). None of the differences between the wild groups, 

Shetland and Iceland, were significant. 

Although these values are significant the sample sizes are too small to make 

confident conclusions about differences between wild populations but they do 

suggest that there is no indication of population sub-structuring and noteworthy 

effects of hatchery practices between farmed and wild stock. 
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Figure 2.5 Frequency distribution of alleles within the three different parental 
populations (Ardtoe, Iceland and Shetland) at Hhi-3, Hhi-53, HhiC17 and HhiI29. 
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Figure 2.6 Frequency distribution of alleles within the three different parental 
populations (Ardtoe, Iceland and Shetland) at HhiD34, HhiA44 and HhiJ42. 
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2.3.4 Genetic Variation in the F1 Generation 

The offspring group was made up of 270 individuals from the 1995 year class and 

532 from the 1998 year class.  As with the parental generation high levels of 

polymorphism were observed in the F1 generation.  Observed heterozygosities 

ranged from 0.675 to 0.940.  The number of alleles per locus ranged from eight to 

twenty three. 

2.3.5 Comparison Between Parental and F1 Generations 

When the genetic variation in the F1 generation was compared with that of their 

parents, a general trend towards the loss of diversity was observed. Table 2.6 shows 

a comparison in polymorphic indicators between the parental and offspring 

generations. The mean heterozygosity estimates over all loci were lower in the F1 

generation (both observed and expected). Five out of the seven loci showed lower 

values for both Ho and He in the first generation of farmed individuals but none of 

these differences were significant.  

In HhiC17 the observed heterozygosity was higher in the F1 population and in 

HhiA44 both the observed and expected heterozygosities were higher in the F1 

population.  Although heterozygosity is widely used as a measure of genetic 

variation it is very insensitive for multiallelic loci.  For this reason Allendorf and 

Ryman (1987) defined the parameter Allelic diversity (Ad) as a measure of the 

proportion of genetic variation remaining based on the number of alleles retained at 

a polymorphic locus (see materials and methods).  Alleleic diversity ranged from 

0.73 to 0.88. 

The actual number of alleles per locus decreased substantially across all seven loci.  

In some cases up to 6 alleles were lost including alleles of medium frequency 
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(≥0.03); the average number of alleles lost per locus was 4.14.  It is however 

important to recognise that not all the offspring produced on the farm in both the 

1995 and 1998 year classes were sampled and some of the alleles that were not 

detected may still be present in the F1 population on the farm but in low frequencies.  

There were also marked reductions in the effective number of alleles, but at the 

HhiA44 locus it was higher in the F1 population.  Interestingly this was also the 

locus with the lowest value for Ad indicating that more alleles were lost at this locus. 

Table 2.6 Comparison of polymorphic indicators between parental and offspring 
generations. 

Locus Population A (Ad) ae Ho He 
Hhi-3 Offspring (F1)* 18 (0.74) 10.26 0.940 0.907 
 Parental 24 13.88 0.971 0.935 
Hhi-53 Offspring (F1)* 17 (0.84) 10.88 0.914 0.912 
 Parental 20 11.70 0.855 0.921 
HhiC17 Offspring (F1) 23 (0.88) 8.27 0.907 0.880 
 Parental 26 13.53 0.871 0.933 
HhiI29 Offspring (F1) 14 (0.81) 6.05 0.920 0.872 
 Parental 17 9.95 0.957 0.906 
HhiD34 Offspring (F1) 8 (0.78) 2.91 0.675 0.656 
 Parental 10 3.73 0.743 0.737 
HhiJ42 Offspring (F1) 13 (0.86) 3.63 0.725 0.725 
 Parental 15 4.21 0.786 0.768 
HhiA44 Offspring (F1) 17 (0.73) 6.05 0.797 0.835 
 Parental 23 5.05 0.857 0.912 
A: Number of alleles, Ad: Allelic diversity, ae: Effective number of alleles, HO: Observed 
heterozygosity, HE: Expected heterozygosity, *Used in second round of analysis, only 121 offspring 
sampled. 

The allele frequency distributions between the parental and offspring generations 

are shown below in Figures 2.7 and 2.8.  Most loci showed quite different 

distributions.  In HhiD34 for example the second most common allele in the 

offspring generation was 209 (frequency =0.19), however this allele was present in 

a comparably low frequency in the parental generation (0.04).  This same pattern 

was repeated to varying degrees in HhiC17 and HhiI29.  Generally across all loci in 
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the F1 generation there was a trend towards a higher frequency of fewer numbers of 

alleles. 

Allelic and genotypic frequencies over all loci were tested for differentiation 

between the parental and offspring generations using GENEPOP version 3.3 

(Raymond and Rousset 1995).  The results were highly significant (P<0.001) over 

all loci used in this study suggesting a considerable effect of hatchery practices on 

gene and genotypic frequencies.  In natural populations a change in allele 

frequency, genetic drift, of the sort observed in this study will normally be 

accompanied by a loss of heterozygosity.  However, if a small number of parents 

were involved in the establishment of a captive population it is possible that the 

heterozygosity at a single locus could be higher in the new population than in the 

founder population (Allendorf and Ryman, 1987)  
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Figure 2.7 A comparison of the frequency distribution of alleles within the parental 
and offspring populations for Hhi-3, Hhi-53, HhiC17 and HhiI29. 
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Figure 2.8 A comparison of the frequency distribution of alleles the parental and 
offspring populations for HhiD34, HhiJ42 and HhiA44. 
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2.3.6 Hardy-Weinberg Equilibrium in the F1 Generation 

As expected all the loci in the F1 generation showed highly significant deviations 

from Hardy –Weinberg equilibrium (P<0.001).  In all but one case (HhiA44) an 

excess of heterozygotes was observed.  Deviations from Hardy-Weinberg 

equilibrium in an F1 population following selection that results in reduced 

heterozygosity and allelic diversity will be expected to be towards an excess of 

homozygotes however this was not the case.  The overall inbreeding coefficient, 

Weir and Cockerhams’ (1984) estimation of the FIS, for all loci in the F1 generation 

is shown in Table 2.7 below.  

Table 2.7 Probability value of Hardy-Weinberg  deviation test and estimate of FIS for 
all loci in the F1 generation. 

Locus Probability value (SE) FIS 
Hhi-3 <0.0005 (<0.005) -0.037 
Hhi-53 <0.0005 (<0.005) -0.002 
HhiC17 <0.0005 (<0.005) -0.031 
HhiI29 <0.0005 (<0.005) -0.056 
HhiD34 <0.0005 (<0.005) -0.028 
HhiJ42 <0.0005 (<0.005) -0.001 
HhiA44 <0.0005 (<0.005) 0.046 
Total <0.0005 (<0.005) -0.016 



Chapter 2 

 97

2.4 Discussion 

The level of allelic variability in the parental (base) population and their F1 

offspring were assessed and compared at 7 microsatellite loci.  The study revealed 

that the parental generation which was comprised of three different stocks was 

genetically diverse.  After one generation of artificial rearing practises substantial 

reductions in genetic variation were observed. This was evident as a loss of allelic 

diversity but not as a decline in overall heterozygosity. 

2.4.1 Polymorphic Parameters and Hardy-Weinberg Equilibrium  

Table 2.8 below is a summary of the comparisons between values obtained in this 

study for polymorphism in the parental generation and those published by other 

authors using the same loci in wild captured populations.  Whilst it is difficult to 

make fair comparisons, because laboratory and analytical procedures were not 

standardised across research groups, these results show that the loci used are at least 

as polymorphic in the population studied as reported by other authors.  

The values obtained from the Ardtoe group were excluded because they were not 

wild fish but first generation hatchery stock.  It worth noting that on average, the 

number of alleles per locus observed in the current study, across populations, was 

higher than those published in other studies (Table 2.3). These differences could be 

due, in part, to the fact that the number of individuals observed in this study was 

higher and the population was made up of individuals from different genetic origins.   

All loci used in the analysis of the parental population apart from HhiC17 were seen 

to be in HWE.  The departure from equilibrium was due to an excess of 

homozygotes at certain alleles in the Icelandic population.  This study was, 
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however, limited by small sample sizes between populations and results such as 

these could have occurred by chance alone. 

There was no evidence to suggest that any population substructuring between the 

parental groups but the F1 Ardtoe group appeared to be less polymorphic.  Studies 

looking at genetic differences in geographically distinct Atlantic halibut populations 

have given variable results. 

Table 2.8 Comparisons of the levels of polymorphism observed in captured wild 
halibut between fish in the current study and published estimates. 

Locus Study n A Ho He Origin 
Hhi-3 Stefánsson et al. (2001) 54 24 0.93 0.93 Norway 
 Coughlan et al. (2000) 20 16 0.95 0.88 Iceland 
 This study 33 22 1.00 0.95 Iceland 
 This study 11 17 1.00 0.98 Shetland 
Hhi-53  Stefánsson et al. (2000) 47 16 0.85 0.87 Norway 
 Coughlan et al. (2000) 20 14 0.90 0.94 Iceland 
 This study 33 17 0.91 0.92 Iceland 
 This study 11 14 0.82 0.95 Shetland 
HhiC17 Stefánsson et al. (2001) 51 21 0.86 0.94 Norway 
 McGowan and Reith (1999) 55 22 0.89 0.95 Canada 
 Jackson et al. (2003) 52 23 0.90 0.95 Canada 
 This study 33 24 0.94 0.95 Iceland 
 This study 11 11 0.82 0.92 Shetland 
HhiI29 McGowan and Reith (1999) 55 14 0.85 0.86 Canada 
 Jackson et al. (2003) 52 14 0.89 0.87 Canada 
 This study 33 16 0.97 0.92 Iceland 
 This study 11 9 0.82 0.89 Shetland 
HhiD34 McGowan and Reith (1999) 55 9 0.80 0.73 Canada 
 Jackson et al. (2003) 52 10 0.81 0.74 Canada 
 This study 33 10 0.79 0.76 Iceland 
 This study 11 5 1.00 0.74 Shetland 
HhiJ42 McGowan and Reith (1999) 55 13 0.67 0.79 Canada 
 Jackson et al. (2003) 52 15 0.71 0.79 Canada 
 This study 33 12 0.88 0.84 Iceland 
 This study 11 8 0.91 0.84 Shetland 
HhiA44 McGowan and Reith (1999) 55 18 0.87 0.86 Canada 
 Jackson et al. (2003) 52 18 0.89 0.86 Canada 
 This study 33 20 0.85 0.84 Iceland 
 This study 11 8 1.00 0.82 Shetland 
n: Number of individuals sampled, A:Number of alleles, HO: Observed heterozygosity, HE: Expected 
heterozygosity, Origin; geographical origin of stock 
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Stefánsson et al. (2001) reported significant pair wise strain differences between 

Icelandic, Norwegian and Canadian fish stocks, however no significant differences 

were found in a separate study between three Canadian populations and an Icelandic 

one (M. Reith pers comm.).  Differences in growth performance and disease 

resistance between strains have been reported between fish from these three regions 

(Imsland et al., 2002; Jonassen et al., 2000b).   If similar results are obtained for 

these performance characters under commercial (farm) conditions and sufficient 

genetic data is available to support the findings, they present an excellent 

opportunity for between strain selection.  

2.4.2 Genetic Variation in the F1 Generation 

One objective of this chapter was to quantify the allelic variation between the 

parental and F1 broodstock on the farm and detect the impact of hatchery practice on 

the breeding population by comparing this with the parental generation.  After one 

generation of selection it would seem that there was a considerable reduction in 

genetic variation.  Genetic variation defined by heterozygosity showed no 

significant difference between the parental and F1 generations whereas allelic 

diversity did.  It also appears from differences in allelic distributions that the two 

groups are becoming genetically distinct. 

The contradictions between heterozygosity and allelic diversity are because the 

parameters utilized measure different things (Butler and Cross, 1996).  Artificial 

breeding practices result in a decrease in genetic variability in terms of allelic 

diversity, which is not necessarily detected by measures of heterozygosity (Norris et 

al., 1999). This is because fewer numbers of breeders are selected as broodstock 

than would normally happen in nature, thereby reducing the number and frequency 
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of alleles present in the offspring generation with less effect on the number of 

heterozygotes present at these loci (heterozygosity). Thus heterozygosity is 

insensitive and therefore not an appropriate indicator of polymorphism in studies 

examining differences in genetic variation between wild and farmed populations 

(Butler and Cross, 1996; Norris et al. 1999).  

Reductions in the levels of genetic variation between farmed fish and their wild 

counterparts have been reported in various studies involving a wide variety of 

species.  It would seem that in aquaculture systems there is a steady decline in 

genetic variation from the first generation onwards after the establishment of the 

base population.  In Atlantic salmon Koljonen et al. (2002) estimated that in a short 

term breeding programme (2 generations) in Finland the observed average rate of 

allele loss was 4.7% per generation.  Similar results were obtained with other 

salmonids, the Sea trout (Was and Wenne, 2002) and rainbow trout (Butler and 

Cross, 1996) to name two. Evans et al. (2004) estimated a 62% reduction in the 

number of alleles when they compared an F1 population of abalone with wild stock.  

Xu et al. (2001) compared the genetic diversity between wild and cultured tiger 

shrimp, and also found significant differences in the number of alleles. In flatfish, 

Coughlan et al. (1996) reported a loss of rare alleles in a farmed strain of turbot but 

and two separate studies in the past three years have examined the impact of captive 

rearing on the genetic variation in the halibut.   

Stefansson et al. (2001) conducted a study to determine the effects of artificial 

rearing on genetic variability of both turbot and halibut from 3 different 

geographical locations using microsatellites. They found all the F1 individuals from 

the three locations were out of HWE.  In all cases an excess of heterozygotes was 
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observed. The halibut from Canadian and Icelandic hatcheries in their study all 

exhibited losses of genetic variation between the wild parents and cultured stocks. 

There were no significant differences in heterozygosity but there were significant 

differences in the number of alleles. Mean Allelic diversity (Ad) in each group was 

0.60±0.12 (Canada), 0.83±0.08 (Iceland) and 0.88±0.09 (Norway).  

Jackson et al. (2003) looked at the genetic variation between wild and cultured 

stocks in the Canadian industry.  Following a prior selection of 27 (13 males and 14 

females) broodstock parents from a wild capture of 52 individuals, they found no 

significant losses in either heterozygosity or number of alleles between the parental 

and F1 generation.  However significant differences were found in allelic diversity 

between the 52 original wild caught individuals and the F1 group, in that 26% of 

alleles were lost. They noticed a highly significant difference in genotype 

frequencies between the parental and three separate F1 groups. In both studies it was 

suggested that the populations showing losses in allelic diversity had been through a 

bottleneck.   

The results obtained in the present study are very similar to those of previous 

authors looking at the effect of artificial rearing in genetic variation in the Atlantic 

halibut and indeed other farmed aquatic species.  There was an insignificant 

reduction in observed heterozygosity (1.5%) and a highly significant reduction 

(18.56%) in the number of alleles. Mean allelic diversity (Ad) was estimated at 

0.82±0.05.  Deviations from HWE were expected as certain conditions required for 

a population to be in HWE were not met i.e., the number of breeders was not 

“large” and mating was certainly not “random” as a level of selection was practiced.  

The direction in which the departure occurred though, towards an excess of 
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heterozygotes, was unpredicted, especially when the number of available parents is 

considered.  

Heterozygosity excess or deficit can occur after a recent change of the effective 

population size and populations exhibiting significant excess would be considered 

as having experienced a recent genetic bottleneck (Cournuet and Luikart, 1996).  

This is because when a population goes through a bottleneck many low frequency 

alleles are eliminated.  These rare alleles contribute little to heterozygosity and in 

this situation the heterozygosity measured at a locus will exceed the expected 

heterozygosity computed from the number of alleles sampled assuming mutation 

and drift equilibrium (Cornuet and Luikart, 1996; Norris et al. 1999). If this 

information is considered with the significant differences in the distributions of 

alleles between the parental and F1 generations, the deviations from HWE may be 

indicative of small founding population size.  The heterozygote excess due to a 

bottleneck event may be calculated using the program Bottleneck (Cornuet and 

Luikart, 1996) however data from a larger number of polymorphic loci (>20) is 

required.  Using microsatellites the parentage of each individual F1 offspring can be 

determined and the effective population size estimated with precision.  When the 

pedigree structure of the population on the farm is determined an exact picture of 

whether or not a bottleneck has occurred within the population will be known.  

Several authors have reported the loss in genetic variation between wild and 

cultured halibut populations using microsatellites. Reduction in genetic variability 

was demonstrated using allelic diversity because it is more sensitive than 

heterozygosity to population bottlenecks. 
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These differences in genetic variation observed between the parental and offspring 

generation may be a result of selection, using a limited number of broodstock as 

parents.   In aquaculture systems the loss of genetic variation has been attributed to 

these causes.  Whatever the case it is important to avoid losses of genetic variation 

because in many cases there is a positive relationship between variability and 

viability (Allendorf and Ryman 1987).  Nonetheless the ultimate goal in aquaculture 

breeding programmes is to select fish that perform maximally under aquaculture 

systems and this process, if not properly managed, will inevitably lead to reduced 

variability and a loss of genetic diversity.  Here lies the problem for many 

geneticists, particularly aquaculturalists, who work with highly fecund organisms; 

finding the balance between genetic gains by high selection intensities and 

maintaining genetic variation.   

It is obvious from these findings that some element of domestication or husbandry 

practice selection may have led to changes in the genetic composition of the F1 

stock.  The source of this is yet unknown, but could be due to genetics, biological 

limitations of the fish to adapt to their new captive environment, the environment, 

poor husbandry practices, or all.  The contribution of each fish to the offspring 

generation will be the subject of the next chapter.  It is possible that insufficient 

numbers of parents were used as broodstock or the breeding regime may be 

inappropriate to minimize genetic drift.  Artificial selection can reduce the effective 

population size by using only individuals with certain attributes as broodstock. This 

was demonstrated in the Canadian hatchery where the number of broodstock was 

effectively halved prior to the establishment of the F1 population. 
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Chapter 3  

Parental Assignment 
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3.1 Introduction 

In 1976 a group of scientists from the Hebrew University in Jerusalem published a 

paper in the journal Aquaculture (Moav et al., 1976) and in it claimed that “the need 

for parental identification in fish breeding by genetic markers was so acute that in its 

absence no serious breeding work beyond basic mass selection could be effective”. 

They also proposed that due to their high fecundity, fish should become models for 

the applications of genetic markers to animal breeding. While their claim might have 

seemed immoderate at the time, and consequently proven wrong, today the 

application of microsatellite markers for parentage determination in aquaculture is 

gaining both acceptance and popularity.   It would however take almost 20 years for 

their vision to be realised.  Herbinger et al. (1995) were the first to assess the 

feasibility of establishing pedigrees in mixed aquaculture populations under 

commercial conditions. They successfully assigned the parentage of a group of 

rainbow trout from complete factorial crosses between ten sires and ten dams after 

one year of communal rearing, using microsatellite markers.  

3.1.1 The Need for Genetic Profiling In Aquaculture  

Unique individual and pedigree identification is central to the framework and success 

of all selection programmes.  Without the ability to routinely identify better 

performing individuals correctly the exercise of selective breeding is futile.  Secondly 

the performance of these individuals needs to be related to their relatives’ 

performance otherwise the process can be compromised. This is because in order to 

evaluate the genetic merit (breeding value) of selection candidates accurately 

techniques are employed that rely on pedigree information.  In the last 15 years BLUP 

(Best linear unbiased prediction) techniques, using an animal model have become 
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standard methodology for large scale selective breeding programmes.  The animal 

model uses information on all animals within a pedigree, tracing genetic links via a 

relationship matrix, to provide solutions for the genetic merit for each individual 

within the pedigree.  

The greatest problem in implementing a selective breeding programme in aquaculture 

is that newly hatched aquatic animals, unlike farmed terrestrial species, are too small 

to be tagged, uniquely identified, and subsequently pedigreed, by physical methods.  

In order to circumvent this problem and apply more efficient and sustainable selection 

techniques, progeny from family groups are reared for long periods in separate 

facilities until the animals are large enough to be tagged and thus identified at the 

family or individual level.  This approach limits the number of families available for 

selection and is cost, space and labour intensive.   

Whilst the construction of large hatchery family unit facilities was possible for the 

genetic evaluation of many separate families in some government funded research 

institutes, they are limited in commercial production farms and proved to be a 

deterrent for small scale producers wanting to start broodstock selection or 

replacement programmes.  Furthermore, this approach introduces environmental 

effects common to full-sibs which are confounded with the genetic effects under 

study, therefore statistically adequate experiments tend also to be large and expensive 

(Doyle and Herbinger, 1994; Herbinger et al., 1999).  In addition separate family units 

cannot be used in species with mass spawning and complex mating systems such as 

the cod and sea bream.  The alternative, as pointed out by Moav et al. (1976), was 

mass selection which is simple and relatively cheap to perform.  However, the 

estimation of genetic merit is much less accurate with this system and it impossible to 
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assess the genetic variability present in the chosen broodstock population or the 

relationships between the selected breeding candidates.  Thus pedigree information is 

not only necessary for the estimation of genetic merit of breeding candidates but also 

for the genetic management of broodstock populations, to minimise the deleterious 

effects of inbreeding associated with mating related individuals, and to prevent the 

unnecessary loss of genetic variation. This risk of inbreeding is particularly high in 

aquaculture due to the high fecundity of most of the cultured species.  In its most 

extreme form it is possible that the offspring of a single mating could account for an 

entire generation (McDonald et al., 2004).   

An alternative approach to mass selection, as suggested by Harris et al. (1991) and 

Doyle and Herbinger (1994) amongst others, involves the application of genetic 

profiling, using molecular markers, to offer solutions to many of these problems.  This 

presents the opportunity to allow communal rearing, high selection intensities, the 

avoidance of inbreeding and the use of complex genetic merit evaluation techniques.  

They suggested the pooling of progeny from multiple families at hatching and rearing 

them communally.  This maximises the number of families available for testing and 

increases the potential for higher selection intensities while allowing a combination of 

individual and family selection.  Individuals could then be retrospectively assigned to 

family groups using molecular markers and pedigree structures could then be 

constructed. A lot of work has been focused on the practice of this theory in 

aquaculture and successful reports have been reported for a number of commercially 

important species including the rainbow trout (Herbinger et al., 1995), Atlantic 

salmon (O’Reilly et al., 1998), turbot (Estoup et al., 1998) and shrimp (Jerry et al., 

2004).  While these studies centred on parental assignment, other authors considered 

the potential for using pairwise estimates of relatedness to avoid the risk of inbreeding 
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depression (Norris et al. 2000; McDonald et al., 2004). The results of these studies 

and others like these will be discussed later but it is important first to consider the 

statistical and analytical methods employed in pedigree analysis using molecular 

markers.   

3.1.2 Statistical Methods of Genetic Profiling Used in Aquaculture 

Molecular pedigree analysis is the use of molecular data to infer pedigree; this 

includes all methods that test hypothesised relationships between individuals (e.g.  

putative sibships or parent-offspring relationships) and the estimation of the level of 

relatedness between them (Wilson and Ferguson, 2002).  The current review will deal 

primarily, but not exclusively, with the former.   

Molecular pedigree analyses began with the advent of DNA fingerprinting where 

individual animals could be identified from genetic data by the composite genotype at 

polymorphic VNTR loci (Jeffreys et al., 1985).  Due to the fact that no two 

individuals, with the exception of identical twins and clones, are genetically identical, 

these differences, reflected in the genes, are identified as unique DNA profiles and 

compared between individuals and families (Hånstein et al., 2001). The critical 

parameter for the feasibility of pedigree analysis is the degree of polymorphism 

within the population (Plasbøll, 1999).  Although parentage assignment can be 

achieved by any type of genetic marker, provided it is sufficiently polymorphic, 

dominant markers are less efficient than codominant markers (Geber et al., 2000) and 

microsatellites provide the best results, since genetic variation among individuals can 

be extremely high with these markers.  The large numbers of alleles segregating at 

many loci make obtaining unique genotypes for every individual in a study feasible 

(Wright and Bentzen, 1995; Liu and Cordes, 2004). 
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The earliest and simplest assignment technique used in parentage analysis is 

exclusion.  This method is based on Mendelian rules of inheritance and uses 

incompatibilities between parents and offspring to reject particular parent-offspring 

pairs.  Given a codominant marker, two individuals related as parent and offspring 

will share at minimum of one allele at each locus. In order to assign parentage, multi 

locus genotypes of offspring are compared with all possible parent-pair genotypes. 

Parents that could not have produced the offspring’s genotypes are excluded leaving 

one or more pairs of individuals assigned as possible parents (Villanueva et al., 2002; 

Wilson and Ferguson, 2002; Jones and Arden, 2003).  With sufficent genotypic data 

and sampling of all parents, it is possible to assign any given offspring to a single 

parental pair. This is an appealing approach because exclusion of all but one parental 

pair from a complete sample of all possible parents for each offspring can be 

considered perfect. It is most practical when there are a few candidate parents and 

highly polymorphic loci available.  One of the potential weaknesses of this system is 

that genotyping errors (e.g. null alleles and mutations) will contribute to false 

exclusions of true parents.  These problems become more acute as more data are 

included in the analysis because the likelihood of erroneous genotyping and mutations 

increases (Jones and Arden, 2003).  Also difficulties arise when the available 

genotypic data (number of alleles and or loci) are insufficient to exclude more than 

one parent or parental pair. This can occur if the number of candidate parents becomes 

too large so that the number of loci needed becomes impractical.  In these instances, 

likelihood methods can be employed. 

Progeny can also be assigned to non-excluded parents based on likelihood scores 

derived from their genotypes.  Likelihood approaches to parentage assignment occurs 

in two ways, either categorically or fractionally.  Although the basic principles are the 
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same, the former assigns the entire offspring to a particular parent while the latter 

divides an offspring among putative parents.  

Likelihood methods involve calculating Log-likelihood ratios (LOD score) for each 

offspring.  This is done by determining the likelihood of an individual or pair of 

individuals being the parent(s) of a given offspring divided by the likelihood of these 

individuals being unrelated.  After an iterative process of evaluating all genetically 

possible parents, offspring are assigned to the parent(s) with the highest LOD score.  

Unlike with exclusion methods, likelihood-based allocation methods usually allow for 

some degree of transmission errors due to genotyping or mutation and incomplete 

sampling of parental candidates (Marshall et al., 1998).  Categorical allocation selects 

the most likely parent(s) from a pool of non-excluded parents while the fractional 

approach assigns some fraction, between 0 and 1, of each offspring to all non-

excluded candidate parents.  The portion of an offspring allocated to a particular 

candidate parent is proportional to its likelihood of parenting the offspring compared 

to all other candidate parents (Jones and Arden, 2003). 

There are several software packages available for performing pedigree analyses using 

both exclusion, e.g. FAP (J. Taggart, unpublished), PROBMAX (Danzmann, 1997) 

and likelihood, e.g. PAPA (Duschesne et al., 2002), CERVUS (Marshall et al., 1998) 

for parentage analysis and other packages for relatedness, e.g. KINSHIP (Goodnight 

and Queller, 1999).  These packages differ with respect to the types of problems that 

they are designed to answer and most have been reviewed by Wilson and Ferguson 

(2002) and Jones and Arden (2003).  Whatever the package used and method it 

employs, it appears that the accuracy of assignment is dependent on the amount of 

information available.   Therefore the more complete the data set the higher the 



Chapter 3 

 111

degrees of success.  Bernatchez and Duchesne (2000) demonstrated in a simulation 

study that the probability of assigning offspring to a parental pair is dependent on the 

number of loci used, the average number of alleles per locus and the number of 

candidate parents.  A simulation study by Villanueva et al. (2002) showed that not 

only is the number of parents involved important but also  the mating structure.  They 

found that predictions based on exclusion probabilities are accurate provided that the 

number of parents involved in the crosses was large.  The power of discrimination 

increased with the number of parents, for a given number of crosses, and it was 

substantially reduced when the number of crosses increased from 100 to 400.  For a 

given number of crosses the best predictions were with the highest number of parents 

involved in the crosses as the sampling of parents is less important when more parents 

are used. The most informative 4 microsatellites developed for Atlantic salmon were 

sufficient to assign at least 99% of offspring to the correct pair when 100 males and 

100 females were used to produce 100 crosses. An additional locus was required to 

correctly assign 99% when only 10 males and 10 females were used for the same 

amount of crosses.  The differences among different mating schemes in the power to 

discriminate among crosses were because of the differences in the number of 

breeders.  With a small number of breeders there will be a higher chance of losing 

alleles i.e. the frequency of heterozygotes will decrease, as a consequence of random 

drift, making the levels of polymorphisms lower, leading to a requirement for more 

loci. 

3.1.3 Studies Using Genetic Profiling in Aquaculture. 

 In rainbow trout Herbinger et al. (1995) reported that 91% of 873 offspring resulting 

from a complete factorial cross of 10 sires and 10 dams were assigned, using 

exclusion methods, to one or two parental pairs, out of a possible 100, with four or 
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five microsatellites. Using 14 microsatellites Fishback et al. (2002) were able to 

assign 93.3% of offspring reared under commercial hatchery conditions from the 

mating of 2 sires and 48 dams.  They found highly significant differences in family 

structure, i.e. number of offspring assigned to each dam and each parental pair, with 

12 females not having any offspring assigned to them at all.  In the Atlantic salmon, 

O’Reilly et al. (1998), also using exclusion techniques were able to assign 99.5% of 

792 offspring from 12 full sib families communally reared after fertilization (each of 

12 males was crossed with one of 12 females) with four microsatellite markers. In the 

same population, using the same analytical techniques, Herbinger et al. (1999) 

obtained 100% assignment from 12 full sib families.  In addition, they observed 

statistically significant differences in rates of survival at various stages of juvenile 

production, through first feeding to ongrowing.  In sea bass Garcia de Leon et al. 

(1998) reported that 781 offspring from a complete factorial design of 3 sires and 3 

dams were unambiguously assigned using only two microsatellites.  In their 

experiment they noted differential representation between individuals and significant 

sire and dam effects on survival.  However due to the small size of their study a larger 

sample size was needed to support their findings. Also using exclusion techniques 

Perez-Enriquez et al. (1999) were able to assign 73.5% of 200 offspring using 5 

microsatellites from a population of 250 potential parents in two mass spawning tanks 

of red sea bream.  Although no significant parental effects were observed in family 

structures, only 91 breeders succeeded in contributing to the offspring generation in 

the sampled population.  Using eight microsatellites Vandeputte et al. (2004) 

successfully assigned 95.3% of 550 offspring to a single parental pair from a complete 

factorial cross of 24 sires and 10 dams in the common carp.  They observed unequal 

contributions of both sires and dams to the offspring generation despite a determined 
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effort to standardise egg volumes at the start of the experiment. Sekino et al. (2003) 

achieved 100% assignment from mesocosm spawned Japanese flounder offspring 

using exclusion methodologies.  They were able to work out the parentage of 736 fish 

because unique alleles were found for each of the 18 potential parents for the 4 

microsatellites used in the study.  An interesting finding in their study was that more 

than 99% of the offspring were sired by a single male. 

Using likelihood methods, Norris et al. (2000) obtained 98% assignment of 200 

offspring from an Atlantic salmon group of 10 full-sib families (2 sires and 10 dams). 

Borrell et al. (2004) were able to assign the parentage of turbot broodstock 

populations in two different Spanish hatcheries.  In the first hatchery 50 offspring 

were sampled from 5 full sib families (5 sires and 5 dams).  In the second hatchery a 

multifactorial cross using 6 sires and 6 dams was used to make 11 full and half sib 

families.  110 offspring were sampled from this group.  Eight microsatellites were 

employed in the analysis and in the first hatchery 81.2% of the offspring were 

assigned successfully while in the second hatchery only 38.7% of offspring were 

assigned. The reasons for the poor results obtained in the second hatchery were 

associated with the presence of null alleles and low levels of polymorphism in the 

hatchery population.  A similarly poor result was obtained by Jerry et al. (2004) with 

Kuruma shrimp where only 47% of 98 offspring were assigned from the mating of 

168 sires with 22 dams, using six microsatellites. They also used a likelihood 

approach and attributed the low level of success to the presence of null alleles.  In 

both studies there were significant differences between expected levels of assignment 

obtained in simulations and those obtained with the real data set.  
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In situations where no genetic information is available on potential parents, the 

coefficient of relatedness (r) among pairs of potential breeders can be estimated.  This 

is the fraction of alleles in the genome that two related individuals share by descent. If 

this information is obtained for potential breeding candidates unrelated pairs of 

individuals can be identified based on their lower levels of estimated relatedness and 

inbreeding can, theoretically, be minimised.  The relatedness between individuals in 

aquaculture populations of Atlantic salmon (Norris et al., 2000), white sturgeon 

(Rodzen et al., 2004) and trout (McDonald et al., 2004) have been determined, 

however the effectiveness and precision of this system is heavily dependent on 

number of loci employed and levels of polymorphism at each locus.  Thus its use may 

be limited in populations which have gone through bottlenecks such as those often 

seen in aquaculture. 

At present only one study has involved the use of genetic profiling to determine 

parentage in the Atlantic halibut.  Jackson et al. (2003) reported the use of 5 

microsatellites to successfully assign 98% of 145 hatchery reared F1 individuals from 

the pooled gametes of 27 (13 sires and 14 dams) wild caught parents.  They used an 

exclusion programme, PROBMAX, and found that the family structure in the 

offspring population was heavily skewed, consisting of a small number of large full 

and half sib families.  A few individuals did not contribute at all to the F1 generation.  

Although studies involving the use of genetic markers for parentage assignment have 

reported high and promising levels of success, the results have been varied. Most of 

the published experiments have involved relatively few numbers of families and in 

commercial breeding programmes they are likely to incur the need for a greater 

number of loci in order to achieve high rates of assignment because the families 
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involved will be up to and over 10 times those reported.  Furthermore because family 

identification is retrospectively assigned the geneticist has no control of family size.  

This could lead to high variances in family sizes and high genotyping costs associated 

with trying to even out the number of individuals per family.  Also threats of 

substantial biases leading to high frequencies of false parentage exclusions due to null 

alleles, genotyping errors and mutations are significant (Dakin and Avise, 2004; 

O’Reilly et al., 1998).  However, whilst not perfect, the use of this technology is 

undoubtedly a cost-effective, realistic and more informative alternative to separate 

rearing facilities  

3.1.4 Effective Population Size and Pedigree Analysis 

Once the pedigrees of the candidate offspring have been determined this information 

can be used to estimate genetic parameters such as heritabilities, evaluate genetic 

merit of breeding candidates and, as mentioned above, make management decisions 

particularly those involving the avoidance of inbreeding.   Effective management of 

inbreeding, the mating of related individuals, cannot be overemphasised in 

aquaculture enterprises simply because the success of broodstock management 

programmes depends on it (Myers et al., 2001).  The level of inbreeding, usually 

expressed as the percentage rate of inbreeding per generation, (∆F), can be estimated 

through the direct measurement of changes in genetic variability (as seen in the 

previous chapter) or through pedigree analysis.  In aquaculture an alternative measure 

of determining rate of inbreeding is adopted, the notion of effective population size 

(Ne). 

The effective population size is a concept used to estimate the rate of inbreeding 

expected from small populations, when there are deviations from the idealised 
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population, including unequal numbers of males and females, non-random distribution 

of family sizes and unequal numbers of breeders in successive generations (Gall, 

1987; Falconer and McKay, 1996).  These conditions, as seen from the results of 

pedigree studies, ring true in aquaculture populations. The effective population size is 

directly related to the rate of inbreeding per generation, ∆F, such that: 

F
Ne ∆

=
2

1
 (Falconer and McKay, 1996) 

In aquaculture populations, ∆F is sometimes estimated from the observed value of Ne 

based on results from the pedigree analyses using molecular data or from the number 

of sires (Ns) and dams (Nd) and additional information about variance in family sizes.  

The Ne is often lower than the total number of individuals in the parental generation 

because not every member in the parental generation successfully contributes to 

subsequent generations due to the biology of the species and the effect of the hatchery 

environment on individual reproductive performance and offspring survival.   The 

magnitude of the Ne is increased or decreased depending on the size of founder 

members of populations, unequal sex ratios in breeding populations and variation in 

family sizes (Gall, 1987). The actual number of parents and the estimated effective 

population sizes of some aquaculture populations are shown in Table 3.1 below. 
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Table 3.1 A comparison between the actual number of parents (N), the number of sires 
(Ns), number of dams (Nd) and the estimated effective population sizes (Ne) in different 
farmed populations. 

Species N Ns Nd Ne Source 
Japanese Flounder 18  6 12 3.3 Sekino et al. (2003) 
Atlantic halibut 27  13 14 13 Jackson et al. (2003) 
Gilthead seabream 48   14 Brown (2003) 
Red seabream 91   63.7 Perez-Enriquez et al. (1999) 
Common carp 34 10 24 22.3 Vandeputte et al. (2004) 

The halibut hatchery population under study here is the largest broodstock group of 

wild caught and hatchery reared Atlantic halibut in the United Kingdom. Given the 

difficulties involved with the capture of wild broodstock this population represent an 

extremely valuable resource to the future of the British halibut industry. The results 

obtained in Chapter 2 show that a significant amount of genetic variation has been lost 

in only one generation of hatchery practices and in the absence of pedigree 

information the risk of mating related individuals may lead to inbreeding in the F1 

population of potential broodstock.   The number of wild parental fish that succeeded 

in contributing to the F1 population and how evenly the potential crosses were 

represented in the retained 1995 and 1998 F1 groups is of major concern.  This is 

because it could, potentially, set the upper limits to the amount of genetic variation 

available for a generation, which in the halibut is a considerable amount of time.  The 

purpose of this chapter is to address these issues by  using microsatellite profiling to 

identify the parentage of all the potential broodstock in the 1995 F1 population and a 

select group of the 1998 F1 group  The rate of inbreeding will also be estimated using 

the effective population size to inform of potential problems. 
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3.2 Materials and Methods 

All the information on the animals and laboratory procedures followed are described 

and outlined in Section 2.2 of the previous chapter. 

3.2.1 Parentage Assignment  

Parentage assignment was carried out using a programme called Family Assignment 

Program (FAP) version 3.0 (J. Taggart unpublished).  FAP performs two tasks using 

exclusion principles.  It predicts the resolving power of specific parental genotypic 

data sets for unambiguously discriminating among families and it assigns family of 

origin to progeny genotypic data.  Both analyses performed in the programme assume 

a closed population- i.e. all individuals are the progeny of known parental 

combinations for which full genotypic data is available.  It also assumes that the 

nuclear loci employed in the analyses are independently inherited in simple 

Mendelian fashion.   

Due to the fact that no accurate breeding (fertilisation) records were made of the 

crosses used in the production of the populations examined and batches were mixed 

repeatedly throughout the production cycle the assumption was made that any single 

F1 individual could be the offspring of any sire or dam in the parental population. 

Thus all 1176 potential crosses between the 28 sires and 42 dams needed to be 

examined.  A utility program within the package, MERGE1.EXE, was used to 

generate all possible offspring genotypes using a factorial crossing design such that 

each female is mated to each male and vice versa. Parentage was then assigned to a 

pair of individuals by matching progeny composite genotypes to those of known 

parental crosses generated by the programme.  
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 In order to account for genotyping errors two features are included in the programme, 

allele size tolerance (minor errors) and allele mismatch tolerance (major errors).  

Allele size tolerance compensates for allele measurement error.  If allele size 

tolerance is set at zero the family and progeny alleles must be identical for a match to 

be recorded. However, for example, if it is set at 2 then alleles within a two base pair 

size tolerance or less would be considered a match.  Allele mismatch tolerance allows 

imperfect matches to be identified, where no perfect matches have been found.  This 

can be useful for detecting scoring errors, mutations or null alleles.  Assuming allele 

mismatch tolerance is set to one when parentage is being assigned for each progeny, 

an attempt is made to assign family of origin from the full number of loci, if 

successful the program records match(es).  If however a match is not found the 

progeny genotype data are reanalysed looking for a match for N-1 alleles where N is 

the total number of alleles employed in the analysis. 

3.2.2 Estimation of Effective Population Size (Ne) and Inbreeding 
Coefficient (F). 

The inbreeding coefficient can be estimated through direct experimental measures of 

changes in genetic diversity or through pedigree analyses (Myers et al., 2001).  In 

aquaculture the effective breeding number or the effective population size (Ne) has 

been adopted as the measure by which inbreeding is estimated.  Ne is the size of the 

ideal population that would undergo the same amount of random genetic drift, 

measured by the rate of loss of selectively neutral heterozygosity, as the actual 

population (Lande and Barrowclough, 1987).  Estimating Ne is central to assessing 

inbreeding because it is inversely related to the rate of loss of genetic diversity and the 

rate of increase in inbreeding in a finite population (Falconer and Mackay, 1996; 

Arden and Kapuscinski, 2003); 
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Ne and subsequently ∆F was estimated using the method developed by Woolliams and 

Bijma (2000).  The inbreeding coefficient was estimated using the effective 

population size, which was calculated from the fractional contributions of the male 

and female parents after Woolliams and Bijma (2000) and Brown (2003).  This is 

because the precision of the Ne estimate is highly dependent on the variance in family 

size.  

∆F= ( ) ( )222

4
1

4
1

2
1

fmi
ccc −−∑  

Where: 

ci
= the fractional contribution of each parent 

fc = the average contribution of females 

mc =the average contribution of the males 
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3.3 Results 

3.3.1 Missing Parent 64A 

When all the offspring had been genotyped, an allele (217) was observed at the 

HhiA44 locus that was not present in the parental population.  Archive data of female 

spawning performance revealed that samples had not been collected from all the 

females present on the farm between 1994 and 1998 for genotyping. Furthermore 

because no genotypic data was generated for one potential female parent from the 

wild Icelandic population (see Chapter 2) and the new allele was present in 71 of the 

802 sampled F1 offspring, it was deemed authentic.  

The complete set of alleles for the new parent was reconstructed from the genotypes 

of the individuals in which the new allele, at the HhiA44 locus, was present.  

Inspection of the genotypes at each locus showed one or two alleles common to each 

of the 71 individuals at all loci.  This was consistent with a single parental genotype 

and therefore with there being only one unknown parental individual. 

When the reconstruction of the missing parent was complete the allelotype of the 

other parents were deduced. Two male individuals were found that repeatedly 

complemented the newly derived genotype, including one with a unique allele at the 

same locus, 164 at HhiA44. This corresponds to the information on the farm that the 

missing individual was indeed a female. 

Table 3.2 Genotype of missing female reconstructed from genotypes of offspring with 
new allele-217. 

Locus Hhi-3 Hhi-53 HhiC17 HhiI29 HhiD34 HhiJ42 HhiA44 
Genotype 199-201 242-260 141-133 107-113 192-203 116-118 143-217 
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3.3.2 FAP Simulations 

Using the five loci characterised by McGowan and Reith (1999) the programme 

predicted that, assuming equal family representation, 83.1% of the offspring would be 

unambiguously assigned to a family.  The proportion of progeny, though, with 

distinctively identifiable genotypes for each family ranged from 0.05 to 1.00. 

However, 77.90% of all the families were expected to produce offspring in which 

≥0.75 of their progeny had uniquely identifiable genotypes and 15.30% where all 

offspring had uniquely identifiable genotypes. 

Increasing the number of loci to seven by including two, Hhi3 and Hhi53, of the 11 

loci characterised by Coughlan et al. (2000) provided more resolution and the 

prediction improved by 14.30%.  97.40% of all offspring were expected to be 

unambiguously assigned to a family and the proportion of all progeny for each family 

with uniquely identifiable genotypes ranged from 0.44 to 1.00.  With seven loci 

99.90% of all the families were expected to produce offspring in which ≥ 0.90 of their 

progeny had uniquely identifiable genotypes.  

3.3.3 FAP Results 

The total number of offspring (F1) genotyped was 802: 270 individuals were from the 

1995 year class and 532 individuals from the 1998 year class. Based on the output 

from FAP each individual may be assigned to “no parental pair” (no match), “one 

parental pair” (single match), with zero or more than one mismatches (error 

tolerance), and “multiple matches” (more than one parental pair).  

The initial scoring of alleles was likely have errors, therefore allele mismatches were 

used to highlight potential problems with either parental or offspring genotypes. The 

exercise revealed that 114 different alleles over all loci screened in the offspring were 
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spurious.  The data set was then refined and the assignment was run with zero error 

tolerances and zero mismatches.  Only fish in the “one parental pair” category were 

considered a positive match.  All fish in either the “multiple match” or “no match” 

groups were classed as “unassigned” 

3.3.3.1 Parentage assignment using five microsatellite loci 

Due to experimental errors in the PCR procedures not every individual was screened 

at all 5 loci.  Failure to amplify in PCR reactions resulted in 109 of the 802 offspring 

(13.59%) being screened at 4 out of the 5 loci.  This was, in some cases, enough to 

assign parentage.  Using the 5 original loci the application of genotyping results was 

successful at assigning 666 individuals (83.04%) unambiguously to a single parental 

pair.  

Table 3.3The total number of offspring analysed using the five original loci and the 
partitioning of results into the various output categories from FAP. 

Genotypes from: Result 
All 5 loci 
 

4 loci 
No 
HhiC17 

4 loci  
No  
HhiI29 

4 Loci  
No 
HhiD34 

4 Loci  
No  
HhiJ42 

4 Loci 
No 
HhiA44 

Single 
matches  

598 6 42 2 14 4 

Multiple 
matches 

47 1 27 1 2 4 

No matches 48 0 6 0 0 0 
Total number 
analysed 

693 7 75 3 16 8 

Multiple matches in FAP mean that the individuals’ genotypes matched more than 

one possible parental pair. There were 82 individuals in this group, approximately 

10% of the sampled F1 population, and reflects the resolving power of the loci used in 

the analysis within the parental population.  As the original 5 loci were insufficiently 

informative two additional microsatellite markers Hhi-3 and Hhi-53 isolated by 

Coughlan et al. (2000) were screened for these individuals.  They were also used in 
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cases where fish were typed for 4 out of the 5 loci and were not assigned to a single 

parental pair i.e. for individuals with incomplete genotypes. 

3.3.3.2 Parentage assignment using seven microsatellite loci 

A total of 121 F1 animals were typed using the two extra loci.  Included in the number 

were 8 previously screened, and assigned, at the original five loci to act as positive 

controls and 36 individuals in the “no match” category to act as negative controls.  

Unfortunately 5 fish in the “multiple matches” category were not included in this 

analysis due to personal errors.  All the parents were typed at the two new loci and 

parentage was determined using FAP. Table 3.4 below shows a summary of the 

results.  

Table 3.4 The total number of offspring analysed using seven microsatellite loci and the 
partitioning of results into the various output categories from FAP. 

Genotypes from: Result 
All 7 loci 
 

6 loci 
HhiC17 

6 loci 
HhiI29 

6 loci  
HhiD34 

6 Loci  
HhiJ42 

6 Loci  
HhiA44 

Single 
matches 

46 1 16 0 3 4 

Multiple 
matches 

2 0 4 0 0 0 

No matches 34 0 10 1 0 0 
Total number 
analysed 

82 1 30 1 3 4 

All eight positive controls used in the second round of the analysis assigned as they 

should have and gave the same results, parental pair, as when only five loci were 

used.  62 new individuals were assigned to a single parental pair using the two new 

loci.  This, excluding the positive controls, accounted for 51.23% of the sampled 

population.  They all came from the original “multiple matches” category within the 

“unassigned” group in the first round of the analysis shown in Table 3.3. 
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3.3.3.3 Unassigned fish 

After both rounds of analysis 75 individuals were unassigned.  Twenty one fish were 

assigned to more than one parental pair (multiple families) and fifty four were not 

assigned at all (no match) because their genotypes did not match any of the 1176 

family combinations possible from the available parental genotypes. 

A “no match” can result from erroneously typed parental or offspring genotypes, 

marker mutation or null alleles.  36 of the 54 individuals in the “no match” category 

were scored at 7 loci and required allowing at least 2 mismatches at 2 different loci to 

assign parentage.  It was therefore highly unlikely that the mismatches were as a result 

of mutations, mistyping and or false parental exclusion.  The remaining 18 fish were 

typed at 5 loci and required a single mismatch to assign parentage.  The 

chromatographs of each mismatch locus was scrutinised thoroughly and it was 

concluded that mistyping could confidently be excluded. If however mistyping and or 

mutations are discounted as sources of error it can be hypothesised that other parents 

were involved in the mating regimes, creating extra parental contributions, for which 

no genotype information was available.  This corresponds to the fact that when the 

two extra loci were screened for the 36 fish the number of mismatches required to 

assign parentage increased and affirms the information from farm records that not all 

spawning females on the farm were sampled.   All 75 individuals were excluded from 

further analysis. 

Prior to the routine use of PIT tags for broodstock identification on the farm in 1999 

fish were identified by appearance and physical features only.  Each fish was given a 

name and even though external tags were fitted farm records indicate that all fish were 

identified by name using physical appearances only.  In 1995, when the replacement 

population was being established, 22 fish spawned on the farm but only 15 fish 
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produced eggs that were good enough to be incubated.  Farm records indicate that 

eggs from just 6 fish were kept as replacements in the 1995 year class. Table 3.5 

below is a summary of the stripping sheet showing the eggs incubated in 1995 and 

tissues collected in 1999. 

Table 3.5 Summary of 1995 stripping sheet showing whether eggs collected from females 
were incubated and genotype ID if tissue samples were collected in 1999 for genotyping. 

Fish Name Last 4 digits of 
PIT tag number  

Genotype I.D  Eggs Incubated 

Tiny 4803 167 YES 
Hope 138F 4A/171 YES 
Small Blind OA28 6A YES 
LYF 8295 3A YES 
Left B11A 11A YES 
Large 1 Tag AEC8 165 YES 
Olive D5D8 12A NO 
Mrs T 41D7 18A YES 
3 Fingers 3AD4 19A YES 
Rag Tag 0821 10A YES 
Pale fish A4A7 NO GENOTYPE YES 
Lesley AC57 NO GENOTYPE NO 
2 Tags 3D31 NO GENOTYPE YES 
Moonbeam CULLED ’96  - YES 
Largest fish CULLED ’96  - NO 
Speckless CULLED ’96  - YES 
Beauty CULLED ‘96 - YES 
Small fish CULLED ’96  - YES 
Speckled Blinky CULLED ’96 - NO 
RBO CULLED ‘97 - NO 
Nicky CULLED ’97  - NO 
Nutter CULLED ’99  - YES 
() Farm records indicate that eggs were kept for replacement broodstock 

Tissue samples were collected for genotyping in 1999 from only 10 of the 21 

individuals within the 1995 spawning group because they were the only ones 

available at the time. As such there are potentially seven female parents that 

contributed to the 1995 year class of which no genotype data is available.  Due to the 

management procedures i.e. the mixing of batches at the egg, yolk sac and weaning 

phases of production as well as the mode of identifying spawning females, the 
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possibility that errors were made in recording female contributions to broodstock 

replacement batches cannot be ignored.  

In 1998 more fish spawned on the farm, including some F1 fish acquired by the farm 

from the captive population in Ardtoe, Table 3.6 contains a list of the extra fish that 

spawned in 1998.  Based on farm records, the information in Tables 3.5 and 3.6, there 

were 10 females that were potential parents in the 1995 and 1998 year classes for 

which no genotype information is available.  Also because no DNA was extracted 

from a female fish (see Section 2.3) the total number of missing female genotypes 

becomes 11.  No information is available for male mortalities thus a missing male 

parent, even though unlikely, cannot be excluded.  If these individuals had unique 

alleles it would be easy to deduce their composite genotypes based on the offspring 

genotypes.  This was demonstrated with the female 64A.  However if their genotypes 

are common this becomes a difficult task.   
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Table 3.6 Summary of 1998 stripping sheet showing whether eggs collected from females 
were incubated and genotype ID if tissue samples were collected in 1999 for genotyping. 

Fish Name Last 4 digits of 
PIT tag number 

Genotype I.D  Eggs Incubated 

Blacky F067 8A YES 
Smiley   NO 
Grey 3461 25A YES 
Spot 227D 48A YES 
Twisted head dark   NO 
Narrow tail A3E3 24A YES 
Poorly fish 80A4 22A NO 
Sandy   YES 
Nice dark 7E1D 27A YES 
Twisted tail CD81  YES 
Grey thick 01CD 21A YES 
Tiny 4803 167 YES 
Hope 138F 4A YES 
Small Blind OA28 6A YES 
LYF 8295 3A YES 
Left B11A 11A YES 
Large 1 Tag AEC8 165 YES 
Olive D5D8 12A YES 
Mrs T 41D7 18A YES 
3 Fingers 3AD4 19A YES 
Rag Tag 0821 10A YES 
Pale fish A4A7 NO GENOTYPE NO 
Lesley AC57 NO GENOTYPE YES 
2 Tags 3D31 NO GENOTYPE YES 
Nutter CULLED ’99  - YES 
() Farm records indicate that eggs were kept for replacement broodstock 

In summary, using strict exclusion principles employed by FAP, 90.77% of the 

sampled F1 population were assigned unambiguously to a single parental pair (see 

Table 3.7).  In the 1995 year class 229 individuals were assigned out of 270 (85%) 

and in 1998 year class 499 were assigned out of 532 (94%).   
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Table 3.7  Final summary of the parentage assignment after the first and second rounds 
of analyses. 

Category Number 
Assigned to a single family 728 
Assigned with one or more mismatches 54 
Assigned to multiple families 21 
Total 802 

3.3.4 Family Structure 

Table 3.8 gives a glossary of identification numbers (identifiers used for) of the sires 

and dams used at different stages of the study and the pedigree structure of the F1 

population on the farm (both 1995 and 1998 year classes) in Table 3.9.  The results of 

the parent assignment show that, in the offspring population studied, there was a 

significant reduction in the levels of polymorphism, as described in Chapter 2, 

because very few parents succeeded in contributing to the F1 generation.  17 males 

and 18 females contributed to the F1 generation, exactly half of the numbers in the 

parental generation.  However this fraction was not even across the sexes, 60% of the 

sires were successful and 42% of the dams. 

The percentage contribution of each individual was also heavily skewed.  Certain 

individuals contributed significantly more than others and one family in particular 

(17A-sire- and 10A –dam-) made up 30% (215 offspring) of the whole population.  It 

appears that the entire F1 population was composed of few large half sib families. Out 

of all the males that were represented only four had more than thirty offspring and one 

male, 17A, sired 393 individuals i.e. 55% of the F1 population.  Nine males had less 

than ten offspring each (Figure 2.1). A similar picture is seen with the females (Figure 

2.2).  Five dams had more than thirty offspring and seven had less than ten.  It should 

be noted that the distribution, though badly skewed, was less extreme in the dams than 

the sires.  Therefore even though 35 individuals were successful in contributing 
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offspring to the F1 generation, a lot of them did not make significant contributions and 

thirteen parents (6 males, 7 females) had five or less offspring.   

Table 3.8 Glossary of identifiers used for individuals in the parental generation and 
their places of origin. 

Sire 
I.D 

Tag Name Origin  Dam 
I.D 

Tag Name Origin 

1A 106B NICK Iceland  3A 8295 LYF Iceland 
2A 30F0 WHITE 

TAIL 
Iceland  4A 138F HOPE Iceland 

5A 3BB8 - Iceland  8A F067 BLACKIE Iceland 
7A F29D - Iceland  10A 0821 RAG TAG Iceland 
9A 0DA5 - Iceland  11A B11A LEFT Iceland 
13A 43CC - Iceland  19A 3AD4  Iceland 
14A 4A59 - Iceland  20A 0BA1  Iceland 
15A 545F - Iceland  23A F96C GREEN Ardtoe 
17A D821 PEE PEE Iceland  24A A3E3 NARROW TAIL Ardtoe 
32A A594 - Ardtoe  26A CD81 TWISTED TAIL Ardtoe 
33A F219 - Ardtoe  27A 7E1D NICE DARK Ardtoe 
34A Ae3e - Ardtoe  30A 0B3F TWISTED 

HEADI  
Ardtoe 

35A 5ED2 LARGE 
TESTS 

Ardtoe  42A 0E4A - Ardtoe 

37A 3629 - Ardtoe  50A AEBF - Shetland
44A 85DF - Ardtoe  64A **** ? Iceland 
54A 391D - Shetland  165 AE38 LARGE 1 TAG Iceland 
170 A7EA - Iceland  166 4FDB - Iceland 
     167 4803 TINY Iceland 
Tag= Last 4 digits of the PIT tag numbers, I.D= Genotype Identity numbers 



 

 

Table 3.9 Total number of offspring assigned to males and females in the sampled offspring population. 

 3A 4A 8A 10A 11A 19A 20A 23A 24A 26A 27A 30A 42A 50A 64A 165 166 167 Male total 
1A  8             56   9 73 
2A  28             3   49 80 
5A 1          1    2    4 
7A 2              53   1 56 
9A   4 12   1            17 
13A       1           1 2 
14A                  1 1 
15A   5 1 8              14 
17A 1  58 215 82 17 16 1      2   1  393 
32A      1             1 
33A 2              1    3 
34A           7    2    9 
35A         5 14  3   6    28 
37A 18         1     13    32 
44A 1         4 2  1      8 
54A   1                1 
170      1          5   6 
Female total 25 36 68 228 90 19 18 1 5 19 10 3 1 2 136 5 1 61 728 
Dams 
Sires 

 



Chapter 3 

 132

Figure 3.1 Percentage contributions of sires to the sampled F1 gene pool 

Figure 3.2 Percentage contribution of dams to the sampled F1 gene pool 

1A 2A 5A 7A 9A 13A 14A 15A 17A
32A 33A 34A 35A 37A 44A 54A 170

3A 4A 8A 10A 11A 19A 20A 23A 24A
26A 27A 30A 42A 50A 64A 165 166 167
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3.3.4.1  Contributions per origin 

60% (21 individuals) of the parents that contributed to the F1 generation were from 

Iceland.  Only 2 individuals, one from each sex, were from Shetland and 12 (34.2%) 

were from the Ardtoe group.  Most of the offspring were the result of crosses between 

Icelandic parents and as such were pure bred Icelandic individuals. There were no 

pure bred Shetland individuals in the F1 population, the Shetland fish gave only 3 

offspring and they were half Icelandic.  42 individuals (6%) were crosses between the 

Icelandic and Ardtoe fish and 5.2% were from crosses between two Ardtoe parents. 

3.3.4.2  Contributions per year class 

When the parental contributions to the 1995 and 1998 year classes are examined 

separately it becomes clear that although they both consist of large sib families, their 

compositions are different.  Figures 3.3 and 3.4 below show the pedigree structure of 

the F1 populations in both year groups.  In 1995 only eight sires and nine dams were 

detected in the offspring sampled. Offspring from three sires, 1A, 2A and 7A made up 

most of the population.  A single dam, 64A, produced 41% of the pedigreed 

population.  She was mated to the three sires mentioned above. 

In 1998 more parental contributions were detected, 12 males and 15 females had 

offspring in this year class.  However a single parental cross made up 215 out of the 

494 pedigreed offspring. Also just as in the 1995 year class a single individual, this 

time a male, 17A, was found to dominate the entire population.  He was mated to 

eight females, and 77% of the pedigreed individuals in 1998 were sired by him.  There 

was an overlap in the representation in that some fish gave offspring in both year 

classes. 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Pedigree structure of the 1995 year class 
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Figure 3.4 Pedigree structure of the 1998 year class
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3.3.5 Effective Population Size and Inbreeding 

The inbreeding coefficient in the F1 generation as a whole was 6.16%.  This is 

almost as high as and to a half-sib mating at 6.25%.  However, when the year 

classes are examined independently it becomes apparent that the 1998 year class is 

at an even more alarming level of inbreeding (10.64%) and most breeding 

programmes run on the assumption that the effects of inbreeding through sib 

matings predict significant declines in reproduction and growth traits with 

inbreeding coefficients of 10% or more (Myers et al., 2001).  It is important to note 

though that these values are the potential inbreeding levels that could occur if 

related F1 individuals were mated together. 

Table 3.10 Effective population size and inbreeding coefficient in the F1 group. 

Population Ne ∆F 
All F1 individuals 8.11 0.0616 
1995 Year class F1 6.46 0.0774 
1998 Year class F1 4.69 0.1064 

Even though no loss of heterozygosity was observed between the parental and 

offspring generations as seen in Chapter 2, the pedigree structure has revealed how 

deceptive this measure is at quantifying inbreeding in hatchery populations.  

Variation of family size or parental contribution is one of the most important causes 

of Ne being less than the actual number of breeding individuals (Falconer and 

Mackay, 1996).  The variance in sire and dam contributions to the F1 generation was 

large (8790 and 3565 respectively) especially the sire contribution in 1998 (11465).  

This was because so many of the offspring in that year class were sired by a single 

individual.  The present offspring population as it stands is unsustainable and 

without controlled mating (using pedigree information to avoid sib matings) the 

effect of inbreeding depression will very shortly be expressed. 
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3.4 Discussion 

One of the difficulties in implementing a selective breeding programme in 

aquaculture is establishing and maintaining pedigree information. In this study 

approximately 91% of the offspring genotyped were unambiguously assigned to a 

single parental pair using exclusion principles after an extensive period, up to six 

years, of communal rearing. The parentage assignment revealed that the F1 

population on the farm consists of a small number of large full- and half-sibling 

families which was reflected in a low effective breeding number that varied between 

year classes.  The 1998 year class had a particularly poor Ne (4.69) and the 

inbreeding coefficient estimated was unacceptably high. 

3.4.1 Parentage Assignment 

Considering the number of loci used in the analysis the results obtained are 

comparable to those published by several authors over various species.  In the 

Atlantic salmon Norris et al. (2000) and O’Reilly et al. (1998) both reported over 

98% assignment using four and eight micosatellites respectively.  Using four 

microsatellites Herbinger et al. (1995) were able to assign 65.4% of offspring to a 

single parental pair in rainbow trout while Ferguson and Danzmann (1998) assigned 

over 90% with six microsatellites in the same species. Brown (2003) assigned 96% 

of offspring using fourteen microsatellite loci in the gilthead seabream while Perez-

Enriquez et al. (1999) assigned 73.5% using four loci in the red seabream.  Jerry et 

al. (2004) were only able to assign 47% of offspring using six loci but this was due 

to the presence of null alleles.  

Studies in parentage assignment of flatfish have had high success rates, within 

excess of 90% assignment.  In a project involving the Japanese flounder Sekino et 
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al. (2003) were able to achieve 100% assignment while using the same five 

microsatellite loci characterised by McGowan and Reith (1999), Jackson et al. 

(2003) reported 98% assigned using an exclusion method of assignment 

(PROBMAX). 

In the first round of the analysis of the present study 83% of the F1 individuals typed 

were assigned using five loci. When the two extra loci were included in the analysis 

this value went up to 91%.  The study by Jackson et al. (2003) had to discriminate 

among 182 potential families (13 males and 14 females) whereas in the present 

study there was six times the number of potential families (1176) and the number of 

individuals typed was five times higher.  In all the studies cited above the actual 

number of families were limited to less than 200 with the exception of Jerry et al. 

(2004), Brown (2003) and Perez Enriquez et al. (1999). Furthermore except for 

where mass spawning was unavoidable (Sekino et al. (2003); Brown (2003) and 

Perez Enriquez et al. (1999)), the mating structure was known. Due to the fact that 

the mating structure of the fish in the current study was unknown, all potential 

crosses had to be tested thus decreasing the overall power of the analysis.  When the 

mating structure is not known and the number of potential parents is high many 

more progeny/parent matches may result, necessitating the use of additional 

microsatellite for complete discrimination (Ferguson and Danzmann 1998).  Norris 

et al. (2000), O’Reilly et al. (1998) and Rodzen et al. (2004) all observed that 

increasing the number of potential parents in the analysis resulted in a reduction of 

the number of offspring unambiguously assigned to a parental pair. This increases 

the likelihood that individuals and families will share common alleles and thus the 

“multiple families” group will tend to be higher, explaining why the number of 
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assigned individuals went up by 7% when more loci were employed in the analysis. 

In all the studies cited the genotypes of all the parents were known.  

In this study approximately 7% of the fish sampled were not assigned to a single 

family, 36 individuals from the 1998 year class and 18 from the 1995 year classes. 

Proportionally more fish were unassigned in the 1995 year class (16%) than in the 

1998 year class (3%). Due to the fact that not all the parental fish were sampled the 

reason for the unassigned fish could, discounting genotyping errors, be attributed to 

missing parental genotypes or mutations.  This then suggests that more 

contributions were made from un-typed parent(s) in 1995 than in 1998.  From an 

understanding of the biology and management system of the halibut it is unlikely 

that the missing parent (s) is or was a male.  In the stripping season each female is 

handled at least once every three days.  The females are guided on a stripping table 

and the process of stripping can be stressful on the animal. It sometimes results in 

lesions on the underside of the fish which get progressively worse as the stripping 

season develops.  Spawning females tend to have depressed appetites, the water 

temperature is also maintained at lower temperatures, consequently damaged 

animals tend not to recover and if they are not isolated and returned to tanks 

containing higher temperatures they die.  Egg retention within the ovarian lumen is 

also a problem; this causes blockages when this material begins to degenerate inside 

the fish and if not treated this condition can be fatal.  Unlike females, males are 

handled less often in the stripping season and the loss of appetite is less pronounced, 

therefore the probability of mortality is greatly reduced.  Farm records also show 

that 20% of the female broodstock group (nine females) died or were culled 

between 1995 and 1998 (Table 3.8).  Unfortunately no data on male mortalities was 

available. 
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As mentioned earlier in section 3.3 the stripping records for 1998 and 1995 were 

acquired from the farm.  The volume of fertilized eggs for all the fish that spawned 

in both years was calculated.  This was done by multiplying the fertilization rate by 

the volume of eggs produced at each stripping event and adding the value over the 

whole stripping season.  In 1995 two fish gave eggs with zero fertilization rates and 

in 1998 the number of fish that gave no fertilized eggs was five.  Lists of the volume 

of eggs produced, the volume of fertilized eggs incubated and the number of 

offspring detected by genetic profiling for females spawning in 1995 and 1998 are 

shown in Tables 3.11 and 3.12.  The lists include only fish that gave eggs with 

fertilisation rates higher than zero. 

Table 3.11 Volumes of eggs produced and volumes fertilised by broodstock in 1995. 

Name* I.D Volume of eggs 
produced (ml) 

Volume of 
fertilized eggs(ml) 

Number of offspring 
detected by profiling 

Large 1 Tag 165  9000 4991.35 5 
Hope 4A  8900 4689.35 36 
Pale fish*  7700 4675.05  
Left 11A  6400 2949.45 8 
LYF 3A  2700 1136.35 1 
Small Blind 6A  2870 2028.95  
Beauty*  4800 1367.4  
3 Fingers 10A  3500 1217  
Small Fish  1700 945.4  
Tiny 167  3200 887.5 61 
Lesley*  5900 660  
Speckless*  900 384.3  
Olive 12A  2600 280  
Moonbeam*  600 231  
RBO  2800 195.6  
Largest fish*  2400 168  
Nutter*  2400 166.2  
Rag Tag 10A  200 115  
Mrs. T 18A  900 108  
2 Tags*  1300  102.5  
*No genotype available because fish died before the start of the study 
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Table 3.12 Volumes of eggs produced and fertilised by broodstock in 1998. 

Name* I.D  Volume of eggs 
produced (ml) 

Volume of 
fertilized eggs(ml) 

Number of 
offspring detected 
by profiling 

Large 1 Tag 165  14200 10859  
Rag Tag 10A  8250 6410 228 
Mrs. T 18A  6800 4968  
Hope 4A  5850 3744.5  
Olive 12A  5500 3535  
LYF 3A  5500 3399 24 
Small Blind 6A  3500 2705.2  
Twisted Head 30A  4600 2507 3 
Pale Fish*  6100 2474  
Lesley*  4100 2133  
Blacky 8A  2750 1656 67 
3 Fingers 10A  3550 1647.50  
2 Tags*  7900 1505  
Left 11A  2800 1088 82 
Sandy Twisted 29A  2300 1084  
Dark twisted head 28A  1600 1048  
Grey 25A  3300 889.2  
Nutter*  3300 872  
Narrow Tail 24A  2050 797 5 
Nice Dark 27A  1250 543 10 
Grey Thicky 21A  1200 166  
Poorly Fish 22A  600 87.6  
Spot 48A  1200 50  
*No genotype available because fish died before the start of the study 

In 1995 nine fish produced eggs that were incubated for which no genotype 

information was available.  The total volume of fertilized eggs incubated from un-

typed females was 8895.45 ml, or 32.6% of the total volume. In 1998 7164 ml were 

incubated from un-typed females, which made up 12.9% of the total volume 

From Tables 3.11 and 3.12 there appears to be a very poor correlation between the 

volume of fertile eggs produced per female and the number of offspring detected by 

the genetic profiling exercise.  However, because not every fish in the F1 generation 

was genotyped this inference is, at least, indicative of a genuine trend within the 

wider population.  The number of fertile eggs going into the system is not 

necessarily a good indicator of batch survival or dam representation as would have 
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otherwise been expected.  Alternatively because physical descriptions and names 

were used to identify the fish, prior to the use of PIT tags on the farm, mistakes 

could have been made in the identification process and the wrong volume of eggs 

credited to the same fish.  This was shown by the fact that in 1995 the parentage 

assignment revealed one fish (19A) had offspring represented and farm records 

indicated that it did not spawn until 1996.  In 1998 this problem was repeated with 

nine other different females. 

This study clearly shows the importance of genetic profiling in halibut culture.  It 

has become clear that farm records were not accurate in predicting the outcome of 

family survival i.e. the parental contribution to the batches that survived until 

weaning.  The farm predicted that the 1995 year class were comprised of offspring 

from batches spawned by 5 females, but the genetic profiling results showed that the 

group of fish were offspring from 9 females, of which only 3 were identified 

correctly by the farm.  In 1998 only 4 of the 11 fish proposed by the farm as 

potential female parents were accurate. 

Due to the fact that the population on the farm is not a strictly closed system, i.e. 

where all the parents are known, a likelihood method of analysis could have been 

employed using a programme such as CERVUS (Marshall et al., 1998). The 

program however relies heavily on the sample population being in Hardy-Weinberg 

equilibrium and since this population departs significantly from that equilibrium 

predictions are that CERVUS will not perform as well as it is expected to 

(Villenueva et al., 2002).  The limitations of using exclusion principles are that 

individuals could be wrongly excluded from further analysis, however, when the 
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population structure in this study is considered, i.e. poorly proportioned families 

(see Section 3.3.4), a strict method is desirable. 

3.4.2 Family Structure 

Genetic profiles from the microsatellite markers used have allowed the assignment 

of individuals into family groups.  The result of this assignment has shown that a 

significant bottleneck has occurred within one generation of the population on the 

farm.  Only half of the total number of individuals in the parental generation 

contributed to the F1 generation in the sampled population.  The proportional 

representation of the individuals was extremely skewed such that the offspring 

generation is essentially a small number of large family groups (full and half sibs).  

When the offspring group is separated into the two year classes it appears that even 

though more individuals were represented in 1998, the 1995 year class is better 

proportioned.  This is because in 1998 a single full-sib family made up 43% of the 

whole group, and furthermore the same male sired 76% of the year class.  It is 

important to reiterate that not all the offspring produced on the farm, in both years, 

were sampled and financial constraints meant that 80 potential broodstock 

candidates were not genotyped.  Nonetheless the candidates tested were randomly 

sampled and the probability of finding other large, hitherto undetected families is 

very low.  

In most hatchery strains, an unequal contribution of broodstock to the next 

generation seems to be typical, particularly when mass spawning method is used to 

establish hatchery strains (Sekino et al., 2003; Perez-Enriquez et al., 1999).  Sekino 

et al. (2003) suggested that the most effective hatchery option to obtain a more 

homogenous contribution by broodstock would be to employ the stripping method 
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with one-to-one crossing using a large number of broodstock.  Jackson et al. (2003) 

reported findings very similar to those in the current study with first generation 

cultured halibut.  In both studies a stripping method was used to obtain and fertilise 

gametes.  In their study Jackson et al. (2003) used milt from 3 males to fertilise each 

batch of eggs. More males were represented than females, 3 males out of 13 and 4 

females out of 14 dominated the offspring generation. They also noticed that quite a 

lot of crossings performed achieved no representation in the F1 group and attributed 

the causes to lack of established techniques for the spawning of broodstock and the 

culture of larvae.  In their experiment with rainbow trout Herbinger et al. (1995) 

observed an unexpectedly higher number of offspring from certain females i.e. 

uneven representation of dams in the offspring population.  They concluded that the 

differences from the expected number of offspring were due to the initial difference 

in female fertility, with some females produced poorly surviving offspring, possibly 

due to maternal effects.  In a small scale study of parentage assignment in the sea 

bass, Garcia de Leon et al (1998) observed a significant family effect in survival 

rate resulting from both male and female effects.   

Interviews with managers in Otter Ferry can explain why the distribution of family 

size was so poor in 1998. A single male 17A (D821) was used because he was the 

largest male in the tank (male halibut are prone to early maturation and they stop 

growing at the onset of sexual maturity), thus the farm managers hypothesized that 

if he hadn’t matured early his offspring would not either, therefore they used him 

with most of the females.  Other males were “favourites” and were used more often 

than others so not every male got a chance to contribute to the next generation.  The 

observed unevenness in the family structures cannot be explained by management 

alone; the phenotype of an animal is made up by its genotype, the environment (all 
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things non-genetic) and the interaction between the two.  All the females were kept 

under similar environmental conditions; tanks, lighting regimes, feed water 

conditions etc, and yet half of them failed to produce viable offspring while others 

seemed to dominate the subsequent generation.  Dunham and Lui (2002) argue that 

when wild fish are moved from their natural environment to the aquaculture 

environment, a new set of selective pressures is exerted on them resulting in 

changes in performance.  These domestication effects are dramatic and can be 

observed in fish in as little as one generation.  Doyle (1983) defines domestication 

selection as natural selection on traits which affect survival and reproduction in a 

human-controlled environment.  Could it be that in the halibut the variability in 

reproductive performance observed in this study and in the study by Jackson et al. 

(2003) are partly due to the effects of the artificial environment on the halibut and a 

failure to adapt to new environments?  Again it is unlikely that there are single 

independent reasons for this observation and a combination of genetic and 

management factors probably caused the shift.  It is obvious though that the effect 

of the “domestication selection” can be estimated better in the females than the 

males.  Each female was given an equal chance to breed. She was stripped every 

three days and the family groups represent an equal chance whereas only certain 

males were selected as broodstock.   

The selection, or in this case exclusion, of certain individuals masks the true genetic 

effect of hatchery management on the halibut.  This also brings to light the conflict 

between production and breeding.  At the time when the replacement broodstock 

was being established the focus was on meeting production targets and so only the 

“best” males were used, inadvertently narrowing down the gene pool.  Had every 

male been given a chance to breed this may not have been the case.  The production 
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cycle of the farm also plays a part in masking the outcome because the fry might 

have been picked as a batch was coming through the system. In 1995-1998 the 

females spawned in batches over a period of 6 months and so the poor 

representation might have been caused by a manager picking only fish from a few 

parents, a snap shot of the production at the time.  Rodzen et al. (2004) reported 

consistent family structure and conserved genetic diversity between 4 year classes 

of cultured white sturgeon.  This is probably due to the mating system used as they 

employed a factorial mating design. 

3.4.3  Effective Population Size and Inbreeding 

A small fraction of the wild parental population was used for broodstock 

replacement.  This therefore increased the total variance of family size, a parameter 

of critical importance to the effective population size and consequently the 

inbreeding coefficient.  It compares the degree of relationships between the 

individuals now, with that between the individuals in the base population (Falconer 

and Mackay, 1996).  The figures obtained for F were not surprising considering the 

population structure nonetheless they strongly suggest that immediate measures 

must be taken to avoid further degradation of the genetic resource in the offspring 

generation on the farm.   

As a strategy, the avoidance of matings between close relatives in a closed 

population delays the increment of inbreeding but very little reduction of the 

subsequent rate of inbreeding is achieved (Falconer and Mackay, 1996).  Only by 

increasing the number of breeding animals and ensuring an equal number of 

contributions from each family can the rate of inbreeding be reduced.  Thus the 

introduction of new genetic material into the gene pool is strongly recommended.   
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Chapter 4  

Repeatability of reproduction traits 
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4.1 Introduction 

Aquaculture has gained international acclaim and attention as a means of producing 

large quantities of high quality protein quickly.  In this context therefore 

reproductive efficiency is an important component of profitability in the industry 

(Su et al., 1997; Su et al., 2002); it could even be considered the basis for the 

success of any fish farming enterprise.    The high fecundity of cultured aquatic 

species is a major difference which makes their culture so lucrative when compared 

with other domesticated species. Aquaculture is therefore centred on the production 

of large volumes of eggs from hatcheries, where the life cycle of species are closed 

with broodstock replacements bred from closed populations, or their collection from 

wild broodstock to be sold as “seed” or fry for ongrowing.    

Selective breeding schemes are being developed for a number of fish species, 

mainly salmonids, in order for the industry to live up to its full potential.  

Historically the primary selection objective of aquaculture breeding programmes 

has been to increase growth rate whilst relying on the inherent fecundity of fish to 

allow higher genetic gains, compared to farm animals, through increased selection 

intensities.  This could result in a very small number of individuals contributing to 

the genetic make up of successive generations and coupled with differential 

fecundity could severely erode the genetic variation in captive populations.  

Therefore greater care must be taken with the monitoring of reproductive traits in 

broodstock management and selective breeding programmes for aquatic species, 

perhaps even including them in the selection objectives.   

Yet, with few exceptions, the management of reproductive traits are rarely regarded 

as essential components of breed improvement programmes because of the high 
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fecundity of the species involved. Nonetheless, an understanding of the sources of 

variation for reproductive performance traits should also be assessed so the breeder 

can identify any changes in reproductive productivity that may occur during 

selection and breed improvement (Gall and Neira, 2004).  These processes have yet 

to be conducted in the halibut, probably due to the fact that it is still a newly 

developing industry. In contrast, cultured salmonid species such as the trout and 

salmon provide an exception to the trend in aquaculture in that reproductive traits 

have been defined and estimates of genetic parameters have been published. 

4.1.1 Genetics of Reproduction Traits in Aquaculture 

The reproductive traits defined in aquaculture are focused on the quantity of eggs, 

time of spawning and weight of spawning individuals. The latter is assessed because 

in general fish size is positively correlated with fecundity and egg diameter 

(Bromage, 1995) with larger fish producing more eggs, although a gradually 

diminishing increase in egg size with increasing body size is observed in the 

rainbow trout (Bromage et al., 1992).  Other traits include egg size, egg number, 

egg volume and hatchability. 

The first published heritability estimates for reproductive traits were from Gall 

(1975) who studied spawning body weight and egg traits in the rainbow trout.  

These estimates came from full-sib analysis of female progeny from crosses 

between two domestic rainbow trout populations.  Curiously the heritabilities 

estimated were very similar, approximately 0.2 (±0.05) for all traits studied: post-

spawning body weight, egg volume, egg size, egg number and egg number per 100g 

body weight. Kanis et al. (1976) estimated the heritability for mortality in eggs, 

alevins and fry for three salmonid species; salmon, sea trout and rainbow trout.  In 
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general pooled heritabilities, estimated from sire components, over all three species 

for all traits were very low, 0.08±0.04 for eggs at the eyed stage and 0.05±0.01 for 

alevins while the estimates for fry mortality were not significantly different from 

zero. Gall and Gross (1978) evaluated the inheritance of reproductive performance 

in three different strains of rainbow trout.  They showed that there were significant 

genetic effects and differences between the strains in reproductive performance.  

Pooled heritability estimates over the three strains for egg volume, egg size and egg 

number ranged from 0.32±0.11 to 0.52±0.13.  Fertility, defined by the proportion of 

eggs alive at the eyed stage, was also studied and a value of 0.23±0.12 obtained for 

its heritability.  Also in the rainbow trout, Gall and Haung (1988b) estimated 

heritabilities of 0.15 (±0.14) for post spawning weight, 0.30 (±0.15) for egg volume, 

0.32 (±0.14) for egg number and 0.28 (±0.16) for egg size. 

Advances in statistical techniques such as mixed model methodologies have 

allowed more precise estimates of genetic parameters to be made and also the use of 

data from animals within the same population for estimating them.  Sue et al. (1997) 

reported heritability values for the rainbow trout of 0.65 for spawning date, 0.60 for 

egg size, 0.55 for egg number, 0.52 for egg volume and 0.13 for hatchability.  Gall 

and Neira (2004) estimated genetic parameters of reproduction in a coho salmon 

population, obtaining heritability values of 0.42 (±0.08) for number of eggs, 0.39 

(±0.08) for weight of eggs spawned, 0.32 (±0.07) for egg size and 0.33 (±0.08) for 

number of eyed eggs (fertilisation rate).  Both studies were conducted using 

maximum likelihood procedures. 

The relationships between the traits of interest are of great importance in a breeding 

programme.  Selecting for one trait might be detrimental to the expression of 



Chapter 4 

 152

another.  In the dairy industry for example there appears to be a negative correlation 

between fertility and milk yield, thus high yielding cows are likely to be less fertile 

(Weigel Rekaya, 2000; Pryce et al., 2004).  Alternatively the correlations might be 

positive and thus selecting for one of the traits will result in a gain in another trait 

removing the need to select for both traits independently.  However the genetic and 

phenotypic correlations between traits can be different with the phenotypic 

correlation being the sum of the environmental and genetic components.  In 

breeding programmes the genetic correlations are of the most interest. 

 As previously stated there appears to be a positive phenotypic correlation between 

size and fecundity.   The genetic correlations between reproductive traits that define 

quantity and body weight have been estimated by a handful of authors, again in 

salmonid species (Gall 1975; Gall and Gross 1978; Su et al., 1997, 2002; Gall and 

Neira, 2004).  They all reported positive genetic correlations between body weight 

and egg volume, egg number and egg size, ranging from 0.18-0.69 with the highest 

correlations found between egg volume and body weight.  Consequently, selecting 

for bigger fish will simultaneously result in fish that are highly fecund;   therefore 

both objectives will be achieved without the need to consciously select for 

reproduction traits, had they been included in the selection objectives. Genetic 

correlations between reproductive traits (egg size, egg volume and egg number) 

were also estimated and found to be positive (moderate to high). 

4.1.2 Reproductive Performance in the Atlantic halibut 

Reproductive performance in the Atlantic halibut has yet to be studied 

quantitatively.  Although some traits similar to those used in the salmonid industry 

have been defined, the relationships between traits have not been analysed. 
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Furthermore, since reproduction parameters are species-specific due to the 

significant biological differences and stages of domestication between cultured 

salmonids and cultured flatfish, the traits are likely to be different. 

The halibut is a large animal and of all cultured aquaculture species it is more like 

the dairy cow in some aspects of its biology and husbandry than the layer chicken. 

This is because it matures at a comparatively older age and adult individuals are 

maintained for production over several years. Female reproductive success (the 

ability to produce eggs) is extremely important to halibut broodstock genetic 

management because of the difficulties encountered in recruiting wild individuals 

for domestication. Captive populations in the UK were established from a few, no 

more than 60, wild progenitors. Like other marine species they are also more highly 

fecund than salmonids and an adult female can give up to half a million eggs in a 

season (Norberg and Kjesbu, 1991). This characteristic of the species could 

possibility hide the reality that not all the fish are productive or even fertile, 

especially in a mass spawning environment or in a farm where eggs are pooled in 

large conical incubators.  For example results from Chapters 2 and 3 have clearly 

shown that not all females contribute offspring to the next generation, therefore 

there is a need to identify fertility or reproductive activity as a selection objective 

and study the trait. This is to inform on and suggest solutions for the observed poor 

family representation. 

Halibut are multiple spawners ovulating at intervals of 70-90 hours over the 

spawning season and adult females are capable of producing between 6 and 16 

batches in a season (Norberg et al., 1991; Kjørsvik and Holmefjord, 1995).  
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Therefore the frequency of spawns will be of interest as well as the volumes 

observed.  

A dependable supply of halibut juveniles for ongrowing remains the major 

significant limitation to the halibut industry in the UK and indeed the world. The 

ability to produce more fry from the same number of broodstock facilities would 

dramatically reduce the production cost of fingerlings.  Although juvenile 

production has proven to be the bottleneck for successful commercial halibut 

culture the problem is multifactoral and little understood.  However, varying egg 

quality has been identified as one of the limiting factors for mass production of fish 

fry. 

Egg quality is defined as the egg’s potential to produce viable fry (Kjørsvik et al., 

1990). This has been shown to be highly variable and dependant on environmental 

conditions such as water temperature, microbial colonisation, timing of stripping 

and diet of broodstock (Holmefjord, 1991; Norberg et al., 1991; Bromage et al., 

1994; Brown et al., 1995; Mazorra et al., 2003).   

Indicators that predict egg quality reliably and accurately in marine fish species 

have been the subject of a lot of debate. Bromage et al. (1994) recommended that 

they should be simple to perform and be conducted as soon as possible after 

stripping and or ovulation.  Bromage et al. (1994) developed the definition of egg 

quality by Kjørsvik et al. (1990) into different components thus allowing for further 

study of the trait.  They define egg quality as the ability to show low levels of 

mortality at fertilisation, hatch and first-feeding, with the underlying assumption 

that good quality eggs would also be expected to produce the healthiest and fastest 

growing fry.   
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Post-fertilisation checks to predict the survival potential of eggs are important for 

the assessment of eggs entering the rearing system in order to guide management 

decisions on resource allocation, particularly for those species with prolonged 

incubation periods such as the halibut. Assessments can be done adequately by 

fertilisation rate in salmonids but while this has been shown to be a good indicator 

of larval survival in these species it does not appear to be the same in marine fish 

(Kjørsvik et al., 1990; Bromage et al., 1994). Shields et al. (1997) and Brown 

(1998) defined five parameters of blastomere morphology; symmetry, cell size, 

adhesion, margins and inclusions (blastomeres are cells resulting from mitotic 

cytoplasmic cell divisions after fertilisation) and showed a high correlation between 

blastomere morphology at the 8-cell stage and survival. The time-consuming 

procedures required to fully assess the egg batches were not appropriate for routine 

commercial checking but since all five parameters correlated strongly with each 

other they recommended cell margins or cell size, the uniformity of cell size 

between all eight blastomeres, as a quick alternative in combination with 

fertilisation rate. 

Even though there are undoubtedly genetic factors involved in the control of egg 

quality, as with most reproduction traits, the environment plays a major role.   Many 

authors (e.g. Kjørsvik et al., 1990; Norberg et al., 1991; Bromage et al., 1994) have 

reported that over ripening of eggs, an aging process that results in reduced viability 

after ovulation beyond a 6 hour window, is a particular problem with the halibut.  

Thus the timing of stripping is of central importance to the quality of eggs as they 

must be fertilized within a 6 hour window after ovulation (Bromage et al., 1994).   
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Norberg et al. (1991) showed that when stripping times are synchronised with the 

ovulatory rhythms of females not only is egg quality improved but total egg yield 

increases.  Therefore optimal results can only be obtained when individual 

ovulatory cycles of females are known before stripping is practiced.  This presents a 

problem when large numbers of broodstock are maintained for egg production, as is 

the case in most commercial halibut hatcheries where first generation replacement 

broodstock are now being established. Nonetheless, because of the high fecundity of 

the halibut, if the major determinants of quality are identified and addressed the 

need to maintain a large number of broodstock could be negated.   

Halibut broodstock managers observe differences in reproductive performance 

within and between individuals over years but underlying biological parameters 

have yet to be quantified, including the relationships between egg quality and egg 

production. How much variation in these highly economically important traits is due 

to the animal and how much is due to the environment or management?  When 

multiple measurements of a trait are made on individuals, as is the case with the 

multiple spawnings over years in the halibut, the repeatability of the trait can be 

estimated.   

4.1.3 Repeatability  

Repeatability is the correlation between repeated measurements of the same 

individual and is thus useful in predicting future performance from past records.  It 

expresses the proportion of the variance of single measurements that is due to the 

permanent differences between individuals, both genetic and environmental 

(Falconer and Mackay, 1996).  Repeatability, r, is defined as the ratio of the 

between-individual to the total phenotypic variance and thus: 
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Where: 

vG
 =the genetic variance 

vEg
 =the permanent environmental variance between individuals 

vP
 = the phenotypic variance 

The question is often asked “is a good fish always a good fish”?  Perhaps the 

preceding question “what is a good fish” may be a more pertinent one.  If these 

questions are answered it might be possible to select better performing animals as 

replacement broodstock and not only improve the average performance of the group 

but also reduce the running costs of the hatchery.  

Before any form of selection can take place the selection objectives have to be 

defined and genetic parameters need to be estimated.  Selection in this instance is 

not based on genetic merit but on the individual’s phenotypic performance.  Despite 

the established importance of reproductive performance and the value of 

quantifying the observed variation between individuals for management and 

selection, only limited work has been done in the halibut.  The purpose of this 

chapter therefore is to define reproductive traits that may be used to describe a 

“good” fish in commercial terms and provide information on their interrelationships 

and the sources of variation within them.  These traits should not only include egg 

quality traits but also egg quantity and frequency of collection.  With this 

information it may be possible to establish procedures for keeping replacement 

females and apply them to the development a broodstock replacement policy for the 

Atlantic halibut. 
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4.2 Materials and Methods 

4.2.1 The Animals. 

The broodstock used in this study were first generation (F1) farmed individuals 

established from the 1995 and 1996 spawning season of wild parents on the farm.  

In 1995 following the normal hatchery procedures outlined in Chapter One, about 

1000 individuals were selected from the best performing batches throughout the 

season. They were selected based on superior physical appearance and good growth.   

Selection occurred in the nursery at the 10-20g stage and these fish were grown in 

tanks, 5m wide and 1m deep, until they were between 50 and 100g.  At this stage 

they were all transferred to large tanks 12 meters wide and water depth was kept at 

1.2m. These large tanks were in polytunnels and illuminated by artificial lighting 

using two 400 watt sodium bulbs augmented by natural light in the day time.  Sea 

water was supplied to both tanks and oxygen concentration was maintained at above 

90% by water exchange. 

At three years old the all the individuals heavier than 6 kg were kept as potential 

broodstock and eggs obtained were intended for the production of juveniles to be 

sold for ongrowing.  The fish were separated into eight tank groups; however, data 

from only two of the groups, SP2 and SP3, was used and analysed in this study. 

At four years old two different photoperiod regimes were applied to the groups.  

Fish in SP2 were maintained under a one month-advanced photoperiod cycle and 

spawned from March to May while the fish in SP3 spawned between July and 

September in a four-month delayed regime. The number and sex ratios in both tanks 

changed every year because some individuals died and more fish were added to the 
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tanks from the 1996 year class F1 population within the farm in order to augment 

egg production.   

Table 4.1 Population and sex ratios in fish tanks used for repeatability study. 

Year SP2 SP3 
 Females Males Total Females Males Total 
2001 81 6 95 68 5 74 
2002 100 6 106 87 8 95 
2003 92 30 122 115 17 134 

Temperatures were at ambient for most of the year but approximately two months 

prior to the stripping season the water temperature was lowered to 8oC and one 

month before the stripping season the water temperature was lowered to 6oC and 

maintained at this temperature until the end of the stripping season. Fish were fed to 

satiation three times a week on an industry sausage diet mixed by TROUW. 

4.2.2 Data 

The data used in this study was obtained from farm records.   Information from a 

total of 239 females were analysed in this study.  Most of the fish, with the 

exception of 11 individuals, were from the 1995 year class group and began 

spawning activity in the year 2000 at 5 years old.  The 11 females were 1996 year 

class fish and matured in 2001, then were put into SP3 in 2003.  The data analysed 

was collected over three years between 2001 and 2003 when the fish were 6 – 8 

years old.   

Fish were checked for swelling, an indication of impending spawning time, from the 

end of February and the end of June in SP2 and SP3 respectively.  The date of the 

first strip and the number of subsequent strips of each female were recorded. From 

the onset of the spawning season the fish were checked for readiness every three 

days and attempts were made to strip eggs from each individual, however these 
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were not always successful. Due to the large number of fish involved within each 

group individual spawning rhythms were not determined and fish were only 

examined and stripped on three day intervals throughout the spawning season.  The 

volume of eggs collected at each stripping event was measured and recorded 

immediately after the stripping was over.  The eggs were then stored in covered cold 

boxes to protect them from ultraviolet light damage and inflated temperatures until 

they were fertilised.   

Eggs were fertilised and incubated following the protocols outlined in Chapter 1.  

Samples from every batch of fertilised eggs were collected and fertilisation rates 

determined.  These estimated values were recorded for every individual.  Whenever 

lesions or other ailments caused by handling or otherwise were noticed on the fish 

they were recorded by the manager. 

4.2.3 Traits 

Five traits pertaining to reproductive performance were defined.  These were 

seasonal reproductive activity (ACT), Number of successful stripping events (NSS), 

Volume of eggs collected (VEC), Percentage of fertile eggs (PFE) and Volume of 

fertile eggs (VFE). 

Seasonal activity (ACT) defines whether a fish gave any eggs at any of the stripping 

opportunities presented within a spawning season or not. A value of 1 is given if 

any eggs were collected and a value of 0 is given if no eggs were collected. 

Number of successful stripping events (NSS) is the total number of strippings per 

female where eggs were obtained, regardless of quality as assessed by appearance, 

within a single spawning season. 



Chapter 4 

 161

Volume of eggs collected (VEC) is the total volume of eggs collected in millilitres 

from a female within a single spawning season.  Egg volume was measured to the 

nearest ml by allowing the eggs to settle in a volumetric cylinder after stripping. 

Percentage of fertile eggs (PFE) is the mean fertilisation rate estimated from all the 

fertilised batches produced by a female within a single stripping season.  

Fertilisation rate is the total number of developing eggs divided by the total number 

of eggs (expressed as a percentage) assessed at 20hrs post-fertilisation in triplicate 

samples of eggs. This trait is linked with the blastomere morphology trait of 

symmetry (see introduction).  It should be noted that the assessment of symmetry is 

subjective and estimates were made by different members of staff on the farm over 

the three years and therefore this was not standardised. 

Volume of fertile eggs (VFE) is the volume of eggs collected at each stripping event 

multiplied by the fertilisation rate observed for that batch of eggs summed up over 

all the batches collected from a female within a single stripping season. 

4.2.4 Statistical Analysis  

A total of 538 individual reproduction data records were obtained from the 239 

females over the 3 years. The data was a catalogue of repeated seasonal 

measurements from the individuals in the two separate groups of fish. Once all five 

reproduction traits described above were computed the following restrictions were 

applied prior to the onset of the analysis.  Information on egg volume collected was 

not recorded on 15 individuals in 2002, these data points were removed from the 

analysis in order to avoid the introduction of bias. 
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Descriptive statistics were estimated using the programme GenStat for Windows 

version 7.0.  The analysis was done in two stages. Stage I contained all the available 

data including non fertile females and all the zeros.  Stage II was data from only 

fertile females. 

4.2.4.1 REML Analysis 

The data was analysed with REML to fit mixed linear models using GenStat 

software.  Fixed effects included in the model were age, tank and physical damage 

to broodstock (such as lesions or abrasions) as well as an interaction between age 

and photoperiod.  

The random effect fitted was the individual. 

Model:  

Yijkm= µ + Ai + Pj +Dk + (AP)ij + ƒijkl + eijklm 

Y= The ijklmth observation of a fish for any of the production traits defined with 

mean-µ at age-i in photoperiod-j and physical condition-k 

Fixed effects: 

Ai =Age of fish in years. 

Pj =Photoperiod regime. Confounded in this was the tank effect. This was coded 2 

for SP2 and 3 for SP3. 

Dk = if the fish were recorded as having stripping associated wounds within a 

season. This was coded 1 for damaged and 0 for no damage. 

Random effects: 

ƒijkl= random effect of individual fish. 

eijklmn= residual error. 

4.2.4.2 Transformations 

Maximum likelihood analyses require that the data is normally distributed. This was 

not the case with the volume of eggs collected (VEC).  A standard procedure in 

most quantitative genetic investigations is to transform the data to resemble 
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normality as closely as possible.  The Box-Cox transformation provides a general 

method for achieving this (Lynch and Walsh, 1998). The Box-Cox transformation is 

defined by: 

λ
λ

⎟
⎠
⎞⎜

⎝
⎛ −= 1)( yyT  

Where y is the response variable, λ is the transformation parameter and T(y) is the 

transformed value of y.  The objective of this method is to find the value of λ that 

gives the best fit to normality. 

In the current study transformation of the data was required.  This was conducted 

using a Box-Cox type of the family of power transformations adapted by Darwash 

et al. (1996).  The method considers the family of power transformations indexed 

by λ, thus, (VEC) λ. 

The transformations for a dependent variable y is given by: 

( ) 111 −−−= λλλ
λ yyy &  

Where y&  is the geometric mean of y. 

The linear model was fitted to all values of λ in steps of 0.1 in the range of -1 to 1.0 

inclusive.  When λ = 0 the dependent variable, y, is estimated as the natural 

logarithm multiplied by the geometric mean. When λ = 1 the additive model was 

fitted to the observed values of VEC and when λ = -1 an additive model was fitted 

to the reciprocal of VEC. 

The optimum, most likely, transformation for VEC was determined by obtaining the 

minimum deviance (-2xlog likelihood) value after fitting all the defined values of λ 

to the model.  This was done by plotting a deviance profile of the various values for 

λ.  
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4.3 Results 

4.3.1 Descriptive Statistics 

Descriptive statistics; phenotypic means, standard deviations, standard errors and 

coefficients of variation are presented in Table 4.2.  Results show that the most 

variable traits appear to be those that assess egg quality, PFE and VFE. 

Table 4.2 Descriptive statistics of defined reproductive traits for all fish. 

TRAIT µ s.e. (µ) σ max c.v (%) 
ACT. (%) 0.71 0.02 0.45 1.00 NA 
NSS 4.80 0.20 4.60 21.00 95.20 
VEC (ml) 2810 121 2768 11400 98 
PFE (%) 13.00 1.00 15.00 88.00 123.46 
VFE. (ml) 664 42 960 7070 145 
ACT= seasonal activity, NSS= Number of successful stripping events, VEC= Volume of eggs 
collected, PFE= Percentage of fertile eggs, VFE= Volume of fertile eggs, µ= mean, s.e= standard 
error, σ= standard deviation, max= maximum recorded value, c.v= coefficient of variation. NA=Not 
applicable 

Records show that 71% of the individual stripping records summed up over each 

season resulted in the collection of eggs, therefore 29% of the fish population in any 

one season over the three years were not reproductively active i.e. gave no eggs. 

The “inactive” group includes fish that did not produce any eggs over the three year 

period of data collection as well as fish that gave eggs in either one or two years.  

The number of active and inactive females in each of the three years of the study is 

shown in Table 4.3 below. 

Table 4.3 Number of reproductively active and inactive females in the three years of 
the study. 

Year  Number of active females Number of inactive females 
2001 114 35 
2002 144 49 
2003 113 83 

The average number of successful stripping events was approximately 5 however 

one fish, F519, gave eggs 21 times within a single season.  The average volume of 
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eggs collected was 2.79 litres; in contrast the mean volume of fertilised eggs was 

much less at 641ml.  Perhaps the most interesting result is the average percentage of 

fertilised eggs.  The average fertilisation rate was only 13% even though the 

maximum-recorded value was 88%.  The farm discards all egg batches of 

fertilisation rate less than 40%; this therefore indicates that most of the batches 

collected from this group of fish were not incubated. It is worth noting that the 

range of values obtained and means estimated were spread and reduced respectively 

because of the data from the non-fertile females. 

4.3.1.1 Reproductively active fish 

Data from only active females within each season were extracted from the data set 

and summarised. The results obtained are shown in table 4.4 below.  Not 

surprisingly means were increased. However, as previously observed, traits 

associated with quality were still the most variable.  The variance in both PFE and 

VFE appeared to increase while the coefficient of variation decreased because the 

means were higher. Even though only reproductively active females were examined 

the mean percentage of fertilised eggs was still only 18%. 

Table 4.4 Descriptive statistics of defined reproductive traits for "active females". 

TRAIT µ s.e. (µ) σ max c.v (%) 
NSS 6.80 0.20 4.00 21.00 59.40 
VEC (ml) 3962 130 2497 11400 63 
PFE  (%) 18.00 1.00 16.00 88.00 88.92 
VFE. (ml) 935 53 1022 7070 109 
NSS= Number of successful stripping events, VEC= Volume of eggs collected, PFE= Percentage of 
fertile eggs, VFE= Volume of fertile eggs µ= mean, s.e= standard error, σ= standard deviation, max= 
maximum recorded value, c.v= coefficient of variation. 

4.3.2 Phenotypic Correlations  

Phenotypic correlations between all the traits were positive and moderate to high 

(Table 4.5).  The correlations with the highest magnitude were between traits that 
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describe the quantity and frequency of strips.  The lowest correlations were between 

the number of successful strips and the percentage of fertilised eggs. Again the 

presence of zero values from the non-active females in the data set was likely to 

exaggerate the correlations, so they were re-estimated using data from fertile 

females only.   

After excluding the inactive females from the analysis all correlations, on average, 

although still positive, were lower in magnitude.  The correlation between NSS and 

PFE reduced from 0.38 to 0.05.  This results suggest that the number of times a fish 

is stripped may not have an effect or may have very little influence on egg quality, 

as defined by the percentage of fertile eggs and also that the volume of eggs 

collected or produced by a fish is poorly associated with egg quality.  As expected, 

the correlations between VFE and PFE were strong due to the partial auto-

correlations originating from commonality among biological components and 

methods of measuring these traits. 

Table 4.5 Phenotypic correlations between the defined reproductive traits. 

TRAIT ACT NSS VEC PFE VFE 
ACT (%) 1     
NSS NA 1 0.70 0.05 0.42 
VEC (ml) NA 0.83 1 0.22 0.71 
PFE (%) NA 0.38 0.48 1 0.63 
VFE (ml) NA 0.58 0.77 0.72 1 
Figures above the diagonal are the correlations estimated for active females only and figures below 
the diagonal are those of all females.  ACT= seasonal activity, NSS= Number of successful stripping 
events, VEC= Volume of eggs collected, PFE= Percentage of fertile eggs, VFE= Volume of fertile 
eggs, NA=Not applicable 

4.3.3 Predicted Means Of Fixed Effects. 

Predicted means of all fixed effects fitted in the model were estimated from the 

REML analysis in the “predict” option from GenStat version 7.0.  The overall tests 

for age effects were consistently significant (P<0.001) for all the traits studied. In 
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general the results suggest that the older a fish was the better she performs however, 

reproductive activity within the population declined in fish from 7 to 8 years old. 

The predicted means of seasonal activity over the three years in both groups are 

shown in Figure 4.1.  The fish in SP2 under the one-month extended photoperiod 

were more active (P<0.001) than the fish in SP3. In the 3 years of data collection 

there was an average difference of 43% (±4.5%) in the levels of seasonal activity 

between both groups i.e. more fish gave eggs in SP2.  There were no significant 

interactions between photoperiod and age and whether a fish was damaged or not 

did not appear to influence activity. 

Figure 4.1 Graph showing the predicted means of age for seasonal activity over the 
three years of the study in both tank groups (SP2 and SP3). 

The older a fish was the more times she could be stripped. The average numbers of 

successful strips were 1.63 (±0.68), 4.97 (±0.62) and 6.95 (±0.63) for fish aged 6, 7 

and 8 years respectively.  Due to the fact that the stripping conditions and protocols 

were kept constant, i.e. the fish were stripped every three days, this indicates that 
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the stripping season is extended as fish mature.  There were no significant 

differences in the number of strips between photoperiod regimes but there appeared 

to be a significant interaction effect between age and photoperiod.  As expected 

ailments or lesions had negative effects on stripping (P<0.001). 

The strong correlation (0.70) between volume of eggs collected (VEC) and NSS 

was not surprising and implies a similar response to age for the trait.  Older fish did 

produce more eggs as shown in Figure 4.2. However there was a significant 

difference between photoperiods in that an estimated volume of 780 (±279.20) ml 

(P<0.05) more eggs were collected from fish in SP2.  

Figure 4.2 Graph showing the predicted means of VEC and VFE averaged over both 
tank groups (SP2 and SP3) in the three years of the study. 
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Egg quality, defined by PFE, improved with age.  Predicted means are shown in 

Figure 4.3.  Fish in SP2 performed better by 13% (±1.5%). This difference was 

highly significant (P<0.001).  There was also a significant interaction between age 

and photoperiod (P=0.002) and fish with ailments gave poorer quality eggs 

(P<0.05).  VFE showed the same pattern however, there was no significant 

interaction between age and photoperiod.  

Figure 4.3 Graph showing the predicted means for the Percentage of fertile eggs (PFE) 
of fish in SP2, SP3 and the mean over both tanks. 

4.3.4 Repeatability 

Estimates of repeatability for the five traits studied are given in Table 4.6. The 
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 Fertility was very poorly repeatable (0.08); this therefore means that the same 

individuals were not productive every year.  The volume of eggs per fish though 

was moderately heritable and points to the fact that good producers are likely to be 

consistently good performers.  No significant evidence was found however that egg 

quality defined by fertilisation rate was repeatable.   

Table 4.6 Repeatability of reproduction traits with standard errors and likelihood 
ratio tests statistics (L.R.T.S) with Chi squared significance values. 

Trait Repeatability Standard Error L.R.T.S χ2
1  

ACT 0.08 0.06 1.83 0.5 
NSS 0.12 0.08 2.25 0.1 
VEC 0.37 0.07 30.86 0.001 
PFE 0.05 0.07 0.63 0.9 
VFE 0.15 0.07 4.18 0.05 
χ2

1 Significance with 1 degree of freedom 

4.3.4.1 Transformations 

The likelihood profile obtained from fitting the model to different power 

transformations applied to VEC is shown in Figure 4.4 below.  The estimate of 

repeatability was sensitive to the transformation across the range from 0 (λ=-1) to 

0.37 (λ=1).  The effects of power transformations on estimates of repeatability of 

VEC are presented in Table 4.7.  The optimum transformation was λ=0.5 for which 

the deviance value was 5907.56 and repeatability was 0.35±0.07. This result 

presents the best estimate of the character for the trait.  Further work looking at 

models with appropriate error distributions may uncover evidence of repeatable 

variation for the other traits but this was not pursued. 

 



 

 

Figure 4.4 Deviance profile of fitting the model to power transformation of λ values in the range of -1 to 1 for VEC.
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Table 4.7 The effect of power transformations (λ) on estimates of repeatability values 
estimated for volumes of eggs collected (VEC). 

λ Repeatability (r) s.e Deviance 
-1.0 (reciprocal) 0.00 0.00 7269.74 
-0.6 0.09 0.08 6591.02 
-0.5 0.13 0.08 6457.19 
0 (logarithm) 0.28 0.07 6021.47 
0.5 0.35 0.07 5904.96 
0.6 0.36 0.07 5907.56 
1.0 (observed) 0.37 0.07 5974.62 
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4.4 Discussion 

Hitherto reproductive performance has not been defined or quantified in the Atlantic 

halibut under commercial conditions.  This study has defined five performance traits 

reflecting quantity and quality of eggs, frequency of stripping events and viability.  

Analysis of these traits has shown that phenotypic correlations between “quality” 

and “quantity” traits are low in magnitude and that whilst egg volume was 

repeatable, providing the fish were reproductively active, for individual fish across 

seasons i.e. indicative of intrinsically good producers, the quality of eggs showed 

little repeatability.  The study also quantified the effects of age and photoperiod on 

reproductive performance. 

4.4.1 Effect of photoperiod on reproductive traits 

On average the fish in SP3 kept under a 4 month- delayed photoperiod did not 

perform as well as the fish under the one-month extended regime.  Whilst there 

were no significant differences in the number of successful strips between fish 

under the two different photoperiod regimes there was a 56.25% reduction in the 

total volume of eggs collected, an 18.21% drop in the volume of eggs collected per 

fish and a 20.9% difference in mean fertilization rate over the three years of the 

study. Therefore there were approximately 182 litres more fertile eggs produced by 

the group SP2 than SP3.  Furthermore the fish in SP2 were more reproductively 

active by 43%.  In the first year this could be explained by the fact that in 2001 the 

fish in SP3 were moved and fin clipped 3 months prior to the start of the stripping 

season and the stress associated with the move may have affected the group’s 

performance in that they stopped eating. Female halibut with suppressed feed intake 

are known to reabsorb their gonads and miss a spawning season (Haug, 1990).  This 



Chapter 4 

 174

however does not explain the observed differences over the next two years of the 

study where although the level of activity improved they still performed poorer than 

their counterparts.  Bjönsson et al. (1998) also reported that over three spawning 

seasons when a four month delayed photoperiod regime was applied to females 

spawning activity was negatively affected and 20% less fish spawned compared 

with the control group under a natural cycle.  

A further reason for this could be due to the fact that in both studies the annual 

temperature profile of the tank was not synchronized with the photoperiod profile. 

In their pioneering work on photoperiod manipulation of spawning in the halibut 

Smith et al. (1991) experienced problems with the timing of spawning in females 

and recommended that water temperature be altered as well as photoperiod. 

Although the water temperature was lowered prior to the start of spawning season in 

accordance with the recommendations of Smith et al. (1991), this reduction in 

temperature was not integrated with an annual rhythm applied to a full annual cycle.  

Future work should therefore attempt to explore the potential of synchronizing 

annual rhythms of both water temperature and photoperiod. 

4.4.2 Effect of age on reproductive performance 

With the exception of reproductive activity (Figure 4.1), all the traits studied 

improved with age. Older fish were more fertile, gave more eggs and were stripped 

more often.  Kjesbu et al. (1996) conducted a similar study with cod.  They 

monitored the reproductive performance of 10 females over three spawning seasons 

and observed that as fish grew older and larger they spawned more often, gave more 

eggs and the fertilisation rate of batches increased.  It was concluded that maternal 

weight was positively and significantly correlated with the number of batches, 



Chapter 4 

 175

length of the spawning season, total number of eggs shed and the weight of eggs.  In 

their analysis however the positive effects of increased size over the three seasons 

on reproductive performance, were confounded with maturity and advancing age. 

Haug and Gulliksen (1988) examined the potential for egg production (fecundity) in 

wild caught Atlantic halibut females off the Northern Norwegian coast between 

1981 and 1986.  They observed a positive, significant, relationship between total 

number of eggs produced and body size. Fitting a power – curve regression to the 

data they derived an equation to predict the future performance of females based on 

body length and concluded that fecundity was dependent on body size.  In their 

study however the ages of all fish sampled were not known.  It appears that, as 

previously stated, maternal size is the main determinant of reproductive 

performance in fish and body weight usually explains a great proportion of the 

variance in fish fecundity (Wootton, 1998) nonetheless in a repeat spawner the 

effects of maturity, advancing age, cannot be excluded.   

Evans et al. (1996) conducted a study on the composition of eggs from repeat and 

first-time spawning in captive Atlantic halibut.  They found that though there was a 

large difference in weight between first spawners (up to 8.7 Kg), there was no 

difference in the mean dry weight of eggs between batches.  There was however a 

highly significant difference between first and second time spawners. Female 

halibut are expected to keep growing until they are about 20 years old (Haug, 1990). 

Reproductive performance will therefore be expected to improve with age but in the 

framework of a selective breeding programme this is potentially conflicting.  The 

rate of genetic progress is inversely proportional to the generation interval, therefore 

maintaining a broodstock population for 15 years or more will be unfavourable for 
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any programme unless their performance is offset by the need to recruit 

replacements.  It is also irrational to believe that performance will improve 

progressively with time without eventually diminishing.  There is thus a need to 

understand the profile of reproductive performance over time in order to determine 

the optimum period for which a fish is kept active in the broodstock population. 

4.4.3 Repeatability of reproductive performance traits 

In the context of the lifetime of the female halibut, repeatability estimates of 

reproductive traits are of particular value because this represents that portion of the 

variance that is due to some intrinsic property of the fish.  Although environmental 

conditions may change from year to year, the repeatability represents the strength of 

the tendency for a fish to either be a superior or inferior performer and will thus 

allow the manager to predict future performance.  The repeatability also sets an 

upper limit of the heritability of a trait because it includes all genetic variance, not 

just additive variance and permanent environmental variance.  Neither reproductive 

activity nor egg quality appear to be an intrinsic property of fish, however the 

volume of eggs produced given that the fish was active did appear to be 

substantially repeatable. 

The estimates obtained for repeatability of all reproduction traits were low 

compared to other published heritability values for the same traits in trout and coho 

salmon, except perhaps the volume of eggs (Sue et al., 1997; Gall and Neira 2004).  

Unlike with other domesticated species published works suggest that reproduction 

traits are highly heritable in fish. This then means that there is considerable additive 

genetic variance and might explain why certain families dominate captive 

populations.  This however does not appear to be the case with the  halibut, in which 
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it would seem that factors apart from genetics and permanent environment 

determine reproductive performance. 

Reproductive activity over seasons did not appear to be repeatable or predictable 

(r=0.08±0.06).  All the fish were checked every three days for over 2 months and so 

it will be highly unlikely, though not impossible, for a fish to have spawned 

undetected. Studies by Kjesbu et al. (1996) in the cod showed that high fecundity in 

one season negatively affected both the next season’s performance and the fish body 

weight.  This might provide a reason for the apparent low repeatability but it also 

shows why the family representation in any one year group can be poor.  It also has 

significant implications for broodstock management.  If all the fish do not spawn 

every year then the numbers kept for production of eggs will need to be higher. 

Volume of eggs collected was the only repeatable trait (r=0.35±0.07).  This then 

means that a “good” fish will, on average, always be a good producer.  Alternatively 

a poor performer will consistently under perform and can be culled from the group.  

Number of successful strips was poorly repeatable but because of its high 

correlation with volume of eggs collected this is an unexpected result.   

Percentage of fertile eggs was not repeatable and therefore draws attention to the 

fact that this trait is not a function of the fish but a function of its environment.  

Falconer and Mackay (1996) define the variance between different measurements 

on the same individual as “the special environmental variance, Ves” because this is 

entirely non-genetic, calculated as one minus the repeatability.  In this case the 

estimate is almost unity.  Therefore egg quality is mostly dependent on good 

management practice not on “good” fish. 
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Previous authors (Holmefjord, 1991; Norberg et al., 1991; Bromage et al., 1994; 

Brown et al., 1995; Mazorra et al., 2003)  identified four factors that influence egg 

quality in the halibut; water temperature, disease, timing of stripping and diet.  All 

fish on the commercial farm were held in similar tanks, fed on the same diet and 

water temperature was maintained at 6oC throughout the stripping season.  Of these 

four factors only timing of stripping was uncontrolled. Nonetheless a large amount 

of variation was observed between animals and fertilisation rates from 0-88% were 

observed.  Norberg et al. (1991) reported fertilisation rates of > 80% when 

ovulatory rhythms were synchronised with stripping times in an experiment using 

only 4 females.  Under commercial conditions checking the fish to determine 

individual rhythms when 70 females are spawning is a highly labour intensive and 

seemingly impossible task.  This routine places an upper limit on the number of fish 

that can be properly managed over a season. Furthermore checking fish daily to see 

if they are ready to be stripped is perceived as being stressful on the farmers and 

fish, so fish are stripped every three days.  There appears to be a trade off between a 

small volume of good quality eggs obtained from a small number of females and a 

large quantity of poor quality eggs obtained by random chance from a large 

spawning group.  

It appears therefore that in a halibut hatchery the only trait that is “controlled” by 

the fish is volume of eggs and that in turn is limited by size and maturity. All the 

other traits are influenced by management practice.  Therefore, the concept of a 

“good fish” is limited to volume alone.  As far as the perceived limitation to the 

halibut industry is concerned, egg quality, the quest is for a “good manager” or 

rather “good management practice”.  The results of this study have shown that a 

good fish is one that gives a large quantity of eggs and yes, a good fish is always a 
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good fish.  The quality of eggs is not a function of the fish but of its environment.  

Nutrition has been shown to influence egg quality significantly and a study by 

Mazorra et al. (2003) has shown that egg quality traits, fertilisation rate and 

blastomere scores, are significantly improved with the addition of arachidonic 

(1.8%) acid to the composite diet. 

The findings of this study permit the proposal of a management strategy that might 

allow more fertile eggs to be produced from fewer fish.  Due to the fact that egg 

volume is repeatable, provided the fish are reproductively active, performance can 

be predicted (volumes of eggs collected) therefore only the best performing 

individuals should be maintained as broodstock.  With fewer females in the 

broodstock population efforts could be concentrated on paying more attention to 

spawning rhythms. A better approach to the management of broodstock for 

improved egg quality might be to reduce the number of broodstock and focus efforts 

on synchronising stripping times with the individual rhythms.  However, due to the 

fact that reproductive activity between seasons is not repeatable the number of 

females in a broodstock group will need to be higher i.e. reduce the selection 

differential.  The design and implementation of a broodstock replacement strategy 

will be discussed in Chapter 6. 
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Chapter 5  

Heritability of body weight 
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5.1 Introduction 

The Atlantic halibut is famed for its large size and ongrowers are paid differentially 

based on the weight of individual fish.  Consequently the primary breeding 

objective, as defined by members of the British Marine Finfish Association 

(BMFA), for commercial production of the Atlantic halibut in the UK is to increase 

growth rate, more specifically body weight at harvest.  Despite the fact that breeding 

objectives are considered to be species-specific (Gjedrem, 2000), growth is 

universally accepted as one of the first, and most important, traits chosen for 

improvement in aquaculture (Gjedrem, 1983; Kinghorn, 1983; Gjerde, 1986; 

Hershberger et al., 1990).  This is because rapid growth speeds up the turnover of 

production and larger animals attract a higher price per unit weight compared to 

smaller ones. Furthermore because it is an easy trait to measure it is likely to 

dominate selection criteria and indices.  

In breeding programmes the objective is to select the individuals with the best 

genetic performance.  This is usually done, in its simplest form, by selecting 

individuals with observed superior phenotypic features; body weight at a specific 

age is most commonly used in improving growth rate (Crandell and Gall, 1993). 

However, unless additive genetic variation exists within the population for the trait 

under selection efforts can be wasted.  Additive genetic variation between 

individuals for the trait(s) of interest is the most important prerequisite for genetic 

improvement through selection, because it is this component of the observed 

phenotypic differences between individuals that permits genetic change in the mean 

of the population, and so makes genetic improvement by selection possible. 
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Moreover the amount of this variance component determines the rate of response to 

selection (Gjedrem, 1983; Gall and Haung, 1988a; Beaumont, 1994).   

Significant research efforts have been focused on estimating both genetic and 

phenotypic parameters for growth traits in several aquaculture species in order to 

predict the success of selection, choose the most appropriate method from various 

types of breeding techniques, estimate economic returns and predict breeding values 

of selection candidates (Gjerde and Schaeffer, 1989). The results of these studies 

have shown that, in general, a sufficient amount of additive genetic variation exists 

for most growth traits to justify a selective breeding approach to improve growth 

(reviews by Gjedrem, 1983; Kinghorn, 1983; Gjerde, 1986; Gjedrem, 2000).  

Furthermore selection experiments have resulted in significant improvements in 

growth performance (see general introduction). However such studies have been 

limited in marine species and have not been conducted in the halibut. 

5.1.1 Heritability 

Additive genetic variance (VA) is normally expressed as a proportion of the total 

phenotypic variance (VP), termed the heritability (h2).  The predictive role of this 

character is its most important feature in selective breeding in that it expresses the 

reliability of the phenotypic value as a guide to the breeding value.  For this reason, 

heritability enters into almost every formula connected with breeding methods and 

many practical decisions about procedures depend on its magnitude (Falconer and 

McKay, 1996). 

5.1.1.1 Estimating heritability 

Heritabilities are estimated from the degree of resemblance between relatives.  This 

is usually done by creating a pedigree structure through controlled matings in order 
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to compare the variance in performance of traits(s) among different relatives (full 

and half- sibs, parent/offspring).  Alternatively following actual selection, the 

realised heritability can be calculated from the deviation of the mean performance 

between the parental and offspring generations. It is however difficult to estimate 

values with great precision and most estimates have relatively high standard errors 

(Beaumont, 1994; Falconer and McKay, 1996).  The precision of heritability 

estimates are generally weak because the scale of experiments are often constrained 

by physical limitations such as the number of family crosses that can be made and 

subsequently accommodated, and the number of individuals per family that can be 

measured.  In addition, if estimates are derived from full-sib families they are based 

on maternal variance components which tend to include supplementary variance 

components other than additive genetic variance such as non-additive genetic 

variance e.g. dominance, and maternal effects which can lead to over estimation of 

the heritability values.  Estimates based on half-sibs tend to give a more robust 

estimate because they are generally based on the sire components of variance, which 

in general do not include, or tend to include to a smaller degree, these non-additive 

genetic and common environmental effects (Falconer and McKay, 1996). 

5.1.1.2 Heritability estimates in aquaculture 

When compared with other organisms, aquaculture species present both advantages 

and disadvantages with regard to the genetic study of quantitative characters. The 

high fecundity and oviparousness of many species provide the opportunity to 

simultaneously fertilise numerous eggs and create full-and half-sib families using 

various experimental designs, including powerful factorial breeding plans.  

However the need to keep families separate until the offspring are large enough to 

be tagged results in the introduction of common environmental effects shared by 
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family members which have proven difficult to remove (Winkelman and Peterson, 

1994a).  Even if genetic profiling methods are used to minimise the environmental 

correlation between family members, fish geneticists are limited by the numbers of 

fish that can be genotyped under mixed rearing conditions (Blanc, 2003). 

The first estimates of heritability for body weight in fish based on half-sib data were 

published in 1972 for the rainbow trout and the common carp (Aulstad et al. : cited 

by Gjedrem, 2000).  Since then, many estimates for body weight at specific ages 

have been estimated from sire, dam and family variance components, particularly 

for cold-water species.  In general, however, many of them were based on a few 

families and as such have large standard errors or due to common environmental, 

maternal and non-additive effects were deemed biased.  A more recent list of 

published estimates is shown in Table 5.1 below. 

 



 

 

Table 5.1 Heritability estimates for body weight in various aquaculture species. 

Species Age /size Design (No. of 
Sires, No. of Dams) 

Numbers 
tested 

h2(±S.E) Method Reference 

Rainbow trout years 
1.5 years 
2.0 years 
2.5 years 

Nested (32S, 76D) 1781 0.28(0.07) 
0.40(0.07) 
0.48(0.08) 
0.51(0.04) 

AM Elvingson and 
Johansson 
(1993) 

Rainbow trout 4.16(±1.55 )Kg Nested (278S, 682D) 67,280 0.44 (0.02) AM Pante et al. 
(2002) 

Peneaid shrimp 20g Nested (16S; 8-16D) 400 0.11(?) 4 generations Goyard et al. 
(2002) 

Rainbow trout 2.5 years 
4 years 

Nested (2S, 2D) 747 
699 

0.37(0.22) 
0.27(0.20) 

S McKay et al. 
(1986) 

Atlantic salmon 1 winter at sea 
2 winters at sea 

Nested (194S, 512 D) 4198 
840 

0.36(0.11) 
0.00(0.15) 

S Jónasson et al. 
(1997) 

Common carp 8 weeks Factorial (24S, 10D) 516 0.33(0.07) AM Vandeputte et 
al.(2004) 

Chinook salmon 3-6g 
9 months in Sea 
22 months in Sea 
 

Factorial (16S, 32D) 
 

7649 
5107 

0.24(0.09) 
0.39(0.08) 
0.25(0.10) 

AM Winkelman and 
Peterson 
(1994a&b) 
 

Rainbow trout 2.58(±1.43)g 
153.8(±35.44)g 
1.45(±0.39)Kg 
1.95(±0.49)Kg 

Nested (49S, 192D) 1920 
2140 
892 
1363 

0.52(0.15) 
0.20(0.11) 
0.18(0.12) 
0.20(0.10) 

S Gall and Haung 
(1988a) 

Rainbow trout 52 days post  
0.15 g 
215 days post 
0.15g 

Factorial (30S, 30D) 3290 0.00(0.32) 
 
0.53(0.27) 

AM Henryon et al. 
(2002) 

S=sire componenet. D=dam component, AM= additive component from animal model, x gen, number of generations for realised heritability 
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In marine finfish species only two estimates of heritability have been presented in the 

literature, Gjerde et al. (1997) in turbot and Gjerde et al. (2004) in cod.  Gjerde et al. 

(1997) analysed the body weights of 6400 fish recorded at 15-16 months of age.  The fish 

were offspring from a nested design of 35 sires and 19 dams and full-sibs were kept in 

separate tanks for about one-third of the studied growth period.  The estimated values of 

heritability for body weight were 0.45(±0.28) and 0.70(±0.19) based on dam and sire 

variance components respectively.  Gjerde et al. (2004) reported heritability estimates for 

body weight in the Atlantic cod. 8236 individuals were tested from a nested design using 

34 sires and 50 dams. Full-sib families were kept separate but estimates were derived 

using an animal model.  They reported heritability estimates of 0.29(±0.27) and 

0.52(±0.26) depending on the model fitted. 

Differences in growth performance between halibut from different areas of the North 

Atlantic (Canada, Iceland and Norway), reared in the same environment under similar 

conditions have been reported (Jonassen et al., 2000; Imsland et al., 2002).  These 

suggest significant genetic differences for the trait.  However, the heritability of growth 

traits within domesticated populations has yet to be estimated.  Therefore the aim of this 

chapter was to estimate the heritability of body weight at different stages in the growout 

phase of the production cycle for hatchery-reared juveniles under current commercial 

conditions. 
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5.2 Materials and Methods 

5.2.1 The Animals. 

The fish used in this study were part of a wider experiment, forming the basis of a PhD 

project by Nigel Jordan, University of St Andrews, aimed at comparing the growth 

performance between fish reared in sea cages (Teacius, owned by Marine Harvest 

McConnell) and fish reared in land based tanks (Otter Ferry Seafish) through the grow-

out period.  The study was also designed to examine the growth patterns between male 

and female halibut in order to ascertain the point at which divergence in growth occurred 

between the two sexes. 

All the fish used were first generation (F1) offspring established from the 1998-spawning 

season of wild parents on the farm.  1516 fish were randomly selected at the nursery 

stage of the production cycle for the experiment. Prior to this point normal protocols for 

hatchery procedures were followed, as described in Chapter 1. The animals used were 

taken from batches that were of similar ages in order to limit bias in the experimental 

design.  Therefore the fish studied were likely to be offspring from a small group of fish 

that spawned within a one-month period.   

The fish were graded into four categories based on size; two groups of “large” fish and 

two groups of “small” fish.  They were grown in external trial tanks, 5m wide and 1m 

deep until every individual was fitted with a PIT tag and weighed.  The average weights 

of the fish in the two large groups were (a) 486.07±89g and (b) 505.66±87g and the 

average weights of the fish in the small groups were (c) 326.79±65g and (d) 343.41±65g.  

At this stage a random sample of 832 fish, sampled approximately equally from one large 
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group (b) and one small group (c), were transferred to two separate tanks 12 meters wide 

with a water depth of 1.2m in Otter Ferry (OFS). The remaining 693 fish in the other two 

tanks (b&d), which were the larger i.e. had higher mean weights in both categories were 

moved to two separate sea cages in Teacius owned by Marine Harvest McConnell (MH). 

Each fish was weighed at approximately 3-month intervals and males were checked for 

sexual maturity until harvest in November 2002.  Sex was assigned by ultrasound 

scanning and sexual maturity in males was determined by gentle palpation of the 

abdomen at weighing times to check for running milt.  The age of sexual maturity for 

males was classified into three categories; first, second and third winter males.  First 

winter males were those that “ran” (produced milt) in February 2001, second winter 

males were those that ran in February 2002 and third winter males were those that did not 

show signs of sexual maturity at the end of the trial period. 

In May 2002 blood samples were collected from 544 randomly selected individuals from 

within both groups (OFS and MH) for genotyping to determine their parentage and 

subsequently to analyse the quantitative inheritance of body weight within the population.  

The procedures followed for the molecular genetics analysis and the results obtained 

were described and reported in Chapters 2 and 3.  The number of fish sampled from both 

groups and their initial grade is shown in Table 5.2.1 
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Table 5.2 Number of fish used in Nigel Jordan's trial and numbers sampled for heritability 
study.   

Fish Otter Ferry Teacius 
 Large Small Total Large Small Total 
No. In trial 405 418 823 396 297 693 
No. Sampled 191 168 359 104 69 173 
No. Assigned   339   160 

5.2.2 Traits and Data 

The performance data used in this study was acquired from the trial records compiled by 

Nigel Jordan in his PhD study.  Information from all the 1516 fish tested in the trial 

(dates of sampling, weights, lengths, condition factor, point of sexual maturity and sex) 

were obtained. However, only data from fish with assigned pedigrees were used for 

genetic analysis.  The fish were weighed 12 times in the course of the study in both sites. 

The dates of sampling are shown below; harvest weight was recorded for fish in Teacius 

only because different management procedures pertaining to harvest are followed in Otter 

Ferry and some fish were retained as potential broodstock 

Four traits were analysed in this study. They were: body weight after three months 

acclimatising to new test environments (acclimatised weight- Acc wt-), body weight at 

the 6th and 9th sampling events that corresponded approximately to the 1st and 2nd years 

on test and the final weight (end weight).  There were differences in weighing times 

between both sites with no consistent patterns (see Table 5.3).  
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Table 5.3 Dates when fish were weighed in the growth trial. 

Measurements* Dates of weighing in Otter Ferry Dates of weighing in Teacius 
Start weight 25/10/99 25/10/99 
Acclimatised weight* 24/01/00 18/01/00 
2 21/03/00 13/03/00 
3 12/06/00 21/06/00 
4 12/0900 28/08/00 
5 07/1200 13/12/00 
First year on test* 26/02/01 13/03/01 
7 12/06/01 12/06/01 
8 10/10/01 25/09/01 
Second year on test* 16/01/02 27/02/02 
10 28/05/02 28/05/02 
End weight* 18/09/02 12/09/02 
Harvest weight  04/11/02 
*Measurements for which heritability estimates were derived 

5.2.3 Statistical Analysis 

Of the 532 fish sampled, 33 were excluded because no pedigree information was derived 

(see Chapters 2 and 3), and a further 13 were removed because of insufficient growth 

information. Therefore data from 486 individuals were analysed with a sex ratio of 

approximately 55:45 (271 females and 215 males).  Descriptive statistics and phenotypic 

correlations were estimated using the programme GenStat for Windows version 7.0.   

5.2.3.1 REML Analysis 

The data was analysed using REML to fit mixed linear models using GenStat software.  

The model used for analysis was:  

Yijklmn= µ + Si + Gj +Ik + (SG)ij+ (SI)ik +  Σijkl +∆ijkm + eijklmn 

Where: 

Y= weight measurement of the nth fish of ith sex, initially graded in the jth category reared 

in the kth site, by lth sire and mth dam.  

µ= Population mean. 

Si = fixed effect of sex i. 
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Gj = fixed effect of initial grade j of the fish coming out of the nursery. 

Ik = fixed effect of site for rearing while on test. 

 (SG)ij= fixed interaction between the sex і and initial grade j. 

(SI)ik= fixed interaction between the sex і and site of rearing k. 

Σijkl= random effect of lth sire. 

∆ijkm= random effect of mth dam. 

eijklmn= residual error. 

Σijkl , ∆ijkm and eijklmn were considered to be independent random normal variables with 

mean 0 and variances σS
2,σD

2 and σe
2 respectively.  The phenotypic variance, σT

2 was 

estimated by: 

σT
2= σS

2+ σD
2+ σe

2 

Estimates of heritability and standard errors were obtained from the variance components 

using the VFunction procedure in GenStat based on formulae from Falconer and McKay 

(1996). 
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Where: 

hS
2=Heritability from sire variance component. 

hD
2=Heritability from dam variance component. 

hC
2=Heritability from combined sire and dam variance components. 
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The combined estimates are expected to give the most precise values of heritability 

because they use more of the available information.  However they are thus based on the 

assumption that the additive genetic component (VA) from the sire and the dam are equal.  

From the initial scrutiny of the results the sire components were observed to be higher for 

most traits.  In order to test the hypothesis that the sire and the dam variance components 

were equal, the combined estimate of heritability (h2
cf) was re-estimated for each of the 

four traits. 

The sire and dam variance components were fixed relative to the residual variance (σe
2) 

such that: 
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From the equations above, h2
cf was calculated through a manual iterative process (26 

iterations) for various γ values ranging from 0.001 to 0.5, corresponding to heritability 

values from 0 to 1.0 respectively.  The maximum likelihood for the h2
cf was obtained by 

finding the value of γ that minimised the deviance value (-2 x log-likelihood).  

95% confidence intervals for h2
cf were defined by the minimum deviance values required 

to reject the null hypothesis (h2
cf = h2), where h2 is the true estimate of the heritability.  

This threshold value was taken as “Dmin” plus 3.84 where, Dmin is the deviance for the 

maximum likelihood estimate and 3.84 is the critical value of χ2 for 95% significance. 

In order to test the hypothesis that the sire and dam variance components are equal, i.e. 

Sγ = Dγ , the hypothesis (h2
cf ≠ h2c), was tested.  A likelihood ratio test statistic was 

calculated by subtracting the deviance obtained in the model described earlier, allowing 

σS
2 and σD

2 to vary freely from Dmin.  The significance of the statistic was tested by 

comparing with critical values of χ2 at the 95% significance level. 

Additional models were used for analysis of male weights including the season of 

maturity for the males as a factor with 3 classes. 
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5.3 Results 

5.3.1 Descriptive Statistics  

The observed means and their standard errors, standard deviations, maximum values, 

minimum values and coefficients of variation for body weight taken at the four defined 

stages for all the fish used in the study are given in Table 5.4.  After acclimatising to their 

new environments, over the duration of the test period, the fish grew from an average 

weight of 0.65kg to 5.90kg.  The variation in body weight increased with advancing age 

and at the end of the experiment the minimum weight of fish was 1.04kg while the 

heaviest fish was 14.56kg. The coefficient of variation also increased as the experiment 

progressed and this level of phenotypic variation suggests a high potential for genetic 

improvement, assuming moderate to high heritability.   

Table 5.4 Descriptive statistics of defined weight traits for all fish used in the heritability 
study. 

TRAIT  µ  s.e. (µ) σ Min Max  c.v (%) 
Acc wt (kg) 0.65 0.01 0.18 0.27 1.17 27.97 
1st Year wt (kg) 2.12 0.04 0.79 0.68 4.61 37.16 
2nd Year wt (kg) 4.37 0.09 1.91 1.09 10.95 43.71 
End wt (kg) 5.90 0.13 2.84 1.04 14.56 48.18 
 µ= mean, s.e= standard error, σ= standard deviation, Min=minimum recorded value, Max= maximum 
recorded value, c.v= coefficient of variation. 
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Figure 5.1 Graph showing the unadjusted mean weights of fish-averaged over sex, site and 
grade- plotted against the times at which the four defined stages of the trial; Acc weight, 1st 
year weight, 2nd year weight and end weight were measured  

5.3.2 Unadjusted Phenotypic Correlations 

Phenotypic correlations between body weights at the points defined in the study are 

presented in Table 5.5.  All correlations were positive and moderate to high in magnitude.  

The correlations of the lowest magnitudes were those between acclimatised weight and 

other body weight traits, particularly with end weight (0.36). 
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Table 5.5 Unadjusted phenotypic correlations between acclimatised weight, 1st year weight, 
2nd year weight and end weight for all fish. 

TRAIT Acc Wt 1st  Year Wt 2nd Year Wt End Wt 
Acc Wt 1    
1st  Year Wt 0.55 1   
2nd Year Wt 0.40 0.76 1  
End Wt 0.36 0.68 0.92 1 

It appears that the strongest correlations, those of highest magnitude, were those between 

measurements made within close time periods particularly late in the production cycle.  

The correlation between 2nd year weight and end weight was of the highest magnitude, 

almost unity (0.92), indicating that fish did not change their ranking position between 

these dates. 

5.3.3 Predicted Means of Fixed Effects 

Assessments of the phenotypic means analysed separately for each group showed that all 

fixed effects fitted (sex, site and initial grade) had notable influences on body weight 

defined at the four stages in the study. 

5.3.3.1 Effect of sex 

The differences in body weight between both sexes were not significant until after the 

acclimatising period. A graphical illustration of the predicted effect of sex on body 

weight of fish in the experiment is shown in Figure 5.2 below.  From the first year 

onwards females were significantly (P<0.001) larger than males and this difference 

increased progressively throughout the experiment.   The observed mean weights of 

males were 85.3%, 52.8% and 44.3% of the corresponding mean female weights in the 

first year, second year and final weights respectively.  Unlike in the females, the average 

weight of males did not change significantly after the second year on test indicating a 
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plateau in the growth curve. By the end of the experiment the heaviest female was 1.6 

times larger than the heaviest male; the average “end weight” of the females was 

6.07±0.35kg while the corresponding value for males was only 2.69±0.36kg, 

approximately 300g less than the desired minimum harvest weight of 3kg 

Figure 5.2 Graph showing the predicted means of the effect of sex (females and males), 
averaged over site, on body weight measured at the four defined stages of the experiment; 
Acc weight, 1st year weight, 2nd year weight and end weight. 

Significant interactions were observed between sex and site.  However, they were not 

apparent until the second year on test. The average weights of females and males in Otter 

Ferry and Marine Harvest are presented in Table 5.6 below. The result of significant 

interactions between sex and site for 2nd year weight (P=0.036) and end weight (P=0.004) 

imply that the effect of sex was dependent on which site the fish were reared in.  This 
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interaction was one of scale rather than rank in that although females were larger overall, 

they grew better in land based tanks, Otter Ferry, than in sea cages, Marine Harvest, such 

that the difference between the sexes was larger in the more conducive environment. 

Table 5.6 The average weights of females and males in Otter Ferry and Marine harvest 
showing the interactions between sex and site of rearing. 

 2nd Year weight End weight 
Site Otter Ferry Marine Harvest Otter Ferry Marine Harvest 
Females 5.19(±0.25) kg 3.46(±0.27) kg 7.33(±0.36) kg 4.80(±0.38) kg 
Males 2.87(±0.26) kg 1.69(±0.29) kg 3.42(±0.36) kg 1.97(±0.41) kg 
Differences 2.32(±0.17) kg 1.77(±0.20) kg 3.91(±0.21) kg 2.83(±0.31) kg 

5.3.3.2 Effect of site 

The environmental effect of site on weight between fish grown on land based tanks 

(OFS) and fish grown in sea cages (MHM) was highly significant (P<0.001) throughout 

the course of the experiment. The fish in Otter Ferry (OFS) grown in the land based tanks 

were consistently larger than those in sea cages at the Marine Harvest McConnell (MH) 

site in Teacius.  Figure 5.3 shows the predicted means of weight of fish reared on both 

sites. Although the patterns of the growth curves were similar there was a substantial 

difference in scale. At the end of the experiment the fish in the land based tanks were, on 

average, 2kg heavier than the fish in sea cages.  There were also significant interactions, 

with grade (P<0.001) from the first year of the experiment and with sex (see previous 

section 5.3.3.1), which rule out the possibility of discussing this effect independently.   

It appears that, as with sex, the effect of site was dependent on which group the fish were 

graded in at the start of the experiment.  The interaction is again one of scale rather than 

rank.  The fish in the land based site (OFS) grew better than the fish in the sea site (MH), 

however with the exception of acclimatised weight, the difference between the “large” 
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grade and the “small” grade was greater in OFS as shown in Table 5.7.  These differences 

were progressive in OFS and remained relatively constant in MH.  The nature of these 

interactions suggest that animals predisposed to perform better did so given the 

opportunity, in this case a superior or more conducive environment.  

Table 5.7 The average weights of fish within and between initial grade (Small and Large) 
reared in the land based site (OFS) and the sea site (MH) showing the interaction between 
the two factors. 

 OFS MH 
Trait Large Small Difference Large Small Difference 
Acc 
weight (kg) 

0.74±0.02 0.54±0.02 0.20± 0.01 0.68±0.02 0.45±0.02 0.23± 0.01

1st Year 
weight (kg) 

2.30±0.11 1.77± 0.11 0.53± 0.07 1.35±0.11 1.16±0.12 0.19± 0.10

2nd Year 
weight (kg) 

4.45±0.26 3.61±0.26 0.84±0.17 2.71±0.27 2.43±0.29 0.28±0.20 

End 
weight (kg) 

6.00±0.36 4.76±0.36 1.24±0.24 3.55±0.39 3.21±0.41 0.34±0.29 
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Figure 5.3 Graph showing the predicted means of the effect of site (OFS and MH), averaged 
over sex and grade, on body weight measured at the four defined stages of the experiment; 
Acc weight, 1st year weight, 2nd year weight and end weight. 

5.3.3.3 Effect of grade 

Due to the fact that there were significant interactions between grade and tank (see 

previous section 5.3.3.2), a general overview of this effect is reported.  The overall effect 

of initial grade on body weight was significant (P<0.001) throughout the experiment and, 

as expected, larger fish maintained their initial weight advantage, however, the impact of 

initial grade/size on fish performance diminished as the fish grew older.  It seems that as 

time passed the difference in relative body weight between initially small fish and their 

larger counterparts gradually decreased.  At the start of the experiment the smaller grade 

fish were 70% of the weight of the larger fish.  In the first and second year they were 

80% and 84% of the weight of their contemporaries respectively.  However, by the end of 
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the experiment they were 83% of the larger group.  These results are presented 

graphically in Figure 5.4 

 Figure 5.4 Graph showing the predicted means of the effect of initial grade, averaged over 
site, on the body weight measured at the four defined stages of the experiment; Acc weight, 
1st year weight, 2nd year weight and end weight. 

5.3.4 Parentage Assignment 

The results obtained from the parentage assignment are presented and discussed in 

Chapter 3.  The animals used in this study were identified as the “1998 year class”. A 

summary of the contributions of sires and dams to this group are presented in Table 5.9 

below.   
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Table 5.8 The actual number (N) and effective number (n) of sires and dams together with 
their individual percentage contributions to the 486 F1 fish studied in the heritability trial.  
Effective number of sires is defined by (∑pi

2)-1 where pi is the contribution of a sire i.  
Effective number of dams is defined analogously. 

Sires: 
N=12 & n=1.66 

Contribution  
(%) 

Dams: 
N=15 & n=3.78 

Contribution 
(%) 

5A 0.80 3A 4.73 
7A 0.40 8A 13.79 
9A 3.41 10A 45.88 
13A 0.20 11A 16.46 
15A 2.81 19A 3.50 
17A 76.15 20A 3.09 
33A 0.60 23A 0.21 
34A 1.81 24A 1.03 
35A 5.61 26A 3.91 
37A 6.41 27A 2.06 
44A 1.60 30A 0.62 
54A 0.20 42A 0.20 
  50A 0.41 
  64A 3.91 
  166 0.21 

5.3.5 Heritability 

Heritability estimates for body weight at the four stages of the experiment derived from 

sire, dam and combined components of variance are listed in Table 5.9.  Values ranged 

from 0.09 to 0.53 with high standard errors that resulted from the small number of 

parents and numbers of offspring per family used in the study.  



 

 

Table 5.9 Heritability of body weight traits estimated from (i) sire components hS
2, (ii) dam components hD

2 and (iii) combined sire and 
dam components of variance hC

2, together with the associated likelihood ratio test statistic (L.R.T.S). 

TRAIT hS
2± s.e L.R.T S χ2

1  hD
2± s.e L.R.T.S χ2

1 hC
2± s.e L.R.T.S  χ2

2 
Acc Wt.  0.09±0.13 1.60 P>0.05 0.11±0.12 2.55 P>0.05 0.10±0.08 5.98 P<0.05 
1st Year Wt 0.48±0.32 20.08 P<0.001 0.11±0.10 7.57 P<0.001 0.29±0.16 50.38 P<0.001 
2nd Year wt 0.53±0.34 23.18 P<0.001 0.25±0.18 15.62 P<0.001 0.39±0.17 60.75 P<0.001 
End Wt 0.49±0.32 19.20 P<0.001 0.28±0.19 25.37 P<0.001 0.39±0.17 63.67 P<0.001 
s.e= standard error,χ2

1 =Chi squared significance value with one degree of freedom, χ2
2 =Chi squared significance value with two degrees of freedom  
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The estimates for body weight heritability were not constant and increased in 

magnitude with age, particularly hD
2 which could be taken as evidence of declining 

maternal effects with age.  Depending on the variance component used to estimate 

the value, the highest estimate was either 2nd year weight (sire component) or end 

weight (dam component or combined).  The presence of dominance was tested and 

found to be absent. 

In order to test if the differences between sire and dam components were due to 

genuine differences in additive genetic variance (VA), a likelihood test was 

conducted. The deviance, -2loglikelihood ratio, profiles of the combined heritability 

values using the formula described in Section 5.3.2.1 for each of the traits are 

shown in Figures 5.5-5.8 below. The newly estimated heritability values obtained 

from the minimum deviance values with their corresponding 95% confidence 

intervals are presented in Table 5.10. 

The likelihood ratio test statistics calculated for each trait show that there is no 

evidence to reject the null hypothesis of σS
2=σD

2.  It can therefore be concluded 

that although the heritability estimated from sire variance components were higher 

for most traits there is  no evidence to suggest that they represent legitimate additive 

genetic influences. 

Since the deviance profiles are markedly asymmetric the confidence intervals will 

provide the best estimate of precision for the heritabilities because the standard 

errors assume quadratic profiles obtained with large data samples. 

 



 

 

Figure 5.5 Deviance profile of the various estimates of heritability for acclimatised weight. 
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Figure 5.6 Deviance profile of various estimates of heritability for 1st year weight. 
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Figure 5.7 Deviance profile of various estimates of heritability for 2nd year weight. 
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Figure 5.8 Deviance profile of various estimates of heritability for end weight. 
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Table 5.10 Heritability of body weight traits estimated from combined sire and dam variance components using γ, fixed –equal- sire and dam 
variance relative to the residual variance (hCf

2) with the calculated likelihood ratio test statistic (L.R.T.S) obtained from comparing these estimates 
with those previously obtained from the REML analysis. 

TRAIT hCf
2 95% Confidence interval L.R.T.S χ2

1 
Acc wt 0.08 0.00-0.44 0.13 N.S (P>0.05) 
1st Year wt 0.28 0.12-0.53 1.72 N.S (P>0.05) 
2nd Year wt 0.39 0.17-0.72 0.62 N.S (P>0.05) 
End wt 0.39 0.17-0.72 0.33 N.S (P>0.05) 
χ2

1 =Chi squared significance value with one degree of freedom, N.S= Not significant
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5.4 Discussion 

This is the first study to present heritability estimates for body weight in the Atlantic 

halibut. Estimated heritabilities for body weight varied depending on the age of the 

fish and the source of variance used to estimate the value.  In general values 

obtained were of the same magnitude found for body weight in other marine and 

cold-water species (0.08-0.53).  In the present study although the confidence 

intervals and/or the standard errors of the early values obtained were large and thus 

not significantly different from zero, the magnitude and precision of the later 

estimates indicated that there is a substantial amount of additive genetic variation 

for growth in the Atlantic halibut and suggest that selection for increased body 

weight is likely to be successful.  The phenotypic correlations between body 

weights at different stages obtained show that 2nd year weight is a good predictor of 

future performance. 

5.4.1 Fixed effects 

End weight, defined as body weight after 3 years, is dependent on sex. At harvest 

females are 3.37±0.19 kg heavier than males; this dimorphism in growth 

performance is consistent with observations by other authors (Björnsson, 1995). 

From the differences observed in body weight of males it appears that growth in the 

Atlantic halibut is affected by the onset of sexual maturity in males.  Accounting for 

this in the statistical model used has improved the estimates of heritability for body 

weight (McKay et al., 1986) however, in the current study it was excluded from the 

statistical model because age of maturity was not recorded in females. 

The observed difference in body weight between both sexes can be explained by the 

onset of sexual maturity in males. Maturity significantly affected the performance, 
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mean weights, of males for all traits (P<0.05) particularly 2nd year weight 

(P<0.001).The predicted mean weights of the males within each group are presented 

in Table 5.11. The numbers of first, second and third winter males are 49, 149 and 

17 respectively. On average males did not reach the preferred market weight of 5kg.  

The divergence in mean body weight between the sexes occurred when most of the 

males matured in the second year of the experiment. The differences in mean body 

weight between males seemed to depend on whether they matured in the first year 

or not.  The differences between second and third winter males were not significant 

but this could be due to the small sample size of the latter in the current study. 

Table 5.11 Comparison of mean weights, and their standard errors, between males 
maturing in the first, second and third winters of the experiment. 

Trait 1st winter males 2nd winter males 3rd winter males 
Acc weight (kg) 0.64 (±0.02) 0.59 (±0.21) 0.57 (±0.04) 
1st year weight (kg) 1.22 (±0.15) 1.59 (±0.14) 1.61 (±0.20) 
2nd year weight (kg) 1.95 (±0.24) 2.55 (±0.22) 2.24 (±0.32) 
End weight (kg) 2.73 (±0.29) 3.29 (±0.26) 3.11 (±0.40) 

In order to improve the mean harvest weight of a population the issue of early 

maturation in males needs to be addressed.  Due to the limited number of males 

within the three classes of maturity (1st, 2nd and 3rd winter males) in the study, 

analysis of heritability of maturity was impossible. Heritability of sexual maturity 

has however been estimated in other aquaculture species and is seen to be of low 

magnitude. Gjerde et al. (1994) obtained values of 0.09±0.04 and 0.15±0.08 in a 

population of Atlantic salmon. 

The fish grown in sea cages were on average 2.00±0.19 kg lighter at the end of the 

growout period than fish reared in land based tanks.  Due to the significant 

interactions between all the fixed effects in the study it is not prudent to discuss 

them independently. All the phenotypic correlations observed in the current study 
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were scaling interactions showing that animals predisposed to better performance 

(females and larger fish at the start of the experiment) grew better in the more 

favourable environment i.e. the sheltered, controlled, tank in Otter Ferry.  Scaling 

interactions such as these could be removed by logarithmic transformations. 

Nonetheless they suggest that there might be genotype by environmental 

interactions introduced as broodstock (replacement candidates) are selected in land 

based systems and commercial producers rear their offspring in sea cages.  Thus 

improved performance in land tanks may not be captured by ongrowers who grow 

juveniles in different and often more hostile environments. In order to quantify this 

effect, if it exists, a further study looking at the ranking of families reared in both 

systems should be conducted.  However, the possibility of carrying out a genotype 

by environmental analysis in the current study was prevented by the uneven family 

structure of the test population, the limited number of parents detected and the small 

sample size. 

5.4.2 Heritability estimates 

The wide range of the confidence intervals, and thus poor precision, obtained for 

heritability values in the current study is consistent with the nature of the 

experimental design, the number of offspring studied and more importantly the 

immensely imbalanced family structure. Heritability estimates reported for body 

weight in aquaculture species are notorious for having large standard errors; even in 

recent times when utilising complex statistical methods to analyse data from large 

numbers of individuals (≥ 1500) several authors still report values of low accuracy 

(Gjerde et al., 1997; Henryon et al., 2002; Gjerde et al., 2004).   
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One reason for this problem is unequal family representation.  It is of particular 

concern when experiments are designed with mixed spawning or hatching groups 

(Fishback et al., 2002).  Most heritability studies however, are designed from 

carefully structured nested or factorial mating designs and equal family numbers are 

reared separately, at least initially, (e.g. McKay et al., 1986; Winkelman and 

Peterson 1994a; Su et al., 1996b; Gjerde et al., 2004) in order to address and 

alleviate this problem. With the advent of genetic profiling it is now possible to rear 

families in communal tanks so as to reduce the common environment effects shared 

by sibs. In these cases steps are taken to ensure that the numbers of offspring per 

parental pair are standardised.  These include the repeated incubation of equal 

volumes of eggs from different females (Vandeputte et al., 2004), or the pooling 

together of equal numbers of hatched fry following separate incubation in order to 

limit problems of unequal fertilization success (Fishback et al., 2002).   

In the current study, however, neither of these measures was taken and financial 

constraints meant data from relatively few individuals (486) was analysed. In 

addition, although the test population was comprised of offspring from 12 sires and 

15 dams, the mating strategy was not controlled, resulting in a highly unbalanced 

family sizes highlighted by the very small effective number of parents (1.66 and 

2.48).  This was because the experiment was conducted within a commercial 

hatchery and results from the parentage analysis revealed managers’ preferences for 

particular males over others. One possible benefit of standard commercial practice 

in halibut hatcheries is the mixing of batches several times in the production cycle 

which could reduce the possibilities of introducing common environmental effects 

between siblings. 
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The differences in heritability estimates between sire and dam components of 

variance for body weight were tested and the results obtained were consistent with 

the conclusion that they represent nothing more than chance.  For this reason there 

are no grounds to invoke the notion of non-additive and or other genetic effects.  

Nevertheless the differences observed were marked and several other authors have 

noted similar disparities, including substantial effects, particularly at the early stages 

of growth (McKay et al., 1986; Gall and Haung, 1988a; Gjerde and Scheaffer, 

1989; Silverstein and Hershberger, 1994 and Gjerde et al. 1997).  It is therefore 

conceivable that the differences observed have some basis in reality.   

Unlike many studies, estimates from sire components of variance were observed to 

be much higher than those derived from dam components. It is, however, more 

common for the reverse to occur (Beaumont, 1994). In his review of eight 

heritabilities estimates in the rainbow trout, Gjedrem (1992) found that those 

derived from dam variance components were, on average, 0.3 higher than those 

estimated from sire components of variance. Differences in heritability estimates 

between maternal and paternal components are usually attributed to common 

environmental, maternal and or non-additive genetic effects caused by dam-nested-

within sire mating designs. 

In the unusual cases where the sire heritabilities were higher than the dam 

heritabilities (Gall and Haung, 1988a; Silverstein and Hershberger, 1994; Gjerde et 

al., 1997) the experimental designs were structured such that sires were nested with 

the dams and offspring were reared separately.  Therefore sire components of 

variance also contained common environmental variance and dominance which is 

usually the case when the dams are nested within sires (Vandeputte et al., 2003).   



Chapter 5 

 215

A more plausible explanation for these differences observed in the current study is 

that they are due to the variance in sire contributions to the offspring generation 

compared with the variance in dam contributions.  The sire variance estimates were 

exaggerated as a result of a single male accounting for a high percentage (76.15%) 

of the parentage in the test population (Table 5.8).  

Although tests revealed there was insufficient evidence to suggest that sire and dam 

variances were not significantly different from each other, the opposite is also true 

in that there is insufficient evidence to exclude the presence of a small amount of 

maternal effects  

In the present study, heritability estimates for body weight increased with age. 

Changes in heritability estimates for body weight with advancing age of the fish are 

consistent with some findings in the literature but reports are conflicting.  Studies by 

Gall and Haung (1988a), Crandell and Gall (1993), Gjerde et al. (1994) and 

Winkelman and Peterson (1994b) all found that heritability estimates for body 

weight in trout and salmon decreased with age.  Yet in his review, Gjerde (1986) 

concluded that heritability of body weight in juvenile trout and salmon was 

generally low (0.1) but increased up to 0.4 in adults.  McKay et al. (1986), 

Elvingston and Johansson (1993) and Su et al. (1996b) also observed that 

heritabilities increased with age.  Kinghorn (1983) suggested that in cases where 

heritability of body weight increases with age it might be due to diminishing 

maternal effects.   

Maternal effects in fish species are likely to be caused through differences in egg 

sizes or by egg quality however, they are not expected to be large because offspring 

are not actively nurtured (Gjedrem, 1992). This is consistent with the findings of 
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several authors concluding that differential growth in salmonid fry, associated with 

variation in egg sizes disappears soon after first feeding (Crandell and Gall, 1993). 

In this study the presence of maternal effects in the form of varying egg sizes might 

have had an effect on early growth performance and thus the heritability estimates 

as suggested by Crandell and Gall (1993).  This is because the halibut egg is large 

(3.06-3.49 mm) and it is expected to contain enough energy to sustain a developing 

larva through a very long yolk sac period up until first feeding, which sometimes 

lasts up to 80 days (Haug et al., 1984).  Thus the maternal environment, i.e. the egg, 

received by a developing halibut is comparatively more important for early growth 

than that received by a developing salmonid which start first feeding at 50 days 

because it is required for a longer period of time.  Secondly, first feeding in the 

halibut is also different as fry are fed on live feed. This requires a greater amount of 

activity by the larvae to feed successfully and so the maternal effects may be 

expected to last longer because if a halibut “inherits” a good quality and/or large 

egg from its mother it is more likely to feed better and thus grow quicker in the 

early stages than one that “inherits” a poor quality and/or smaller egg. 

Previous results from Chapter 4 suggest that egg quality in the F1 population was 

not repeatable.  If this is the case with the parental population used to produce the 

fish used in this study then maternal effects (differences in egg quality between 

females) will occur not only between females but also between different spawnings 

of the same female.  Also because batches were mixed frequently, environmental 

effects common to maternal sibs could be discounted.  

The experimental design could have led to lower estimates of heritability obtained 

for acclimatised weight due to a division of the population distribution as a result of 
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grading.  By incorporating differences between fish in the small and large grade into 

the statistical model the extent of the genetic differences between the offspring of 

different sires and dams could have been masked, i.e. the effect of grade could be 

confounded with genuine additive genetic differences and the resulting heritabilities 

biased downwards.  The statistical analysis was repeated and the trait heritabilities 

for all traits were re-estimated without including grade in the model in order to 

explain the potential magnitude of this bias.  The results are presented in Table 5.12 

below. 
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Table 5.12 Heritability of body weight traits estimated from (i) sire components hS
2, (ii) dam components hD

2 and (iii) combined sire and dam 
components of variance hC

2when grade was excluded from the statistical model compared with when grade was included in the model (G). 

TRAIT hS
2± s.e χ2

1 hS
2

(G)± s.e  hD
2± s.e χ2

1 hD
2

(G)± s.e  hC
2± s.e χ2

2 hC
2

(G)± s.e 
Acc Wt.  0.21±0.21 P<0.05 0.09±0.13 0.36±0.23 P<0.001 0.11±0.12 0.29±0.14 P<0.001 0.10±0.08 
1st Year Wt 0.52±0.34 P<0.001 0.48±0.32 0.17±0.14 P<0.001 0.11±0.10 0.34±0.17 P<0.001 0.29±0.16 
2nd Year wt 0.64±0.38 P<0.001 0.53±0.34 0.28±0.19 P<0.001 0.25±0.18 0.46±0.19 P<0.001 0.39±0.17 
End Wt 0.55±0.34 P<0.001 0.49±0.32 0.33±0.21 P<0.001 0.28±0.19 0.44±0.17 P<0.001 0.39±0.17 
s.e= standard error,χ2

1 =Chi squared significance value with one degree of freedom, χ2
2 =Chi squared significance value with two degrees of freedom  
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In general the results of the analysis are not surprising in that the trend in the 

estimates is similar but the magnitudes of the estimates are greater.  They do 

however suggest that for acclimatised weight, a significant amount of the genetic 

variation could have been masked by the grading process.  Not only have all the 

estimates increased but they are all now highly significant.  This second analysis is 

nevertheless also biased but in this case upwards. 

The purpose of this study was to test whether additive genetic variance exists for 

body weight in the Atlantic halibut.  This was the case.  The farmed population of 

halibut appears to be consistent with other farmed aquaculture species where 

additive genetic variation for growth traits has been found.  Undoubtedly values 

obtained from sire variance estimates were inflated and thus the combined estimates 

from both sire and dam variance components will be used.  In addition because of 

the skewed family sizes and the over-representation of a single sire the best 

estimates were those calculated from the manual iterations using fixed sire and dam 

variance components.  The confidence interval is also a better measure of precision 

because standard errors are calculated based on the assumption of normality which, 

from the deviance plots, is not the case in the current study. Based on these 

estimates breeding values for candidate replacement broodstock can be calculated 

and the predicted response to selection evaluated.  
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Chapter 6  

General Discussion and Genetic 

management Strategy 
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6.1 Introduction 

The Atlantic halibut industry in the UK is now 22 years old but contrary to 

predictions made has not grown at the desired rate.  The impetus to culture the 

halibut developed from a need for diversification within the European and North 

American aquaculture industries which were, and still are, dominated by the 

production of salmonid species, in particular the Atlantic salmon.  However, interest 

in the species is beginning to wane due to the numerous technical challenges 

associated with the hatchery phase and disease that has resulted in disappointing and 

variable levels of fry production.  It has also become apparent that in contrast to the 

Atlantic salmon, the Atlantic halibut is likely to remain a high value product in a 

niche market, due to the high cost of juvenile production caused by the fixed costs 

associated with running a hatchery and the level of expertise and labour involved. 

The industry in the UK started from a small demonstration project based at the Sea 

Fish Industry Authority’s Marine Farming Unit in Ardtoe, Scotland and was 

developed by Otter Ferry Seafish as a commercial enterprise.  The species was 

originally selected as the most suitable marine fish species for farming in the UK 

based on its high value, good market demand and perceived growth characters in the 

prevailing water conditions (Shields et al., 1999).  Market demand was high 

because of consumers’ image of a premium fish and demand for the product out 

weighed supply as natural stocks had declined causing high prices. 

The farming of the Atlantic halibut was only possible due to comprehensive 

research efforts and collaborations between commercial growers and research 

scientists but the progressive decline in salmon prices is having a knock on, 

negative, effect on the progress of the culture of this species.  This is because the 



Chapter 6 

 222

aquaculture industry, like many others, is presently following the universal trend for 

consolidation and globalisation. It is increasingly one dominated by a small group 

of multinational companies such that the financial input needed to fund research 

towards finding the solutions to the problems associated with poor juvenile 

production observed in the halibut is being eroded by low profits from the salmon 

enterprises.  Thus research grants are being withheld or, in the certain instances in 

the UK, withdrawn. 

Whilst the objective of the current study was to establish a strategy for the effective 

genetic management of captive populations and the establishment of selective 

breeding programmes for the halibut it was also, by default, about furthering and 

contributing to the collective knowledge for and towards the successful routine 

culture of this newly selected aquaculture candidate.   

The results obtained in Chapters 2 and 3, describing the application of molecular 

makers to assess the level of genetic variation and contribution of wild parents to 

the first generation of hatchery reared fish, were very similar to those previously 

reported by other authors working in Canada, Norway, Ireland and Iceland 

(Stefánsson et al., 2000; Jackson et al., 2003; Cross et al., 2005).  Marked 

reductions in the levels of genetic variation, as judged by allelic diversity, were 

observed between the parental and offspring generations with only half of the 

parents succeeding in contributing any offspring to the F1 populations.  These 

problems were compounded by the fact that family sizes were highly skewed and 

certain families were greatly over represented, compared to what would have been 

expected from random mating.  The F1 population was in effect a small number of 

large full and half sib families. 
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Despite the fact the heritabilities obtained in Chapter 5 point to the fact that 

selecting for improved growth is likely to be successful; the original idea of 

designing a selective breeding programme has been compromised by the poor 

family structure within the sampled population which, from the small number of 

published studies appears to be typical for this species. The poor family 

representation and losses of genetic variability can be explained by a combination of 

forces: (1) management practices, (2) the nature of the reproductive biology of the 

halibut and (3) an interaction between the fish and its environment- which given the 

stage of development of the industry, can be viewed as the process of 

domestication. 

These are large issues and they can only be resolved by understanding 

domestication in relation to the halibut.  Thus, while the issues related to genetic 

diversity need to be addressed immediately, they do however raise the interesting 

question of why these reductions occurred.  Therefore domestication and its 

implications will be reviewed and discussed, because in my opinion, it gives insight 

into the genetic management of this species. 

6.1.1 Domestication  

The issue of domestication in aquaculture is often discussed in terms of the impact 

of farmed stock on the population structure of their wild counterparts when they 

escape from cultured systems (e.g. Gross, 1998; Waples, 1999; Cross, 2000; 

Hansen, 2002; Glover, 2002).  The focus in the current context, however, is the 

process of domestication itself, i.e. the reverse flow of wild fish into captivity.  

Several definitions of domestication can be found in the literature among them the 

definition by Price (1984) bests suits the present purpose.  He defines domestication 
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as “that process by which a population of animals becomes adapted to man and to 

the captive environment which he provides by some combination of genetic changes 

occurring over generations and environmentally induced developmental events 

reoccurring during each generation”. In this sense domestication can be viewed as a 

bi-factorial phenomenon, firstly an evolutionary process of the animal; and secondly 

an ongoing experience provided for and controlled by man. By comparison Hale 

(1969) defines domestication as “that condition wherein the breeding, care and 

feeding of animals are more or less controlled by man” which excludes the notion of 

evolution; a time dependent, cumulative change by the animal. 

6.1.1.1 Domestication and aquaculture 

Of the vast number of animal species, very few have been successfully domesticated 

(Simm, 1998; Diamond, 1998; Mignon-Grasteau et al., 2005).  The reasons for this 

were discussed by Francis Galton (1865) in his essay “The first steps towards the 

domestication of animals”.  He proposed that the process of domestication occurred 

by trial and error and argued that “the animal creation has been pretty thoroughly, 

though half consciously, explored and there is no animal worthy of domestication 

that has not frequently been captured, and might ages ago have established itself as 

a domestic breed, had it not been deficient in certain necessary particulars”.  

Galton identified six criteria (particulars) for successful domestication of animals 

which have formed the basis of all subsequent theories (e.g. Hale 1969; Price 1999; 

Mignon-Grasteau et al., 2005).  In brief they are: 

1. They should be hardy 

2. They should have a fondness for man 

3. They should have a desire for comfort 
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4. They should be useful to man 

5. They should breed freely 

6. They must be easy to tend 

Whilst it is clear that man is well placed to experiment and work towards items 2, 3, 

5, & 6 on land animals, these objectives are much more challenging with aquatic 

species as man was dealing with organisms and an environment that were far 

removed from his experience. 

Modern aquaculture however, represents a shift in Galton’s criteria for 

domestication.  This shift, from the definition by Price (1984) given above, is a 

change in focus from “the animals and their inherent ability to adapt to man and the 

environment he provides” to “man and his ability to provide a suitable environment 

and experience for the animals”.  As such the success of domestication today draws 

heavily upon advances in technology and human understanding of animal biology.  

Man now has the potential to create an environment that meets many of the needs of 

animals allowing the process of inherent adaptation to happen without or with very 

little incidence.  The process of fish domestication, for example, is underpinned by 

complex industrial technology informed by an extensive body of scientific 

knowledge relating to many aspects of fish biology including nutrition, health and 

physiology (Huntingford, 2004).  Consequently it can be said that of Galton’s 

criteria for domestication item 4 (“usefulness to man”) is the only one relevant to 

aquaculture today. 
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6.1.1.2 Domestication and the Atlantic halibut 

The halibut is a case in point.  The justification for domesticating the halibut were 

based on the desire to mass produce a high value product at a profit, i.e. usefulness 

to man, irrespective of the other criteria outlined by Galton (1865) such as “easiness 

to tend” and “the ability to breed freely”. It was assumed that technology would be 

developed to overcome the apparent challenges and any biological criteria that were 

not fulfilled.  In this case the technology needed for successful culture includes a 

steady flow of salt water, maintaining precise temperature control that is vital for 

egg quality in broodstock and pre-weaned juvenile survival as well as the 

production and culture of live feed for newly hatched fry to name a few. 

Although observed losses in genetic variation have been attributed to the lack of 

established techniques for the culture of this animal (Jackson et al., 2003) it is my 

view that they also represent an inability of some of the fish to adapt to the farmed 

environment, a natural phenomenon called “natural selection in the captive 

environment” or “domestication selection”. 

6.1.1.3 Domestication selection 

The domestication process concerns adaptation to the captive environment which is 

characterised by genetic changes in behaviour, morphology and physiology 

achieved over generations (Doyle, 1983; Price, 1984).  The genetic forces with the 

greatest impact on the process of domestication are inbreeding, genetic drift and 

selection. Whereas inbreeding and genetic drift produce random changes in gene 

frequencies, the changes resulting from selection are non-random and often 

directional (Price, 1984; Price 1999; Vandeputte and Launey, 2004). 
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Selection is the final stage of the domestication process and it was by continued 

selection of the tamest individuals that our domestic breeds became established 

(Galton, 1865).  Selection in the context of domestication is a continuum of 

unconscious “natural” selection and methodical “artificial” selection (Price, 1984; 

Diamond 1998). In contrast to “natural” selection the so called “artificial” selection 

involves an effort by man who selects those individuals which he believes will 

produce a desired phenotype (Price 1984; Price 1999).  It has been defined as “any 

non-deliberate change in selection, resulting from natural interactions between fish 

and the domestic environment in which they are reared, relative to that experience 

by the natural population” (Glover, 2002) and as “natural selection on traits which 

affect survival and reproduction in human controlled environments” (Doyle, 1983).   

In the absence of artificial selection, domestication selection provides the basic 

mechanism for genetic change in captive populations and this process eliminates 

animals unable to reproduce in captivity (Price, 1984; Price 1999; Mignon-Grateau 

et al., 2005).  The influence of domestication selection on the gene pool depends on 

(1) the extent to which the captive environment allows the development and 

expression of species-typical biological characteristics and (2) the number of 

generations in captivity (Price, 1984).  The intensity of this selection is expected to 

be inversely related to the degree of preadaptation for the specific captive 

environment provided, such that the adaptive capabilities of animals are severely 

tested when new environments do not match the physical environment to which the 

population is inherently adapted.  Thus, species that possess few preadaptations for 

their respective environments will experience rather intense selection and show 

relatively poor and highly variable survival or reproductive success in the early 

stages of domestication (Price, 1984; Price 1999).  In general, domestication 
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selection is most intense during the first few generations following the transition 

from wild to captive environments and the degree of adaptation is expected to 

increase as the frequencies of “favourable genes” accumulate in response to 

selection (Price, 1984; Price 1999). 

In halibut culture the environment in which the animals are reared in is very 

different from, and almost alien to, their natural one.  The halibut is a benthic 

dwelling creature: coastal areas at depths of 20-60 m are thought to serve at nursery 

grounds and mature halibut migrate to spawning grounds in deep water at 300-1000 

meters, with eggs floating upwards to depths of 100- 200 m (Haung 1990; Arthur, 

1999).  In contrast captive broodstock, larvae and juveniles are maintained in tanks 

that are comparatively shallow and confined compared to their natural environment; 

in most cases in the UK they are kept in converted salmon facilities.  Although 

conditions of low light intensities and water flow are mimicked in the hatchery 

incubators other conditions such as pressure are not. Such differences in 

environment could increase, to an unknown degree, the intensity of domestication 

selection.  

Our ability to minimise the intensity to selection is limited by the difficulty of 

observing normal behaviour of the halibut in its normal habitat. In fact all 

knowledge of yolk sac larvae stem from observations made during rearing 

experiments with artificially fertilised eggs because of a scarcity of records of 

pelagic stages (Blaxter et al., 1983).  In the wild, larvae are scattered randomly at 

low density over a very large expanse of water (Haung, 1990).  Thus the factors that 

make modern domestication successful i.e. an in depth understanding of biology 
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and the creation of the “experience and environment” that ease preadaptation is 

absent. 

It can therefore be proposed that the severe losses in genetic variation and poor 

family representation observed in halibut culture are due, for the most part, to a very 

high selection pressure imposed on the species by the captive environment and 

man’s inability to determine those factors that maximise reproductive success in the 

wild.  An example of limiting reproductive success through current management 

practices is the routine practice of stripping every three days regardless of the stage 

of females’ reproductive cycle which has an effect on egg quality as argued in 

Chapter 4. 

Doyle (1983) concluded that variation in survival and fecundity was inescapable in 

the domestication phase of aquaculture stocks. The lower levels of reproductive 

success between cultured and wild stocks of Atlantic salmon reported by various 

authors (e.g. Gross, 1998; Fleming et al., 2000) have been attributed to the negative 

effects of domestication selection (Vandeputte and Launey, 2004).  Low 

reproductive success between families was also observed at the initial stages of the 

Norwegian Atlantic salmon selective breeding programme (Gjedrem et al., 1991).  

These effects however, are not as drastic as those observed in the halibut probably 

because the hatchery environment is much closer to their natural environment. 

A complementary explanation for these reductions could be that because the animal 

is very highly fecund these losses could be normal for this species in their natural 

habitat.  Also organisms which are highly fecund such as the Pacific oyster tend to 

carry a large genetic load (Launey and Hedgecock, 2001).  Genetic load is defined 

as the decline in fitness caused by deleterious alleles relative to fitness of an optimal 
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phenotype (Rowe and Beebee, 2003); it describes the relative chance that an 

average individual will die before reproducing because of the disadvantageous 

genes that it possesses (Ridley, 2004).  Following a severe population bottleneck, of 

the sort that occurred when captive halibut populations were established, genetic 

load caused by recessive mutations always increases (Kirkpatrick and Jarne, 2000).  

This happens because loci at which deleterious alleles increase in frequency causing 

those mutations to be exposed as homozygotes.  Furthermore because small 

populations tend to suffer larger genetic loads (Lynch et al., 1995; Batallion and 

Kirkpatrick, 2000) it could be that the high mortality rate of juveniles was due to the 

increased genetic load in the parental population resulting from the small number of 

individuals in the founding populations. 

6.1.1.3.1 Domestication selection and the Atlantic halibut 

How important is domestication selection and how does this influence the 

establishment of a genetic management and genetic improvement system for the 

Atlantic halibut?  Genetic management involves the assessment and control of 

forces that exert selection pressures on the population resulting in the loss of genetic 

variation of which, as proposed in the halibut, domestication selection in the halibut 

is a significant component.  Knowledge of these forces is essential for the design of 

efficient genetic improvement schemes. 

While significant amounts of progress have been made in several aquaculture 

breeding schemes involving a wide range of species such as the trout, Pacific and 

Atlantic salmon and catfish, (see Chapter 1) it is my opinion that selective breeding 

in the halibut is, at this stage premature.  To illustrate this point I will compare the 

halibut with the species it was domesticated to compete with, the Atlantic salmon. 
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After just 25 years of production the output from salmon and trout farming was 

greater than the sum of meat production from pig, cattle and poultry (Gjøen and 

Bentsen, 1997).  At the present rate of growth, the world wide halibut industry is 

unlikely to equal this feat.  A potential problem with domestication and selective 

breeding in the halibut is the long generation interval.  The process of domestication 

occurs over generations and the generation interval in the halibut is at least twice as 

long as in the Atlantic salmon.  Consequently in the 18 years of halibut commercial 

culture in the UK, only one generation of mature fish have been produced whereas 

at this stage in the salmon process 5 generations had been produced.  Therefore the 

accumulation of “domesticated” individuals is as least five times as rapid.  Going by 

the criteria given by Price (1984) it can even be argued that compared to the halibut, 

salmon and the trout are already domesticated.  He proposes and I quote that “given 

a stable captive environment and animal management system, the domestication 

process is complete only when the fitness of the population has reached some 

reasonable maximum”.  The successes reported in salmonid breeding suggest that 

this “maximum” is being approached within the aquaculture environment for the 

Atlantic salmon and the trout but the same cannot be said of the present situation of 

halibut culture and points to one of the objectives for the future of the industry.  

Until the production of juveniles is routinely successful a selective breeding 

strategy, of the sort employed in domesticated livestock and established aquaculture 

species, will exacerbate the depletion of genetic diversity already occurring through 

domestication. 

The selection pressures imposed on the halibut population by the hatchery 

environment and management practices have resulted in half of the candidate 

parents failing to breed successfully.  Put into an animal breeding context, the 



Chapter 6 

 232

selection intensity for the trait of survival alone was approximately 0.50.  Following 

natural selection for survival if added pressures are imposed on the population for 

traits such as growth, coupled with the limited population size, it is conceivable that 

the survival of the Otter Ferry halibut population may be under serious threat.  This 

is because compared to mass selection modern methods of breeding value 

estimation, such as BLUP assign the highest predicted breeding values to animals 

that will tend to be more related than expected in comparison to mass selection.  

When these animals are crossed their offspring will be less able to breed due to 

inbreeding depression, which consequently will limit their ability to adapt further 

retarding the domestication process.  So how can the principles of animal breeding 

theory best serve this species and what is the future perspective of the world wide 

captive halibut industry? 

Animal breeding theory and techniques should be applied to ensure that the 

domestication period of the species progresses with the minimal losses of genetic 

diversity.  The goal of the geneticists is to bring about a steady improvement in the 

profitability of the stock (Doyle 1983) to this end; based on findings of the current 

study the present breeding goal for the halibut industry should be redefined.  It is 

my view that the goal should be to acquire a domesticated strain of the Atlantic 

halibut. 

Fitness, reproductive success, of newly domesticated animals in captivity is likely to 

increase with time i.e. subsequent generations are expected to out perform their 

parents. In a study with the fruit fly (Drosophila melanogaster) Gillingan and 

Frankham (2003) found that the rate of improvement in fitness reached 25% of its 

maximum after 6 generations. Whether the same will happen in the halibut is as yet 
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unknown however what is clear at this stage is that unless the captive populations 

are “domesticated” i.e. adapted to their new environment, added selection pressures 

other than those imposed by the environment will be detrimental.  Thus animal 

breeding theory should be applied to ensure that the domestication period 

progresses with the minimal losses of genetic diversity. 
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6.2 Genetic management strategy 

The overall purpose of this strategy is to ensure a wide genetic base by employing 

methods used in conservation genetics to minimise the rate of inbreeding over 

subsequent generations.  These methods are discussed briefly and their application 

to a general programme for the genetic management of the halibut is proposed, 

structured around the routine husbandry practices outlined in Chapter 1.  Following 

this the specific case of Otter Ferry is discussed.  

6.2.1 Minimising the Rate of Inbreeding 

In order to minimise the rate of inbreeding within a population three factors need to 

be considered: 1) the number of selected parents (census of population), 2) the 

number of sires and dams (sex ratio) and 3) the numbers selected per family 

(variance in family size).  The concerns with the halibut broodstock replacement 

populations are that none of the three factors were considered or due to biological 

and technical limitations were not resolved.  Few of the wild parental individuals 

are being represented in the F1 populations, i.e. families are being lost, and the 

variance in family sizes are very large resulting in the effective population sizes 

being much less than the actual number of parents.  Furthermore, as revealed by the 

genetic profiling, milt from a single male was used to fertilise most females’ eggs 

resulting in a highly skewed sex ratio. 

Inbreeding is kept lowest when families contribute equally to the next generation 

(Sonesson et al., 2005).  If an equal number of parents are taken from each family, 

the variance in family size will be zero, and the resulting effective population size 

will be twice the actual number (Falconer and Mackay, 1996).  Also if the number 
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of each sex is the same, using single pair matings as is commonly done in the 

halibut, the effective population size is maximised. 

While the common selection methods employed in fish breeding like mass selection 

and family selection will result in the reduction of the amount of genetic variation 

through limiting the number of families that are selected and increasing the variance 

in family sizes as previously observed on the farm (see Chapter 3), using within-

family selection, on the other hand will allow the control of these highlighted 

factors. 

In within-family selection, each family can contribute a fixed number of parents of 

each sex and because this method does not select between families, the level of 

genetic variation is maintained, however only half of all the available genetic 

variation is utilised resulting in reduced gain (Sonesson et al., 2005).  Nonetheless 

using this method it will also be possible to improve growth rate while the animals 

adapt over generations with minimal effects on the increase of inbreeding and 

obvious benefit to the industry.  Individuals are selected because they have the 

largest deviation from their family mean, in this case body weight, so the processes 

of artificial and domestication selection can occur side by side.  The largest animals 

in each family can be chosen as broodstock and although the primary objective of 

this strategy is to conserve the genetic diversity, under the seemingly intense 

domestication selection and/or through the developmental bottleneck of successful 

rearing protocols, it will also be possible to simultaneously improve growth rate. 
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6.2.2 Broodstock Replacement 

6.2.2.1 Overview 

The proposed strategy is, in effect, a broodstock replacement policy using within-

family selection.  This method reduces the selection intensity imposed by the 

breeder thereby allowing the process of domestication to “select” the best members 

within rather than between family groups maximising the level of genetic variation 

in the hatchery population by maintaining a constant effective population size.  The 

animals selected as broodstock replacements will therefore go on to produce the 

eggs and offspring for commercial culture with zero genetic lag, a crucial factor 

considering the generation interval of this species.  There will also, as a corollary, 

be no distinctions between the “breeding nucleus” and “production fish” thereby 

conserving space. 

6.2.2.2 Broodstock population, sex ratio and family sizes 

The objective of this programme is to maintain a low rate of inbreeding therefore as 

previously stated in Section 6.2.1; the base population should be large, ideally 

comprised of at least 250 unrelated individuals, with an equal sex ratio, 125 males 

and 125 females.  To establish a broodstock replacement population using within-

family selection, one male should be mated to one female only and visa-versa, 

resulting in the creation of 125 full-sib families.  Two offspring per family, one of 

each sex, should be retained as replacements and because the variance in family size 

will be zero the effective population size becomes 500.  Using the formula derived 

from Falconer and Mackay (1996) for estimating the rate of inbreeding with zero 

variance in family sizes: 
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Where: 

Nm= Number of males 

Nf = Number of females 

This gives a desired rate of inbreeding of 0.1% per generation. 

6.2.2.3 Rate of replacements 

As previously stated the major draw back with this species is the long generation 

interval.  Although females start producing eggs at 5 years old they produce their 

best eggs later on in life, however a quick turn over of generation time is required to 

speed the rate of adaptation therefore as a compromise replacements will be retained 

from females at 7 years old.  Males maturing in their first or second winters will not 

be desirable as replacements therefore third winters or males maturing at three years 

old will be used, bringing the generation interval to five years.  In order to maintain 

a consistent production of eggs and to ease the work load on the hatchery only 25 

families will be replaced in the broodstock population each year. 

6.2.3 Selection Regime 

The current study has shown that without the application of genetic profiling 

technology for the identification of selection candidates, successful broodstock 

genetic management will have to incur the expenditure of building and designing 

new and smaller egg incubators and yolk sac incubators which, considering the 

current state of the industry is highly improbable.  Therefore the alternative “walk 

back” strategy, proposed by Doyle and Herbinger (1994) and developed in this 

study, is recommended whereby pedigree is retrospectively assigned after 

communal rearing of offspring. 
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To cause the minimum amount of inconvenience to hatchery and management staff 

the genetic management strategy will be structured around normal production 

procedures.  This will involve actions at all phases in the production cycle, however, 

the replacement procedures will run concurrently to the production practices. 

Throughout the production cycle though, the batches that contain potential 

replacement broodstock (replacement batches) will be kept separate from 

production fish in order to ensure minimal age effects within the batches and to 

facilitate a greater accuracy of parental assignment as the parents that comprise each 

batch will be known before hand.  A flow diagram of the replacement strategy is 

presented in Figure 6.1 below. 
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Figure 6.1 Flow diagram of broodstock replacement procedures through the 
production cycle 
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6.2.3.1 Stripping and fertilisation 

The external fertilisation, high fecundity and batch spawning characteristic of the 

halibut allows the production of a wide variety of maternal and paternal full-and 

half-sib families several times in a single spawning season.  For the purpose of the 

broodstock replacement strategy only 25 (one fifth) of the 125 full-sib families will 

be replaced every year.  So in five years the entire broodstock population would 

have been replaced with more “domesticated” fish.  The families will be previously 

determined by the geneticists and fixed for at least 2 generations.  Every one of the 

25 families will be set up by routine practices (milt from one male used to fertilise 

eggs from his designated mate as described in Section 1.2.2.2) and the process will 

be repeated at least 3 times for each family in a single spawning season to ensure 

that offspring from each family is represented. 

6.2.3.2 Egg room and yolk sac 

In order to keep the replacement programme separate from normal production a 

“replacements batch” is defined.  A “replacements batch” will be comprised of as 

many fertilised eggs from the 25 full-sib families that will be required to justify the 

running of a single egg incubator (approximately 1500 ml).  Because the contents of 

two egg incubators are required to fill a yolk sac incubator two “replacement 

batches” will be used to make up one yolk sac incubator.  

6.2.3.3 First feeding, weaning and nursery 

It is usual practice to put the contents of two yolk sac incubators into one large first 

feeding tank.  Therefore for the purpose of the replacement strategy at least two 

smaller first feeding tanks will be required to hold larvae from one yolk sac 

“replacements batch”, at very little cost to the hatchery.  The potential broodstock 
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will be placed in these tanks until they are transferred to weaning and nursery 

facilities.  At weaning another two or more tanks will be set apart for the 

replacements and the grading will be “lessened” into only two of the regular four 

grades for fish within a “replacement batch” cohort: Large and small to minimise 

environmental variation, age effects, cost and space.   

6.2.3.4 Grow out and selection 

At about 500g the largest 250 fish from all “replacement batches” will be PIT 

tagged and genotyped at the cost of approximately £6 per fish.  The largest ten from 

each family will be retained as potential broodstock.  If however no representatives 

from a family are found, the “walk back” strategy will be employed until 10 

members of each family are found.  All selected fish will be fitted with PIT tags. 

Testing protocols will be almost identical to those conducted in the trial by Nigel 

Jordan as described in Chapter 5.  These fish will be weighed twice every year at six 

monthly intervals. Sex will be determined by ultra sound and by gentle palpitation 

of the abdomen to check for running milt.  Males that mature within two years will 

be removed from the group, unless every male within a single family is a precocious 

maturer in which case the largest males form that family will be retained.  Every 

year the smallest two individuals from each family will be culled from the group 

and the best four fish, two from each sex will be kept as potential replacements.  

Although only two are required as replacements doubling the number of fish per 

family reduces the risk of loosing families.  At the time of introduction into the 

broodstock population only two will be selected. 
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6.2.3.5 Replacement policy and broodstock population 

The selected replacements will be introduced into the broodstock populations 

depending on their sex.  The replacement broodstock have two functions: their first 

purpose is to produce offspring for production and secondly to produce future 

broodstock.  Males will be introduced into the broodstock population for 

commercial production at three years old and the females at five years old.  In order 

to reduce the generation interval males will be used to produce “replacement 

batches” at three years old whereas females will be used once at seven years old.  If 

however males from a certain family are later maturing, they can be used again at 

four years old.  This causes a mixing of the gene pool between successive year 

classes. 

6.2.3.5.1 The use of photoperiods 

Photoperiod control of reproduction is successfully used to delay and advance 

spawning to manage egg production, however it can also be used to manage the 

gene pool and to prevent consanguineous matings.  Under the proposed replacement 

strategy, if each sex from one family is placed under different photoperiod regimes 

they will effectively be in two different populations.  Subsequently they will never, 

unless by a deliberate action of linking both populations (photoperiods) e.g. by 

cyropreservation, be mated together.  Dividing the families into two photoperiods 

also spreads the risk. 

The results from the repeatability study in Chapter 4 showed that egg quality was 

more likely to be a management issue (i.e. timing of stripping) than any factors 

controlled by the fish.  It was therefore recommended that fewer fish be kept and 

efforts concentrated on getting the ovulatory rhythms of females correct.  If 

however 125 females are required for genetic management it appears that these two 
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recommendations are conflicting.  To overcome this problem the females can be 

divided into two or three photoperiods: ambient, delayed and advanced.  This will 

mean that there will either be 42 or 62 females per group.  In order to improve the 

detection of individual ovulatory rhythms, the fish within each photoperiod group 

can be further divided into two or more groups of manageable numbers.  Because 

the fish will spawn several times in a spawning season each group can be allotted a 

period of two weeks where hatchery staff can concentrate on each fish.  After the 

two week period the next group of fish is stripped and so on (Lesley McElvoy pers 

comm.) 

6.2.4 SWOT Analysis of Each Phase of the Genetic Management 
Strategy 

The above strategy is a simple one because of the present state of the halibut 

industry.  The programme was structured to suit the inability and /or unwillingness 

of halibut producers to complicate their production systems and spend meagre or 

non existent profits on building new facilities.  The strategy demonstrates that their 

aforementioned perceived notions about effective selective breeding programmes 

and their reasons for divorcing animal breeding from broodstock replacement, a 

strategy that has proved detrimental, need not always be true.  If this strategy is to 

be adopted there are, however, some practical considerations that need to be 

discussed and these are presented in the SWOT analysis below. 

6.2.4.1 Stripping and Fertilisation 
Strengths 

• External fertilisation so families can be created with ease. 

• High fecundity so despite high mortality rate a sizable number of offspring 

from each family may be represented. 

• Batch spawning therefore 1) each family “batch” can be repeated several 

times within a spawning season and 2) presents the adoption of an 
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opportunist strategy whereby farm managers can decide the best times to 

allocate resources towards the replacement batches when interests of 

production and replacements are not conflicting. 

• Pooling families reduces 1) the introduction of common environmental and 

age effects and 2) Cost on hatchery for building and running new facilities. 

• Photoperiod manipulation will allow the spread of replacement batches 

between families over the course of a year and ease the load on the hatchery 

staff. 

• The protocols of fertilisation are already established and because the mating 

system is simple, i.e. only full sib families, the margins for error are much 

smaller when compared with large scale factorial mating. 

Weaknesses 

• Limited number of unrelated broodstock within captive halibut populations 

• Poor repeatability of reproductive traits such as seasonal reproductive 

activity and egg fertility mean that all designated females may not spawn 

and of the females that spawn their egg quality might be too poor to be 

incubated. 

• Asynchrony between female spawning and stripping procedures may result 

in not enough fertile eggs from every designated female to justify the 

composition of a separate “replacement batch”. 

• Robust methods of identification and fertilisation procedures are required to 

prevent mistakes with the setting up of families. 

• The full-sib family structure prevents the detection of individual sire and 

dam effects. 

Opportunities 

• Due to the universal problem of restricted broodstock population sizes a pre-

competitive collaboration between halibut producers can be proposed, a 

halibut breeder’s consortium.  The process will involve a mutual exchange 

of eggs, milt or fry from F1 offspring for a period of 2-3 years in order to 

reduce the impact of domestication selection. 

• Following the exchange of fish, inter-specific differences in performance 

between fish from different origins can be compared under commercial 

conditions and the existence of heterosis can be tested. 
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• After the first two generations more complex mating designs can be 

explored. 

Threats 

• An inability to acquire the desired number of broodstock, i.e. the reluctance 

of halibut members to form a consortium. 

• Disease transfer between producers. 

6.2.4.2 Egg room and yolk sac 
Strengths 

• Pooling of families reduce the financial burden on the hatchery. 

• All fish in the same “replacements batch” will be of similar ages. 

Weaknesses 

• The cost of running separate incubators for non-commercial purposes might 

appear high if production batches are particularly poor. 

• Requires that incubators containing replacement batches be identified to 

prevent mixing with production batches. 

Opportunities 

• Pedigree analysis of dead eggs and larvae will indicate if there are family 

effects on mortality at this stage in the production cycle. 

Threats 

• High mortalities or large “drop out” volumes at these stages of production 

will lead to the “dumping” of the replacement batches. 

6.2.4.3 First feeding and weaning 
Strengths 

• Grading only within batches keeps age effects minimal. 

• Separate facilities for replacement strategy at this stage are relatively 

inexpensive to build and maintain. 

Weakness 

• High mortalities of fry at this stage is expected. 

Opportunities 

• Pedigree analysis of dead fry will determine of there are family effects 

associated with what has been described as the major bottleneck within the 

halibut industry. 
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Threats 

• Disease. 

• Mixing with non-replacement batches. 

6.2.4.4 Selection procedure 
Strengths 

• With genetic profiling technology the parentage of every individual can be 

accurately determined. 

• As parents of replacement batches are determined before hand the power of 

parentage assignment analysis is increased. 

• Selection is done at an early age so costs of maintaining a large number of 

potential replacements is reduced. 

• A sufficient number of offspring per family is kept to allow for the desired 

number of fish from each sex. 

• A standard number of representatives per family is retained. 

• As all fish communally reared there are few common environmental effects 

introduced. 

• Age effects limited as selection will be done within batches. 

Weaknesses 

• High genotyping costs associated with the walk back strategy, particularly if 

the mortality rates in certain families are large. 

• A robust method of data and sample collection is critical. 

• Poor correlations between the measurements made of body weight early in 

the growth curve and those later on in life mean that selection might be 

made at too early an age. 

• Errors made in the pedigree analysis can be immensely detrimental therefore 

protocols need to be highly rigorous. 

Opportunities 

• Using photoperiod manipulation the replacement family batches can be set 

up at different times within a year.  Therefore the number of different 

families within one batch is reduced and the chances of finding different 

families within a batch are increased thus lowering the cost of the walk back 

strategy. 
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• The genotyping costs can be shared by all members within the proposed 

halibut breeder’s consortium. Alternatively the genotyping can be 

centralised and all members within the consortium can send samples to a 

central laboratory, because the number of samples will be large the cost per 

sample will be reduced. 

• Data generated from regular measurements between and within families can 

be used to obtain better estimates of genetic parameters. 

Threats 

• By selecting too early traits such as precocious maturation in males will not 

be determined until it is too late. 

6.2.4.5 Ongrowing and Replacement 
Strengths 

• Post weaning mortality in the halibut is low 

• Estimates of heritability for body weight indicate that selection will be 

successful 

• Test procedure requires relatively little effort as fish are examined and 

measured only twice a year. 

• Methods of sex determination are already established. 

• After replacements are kept from females they can either be culled from the 

broodstock population or kept on for the production of commercial fry, i.e. 

replacement and production procedures can co-exists with only the best 

performing females retained for production. 

Weaknesses 

• The potential broodstock are kept in land based systems and because their 

offspring will be reared in sea cages genotype by environmental interactions 

might be introduced. 

• The replacement procedure will incur the additional fixed costs of 

maintaining a constant number of fish every year. 

• Sex and precocious maturity is assigned post selection so the selection 

intensity between sexes and within families will be variable.  Also some 

families will be made up of only precocious maturing males. 

Opportunities 
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• Reproductive records from females can be used to estimate genetic 

parameters. 

• Data acquired while animals are on tests can be used to estimate genetic and 

phenotypic parameters for precocious maturity in males. 

Threats 

• Disease 

• Mortality of selected broodstock families due to stripping associated injuries 

in the spawning season. 

6.2.5 Alternative selection strategy 

An alternative to the within family strategy proposed is to use the optimum 

contribution methods (OCM), originally described by Meuwissen (1997) to manage 

the rate of inbreeding over time.  This method maximises genetic response with a 

constraint on the rate of inbreeding.  This restriction is set at the level of the 

relationship among all of the parents instead of inbreeding at the level of individual 

offspring (Sonesson et al., 2005) such that the maximum number of offspring that 

each selected candidate can contribute to the next generation to achieve the desired, 

pre-set, level of inbreeding.  A quadratic index is used to assess the potential 

contribution accounting for the magnitude of the estimated breeding value of a 

candidate and its relationship with other individuals in a population.  Effectively the 

best selection candidates will be those with high estimated breeding values that have 

few relatives in the test population.  The appeal of this system is that it will be 

possible to achieve significant genetic gains while keeping a certain level on 

inbreeding.  In regard to the specific case of the halibut this method allows selection 

both within and between families for a restricted level of inbreeding set by the 

geneticist.  Sonesson (2005) explored the application of the optimum contribution to 

the walk-back strategy for pedigree identification using stochastic simulations and 
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concluded that compared with genotyping all selection candidates this system would 

save costs while simultaneously maintaining high genetic gains. 

The application of mass selection using optimum designs to the initial stage of 

halibut breeding, however, presents various challenges.  Gjrede et al (1996) 

concluded that an optimum breeding design may easily turn into a suboptimal 

design due to different survival rates and/ or different proportions of sexual 

maturing, two problems central to halibut culture.  Due to the highly skewed family 

sizes observed the amount of genotyping required for the OCM will not be different 

to that in a family-based breeding programme.  Imposing the severe restrictions on 

the rate of inbreeding proposed will not only imply lower selection intensities but 

will require a greater number of offspring per families to be tested and a greater 

number of families to be generated.  Also because of the poor survival rates the 

number of individuals needed to maintain the desired rate of inbreeding (0.001) 

would far exceed the 250 fish proposed.  Ultimately this system will result in the 

selection of certain individuals over others, further degrading the already depleted 

genetic resource compounding the effect of domestication selection already in 

progress.  It is conceivable, though, that following the next stage of the 

domestication process when families are reproducing routinely the OCM will be of 

more benefit. 

6.2.6 Otter Ferry Seafish Broodstock Population 

The aim of this project was to design a selective breeding programme for the 

company.  However, in the second year of the project all the wild caught broodstock 

died in an incident on the farm.  Therefore the population on the farm is comprised 

of only F1 fish from the 1995, 1996 and 1998 year classes.  Although not all the fish 



Chapter 6 

 250

in the 1995 year class were genotyped the coefficient of inbreeding estimated from 

all the fish sampled was 6.16%.  This level of inbreeding is highly unacceptable and 

requires immediate attention. 

Pedigree information should be used to prevent consanguineous matings it is, 

however, only a short term measure.  The program outlined above requires that the 

population is made up of 125 families.  Although this might appear exaggerated it 

contrasts to the F1 population on the farm which is made up of only 17 full-sib 

families.  It is my recommendation that new fish should be introduced into the 

population.  Based on the findings of this study these new individuals should be F1 

hatchery reared individuals which will be better adapted and much cheaper to 

acquire than wild fish.  These fish can be obtained from commercial hatcheries in 

Iceland, Shetland, Norway, Canada and the USA.  If issues related to disease are a 

concern eggs and milt can be delivered to the hatchery and tested for viruses before 

they are used.  
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6.3 Future Research and Concluding Remarks 

The process of culturing the Atlantic halibut has and continues to be a challenging 

one.  It is worth noting that considering the generation interval of the species and 

the number of individuals involved in commercial culture, the industry is still in its 

infancy.  The future of the industry will, however, depend on how the domestication 

process is managed.  This process of how the halibut adapts to the aquaculture 

environment and/or more importantly the process of how the aquaculture 

environment is adapted to allow maximum reproductive success is crucial to the 

success of this industry. 

The findings of the current study suggests a significant bottleneck is occurring 

somewhere in the production system that affects the survival of certain families 

however, this process is not yet understood.  Identifying the source(s) of this 

problem and addressing the issues related to them will allow the routine 

establishment of a viable, consistent and genetically diverse broodstock population, 

a factor central to the survival of the industry.  The reasons for the loss of so many 

families are undoubtedly multifactorial and multidisciplinary, covering a wide range 

of issues related to broodstock and larval nutrition, husbandry practices and disease.  

Nonetheless from the geneticists’ perspective certain families appear to do well 

under these conditions so the question is why isn’t this level of success repeated 

across all families? 

In this study survival was only determined at the end of the production cycle and 

although most authors attribute the mortalities to the first feeding stage it will be 

important to determine whether there is a genetic effect on mortality at this point in 

the production cycle or if families were lost earlier on.  The stage at which different 
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families “drop out” of the system is crucial in obtaining solutions and improvements 

in the culture of this species. 

This can be determined by setting up a factorial mating design and pooling a 

standard volume of fertile eggs from all the families into discrete egg and yolk sac 

incubator(s) to emulate normal hatchery conditions, as described earlier for 

“replacement batches”.  This batch of eggs should be kept discrete following the 

protocols for broodstock replacements already described.  By determining the 

parentage of animals that “drop out” of the system i.e. analysing mortalities using 

DNA profiling technology throughout the production cycle i.e. (DNA from dead 

eggs, larvae and fry), or those that fail to enter the system due to poor egg or milt 

quality, it will be possible to discern where the families are lost and where research 

efforts need to be centred in order to create a more suitable environment for the 

adaptation of this species to aquaculture.  Environment in this sense will include not 

only the physical compartments where the fish are held but all factors that are not 

genetic such as nutrition and broodstock or larval management  

Growth rate was identified as the primary breeding objective of the industry, this 

trait, however, defined as body weight at various points from weaning to harvest, is 

determined to a great extent by sex.  Results from Chapter 5 showed that the onset 

of sexual maturity in males significantly retarded their growth and the genetic 

influences of this needs to be investigated further.  The heritability of age of 

maturity and the phenotypic and genetic correlations with body weight at various 

points in the growth curve should be estimated to determine a long term strategy for 

dealing with the problem.  In the short term, the production of all female stocks by 

the indirect route of sex reversal can be explored. 
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As the global population increases so does the need to culture rather than capture 

food from the aquatic environment.  This fact coupled with the low prices of the 

hitherto domesticated species that dominate world markets, such as the Atlantic 

salmon, necessitates the culture of new species to provide multinational producers a 

competitive financial advantage as they meet the ever increasing demands made by 

consumers for variety.  Despite the apparent challenges with its culture the halibut is 

an excellent fish that gives a highly desirable and profitable product, a fact that has 

lead to a concreted effort by fish farmers in Iceland, Norway, Canada, the USA, 

Ireland and Scotland to continue pursuing the culture of this fish. 

After 22 years of commercial experience valuable lessons have been learnt and the 

present study shows that there are still a few steps to secure the future of the halibut 

industry, at least in Scotland.  The establishment and maintenance of a broodstock 

population comprised of a large number of genetically diverse individuals, as 

described in this thesis, through the application of molecular and quantitative 

genetics techniques and a collaboration between halibut producers will contribute to 

this goal. 
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