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Abstract 

 

This study examines, from a modelling point of view, the dynamics of infectious 

diseases in wildlife caused by macroparasites and by tick-borne infections. The overall aim 

was to investigate the important role played by parasite aggregation in the dynamics of 

both systems. 

For macroparasites we first developed some deterministic models that incorporate 

explicit mechanisms for generating aggregation in parasite distribution, specifically 

multiple infections and host heterogeneity. We explored the role of aggregation in host 

regulation and in determining a threshold value for parasite establishment. A large 

aggregation makes it more difficult for parasites both to regulate hosts, and to get 

established in a population at carrying capacity. Furthermore, the stabilization yielded by 

aggregation strongly depends on the mechanism that produces the aggregation.  

We then introduced some uncertainties into the host-macroparasite system, 

presenting an individual-based stochastic model that incorporated the same assumptions as 

the deterministic model. Stochastic simulations, using parameter values based on some real 

case studies, preserved many features of the deterministic model, like the average value of 

the variables and the approximate length of the cycles. An important difference is that, 

even when deterministic models yield damped oscillations, stochastic simulations yield 

apparently sustained oscillations. The amplitude of such oscillations may be so large as to 

threaten the parasites’ persistence. 

With respect to tick-borne diseases we presented a general model framework that 

incorporated both viraemic and non-viraemic routes of infections. We compute the 

threshold for disease persistence and study its dependence on the parameters and on host 
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densities. The effects of tick aggregation and correlation between different tick stages on 

the host have both an important effect on infection persistence, if non-viraemic 

transmission occurred. 

In the case of Lyme Disease and Tick-borne Encephalitis (TBE) in Trentino 

(northern Italy) we showed some numerical results, using parameter estimates based on a 

detailed field study, and explored the effects of uncertainty on the endemic equilibrium of 

both diseases assuming only viraemic transmission for Lyme Disease while for TBE we 

permitted only non-viraemic transmission through co-feeding ticks.  

In conclusion we have examined the patterns and changes of aggregation in a 

number of contrasting systems and believe that these studies highlight both the importance 

of considering heterogeneities in modelling host-parasite interactions and, more 

specifically, modelling the biological mechanisms that produce aggregation in parasite 

distributions. 
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Chapter 1 

 

1. General Introduction 

 

1.1 Mathematical models for infectious diseases 

Mathematical models have had a very important role in the development of our 

understanding of epidemiology (Hethcote, 1990; Anderson and May, 1991; Grenfell and 

Dobson, 1995; Hudson et al., 2002).  

A primary reason for disease modelling is that it leads to clear statements about the 

assumptions concerning the biological mechanisms that influence the temporal and spatial 

spread of pathogens. Model formulation is particularly valuable to epidemiologists since it 

forces workers to be precise about the relevant aspects of disease dynamics. Principal 

advantages of mathematical models for infectious diseases is the clarity and precision of 

mathematical formulation. A model using difference, differential, integral or functional 

differential equations is not ambiguous or vague. Of course, the parameters must be 

defined precisely and each term explained from basic principles, but the resulting model is 

a definitive statement of the assumed mechanism involved. Once the mathematical 

formulation is complete, there are many mathematical techniques available for determining 

the threshold, equilibrium, periodic solutions and their local and global stability. Thus the 

full power of mathematics is available for the analysis of equations and providing a clear 

understanding of disease dynamics. The mathematical analysis and computer simulation 

can identify important combinations of parameters and essential aspects or variables in the 

model that allows not only understanding but also the potential ways and means of 

controlling infectious diseases. 
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When formulating a model for a particular disease, it is necessary, to decide which 

biological features are essential and need to be included to explore a specific question but 

also to make the models simple by omitting a number of parameters. Simple models have 

the advantage that they have only few parameters, but they have the disadvantage of 

possibly being naïve. Complex models may be more realistic, but they may also require 

estimates for many parameter values. The art of epidemiological modelling is to make 

suitable choices in the model formulation so that it is as simple as possible and yet is 

adequate for the question being considered. It is important to recognize both the 

capabilities and limitations of epidemiological modelling. Many important questions 

cannot be answered using a given class of models. The most difficult problem for a 

modeller is to find the interesting question and the right combination of data and a 

mathematical model which can answer the question. 

Epidemiological modelling can also play an important role in exploring and 

examining epidemiological theory. Mathematical and computer simulation models are 

fundamental experimental tools in epidemiology that can be used to make predictions and 

answer “What if?” questions. Experiments with infectious diseases in natural population 

are often unethical or very expensive or impractical and modelling provides the means of 

making explorative predictions. Furthermore, the analysis of mathematical models can lead 

to the introduction of new concepts that turn out to play a vital role. An example of this 

was the identification of the critical threshold for epidemic development (the basic 

reproduction number, R0). 

Another reason for using epidemiological models is to make forecasts about the future 

trends of the disease dynamics and the role of diseases in regulating and influencing the 

dynamics of host populations. Thus, they are an important tool for planning, implementing 

and evaluating detection, control and prevention programs. Although empirical workers 
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may often think of prediction as the primary or as the only purpose of epidemiological 

modelling, the reasons cited above may be more important. Accurate forecasts are usually 

not possible because of the idealization in the model and the uncertainty in the parameter 

values. However, possible forecast under various scenarios can sometimes be given or 

trends can be identified.  

After discussing the purposes and advantages of epidemiological modelling, it is 

imperative to also discuss the limitations. Epidemiologists and policy makers need to be 

aware of both the strengths and weakness of the epidemiological modelling approach. 

The first and most obvious limitation is that all epidemiological models are 

simplifications of reality. For example, it is often assumed that the population is uniform 

and homogeneously mixing, but this may not be an important assumption for some 

diseases depending on the circumstances. This deviation from reality is rarely testable or 

measurable; however, it can sometimes be estimated intuitively from an understanding of 

the biology of the pathogen-host system.  

The modeller must be aware that as the complexity of a model increases so it 

approaches reality but as the number of parameters increases so it becomes increasingly 

difficult to estimate values of all of these parameters and there are problems with the error 

terms being multiplicative. Thus the modeller must make many decisions regarding the 

relevant aspects in choosing a model for a specific disease or question. 

When describing the reasons for the application of epidemiological models one 

thinks primarily of deterministic models since they are simpler and have traditionally been 

more widely used, even with the development of more sophisticated stochastic models. 

Deterministic models are those which use difference, differential, integral or 

functional differential equations to describe the changes in time of the variables included in 

model. Given the starting conditions for a well-posed deterministic epidemiological model, 
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the solutions as a function of time are unique. In stochastic models, there are transition 

probabilities at each step of moving from one population state to another. When these 

models are simulated with the probabilities calculated using random number generators 

and error distributions so the outcomes of different runs are different.  

Simple deterministic models for epidemics have a precise threshold which 

determines whether an epidemic will occur or will not occur. In contrast, stochastic models 

for epidemics yield quantities such as the probability that an epidemic will occur and the 

mean time to extinction of the disease. Thus the approach, concepts and appropriate 

questions are quite different for stochastic models. 

Both deterministic and stochastic epidemiological models have other limitations 

besides being only approximations of reality. Deterministic models do not reflect the role 

of chance in disease spread and persistence. Sometimes parameter values in deterministic 

models are set equal to the mean of observed values and the information on the variance is 

ignored. A set of initial conditions lead to exactly one solution in a deterministic model; 

thus no information is available on the reliability or the confidence in the results. Some 

understanding of the dependence on parameter values is obtained through a sensitivity 

analysis where the effect of changes in a single parameter values on the final outcome can 

be examined. A parameter in a model is said to be sensitive if small changes in the 

parameter lead to big changes in the results. Stochastic models incorporate changes, but it 

is harder to get analytical results for these models. Moreover, computational results are 

also harder since simulations could require many computer runs in order to detect patterns 

and get quantitative results.  

Recently, with the development of high-speed computers, individual-based 

simulation models are becoming increasingly popular; some recent examples that examine 

host-parasite interactions include Wilber and Shapiro (1997) and Peters and Lively (1999). 
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In an individual-based model, the characteristics of each individual are tracked through 

time. This stands in contrast to modelling techniques where the characteristics of the 

population are averaged together and the model attempts to simulate changes in these 

averaged characteristics for the whole population.  

In individual-based simulation models, one can easily introduce many important 

factors missing from simple deterministic models, such as spatial structure with local 

interaction, genetical and behavioural differences among individual hosts. If the rules of 

simulation models are very complex, it becomes however difficult to disentangle the effect 

of the different factors, and to reach the qualitative understanding yielded by deterministic 

models.  

In this thesis I consider models for wildlife diseases caused by macroparasite and 

by tick-borne infections following both a deterministic and an individual-based stochastic 

approach. 

 

1.2 Macroparasite models 

Anderson and May (1978) defined two types of parasite which have different 

epidemiological features. Microparasites include bacteria and viruses and characteristically 

increase rapidly in number when introduced into a susceptible host, and there is little point 

in considering the precise number of infective agents that an infected host harbours. In this 

case compartmental models are traditionally used that class individuals in the population as 

either susceptible, infected or immune. 

On the other hand macroparasites, which include helminths (worms) and 

arthropods, are parasitic species for whom reproduction usually occurs via the transmission 

of free-living stages that pass from one host to the next. Direct reproduction rarely occurs 

within the definitive host, although asexual reproduction can occur in the intermediate 
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hosts (Hudson et al., 2002). Infections tend to be chronic, leading to morbidity rather than 

mortality. An individual host’s mortality and morbidity will generally increase with the 

number of parasite it harbours. It is then important to measure and consider not only the 

prevalence of infection (i.e. the proportion of infected hosts) but also the mean parasite 

burden as well as the whole distribution of parasites among hosts (Gulland, 1995; Hudson 

and Dobson, 1995) since fertility, mortality and behaviour of the host population will 

depend on how parasites are distributed among hosts. The process of reinfection will be an 

usual and important event in the interaction of hosts and parasites. 

Much of our current understanding of the interactions between macroparasites and 

their hosts is based on the simple deterministic models presented by Anderson and May 

(1978). They examined the importance of host heterogeneity in the dynamics of host-

parasite interactions, especially in relation to the possible influence this would have in 

aggregating parasites in a few hosts (See Section 1.4 for a wide treatment of these 

concepts). Following the application of the negative binomial distribution to fit empirical 

data on parasite abundance, they were able to obtain a simple system of differential 

equations describing host-macroparasite dynamics, which was the basis for several 

predictions about the possibility of host regulation by parasites, and of sustained 

oscillations of hosts and parasites. This model has been the basis of a large development of 

empirical and theoretical literature, reviewed for instance in Grenfell and Dobson (1995) 

and Hudson et al. (2002).  

Many other factors have been considered in macroparasite models such as 

seasonality (White et al., 1996), multi-species and/or trophic levels (Grenfell, 1992; Begon 

and Bowers, 1995) and immunity (Woolhouse, 1992; Grenfell et al., 1995a). Other factors, 

that can be  considered important for parasite dynamics and evolution, such as host spatial 
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structure and genetical diversity (see, for instance, the respective chapters in Grenfell and 

Dobson, 1995), have rarely been integrated into models for macroparasites. 

 

1.3 Tick-borne infections models 

Vector-borne diseases cause serious human health problems throughout the word. 

The high mortality caused by malaria, for instance, represents one of the most serious 

problems for public health in many parts of poorer tropical areas of Africa, Asia and Latin 

America. Tick-borne diseases, such as Lyme Disease and Tick-Borne Encephalitis (TBE), 

have become an important problem to human population in more temperate regions 

including parts of Europe, the former USSR and North America.  

Tick-borne disease systems incorporate interesting complexities due to the presence 

of a number of heterogeneities in the system coupled with non-linear phenomena operating 

in the transmission processes between ticks, host and pathogen (Randolph et al., 2002). 

This complexity has required the development of several mathematical models for 

either tick-borne infections, or tick population dynamics The important first step was to 

develop mathematical models for tick population dynamics (e.g. Sandberg et al., 1992; 

Kitron and Mannelli, 1994; Randolph and Rogers, 1997). The second step was to develop 

models for tick-borne infections and these have often been set, for ease of analysis, in 

continuous time: see, for instance, Hudson et al. (1995) and O’Callaghan et al. (1997). 

Norman et al. (1999) and more recently Gilbert et al. (2001) proposed a model where ticks 

are subdivided in the three stages (larvae, nymphs and adults) with stage progression only 

through a blood meal on a vertebrate host (two types of which are considered in the 

model), and transmission is only viraemic (i.e., from infected host to susceptible tick if 

there enough virus in the blood of the host, and vice versa). A very similar model has also 
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been studied by Caraco et al. (1998), while qualitatively similar results have been obtained 

by Van Buskirk and Ostfeld (1995) and Mannelli (in press) in computer-based models.  

In a number of tick-borne systems, workers have demonstrated that certain tick 

hosts, which do not produce a viraemic response, i.e. do not have enough virus in their 

blood for transmission directly to ticks, will permit non-viraemic transmission between co-

feeding ticks (Jones et al., 1987; Labuda et al., 1993; Odgen et al., 1997). Randolph et al. 

(1996, 1999, 2002) have shown the importance of co-feeding (transmission between ticks 

feeding together on an incompetent host) and temporal coincidence of different tick stages 

in the maintenance of TBE. For these systems it may be necessary to consider this non 

viraemic transmission specifically, particularly if it crucial to the persistence of the disease 

(Randolph et al., 2002; Perkins et al., in press). 

 

1.4 Parasite aggregation in host-parasite systems 

The causes and consequences of parasite aggregation in host-parasite interaction 

continues to be a lively research area. In terms of data analysis, many studies have 

discussed the widely observed pattern of aggregated distributions of parasites within a host 

population. Recent studies have improved the methodology for analyzing aggregation in 

parasite data (Rousset et al., 1996; Wilson et al., 1996; Wilson et al., 2002). 

Many other studies have focused on the causes and population dynamic 

consequences of the pattern of parasite distribution among hosts. These studies have often 

used mathematical models as theoretical tools for detecting the consequences of parasite 

distribution on the dynamics of host-parasite interaction. 

In this section, we discuss these relevant aspects of host-parasite systems reviewing 

the most important studies in the parasitological literature. 
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1.4.1 Aggregation in the data 

Aggregation is a very widespread phenomenon in ecological populations (Taylor, 

1961; Anderson et al., 1982; Shaw and Dobson, 1995). Aggregation is characterized by the 

estimated variance to mean ratio. A variance equal to the mean would indicate a 

completely random (Poisson) distribution of individuals within the sampled population but 

if the estimated variance to mean ratio is significantly greater than unity, the distribution is 

aggregated, i.e. individuals tend to be clumped in sampling units. 

The importance of aggregation to the dynamics of animal populations in general 

has been the focus of much theoretical work. For example, in insect populations, spatial 

aggregation has been shown to enhance density-dependent processes, provide potential 

refuge for prey, and allow apparently competing species to co-exist in the same habitat 

(Hassell et al., 1991). 

The distribution of macroparasites between hosts is also characteristically 

aggregated. The degree of aggregation can be measured in a number of ways. One 

statistical distribution that is extensively used to describe parasite aggregation is the 

negative binomial distribution, which has two parameters: the mean of parasite burden and 

a parameter k that is an inverse measure of aggregation. The lower is k, the more 

aggregated is the distribution; on the other hand, when k goes to infinity, the distribution 

tends to a Poisson, the prototype “random” distribution. 

This general use may bring about the situation where parasite burdens are de facto 

assumed to fit the negative binomial distribution. In human parasite infections, this 

assumption has been examined in detail and found to be justified (Anderson and May, 

1982; Anderson and May, 1991; Bundy and Medley, 1992). 

A broad review regarding animal-parasite infections was carried out by Shaw and 

Dobson (1995) where many host-parasite frequency distributions obtained from a literature 
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review of different parasite infections in wildlife has been analysed. Most parasites (mainly 

helminths) were found to be aggregated with respect to their hosts and the relationship 

between log mean of parasite burden and log variance was found to be remarkably 

consistent. The aggregated nature of the parasite infections was also apparent from other 

measures of aggregation such as the prevalence-mean relationship and the negative 

binomial parameter k.  

Shaw et al. (1998) analysed the same frequency distributions performing a 

maximum likelihood estimate of the degree of parasite aggregation. In all cases, the fit of 

the dataset to the negative binomial distribution was compared to the fit to the Poisson 

distribution. They found that the negative binomial distribution provided a better fit than 

the Poisson distribution and in terms of goodness of fit, in more than 90% of the data-sets 

the negative binomial distribution provided a statistically satisfactory fit. The degree of 

aggregation was large, in most cases the estimated k was less than 1. This excellent fit to 

the negative binomial distribution was despite the many differences between the systems: 

diversity in host types, host habitat and parasite taxonomic class. In addition, the high 

degree of aggregation estimated is in agreement with reviews on human-parasite infections 

(Anderson and May, 1978; Bundy and Medley, 1992; Guyatt et al., 1990). 

Ectoparasites, in particular ticks, are also found to be aggregated with respect to 

their hosts. In fact, tick stages (larvae, nymphs and adults) show highly aggregated 

distributions on their host, e.g. rodents (Randolph et al., 2002; Perkins et al., in press). We 

shall examine this later, since this pattern might have extremely important effects on 

pathogen transmission in some tick-borne diseases. 

1.4.2 Biological sources of aggregation 

Heterogeneity has become a very important and widely used term in ecology and 

epidemiology. Following Chesson and Murdoch (1986) it is defined in terms of the 
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variation in risk of parasitism between different individuals in the host population. A 

particular form of heterogeneity of risk arises when, at any one time, parasitism is confined 

to part of the host population, with the remaining hosts protected from parasitism in some 

kind of refuge. These refuges may take several forms. There may be spatial refuges when 

parasitism is confined to part of the habitat; there may be temporal refuges depending on 

the timing and overlap of the different host and parasites stages; or some host phenotypes 

may act as a refuge by completely escaping from parasitism (Hassell, 2000). All these 

heterogeneities are likely to generate aggregated distributions of parasite among their 

hosts.  

In this study I explored a number of biological conditions under which an 

aggregated distribution, in particular a negative binomial distribution, could arise. 

Variation in parasitism rates associated with the heterogeneities in the host 

population includes host age, sex, behaviour and body condition together with genetic and 

immunological factors. 

Host age 

A number of empirical studies have reported different relationships between 

parasite burden and host age (Anderson and Gordon, 1982; Anderson and May, 1985; 

Pacala and Dobson, 1988). Recent theoretical studies of parasite aggregation have focused 

on mathematical models for the development of aggregation with host age (Grenfell et al., 

1995a; Isham, 1995; Quinnell et al., 1995). The relationship between parasite intensity and 

host age, usually described with an age-intensity curve, might show a continual increase in 

parasite load or a gradual levelling-off of parasite burden with host age. For other host-

parasite systems the age-intensity curve is convex; in other words, rather than rising to 

asymptote, parasite load declines after an initial increase (Hudson and Dobson, 1995; 
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Wilson et al., 2002). These different epidemiological patterns are highly specific to the 

host-parasite system under study, and may vary between populations.  

Quinnell et al. (1992) observed that mean parasite burden of nematodes in mice 

increased asymptotically with host age, whereas Anderson and Gordon (1982), Pacala and 

Dobson (1988) and later Gregory et al. (1992) found for different parasite infestation in 

animal populations that mean intensity exhibited a convex age-intensity profile.  

There are a number of different mechanism that might account for convex age-

intensity curve. These include parasite-induced host mortality, acquired immunity, age-

related changes in predisposition to infection, age-dependent changes in exposure to 

parasites and age-related probabilities of accurately determining parasites loads (Wilson et 

al., 2002). 

Acquired immunity develops in response to accumulated experience of infection 

and acts to decrease parasite establishment, survival, reproduction and maturation. 

Although acquired immunity is believed to be an important factor causing convexity in the 

age-intensity curves for macroparasite infections in humans (Anderson and May, 1991) 

and domesticated and laboratory animals (Lloyd and Soulsby, 1987; Dobson et al., 1990), 

there have been few clear demonstration of acquired immunity in wildlife (Quinnell et al., 

1992).  

Host sex 

Epidemiologists have long recognized that males of vertebrate species, including 

humans, tend to exhibit higher rates of parasitism and disease than females (Bundy, 1988; 

Zuk, 1990; Wilson et al., 2002; Moore and Wilson, 2002). There are a number of 

biological mechanisms potentially capable of generating sex biases in parasitism rates. 

Often these causes are divided into ecological and physiological mechanisms. Ecological 

mechanisms include sex differences in behaviour, diet composition and body size. 
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Physiological mechanism includes sex differences in the levels of a number of steroid 

hormones, such as testosterone, progesterone and oestrogen. All of these hormones are 

known to have direct or indirect effects on components of the immune system and/or on 

parasite growth and development (Grossman, 1985; Harder et al., 1992; Hillgart and 

Wingfield, 1997). The production of hormones and the interaction between these hormones 

and the immune response may differ between the sexes. 

Even if sex biases exist, and are relevant, determining the relative importance of the 

different mechanisms capable of generating them may prove extremely difficult, due to the 

fact that many ecological and physiological factors covary (Wilson et al., 2002). 

Host body condition 

Host response to parasitic infection is likely to be costly. In particular, body 

condition is likely to affect the hosts’ ability to compensate for damage inflicted by 

parasites, such as repairing tissue or replacing critical nutrients. Hosts in poor condition are 

therefore in a difficult situation: they have few resources available to spend on defence, but 

they cannot afford not to invest in the defence since the parasite may induce more severe 

disease. This situation should affect the distribution of the whole range of parasites within 

a host population. If differences in host body condition are of importance in generating 

observed infection patterns in animal population, we may therefore expect intensities of 

different parasite species to covary (Wilson et al., 2002). 

Host behaviour 

By definition, parasites affect the fitness of their hosts. Therefore, natural selection 

will favour individuals that evolve effective behavioural strategies to reduce the contact 

rate with the infective stage of parasites or their vector. If individuals differ in their 

behaviour, then this can generate heterogeneities in parasitism rates (Wilson et al., 2002). 

Behavioural strategies for avoiding parasitism or minimizing their impact are many and 
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varied. For vertebrates these include grooming, grouping, selfish herding, migrating, 

avoidance of infested or infected conspecifics and fly-repelling behaviour (Hart, 1994; 

1997). 

Genetic and immunological factors 

Genetic and immunological factors are on the basis of parasite resistance in natural 

host populations, likely to play a primary role in determining the parasite distribution 

within their hosts (Quinnell and Keymer, 1990; Grenfell et al., 1995b). The ability of the 

host immune system to respond to a stimulus is strictly correlated with the host genetics 

but other factors can influence the efficiency of this response such as the intensity of this 

stimulus (number of parasites, frequency of encounters between host and parasites, etc.) 

and the host fitness (trophic availability, stress condition, etc.). In spite of that, genetic 

heterogeneity of natural populations is one of the most important factors that influence the 

host-parasite interaction both at individual and population level. 

External heterogeneities 

Finally we consider those heterogeneities that do not fall neatly into those that are 

attributes of the host and parasites. These include the spatial distribution of parasite’s 

infective stages in the environment and seasonal variation in infection levels.  

The rate of acquisition of new infection often increases with the frequency of 

contact between the host and infective stages. Thus, if there is spatial variation in the 

density of free-living infective stages, and different hosts utilize different parts of the 

environment, then this will often lead to heterogeneities in parasites intensity across the 

host population (Wilson et al., 2002). A good set of experiments on invertebrates carried 

out by Keymer and Anderson (1979) illustrated that infection through free-living stages 

with a uniform distribution cause a lower level of aggregation in the distribution of adult 

parasite within hosts respect to infection with infective stages that are spatially aggregated. 
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Temporal variation in parasite loads and aggregation appears to be common (Shaw 

and Dobson, 1995; Shaw et al., 1998; Scott, 1987). These variations can be generated by 

variation in both host physiology (e.g. immune function) and host exposure to parasites 

infective stages. The latter is often due to the fact that the mortality and the development 

rate of the free-living stages are temperature-dependent and sensitive to seasonal variation 

in humidity. 

1.4.3 Effects of aggregation on host-parasite dynamic 

The interaction of the distribution and dynamics of parasites on hosts has been 

considered from a variety of theoretical angles in recent years (Hassell and May, 1973; 

Anderson and May, 1978; Anderson and May, 1985; Pacala and Dobson, 1988; Adler and 

Kretzschmar, 1992; Kretzschmar and Adler, 1993; Rosà and Pugliese, 2002). A theme 

throughout much of the discussion has been the causes and consequences of the widely 

observed pattern of aggregated distributions of parasites, data which have traditionally and 

successfully been fit by the negative binomial distribution. Several reasons have been 

proposed, generally falling into the broad categories of host heterogeneities and dynamical 

factors.  

Here, we concentrate on the dynamical consequences of such distributions on the 

dynamical properties of host-parasite interactions. 

The classic paper of Anderson and May (1978) considered in detail the stability of 

the system in which parasites regulate their host population by increasing mortality of 

heavily infected hosts. To deal with the problem of the distribution of parasites among 

host, they assumed that the distribution retains a particular shape regardless of the mean 

number of parasite per host. They contrast the regular positive binomial distribution, the 

aggregated negative binomial distribution with fixed clumping parameter k, and the 

random (Poisson) distribution, finding that the positive equilibrium, where host and 
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parasite coexist, is unstable in the first case, stable in the second and neutrally stable in the 

last. This result confirms previous findings from insect host-parasite models by Hassell and 

May (1973), that parasite aggregation is an important factor in the dynamics of host-

macroparasites interactions and it seems to be relevant in stabilizing the dynamics towards 

an equilibrium coexistence. 

Adler and Kretzschmar (1992) and Kretzschmar and Adler (1993), showed that 

stability in models of this form is determined not by the degree of dispersion itself, but by 

the dependence of dispersion on the mean of parasite burden. They postulated that a 3-

dimensional model including the dispersion (variance to mean ratio) as a dynamical 

variable more accurately approximates the dynamics of host-parasite interaction in 

comparison with the 2-dimensional model introduced by Anderson and May (1978). 

More recent models (Rosà and Pugliese, 2002), which incorporate explicit 

mechanisms for generating aggregation, have shown that the stabilization yielded by 

aggregation depends strongly on the mechanism producing the aggregation.  

In particular, multiple infections (in any infection a host ingests more than one free-

living stages) are much less stabilizing than when aggregation is assumed to be fixed as in 

Anderson and May model, while the opposite holds when aggregation is produced by host 

heterogeneity. In these models, the role of aggregation on host regulation and in 

determining a threshold value for parasite establishment has also been explored (See 

Chapter 2 for the details of these models). 

Many theoretical models of host-parasite associations are also used to analyse the 

population dynamics of competition between parasites (Dobson, 1985; Dobson and 

Roberts, 1994; Gatto and De Leo, 1998). The analysis of these models, where parasites 

species are assumed to exhibit a negative binomial distributed, suggests that one of the 

most important factor allowing competing species of parasites to coexist is the statistical 
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distribution of parasites within the host population. As each species becomes more 

aggregated in its distribution, the importance of interspecific competition decreases and 

population regulation becomes more dependent upon intraspecific interactions. The 

statistical distribution of the different parasite species is therefore at least as important a 

component of the competitive interaction, as are different patterns of resource and nutrients 

utilization.  

However, more recent models have identified that in two macroparasite one host 

systems, models that do not use the negative binomial approximation for describing the 

parasite distribution (Pugliese, 2000) lead to completely different results regarding the 

coexistence of the two parasite species. 

As previously mentioned, tick stages also show highly aggregated distribution on 

their host (e.g. rodents), and these aggregated distributions are coincident rather than 

independent (Perkins et al., in press); those hosts which were feeding larvae were 

simultaneously feeding the greatest number of nymphs.  

As a result, about 20% of hosts feed about three-quarters of both larvae and nymphs 

and the number of susceptible larvae feeding alongside potentially infected nymphs is 

twice as many as it would be if the distribution were independent (Randolph et al., 2002; 

Perkins et al., in press).  

This pattern might have extremely important effects on pathogen transmission in 

many tick-borne diseases (e.g. Tick-Borne Encephalitis). In fact, tick aggregation on hosts 

and correlation of tick stages facilitate co-feeding transmission (transmission between ticks 

feeding together on the same host) and thus significantly increase the basic reproductive 

number R0 of the pathogen with direct implication on the persistence of the disease in the 

system (Randolph et al., 1996; 1999; 2002) (See Chapter 4 for the details of this system). 
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1.5 Aims and objectives 

The objective of all the work reported in this Thesis was to improve the general 

understanding of the important role played by parasite aggregation in the dynamics of host-

parasite interaction looking at different systems such as macroparasitic infections and tick-

borne infections. 

The main method was to produce mathematical models for capturing both the 

causes and consequences of aggregation.  

Initial work concentrated on exploring, through different modelling approaches, the 

role of macroparasite aggregation in host regulation and in determining threshold values 

for parasite establishment. Numerical simulations, using parameter values based on some 

case studies, were performed to obtain some clues on what can be inferred about real host-

parasite interactions. 

This effort was extended to tick-borne infections where the effects of tick 

aggregation on hosts and correlation of tick stages on the persistence of tick-borne disease 

were explored. Also in this case, the parameterisation of the model was performed for a 

couple of case studies concerning tick-borne disease in Trentino (Northern, Italy). 

The overall aim of this work was to obtain general conditions for long-term 

persistence of infection caused by macroparasite and by tick-borne pathogens, focusing the 

attention on the role plays by parasite aggregation. These results may be used for 

implementing and evaluating detection control and prevention programs in different host-

parasite interactions in wildlife. 

 

1.6 Overview of the Thesis 

The first chapter is a general Introduction in which we present some purposes and 

limitations of epidemiological modelling. Afterwards we describe in detail the kind of 
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models considered in this Thesis, these are models for host-macroparasite interactions 

(both deterministic and individual-based stochastic models) and models for tick-borne 

infections (only deterministic models). In addition, we make an extensive review of the 

parasitological literature concerning the widely observed pattern of aggregated distribution 

of parasites within the host population, describing in particular the causes and the 

population dynamic consequences of this pattern of parasite distribution among hosts.  

In Chapter 2 we review the models for macroparasites of Anderson and May (1978) 

and compare them with some more recent deterministic models (Rosà and Pugliese, 2002) 

focusing attention on the role played by the aggregation in host regulation and in 

determining a threshold value for parasite establishment. 

In Chapter 3 we introduce some uncertainties in the host-macroparasite system 

presenting an invividual-based model that may be considered the stochastic counterpart of 

the deterministic models introduced in Chapter 2. The stochasticity considered in this 

chapter is intrinsic to the discrete nature of populations and is often called “demographic 

stochasticity”. From the results of simulations we can detect how well the predictions of 

the deterministic models hold for simulation models and to understand the phenomena 

brought in by “demographic stochasticity”. 

In Chapter 2 and 3 we performed, deterministic and stochastic simulations using 

parameter values based on three sets of parameters concerning different macroparasitic 

infections in wildlife. The first is the well known red grouse (Lagopus lagopus scoticus) -

Trichostrongylus tenuis system in northern England (Dobson and Hudson, 1992), the 

second is the infection by Trichostrongylidae in a chamois (Rupicapra rupicapra L.) 

population in the Brenta mountain group (northern Italy) (Rosà et al., 1997) and the third 

concerns the Ascaridia compar infection in rock partridge (Alectoris graeca saxatilis) in 

Trentino region (northern Italy) (Rizzoli et al., 1997; Rizzoli et al., 1999). 
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In Chapter 4 we present a general model for tick-borne infections and derive an 

explicit formula for the threshold for disease persistence in the case of viraemic 

transmission only, and in the case of both viraemic and non-viraemic transmission. This 

model also allows for aggregation and correlation of tick stages, as a result of a hosts’ 

heterogeneity in tick infestation and permits us to see the effect of this kind of host’s 

heterogeneity on the long-term persistence of the disease in the system. 

In Chapter 5 we apply the tick-borne disease model of Chapter 4 to a couple of case 

studies in Trentino (Northern Italy): Lyme Disease and Tick-Borne Encephalitis (TBE). 

Finally, in Chapter 6, an overview of the study is made, where results are 

summarised, connected, and discussed in a global context, and where the final conclusions 

may be found. 
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2.0 Abstract 

Aggregation is generally recognized as an important factor in the dynamics of host-

macroparasites interactions and it has been found relevant in stabilizing the dynamics 

towards an equilibrium coexistence. In this paper we review the models of Anderson and 

May (1978) and compare them with some more recently developed models, which 

incorporate explicit mechanisms (multiple infections or host heterogeneity) for generating 

aggregation, and different degrees of mathematical accuracy. We found that the 

stabilization yielded by aggregation depends strongly on the mechanism producing the 

aggregation: multiple infections are much less stabilizing than when aggregation is 

assumed to be fixed from the outside, while the opposite holds for host heterogeneity. We 

also give analytical estimates of the period of oscillations occurring when the equilibrium 

is unstable. Finally, we explore in these models the role of aggregation in host regulation 

and in determining a threshold value for parasite establishment. 

 

2.1 Introduction 

Much of our current understanding of the interactions between macroparasites and 

their hosts is based on the simple deterministic models presented by Anderson and May 

(1978). They understood the importance of host heterogeneity in the dynamics of host-

parasite interactions, especially in causing most parasites to be aggregated in few hosts. 

Furthermore, following the use of the negative binomial distribution to fit empirical data 

on parasite abundance (Bliss and Fisher, 1953; Crofton, 1971), they summarized 

aggregation as a single parameter, k, from the negative binomial distribution; this 

parameter is relatively easy to estimate empirically. In this way they were able to obtain a 

simple system of differential equations describing host-macroparasite dynamics, which 
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was the basis for several predictions about the possibility of host regulation by parasites, 

and of sustained oscillations of hosts and parasites.  

This model has been the basis of a large development of empirical and theoretical 

literature, reviewed for instance in Grenfell and Dobson (1995) and Hudson et al. (2002). 

Many other factors have been considered in macroparasite models such as seasonality 

(White et al., 1996), multi-species and/or trophic levels (Grenfell, 1992; Begon and 

Bowers, 1995), immunity (Woolhouse, 1992; Grenfell et al., 1995). We remark instead 

that factors considered to be very important for parasite dynamics and evolution, such as 

host spatial structure and genetical diversity (see, for instance, the respective chapters in 

Grenfell and Dobson, 1995), have rarely been integrated in models for macroparasites.  

On the other hand, there are two main problems in introducing a fixed aggregation 

parameter k in the model. First of all, k is not a parameter corresponding to some biological 

process, but is instead a population statistics; hence, a certain value of the aggregation 

parameter k may correspond to different biological mechanisms, which may also cause k to 

fluctuate in time. Main suggested mechanisms for maintaining aggregation (see Gross and 

Ives, 1999, for a recent review on the same problem for parasitoids) are differences in the 

susceptibility to parasites among hosts (Anderson and May, 1991), 

immunoepidemiological interactions (Grenfell et al., 1995), or multiple infections 

(Quinnell et al., 1995; Isham, 1995). It might well be that different mechanisms producing 

aggregation cause different host-parasite dynamics.  

The second problem is mathematical; the models by Anderson and May (1978) are based 

on the introduction of the negative binomial distribution in an infinite system of 

differential equations, introduced by Kostizin (1934), describing the immigration and death 

of parasites in hosts. However, the exact distribution in the infinite system is certainly 
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different from negative binomial (Pugliese et al., 1998); hence, the models by Anderson 

and May (1978) can be regarded only as an approximation of a more complex model.  

In the many years following the appearance of Anderson and May (1978), other 

approaches have been followed: the analysis of the infinite system itself (Kretzschmar, 

1993), the introduction of different approximations (Adler and Kretzschmar, 1992; 

Kretzschmar and Adler, 1993), the integration of a mechanism creating aggregation 

(multiple infections) into a dynamic population model (Pugliese et al., 1998).  

It seems important to investigate whether the results of Anderson and May (1978) are 

robust through all these different approaches and assumptions. Indeed, it has been found 

out recently that, for models of two macroparasite species on one host, simplified models 

using the negative binomial approximation (Dobson, 1985; Dobson and Roberts, 1994; 

Gatto and De Leo, 1998) lead to completely different results as for species coexistence 

than the infinite-dimensional model (Pugliese, 2000).  

We review here these modelling approaches, and compare, qualitatively and quantitatively, 

their results, restricting the attention to models that consider only the basic processes of a 

host-parasite interaction: infections, and births and deaths of hosts and parasites.  

In Section 5 we let parasite fertility and mortality depend on within-host parasite density, 

as suggested by some empirical evidence (Smith and Grenfell, 1985; Hudson and Dobson, 

1997); however, this kind of density-dependence has been considered only in a model 

presented by Hudson and Dobson (1997), and no extensive study on its effect on host-

parasite dynamics has been accomplished. 
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2.2 Models 

2.2.1 Main assumptions  

As stated above, only the biological processes necessary to a basic description of 

the interactions of a macroparasite species with its host will be considered here. To keep 

models as simple as possible, we deal only with parasites with direct life cycle and 

infections occurring through free-living larvae or eggs. The main variables of interest will 

be N, the number of hosts, and P, the total number of adult parasites. All free-living stages 

will be grouped in a single stage, L, neglecting any time delay between release of eggs 

from adult parasites and development of infecting stages. Laws assumed for new 

infections, and the other relevant processes (parasite deaths, and hosts’ births and deaths) 

are summarized in Tab. 1.  

TABLE 1. Summary of symbols and laws. 
 

Variable or rate Used in models Symbol 
   

Number of hosts  N 
Total number of adult parasites  P 
Number of free-living stages with free-living stages explicit L 
Aggregation of parasite distribution 
(variance to mean ratio) 

with variable aggregation A 

Birth rate of a host carrying i parasites with linear law b-ξi 
 with multiplicative law b(1-ξ)i 
Death rate of a host carrying i 
parasites 

with linear law d+αi 

Density-dependent increase in host 
mortality 

with logistic effects ν 

Carrying capacity for hosts with logistic effects NK=(b-d)/ν 
Death rate of adult parasites with linear law σ+iσB 
Parasite fertility with multiplicative law h(1-r)i 
Death rate of free-living stages  δ 
Probability of parasite establishment  ψ 
Rate at which hosts pick up infecting 
stages 

using free-living stages βL 

 neglecting free-living stages h i� (1 − r)i pi

c + N
   

with c=δ/β 
Aggregation parameter with fixed aggregation k 
Mean number of free-living stages per 
“parcel” 

with multiple infections λ 
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Infections occur through encounters between hosts and infecting stages at the rate 

proportional to their product (Tab. 1); in other words, we may say that the rate ϕ at which 

one host becomes infected is equal to βψL, where β is the encounter rate, and ψ is the 

probability of parasite establishment. 

Apart from infections, host and parasites will be assumed to be subjected only to 

births and deaths. We will disregard delays and arrestments in the development of parasite 

larvae, as considered for instance in Dobson and Hudson (1992), and assume that all larvae 

that get established in a host immediately become adults. Hence, a model will be specified 

when parasites and hosts’ fertilities and mortalities will be prescribed as functions of the 

numbers of hosts and parasites. In most models, mortalities and fertilities of adult parasites 

are assumed to be constant, σ and h, respectively, independently of how many parasites 

and hosts are present. See Section 5 below for different assumptions. 

On the other hand, death and birth rate of hosts will depend on how many parasites 

a host harbours; following Anderson and May (1978), we will assume here that death rate 

of hosts increases linearly with the number of parasites. Note that, if the parasite-induced 

death rate α is equal to 0, there is no effect of parasites on hosts’ death rate. A different 

assumption («threshold» law) has been used by Bouloux et al. (1998): in its simplest 

version, mortality of a host is constant, below a certain threshold value of parasites; above 

the threshold value, mortality jumps to a high value. 

Anderson and May (1978) assumed that also birth rate of a host would decrease linearly 

with the number of parasites harboured. A consequence of this assumption is that a host 

with a very high parasite burden would have a negative birth rate. In order to avoid this 

incongruity (however, for realistic parameter values, the frequency of such pathologies 

would be extremely low), Diekmann and Kretzschmar (1991) assumed a multiplicative 
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effect of parasites on birth rate. Finally, natural birth (b) and death (d) rates may be 

assumed to depend on host population size, to simulate logistic effects.  

The natural variables to describe completely the system are pi(t), the number of 

hosts carrying i parasites. Since a new infection moves a host from the i-1 class into i, and, 

vice versa, death of an adult parasite moves a host from i+1 class into i, one arrives, 

performing all the book-keeping, to an infinite system of differential equations in the 

variables pi(t), first introduced by Kostizin (1934): 
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The number of hosts, N(t), and of parasites, P(t), relate to pi(t), as: 

N(t) = pi( t)
i = 0

∞

� , P(t) = ipi(t)
i= 0

∞

� . 

From system (Inf+L), one arrives at the following equations for N(t) and P(t): 

dN
dt

= −(d + νN)N −αP + b piξ i

i = 0

∞

�

dP
dt

= −(d +νN +σ ) +ϕN − α i2 pi
i= 0

∞

�  .
               (1) 

It is possible to obtain a law for the infection rate, neglecting the larval phase 

altogether, as in Anderson and May (1978): 

)(
)(
tNc
tPh

+
= ψϕ ,                   (2) 

with c=δ/β. Equation (2) is a good approximation if the expected duration of all free-living 

stages is much shorter than the expected lifetime of hosts and adult parasites. In any case, it 

provides a simpler model against which the effect of time delays can be assessed. 
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2.2.2 The negative binomial approximation 

Note that (1) is not a closed system of differential equations, since the terms 

piξ
i ,

i = 0

∞

�  i2 pi
i = 0

∞

� are not expressed in terms of the variables N(t) and P(t). As for the 

infection rate ϕ, we can either use (2) or the rule ϕ =βψL and then add the equation for the 

free-living larvae L(t). 

The idea of Anderson and May (1978) was to impose that pi(t), are distributed 

according to a negative binomial of aggregation parameter k. As well known, the lower is 

k, the more aggregated is the distribution; on the other hand, when k goes to infinity, the 

distribution tends to a Poisson, the prototype “random” distribution. From N(t) and P(t), 

one computes the mean parasite load, x(t)=P(t)/N(t); then, since the negative binomial 

distribution has two parameters, and the other, k, is fixed, one can obtain all pi(t), and then 

can “close” system (1). Using x(t) as variable, instead of P(t), one obtains the following 

systems, with and without the free-living stages equation: 
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        (Fix k) 

Models (Fix k) and (Fix k+L) are not precisely those used by Anderson and May (1978) 

but incorporate the multiplicative law for parasite-induced reduction of fertility of 
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Diekmann and Kretzschmar (1991), with a change in the meaning of the parameter ξ. The 

system may appear rather complex, but when there is no reduction of fertility (ξ= 0) it 

reduces to a very simple form. Also note that these models have one extra parameter, k, 

with respect to the infinite system. 

This procedure of approximation can be brought one step further, as shown by 

Adler and Kretzschmar (1992). From the second-order moment equations, one can obtain a 

differential equation for the aggregation index A(t) (variance over mean of the distribution) 

which will involve the third moment. Then, assuming that pi(t), are distributed according to 

a negative binomial whose parameters are specified by x(t) and A(t), one obtains a four-

dimensional system in the variables N(t), x(t), A(t) and L(t): 
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              (VarA+L) 

Neglecting the free-living stage explicitly, one obtains the three-dimensional system 

(VarA) shown in Appendix. 

The difference between (Fix k) and (VarA) is that in the former, aggregation is 

fixed by choosing the parameter k, while in the latter aggregation will vary over time 

according to the processes that influence it. It has been shown (Damaggio and Pugliese, 

1996) that (VarA) actually produces very little aggregation, and the same seems to be true 

for the infinite system: indeed, the aggregation present at the equilibrium of the infinite 

system arises through the mixing of age classes differing in mean parasite burden (Pacala 

and Dobson, 1988), while the distribution of each age class is Poisson (Pugliese, 2000).  
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Thus, all these systems seem to be somewhat lacking: (Fix k) does not let 

aggregation vary in time, and does not provide any way of understanding how and why 

aggregation arises in the first place; on the other hand, the aggregation produced by the 

infinite system and (VarA) is much too low with respect to empirical patterns. 

2.2.3 Multiple infections 

A model that provides a reasonable degree of flexibility has been introduced by 

Pugliese et al. (1998). In that model, aggregation in the distribution of adult parasites arises 

mostly from multiple infections (see also Barbour and Kafetzaki, 1993; Isham, 1995). 

Within this model, it is assumed that, in any infection, a host ingests a random (according 

to a truncated Poisson law of parameter λ) number of free-living stages; from this 

assumption (“parcels of larvae”), one obtains the infinite system (InfClump+L) shown in 

Appendix. Using the same procedure as above, one then arrives at the following system: 
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                        (VarAClump+L) 

Neglecting the free-living stage explicitly, one obtains the system (VarAclump) shown in 

Appendix. 

Note that (VarA) is simply a special case of (VarAClump) with λ=0. No simple 

identification holds with (Fix k) instead, since they differ in the parameters: (Fix k) has 

aggregation described by the parameter k; (VarAClump) has a mechanism (λ>0) creating 

aggregation. Nonetheless, it is tempting to compare them, equating small k with large λ. 

Finally, when looking for analytical approximations of quantities of interest, it is 

sometimes convenient to consider a particular version of (VarAClump+L) that assumes a 
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fixed aggregation; while Anderson and May assumed k to be constant, in the 

approximation (FixA+L) we keep instead A(t) at its equilibrium value A*. System 

(FixA+L) often is a better approximation of the infinite system than (Fix k+L), and it 

allows to compute an approximation of the period of cycles, as shown below. The 

equations of (FixA+L) are shown in Appendix.  

2.2.4 Heterogeneity in host susceptibility  

Anderson and May (1991), as well as many other authors, suggest that differences among 

hosts in predisposition to infection are the main reason for the aggregation of parasite 

distributions empirically observed. This could be caused by different level of host 

immunity against the parasite. Acquired immunity, if protective, may act to limit the 

establishment of parasite, their rate of development, their fecundity and their survival 

(Grenfell and Dobson, 1995).  

We consider here a very simple model that takes account of this kind of heterogeneity in 

the host population. However, to keep the model simple, we do not consider acquired 

immunity but assume that heterogeneity is innate, so that hosts are born in one 

susceptibility class, and keep that class forever; moreover, the class in which an individual 

is born is independent of that of its parents. 

Precisely, we assume here that the probability of parasite establishment is ψ1 for hosts of 

type 1 and ψ2 for hosts of type 2. Furthermore, qj is the proportion of individuals born in 

class j, where clearly q1+q2=1. Introducing the variables pi,j(t), that represent the number 

of hosts of type j carrying i parasites, one obtains the system (InfHet+L) shown in 

Appendix. 

We will not consider any approximation based on this model. Instead, we will compare the 

behaviour of system (InfHet+L) to that of the systems (Fix k+L) or (VarAClump+L), 
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approximations obtained under other assumptions, to study how important is the 

mechanism determining aggregation to the dynamics of host-parasite systems. 

 

2.3. Comparisons among different models 

2.3.1 Quantitative agreement 

In Figures 1 and 2 we present some numerical simulations of the infinite system 

together with its low-dimensional approximations.  

  

FIG. 1. Comparison between truncated infinite model (Inf+L) (i_max=70) and lower-
dimensional models for host population (N) and the parameter k of the negative binomial 
distribution in the case λ=0. The other parameters are b=0.6, d=0.5, ν=8.3e-04, α=1.8e-03, 
h=100, ψ=0.5, σ=4, β=0.12, ξ=0.01, δ=60, k=15.6. 

 

  

FIG. 2. Comparison between truncated infinite model (InfClump+L) (i_max=200) and 
lower-dimensional models for host population (N) and the parameter k of the negative 
binomial distribution in the case λ>0. The parameter values are b=0.6, d=0.5, ν=8.3e-04, 
α=1.8e-03, h=100, ψ=0.5, σ=4, β=0.12, ξ=0.01, δ=60, k=0.38, λ=40. 
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In Fig. 1 we consider the basic version of (Inf+L), compared to (VarA+L) and (Fix 

k+L) while in Fig. 2 we used the version with multiple infections (InfClump+L) that 

results in a system with much more aggregation, compared to (VarAClump+L) and (Fix 

k+L).  

Models (Inf+L) and (VarA+L) [or (InfClump+L) and (VarAClump+L)] have the 

same parameters; hence, there are no problems with the comparisons. On the other hand, 

model (Fix k+L) contains the parameter k not present in the infinite systems; hence, we 

used, in both cases, for system (Fix k) the average value of k resulting from numerical 

computation of the infinite system in the same way as an experimenter would use the value 

of k resulting from estimates of actual data. It can be seen that, in both cases, the models 

(VarA+L) [or (VarAClump+L) ] are an excellent approximation of the corresponding 

infinite system (actually the two curves are indistinguishable in these figures); as for (Fix 

k+L), it works very well (except, of course, that k is constant, instead of variable as in the 

infinite system) when there is little aggregation (Fig. 1), while the approximation is not 

perfect and actually yields a qualitatively different result (damped vs. sustained 

oscillations) when the aggregation of the parasite distribution is high, i.e. k is less than one 

(Fig. 2).  

 
FIG. 3. Comparison between the distribution of ri=pi/N and the best-fit negative binomial 
when the host population reaches the first maximum in Fig. 1. 
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The mechanism underlying such a good agreement between (InfClump+L) and 

(VarAClump+L) is not yet understood; indeed, the simulated distribution of the infinite 

system appears rather different from negative binomial (Fig. 3, noting however the 

logarithmic scale). How does the model with host heterogeneity compare to the 

approximate models (VarAClump+L) or (Fix k+L)? Now the approximations are based on 

a different mechanism than the one present in the infinite model (InfHet+L); hence we 

cannot expect a perfect agreement between the two. Again, we compared models from the 

point of view of an experimenter that does not know of the heterogeneity in susceptibility 

but tries to fit models (VarAClump+L) or (Fix k+L) to observed data on average parasite 

load and aggregation; precisely; we chose the values of λ  (respectively of k) that predict 

average values comparable to those of (InfHet+L). We present in Figures 4 and 5 

(corresponding to different parameter values) simulations of (InfHet+L) together with 

(VarAClump+L) or (Fix k+L). 

  

FIG. 4. Comparison between truncated infinite model with host heterogeneity (InfHet+L) 
(i_max=300) and lower-dimensional models for host population (N) and the parameter k of 
the negative binomial distribution. For (InfHet+L) ψ1=1, ψ2=0.025, q1=q2=0.5, for 
(VarAClump+L) ψ=0.5 and λ=15, for (Fix k+L) ψ=0.5 and k=0.93. The other parameters 
are b=0.6, d=0.5, ν=8.3e-04, α=1.8e-03, h=100, σ=4, β=0.12, ξ=0.01, δ=60.  

 

It can be seen that the average values of the different systems indeed are very 

similar (the parameter values have been chosen to this purpose), but the qualitative pattern 

of solutions are rather different. In Fig. 4 there are very quickly damped oscillations for 
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(InfHet+L), sustained oscillations for (VarAClump+L) and (Fix k+L) is intermediate. In 

Fig. 5 there are sustained oscillations both for (VarAClump+L) and (Fix k+L) while 

damped oscillations for (InfHet+L). 

  
FIG. 5. Comparison between truncated infinite model with host heterogeneity (InfHet+L) 
(i_max=300) and lower-dimensional models for host population (N) and the parameter k of 
the negative binomial distribution. For (InfHet+L) ψ1=0.75, ψ2=0.25, q1=q2=0.5, for 
(VarAClump+L) ψ=0.5 and λ=4, for (Fix k+L) ψ=0.5 and k=3. The other parameters are 
b=0.6, d=0.5, ν=8.3e-04, α=1.25e-03, h=100, σ=4, β=0.12, ξ=0.01, δ=60. 

 

2.3.2 Conditions for host regulation 

The rest of this Section is devoted to a qualitative comparison among the 

approximate models (little is known analytically about the infinite models). We found (or 

took from the literature, when available), for each model, the conditions on the parameters 

for some interesting features: host regulation, thresholds for parasite establishment, for 

multiple stable states, for sustained oscillations. Some of these conditions are listed in 

Tabs. 2 and 3 or shown in the following figures. We discuss each feature in more detail, 

starting from the conditions for host regulation. 

 

TABLE 2. Host regulation conditions for the examined models. 
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Anderson and May (1978) first showed that parasites might regulate a host 

population, in the sense that, although the host population would grow exponentially in 

absence of parasites (no density-dependence), it is possible that, in the presence of 

parasites, the population settles to an equilibrium. Indeed, this is possible in all models 

considered; in Tab. 2 we show the conditions found for host regulation in each model; to 

make expressions simpler, we assumed that there is no effect of parasites on host fecundity 

(ξ= 0). We see that, as intuitively expected, host regulation is easier when parasite fertility, 

h , is high, when host fertility, b, and parasite mortality, σ, are low. Less intuitively, it is 

easier when pathogenicity, α, is low (but not zero) and aggregation is low (k is large for 

(Fix k) or λ is low for (VarAClump)).  

 

TABLE 3. Basic reproduction ratio (R0) of the parasite and the multiple equilibria 
thresholds for the examined models.  
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*A0 and B are complex functions of the parameters of the model defined in Pugliese et al. 
(1998)  

 

Comparing the models, we see that (Fix k) with no aggregation (k=+∞) does not 

give the same condition as (VarAClump) with λ=0; in the former case, host regulation 

occurs for hψ>b+σ+α, while in the latter it is somewhat more difficult. Finally, the 

condition for host regulation in the infinite system is definitely hard to interpret, although 

the effect of parameters is analogous. 
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We remark that in real populations other factors may control the host; by and large, we 

may say regulation from parasites will occur when the level at which the population would 

be brought considering only interactions with parasites is lower than the carrying capacity 

resulting from trophic interactions. In this sense, the results obtained for exponentially 

growing hosts can give insights also for more realistic cases. 

2.3.3 Thresholds for parasite establishment 

It makes sense to consider a threshold for parasite establishment, only if a carrying 

capacity for hosts exists; in fact, in all these models, any kind of parasite would be able to 

get established into an infinite population, as it would occur assuming hosts’ exponential 

growth in absence of parasites. Thus, we assume a carrying capacity NK for hosts (Tab. 1), 

and find the conditions under which the equilibrium with NK hosts and no parasites is 

unstable; its instability means that, if we introduce a small number of parasites in a 

population close to the carrying capacity, the number of parasites will initially increase and 

therefore they will be able to get established in the population. The instability conditions 

can be stated in terms of a threshold quantity (R0) to be larger than 1; the quantity R0 is 

called basic reproductive ratio and can often be interpreted as the average  number of adult 

parasites produced by an average adult parasite over its life (Diekmann et al., 1990). 

The quantities R0 for the various models are listed in Tab. 3. It can be seen that they are 

identical for models (Inf), (Fix k) and (VarA), while that for (VarAClump) is somewhat 

lower. The agreement between (Inf) and (VarA) confirms the excellence of the 

approximation in this respect too; unfortunately, there is no explicit formula for the 

threshold of (InfClump), so that we can not compare it with the threshold for 

(VarAClump). The lower R0 for (VarAClump) depends on the fact that multiple infections 

result in hosts being infected with more than one parasite, even when parasites are very 

sparse; thus the death rate of a host harbouring a parasite will be on the average equal to 
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d+αAK, where AK>1 is the average aggregation when parasites are very rare (Pugliese et 

al., 1998); this effect is consistent with the fact that aggregated parasites are less capable of 

regulating a host population. In this respect, it is actually surprising (it seems a defect in 

the approximation) that the threshold for (Fix k) is always identical to that of (VarA) and 

(Inf) and does not vary with the aggregation level k. 

2.3.4 Thresholds for multiple stable states 

Diekmann and Kretzschmar (1991) found that, when parasites have a multiplicative 

effect on fertility, host regulation may lead not to a unique equilibrium, but to multiple 

equilibria. Under these conditions, what is called a catastrophe becomes possible, i.e. a 

small change of parameter values may yield a big change in equilibrium values. The 

computations are obtained using bifurcation theory (Kretzschmar, 1993; Pugliese et al., 

1998) in models with exponential growth of hosts. From the results shown in Tab. 3, we 

see that this phenomenon may occur only if the fertility reduction induced by parasites (ξ) 

is large enough. One can also see a difference (already remarked in Kretzschmar, 1993) 

between (Inf) and (VarAClump) on one side and (Fix k) on the other; in fact, in (Inf) and 

(VarAClump), for each combination of the other parameters, it is always possible to find ξ  

large enough to give rise to multiple equilibria (however, the values of ξ  necessary for this 

may be unrealistically high); on the other, since ξ  cannot be larger than 1, multiple 

equilibria will be impossible when aggregation is large (k small enough) in (Fix k) 

approximation. Multiple stable states probably exist (under more stringent conditions on 

parameters) also when hosts grow under a logistic law, although this has been rigorously 

shown only in a modification of (Fix k) (Pugliese and Rosà, 1995). 

2.3.5 Stability of the endemic equilibrium 

As already noted by Anderson and May (1978), in macroparasite models there is a 

tension between stabilizing and destabilizing processes: the former are density-dependence 
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in host population growth, parasite-induced host mortality and aggregation in parasite 

distribution; destabilizing processes are, citing only the ones including in the present paper, 

parasite-induced reduction of host fertility, and the length of the life span of free-living 

stages. When only stabilizing [destabilizing] processes are relevant, the endemic 

equilibrium will be stable [unstable], whereas when both kinds of processes are present, 

stability will depend on the exact values of parameters. 

The same qualitative effects occur in all the models considered. Therefore, the conclusion 

about stabilizing and destabilizing processes is robust to modelling details. 

As for the quantitative relevance of parameters, the conditions for stability are somewhat 

complex: it seems more useful showing the stability boundaries in parameter regions than 

writing down explicitly the conditions. To make things simple, we plot, for a few values of 

the aggregation parameters, the maximum value of fertility reduction ξ (Fig. 6) and the 

minimum value of larval death rate δ (Fig. 7) against pathogenicity, α, such that the 

endemic equilibrium is stable. 

 

 
FIG. 6. Stability regions (below the lines) for (Fix k) and (VarAClump) in the case δ=∞ 
and ξ>0. The other parameters are b=0.6, d=0.5, ν=8.3e-04, h=100, ψ=0.5, σ=4, c=500. 
 

As can be seen from Figs. 6 and 7, the parameter region where the endemic equilibrium is 

stable is much smaller under (VarAClump) than under (Fix k). Since the results of 
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simulations of (Inf) appear to be very similar to those of (VarAClump) (Figs. 1 and 2), we 

believe that the same holds for stability boundaries. Thus, it seems that (Fix k) vastly 

underestimates, relatively to the other models, the region of parameters in which the 

endemic equilibrium is unstable, and sustained oscillations occur.  

 
FIG. 7. Stability regions (above the lines) for (Fix k) and (VarAClump) model in the case 
δ<∞ and ξ=0. The other parameters are b=0.6, d=0.5, ν=8.3e-04, h=100, ψ=0.5, σ=4, 
β=0.12. 
 

2.4 Features of cycles 

When the endemic equilibrium is unstable, we found in all the simulations that the 

solutions tended to a limit cycle. It is important to know how the period of oscillations 

depends on models and parameter values, since it is often possible to estimate cycle length 

from empirical data.  

It is however generally rather difficult to obtain analytic expressions for the period, 

as soon as a model becomes minimally complex. We found that model (Fix A+L) is rather 
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convenient in this respect; in fact, in that model, under the assumption of α=0 and no 

carrying capacity, the equilibrium is always unstable; furthermore, it is possible to obtain 

asymptotic estimates for the imaginary part of the (unstable) eigenvalues of the 

equilibrium, and hence for the period of oscillations (T), as the death rate of larvae gets 

either very small or very large.  

When δ  goes to 0 (i.e., the expected length of the free-living stage goes to infinity), the 

period goes to infinity as δ -1/2, according to the following formula 
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on the other hand, when δ  goes to ∞  (i.e., the expected length of the free-living stage goes 

to zero), the period tends to the constant value: 
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The question arises of whether these explicit estimates, found under limiting conditions, 

for a simplified system, are useful in other contexts. First, it can be seen from Fig. 8 that 

these two estimates taken together fit well the exact local period in the (VarAClump+L) 

model over most of the range of δ.  

Moreover, these estimates are rather good also when α>0 and there is a finite carrying 

capacity (Fig. 9). To summarize, estimates (3) and (4) seem to work very well for model 

(VarAClump+L) for most reasonable parameter values, even though they were obtained 

from model (FixA+L) under limiting conditions.  
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FIG. 8. Length of local period of oscillation for (VarAClump+L) compared with the 
asymptotic estimates for δ→0 and δ→∞ in the case α=0 and NK=+∞. The other 
parameters are b=0.87, d=0.6, σ=4, A*=20, β=7.7 10-6, h=2 105, ψ=1, ξ=0.013. 
 

Moreover, it can be seen that the period is mainly influenced by the host and parasite 

demographic parameters b, d, δ  and σ and, if δ  is large, by h. On the other hand, the 

parameters that describe the impact of parameters on hosts, α and ξ, as well as λ, have a 

negligible effect on period length. 

 

 
FIG. 9. Length of local period of oscillation for (VarAClump+L) in the cases α>0 and 
NK<+∞. The other parameters are the same of those in Fig. 8. Sustained oscillations occur 
for values of δ less than the Hopf point. 
 

The final question concerns whether our estimates of the period, obtained as stated 

above through a linear analysis around the equilibrium, approximate well the true period of 

oscillations, that may fluctuate quite far from the equilibrium. To investigate this question, 
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we simulated the model (VarAClump+L) for several values of the parameters that yielded 

sustained oscillations. For each of those we computed the ‘local’ period (those obtained 

from linear analysis) and compared it with the ‘global’ period (that resulting from 

simulations). It can be seen (Fig. 10) that the two periods agree when δ  is close to the 

value of δ  at which Hopf bifurcation occurs (as analytically expected, since at that point 

the periodic solution merges into the equilibrium), but diverge rather strongly as δ moves 

away from the bifurcation point. In all the simulations, we found that the ‘global’ period is 

longer than the ‘local’ period; it would be interesting to know whether this is a general 

rule. 

 

2.5 Density-dependence in parasites: model and results 

Detecting density-dependence in the demographic parameters of parasites is very 

difficult, as argued in Hudson and Dobson (1997). On the other hand, it is plausible that 

even a slight dependence may affect deeply the dynamics of the system. Hence, it seems 

appropriate considering these effects in theoretical models. 

 The simplest rule for parasite mortality is to assume that it increases linearly with 

the number of parasites in the same host. Smith and Grenfell (1985) and Coyne and Smith 

(1994) present some data that seem consistent with such an assumption, although probably 

their data are better interpreted as resulting from immunological interactions. 

 Hudson and Dobson (1997) present data on the dependence of parasite fecundity on 

parasite density that seem to suggest a power law. Based on this assumption, they also 

presented an equation at the population level, whose derivation is however unclear. Only 

for the sake of mathematical tractability, we chose instead an exponential law, similar to 

that used for host fecundity, for the dependence of parasite fertility on the number of 
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parasites in the same host. From these rules (Tab. 1), and the negative binomial 

assumption, we obtained the following equations: 
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Notice that assuming an exponential law for the fecundity of an individual parasite 

implies that the function relating number of parasites in a host to total egg production 

(what is generally measured as EPG) has a humped shape, although the hump may be at a 

very large parasite number, if the density-dependent fertility reduction is weak. 

  

FIG. 10.Comparison between local and global length of the cycle in the case σ = 4 (a) and 
in the case σ = 8 (b). The other parameters are the same of those in Fig. 8 with NK=100. 
Sustained oscillations occur for values of δ less than the Hopf point. 

 

The effect of density-dependence in parasite fecundity and mortality on the stability 

of the endemic equilibrium is illustrated in Fig. 11, again through Hopf bifurcation 

diagrams. We chose values of the other parameters such as to yield sustained oscillations, 

without hosts’ density-dependence. Then we show how the maximum value of hosts’ 

carrying capacity, NK, for which the endemic equilibrium is stable, increases with 

increasing r and σB.  
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FIG. 11. Stability regions (below the lines) for (DensDepPar) in the (NK, r) and (NK, σB) 
plane. The other parameters are b=1.8, d=1.05, ν=7e-03, α=3e-04, h=11, ψ=1, σ=1, β=0.1, 
ξ=2.78e-04, δ=10, λ=25. 

 

In order to give the reader a better feeling for the figures, we try to give an 

empirical idea of the parameter values used in Fig. 11: in part a) at the right end of the 

abscissae axis (where the maximum value of NK for equilibrium stability has increased 

more than 5 times with respect to the reference value)  is r=1 10-4; with this value, parasites 

in a host harbouring 3000 other parasites (around one standard deviation from the mean 

parasite burden with these parameter values) would have their fertility reduced about 25% 

relatively to optimal conditions; in part b) the right end of the abscissae axis corresponds to 

assuming that parasites in a host harbouring 3000 other parasites have doubled their 

mortality relatively to optimal conditions. It appears then that even a weak density-

dependence in the parasite demographic parameters is a strongly stabilizing process for the 

system. 

 

2.6 Discussion 

We have reviewed here the results from several different models for host-

macroparasite interactions. It seems worth summarizing their similarities and differences. 

The deterministic models examined differ in two respects: they differ in whether there is a 

fixed aggregation parameter in the model, or an aggregation mechanism (multiple 
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infections, or innate heterogeneities in susceptibility to infection), or neither one; second, 

they may be an exact translation of some mechanistic assumptions (the infinite model) or 

they may be based on some kind of mathematical approximation, generally the negative 

binomial assumption. 

The first result obtained is that the negative binomial assumption works 

extraordinary well: simulations of the exact infinite models and of the approximating 

models are indistinguishable (Figs. 1 and 2), whether there exists some aggregating 

mechanism or not. Even the (Fix k) model that both is an approximation, and does not have 

an explicit aggregation mechanism, is not far from the infinite model, although the 

qualitative behaviour may be different. It must be remarked that we could not make a 

similar comparison for the model with host heterogeneity, since we did not consider any 

approximation of it. Instead, we studied how a simpler model (in which either a fixed 

aggregation parameter, or the average number of larvae per clump is estimated from data) 

would behave in such a situation. We saw that the simpler model captures some properties 

of the dynamics, although the qualitative behaviour may be different. 

The second result is that the mechanism producing aggregation in parasite 

distributions has a strong influence on the stability of the system. As well known, there 

exists a tension in host-macroparasite models between stabilizing and destabilizing factors: 

when the former prevail, at least one equilibrium is stable, and the system will settle to one 

of those; on the other hand, when destabilizing factors prevail, sustained oscillations will 

occur. An important outcome of this comparison is that the stabilizing and destabilizing 

factors are the same in all models; hence, qualitative comparisons are robust to the choice 

of the model. 

Anderson and May (1978) found that parasite aggregation is a very stabilizing 

factor. In a sense, we confirm this finding; however, we found that the aggregation 
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produced through our model of host heterogeneity stabilizes the system much more than 

that obtained through multiple infections. It turns out that the model with fixed 

aggregation, (Fix k), vastly underestimates the parameter region where oscillations occur if 

the correct mechanism is multiple infections (Figs. 6 and 7), while it underestimates the 

stability region if the correct model is the one with host heterogeneity (Figs. 4 and 5).  

Note, however, that our model for host heterogeneity is very simplistic; possibly, in 

a model where immunity is acquired (and lost) dynamically (Grenfell et al., 1995) the 

equilibrium stability would be less likely. 

Note, finally, that just a slight density-dependence in parasite fecundity and/or 

mortality is another strongly stabilizing factor, and can turn the balance towards 

equilibrium stability (Fig. 11). 

Third, we found a difference, mainly conceptual, between (Fix k) model and the 

models where aggregation is dynamical. In fact, in (Fix k) a large parasite aggregation 

(small k) makes it more difficult for parasites to regulate hosts, but does not influence its 

threshold for establishment (Tabs. 2 and 3). On the other hand, in (VarAClump) a large 

value of λ (mean number of larvae per infecting parcel) makes more difficult for parasites 

both to regulate hosts, and to get established into a population at carrying capacity. This 

fact has an intuitive explanation: for fixed values of all the other parameters, a large 

aggregation causes many hosts to escape from infection; hence, these hosts may be enough 

to let the population go on growing. Analogously, when we consider parasite 

establishment, a large aggregation would cause most parasites to occur in the same hosts; 

hence, even when parasites are extremely rare, they would suffer from increased host 

mortality due to other parasites; it is then expectable that the threshold for establishment 

increases with the level of aggregation. In our view, the lack of influence of k on R0 in 

(Fix k) is a weakness of the model, or an implicit assumption: aggregating mechanisms are 
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such that they do not have any effect when parasites are very rare. Unfortunately, we do 

not have exact formulae for (InfClump) model, so that we cannot see the effect of λ in the 

infinite model, and we must rely on the approximate (VarAClump) model. 

Cycles are one of the features that have always fascinated ecologists. Host-

macroparasite interactions have already been shown (Anderson and May, 1978) to be one 

of their possible causes. As remarked above, the models with multiple infections make 

cycles more likely than what is expected from (Fix k), while the model with heterogeneity 

in susceptibility makes them less likely. Often, the approximate length of cycles is the 

feature most easily obtained from empirical data (whether they are census data, or shooting 

bags); hence, it may be useful that models yield explicit formulae for the length of cycles, 

so that mathematical predictions can be compared to actual data.  

Although exact formulae for cycle length can rarely be obtained in nonlinear systems, we 

found that approximate formulae can be found for the models of interest; they actually 

represent or approximate the length of cycles («local cycle length») of the linear 

approximations performed at the equilibria of the nonlinear systems. We have shown (Figs. 

8 and 9) that the approximations are rather robust to the exact system under study. Such 

approximations work, of course, well when the equilibrium of the nonlinear system is 

stable, which may be important since, in that case, stochastic simulations may be 

approximately cyclic with a similar period (Rosà et al., 2003). On the other hand, when the 

equilibrium of the nonlinear system is unstable, the approximation of the period may not 

be so good when the cycle gets very far from the equilibrium (Fig. 10). In our simulations, 

we found that the true period of the nonlinear system («global cycle length») is always 

longer than the «local cycle length», but we do not know how general is the phenomenon. 

Finally, we remark that the model (InfHet+L) with heterogeneity in susceptibility to 

infection is rather simplistic, since it is assumed that individual hosts are born with a given 
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susceptibility, and keep that forever. More realistically, susceptibility to infection 

decreases with acquired immunity, and more complex models (Grenfell et al., 1995; Chan 

and Isham, 1998) are needed to understand better the effect of acquired immunity on the 

dynamics of host-parasite interactions. 
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2.7 Appendix 

 

List of models used 

 

The infinite system with multiple infections 
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where γ=λ/(1-e-λ). 

 

The infinite system with host heterogeneity 
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Approximate model with variable aggregation 
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Approximate model with variable aggregation and multiple infection 
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Approximate model with fixed aggregation 
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3.0 Abstract 
Our understanding of the qualitative dynamics of host-macroparasite systems 

is mainly based on deterministic models. We study here an individual-based stochastic 

model that incorporates the same assumptions as the classical deterministic model. 

Stochastic simulations, using parameter values based on some case studies, preserve many 

features of the deterministic model, like the average value of the variables and the 

approximate length of the cycles. 

An important difference is that, even when deterministic models yield damped oscillations, 

stochastic simulations yield apparently sustained oscillations. The amplitude of such 

oscillations may be so large to threaten parasites’ persistence. 

With density-dependence in parasite demographic traits, persistence increases somewhat. 

Allowing instead for infections from an external parasite reservoir, we found that host 

extinction may easily occur. However, the extinction probability is almost independent of 

the level of external infection over a wide intermediate parameter region. 

 

3.1 Introduction 

Our understanding of the qualitative dynamics of host-macroparasite systems is 

mainly based on deterministic models, starting from Anderson and May (1978) to the 

following developments (Rosà and Pugliese, 2002). From the deterministic models it is 

possible to obtain analytical results, which have been widely used in applications (Grenfell 

and Dobson, 1995; Hudson et al., 2002), about the basic reproduction ratio of parasites 

(R0), the conditions for host regulation, or for the stability of the equilibria of the system. 

Recently, with the development of high-speed computers, individual-based 

simulation models are becoming increasingly popular; some recent examples related to 

host-parasite interactions include Wilber and Shapiro (1997), Peters and Lively (1999).  
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In simulation models, one can easily introduce many important factors missing 

from simple deterministic models, such as spatial structure with local interactions (Hess, 

1996; Keeling, 1999), genetical and behavioural differences among individual hosts. If the 

rules of simulation models are very complex, it becomes however difficult to disentangle 

the effect of the different factors, and to reach the qualitative understanding yielded by 

deterministic models (Anderson and May, 1978). 

In the present paper we restrict our considerations to simulation models that may be 

considered the stochastic counterpart of the deterministic models considered in Rosà and 

Pugliese (2002). The stochasticity present in the simulations is that intrinsic to the discrete 

nature of populations, what is often called “demographic stochasticity” (May, 1973). From 

the results of the simulations it is possible to judge how well the predictions of the 

deterministic models hold for simulation models and to understand the phenomena brought 

in by “demographic stochasticity” per se. 

This analysis should give us some clues on what can be inferred about real host-

parasite interactions (that will undoubtedly be more complex than our simulation models) 

from deterministic models. Moreover, these results can be the reference against which to 

study models that include other factors deemed to be important in the dynamics of host-

parasite interactions. 

 

3.2 Models 

3.2.1 Individual-based stochastic model 

In our individual-based stochastic model, each individual host is distinguished only 

by the number of parasites it harbours. Thus, at each time, the state of the system is 

determined by the infinite vector n(t)={n0(t),n1(t),…,ni(t),…}, where ni(t) is the number of  

hosts with i parasites. The total population for hosts and parasites are respectively: 
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N(t)=Σini(t) and P(t)=Σiini(t) (note that, with probability 1, there will always be only a 

finite number of hosts, so that the sums defining N(t) and P(t) are always finite). 

Mathematically, n(t) is a Markov process with values in the state space S=N N while the 

parameter t (time) lies in the parameter space T=(0,+∞) (see Barbour and Kafetzaki,1993, 

for the rigorous definition of a similar model). 

The biological processes we included in the model are hosts’ births and deaths, 

parasite deaths, and new infections; the transition probabilities for each of these events 

follow the laws used in the deterministic models described in Rosà and Pugliese (2002).  

Namely, we assume that hosts with i parasites have a birth rate of b(1-ξ)i (i.e., 

parasites decrease hosts’ fertilities) and a death rate of d(N)+αi (parasites increase hosts’ 

mortalities), while death rate of adult parasites is σ (density-independent, but see Section 

4). The death rate d(N) is assumed to be density-dependent, so that there exists a 

deterministic equilibrium NK for the host population in absence of parasites. Here, we 

always used d(N) = d0 + (b- d0)N/ NK with b > d0. 

These assumptions can be translated in the rules for the transition probabilities, listed in 

Tab. 1. In fact, it is assumed that the probability that a host carrying i parasites gives birth 

to a new host within the time interval (t, t+∆t) is equal to b(1-ξ)i∆t plus higher order terms 

in ∆t. Summing over all hosts in the population, we obtain that the probability (conditional 

on the state n(t) of the population) that a new host is born in the time interval (t, t+∆t) is 

equal to 

Σib(1-ξ)i ni(t)∆t + h.o.t. 

In this case, since hosts are assumed to be born parasite-free, the population state will 

move from (n0,n1,…,ni,…) to  (n0+1,n1,…,ni,…). This is reported in Tab. 1 as P(n(t+∆t)-

n(t)= e0 | n(t)) where e0 is the vector (1,0,0,…). 
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Analogously, the probability (conditional on the state n(t)) that in the time interval (t, t+∆t) 

the death occurs of a host carrying i parasites is equal to (d(N)+αi)ni∆t + h.o.t. In this case, 

the population state will move from (n0,n1,…,ni,…) to (n0,n1,…,ni-1,…), i.e. n(t+∆t)=n(t)- 

ei, as reported in Tab. 1. 

 

TABLE 1. Transition probabilities regarding the four processes considered in the 

individual-based model.  

 

 

Parasite’s death 
 

P(n(t+∆t)-n(t)=ei-1-ei | n(t))=σni(t)∆t+o(∆t), i=1,…where ei=(…,0,1,0,…) 
 

 

New infection 
 

P(n(t+∆t)-n(t)=ei+l-ei | n(t))=
)(
)( 

tNc
tPqh l

+
ψ  ni(t)∆t+o(∆t), i=0,…; l=1,… 

with 
λ

λλ
−

−

−
=

e
e

l
q

l

l 1!
 

 

 

Host’s death 
 

P(n(t+∆t)-n(t)= - ei | n(t))=(d+[(b-d)/NK]N+αi) ni(t)∆t + o(∆t),  i=0,… 
 

 

Host’s birth 
 

P(n(t+∆t)-n(t)= e0 | n(t))=Σib(1-ξ)i ni(t)∆t + o(∆t),  i=0,… 
 

 

Again, the probability (conditional on the state n(t)) that in the time interval (t,t+∆t) the 

death occurs of a parasite in a host carrying i parasites is equal to σini ∆t + h.o.t. In this 

case, the population state will move from (n0,n1,…,ni-1,ni,,…) to (n0,n1,…,ni-1+1,ni-1,…), i.e. 

n(t+∆t)=n(t)+ ei-1 - ei, as reported in Tab. 1. 

Infections are slightly more complex to describe. The infection rate is expressed in 

terms of N and P, and is equal to hψP/(c+N). This form is justified on the basis of a 

submodel that considers the indirect transmission of parasite through free-living stages 

(Anderson and May, 1978). Simple assumptions on their dynamics and a time-scale 

argument (lifespan of free-living stages being much shorter than that of adult parasite 

inside a host) lead to this form, where h is the rate at which infecting stages are produced 

by adult parasites, ψ is the probability that ingested infecting stages develop into adult 

parasite, and c=δ /β with β the encounter rate between hosts and infecting stages, and δ the 
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death rate of infecting stages. We refrained from explicitly including infecting stages in the 

simulations, to keep the computation time within reasonable bounds. In this case, it can be 

noticed that, in the simulations, we do not actually need the two parameters h and ψ, but 

only the lumped parameter hψ. Finally, it is assumed that, in any infection, a host ingests a 

random (according to a truncated Poisson law of parameter λ) number of free-living stages.  

These assumptions imply that the probability (conditional on the state n(t)) that in the time 

interval (t,t+∆t) a new infection occurs in a host carrying i parasites is equal to  

t n
Nc
Ph

i ∆
+
ψ

 + h.o.t. 

In this case, the host will ingest l larvae with probability ql given in Tab. 1. Hence, the 

population state will move from (n0,n1,…,ni,,…) to (n0,n1,…,ni-1,… ,ni+l+1,…) with 

probability t n
Nc
Pqh

i
l ∆

+
ψ

 + h.o.t as reported in Tab 1. 

We investigated the model only through simulations. At any moment in time there 

will be a finite number of hosts, each with a finite number of parasites. The four biological 

processes considered occur asynchronously (Durrett and Levin, 1994); this means that, 

given the state of the system at time t, the waiting time for the next event is exponential 

with a rate given by the sum of the rates of every event. For instance, the probability that a 

host carrying i parasites dies in the interval (t, t+∆t) is equal to (d+αi) ni(t)∆t+o(∆t); in 

other words, if no other events occur before, the waiting time for the next death of a host 

carrying i parasites is an exponential variable of parameter ni(t)(d+αi). Summing over all 

possible events, we find that the waiting time for the next event is an exponential variable 

with parameter equal to the sum of the rates of each event. In the simulations, by extracting 

pseudo-random numbers, we find the time and the type of next event, according to the 

distributions obtained from these rates. Then we update all the relevant variables and the 

process starts again in the same way, because of the Markov property.  
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The simulations stopped either when no parasites were left in the system, or when 

the final time (generally t=100) was reached. 

[If useful, the code of the simulations can be made available on the Web at the Journal 

site].  

3.2.2 Deterministic model and its approximation 

As explained in the Introduction, we will study how the predictions of deterministic 

models apply to the stochastic model based on the same assumptions. 

The deterministic counterpart of the individual-based model presented in the 

previous section is the infinite model: 
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        (InfClump) 

where pi(t) represent the number (assumed to be a continuous variable) of hosts 

carrying i parasites, and N(t) = pi(t)
i = 0

∞

�  is the total host population. Moreover, γ=λ/(1-e-λ) 

and d=d(N). 

Indeed, system (InfClump) can probably be obtained through an appropriate limit 

of Markov processes n(t). Precisely, if we have a sequence )(tn j of processes, as defined in 

the previous Section but whose carrying capacity j
KN  grows to infinity as j→∞, defining 

j
K

j
ij

i N
tn

tp
)(

)( = , the law of large numbers, as used in Barbour and Kafetzaki (1993) or 
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Arrigoni and Pugliese (2001), should imply that )(tp j
i  converge as j→∞, to the solution of 

(InfClump) with NK = 1. 

As widely illustrated in Rosà and Pugliese (2002), the system (InfClump) is well 

approximated by the following three-dimensional system: 
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      (VarAClump) 

where N  represents the host population size, x the mean parasite burden and A is the 

measure of the aggregation of the parasite distribution defined as the ratio of the variance 

to the mean of adult parasite burden.  

System (VarAClump) is a variant of the classical model introduced by Anderson 

and May (1978); in that model, an infinite system similar to (InfClump) is ‘closed’ 

assuming that the parasite distribution is negative binomial with fixed aggregation 

parameter k. It is not conceptually possible to build stochastic simulations with this 

procedure, since k is a population parameter that cannot be translated into individual-based 

processes. The parameter λ that regulates the number of ingested free-living stages per 

infection event has an effect similar to that of k on the dynamics of the system (Rosà and 

Pugliese, 2002), but has the advantage of corresponding to an individual biological 

process. Other aggregating mechanisms could be built into the simulations, but here we 

considered only the one depending one multiple infections, as measured by parameter λ. 

It is well known, and widely shown in Rosà and Pugliese (2002) that the 

destabilizing factor included in models for macroparasites are the parasite-induced 

reduction of host fertility (ξ>0), and low values of the free-living stages mortality (long 

lifespan of free-living stages). If one allows for long-lived free-living stages, the explicit 
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differential equation for the free-living stages has to be introduced in the model, obtaining 

a system which has been studied in detail in Pugliese et al. (1998) and in Rosà and 

Pugliese (2002) under the name (VarAClump+L). As explained above, we did not consider 

explicitly free-living stages in the simulations because of the computational burden. 

 

3.3 Results of stochastic simulations 

We performed the stochastic simulations outlined above for three different sets of 

parameters. The first concerns the well known red grouse (Lagopus lagopus scoticus) -

Trichostrongylus tenuis system in northern England (Dobson and Hudson, 1992), the 

second refers to the infection by Trichostrongylidae in a chamois (Rupicapra rupicapra L.) 

population in the Brenta mountain group (northern Italy) (Rosà et al., 1997) and the third 

concerns the Ascaridia compar infection in rock partridge (Alectoris graeca saxatilis) in 

Trentino region (northern Italy) (Rizzoli et al., 1997; Rizzoli et al., 1999). The parameter 

values we used for our simulations are reported in Tab. 2. We let the simulations start from 

close to the deterministic equilibrium of each parameter set. 

 

TABLE 2. Parameter values used in the stochastic simulations for the red grouse-
Trichostrongylus tenuis, the chamois-Trichostrongylidae and the rock partridge-A. compar 
systems. 
 

 

Parameter 
 

 

Red grouse  
Values 
 

 

Chamois  
Values 
 

 

Rock partridge 
Values 
 

 

Units 
 

     

b 1.8 0.44 1.8 year-1 
d 1.05 0.23 1.6 year-1 
NK 107 1500 75 host 
σ 1 1.08 4 year-1 
hψ 11 20 2e+5 year-1 
c 100 8250 1.32e+6 host 
α 3e-4 1.5e-4 0 worm-1 year-1 
ξ 2.78e-4 0 1.8e-2 worm-1 year-1 
λ 400 20 0  
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In Fig. 1 we show two stochastic simulations for each of the parameter sets 

representing the red grouse and chamois systems (Tab. 2). The simulations are compared 

to the numerical solution of the deterministic model (VarAClump). In the case of red 

grouse, the deterministic model exhibit sustained oscillations, while the dynamics of the 

deterministic system with the chamois parameters is characterised by damped oscillations 

(in fact, in that case ξ=0).  

It appears from Fig. 1 that in both cases the stochastic simulations exhibit 

fluctuations whose amplitude is not decreasing over the 100 year period; this is confirmed 

by the periodograms of the simulations, shown in Fig. 2, all of which present a well-

defined peak. Indeed, it has already been shown in the literature (Bartlett, 1960; Nisbet and 

Gurney, 1982; Kaitala et al., 1996) in several contexts that, when a deterministic model has 

damped oscillations, it may occur that a stochastic version of that model exhibits sustained 

oscillations. 

We investigated the period and the average of these fluctuations. The spectral 

analysis (Fig. 2) of the stochastic simulations shown in Fig. 1 exhibits an apparent period 

consistent with what found in the deterministic period; in fact, the period of the oscillations 

in the deterministic model is close to 6.5 years for the red grouse parameters, and around 

15 years for the chamois parameters. 

This is further explored in Fig. 3, where the apparent period of oscillations and the 

temporal averages of some population statistics are shown for each of 20 stochastic 

simulations, together with the values at the deterministic equilibrium for the same 

quantities.  
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Red grouse Chamois 

 

 

 
FIG. 1. Deterministic model (VarAClump) and stochastic simulations for hosts (N), mean 
parasite burden (x) and k of the Negative Binomial distribution. The first column shows 
two simulations for the red grouse–Trichostrongylus tenuis system. The second column 
two simulations for the Trichostrongylidae-chamois system. Parameters are in Tab. 2. 

 

We used the parameter set representing the red grouse system, but trying different 

values of h, parasite fertility. For each value of h we chose the first 20 simulations that 

reached the final time t=100. In Fig. 3 we show (closed triangles) the length of cycles 

(estimated as the maximum of the periodogram) and the temporal averages, over the last 

20 years of the simulations, of the host number (N), of the mean parasite number (x), and 

of the aggregation parameter k of the Negative Binomial distribution (k=x/(A-1)); in the 
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same figure, we show the corresponding quantities for the deterministic model (line): value 

at equilibrium of N, x and k, and oscillation period estimated from the imaginary part of the 

largest eigenvalues at the equilibrium.  

  
FIG. 2. Spectral analysis of host number (N) in the stochastic simulations of Fig.1: (a) red 
grouse–Trichostrongylus tenuis system; (b) Trichostrongylidae-chamois system. 
 
 

  

  
FIG. 3. Temporal averages (between t=80 and t=100) of hosts (N), mean parasite burden 
(x), the aggregation parameter k of the Negative Binomial distribution and the period of 
oscillation (T) for the deterministic solution (VarAClump), and 20 stochastic simulations 
using the red grouse–Trichostrongylus tenuis parameter of Tab. 2. 

 

Although different simulations yield different results within a band of variation 

(because of the inherent stochasticity of the individual-based model), it can be seen that the 
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statistics of the stochastic simulations are close to the predictions from deterministic 

model; moreover, when h changes, deterministic and stochastic results follow the same 

trends.  

In conclusion, it seems that the predictions (as for average values and period of 

fluctuations) of the deterministic model apply rather well to stochastic simulations. 

We finally remark that all the simulations shown have a relatively high value of the 

parameter λ; the simulations (not shown) with λ=0 (infections occuring with only one 

parasite per time) have much larger and irregular fluctuations, especially for the variables 

A and k. It seems thus necessary to introduce some aggregation mechanism in the 

simulations in order to have a mild behaviour of these statistics. 

An important feature of stochastic models, in contrast to deterministic ones, is the 

possibility of population extinction; in this case, one could have extinction of the only 

parasite population, or of both hosts and parasites. 

Since in our model growth to infinity of the population is impossible (because of 

density-dependent host mortality), it is clear that extinction is certain, as in all regular 

birth-and-death processes (Karlin and Taylor, 1975). However, it is well known that the 

average time to extinction of a population grows exponentially with the carrying capacity 

of the population (Andersson and Djehiche, 1998), and can be astronomically long already 

for moderate values of the carrying capacity. We investigated the probability of extinction 

over a finite time interval by assessing how many times our simulations terminated before 

the final time. We generally chose 100 years as final time, because we think it is a relevant 

time scale, compared to the rate of habitat change. 

For the parameter values of the chamois case study, no extinctions (of either 

parasites only, or of both hosts and parasites) occurred in 100 simulations (note that 

NK=1500 and that also mean parasite burden is large). Using the parameter values for the 
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red grouse system, approximately 1% of the simulations (36 out of 3000) reached the final 

time t=100 without extinctions, while all simulations representing the rock partridge- A. 

compar system show extinction of the parasite population while hosts oscillate around the 

carrying capacity. 

 

3.4 Density-dependence in parasite population 

In the simulations presented in the previous Section, parasite extinction occurred 

always for the rock partridge system, and very often for the red grouse system, in contrast 

to the apparent persistence of these host-parasite association over a long period (Hudson 

and Dobson, 1992). It is intuitive, and will be further discussed below, that this problem 

could be solved increasing the carrying capacities; the ones we used are however based on 

field estimates. Concerning in particular the rock partridge, we used the maximum values 

of host density (7.5/km2) found in Trentino (northern Italy) and the extent of suitable area 

for the rock partridge in a mountain group (typically around 10 km2), obtaining a carrying 

capacity around 75 individuals. Hence, we conclude that some factors missing from the 

model must be responsible for this persistence. 

Among the possible factors, in this Section we concentrate our attention on the 

density-dependence in parasite fertility and/or mortality (Paterson and Viney, 2002). In 

fact, as observed in the deterministic models (Rosà and Pugliese, 2002) just a slight 

density-dependence in the parasite is a strongly stabilizing process for the system; in other 

words, parasites cannot reach very high peaks in abundance and consequently drastic 

crashes in both host and parasite populations are avoided.  

As in Rosà and Pugliese (2002), here we assume very simple rules for the density-

dependence in parasite fertility and mortality. The parasite mortality increases linearly with 

the number of parasites present in the same host while we chose an exponential law for the 
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dependence of parasite fertility. More precisely, the mortality for parasites in hosts 

carrying i parasites is given by σ+(i-1)σB, while the fertility for parasites in hosts that 

harbour i parasites is equal to h(1-r)i-1. Note that we used i-1 in the previous formulae so 

that a parasite alone in a host (when density-dependent factors should not operate) has the 

same fertility and mortality independently of the values of the parameters σB and r that 

measure density-dependence. 

 
FIG. 4. Survival probability in 1000 simulations of 20 years for different values of the 
parameters concerning the density-dependence in parasites (σB and r). The other 
parameters are those of Tab. 2 regarding the A.compar-rock partridge system with N0=30 
and x0=4. 
 

 
FIG. 5. Temporal dynamics for rock partridges and A. compar considering density-
dependence in parasites. The values of σB=0.5 and r=0.2 are those where the survival 
probability in Fig. 4 is maximum. The other parameter values are those of Fig. 4. 

 

The survival probability of parasites (over 20 years of simulations) is shown in 

Fig. 4 for different combination of σB (increase in parasite mortality) and r (reduction in 
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parasite fecundity) using the rock partridge parameter set. Here we used a time interval of 

20 years, since very few simulations persisted longer for any combination of σB and r. 

Note however that we used N0 = 30 as starting value for the simulations; using a higher 

value of N0; we would obtain marginally higher survival probabilities. 

Moving from the point without density-dependence (σB=r=0), where no simulations 

out of 1000 persisted 20 years, the persistence of parasites in the system increases for 

positive values of both σB and r till it reaches a maximum value (around 9%) for an 

intermediate region of these parameters (approximately when 0.15<r<0.32 and 

0.05<σB<0.75). A further increase in the density-dependence affects too much the 

demographic parameters of parasites and as a result the survival probability of parasites in 

the system decrease (Fig. 4). 

Looking at the temporal dynamics for host-parasite interaction, choosing σB and r 

in the region of maximum survival probability, the dynamic results quite stable and 

parasites cannot reach very high peaks (Fig. 5). This results is not surprising and reflects 

what we obtained in deterministic model (Rosà and Pugliese, 2002). Still, even choosing 

the best possible values for σB and r, only 2 simulations (out of 1000) reached t=100, and 

in both of them the parasites got extinct before t=110. 

 

3.5 Stochastic simulations with external infection 

Another possible factor that could be responsible for the persistence of parasites in 

the system is the presence of other species acting as a reservoir for the infection process; 

some empirical evidence for this factor in the case of the rock partridge population is 

presented in the Discussion. Here, we change the basic model by adding an additional 

input to the infection process due to the presence of another host species.  
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For the sake of simplicity, at this stage we did not model explicitly the two hosts 

population (by adding additional differential equations, as in Schmitz and Nudds (1994), or 

stochastic variables). Instead, we assumed that one of the host population was much larger 

than the other and supported the parasite at more or less constant level; hence, we modelled 

the dynamics of only the smaller host population (e.g., rock partridge), adding an 

additional constant term f (due to parasites emerging from the other host species) in the 

infection rate, which becomes now equal to ψ(hP+f)/(c+N). In this formula, we also 

assumed that no infecting stages produced by adults in a rock partridge are picked up by 

hosts of the other species. The deterministic system we obtain is 

dN
dt

=  N(b[1 + (A −1)ξ]
−

x
A−1 − d − (b − d)N / NK −αx)

dx
dt

 =  x(−σ +
hψN
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−
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−
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      (VarAExtInf) 

Obviously, with an external input, it is impossible that parasites get extinct; in fact, one can 

see from the second equation in (VarAExtInf) that x(t) will always stay positive if f >0. On 

the other hand, one can see that the host population will get extinct (N(t) will tend to 0) if f 

is large enough. These results of the deterministic models are confirmed by the 

simulations: just a low value of external infection f is enough to allow A. compar to persist 

in the host population, while, when f is very large, the rock partridge population goes to 

extinction, because the mean parasite burden will be high and host fertility will become 

very low. We explored how the process of host persistence depends on the level of external 

infection. 

Fig. 6 shows the probability of extinction (defined as the fraction of simulations 

where extinction occurred in a 100-year interval) of the rock partridge population for 
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different values of the external infection f, of the carrying capacity NK  and of the initial 

value N0. The values chosen for NK are 75 (the best estimate for a typical rock partridge 

population) and twice as much (what might have been more typical decades ago, before the 

numerical decline of the species); we tried N0 equal to the carrying capacity, and to half of 

it (what may be typical in a population affected by parasites).  

 
FIG. 6. Effect of the external infection (f ) on the extinction probability of hosts in the 
stochastic model for different values of host carrying capacity (NK) and for different levels 
of the initial population (N0). The other parameters are those of Tab. 2 regarding the A. 
compar- rock partridge system. 

 

As expected, the probability of extinction decreases as  NK is increased. Less 

expectedly, the probability of extinction increases as N0 is increased, especially when the 

external infection f is low. 

 
FIG. 7. Probability of extinction in 10 years for different levels of the initial population 
(N0) without external infection. The parameters are those of Tab. 2 regarding the A. 
compar- rock partridge system but with NK=150. The initial level of parasite infection is 
x0=1. 
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To explore this fact, we studied (see Fig. 7) how, for a given initial level of parasite 

infection and no external infection afterwards, the probability of extinction in a short 

period (10 years) depends on the initial level of the population. It can be seen that, all other 

things being equal, the probability of extinction first declines to around 0 for populations 

initially between 40 and 90 individuals (against a carrying capacity of 150, chosen to better 

illustrate the pattern) and then increases again as the initial population grows closer to its 

carrying capacity. 

 
FIG. 8. Comparison between the effect of the external infection (f ) on the probability of 
host extinction for the first 100 years of simulation with the following 100 years in the case 
with NK=150 and N0=75. The other parameters are those of Tab. 2 regarding the A. 
compar- rock partridge system. 
 

Another interesting result that can be seen in Fig. 6 is how the extinction probability 

depends on the level of external infection f: as expected, when external infection is very 

high, host extinction is certain, while the probability of extinction declines to 0 as external 

infection goes to 0. However, the increase of the extinction probability with f is not 

monotonic: over a wide intermediate region (more or less when f is between 104 and 107 in 

our figure), host extinction probability is more or less independent of the level of external 

infections, and actually, for some values of the carrying capacity, even decreases with 

increasing f. 
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It may be wondered whether this pattern is due to transient effects. To avoid this, 

one may use as starting condition the quasi-equilibrium distribution of hosts and parasites, 

conditional to non-extinction. In order to approximate this, we let the simulations run for 

200 years, and computed the extinction probability as the fraction of the simulations that 

did not reach 200 years but had reached 100 years over the simulations that had reached 

100 years.  

 

 

 
FIG. 9. Simulations of the stochastic model for increasing values of the external infection: 
(a) f =105; (b) f =5⋅105; (c): f =107. The other parameters are those of Tab. 2 regarding the 
A. compar- rock partridge system. 
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In fact, it is expected that at t=100 the distribution of the simulations that have 

reached such t will be close to quasi-equilibrium. It is shown in Fig. 8 that the extinction 

probability computed in this way is very similar, at least for NK=150 and N0=75,  to that 

one observed in the first 100 years of simulation.  

For different values of f, the visual pattern of the simulations changes, as shown in 

Fig. 9. When f is relatively low (not shown), the host population is almost always parasite-

free; when an infection occurs, the host population is generally at a relatively large size, so 

that there is a violent crash that frequently results in host extinction. For larger values of f, 

infections are so frequent that host population does not have time to reach the carrying 

capacity in the parasite-free period (Fig. 9a). When f is further increased (Fig. 9b), 

parasites are almost always present at low levels, and the host population fluctuates rather 

erratically remaining generally far from zero and from the carrying capacity. In this 

parameter region, which is very narrow for NK = 75 but wider for NK = 150, extinction 

probability is lower than for smaller f. Finally, when f reaches a higher value, the average 

parasite burden becomes so high (Fig. 9c) that there is a deterministic decline of the host 

population. 

 

3.6 Discussion 

The first result arising from our stochastic simulations of host-macroparasite 

systems is that the results of deterministic models mainly hold when demographic 

stochasticity is added. In fact, as shown in Fig. 3, the average values (along an individual 

simulation) of host density, parasite burden and parasite aggregation are close to the value 

at the deterministic equilibrium, and show similar trends with respect to parameters. 

One of the most interesting aspects of host-macroparasite interactions is the 

possibility of inducing population cycles (Anderson and May, 1978). Sustained oscillations 
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that look almost cyclic occur in stochastic simulations, even when the underlying 

deterministic model converges to an equilibrium (Fig. 1). Such oscillations still retain 

many features of the deterministic model, both in their average value and in the 

approximate length of the cycles (Fig. 3d); the dependence of cycle length on parameters 

has been investigated in Rosà and Pugliese (2002). 

Our study then confirms the well-known effect (Bartlett, 1960; Nisbet and Gurney, 

1982; Kaitala et al., 1996) that adding noise (either as demographic or environmental 

stochasticity) to deterministic models may yield apparently sustained oscillations, even 

when only damped oscillations exist in the deterministic model (see Aparicio and Solari, 

2001, for some analysis of this effect in epidemic models). 

The best established examples of population cycles induced by macroparasites is 

the T. tenuis-red grouse system (Hudson et al., 1998). Our simulations, for the parameter 

values relative to the red grouse system, show cycles with length ranging (Fig. 3 with 

h=11) between 5.5 and 9 years. This difference in estimated cycle length among the 

simulations gives the range of uncertainties in model predictions: even if all important 

factors were known and modelled, and all parameters were exactly estimated, demographic 

stochasticity will cause such uncertainties; remember that in our simulations the population 

carrying capacity was just little more than 100 individuals (Tab. 2), and that in a larger 

population demographic stochasticity would be less important. The cycle lengths from 

simulations are somewhat higher than the cycle length estimated from actual data (Potts et 

al., 1984); reasons for this discrepancy may come from the different technique used for 

estimating cycle length, or from the errors in parameter estimates (the approximation of 

cycle length shown in Rosà and Pugliese, 2002, gives evidence of which parameters affect 

most cycle length), or from the lack of relevant factors in the models considered here. 
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Another important aspect of stochastic simulations is the persistence of the host-

parasite system. As shown in Section 3, all simulations of the basic model for the chamois 

parameter set persisted over a 100 year period, while only about 1% of those for the red 

grouse parameter set persisted, and none at all for the rock partridge parameter set. We 

chose 100 years as the reference time interval, but we believe that qualitative results would 

not change using a different reference interval. 

Note that, for the parameter values of Table 2, the values of the basic reproduction 

ratio R0 (Rosà and Pugliese, 2002) are around 2 for all the three systems. Hence, while 

R0>1 is a necessary condition for persistence of a host-parasite system, it appears that the 

host carrying capacity has a very strong influence on the extinction probability (see, for 

instance, Hakoyama and Iwasa, 2000): the extinctions found in the simulations for the red 

grouse and rock partridge systems are certainly favoured by the low values of the carrying 

capacity of these populations. In fact, since in the low part of host-parasite cycles a very 

low level of parasite burden is often predicted by the model, one expects that at that 

moment very few adult parasites are present in the populations, and thus demographic 

stochasticity easily yields parasite extinction in a short period. Furthermore, the difference 

in the extinction probability between the red grouse and the rock partridge set is perhaps 

due to the higher mortality rates both of hosts and of parasites in the rock partridge set. 

As already discussed, no simulations persisted over 100 years for the parameter 

values of the rock partridge system; always, the whole parasite population went extinct in 

the lower part of some cycle. It is clear from the discussion above that this problem could 

be solved by increasing the carrying capacity of the host population but, as already 

explained, our choice was based on the densities reported from field observation. 

We prefer to think of other explanations for the persistence of rock-partridge-A. 

compar system, already examined in the previous Sections.  
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As shown in Section 4, density-dependence in parasite fertility and/or mortality 

helps population persistence: even a weak dependence could prevent very large increases 

in the parasite populations and the consequent big crashes of the host population. We have 

however seen that, even setting the parameters that regulate density-dependence at the 

values most favourable to persistence, no simulations (out of 1000) persisted longer than 

110 years. It seems unlikely that density-dependence by itself makes such a system persist. 

Otherwise, persistence could occur at the metapopulation level with several small 

host populations connected through migration. Persistence in such a system is much easier, 

since cycle synchronization would decrease with distance (Ranta et al., 1995; Ranta et al., 

1997) and then recolonization could occur. But this does not seem to be a significant factor 

for rock partridge in Trentino (Northern Italy). In fact, Cattadori et al. (2000) showed that 

the rock partridge populations exhibit a sedentary pattern, particularly in comparison with 

the other galliform species present in the area. 

A third reason for host-parasite persistence could be the presence of another host 

species that acts as a reservoir for the parasites.  

Some field observations seem to support this hypothesis for the rock-partridge – A. 

compar in Trentino region. In fact, A. compar was also found abundant in black grouses 

(Tetrao tetrix) in Trentino region where black grouse share the same habitat of rock 

partridge. A first analysis of the data shows that a higher A. compar burden is observed in 

rock partridge population when the black grouse is recorded within the same habitat unit. 

Moreover, rock partridge populations are more likely to cycle when they share the habitat 

with black grouse (Tetrao tetrix). (Rizzoli et al., unpublished data). 

We have then explored, through simulations, the hypothesis that A. compar persists 

in Trentino as a parasite of black grouse, while rock partridge is only an additional host. 

For the sake of simplicity, we took the black grouse population (which is much larger than 
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that of rock partridges) as constant, as well as its parasite burden; then, we studied the rock 

partridge population assuming that there is a constant influx of infecting stages coming 

from the black grouse population into the pool of infecting stages that can be picked up by 

rock partridges. Our simulations yield the probability of host extinction under different 

levels of external infection (Fig. 6); for instance, if the carrying capacity is equal to 75 and 

on average every year 10 infecting free-living stages generated by adult parasites in black 

grouse interact with the rock partridge population, there is already a 40% probability that 

the rock partridge becomes extinct over a 100 year interval. 

As can be seen from this number (that serves merely as an illustration of the 

phenomenon), the presence of an external reservoir would make the impact of A. compar 

very dangerous for the long-time survival of rock partridge population; in fact, while a 

specialised parasite is unlikely to cause host extinction, because its population would drop 

down when the host population is at low levels, a generalist parasite does not suffer from 

this problem and may easily have the potential for causing the extinction of a host species 

(McCallum and Dobson, 1995).  

Further investigation and more detailed and specific models will be necessary in 

order to verify the occurrence of an ‘apparent’ competition between black grouse and rock 

partridge mediated by A.compar in Trentino region. 

It has to be remarked that our simulations neglect the presence of free-living larvae: 

infections are modelled as if eggs from an adult parasite were directly transmitted into 

another host. Free-living stages capable of persisting for a long period before infecting a 

host would certainly help parasite persistence. Free-living stages for Ascaridiidae may 

survive for several months in suitable moist condition (Anderson, 2000), while very little is 

known about their persistence in the environment. We are not able, at the moment, to 

quantify the impact of this factor on the extinction probability of parasites and hosts. 
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Finally, an intriguing result that may be of general interest comes from the 

simulations with external infections: over an intermediate region of the level of external 

infection f, the extinction probability is more or less constant or even decreases with 

increasing f, as shown in Figs. 6 and 8. 

Two facts may help us understand this peculiar pattern. First of all, for f large 

enough one has deterministic extinction (in the case of the parameter values of Tab. 2 

regarding the rock partridge-A.compar we get deterministic extinction for f � 4.85⋅106; 

note however that this values increases with the carrying capacity of host, for instance 

when the carrying capacity is doubled, NK=150, we obtain deterministic extinction when 

f � 9.7⋅106).  

The second fact is that the probability of host extinction in the lower part of a host-

parasite cycle depends on the level of the host population at the start of cycle (Fig. 7). In 

other words, if one introduces few parasites in a given host population, the extinction risk 

is negligible if that population is at around half its carrying capacity, but becomes 

significant when it is close to the carrying capacity. In fact, when the initial host population 

is larger, parasite burden may reach a higher value after parasite introduction in the host 

population, and then more violent population crashes are possible. 

We can then understand the qualitative pattern of the probability of extinction curve 

from the existence of different dynamical patterns in the simulations at different values of f 

(Fig. 9). When, for low values of f, the host population is almost always parasite-free, 

increasing f increases the frequency of infections, and hence the overall extinction 

probability. When f  is in the region where parasite-free periods are so short that the host 

population does not have time to reach the carrying capacity (Fig. 9a), increasing f 

increases the frequency of infection events, but decreases the risk of extinction in each of 

these, so that overall extinction probability may not change consistently. When f moves to 



 91

the region where parasites are almost always present at low levels (Fig. 9b), extinctions 

become infrequent. Finally, increasing f even further, we approach the region of 

deterministic decline of the host population, where the probability of infection is 1.  

Summarizing, we have seen that the impact of increasing parasite transmission 

among different host species may strongly depend on the level of connectivity already 

existing among these species. We plan to explore further this effect in other host-parasite 

models. We believe that, when f is in the region below deterministic extinction, this pattern 

is completely due to stochastic reasons, related to the finite number of hosts and parasites: 

in fact, the deterministic model (VarAExtInf) does not exhibit any such behaviour, either at 

equilibrium, or in the transient phase. 

It has to be remarked that the peculiar pattern of the curve relating level of external 

infection to probability of extinction may be less evident if there is density-dependence in 

the demographic parameters of parasites. In fact, as observed in Section 4, parasites’ 

density-dependence is a strongly stabilizing process for the system; hence, parasites cannot 

reach very high peaks in abundance and consequently the drastic crashes, that occur at low 

values of f, of the host population are avoided. 

The simulations we considered are very simple, since we assumed homogeneous 

mixing of host and parasite, neglecting spatial and social structure of hosts, changes with 

time in environmental factors, as well as acquired immunity to parasitisms. These 

simulations can however be the basis on which more complex simulations can be built, as 

well as the reference against which their results may be assessed. 
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4.0 Abstract 

 

Lyme disease and Tick Borne Encephalitis (TBE) are two emergent tick borne 

diseases transmitted by the widely distributed European tick Ixodes ricinus. The life cycle 

of the vector and the number of hosts involved requires the development of complex 

models which consider different routes of pathogen transmission including those occurring 

between ticks that co-feed on the same host. Hence, we consider here a general model for 

tick-borne infections. We assumed ticks feed on two types of host species, one competent 

for viraemic transmission of infection, the second incompetent but included a third 

transmission route through non-viraemic transmission between ticks co-feeding on the 

same host. Since a blood-meal lasts for several days these routes could lead to interesting 

nonlinearities in transmission rates, which may have important effects.  

We derive an explicit formula for the threshold for disease persistence in the case of 

viraemic transmission, also for the case of viraemic and non-viraemic transmission. From 

this formula, the effect of parameters on the persistence of infection can be determined. 

When only viraemic transmission occurs, we confirm that, while the density of the 

competent host has always a positive effect on infection persistence, the density of the 

incompetent host may have either a positive effect, by amplifying tick population, or a 

negative (“dilution”) effect, by wasting tick bites on an incompetent host. With non-

viraemic transmission, the “dilution” effect becomes less relevant. On the other hand, if the 

nonlinearity due to extended feeding is included, the dilution effect always occurs, but 

often at unrealistically high host densities.  

Finally, we incorporated the effects of tick aggregation on the hosts and correlation of tick 

stages and found that both had an important effect on infection persistence, if non-viraemic 

transmission occurred. 
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4.1 Introduction 

Tick borne diseases, such as Lyme disease and Tick-Borne Encephalitis (TBE), 

have become a significant problem to human populations inhabiting woodland areas in 

many parts of Europe, the former USSR and North America.  

The increase in prevalence of these diseases, not recorded more than 30 years ago, 

is probably associated with the abandonment of fields and pastures coupled with the 

expansion of woodland which have favoured the spread and the increase in the densities of 

both deer and rodents. Hence, tick populations have increased and with them their potential 

for disease transmission. This increased tick population coupled with people having more 

leisure time has lead to an increase in the exposure of people to infection. 

 Concern over tick-borne diseases has stimulated the development of several 

mathematical models for either tick-borne infections, or tick population dynamics. The 

important first step was to develop mathematical models for tick population dynamics (e.g. 

Sandberg et al., 1992; Kitron and Mannelli, 1994; Randolph and Rogers, 1997). 

The second to develop models for tick-borne infections and these have often been 

set, for ease of analysis, in continuous time: see, for instance, Hudson et al. (1995) and 

O’Callaghan et al. (1998). Norman et al. (1999) and more recently Gilbert et al. (2001) 

proposed a model where ticks are subdivided in the three stages (larvae, nymphs and 

adults) with stage progression only through a blood meal on a vertebrate host and 

transmission is only viraemic (i.e., from infected tick to susceptible host, and vice versa). 

They computed the value of the basic reproduction number, R0, and showed the so-called 

dilution effect: when two alternative hosts exist for ticks, only one of which is competent 

for transmission (e.g. mice and deer for Lyme diseases) an increase in the density of the 

incompetent host (deer in this example) may shift R0 from above to below 1, and thus 

cause pathogen extinction. A similar model has been applied by Caraco et al. (1998) to the 
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deer, tick Borrellia system in the USA, while qualitatively similar results have been 

obtained by Van Buskirk and Ostfeld (1995) and Mannelli (in press) in computer-based 

models.  

It has been demonstrated in a number of tick borne systems that certain tick hosts, 

which do not produce a viraemic response, will permit non-viraemic transmission between 

co-feeding ticks (Jones et al., 1987; Labuda et al., 1993; Odgen et al., 1997). Moreover, 

Randolph et al. (1996, 1999, 2002) have shown the importance of co-feeding (transmission 

between ticks feeding together on an incompetent host) and temporal coincidence of 

different tick stages in the maintenance of Tick Borne Encephalitis. 

In this paper we build on the model by Norman et al. (1999). We introduce general 

rules for the encounter rates between hosts and ticks, that take into account the duration of 

feeding. More importantly, we consider specifically the possibility of non-viraemic 

transmission which is thought to be crucial in the maintenance of several infections such as 

TBE. We also consider the distribution of tick stages among hosts, which will have 

extremely important effects on transmission via co-feeding. In fact, in certain parts of the 

vector’s range, patterns of tick infestation on hosts (e.g. rodents) are such that they 

facilitate co-feeding transmission. Specifically, both immature tick stages show highly 

aggregated distribution on their host and these aggregated distributions are coincident 

rather than independent (Perkins et al., in press); those hosts which were feeding larvae 

were simultaneously feeding the greatest number of nymphs. As a result, about 20% of 

hosts feed about three-quarters of both larvae and nymphs and the number of susceptible 

larvae feeding alongside potentially infected nymphs is twice as many as it would be if the 

distribution were independent (Randolph et al., 2002; Perkins et al., in press).  
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For these different models we compute, using matrix theory, the threshold quantity for 

infection persistence. Thus, we may understand the effect of different parameters on 

disease persistence.  
 

4.2 The model 
 

Following Norman et al. (1999), ticks were classified according to their stage as 

larvae (L), nymphs (N), and adults (A). Each immature stage (larvae and nymphs) requires 

a blood meal from a suitable vertebrate host. The adult female requires a meal before 

producing eggs. The model considers two type of hosts: viraemic hosts (H1) that acquire 

and transmit the disease, and non-viraemic hosts (H2) that simply sustain the tick 

population without amplifying the pathogen. Here, H2 is assumed to be at constant density 

while H1 hosts are classified as being either susceptible (H1s), infected (H1i) or immune 

(H1r), and their density may vary as a consequence of infection. We assume no trans-

ovarial transmission of infection in ticks (reported as negligible in TBE but can not recall 

reference), while the pathogen is transmitted inter-stadially, so once an immature stage is 

infected the subsequent stages can transmit the pathogen to a susceptible host. Then, 

nymphs and adults are classified as either susceptible (Ns and As) or infected (Ni and Ai). In 

the model, the principal route of infection is viraemic transmission, we also consider non-

viraemic transmission since there is growing evidence that this is crucial in several tick 

borne diseases (Randolph et al., 2002).  

4.2.1 Tick-hosts interactions 

Ticks change stage by feeding on a host, hence, a key factor in the dynamics is the 

encounter rate between hosts and ticks (in the different stages). We assume throughout a 

mass-action law, that is, the encounter rate between hosts (whose density will be denoted 

by H) and, for instance, nymphs will be proportional to the product HNQ, where NQ, 

denotes the density of questing nymphs. In a complete model, we may include NF (the 
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density of feeding nymphs) and NQ as variables, as done by Mwambi et al. (2000) which 

consider only tick population dynamics. In the simplest approximation, it has instead often 

been assumed (Caraco et al., 1998; Norman et al., 1999) that both are proportional to the 

density N of ticks. As an intermediate step, we use here a quasi-steady-state assumption 

(see Segel and Slemrod, 1989). Assuming that questing nymphs become feeding nymphs 

by encountering hosts (at rate β N), and that feeding nymphs drop off hosts at rate σ Ν ( so 

the average duration of a blood meal is 1/σ Ν ). Then we have the equations: 
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From these assumptions, we can write equations for the densities of each stage. For 

instance, we obtain 
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where the first term represents the nymphs becoming adults, the second term the adults that 

start a blood meal and therefore exit the compartment (it is assumed here that adults 

reproduce only once in their life, as is usual in the Ixodidae ticks) and the third the deaths 

of questing adults (bT is ticks’ death rate, assumed to be the same in all stages).  
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TABLE 1. Notation used to denote the various variable and parameters included in the model 
 
 

Variable or 
rate 
 

 

Description 
 

  

L Larval density 

N Nymph density 

A Adult density 

T=(L+N+A) Total tick density 

H1 Total viraemic host density 

H1s Susceptible viraemic host density 

H1i Infected viraemic host density 

H1r Immune viraemic host density 

H2 Non-viraemic host density 

aT Birth rate of larvae per adult tick 

bT Natural death rate of ticks (the same for all stages) 

a1 Birth rate for viraemic host 

b1 Natural rate for viraemic host 

α Rate at which viraemic hosts die from the disease 

γ Rate at which viraemic hosts recover to immunity 
z
jβ  Encounter rate between questing ticks in stage z (z=L,N,A) and hosts Hj (j=1,2) 

z
jσ  Dropping rate of ticks in the stage z (z=L,N,A) feeding on host Hj (j=1,2) 

z
jc  

z
j

z
j σβ /=  for z=L,N,A and j=1,2 

ψ z )1/(1 2211 HcHc zz ++=  for z=L,N,A 
g z )( 2211 HH zzz ββψ +=  for z=L,N,A 
m z Moulting success probability for ticks in stage z (z=L,N) 

pN Probability of becoming infected for a nymph feeding on an infectious host 

pA Probability of becoming infected for an adult feeding on an infectious host 

qN Probability of becoming infected for a viraemic host bitten by an infectious nymph  

qA Probability of becoming infected for a viraemic host bitten by an infectious adult  

λNL Non-viraemic transmission coefficient for infected nymphs and larvae 

λAL Non-viraemic transmission coefficient for infected adults and larvae 

λNN Non-viraemic transmission coefficient for infected nymphs and susceptible nymphs 

λAN Non-viraemic transmission coefficient for infected adults and susceptible nymphs 

kL Aggregation parameter of the Negative Binomial distribution for larvae 

kN Aggregation parameter of the Negative Binomial distribution for nymphs 

kA Aggregation parameter of the Negative Binomial distribution for adults 

ρNL Correlation coefficient for nymphs and larvae 

ρAL Correlation coefficient for adults and larvae 

ρAN Correlation coefficient for adults and nymphs 

 



 103

The parameters Nm  represent the probability of moulting success for nymphs after 

feeding. In practise, mN may depend on the host species (Humair et al., 1999) so to be 

accurate we should use Nm1  and Nm2 . However, when we do, the formulae become 

awkward, and so in this presentation we stick to the case of a single Nm . For ease of 

notation, it will be convenient to introduce the following functions: 

2211
21 1

1
),(

HcHc
HH zz

z

++
=ψ  and 

2211

2211
21 1
),(

HcHc
HH

HHg
zz

zz
z

++
+

=
ββ

, 

where z =L, N or A. Note that if z
jj

z
j H σβ << (as it appears likely) the functions ψ z are 

very close to 1, so that g z are practically linear over most of the reasonable range of H1 and 

H2. 

4.2.1.1 Density-dependence in ticks and hosts 
 

Detecting density-dependence in the demographic parameters of ticks is rather complex 

because of the complexity of their life cycle (Hudson et al., 2002). However, without 

introducing any density-dependent factor, the tick population would grow (or decrease) 

exponentially unrealistically making it difficult to identify any meaningful persistence 

threshold. 

Randolph and Rogers (1997) present a model where the mortalities of the larval-to-nymph 

and nymphal-to-adult stages are a function of the initial densities of larvae and nymphs 

respectively. 

Here, for the sake of simplicity, we assume, like Norman et al. (1999), that only the 

production of larvae per feeding adult tick aT (T) is density-dependent, where aT (T) is a 

decreasing function of the total number of ticks present in the system. Furthermore, to 

simulate logistic growth of the viraemic host H1 (the non- viraemic host is assumed to be at 

a constant size H2) we assumed that the birth rate a1(H1) is a decreasing function of the 
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total density, while the death rate b1 is assumed to be constant. The effect of these 

assumptions is examined in the Discussion.  

4.2.2 Infection  
 
4.2.2.1 Viraemic transmission 
 

Initially, we model viraemic transmission as in Norman et al. (1999). In particular, we 

assume that viraemic transmission can occur only on one species of host, usually H1. 

We assume that a proportion qz of the hosts being bitten by infected ticks become infected; 

here z may be equal to N or A, since questing larvae cannot pass on virus until they become 

nymphs.  

Hence, the rate at which susceptible hosts become infected will be equal to: 

),(),( 21112111 HHAHqHHNHq A
is

AAN
is

NN ψβψβ + , 

where H1s is the density of susceptible hosts, Ni and Ai those of infected nymphs and 

adults. 

Analogously, we assume that a proportion p z of ticks (here z may be equal to L or N) 

become infected while feeding on hosts and then switching from larvae to infected nymphs 

or from susceptible nymphs to infected adults. Hence, the rate at which larvae become 

infected will be equal to 

),( 2111 HHLHpm L
i

LLL ψβ , 

and the rate at which susceptible nymphs become infected will be equal to 

),( 2111 HHNHpm N
si

NNN ψβ , 

where H1i is the density of infected hosts, L and Ns those of larvae and susceptible nymphs 

respectively, while zm is the probability of moulting success for ticks in stage z (z=L,N). 
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4.2.2.2 Non-viraemic transmission 
 

Modelling the rate of non-viraemic transmission adds another level of complexity, but a 

level we suspect is important. It is reasonable to assume that, once a susceptible nymph 

(for instance) arrives on a host it may be infected, with a certain probability, by a feeding 

infected tick presents on the same host over the whole duration of the blood-meal. Hence, 

the rate at which nymphs (for instance) get infected through the co-feeding route will be 

the product of the encounter rate of susceptible nymphs and this probability. We have 

already considered the first term. To compute the second we assume that the probability of 

getting infected will depend on the mean number of infected ticks present on the same host 

of a given feeding nymph. 

Now, it is easy to see that the mean number of nymphs present on a random host will be 

equal to the number of feeding nymphs, given by expression (2), over the number of hosts. 

However, the mean number of other nymphs present on the same host of a given feeding 

tick may be different from the mean number of nymphs present on a given host. To 

understand that from a statistical point of view, let pi be the proportion of hosts carrying i 

nymphs; then, the probability that, on the same host of a randomly selected feeding nymph, 

there are i nymphs (including the one from which we started) is qi = 
ipi

lpl
l
�

; in fact, we 

select a nymph at random and so it will be more likely to find a host that carries many 

nymphs. The average number of nymphs on that host is therefore 

)(
)(

)(
)(
)( 2

2

NE
NV

NE
NE
NE

lp

pi
iq

l
l

i
i

i
i +===
�

�
� , 

where E(N) = ipi
i
�  represents the mean number of nymphs on a randomly selected host, 

V(N) is the variance of that number. In order to get the mean number of other nymphs 
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present on the same host of a given feeding nymph, we must subtract 1 (the nymph we 

started with) obtaining  

1
)(
)(

)( −+
NE
NV

NE .                                                                                                                (3) 

Note that, if the distribution of the nymphs is Poisson, the variance is equal to the mean, 

and the mean number of other ticks present on the same host of a random feeding nymph is 

equal to the mean number of nymphs present on a random host. On the other hand, if the 

distribution were aggregated (for instance, a negative binomial distribution that is 

described by the mean and the parameter k), then the variance is equal to 

V(N)=E(N)(1+E(N)/k) , so that the mean number of other ticks present on the same host of 

a given feeding nymph is equal to E(N)(1+1/k). We will follow this latter assumption, 

which is used in models for macroparasites (Anderson and May, 1978), then the 

distribution of each stage will be assumed to be a negative binomial with a given k. 

Hence, the mean number of infected nymphs on a host 2 on which a nymph arrives is: 

)/11)(,( 212
NN

i
N kHHNcw += ψ . 

The probability that this susceptible nymph does not get infected by co-feeding infected 

nymphs can be approximated as )( wexp NNλ− , where λNN is a proportionality constant that 

includes the probability for a nymph of being in a co-feeding group, the probability of 

being infected in that case and the probability of the infection being maintained trans-

stadially. Clearly, one could also include the last factor of w in λNN but we preferred to 

keep it apart , to explore the role of aggregation. 

Putting all the ingredients together, the encounter rate of susceptible nymphs with hosts of 

species 2 is ),( 2122 HHNH N
s

N ψβ , the probability of getting infected is )(1 wexp NNλ−− , 

so that the rate at which nymphs get infected by other nymphs through co-feeding is: 
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)}]/11)(,({1)[,( 2122122
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i
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NN kHHNcexpHHHNm +−− ψλψβ .                            (4) 

When we consider inter-stadial (for instance, nymphs to larvae) transmission by co-

feeding, we need to know the mean number of infected nymphs on the same host of a 

given feeding larva. Let pij be the proportion of hosts carrying i larvae and j nymphs; then 

the probability that the host on which a given larva is feeding will carry i larvae and j 

nymphs is equal to 
�

lk
kl

ij

kp

ip

,

. Hence, the average number of nymphs on that host is equal to  

.
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jpi
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kl

ij
ji +==
�

�
                                                                            (5) 

As expected, the mean number of nymphs on the same host of a given feeding larva is 

influenced by the covariance between larvae and nymphs. To proceed, we assume that the 

association between stages are fixed constants; moreover the assumption that each stage is 

distributed in a negative binomial with fixed parameter means  

k
tE

k
tE

tEtV
22 ))(())((

)()( ≅+= ; 

so, from (5) we obtain 

)./1)((
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We can then say that the rate at which larvae get infected by nymphs through co-feeding is  

 

)}]/1)(,(exp{1)[,( 2122122
NL

LN
N

i
N

NL
LLL kkHHNcHHLHm ρψλψβ +−−                     (6) 
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where λNL has the same interpretation as λNN. Note that, formally, (4) is a special case of 

(6) with ρNN = 1. 

4.2.3 The equations 
 

From the previous assumptions, we obtain the following equations: 
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(7) 

Most of the assumptions that lead to these equations have already been discussed. In 

addition, it has been assumed that ticks have no impact on the demography of either H1 or 

H2 (whose density is assumed to be constant), while infected hosts have an additional death 

rate α. It should also be noted that infected nymphs (and adults) that become infected 

through co-feeding must be subtracted from susceptible nymphs (or adults) since they 
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correspond to feeding susceptible larvae (nymphs) that do not develop into susceptible 

nymphs (adults). The model without non-viraemic transmission analysed by Norman et al. 

(1999) is a special case of the model presented here: one needs only set all parameters λ 

equal to 0 and ψ (H1,H2) equal to 1. 

 

4.3 Basic reproduction numbers (R0) 
 

R0 is a measure of the maximum reproductive potential of a parasite between one 

generation and the next for a susceptible host population in a given environment. R0 is one 

of the most important and useful concepts in epidemiology since it determines whether or 

not a parasite has the potential to spread in a host population, the difficulty of eradication 

and also produces an estimate of parasite fitness. For microparasites (virus and bacteria), 

R0 is defined as the average number of secondary cases which one case can produce in a 

population consisting only of susceptible individuals. If R0 >1 a chain reaction of new 

cases will result leading to an epidemic outbreak, but if R0 <1 the number of infected hosts 

will fall and eventually be lost from population.  

For macroparasites, and in particular for ticks, the idea of R0 is the same, but the definition 

is subtly different. In this instance, R0 is defined as the number of new female parasites 

produced by a female parasite when there are no density-dependent constraints acting 

anywhere in the life cycle of the parasites (Hudson et al., 2002). 

Mathematically, R0 works as a threshold quantity for the stability of the disease-free 

equilibrium. In fact, it makes the disease free-equilibrium (for microparasites) or the 

parasite free-equilibrium (for macroparasites) stable when R0 <1 or unstable when R0 >1. 

A very useful tool in the computation of the thresholds for disease persistence in epidemic 

models is the Perron-Frobenius theory (see the application to epidemic models in 

Diekmann and Heesterbeek, 2000). Using this theory, we derive, in the following sections, 
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the thresholds for the persistence of both ticks and the disease distinguishing the cases with 

and without non-viraemic transmission. We will write these in the form R0 >1 where the R0 

are explicit quantities related to the transmission of the infection. We remark that, although 

we used the symbol R0 for these threshold quantities, they are not always exactly equal to 

the basic reproduction number defined in Diekmann and Heesterbeek (2000) as the spectral 

radius of the “next-generation matrix”. The spectral radius cannot be computed explicitly, 

and we believe that our quantity has a useful interpretation. In either case, the conditions 

for persistence are the same with both methods. 

 

4.3.1 The case with only viraemic transmission 
 

Here we consider only the viraemic route of the infection. This means that a susceptible 

tick can only become infected when feeding on an infected viraemic hosts (H1i). At the 

same time the transmission could pass from infected ticks to susceptible hosts (H1s) while 

non-vireamic hosts (H2) do not take part in the infection process. Thus, in this case we set 

all of the parameters concerned with non-viraemic transmission to zero 

(λNL=λAL=λNN=λAN=0). The special case with all the quantities ψ 
z
(H1,H2)=1 has been 

already analysed by Norman et al. (1999) and Gilbert et al. (2001). 

Tick-free equilibrium 

Through the study of the local stability of the tick-free equilibrium (see Appendix A) we 

derived the following basic reproduction number for the tick population: 
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This quantity represents the threshold condition for the persistence of ticks in the system. 

When ticksR0 >1 the ticks will persist and, from numerical simulation, it appears that tick and 

host populations will settle to a positive coexistence equilibrium. The quantity ticksR0  has a 
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rather obvious biological interpretation in that: if the product of the losses from each tick 

stage is greater than the product of the gains to each stage, then the ticks will die out, if not, 

they will persist. In particular, the expression of ticksR0  in (8) is the result of three 

multiplicative factors whose biological interpretations are the following: 
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 is the probability of a larva becoming a nymph, 

(ii) 
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+
 is the probability of a nymph becoming an adult and  

(iii) 
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⋅  is the number of larvae produced per adult. 

Disease-free equilibrium 

Through the study of the local stability of the disease-free equilibrium in the case with only 

viraemic transmission (see Appendix B) we found that the disease-free equilibrium is 

stable if and only if the following condition is satisfied: 
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If we follow an infected host we see that it produces on average 
αγ

ψβ
++1

1

b

Lpm LLLL

 infected 

nymphs. Each nymph will infect a host with probability 
N

T

NNN

gb
Hq

+
ψβ 11 , and can also develop 

to infected adult with probability  
gb

gm
N

T

NN

+
and then infect a host as adult with probability 
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A
T

AAA
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Hq

+
ψβ 11 . Finally, an infected host produces also 

αγ
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 infected adults that 

infect a host with probability 
A

T

AAA

gb
Hq

+
ψβ 11 . 

4.3.2 The case with non-viraemic transmission 
 

Here, we consider horizontal transmission between ticks. This means that a susceptible tick 

can become infected not only by feeding on an infected viraemic host but also when co-

feeding with other infected ticks present on the same non-viraemic host. In our model the 

parameters measuring non-viraemic transmission are λNL , λAL , λNN and λAN depending on 

the different tick stages that are co-feeding (Tab. 1). Through the study of the local 

stability of the disease-free equilibrium in the case with non-viraemic transmission (see 

Appendix C) we obtained a joint condition for the stability of the disease-free equilibrium 

that means disease extinction. The disease-free equilibrium is stable if the following three 

condition are satisfied: 
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Conditions (10) and (11) are threshold conditions for horizontal transmission between 

ticks. Equation (10) means that each infected adult tick produces less than 1 infected adult 

tick, by infecting nymphs through co-feeding. Equation (11) analogously means that each 

infected nymph produces less than 1 infected nymph, by infecting larvae through co-

feeding. 

The expression of R0
all

 , shown in (12), is more complex but the terms all have a biological 

interpretation. The first three terms correspond to those in the reproduction number with 

only viraemic transmission (see (9)), but they are changed due to non-viraemic 

transmission. In fact, we must consider that each nymph infected by a host will on average 

produce R0, nym
non−vir  infected nymphs by infecting co-feeding larvae that, after moulting, will 

become infected nymphs; all of these will produce through co-feeding ( R0, nym
non−vir )2 other 

infected nymphs; summing over all generations of infections, the “progeny” via co-feeding 

of an infected nymphs is equal to 1/(1- R0, nym
non−vir ) infected nymphs (remember that we are 

under conditions (10) and (11)). Hence, when we count how many infected hosts an 

infected host produces through infected nymphs and back, we must multiply the average 

number of infected nymphs produced by an infected host, that is 
αγ

ψβ
++1

1

b

Lpm LLLL

, by the “co-

feeding nymph progeny” of each infected nymph, that is 1/(1- R0, nym
non−vir ), by the average 

number of hosts infected by each nymph, that is 
N

T

NNN

gb
Hq

+
ψβ 11 , obtaining thus the first term 

in (12). The changes in the second and third terms are analogous, noting that now the 

number of infected adults produced by an infected nymph is not given simply by its 
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probability of getting to the adult stage, but we must also add the number of adults 

produced from nymphs by co-feeding. The fourth term is the reciprocal of the second and 

describes transmission from a host to an adult, then transmission from adults to nymphs by 

co-feeding, and finally viraemic transmission from nymphs to hosts. The last term, denoted 

by virnonR −
0 , computes the total transmission potential (between and within nymphs and 

adults) of the non-viraemic route. It should be noted that several terms can disappear in the 

special cases considered below.  

 
4.3.3 Special cases  
 

An interesting special case, based on the transmission dynamics of Borrelia or of louping 

ill, occurs when adult ticks do not feed on H1 (e.g. mice for Borrelia), and larvae do not 

feed on H2 (e.g. deer). In this case we have A
1β = L

2β =0 and, as there are no larvae on the 

non-viraemic host, non-viraemic transmission cannot occur through larvae and 

consequently λNL and λAL will be 0.  

Under this assumption the threshold for disease persistence assumes the following form, 

which is identical to the case with only viraemic transmission:  
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However, note that we also have the extra condition for stability (see (10) and (11)). In this 

case we have two separate epidemic processes. The first is through the viraemic (or 

spirochaetaemic for Borrelia) route: infected nymphs biting susceptible hosts which are 

then bitten by larvae: the threshold condition for this process is virR0 >1 with virR0 given in 

(14). The second epidemic is purely non-viraemic: infected adults infecting susceptible 

nymphs via co-feeding; the threshold condition for this process is in (10). The second 

epidemic has no effect on the first, since infected adults do not participate in viraemic 
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transmission as they do not feed on H1 ( A
1β =0). Hence, the two threshold conditions can be 

considered independently. Note, that if R0 in (14) is less than 1 but (10) is violated, only 

adult ticks will be infected, while nymphs and hosts will not be infected.  

Another interesting special case occurs with only non-viraemic transmission in the system. 

This means that there are no competent hosts in the system and the reservoir of the diseases 

are exclusively the ticks. In this case all the parameters concerning the viraemic 

transmission have to be set to 0. Now, allR0  of (12) reduces to virnonR −
0  shown in (13). In 

this case the disease-free equilibrium is unstable (the pathogen persists in the system) when 

at least one among R0, nym
non−vir , R0, ad

non−vir  or virnonR −
0 shown respectively in (10), (11) and (13) is 

larger than 1. From these expressions it can be seen that a high value of the correlation 

coefficients ρ, or a low value of the aggregation parameters k, make pathogen persistence 

more likely. As a consequence, non-viraemic transmission among highly aggregated ticks 

could be sufficient to make the pathogen persist in the system even without hosts that 

sustain the infection. 

 

4.4 Results and discussion 

4.4.1 Persistence-extinction boundary with only viraemic transmission 
 

If we set virR0  to 1 in (9) and plot H1 against H2 for a chosen set of parameter values we can 

determine the densities of viraemic and non-viraemic host that must be present for the 

pathogen to persist (Figs 1A and 1B). Both figures show that a minimum density of 

viraemic host (H1) is needed in order to make the pathogen persist in the system.  

The effect of the density of non-viraemic hosts H2 is more complex; in fact, it has already 

been observed (Norman et al., 1999) that their density may have either a positive effect on 
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infection transmission, by amplifying tick population, or a negative (“dilution”) effect, by 

wasting tick bites on incompetent hosts. Indeed, the shape of the persistence-extinction 

boundary may differ with only slightly changes in the parameter values (see Figs 1A and 

1B, which differ only in the value of the encounter rate between questing nymphs and 

viraemic hosts, N
1β ). In the case of Fig 1A, only the dilution effect of H2 occurs: starting 

from a point (H1,0) where virR0 >1, an increase of the non viraemic hosts makes the virR0  

decrease till it becomes lower than 1 and the disease dies out; furthermore, if we start from 

a point (H1,0) with virR0 <1, virR0 will remain lower than 1 for any density H2 of the non 

viraemic hosts.  
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FIG. 1. The effect of hosts densities on virR0 in the case without non-viraemic transmission. 

In (A) N
1β =10-5, while in (B) N

1β =10-6. The other parameters are: L
1β =10-5, A

1β =10-5, 
L
2β =10-3, N

2β =10-3, A
2β =10-3, L=108, N=106, γ=0.5775, α=2.31, b1=0.087, bT =0.0277, 

qA=qN=1, pL=pN=1, mL=mN=1, z
jσ =15, λNL=λAL=λNN=λAN=0. The parameter values are 

purely illustrative, though elaborated from Hudson et al. (1995) and Norman et al. (1999), 
measuring time in months and densities in km-2. 
 

In Fig 1B, if we start from a point (H1,0) with H1 in an intermediate region (between 30 

and 60), an initial increase of H2 makes the pathogen persist ( virR0  moves from below 1 to 

above 1) but a further increase of H2 causes a decrease of virR0 and again the dilution effect 

of H2 is observed. 



 117

We then see that the net effect of H2 on virR0  depends on the quantitative strength of the 

two effects, and it is difficult to predict the outcome a priori. One may note that the 

decrease of N
1β  of an order of magnitude from Fig. 1A to 1B makes the ticks more 

dependent on H2 for amplification; thus, it is not surprising the positive effect of H2 on 

virR0  is more apparent in Fig. 1B. 

 
4.4.2 Effect of non-viraemic transmission 
 

From the expression of allR0 in (12) with non-viraemic transmission we see that the effect of 

non-viraemic transmission terms is to increase the basic reproduction number of the 

disease.  

In terms of host densities, the boundary between the persistence and extinction regions in 

the (H1,H2)-plane shifts upwards and to the left with increasing non viraemic terms (see 

Fig. 2, where the effect of λAN, the parameter of non-viraemic transmission between 

nymphs and adults, is shown; the other parameters have a similar effect).  
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FIG. 2. Effect of non-viraemic terms λAN on allR0 . The other non-viraemic terms are set to 

0 and the rest of parameters are: L
1β =10-5, N

1β =10-5, A
1β = 10-5, L

2β =10-3, N
2β =10-3, 

A
2β =10-3, L=108, N=106, γ=0.5775, α=2.31, b1=0.087, bT =0.0277, qA=qN=1, pL=pN=1, 

mL=mN=1, z
jσ =15, kN=∞, ρNL=ρAN=ρAL=0. 
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For high enough values of the non-viraemic terms, the dilution effect completely 

disappears and the disease can persist in the absence of the viraemic host. The effect of all 

the non-viraemic terms on allR0  are explored in Fig. 3. allR0  increases particularly when 

terms involving the larval stage (λAL and λNL) are included in the model. This is quite 

understandable, since a tick which is infected as a larva will have two opportunities to 

transmit the infection, while a tick infected as a nymph will have just one opportunity. 
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FIG. 3. Effect of different non-viraemic terms on allR0 . The effect of λAN is shown in figure 
3A, λNN in 3B, λAL in 3C and λNL in 3D. In all the figures the non-viraemic term takes the 
values 10-3, while the others are set to 0.The other parameters are: L

1β =10-5, N
1β =10-5, 

A
1β =10-5, L

2β =10-3, N
2β =10-3, A

2β =10-3, L=108, N=106, γ=0.5775, α=2.31, b1=0.087, 

bT=0.0277, qA=qN=1, pL=pN=1, mL=mN=1, z
jσ =15, kN=∞, ρNL=ρAN=ρAL=0. 

 

Now, if we further increase the density of non-viraemic host H2 in Fig. 3C (the same 

happens for Fig. 3D) we obtain the situation shown in Fig. 4, where for very high values of 

H2 (note the logarithmic scale of H2 axis), R0 always drops below 1. This is because for so 

high values of H2 the functions ψ z become significantly less than 1 and the nonlinearity 
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due to extended feeding has a strong effect on R0. Biologically this is because with a very 

high density of non-viraemic hosts, almost all ticks will feed on H2 hosts, but each 

individual host will be carrying very few ticks, so that the probability of finding co-feeding 

ticks will be relatively low; hence, non-viraemic transmission will become insignificant 

while viraemic transmission on H2 hosts is, by assumption, impossible. However, for these 

parameters the host densities at which this effect occurs are unrealistically high, so that this 

effect, whilst interesting mathematically, is in this case practically irrelevant.  
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FIG. 4. Effect of extended feeding on allR0  for high values of non-viraemic host, H2. The 
parameters values are the same of those in Fig. 3C (λAL>0). 
 

4.4.3 Effect of aggregation on R0 
 

We have not yet considered either the aggregation of the tick distribution among hosts or 

the correlation between different stages of ticks feeding on the same host in the figures 

presented in the previous sections. However, it is well known in the literature (see, for 

instance, Randolph et al., 2002) that each tick stage shows highly aggregated distributions 

on their host population; moreover, these aggregated distributions are coincident rather 

than independent: those hosts feeding large number of larvae were simultaneously feeding 

the greatest number of nymphs. It has been surmised that this pattern of tick infestation 

facilitates transmission via co-feeding and thus significantly increases the basic 
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reproductive number R0 of the pathogen (Randolph et al., 1999). In Figs 5 and 6 we show 

the quantitative effect of tick distribution on allR0  for the parameter values used in Fig. 3. 

Fig. 5 corresponds to Fig. 3B with H1 fixed at 10; hence, we are in the region where the 

dilution effect holds: increasing the density of H2 would make allR0 drop below 1; as can be 

seen in Fig. 5, a strong aggregation in nymph distribution (kN<<1) increases significantly 

allR0  and may double the density of H2 at which the dilution effect occurs. 

H2 - Non-viraemic host density

R
0al

l  

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 10 20 30 40 50

kN=10

kN=1

kN=0.5

kN=0.25

kN=0.1

 

FIG. 5. Graph to show the effect of H2 on allR0 for different values of kN, when H1 is 
supposed to be constant (in this case H1=10). λNN=5⋅10-5, while the other non-viraemic 
terms are set to 0. The other parameters are: L

1β =10-5, N
1β =10-5, A

1β = 10-5, L
2β =10-3, 

N
2β =10-3, A

2β =10-3, L=108, N=106, γ=0.5775, α=2.31, b1=0.087, bT =0.0277, qA=qN=1, 
pL=pN=1, mL=mN=1, σ=0.5. 
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FIG. 6. Graph to show the effect of H2 on allR0  for different values of ρAL, when H1 is 
supposed to be constant (in this case H1=5). λAL =5⋅10-5, kL=1, kN=0.1 while the other non-
viraemic terms are set to 0. The other parameters are: L

1β =10-5, N
1β =10-5, A

1β = 10-5, 
L
2β =10-3, N

2β =10-3, A
2β =10-3, L=108, N=106, γ=0.5775, α=2.31, b1=0.087, bT =0.0277, 

qA=qN=1, pL=pN=1, mL=mN=1, σ=0.5. 
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Fig. 6 corresponds to Fig. 3C with H1=5, where, on the other hand, increasing the density 

of H2 makes allR0  grow above 1. In this case, a strong correlation between adults and larvae 

(ρAL≈1) causes a big increase in allR0 . 

On the whole, the expressions shown in this paper for the threshold for disease persistence 

of tick-borne infections clarify the possible role of the different pathways in sustaining the 

infection, as well as the importance of tick distributions in the case of non-viraemic 

transmission, and the possible relevance of the encounter rates in the case of multiple 

hosts. This understanding may help in identifying possible strategies for disease control, 

and assessing their possible results. Finally, the assumptions made on the density-

dependence factors have no real consequence on the threshold quantities computed in the 

text (although they may affect the overall dynamics of the system). In fact, if aT were 

constant, one would only need to substitute this constant for the quantity computed at the 

relevant equilibrium. Conversely, if some quantity, for instance the moulting success mz, 

were a function of the density of all ticks, or some stage of, one would use its value at the 

relevant equilibrium. In the future, we plan to use models of this structure to complement 

observational and experimental work on tick-borne infections in the region of Trentino, 

Italy. Certainly, many parameters of this model have not yet been measured 

experimentally, so that mainly qualitative trends can be gained by this modelling effort. 

One of the factors missing in this model, which has instead a profound effect on infection 

transmission is seasonality (see for instance Randolph et al., 1999); we shall introduce 

seasonality in the model, although probably explicit expressions will no longer be 

computable. 
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4.5 Appendices 

APPENDIX A – Stability of tick-free equilibrium 

System (7) has a tick-free equilibrium L=Ni=Ns=Ai=As=H1i=H1r=0; H1s=H1>0. In the 

linearization of (7) at the tick-free equilibrium, the equations for tick dynamics decouple 

from those for infection transmission, so that the linearized equations essentially become: 

�
�
�

�

�
�
�

�

�

−−=

−−=

−−=

.),(),(

),(),(

),()0(),(

2121

2121

2121

AHHgAbNHHgm
dt
dA

NHHgNbLHHgm
dt
dN

LHHgLbAaHHg
dt
dL

A
T

NN

N
T

LL

L
TT

A

                                                            (A1) 

which can be written, using matrix notation, as: 
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Formally, this follows from the fact that the Jacobian of (7) at the tick-free equilibrium can 

be written in the following form: 

J = 
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From (A2), we see that the eigenvalues of J are the eigenvalues of A11 and of A22. Since A22 

is triangular, its eigenvalues are the terms on the diagonal, which are all negative, since at 

equilibrium 11 )( bHa *
1 =  and )(1 1Ha  is a decreasing function. Then the study of the local 

stability of the tick-free equilibrium reduces to the study of (A1). 

In order to see whether all the eigenvalues of a matrix have a negative real part, we apply 

here (and in the other cases) the following theorem, that is a special case of Theorem 6.13 

in Diekmann and Heesterbeek (2000). 

Theorem A.1. Let T be a non negative matrix and D a positive diagonal matrix. Let r 

denote the spectral bound of the matrix T-D and let R0 the dominant eigenvalue of the 

positive matrix K=TD-1. Then r<0 ⇔ R0<1. 

We split the matrix A11 in the form A11=T-D with T and D respectively: 
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 Now, we compute the eigenvalues of the matrix TD-1 that assumes the following form: 
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As the hypotheses of Theorem A.1. are satisfied, the stability condition for the tick-free 

equilibrium is that the spectral radius of TD-1 is less than 1. The solutions of the 

characteristic equation of (A3) are the three cubic roots of  
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It is clear that they are in module larger than one if and only if 10 >ticksR . Note that, using 

the definition of Diekmann and Heesterbeek (2000) one would define the basic 

reproduction number as 3
0
ticksR , which obviously gives the same threshold; we believe that 

the condition 10 >ticksR  is much easier to interpret. 
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APPENDIX B – Stability of disease-free equilibrium with only viraemic transmission 
 

When ticksR0 > 1 system (7) has a disease-free equilibrium with Ni=Ai=H1i=H1r=0 and the 

other components at some positive value. In this case too, in the linearization of (7) at the 

disease-free equilibrium, the equations for tick dynamics decouple from those for infection 

transmission; the linearized equations for the infected compartments are:  
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In fact, the Jacobian at the disease-free equilibrium can again be written in the form (A2) 

(see Appendix A), so that we need only to find the sign of the eigenvalues of A11 and of 

A22. First, we study the sign of the eigenvalues of the block A11 that in this case assumes 

the following form: 
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Using the Routh-Hurwitz criterion we have that the eigenvalues of A11 are negative if the 

following three conditions are satisfied: 
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(i) tr A11 < 0 

(ii) det A11 < 0 

(iii) M* ⋅ tr A11 – det A11 < 0 

where M* is the sum of the minors of A11. 

As a(T) is a decreasing function the condition (i) is trivially satisfied. Using the conditions 

at the equilibrium for L*, N*and A* we obtain the following identity: 

mLmNgLgNgAaT (T*) = (bT+gL) (bT+gN) (bT+gA), 

from which is easy to see that the determinant of A11 is always negative (condition (ii)). 

Finally, it is not difficult to show that also the condition (iii) is always satisfied; thus the 

eigenvalues of A11 have all negative real part. 

As for the matrix A22, it can be written as 
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is a triangular matrix with both negative eigenvalues, since at equilibrium 11 )( bHa *
1 = . 

Then the study of the local stability of the disease-free equilibrium reduces to the study of 

the sign of the eigenvalues of the matrix A. 

Also in this case, the hypotheses of the Theorem A.1 (see Appendix A) are satisfied; 

hence, using the same procedure as for the tick-free equilibrium (Appendix A), we split the 

matrix A in the form A=T-D, where TD-1 is: 
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The characteristic equation of (B2) is: 
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From the signs of the coefficients of the cubic, one easily sees that the dominant 

eigenvalue of TD-1 is larger than 1 if and only if f(1)>0, that is: 
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The LHS of this expression is equal to virR0  as defined in (9). Hence the stability condition 

can be stated as virR0 <1. 
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Appendix C – Stability of disease-free equilibrium with non-viraemic transmission 

In the case with non-viraemic transmission we have that all the blocks of the matrix J are 

the same of those in the case with only viraemic transmission (Appendix B) except for A12 

and A22 which contain the non-viraemic terms. For the same reasons as in Appendix B, the 

study of the stability of the disease-free equilibrium reduces to the study of the sign of the 

eigenvalues of the matrix A that in this case assumes the following form: 
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In this case the hypothesis of the Theorem A.1 (see Appendix A) are not always satisfied: 

in fact, the elements of D may not be positive. Therefore, before computing the 

eigenvalues of the matrix TD-1 as in the case with only viraemic transmission, we must 

consider the cases when the elements of D are not positive. Note that it would be possible 

to split the matrix A in a form A=T-D in such a way that the diagonal D is strictly positive. 

Indeed, this is required in the definition of R0 given by Diekmann and Heesterbeek (2000) 
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who also suggest the use of a transition matrix Σ, writing A=T+Σ−D; however, the 

computations appear much simpler using the present form. 

Using results of loop analysis (Puccia and Levins, 1985), we study the stability of the 

disease-free equilibrium when the diagonal elements of the matrix A are not negative.  

To do that, we apply the stability criteria based on the loop model notation (Puccia and 

Levins, 1985), to the matrix A.  

The following three cases have to be considered: 

 - Case1. The first two diagonal elements of A are positive (a11,a22>0) while the third is 

negative  

(-a33<0). In this case the feedback at level 1 and 2 (Puccia and Levins, 1985) become: 

F1=a11+a22-a33 

F2=a12a21+a13a31+a23a32-a11a22+a11a33+a22a33. 

The stability condition at level 1, F1<0, (Puccia and Levins, 1985), implies that 

a33>a11+a22. Inserting this inequality in the feedback at level 2 we obtain: 

F2>a12a21+a13a31+a23a32--a11a22+a11(a11+a22)+a22a33=a12a21+a13a31+a23a32+(a11)2
+a22a33>0. 

Thus, the stability condition at level 2, F2<0, (Puccia and Levins, 1985), is not met and the 

equilibrium is unstable. 

 - Case2. The first diagonal element of A is positive (a11>0) while the second and third are 

negative (-a22,-a33<0). In this case the feedback are: 

F1=a11-a22-a33 

F2=a12a21+a13a31+a23a32+a11a22+a11a33-a22a33. 

F3=a12a23a32+a21a32a13-a11a23a32+a22a13a31+a33a12a21+a11a22a33. 
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The stability condition al level 2, F2<0, implies that: 

a22a33>a12a21+a13a31+a23a32+a11a22+a11a33. 

Inserting this inequality in the feedback at level 3 we obtain: 

F3>a12a23a32+a21a32a13+ 

-a11a23a32+a22a13a31+a33a12a21+a11(a12a21+a13a31+a23a32+a11a22+a11a33)= 

=a12a23a32+a21a32a13+a22a13a31+a33a12a21+a11a12a21+ a11a13a31+(a11)2(a11+a22)>0. 

Thus the stability condition at level 3, F3<0, (Puccia and Levins, 1985), is not met and the 

equilibrium is unstable. 

 - Case3. The second diagonal element of A is positive (a22>0) while the first and third are 

negative (-a11,-a33<0). In this case feedback assume the following form: 

F1=a22-a11-a33 

F2=a12a21+a13a31+a23a32+a11a22-a11a33+a22a33. 

F3=a12a23a32+a21a32a13+a11a23a32-a22a13a31+a33a12a21+a11a22a33. 

The stability condition al level 2, F2<0, implies that: 

a11a33>a12a21+a13a31+a23a32+a11a22+a22a33. 

Inserting this inequality in the feedback at level 3 we obtain: 

F3>a12a23a32+a21a32a13+a11a23a32+a22a13a31+a33a12a21+ 

+a22(a12a21+a13a31+a23a32+a11a22+a22a33)= 

=a12a23a32+a21a32a13+a11a23a32+ a22a12a21+a22 a23a32+(a22)2(a11+a33)>0. 

Thus the stability condition at level 3 is not met and the equilibrium is unstable. We 

conclude that in all three cases the disease-free equilibrium is unstable. 
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We now consider the case where the hypotheses of Theorem A.1 are satisfied; then the 

matrix TD-1 assume the following form, where all the denominators are strictly positive:  
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From Theorem A.1 (Appendix A) we get that, in the case with non-viraemic transmission, 

the threshold condition for disease extinction is, given the positivity of the matrix D, the 

following: 

.1

1

  

1

1 

    

1

1 

  

1

 
1

1][

1

  

1

  

 

1

  

1

 
1

1][ 
  

222

11

222

222

1

1

222

222

222

2
222

222

11

1

1

222

11

1

1

222

11

222

2
222

1

1
0

<

�
�
�

�
	
	



�
+−+

⋅

�
�
�

�
	
	



�
+−+

�
�
�

�
	
	



�
+

⋅
++

+

+

�
�
�

�
	
	



�
+−+

�
�
�

�
	
	



�
+

⋅

�
�
�

�
	
	



�
+−+

�
�

�
	



� ++
+

+

�
�
�

�
	
	



�
+−+

⋅
++

+

+

�
�
�

�
	
	



�
+−+

⋅
++

+

+

�
�
�

�
	
	



�
+−+

⋅

�
�
�

�
	
	



�
+−+

�
�

�
	



� ++
⋅

++
=

LN

NLLN
NL

NLLN
T

NNN

NA

ANNA
AN

ANNA
T

LA

ALLA
AL

ALL
NNNN

NA

ANNA
AN

ANNA
T

LA

ALLA
AL

ALL

LN

NLLN
NL

NLLN
T

N
N

NN
NNNNN

NA

ANNA
AN

ANNA
T

AAANNNN

LN

NLLN
NL

NLLN
T

NNNLLLL

NA

ANNA
AN

ANNA
T

AAA

LN

NLLN
NL

NLLN
T

N
N

NN
NNNNN

LLLL
all

kk
LHcmgb

Hq

kk
NHcmgb

kk
LHcm

b

Npm

kk
NHcmgb

kk
LHcm

kk
LHcmgb

k
NHcmgm

kk
NHcmgb

Hq
b

Npm

kk
LHcmgb

Hq
b

Lpm

kk
NHcmgb

Hq

kk
LHcmgb

k
NHcmgm

b

Lpm
R

ρψψλβ

ψβ
ρψψλβ

ρψψλβ

αγ
ψβ

ρψψλβ

ρψψλβ

ρψψλβ

ψλβ

ρψψλβ

ψβ
αγ

ψβ

ρψψλβ

ψβ
αγ

ψβ

ρψψλβ

ψβ
ρψψλβ

ψλβ

αγ
ψβ

 

By some very simple algebra, it can be seen that this expression is identical to that shown 

in (12) to make the biological interpretation more transparent. 

Conversely, the disease-free equilibrium will be unstable, and the disease will persist, if D 

is not positive or allR0 >1. 
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5.0 Abstract 

Lyme disease and Tick-Borne Encephalitis (TBE) are two emerging tick-borne 

diseases in Trentino (northern Italy) transmitted by the pan-european tick Ixodes ricinus. 

Rodents act both as reservoirs for pathogens and as hosts for ticks, while large herbivores 

such as the roe-deer, serve principally as hosts for ticks.  

Starting from a general model framework for tick-borne infections we apply the model to 

two specific systems and explore the dynamics of Lyme disease and TBE in Trentino. We 

show numerical results, using parameter estimates based on a detailed field study and 

explore the effects of uncertainty on the endemic equilibrium of both models. Models also 

provide an explicit formula for the thresholds for ticks and disease persistence assuming 

only viraemic transmission for Lyme disease while for TBE we permit only transmission 

through co-feeding ticks. We use joint threshold host density curves to illustrate the 

persistence of ticks and disease in both cases. With the parameter chosen for Lyme disease 

the ‘dilution effect’ due to the increase of roe deer does not occur while for TBE both an 

increase of deer and rodent density might act against the persistence of the virus. 

 

5.1 Introduction 

Tick-borne infections are caused by pathogens transmitted between hosts by ticks 

that become infected with the pathogen following a blood meal. Among the zoonotic tick-

borne diseases, Rickettsiosis, Lyme Disease, Ehrlichiosis and TBE (tick-borne 

encephalitis) are emerging as international human health treat (Hudson et al., 2002). 

Trentino province, a mountainous region in the north-eastern part of the Italian 

Alps, is inhabited by the tick Ixodes ricinus and the area is now recognised as an endemic 

area for Lyme disease, TBE and Rickettsiosis (Hudson et al., 2001; Rizzoli et al., 2002; 

Beninati et al., 2003). For TBE, this is at the very southern end of its range and where the 
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disease is thought to occur in a series of discrete pockets. These diseases have caused some 

concern and as a consequence  a number of mathematical models have been produced to 

explore the dynamics and specific means of preventing infection of humans. Some workers 

have used complex models mainly based on theoretical computer simulations (see Van 

Buskirk and Ostfeld, 1995), while simpler models, based on differential equations, have 

been developed by O’Callaghan et al. (1997), Caraco et al. (1998), Norman et al. (1999), 

Rosà et al. (2003).  

One of the advantages in using these simpler models is that it is possible to estimate 

the basic reproduction number thus allowing the understanding of the condition which 

permit to a pathogens to persist. In their simplicity, these models are however rather 

complex, so it is difficult to study analytically their behaviour, or even the nontrivial 

equilibria, above the threshold for persistence. Therefore, here we study numerically, using 

realistic parameter values for Lyme borreliosis and Tick-Borne Encephalitis in Trentino, 

how the endemic equilibrium and the basic reproduction number for both the diseases 

change with some parameters. 

 
5.2 Models 

The two models considered here are both special cases of the general model for 

tick-borne infections presented in Rosà et al. (2003) to which we send for more details. 

Tick’s life cycle include three developmental stages (larvae, nymphs and adults) whose 

densities will be denoted here L, N and A, that feed on one, two or three hosts depending 

upon the species: we will only consider the three-host case. 

5.2.1 Lyme Disease 

Lyme disease, described by Steere et al. (1977), following a mysterious outbreak of 

arthritis in children who lived near Lyme, Connecticut, is an infectious disease that affects 

the skin first, then the joints, the nervous system and, if untreated, eventually other organs. 
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It is caused by a bacterial spirochaete, Borrelia burgdorferi s.l. (Burgdorfer et al., 1982) 

that is transmitted by infected ticks belonging to the Ixodes ricinus complex. 

This is a multi-species system involving the bacterium Borrelia burgdorferi s.l., the 

ticks which carry the bacteria and different hosts (rodents and deer in particular) that are 

fed on by ticks. Some hosts, especially rodents, act as reservoirs of the infection, meaning 

that they can acquire the pathogen by infected ticks and transmit it to other ticks. Other 

hosts, such as deer, are classified as tick maintenance host and they simply amplify the tick 

population without amplifying the pathogen. Ticks can also transmit the infection to 

humans which are an occasional host . 

For Lyme disease, the main route of transmission is from infected tick to a 

susceptible host and vice versa: this type of transmission is often denoted viraemic 

transmission (even though in this case should be denoted as bacteriemic transmission). 

Recently it has been discovered (Gern and Rais, 1996) that pathogens can be transmitted 

from an infected tick to a non-infected tick while they co-feed on the same host: this 

process is known as non-viraemic transmission, but, for the sake of simplicity, this route of 

transmission will not be considered in our model for Lyme Disease.  

In the model considered here, nymphs and adult ticks are divided into infected and 

susceptible classes. It is assumed that ticks feed on two host species (for instance rodents 

and roe deer). Hosts of type 1 (whose size is denoted as H1) can become infected and 

transmit the infection, then they are divided into three classes, namely susceptible (H1s), 

infected (H1i) and immune(H1r). Hosts of type 2 (whose size is assumed to be a constant 

H2) can not transmit the infection, and is relevant only in so far as it sustains the tick 

population.  

The equations of the model are the following:  
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(1) 

All the parameters of the model and their biological interpretation are listed in Table 1.The 

function g 

z describes the rate at which ticks in stage z encounter hosts, considering the 

extended feeding period (Mwambi et al., 2000), while ψ 

z are auxiliary functions; their 

expressions are the following:  

)1/(1),( 221121 HcHcHH zzz ++=ψ  and 2211221121 1/)(),( HcHcHHHHg zzzzz +++= ββ , 

where σβ /z
j

z
jc =  for z=L, N, A and j=1, 2. 

Density-dependence is assumed, for the sake of simplicity, to occur only in two quantities: 

the production of larvae per feeding adult tick aT (T) and the birth rate for host a1(H1). Note 

however that there is some evidence for density-dependence in all moulting probabilities 

(Randolph and Rogers, 1997). As for the functional form of density dependence, we chose 

the simplest: 

TsrTa TTT −=)( and 111111 /)()( KdrrHa −−= ,                                                        (2) 
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where r1 and d1 are the natural birth and death rate of hosts 1, and K1 is their carrying 

capacity; rT is the average egg production per fed adult tick, and sT is related to ticks’ 

carrying capacity.  

The basic reproduction number for ticks is given by the following expression (Rosà et al., 

2003): 
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This quantity represents the threshold condition for the persistence of ticks in the system. 

When ticksR ,0 >1 the ticks will persist and, from numerical simulation, it appears that tick 

and host populations will settle to a positive coexistence equilibrium. In general, and as 

observed in our filed observation, adult ticks do not feed on rodents (H1 in this case) then 

we have A
1β =0 and the formula for the basic reproduction number for the disease found in 

Rosà et al. (2003), in the case of only viraemic transmission, assumes the following form: 

N
T

NNNLLL

Lyme gd
Hq

d

Lm
R

+
⋅

++
=

ψβ
αγ

ψβ
11

1

1
,0   ,                                                                              (4) 

where all quantities L, N, A and H1 are computed at the pathogen-free equilibrium. Recall 

that R0,Lyme>1 is the condition for pathogen persistence.  

5.2.2 Tick-Borne Encephalitis 
Tick-borne Encephalitis (TBE) is caused by a virus of a distinct antigenic complex 

of the Flaviviridae that includes Louping ill, Kysanur forest disease, Omsk haemorrhagic 

disease, and Powassan virus (Randolph et al., 2002). Western tick-borne Encephalitis 

(TBE) is a zoonosis of significance in many parts of Europe. Although several tick species 

are competent vectors, natural ecological constraints make Ixodes ricinus the only 

significant vector in the wild (Labuda and Randolph, 1999). Among different transmission 

routes the most efficient one seems to be the saliva-activated non-viraemic transmission 



 141

between co-feeding ticks (transmission between ticks feeding together on the same host). 

In fact, many workers have demonstrated that certain tick hosts, rodents in particular, 

which do not produce a viraemic response will permit non-viraemic transmission between 

co-feeding ticks (Jones et al., 1987; Labuda et al., 1993). Randolph et al. (1996, 1999) 

have shown the importance of co-feeding and temporal coincidence of different tick stages 

in the maintenance of TBE. As viraemic transmission seems to be less important than the 

transmission trough co-feeding, in our model for TBE we assume that the only route of 

transmission is the non-viraemic transmission. This means that there are no competent 

hosts in the system and the reservoir of the diseases are exclusively the ticks. Also in this 

case it is assumed that ticks feed on two host species, but here both hosts are assumed to be 

at constant size. H1 (for instance roe deer) is relevant only in sustaining the tick population, 

while on H2, for instance rodents, the co-feeding transmission between ticks might occur. 

The equations of the model are the following: 
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All the parameters of the model and their biological interpretation are listed in Table 3.As 

adult ticks do not feed on rodents (H2 in this case) we have A
2β =0. This implies that co-

feeding including adults cannot take place on H2 and it means that λAL=λAN=0. This 

simplifies the formula for the basic reproduction number for the disease found in Rosà et 

al. (2003) that in this case assumes the following form: 
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Recall that when TBER ,0  is greater than 1 the pathogen persists in the system even without 

hosts that sustain the infection. 

 

5.3 Parameters estimation 

5.3.1 Lyme Disease 
Our parameter choice has been tuned towards the dynamics of Lyme borreliosis in 

the province of Trento, Italy, where the relevant tick species is Ixodes ricinus while H1 

represent small rodents (especially Apodemus spp. and Clethrionomys glareolus) and H2 

roe deer.  

As far as possible, we used parameter estimates taken from the literature or derived 

from data collected by researchers of the Centre for Alpine Ecology (CEA); however, for 

some parameters we could produce only educated guesses. All the parameter values used 

are listed in Tables 1 and 2 where we measure time in days and densities in hectare-1 (ha-1). 

Concerning ticks’ demographic parameters, adult female are assumed to produce 

around 3000 eggs per each (Randolph and Rogers, 1997) so rT is taken as 1300 that is 

around half of this values because in our model adults include both male and female ticks. 

The mortality of ticks dT is taken 0.02 days-1, it means that ticks could survive a couple of 

months on the vegetation without finding a host (Randolph and Rogers, 1997). As we 
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assumed that the production of larvae per feeding adult tick aT(T) is density-dependent we 

set sT , in equation (2), equal to 0.73 in order to find at the equilibrium a total density of 

ticks around 1500 per hectare (roughly the value we obtained from the data).  

 

TABLE 1. Notation and values for variables and parameters included in the model for 
Lyme Disease. 
Symbol Description Value (units) 

L Larval density variable (ha-1) 

Ni Infected nymph density variable (ha-1) 

Ns Susceptible nymph density variable (ha-1) 

Ai Infected adult density variable (ha-1) 

As Susceptible adult density variable (ha-1) 

T Total tick density =L+Ni+Ns+Ai+As 

rT Average egg production per fed adult tick 1300 

dT Natural death rate of ticks 0.02 (days-1) 

sT Density-dependent death rate of ticks 0.73 (ha) 

H1s Density of susceptible hosts 1 variable (ha-1) 

H1i Density of infected hosts 1  variable (ha-1) 

H1r Density of immune hosts 1 variable (ha-1) 

H1 Total density of viraemic hosts (rodents) =H1s+ H1i+ H1r 

r1 Natural birth rate of hosts 1 0.014 (days-1) 

d1 Natural death rate of hosts 1 0.003 (days-1) 

K1 Carrying capacity of hosts1 30 (ha-1) 

H2 Non-viraemic host density (roe deer) 0.1 (ha-1) 
z

iβ  Encounter rate between questing ticks of stage z 
(z=L,N,A) and hosts Hi (i=1,2) 

see Table 2 

σ Detachment rate of ticks 0.5 (days-1) 

mz Moulting success probability for ticks of stage z 

(z=L,N)  

0.15 

qz Probability of becoming infected for a host 1 bitten 
by an infected tick in stage z (z=N,A) 

? 

α Disease related death rate of host 1 ? (days-1) 

γ Recovery rate of viraemic host ? (days-1) 
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As the detachment rate of ticks σ is given by 1/(feeding time) and this feeding time is 

2-3 days, we set σ to 0.5 and, for the sake of simplicity, we choose the same value for all 

tick stages. The parameters mL and mN represent the probability of moulting success for 

larvae and nymphs after feeding. In practise, mN may depend on the host species (Humair 

et al., 1999) so to be accurate we should use different values for host 1 and 2, but for sake 

of simplicity here we choose the same values for both hosts and we also choose the same 

value for larvae and nymphs setting mL=mN=0.15 (Humair et al., 1999). For host 1, in this 

case rodents, we choose a natural death rate d1 of 1/365 as the average lifespan for rodents 

is around one year. Regarding the natural birth rate we choose the average values of 5 

offspring per year, setting r1=5/365. Also for host 1 we assume a density-dependence in the 

birth rate (see eq. (2)) setting the carrying capacity K1=30 by taking an average from the 

data in Trentino.  

From the general model (Rosà et al., 2003), if N is the density of nymphs present in the 

system, 
1FN  the nymphs feeding on host 1 while NQ the questing nymphs, we have that 

these quantities are in the following quasi-equilibrium relations:  
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From these equations we get 
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and it gives the following formula for calculating the encounter rate between nymphs and 

host 1:  
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In the same way we obtain the encounters rate between larvae and host 1: 

1
1

1

HL

L

Q

FL σβ = .                                                                                                                     (9) 

In Province of Trento, questing ticks were collected by dragging 30 transects of 100 meter 

located within an endemic focus both for Lyme disease and TBE, between May and 

September 2000. Tick attached to host, and in particular feeding larvae and nymphs (no 

adult ticks were found), were collected from 47 mice (Apodemus spp.) which were live-

trapped in the same area where the questing ticks were collected (unpublished data). 

Inserting in (8) and (9) these observed data concerning feeding and questing ticks we 

estimated the encounter rates between rodents and tick stages reported in Tab. 2. 

 

TABLE 2. Notation and values for encounter rates between questing ticks and hosts. 
Symbol  
for Lyme 

Symbol 
for TBE 

Description Value 

  

  

L
1β  L

2β  
Encounter rate between questing larvae and rodents 0.028402 

N
1β  N

2β  Encounter rate between questing nymphs and rodents 0.000887 

A
1β  A

2β  Encounter rate between questing adults and rodents 0 

L
2β  L

1β  Encounter rate between questing larvae and roe deer 0.048798 

N
2β  N

1β  Encounter rate between questing nymphs and roe deer 0.028779 

A
2β  A

1β  
Encounter rate between questing adults and roe deer 0.12849 

 

As it was practically impossible to estimate the encounter rate of the tick with its natural 

feeder host 2 (roe deer), an experiment with tracer animals (domesticated goats) was 

carried out obtaining the numerical values reported in Tab. 2. In this experiment we used 5 

goats which were let to feed for a standardized period of time (75 minutes) every 15 days 

between august 1999 and august 2000, for a total of 27 replication. Goats were screened 

before every walk and ticks counted.  
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Finally, parameters for which there exist no sensible estimates are qN, qA and α which we 

will vary in the simulation. As for γ, while it is known that infected mice remain positive 

for a couple of weeks, (γ≈1/15 days-1) it is generally thought that infected mice remain 

infectious, although perhaps to a lesser degree, forever (γ≈0); thus, we will let also γ vary. 

 
5.3.2 Tick-borne Encephalitis 
 

Also for TBE in Trentino the relevant tick species is Ixodes ricinus but in this case the 

notation for hosts has to be changed; namely, here H1 represent roe deer and H2 small 

rodents (where co-feeding takes place).  

TABLE 3. Notation and values for variables and parameters included in the model for 
Tick-borne Encephalitis. 
Symbol Description Value 

 

  

L Larval density variable (ha-1) 

Ni Infected nymph density variable (ha-1) 
Ns Susceptible nymph density variable (ha-1) 
Ai Infected adult density variable (ha-1) 
As Susceptible adult density variable (ha-1) 

T Total tick density =L+Ni+Ns+Ai+As 

rT Average egg production per fed adult tick 1300 
dT Natural death rate of ticks 0.02 (days-1) 
sT Density-dependent death rate of ticks 0.73 (ha) 
H1 Host 1 density (roe deer) 0.1 (ha-1) 
H2 Host 2 density (rodents) 30 (ha-1) 

z
iβ  Encounter rate between questing ticks of stage z (z=L,N,A)  

and hosts Hi (i=1,2) 
see Table 2 

σ Detachment rate of ticks 0.5 (days-1) 
mz Moulting success probability for ticks of stage z (z=L,N)  0.15 

ρNL Correlation coefficient for nymphs and larvae 0.43 
kL Aggregation parameter of the Negative Binomial distribution  

for larvae 
2.1 

kN Aggregation parameter of the Negative Binomial distribution  
for nymph 

0.42 

λLN Co-feeding probability between infected nymphs and larvae ? 
λNN Co-feeding probability between infected and susceptible nymphs ? 
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All parameters concerning ticks and hosts are the same to those for Lyme Disease while 

the encounter rates between ticks and host should be exchange as reported in Table 2. All 

the parameter used for TBE are listed in Table 3. 

For TBE the pattern of tick distribution on rodents might play an important role in the 

transmission through co-feeding (the only route of transmission present in the system). In 

the model (5) ticks stages are assumed to follow a Negative Binomial distribution. This 

assumption is well supported by the observed pattern of feeding larvae and nymphs on 

rodents in Trentino (Fig. 1). In fact, both distribution fit quite well the Negative Binomial 

distribution and nymphs result strongly aggregated (kN=0.42) while larvae show a less 

aggregated distribution (kL=2.1).  
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FIG. 1. Observed larvae and nymphs frequency distributions on rodents in Trentino 
compared with expected distribution based on the Negative Binomial distribution, 
estimated by maximum likelihood techniques (Negative Binomial fit: for larvae chi-
square=29.33, df=27, p=0.34; for nymphs chi-square=1.04, df=3, p=0.79). The k of the 
Negative Binomial for larvae is kL=2.1 and for nymphs kN=0.42. 
 

In addition both distributions result coincident rather than independent. In fact, a linear 

correlation was found (P<0.01) between feeding larvae and nymphs on rodents and the 

resulting correlation coefficient ρLN is equal to 0.43 (Fig. 2).  

No sensible estimates exist for the co-feeding probability then we will let λLN and λNN vary 

in the simulations. These parameters include the probability for a tick of being in a co-
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feeding group, the probability of being infected in that case and the probability of the 

infection being maintained trans-stadially. 
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FIG. 2. Linear correlation between feeding nymphs and larvae on rodents in Trentino.  
 

5.4 Simulations  

In this Section we show some numerical results, looking in particular at the effect of some 

parameters on the endemic equilibrium and on the basic reproduction numbers of both 

models. 

5.4.1 Lyme Disease 
We let one parameter vary at a time (Fig. 3), while all other parameters are set at the values 

listed in Tables 1 and 2; for the uncertain ones we start using: qN=qA=0.3, γ=0.01, α=0.005. 

For this set of parameters we find a positive equilibrium point at: L≈700, Ns≈556, Ni≈137, 

As≈58, Ai≈30, H1s≈2, H1i≈6, H1r≈22; while the reproduction numbers result R0,ticks≈6 and 

R0,Lyme≈13. It was found (Rosà et al., 2003) that an increase of H2 may decrease R0,Lyme, 

hence act against parasite persistence, since, when H2 is large, many bites of infected ticks 

get ‘wasted’ on incompetent hosts: this was named the ‘dilution effect’. Here we see (see 

Fig. 3A) that, for these parameter values, the ‘dilution effect’ does not occur: as H2 is 

increased, the equilibrium value of infected hosts first increases sharply and then stabilizes. 

A branching point is at H2 approx. 0.012, meaning that below this value, R0,Lyme < 1. 
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As expected, the density of infected hosts increases with increasing qN, first sharply, then 

more moderately. The threshold value is at qN approx. 0.023 (see Fig. 3B). 
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FIG. 3. Variation of the equilibrium level of infected host H1i with H2 (Fig. A), qN (Fig. B), 
γ (Fig.C) and α (Fig. D). The other parameters values are reported in Tables 1 and 2. 
 

With increasing γ, the density of infected hosts decreases (see Fig. 3C) and at γ approx 

0.17 we get a branching point. When γ approaches 0, the density of infected hosts greatly 

increases. Finally, the density of infected hosts decreases monotonically with increasing α 

(disease-induced death rate of mice) up to the branching point at α approx. 0.16 (Fig. 3D). 

Setting R0,ticks to 1 and plot H1 against H2 using our parameter values (Tables 1 and 2) we 

can determine the densities of rodents and roe deer that must be present for ticks to persist 

(Fig. 4). It can be seen that the curve do not cross the rodent axis since in our data adult 

ticks do not feed on rodents. Hence the ticks cannot persist in the absence of an adult tick 

host, usually a large mammal, in our case roe deer.  
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If we take R0,Lyme=1 we produce the persistence-extinction boundary that determines the 

density of viraemic and non-viraemic host that must be present for borrelia to persist 

(Fig. 5). 
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FIG. 4. The effect of hosts densities on R0,ticks. The parameter values are those reported in 
Tables 1 and 2 with qN=qA=0.3, γ=0.01, α=0.005. 
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FIG. 5. The effect of hosts densities on R0,Lyme. The parameter values are those reported in 
Tables 1 and 2 with qN=qA=0.3, γ=0.01 and α=0.005. 
 

Fig. 5 shows that a very little density of rodents (H1) is needed in order to make the 

borrelia persist in the system. As previously mentioned, the density of non-viraemic hosts 

H2, roe deer in this case, has a negative effect on R0,Lyme (‘dilution effect’). Starting from a 

point (H1,0) where R0,Lyme >1, in order to make R0,Lyme becomes lower than 1 we need an 

unrealistic high value of roe deer for sensible value of rodents, note the logarithmic scales 
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in Fig. 5. Hence we can confirm the finding of Fig. 3A saying that for our parameter values 

the ‘dilution effect’ does not occur. 

5.4.2 Tick-borne Encephalitis 
Also here, we let one parameter vary at a time (Fig. 6), while all other parameters are set at 

the values listed in Tables 2 and 3 while for the uncertain ones we start using: 

λLN=NN =0.65.  
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FIG. 6. Variation of the equilibrium level of infected nymphs Ni with H1 (Fig. A), H2 
(Fig. B), λLN (Fig. C), ρLN (Fig. D), kL (Fig. E) and kN (Fig. F). 
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For this set of parameters we find a positive equilibrium point at: L≈700, Ns≈578, Ni≈114, 

As≈51, Ai≈38 and the reproduction number for the disease we get R0,TBE≈1.09. We remark 

that the chosen values for λLN and λ NN seem to be too high being products of three 

different probabilities but we need these values to obtain persistence of TBE (R0,TBE>1).  

In this case we observe a ‘dilution effect’ due to the increase of roe deer density, in fact (as 

shown in Fig. 6A) as H1 is increased, the equilibrium value of infected nymphs after a 

initial increas start decreasing and drop to 0 when H1 reach the value approx. of 0.8. It 

means that for higher values of roe deer we have R0,TBE < 1. This dilution effect is due to 

the wasting tick bites on roe deer as they do not take part to the infection processes (co-

feeding occur only on rodents). Interestingly, we observe that for TBE also an increase of 

rodent density might cause a ‘dilution effect’ (Fig. 6B). In fact for values of H2 larger than 

50, R0,TBE becomes lower than 1 and the virus dies out. However, the reasons of this 

decrease of R0,TBE are completely different from those due to deer increase. In fact, this is 

because with an high density of rodents, many ticks will feed on them, but each individual 

rodent will be carrying very few ticks, so that the probability of finding co-feeding ticks 

will be relatively low; hence, non-viraemic transmission will become insignificant and, by 

assumption, viraemic transmission is impossible.  

As expected, the density of infected nymphs increases with increasing λLN, that is the co-

feeding probability between infected nymphs and larvae. The threshold value is at 

λLN=0.62 (Fig. 6C). 

Figs 6D, 6E and 6F show the quantitative effect of the pattern of tick distributions on the 

number of infected nymphs at the equilibrium. As expected a stronger aggregation of 

larvae (Fig.6E) and nymph (Fig. 6F) distribution increases the number of infected nymphs. 

The same effect is obtain for a strong correlation between larvae and nymphs (Fig. 6D). 
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FIG. 7. The effect of host densities on R0,TBE and R0,ticks. The parameter values are those 
reported in Tables 2 and 3 with λLN=λ NN =0.65. 
 

In Fig. 7 the persistence-extinction boundary that determines the densities of rodents and 

roe deer that must be present for ticks and TBE virus to persist is shown. For ticks we 

obtain the same boundary as for Lyme while the shape of the curve R0,TBE=1 are rather 

different and reflect the double ‘dilution effect’ (of both roe deer and rodents) showed in 

Fig. 6A and 6B and previously discussed. 

 

5.5 Discussion  

In this paper, we applied a general model for tick-borne diseases (Rosà et al., 2003) 

to two emerging diseases in Trentino: Lyme Diseases and Tick borne Encephalitis. The 

biological assumptions which lead to these special cases are rather different; for Lyme 

Disease we assume that the only route of transmission is the viraemic (or bacteriemic) 

transmission between ticks and small mammals (rodents), while for tick-borne encephalitis 

the unique route of transmission present in the system is the non-viraemic transmission 

through co-feeding ticks which might occur on small mammals. Other hosts, like deer for 

instance, are classified as tick maintenance host and they simply amplify the tick 

population without amplifying the pathogens.  
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With our parameter estimates the basic reproduction number for Lyme Diseases in 

Trentino results fairly higher than 1, even though for some parameters included in the 

formula of R0,Lyme we do not have sensible estimates and so we used only educated guesses. 

Using intermediate values for the most uncertain parameters we obtain R0 for Lyme larger 

than 10 and at the endemic equilibrium 20% of rodents and 15% of nymphs result infected 

with Borrelia burgdorferi s.l. These results fit quite well with the observed value obtained 

in Trentino where the prevalence of infection in Apodemus and Clethrionomys glareolus 

range from 15 to 20% (Rizzoli et al., unpublished data); in Ixodes ricinus nymphs the 

observed prevalence of infection is 17.5% (Rizzoli et al., 2002). 

On the contrary, the basic reproduction number for TBE is low. In order to obtain 

R0,TBE larger than 1 and make the virus persist we need an unlikely high value of λLN (co-

feeding probability between infected nymphs and larvae). This problem may come from 

errors in parameter estimates (for instance the chosen values for the moulting success for 

ticks could be too low), or from the lack of relevant factors in the model considered here. 

One of the most interesting result obtained from our simulation was the effect of 

host densities on the persistence of the diseases (Figs. 5 and 7). The effect is rather 

different for the two diseases considered in this paper. For Lyme we found that the dilution 

effect due to the high density of non-viraemic host (roe deer) practically does not occur. In 

fact it happens but for unrealistic high values of roe deer for sensible densities of rodents in 

Trentino (range from 5 to 30 per hectare). On the other hand, for TBE we observed a 

convex shape of the persistence-extinction boundary. It means that when there are either 

too many deer or too many rodents, R0 becomes less than 1 and the virus cannot persist in 

the system. This ‘double’ dilution effect is the results of two different biological 

mechanism. The first is due to the wasting tick bites of ticks on roe deer while the second 

happens because with an high density of rodents, many ticks will feed on them, but each 
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individual rodent will be carrying very few ticks, so that the probability of finding co-

feeding ticks will be relatively low; hence, non-viraemic transmission will become 

insignificant and, by assumption, it is the only route of transmission for TBE. This latter 

result is supported by some field observation in Trentino (Perkins et al., unpublished data) 

where it has been observed that the higher values of TBE prevalence was found in sites 

where the rodents density was at an intermediate level, while sites with lower or higher 

rodent density show lower values of TBE prevalence. 

Finally, if we apply the joint threshold host density curves obtained with our models to the 

average observed value of rodents and roe deer density in Trentino we observed that for 

Lyme we are clearly in the region with R0>1 and far from the extinction boundary. On the 

contrary, for TBE the observed host densities are very close to the boundary. This result 

may indicate that for TBE in Trentino variation in rodent and deer densities can make the 

virus persist or not and this could explain its hot-spotted distribution in Trentino and in 

many parts of Europe. On the other hand, Lyme diseses persistence seems to be less 

influenced by host densities in Trentino where Lyme is endemic in many areas with a very 

widespread distribution. 

To conclude we remark that much more research on the parameter estimation and on the 

properties of the system is needed to improve our model prediction. Certainly, one of the 

factors missing in these models is seasonality, which has instead a profound effect on tick 

dynamics and on transmission of both diseases considered in this paper. 
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Chapter 6 

 
6. General discussion and future research directions 
 

The main aim of this Thesis was to improve the general understanding of the role 

played by parasite aggregation in the dynamics of host-parasite interactions, looking 

specifically at macroparasitic infections and tick-borne infections in wildlife.  

Throughout the Thesis, we followed a mathematical approach that consisted of 

developing mathematical models, then analysing their equations and determining, when it 

was possible, analytical results such as thresholds, equilibria, periodic solutions and their 

stability. These mathematical techniques combined with computer simulations permit us to 

identify and quantify the importance of several parameters, and in particular the role of 

parasite aggregation on the dynamics of host-parasite interaction.  

One of the most important results obtained with the macroparasite models 

(Chapter 2) is that the mechanism producing aggregation in parasite distributions has a 

strong influence on the stability of the system. As well known, there exists a tension in 

host-macroparasite models between stabilizing and destabilizing factors: when the former 

prevail, at least one equilibrium is stable, and the system will settle to one of those; on the 

other hand, when destabilizing factors prevail, sustained oscillations will occur. Anderson 

and May (1978) found that parasite aggregation is a very stabilizing factor. In a sense, we 

confirm this finding; however, we found that the aggregation produced through our model 

of host heterogeneity stabilizes the system much more than that obtained through multiple 

infections (Rosà et al., 2002). Furthermore, in the Anderson and May model parasite 

aggregation does not influence the threshold for parasite establishment while in our model 

with multiple infections a large aggregation makes it more difficult for parasites to both 

regulate hosts, and to get established into a population at carrying capacity. This fact has 
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an intuitive explanation: a large aggregation causes many hosts to escape from infection; 

hence, these hosts may be enough to let the population continue growing. Moreover, when 

we consider parasite establishment, a large aggregation would cause most parasites to 

occur in the same hosts; hence, even when parasites are extremely rare, they would suffer 

from increased host mortality due to other parasites. We would therefore expect that the 

threshold for establishment should increase with the level of aggregation. 

These important findings suggest that before applying a model and making 

predictions about host-macroparasite interactions it is very important to understand the 

biological mechanisms responsible for generating aggregation in parasite distribution.  

While the qualitative dynamics of host-macroparasite systems are mainly based on 

deterministic models, individual-based simulation models related to host-parasite 

interactions are becoming increasingly popular (Wilber and Shapiro,1997; Peters and 

Lively, 1999). In simulation models, one can easily introduce many important factors 

missing from simple deterministic models, such as spatial structure with local interactions 

(Hess, 1996; Keeling, 1999), genetical and behavioural differences among individual hosts. 

However, if the rules of simulation models are very complex, it becomes difficult to 

disentangle the effect of the different factors, and to obtain a clear qualitative 

understanding of the deterministic models. 

In Chapter 3 we restricted our considerations to simulation models (Rosà et al., 

2003) that may be considered the stochastic counterpart of the deterministic models 

considered in Chapter 2. The stochastic simulations show that the results of deterministic 

models mainly hold when demographic stochasticity is added. We found that the average 

values of host density, parasite burden and parasite aggregation are close to the value at the 

deterministic equilibrium, and show similar trends with respect to their relationship to the 

parameters. With the stochastic model we also found that the persistence of host-parasite 
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interaction is not guaranteed by the condition R0>1 and strongly depends on the host 

carrying capacity. Introducing density-dependence in parasite demographic traits, increases 

persistence somewhat. However when we allowed for infections from an external parasite 

reservoir, we found that host extinction may easily occur. 

We note that the simulations presented in Chapter 3 are very simple, since we 

assumed homogeneous mixing of host and parasite, neglecting spatial and social structure 

of hosts, temporal changes in environmental factors that may influence tarsnmission, as 

well as parasite induced acquired immunity. These simulations can however be the basis 

on which more complex simulations can be built, as well as the reference against which 

their results may be assessed. 

In tick-borne infection model (Rosà et al., in press, Chapter 4), we consider 

specifically the possibility of non-viraemic transmission that is thought to be crucial in the 

maintenance of several infections such as Tick-borne Encephalitis (Randolph et al., 1996; 

1999; 2002). We also considered the distribution of tick stages among hosts, which proved 

very  important in facilitating the transmission through co-feeding (Randolph et al., 2002; 

Perkins et al., in press). 

We obtained an explicit formula for the threshold for disease persistence in the case 

of only viraemic transmission and in the case of both viraemic and non-viraemic 

transmission. From this formula, the effect of parameters on the persistence of infection 

has been investigated. When only viraemic transmission occurred, we confirm that, while 

the density of the competent host always had a positive effect on infection persistence, the 

density of the incompetent host may have either a positive effect, by amplifying tick 

population, or a negative (“dilution”) effect, by wasting tick bites on an incompetent host. 

With non-viraemic transmission, the “dilution” effect becomes less relevant. Including the 

effects of tick aggregation on hosts and correlation of tick stages we found that a large 
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aggregation in ticks and a strong correlation between different tick stages cause a big 

increase in the basic reproduction number of the infection.  

As well known, heterogeneity in host populations can generate aggregation in 

parasite distributions among hosts (Anderson and Gordon, 1982). We found that both in 

macroparasites and tick-borne diseases, the level of aggregation influenced the basic 

reproduction number of the infection, and consequently the persistence of the disease in the 

system. Aggregation in those macroparasites species that increase the mortality of their 

hosts makes it more difficult for the establishment of parasite in the host population and so 

the basic reproduction number of parasite decreases for higher values of parasite 

aggregation. On the other hand, aggregation of tick distribution in hosts, on which non-

viraemic transmission occurs, increases the basic reproduction number of the pathogen 

transmitted by ticks. This difference is due to the fact that in this case aggregation does not 

concern the parasite responsible for the disease but the vector. In a sense, a large 

aggregation of tick distribution on hosts where co-feeding transmission takes place has the 

same effect of a high concentration of hosts in space for a directly transmitted 

microparasitic disease. 

On the whole, this work has emphasized the importance of considering 

heterogeneities in the modelling of host-parasite interactions. For instance, not including 

aggregation of tick distribution in hosts on which non-viraemic transmission takes place 

might cause an underestimate of the basic reproduction number of the infection and this 

may give us the wrong signals when considering the possible strategies for disease control. 

Even more important is modelling the biological mechanisms that produce aggregation in 

parasite distributions rather than describing aggregation with some population parameters, 

such as k of the Negative Binomial distribution that does not correspond to any biological 

process, but is instead a population statistics. We followed this approach for 
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macroparasites models finding that different mechanisms that produce aggregation cause 

different host-parasite dynamics. However this did not apply for tick aggregation and this 

represents an important aspect to consider in the future. 

One of the factors missing in the models considered in this Thesis, both for 

macroparasites and tick-borne infections, which can have a profound effect on infection 

transmission is seasonality (see for instance White et al., 1996, for macroparasites and 

Randolph et al., 1999, for ticks). Thus, another important future avenue of research will be 

to introduce seasonality in these models, although probably explicit expressions will no 

longer be computable.  

One of the advantages of using epidemiological models is to get explicit formulae 

for determining thresholds, equilibria, periodic solutions and providing a clear 

understanding of disease dynamics. This makes models very important tools for identifying 

possible strategies for disease control. However, before using models as a management 

tool for planning control and prevention programs, detailed empirical studies have to be 

carried out to assess model results. In fact, it has been demonstrated that sometimes model 

predictions are in disagreement with empirical evidences. This is the case for cowpox 

infection in rodents (Begon et al., 2003) where it has been found from field observation 

that there is a little support for density-dependent transmission, despite this having been the 

usual default assumption in models for non-sexually transmitted infections. This highlights 

the fact that little attention has been paid in the past to the practical meaning of some 

theoretical concepts obtained with models.  Wildlife-disease modelling remains an 

essential tool for understanding the increasing flood of data on population and 

heterogeneities in hosts and pathogens. There has been much progress in this area; 

however, further advances are urgently required in terms of model validation hoping that 

the ‘distance’ between empiricist and theoreticians will decrease in the near future. 
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