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Abstract

The interaction between coding and learning rules in neural nets �NNs� and between coding
and genetic operators in genetic algorithms �GAs� is discussed� The underlying principle
advocated is that similar things in �the world� should have similar codes� Similarity metrics
are suggested for the coding of images and numerical quantities in neural nets and for the
coding of neural network structures in genetic algorithms�

A principal component analysis of natural images yields receptive �elds resembling hori�
zontal and vertical edge and bar detectors� The orientation sensitivity of the �bar detector�
components is found to match a psychophysical model suggesting that the brain may make
some use of principal components in its visual processing�

Experiments are reported on the e�ects of di�erent input and output codings on the
accuracy of neural nets handling numeric data� It is found that simple analogue and interpo�
lation codes are most successful� Experiments on the coding of image data demonstrate the
sensitivity of �nal performance to the internal structure of the net�

The interaction between the coding of the target problem and reproduction operators
of mutation and recombination in GAs are discussed and illustrated� The possibilities for
using GAs to adapt aspects of NNs are considered� The permutation problem which a�ects
attempts to use GAs both to train net weights and adapt net structures is illustrated and
methods to reduce it suggested� Empirical tests using a simulated net design problem to
reduce evaluation times indicate that the permutation problem may not be as severe as has
been thought but suggest the utility of a sorting recombination operator that matches hidden
units according to the number of connections they have in common�

A number of experiments using GAs to design network structures are reported both to
specify a net to be trained from random weights and to prune a pre�trained net� Three
di�erent coding methods are tried and various sorting recombination operators evaluated�
The results indicate that appropriate sorting can be bene�cial but the e�ects are problem�
dependent� It is shown that the GA tends to over�t the net to the particular set of test criteria
to the possible detriment of wider generalisation ability� A method of testing the ability of a
GA to make progress in the presence of noise by adding a penalty �ag is described�
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Glossary

ABS Artola Br�ocher and Singer �learning rule�
ES EvolutionStrategie
GA genetic algorithm

GANNET genetic algorithm for neural nets
LoG Laplacian of Gaussian
MDP minimal deceptive problem
NN neural net

RBF radial basis function
RF receptive �eld
SD standard deviation

SUS stochastic universal sampling
WYTIWYG what you test is what you get

� momentum �Backprop�
� learning rate �all nets�
pb probability of crossover in between unit de�nition boundaries
pm mutation probability
pt probability of transmitting matched unit to child
pu probability of crossover at a unit de�nition boundary
px recombination �crossover� probability
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��� Introduction

This thesis is concerned with two areas of computing that are inspired by natural biological
systems� The �rst is neural nets �NNs� a versatile form of computation that uses a large
number of simple computing elements in parallel� This resembles the style of computation
found in biological central nervous systems though few of the nets to be discussed here have
any claim to biological plausibility� The second is genetic algorithms �GAs� which borrow
from the ideas of evolution and natural selection to give a general purpose optimisation
method� The main application of these algorithms to be explored here is the design of neural
nets� However it will be argued that at the heart of any application of either NNs or GAs lies
a similar problem� representation of the data� The underlying strategy that will be advocated
also applies to both� It may be stated simply� things which are similar in �the world� should
have similar internal representations�

In itself this claim is not novel the problem comes in deciding what measures of similarity
to use� The possible list is endless� position size speed temperature danger texture
shape function colour��� Mappings may typically be required between di�erent metrics� For
instance animals with forward�facing eyes are usually dangerous� The ability to generalise
from one potential predator to another has obvious survival value� While high�level concepts
such as danger are beyond the scope of this work explorations of similarity metrics will be a
recurrent theme�

Chapter � considers the interaction between learning rules and representation in nets�
An important class of nets are capable of re�coding input data entirely by self�organisation
i�e� according to the architectures and algorithms used� These self�organised codings are
potentially useful for further processing� There is also a possible philosophical advantage�
Searle ����
� has argued that a computer program can have no semantics any semblance of
such being derived from the programmer� At the heart of all programs is the representation
of data� imposed by and having �meaning� only to the programmer� If the system is capable
of forming its own representations of its world and then acting upon them it may start to
generate a semantics independent of the programmer� Unfortunately the semantics thus
produced may well be obscure to an outside observer without detailed analysis�

Chapter � looks at ways to improve the performance of nets both by the use of appropriate
coding strategies and by �tting the internal structure of the net to the problem� One way to
produce appropriate net structures is by evolving them and the rest of the thesis concerns
genetic algorithms and their application to neural nets� GAs o�er a naturally appealing
approach to the net design problem biological brains providing an existence proof of the
power of evolution to design nets� While both current neural nets and genetic algorithms are
extremely simpli�ed versions of their natural analogues the emergence of quite sophisticated
behaviour in evolved networks such as the ability to learn to �nd food �or at least simulated
food suitable for simulated animals� e�g� �Ackley � Littman ����� Cecconi � Parisi ���
�
Je�erson et al� ���
� suggests that the analogy is valuable� The discontinuous nature of the
parameter space coupled with a noisy evaluation function argues against the possibility of
using traditional hill�climbing techniques� That nature took around three thousand million
years to develop mammalian brains in a highly parallel processor gives some hint as to the
possible drawbacks of the method� However there are bene�ts to be had for those with
su�cient patience� as a foretaste �gure ��� shows a comparison between fully connected nets
and a genetically designed one on a face recognition task� There are dramatic improvements
in both test performance and training time� The caveats will be explained in chapter ��
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Figure ���� E�ects of varying the number of hidden units on test performance and training
time for a face recognition task� For comparison the best performance obtained from a
GA�designed net which had �
 hidden units but sparse connectivity is also shown�

One of the intriguing aspects of working with GAs is the insight they provide into the
possible workings of natural evolution� There are still a remarkable number of people a re�
cent president of the USA among them who seriously question the theory of evolution and
prefer to believe if not in a single creation event then in �scienti�c creationism�� Other�
wise sound scientists argue that it is simply not conceivable that anything as complex as
ourselves arrived �by chance� that it as likely as a tornado in a junkyard producing a jumbo
jet� Richard Dawkins attempted to demonstrate the fallacy of this in his book �The Blind
Watchmaker� �Dawkins ������ Anyone who has worked with GAs on a su�ciently complex
problem will need no convincing� A striking example is given by the work of Ray ������ who
has devised a form of replicating computer programs that compete for resources of cpu time
and memory� Astonishingly complex programs evolve with routines that would be useless
without every bit in place� It seems such code segments would have no selective advantage
until they were complete indeed they might be lethal just the kind of thing that creationists
claim �disproves� evolution� Manifestly these did evolve� As with nets the key to harnessing
the power of GAs is the way the problem is coded� the coding for Ray�s evolving programs
took months of work�
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��� Structure of the thesis

After an introduction to the terminology used the next chapter discusses the interaction
between learning algorithms and coding in neural nets� It concludes with an experiment that
uses a net to produce statistically optimal codes of natural images� Chapter � is about the
ways that changing input�output coding and internal structure can a�ect the performance
of mapping nets and reports a number of experiments on the coding of numeric data and
images� Chapter � is an introduction to genetic algorithms illustrated with a number of
demonstrations of the e�ects of coding on simple problems� Chapter 	 discusses combinations
of genetic algorithms and neural nets with particular reference to the permutation problem�
This is a consequence of the fact that functionally identical networks may have many di�erent
genetic representations� Evidence is presented that suggests the problem may not in practice
be as severe as has been supposed� Chapter � reports experiments on the genetic design of
neural nets with further exploration of ways to reduce the permutation problem in practice�
Chapter � presents a summary and conclusions� The work is in what is hoped is a logical
rather than a chronological order thus most of the work reported in chapter � predates the
experimental work of chapter 	�
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Chapter �

Coding in neural nets

With the increasing availability of high speed parallel supercomputers� and new learning
procedures� the possibility of solving impossible problems is becoming a reality�
Mitchell Wheat� �Neural Networks�� Computing� �������
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��� Introduction

Neural nets need far less introduction now than they would have when this work was begun
in ��		
 the intervening years have seen a plethora of books on the subject� Unfortunately
there remains a diversity of terminology� so it will be necessary to outline that adopted here�

A net consists of a number of interconnected processing elements� Simulated processing
elements will be referred to here as units� the term �cell� being reserved for discussions of
biology� The connection from unit i to unit j has a strength� or weight� wij � Algorithms that
specify the modi�cation of the weights are referred to as learning rules� The nets described
here are mostly feedforward designs� with disjoint sets of input and output units� and possibly
a set of �hidden� units in between� A prime ambiguity in the neural net literature is the
meaning of layer� It will be taken here to mean a layer of units� Thus a three�layer net has
an input� output and one hidden layer�

One possible classi�cation of nets is into three types
 associative� auto�associative and self�
organising feature extractors� As with many classi�cations the borders are rather ill�de�ned�
for instance counterpropagation nets Hecht�Nielsen� ��	�� have a purely self�organised hidden
layer� which is then used to form associations� Indeed� all nets that have hidden units are to
some extent self�organising
 the distinction intended here is that self�organising nets simply
recode the input data as de�ned by their internal rules� while the coding in the hidden layer
of an associative net is speci�cally that required for the taught mapping� The bulk of this
chapter concerns self�organised codings� while input�output coding for associative nets forms
the subject of chapter �� Auto�associative nets are not considered in any detail�

The most common learning rule for associative nets is the delta rule Widrow � Ho��
������ which performs a gradient descent on the sum squared error� This has been generalised
to nets of more than two layers by a number of workers� but most in�uentially by Rumelhart
et al ��	��� This generalised delta rule� often called Backpropagation or just Backprop� is
probably used in more neural net simulations than any other algorithm� It has the virtue of
being simple and reasonably robust� but is often painfully slow� There are two major variants

�online�� where the weights are updated after each input� and �batch�� where weights are
updated only after the complete training set has been presented� Arguments rage on bulletin
boards about which method works better� confused by the fact that the online algorithm can
be signi�cantly a�ected by the order of the input data� The author has obtained a factor of
two di�erence in convergence time just by changing the order of presentation� with the batch
algorithm in between the two online results� While favourite �toy� problems such as parity
and encoder may bene�t from batch update� the online algorithm is usually preferred for
�real� problems� where a fair degree of correlation between di�erent inputs can be expected�
Since many of the inputs should therefore move the weights in similar directions� it makes
sense to treat them all separately� many small steps being more able to follow the gradient
than one big one� Fogelman Soulie ����� suggests that the online algorithm can be two
orders of magnitude faster than batch on real�world problems�

Each cycle of presenting all the training patterns is traditionally known as an epoch� a
name that re�ects the time it may take� Many methods of speeding up the convergence
of Backprop have been suggested� One used in some of the work reported here is �Quick�
prop� Fahlman� ��	��� which is� frankly� an educated collection of hacks allied to a crude
line search algorithm� Nevertheless� the reduction in training time can be dramatic� as much
as an order of magnitude� Unfortunately it is most impressive on toy problems� and may
fail completely with di�cult real data� It appears quite usual that the faster algorithms are
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less robust
 they may converge rapidly� but not always to the right minimum� This causes
di�culty in comparing results
 are 	 fast runs and � failures better or worse than �� moderate
runs� Most of the work in following chapters therefore uses simple Backprop� with just two
parameters
 learning rate � and momentum ��

��� Learning rules and coding

The earliest work done by the author at Stirling was a study of some of the computational
properties of a learning rule proposed by Stent ����� and later inferred from neurobiological
experiments by Rauschecker and Singer ������ This rule is a simple modi�cation of Hebb�s
associative rule ������ to allow weight decrease if the post�synaptic cell is active while the
presynaptic cell is silent� The initial aim was to investigate the applicability of such a rule to
feed�forward associative nets� The delta rule is commonly used to train such associative net
models� Although it appears to give similar results to the Rescorla�Wagner rule inferred for
animal conditioning Rescorla � Wagner� ����� Sutton � Barto� ��	��� there is still no clear
biological support for such a synaptic modi�cation rule� It is therefore of interest to consider
the capabilities of rules for which there is biological evidence� It was apparent that a unit
using the Stent rule cannot learn to be o�� since weight changes occur only when it is active�
However� if two such units are set up to be mutually inhibitory� then it is possible to train
one to be o� by training the other to be on W�A� Phillips� personal communication�� Use of
the simpler� biological learning rule thus requires a change to a more redundant coding�
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Figure ���
 Schematic behaviour of ABS learning rule
 weight change is negative if activation
is above threshold ��� positive if above ���

The same technique of opponent units extends the computational capabilities of a more
complex learning rule� Artola et al ����� reported a dual�threshold rule� With an active
pre�synaptic cell� there is no change in weight until the post�synaptic cell activation exceeds
a threshold� whereupon the weight decreases� When a higher threshold is exceeded� the
weight change becomes positive� �gure ���� The biological function of the rule is unclear� but
Hancock et al ����a� suggested a possible role as an error�correction rule� This places the
rule in a simple associative net� with binary inputs and outputs� When the �rst input�output
pairs are presented� the rule functions like the Hebb rule� forming associative connections
between appropriate units� As the loading increases� some output units may start to respond
when� according to the target stimulus� they should not� It is postulated that this unwanted
activation takes the unit into the decrement region of the weight change rule� but without
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the output signal� does not reach the level required for weight increase� This then speci�cally
reduces the weights that are responsible for the false positive output� giving a simple form
of error correction� The correction is incomplete� because there is no way to address misses
or false negatives�� Introducing opponent output units allows misses to be corrected as well�
If the output of a unit is too low� this can be attributed partly to its own weights being
low� and partly because of activation in its opponent being too high� The learning rule can
reduce the excess activation in the opponent unit� allowing the low output to increase� and
thus correcting misses� Such a system was shown to have a performance approaching that of
the fully error�correcting delta rule Hancock et al�� ����b��

Cluster
units

1   0   0  0.1 0.4 0.6 0.5 0.6 0.4 0.4 0.3 0.1  0   0   0   0   0   0   0

2   0   0   0  0.2 0.4 0.5 0.7 0.6 0.6 0.7 0.5 0.4 0.3 0.1  0   0   0   0

3   0   0   0   0   0  0.3 0.6 0.6 0.7 0.8 0.7 0.7 0.7 0.5 0.2  0   0   0

4   0   0   0   0   0   0   0   0   0   0  0.1 0.2 0.5 0.5 0.6 0.4 0.1  0
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90   80   70   60   50    40   30   20   10     0   10   20    30   40   50    60   70   80

Stimuli

Figure ���
 Responses of a cluster of eight units after �� presentations of a set of bars at
various orientations� adjusting weights with the Stent rule

This pairwise inhibitory arrangement seems too speci�c to be biological� but mutual in�
hibition between groups of cells is quite common in real nervous systems� Interesting results
can be obtained if the inhibition is non�isotropic� such that nearby units are less inhibited
than those slightly further away� again a model supported by biology� Figure ��� shows the re�
sponses of 	 units after �� presentations of a training set of bars at various orientations across
an 	x	 input matrix� The net resembles a simpli�ed version of von der Malsburg�s �����
model of the formation of orientation selective cell in visual cortex� The 	 output units are
arranged in a ring� interconnected such that each mildly excites its nearest neighbour� and
inhibits those further away� Adaptive connections from the input array initially have small
random weights� Within ���� epochs� the net learns a coding such that each unit is most
sensitive to a bar of a particular orientation� in between those of its two neighbours� This is
a genuinely distributed representation
 there are more bar orientations than units� but each is
coded uniquely� though more than one unit output is needed to recover the orientation� Such
coding strategies seem widespread in nature� the most familiar probably being the coding
of colour by our own eyes� With only three receptor types� we are able to perceive a huge
number of di�erent shades� The merits of this type of coding for input and output of nets
will be considered in the following chapter�
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A learning rule introduced by Oja ��	�� is able to extract the principal component PC�
of its input data� This is the linear descriptor that gives most information about the data�
assuming a normal distribution and that there is no knowledge of higher order statistics�
Given an input probability distribution in the shape of an ellipse� principal component anal�
ysis PCA� would return the long axis as the �rst component� Subsequent components are
mutually orthogonal� each contributing the most additional information to that conveyed by
its predecessors� The rule has been extended by several workers to multiple units� Oja him�
self Oja� ��	�� and Plumbley and Fallside ��	�� have proposed multiple unit models which
converge� not to the PCs� but to mutually orthogonal vectors which span the same space� The
total information conveyed is therefore the same as the real PCs� but the particular vectors
produced� and the output variance of each unit� will di�er from run to run� Sanger ��	��
developed a model that does converge to the principal components� The di�erence is that suc�
cessive components have a variance no greater than� and usually less than their predecessor�
and that� since the PCs are unique� the results are consistent between runs�

For a single linear unit� Oja�s rule is Oja� ��	��


y �
NX

i��

xiwi

�wi � �yxi � ywi�

Here� �x � x�� ��� xN� is a real valued input� y is the output signal� wi is the strength of the
connection or weight� from input unit i to the single output unit� and � is the learning rate�
This produces a weight vector corresponding to the eigenvector of the correlation matrix of
all the inputs which has maximal eigenvalue
 the principal component of the input data� The
weight vector also tends to unit length� For multiple units it is necessary to run the connections
backwards� which limits biological plausibility� though Plumbley and Fallside ��	�� speculate
that a feed�forward variant may be possible� Intuitively� each unit attempts to account for
as much as possible of the input signal
 by subtracting each unit�s weighted output from the
input� each unit is led to try and account for that part of the input not covered by other
units� Formally� for N units


�wij � �yjxi �
NX

k��

ykwik�

Sanger�s variation on this is to impose a hierarchy on the units� such that each only gets
that part of the input signal which is unaccounted for by its predecessors� The �rst unit thus
behaves just as if it were the only one� and extracts the �rst PC� The second then extracts
the PC of what is left� which amounts to the second PC of the whole data set� and so on


�wij � �yjxi �
jX

k��

ykwik�

These principal component analysers may be used to reduce the volume of data� for
subsequent processing by other systems� An example of their use as pre�processors for a
Backprop net classi�er is given in section ���� Their ability to handle large volumes of data

��



permitted a principal component analysis of natural images� which is described in the following
section� These experiments suggest that principal components may play some role in our
visual systems�

Some neural net models have binary outputs� others are continuously varying� often in
the range ���� Relatively few try to model the spiking behaviour of real nerve cells� Early
studies of the coding used by nerve cells suggested a simple rate code
 the faster the �ring�
the stronger the signal Adrian� ���	�� This is the model assumed by the use of continuously
varying outputs in simulations� However� it is increasingly becoming clear that there is
potentially information both within the pattern of spikes from one cell� and in the pattern
of �ring across cells� In a series of experiments� Optican and Richmond have used principal
component analyses to show that there is information in the pattern of �ring of cells in the
primary visual cortex and inferior temporal cortex Optican � Richmond� ��	�� Richmond
et al�� ������ Chung et al ����� suggested the term �multiple meanings� to describe the
ability of frog optic nerve cells to carry di�erent information in their frequency and pattern
of �ring� Such subtleties are beyond the models considered in this work�

A further subtlety that is not considered here is the possible signi�cance of synchronised
�ring of cells� Gray et al ����� �rst demonstrated synchronised �ring in cat primary visual
cortex� It appears that the oscillations may have a role in feature binding� Cells that are
responding to a coherently moving stimulus a bar of light� �re in phase� If the bar is
split into two independently moving pieces� the relevant cortical cells also separate into two
independently phase�locked groups� Such behaviour gives support to a model of feature
binding proposed by von der Malsburg ��	��� which proposes that feature cells are linked
by the action of rapidly switching weights� The question of how features are linked in neural
models is important� unresolved� and not discussed further here�

��� Principal components of natural images

����� Introduction

This work� conducted in collaboration with Roland Baddeley� arose from posing the question

suppose primary visual cortex is performing a principal components analysis on its input� what
would the resultant receptive �elds look like� Baddeley � Hancock� ����� Hancock et al��
����� Ever since Hubel and Wiesel�s initial report of the �bar�detector� behaviour of cells
in primary visual cortex Hubel � Wiesel� ������ there have been attempts to explain both
what they are doing and how they come about� Von der Malsburg ����� used a competitive
net with an input of bars of activity at various orientations to produce orientation sensitive
units� see also �gure ���� One problem with this model is that a normal visual diet does
not actually consist of helpfully oriented bars except� perhaps� for cage�raised laboratory
animals��� Barrow ��	�� pre�processed natural images with centre�surround �lters intended
to mimic the behaviour of retinal and lateral geniculate cells� and found that competitive
learning still produced orientation�sensitive units� However� this still does not explain the
observation that some animals are born with orientation sensitive cells� Linsker ��	�� ��		�
has shown a possible way in which such cells could arise� given only random noise input� In an
analysis of this work� Mackay and Miller ����a� ����b� found that the oriented receptive �elds
found by Linsker could be explained in terms of combinations of the principal components of
Gaussian �ltered noise� Rubner and Schulten ����� used another net model� which employs
anti�Hebbian learning between units to extract PCs� and produced similar oriented receptive
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�elds from Gaussian �ltered noise�
Our approach was to use Sanger�s net to perform a PCA on samples of natural images�

Sanger has done this himself� with a view to image compression Sanger� ��	��� This works
di�ers from his in two respects
 we are sampling from many di�erent images at once� and we
remove edge e�ects with a Gaussian mask� This also distinguishes our results from those of
Rubner and Schulten ������ their receptive �elds being �rmly aligned with the edges of their
square input array�

����� Method

Figure ���
 The �� natural images used in the �rst experiment�

We initially chose �� images of natural scenes� from a variety of sources� These are shown in
�gure ���� We avoided man�made objects� which tend to be regular� if not actually rectangular
in shape� and also tried to avoid obviously �at horizons� Since the pictures came from several
di�erent cameras and lenses� no attempt was made to correct any optical irregularities� The
photographs were scanned at ��� dots per inch� and reduced to ��� pixels square� ��x��
pixel samples were selected by choosing an image and location within it at random� The
mean grey level� estimated from ����� such samples� was subtracted from each pixel value�
The image sample was then masked by � multiplied� not convolved with� a Gaussian window
of standard deviation SD� �� pixels� This meant that the edges of the sample were three
SDs from the centre� which should be su�cient to avoid edge e�ects� The sample vector a
concatenation of the rows of the input array� was �nally normalised to unit length� This
acts as a form of contrast control� In the absence of such normalisation the results would be
dominated by the brightest areas of the image�

Each output unit has a connection from all ���� inputs� the weights being initialised
with small random values so as to make the sum of the squares of the weights to each unit
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approximately �� We used a rectangular scatter in the range ������ Training proceeds by
applying randomly selected inputs� Convergence is assisted by gradually reducing the value
of the learning rate �
 our standard procedure was to start it at ��� and then halve the value
every ����� presentations� for a total of ������� The exact method of �nding PCs is to �nd
the eigenvectors of the correlation matrix of the input data� With ���� inputs� the matrix
would have ��� entries� beyond reasonable computation� Sanger�s method allowed us to �nd
reasonable approximations in a few hours on a �M�op workstation�

Figure ���
 The �rst �� principal components of our images� numbered from left to right� top
to bottom�

����� Results

We can visualise the learned components by treating each weight vector as a ��x�� image�
The �rst �� components from our images are shown in Figure ���� Note that the sign of each
operator shown has no signi�cance
 the net may converge such that a given unit has either
positive or negative output� The �rst component is approximately Gaussian� The size is not
determined simply by the Gaussian window of our pre�processing� but re�ects the correlation
scale of the images� as is demonstrated by the use of text images below� The second and
third components resemble respectively the horizontal and vertical �rst derivative operators�
modulated by the Gaussian window� We were initially suspicious that this orientation was due
to residual edge e�ects� That it is not is demonstrated by the simple expedient of rotating the
photographs in the scanner by �� degrees� The results of this� shown in Figure ���� indicate
that the orientation speci�city does come from the images�

Figure ���
 The �rst � principal components of �� images� when rotated by �� degrees on the
scanner�
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To test the consistency of the results� we used a number of di�erent image sets� Figure ���
shows the results from an extended set of �� images� including another �� outdoor scenes and
�� taken in and around buildings� Despite the di�erent input� the resulting components are
very similar� Components � and � have reversed their order� while� for example� 	 and � from
�gure ��� appear to be formed by mixing the same components in �gure ����

Figure ���
 The �rst �� principal components of an extended set of �� images� numbered from
left to right� top to bottom�

The output variance of each component was measured by applying a test set of randomly
chosen inputs� The con�dence limits on the variances are quite large� so ������ inputs were
used to generate the results shown in Figure ���� As expected� the variances decrease with
increasing component number� The log�log plot of Figure ��� shows an approximately straight
line� However� there are some deviations caused by groups of two or three components
having quite similar variances� The operators that have changed order or become mixed with
di�erent input images tend to be those which deviate from the generally straight line and
have unusually similar variance�

Because of the variety of our images� there is no reason to suppose that the results would
depend on the particular scale that was used for analysis� To con�rm this� the experiment
was rerun at double and half the original scales� For instance� we used ��	x��	 samples� with
a Gaussian window of size ��� The results shown in Figure ��	a and ��	b are indeed very
similar� By way of contrast� the same technique was used to extract principal components of
text at various scales� Four di�erent samples of the text at each scale were used for input�
Rather than change the size of the windows� we simply changed the magni�cation of the text
on the scanner� The results� Figure ���� now show a very marked scale dependence note that
the sign di�erences are again not signi�cant�� The �rst and second components are matched
in spatial frequency to the inter�line spacing� Subsequent components match the pitch of the
letter strokes� Note that� particularly for the �nest scale text� the size of horizontal �lters
components three and four� is substantially bigger than the vertical ones �ve and six�� This
re�ects the use of a proportional font
 the lines of text are evenly spaced while horizontal
letter positioning varies� The horizontal correlation distance is therefore smaller than the
vertical� The last two components at the �nest scale are tuned to word boundaries� This
may be demonstrated by treating the component as a �lter and convolving it with one of the
original text images� The results of this are shown in Figure ����
 there is a blob in every
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Figure ���
 Output variances of the �rst �� PCs� a� from �� image set� b� from �� image set�
over ������ inputs�

word gap� with the biggest blobs making sentence ends� At the coarsest scale� the components
are approximately the same size as individual letters�

Two of the components from the natural image set� � and � in �gure ���� � and � in
�gure ���� resemble �bar�detectors�� centred on the horizontal and vertical respectively� Foster
and Ward ����� performed psychophysical experiments on subjects� ability to detect a line
segment presented on a background of line segments at a slightly di�erent orientation� They
were able to account for their results with a model that had only two orientation�sensitive
�lters� centred approximately on the vertical and horizontal� The response of the two �bar�
detector� units from each of the image sets was measured by presenting a single line segment
at ��� intervals� The results are shown in �gure ����� superimposed on the results of Foster
and Ward� The only degree of freedom in �tting the data is the maximum relative output of
one of the components� This was matched for the vertical components centred on ���
 the
surprisingly good match for the horizontal �lter comes purely from the data�

����� Discussion

The correlations detected by PCA in the images arise from the probability that adjacent pixels
have a similar cause� for instance being part of the same object� The second component is
consistently within a few degrees of horizontal� suggesting that horizontal correlations extend
further than those in any other direction� There are two reasons why this should be so� The
�rst is the action of gravity
 tall� thin objects tend to fall over and become long� thin objects�
That alone is not su�cient
 horizontal objects lying with their long axis towards the observer
still have apparently vertical edges� The second reason is foreshortening
 a pencil on a table�
end towards the observer� subtends a smaller visual angle than the same pencil rotated by
���� Two questions naturally arise
 a� is the relative sensitivity of the two �bar�detector�
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b�

Figure ��	
 The �rst � principal components of the images� at double a� and half b� the
original scale� Note that sign is not signi�cant�

Figure ���
 Some samples of Times font text� at three di�erent scales� and their �rst 	 principal
components�

components a response to the image statistics� or merely some inevitable and uninteresting
side�e�ect of the method and b� is the match to the Foster and Ward model anything more
than coincidence�

It is possible to shed some light on the �rst question by doing PCA on arti�cially generated
noise images of varying horizontal�vertical anisotropy� Brownian fractals have a similar spatial
frequency distribution to that of natural images� They may be generated by placing a large
number of dark�light edges with random position and orientation across an image� Anisotropy
can be introduced by biasing the selection of angles towards the horizontal� for instance by
drawing samples from a rectangular distribution� Figure ���� shows three such fractal images
of increasing anisotropy� generated from the same random number seed� Figure ���� shows the
�rst �� PCs obtained from a number of Brownian fractal images� generated from a rectangular
scatter with height ���� times the width� The general form� if not the precise detail� resembles
those obtained from natural images� Figure ���� shows the �rst seven components obtained
as the vertical�horizontal ration is varied from ��� to ���� The signi�cant component is the
fourth� At the top of �gure ����� when the input is almost isotropic� the fourth component is
close to having a centre�surround structure� As the anisotropy increases� so the component
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a� b� c�

Figure ����
 a� one of the original text images� at �nest scale� b� Same image� convolved with
seventh PC from Figure ���� c� As b�� thresholded and superimposed on a�

a� b�
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Figure ����
 The orientation sensitivity model of Foster and Ward ����� thick lines� with
�bar�detector� components from a� subset of �� images thin lines� and b� full image set�
Vertical units are arbitrary�

changes to having a horizontal orientation sensitivity� By the last row horizontals are so
dominant that the third and fourth components swap places�

The �fth and sixth components in the �rst row are almost circularly symmetric� like those
reported for Gaussian �ltered noise by Mackay and Miller ����a� ����b�� With isotropic
input� they return equal variance� As the horizontal dominance increases� the sixth component
changes to pick up vertical variance unaccounted for by the increasingly anisotropic fourth
component� It also accounts for a decreasing amount of variance� The orientation sensitivities
of these two components fourth and sixth of the �rst row� were measured as before� The
results are shown in �gure ����� as a ratio of the sensitivity of the two �lters� The Foster and
Ward model is shown for comparison� It may be seen that the relative output varies smoothly
with the horizontal dominance of the images� which suggests that the ratio found for natural
images is a result of the statistics and not just the process�

The second question� whether the match obtained is coincidental� is harder to address�
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Figure ����
 Brownian fractal images a� isotropic b� vertical�horizontal ration ���� c� ratio
���

Figure ����
 �� principal components from anisotropic Brownian fractals

The paradigms are very di�erent� but both systems are under pressure� time in the case of
Foster and Ward their presentations were of very short duration�� information in the case
of PCA� It may be that� within their short duration experiments� only the most signi�cant
channels are distinguishable from noise� There is evidence of an excess of horizontal and
vertical receptors in cats Vidyasagar � Henry� ������ especially among the fastest responding
cells� Supportive evidence that image statistics a�ect our visual system comes from a study
of the horizontal�vertical illusion� This is the observation that a vertical line looks shorter
than a horizontal line of equal length� Ross ����� has shown that the extent of the illusion
in children is correlated with their visual environment� Those raised in open country have a
stronger illusion than city children� Baddeley and Craven unpublished� have measured the
correlations within a set of images designed to approximate the visual diet of the two groups�
The horizontal�vertical ratio in the two sets is a very good match for the size of the illusion
found by Ross� It seems likely that the visual system is tuned to the statistics of the images
it receives� though where within the system the tuning occurs remains open�

The original purpose of this piece of work was to see what the response properties of
visual cortex cells might be� were they performing PCA� While the general form of some of
the components is not dissimilar� there are also marked di�erences� This is partly because
the current work was performed at a single spatial scale� while it is known that visual cortex
works at multiple scales simultaneously� The rather complicated higher components are at�
tempting to account for �ne structure� that might be done better by smaller� simpler �lters�
Perhaps more importantly� the PCs gave just two orientation sensitive components by de��
nition� because of the orthogonality constraint�� while visual cortex has �bar�detectors� at all
orientations� In a noiseless analogue� or fully digital system� such redundancy would not be
needed� It is only necessary to have two orientation selective units to code any orientation�
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Figure ����
 First seven PCs from Brownian fractals� varying the vertical�horizontal ratio
from ��� top� to ��� in steps of ����

However� real neurons are noisy� and communicate by sending discrete spikes of activity� The
visual system has to work in �real�time�
 evidence of just how fast it can operate comes from
observations by Oram and Perrett ����� that face�sensitive cells in monkeys can identify a
presented face within ��mS of stimulus onset� At typical peak �ring rates of about ��� per
second� this gives time for only about nine action potentials between the retina and the face
cell� While it would be possible in principle to work out the angle of an edge� for instance�
from only two orientation sensitive cells� it would take far too long because of the low response
o��axis� Cells at all orientations may be required simply to ensure that one �res strongly for
any input� Such considerations do not concern digital simulation of neural nets� Appropriate
coding strategies in this case are the subject of the next chapter�
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Figure ����
 Orientation sensitivity of vertical �bar�detectors�� varying the anisotropy of Brow�
nian fractals� adjusted such that the matching horizontal component has a peak output of ��
The model of Foster and Ward is included for comparison thick line��
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Chapter �

Coding and generalisation

It may seem strange to spend hours of supercomputing time to obtain the wrong answers to
simple arithmetic� but that is cognitive science �Anderson et al�� ������
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��� Introduction

This chapter considers ways to improve the generalisation ability of nets� After a brief discus	
sion of generalisation and approaches to improving it� four experiments are described� These
explore the e
ects of input and output coding on the performance of the nets� The �rst two
are concerned with the representation of numbers� for both real values and integers� The
third and fourth consider coding of images� These are methods for doing data reduction�
to reduce a �� � �� pixel image to something manageable for a net� The third explores
some methods for handling the image data� the fourth further compresses the data by use of
principal component analysis�

��� Generalisation

Possibly the most important aspect of neural nets is their generalisation ability� informally
described as �training a network to respond reasonably to input data not present in the
�training� data set� �Ji et al�� ������ The obvious questions are what is meant by �reason	
ably�� and how it might be measured�

Feedforward nets are typically designed to approximate some function de�ned over some
input space� The function might� for example� be a binary or multiple classi�cation task� or
perhaps a real	valued function� such as the Mackey	Glass equation that has become something
of a benchmark test �Mackey � Glass� ������ Where a function has been taught� generalisation
may be estimated by presenting a number of untrained inputs and observing how accurate the
output of the net is� It might be expected that the net would interpolate smoothly between
taught points� but this may well not be the case� especially if over�tting has occurred �see
below�� For a classi�cation task� ideal generalisation would be given if the net always gives
the correct class for any input� An important� unresolved question is what the net should
do if the input is not in any of the training classes� For instance� if the net of section ����
which is trained to recognise faces� is presented with an image of a telephone� its output will
be unde�ned� Ideally we might wish to have an extra output� to indicate that none of the
trained patterns is present� Quite how to train such an output� given the in�nite space of
possible inputs� is not clear�

Perfect generalisation would give zero errors� but since the input space is often in�nite
�as many images of a individual�s face as you like� and in�nitely many points on the Mackey	
Glass sequence�� it is usually not possible to measure it directly� Only where the input space
is �nite� for instance with boolean functions such as parity� is it possible to give a precise
answer� Paradoxically� generalisation performance is often not the issue in such cases� which
are commonly used to test the ability of learning algorithms to learn the function at all� The
generalisation ability on real	world tasks is typically estimated by testing the performance on
an unseen data set drawn from the same source� this is the method employed here�

Having established a way to estimate generalisation ability� it becomes of interest to try
and increase it� There are a variety of approaches�

� Stop training before the net over�ts the training set�

� Alter the structure of the net� changing the number of layers or hidden units� using
some subset of connections rather than a fully connected net etc�

� Constrain some of the weights to be the same value�
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� Add noise during training�

� Alter the coding used at input and�or output of the net�

Over�tting

A common observation when training a net with Backprop is that the test performance
increases� reaches a plateau� and then starts to decrease �an example is shown in �gure ���
on page ����� This phenomenon is known as over�tting� where the net is starting to learn
the individual training set i	o pairs rather than the underlying function� It is caused by there
being too many weights in the net� equivalent to having too many free parameters in the
model� In the limit� one might have one hidden unit per training input� in which case the
net is able to form a look	up table� Such a method has actually been proposed by Xu and
Zheng ������� in an attempt to speed up learning� Not surprisingly� it achieves this� at the
cost of disinventing neural nets�

One method of addressing over�tting is to stop the training just before it starts to occur�
There are a variety of ways to do this� one being the use of a validation set� This is a third
set of data from the same source� and is used to monitor generalisation during training� If
all three data sets are similarly representative of the input space� this should correspond to
the best performance on the unseen test set� Unfortunately� such a method requires that an
often limited amount of training data be reduced further� other things being equal� better
performance would be expected by training the net with all the available data�

Internal net structure

A better method might be to address the root problem of having too many free variables�
i�e� weights� The baseline approach to this is to vary the number of hidden units in the net�
Typical results are shown in �gure ��� on page ��� Performance gradually improves as the
net size is reduced� but then declines quite rapidly when it is too small�

A more sophisticated approach to the task of network design involves careful study of the
problem domain� A simple example would be to re�ect a two	dimensional input structure in
the hidden layer�s�� Such an approach is exempli�ed by the work of leCun et al ������� who
use a highly structured net to do hand	written digit recognition� However� their initial design
is still a labour	intensive process of trial and error� There would be a real bene�t in being
able to do the design work automatically�

The approach adopted by many authors is to develop a learning algorithm that automat	
ically constructs a net to match the needs of the training set� Fahlman�s Cascade Correlation
Algorithm �Fahlman� ������ for instance� automatically generates a pool of possible extra
hidden units� and adds the one that most reduces the output error� A variety of such con	
structive algorithms exist� e�g� �Frean� ����� Marchand et al�� ����� M�ezard � Nadal� �����
Hirose et al�� ������ There is apparently a biological precedent� canaries grow extra neurons
as they learn new songs �Bornholdt � Graudenz� ������ A disadvantage of current algorithms
is that they take no account of structure in the data� such as the two	dimensional nature of
images�

An alternative approach is to start big� and prune down� The general �nding that smaller
nets tend to generalize better has lead to a number of attempts to modify the learning al	
gorithm to remove unnecessary connections and nodes� Kruschke ������ forces bottlenecks
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to develop by introducing competition between hidden nodes� leCun et al ������ use cal	
culations of the contribution of each connection to in�ict what they term �Optimal brain
damage� on the net� Rumelhart ������ suggested penalising large weights by adding a term
to the error gradient� an idea developed with Weigend ������� As leCun makes clear� such
pruning methods are not a panacea� and will work well only if the initial net design is sound�
Manual design is a tedious process� some experiments are described in section ���� while the
possibilities for using a genetic algorithm to specify the structure of the net are considered in
chapters � and �

Weight sharing

In some nets� many of the connections ought to have similar values� An example would be
a layer of units that act as feature detectors� each on a di
erent subset of the input space�
If the feature detectors are to perform the same role� then equivalent weights should have
the same value� The process of training them can be speeded up by constraining them to be
equal� although the number of connections remains the same� the number of weight values
to be learned is reduced� This was done by leCun et al ������ in a letter recognition net�
it being required to recognise the letter in a number of positions on the input space� A
similar method is used in time delay neural nets �Waibel� ������ with the aim of obtaining
time	invariant recognition� The idea was taken a stage further by Nowlan and Hinton �������
who implement a soft constraint mechanism� by modelling the distribution of weights in the
net by Gaussians� Weights which are not well accounted for by one of the Gaussians receive
a penalty� The e
ect is to encourage the weights to move towards the centre of one of the
Gaussians� which can themselves move during training� Typically one of them ends up centred
on zero� so that weights that it accounts for are e
ectively pruned� If a number of the other
weights need to be approximately the same value� one of the Gaussians will move towards
that value and encourage them to be more alike� Nowlan and Hinton�s scheme obviates the
need for the experimenter to de�ne which weights should be shared�

Addition of noise

Addition of noise during training has a long history in Backprop� being reported in some of
the earliest experiments by Plaut et al ������ Noise is usually added to the input patterns�
the idea being to broaden the area of input space around each training exemplar that will
give the same output� It presupposes that similar inputs give similar outputs� adding noise
to a parity problem wouldn�t help� Gardner et al ������ ����� proposed its use to broaden
the area of attraction around each local minimum in a Hop�eld type net� The e
ect of adding
input noise to Backprop has been analysed by Matsuoka ������� who shows it to be equivalent
to adding a term to the error gradient to minimise sensitivity to disturbances of the inputs�
Murray ������ has developed an algorithm designed for hardware implementation that uses
noise to improve the convergence rate�

Coding

The importance of input coding may be demonstrated with a simple example� The parity
problem is a much	used toy problem for neural nets� precisely because it is so di�cult to
learn� Maximally similar inputs give rise to opposite outputs� The task is really quite trivial�
requiring only that the number of on bits in the input be counted� If� instead of presenting
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the original string to the net� the binary representation of the number of bits set is presented
�a trivial piece of digital hardware�� the task for the net becomes equally trivial� All that is
required is to pass through the value of the lowest bit� This is an example of the problem
becoming easy once it has been solved� However� thoughtless coding can make the job unnec	
essarily di�cult� In particular� traditional binary coding of numbers is a bad idea� because
adjacent numbers can have radically di
erent codes� Thus the code for � is ����� that for � is
����� maximally dissimilar in terms of Hamming distance� A net will have di�culty learning
that the two inputs are to be treated similarly� It is perhaps not surprising that a code devised
for traditional digital computers should not suit neural computation� binary codes are hard
for untrained humans as well� However� codes that are meaningful to humans may also be
hard for nets� Suppose three bits are coding political leanings thus�

� extreme left	wing liberal
� moderate right	wing conservative

Assuming no overlap in the middle ground� a similarity ordering would be ���� ���� ����
���� ���� ���� ���� ��� �provided that the curious classi�cation of hard	line communists as
right wing in the ex	Soviet Union is excluded��� Such a code would appear arbitrary to the net�
although meaningful to a human observer� The self	organising net described in section ���
would generate a continuous coding� with the three units responding to left� centre and right�
Someone in the political middle ground might then be coded as ���� ���� ���� The practical
utility of this kind of coding is explored in the next section�

Nets are often required to give a �one of n� output� corresponding to the class of the
input� If the classes are completely disparate� this may be satisfactory� However� it may be
the case that there is a similarity ordering on the outputs� Pomerleau ������ designed a net
to control an autonomous land vehicle� The output was one of n possible directions in which
to steer� He found that the net trained more easily if� instead of activating just the target
output during training� he activated neighbouring units as well� Fall o
 from the central unit
was Gaussian� Again� this is just the kind of coding that a suitable self	organised net might
produce�

��� Numerical coding strategies

����� Coding for arithmetic

As noted in the previous chapter� it is possible to generate distributed representations of an
input using a self	organising net� Each individual unit develops an approximately Gaussian
response curve� with the receptive �elds of neighbouring units overlapping� The work reported
in this section sought to ascertain how useful such codings might be for further processing by
a net�

It was not clear how this could best be achieved� Ideally� it seemed that the whole system
should be self	organising� Thus an association between two data sets might be established
by forming self	organised codings of each� and learning a mapping between the codes� The
major problem with this is how to measure the results� The usual sum of squared errors will
not do� because the pattern of errors is signi�cant� Suppose the target output is ���� ����
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���� corresponding to a signal on the centre of response of the second unit� Outputs such as
���� ���� ��� and ���� ���� ��� are the same distance from the target� However� depending on
exactly how the outputs are decoded� the �rst will probably be interpreted as correct� while
the second will be displaced towards the third unit� Since the target outputs are de�ned by
the net rather than the experimenter it becomes even more di�cult to interpret the results�
One possibility is to train a net to do the reverse mapping� but this introduces a source of
uncertainty� are errors being produced by the net being tested� or the decoding net�

It was therefore decided to use idealised codings� which were de�ned by the experimenter�
It was also decided to use Backprop as the training algorithm� at least initially� As speci�ed
by Rumelhart et al ������ Backprop was intended to work with binary coded problems�
That the unit output function used is a sigmoid rather than a simple threshold function is
a result of the need for it to be di
erentiable� However� it also allows analogue outputs to
be learned� and the widespread use of Backprop with continuous mapping problems made
it of some interest to compare a number of di
erent input and output codings� The results
reported here use Backprop�

Hinton et al ����� discuss a binary coarse coding� This uses a number of units with
overlapping receptive �elds� which signal � if they see an input and � otherwise� Introducing
continuous outputs allows the precision of the response to be increased� Such a coding� with a
Gaussian response� is referred to here as Gaussian coarse coding� It is equivalent to the most
common form of radial basis function �RBF�� introduced as such to the neural net literature� at
about the time this work was done in ����� by Broomhead and Lowe ������� A similar method
has been known in pattern classi�cation literature as as potential functions �Duda � Hart�
������ Saund ����� experimented with a similar coding scheme� which he called �scalerized��
He modi�ed Backprop to encourage the hidden layer to develop the same neighbourhood
codings� thereby compressing a two dimensional input space into a one dimensional map�
rather like Kohonen feature maps� Dawson and Schop�ocher ������ have recently suggested
another modi�cation to Backprop to assist training nets which use similar units� which they
call value units� Their intention is to improve performance on binary problems� rather than
with continuous values considered here� Their results suggest that such units� with their
modi�ed training rule� out	perform the traditional Backprop sigmoid units on problems such
as Xor and encoder�

Anderson et al ������ attempt to teach a neural net to do arithmetic in a way that might
mimic the way that humans do it� They use a hybrid analogue and symbolic coding� The
analogue component is intended to account for observations such as the ability of humans to
give the larger of two numbers more rapidly if they are very di
erent than if they are close� It
is coded as a bar of active units� whose position on a row of units depends on the number to
be coded� further right for larger values� Their system may be signi�cant as a means of linking
analogue sensory codings with abstract symbolic codes� Since it is intended speci�cally for
giving �ballpark estimates rather than a precise answer� it is not tried here�

Problem descriptions

Two problems were used for this study� The �rst is a straightforward� linear task� solving
simultaneous equations� Three integers� a� b and c� in the range �	��� are the target outputs�
the inputs are given as a�b

� �a�c
� and c�b

� � There are ��� possible input	output pairs� ����
chosen pseudo	randomly without duplicates were used for training� and the whole set used for
testing� The task can be solved by a two	layer net� indeed there is a simple� precise solution
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if the output units are linear� Because of the output non	linearity required by Backprop�
performance was found to improve with three layers�
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Figure ���� Simulated robot arm�

The second problem requires the net to output the x	y position of the tip of a simulated
robot arm� given the joint angles� The arm is similar to that used by Jordan ������� with four
joints� see �gure ���� The problem was restricted by allowing each joint to move through the
range ����� and allowing only those combinations of randomly generated joint angles that
gave positive values for x and y� Each section of the arm is of unit length� giving an output
range for x and y of �	�� ��� samples were used for training� ��� for testing� In initial trials�
the inputs were coded as the sine of the angle� as is done by Jordan ������� giving a range of
��� It was found that better results were obtained by simply dividing the angle� in radians�
by ���� giving the same input range� Use of the sine function should improve coding for
angles near zero at the expense of bigger values� In Jordan�s experiments the angles usually
are near zero� here� larger angles occur frequently�

Coding schemes

Two discrete� or binary� codes were used� and �ve continuous codes� Takeda and Good	
man ����� considered a number of discrete codings for numbers for use with Hop�eld nets�
They found that �simple sum�� which counts the number of active output units� and a more
complex �group and weight� scheme were better than simple binary coding� Since both have
many possible representations for one number� which makes creation of a training set di�cult�
they were not tried here� Those used were as follows� see also �gure ����

Value unit encoding� Each unit has a range within which it has an output of �� otherwise
output is zero� For the simultaneous equation problem one unit was used for each
integer� which means it was unable to code the input fully� since half	values are used
there� It was not tried for the robot arm problem�

Discrete thermometer� As value unit� except that each unit remains on if the coded value is
above its range� This means that the number of units on� and therefore the total input
signal� is proportional to the value being coded� For output coding� it also has the
potential advantage that the net only has to learn to turn a unit on when the stimulus
is large enough� and not turn it o
 again when too large�
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Analogue� The simplest continuous coding� using just one unit� with output proportional to
the coded value� In biological systems this would have limited resolution� and be prone
to noise� problems that do not signi�cantly a
ect software simulations except by design�
but might be of signi�cance in the design of hardware implementations of nets�

Continuous thermometer code� A combination of analogue and the discrete thermometer
codes� Four units were used here� each covering a quarter of the total coding range and
with an output proportional to the value within its sub	range� If the coded value is
above the unit�s sub	range� the output remains at �� below it the output is zero�

Interpolation coding �Ballard� ������ In its simplest form� this is similar to the simple
analogue coding� except that there is a second unit with output inversely proportional
to the coded value� Thus the sum of the two units� outputs is always �� The scheme
may be extended to many units� with each adjacent pair coding their section of the total
range� Unless the coded value is on the centre of response of a unit� there will always
be exactly two units with outputs greater than zero� Tests were carried out with both
� and � such units� With � units� the centres of response were at the top and bottom of
the coded range �� and �� for the simultaneous equation problem�� with � units� they
were evenly spread across the range ��� �� �� and ����

Multi unit interpolation� If the responsive �eld of a unit extends beyond the centre of
response of its immediate neighbours� then more than two units will respond over at
least part of the coded range� The spread of the responsive �eld may be expressed in
terms of the inter	centre gap� Thus a spread of ��� is identical to the simple interpolation
coding� while a spread of ��� will give three units responding over all the range� except
exactly half	way between unit response centres� see �gure ����

0         5       10       15 0         5       10      15

a) b)

Figure ���� Multi unit interpolation coding of �	��� with unit centres on �� �� �� and ��� a�
with spread of �� b� with spread of ���

Gaussian coarse coding� Each number is coded by four units which have a Gaussian response�

output � e���������
�

where � is the di
erence between the unit�s centre of response and the given number� and
� is the standard deviation of the curve� The result is similar to multi	unit interpolation
coding� but the response fall	o
 is Gaussian rather than linear� For the the simultaneous
equation problem� the centres were set at �� �� � and ��� Table ��� shows some examples�
for � � �� For the robot arm� they were at 	���� 	���� ��� and ��� for input and ���� ����
��� and ��� for output� See also �gure ���� Depending on the value of �� from one to all
four of the units may respond for a given input� If only one responds� it is not possible
to recover the input value unambiguously� The value of � is therefore expected to have
a signi�cant e
ect on the overall accuracy of the net�s output�
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Coded
number Unit outputs

� ���� ���� ��� ���
 ���� ���� ���� ���
� ���� ��� ��� ����
�� ��� ��� ���� ����

Table ���� Example of Gaussian coarse coding� with � � � and centres at �� �� � and ��� for
input domain �	���

Coding
type

Gaussian
Coarse

Response of a single
unit vs input number

01234567

Discrete
Thermometer

Continuous
Thermometer

Interpolation

Code for 2, 
range 0-7.

Code for 5, 
range 0-7.

. .

Value unit

Figure ���� The various types of coding used�

Training

The nets were all fully connected between adjacent layers and trained with batch update
Backprop� For the simultaneous equation problem� the whole training set was presented ����
times� for the robot arm problem� ���� times� At the start of run� momentum � � ��� and
learning rate � � ����� both were increased linearly between ��� and ��� epochs� to give � �
��� and � � ����� This schedule was the result of a number of experiments� and gave slightly
better performance than ���� epochs at �xed learning rate and momentum� Continuing
training to ������ epochs gave little additional improvement in performance� Only the simple
one and two unit codings went to completion within the epoch limit� where completion was
deemed to be no individual unit output error during training greater than ����� The same
training and test data� in terms of the uncoded values� were used for all the nets�

All the nets used �� hidden units� Initial experiments in the range of  to �� units showed
an improvement in test performance with the number of hidden units� which became less
marked above ��� Performance would be expected to deteriorate if the net was too large�
That this was not seen may simply be because training was discontinued before over	�tting
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occurred� It may also be that di
erent coding schemes would have di
erent optimal net
sizes� though no evidence for this was observed� It was thought best to leave this particular
variable �xed at what appeared to be a reasonable value� Some experiments on varying the
structure of the net by genetic algorithm are reported in section ���� The size chosen is
inevitably somewhat arbitrary� but serves to give a constant environment in which to compare
the codings� Each net was run �� times from di
erent sets of pseudo	randomly generated
starting weights� in the range ����� The same �� sets of starting weights were used for all
the homologous nets�

Testing

For the simultaneous equation problem� the complete set of ��� possibilities was used for
testing� for the robot arm problem� the same set of ��� random angles was used in each case�
The output values were decoded using the methods described in the appendix� The errors
in the decoded values were averaged over all �� trials to give the results shown in tables ���
and ���� Also shown is the average of the worst individual errors recorded in each run� The
tests were rerun with activation noise added to the units� with the aim of making the units
a bit more like real neurons� The activation value of each unit was subject to multiplicative
Gaussian noise with mean � and a standard deviation of ���� The unit output calculated from
this activation was then reduced in resolution to give �� discrete steps between � and ��

Results

Results for the simultaneous equation problem are shown in table ���� It may be worth
reiterating that we are not interested in solving the problem� which in itself is trivial� the aim
is to investigate the relative merits of the di
erent coding schemes� The two discrete codings
fare badly� value unit coding is not much better than chance� This is probably partly due to
the sheer size of the nets� with only ��� training examples they will be poorly constrained
even with such a regular problem� It will also be caused by the inadequate input resolution�
As would be expected� the thermometer code did better� since the net has more information
about the signi�cance of each unit� but still much worse than the continuous codings� Due to
their poor performance and long training times� plus the inherent lack of suitability for coding
continuous variables� the discrete codings were not attempted for the robot arm problem�

Of the continuous coding methods� without noise� � unit and multi	unit interpolation
coding stand out as being signi�cantly better than the rest� which are quite similar� The
di
erences are formally signi�cant �p � ������� with a standard deviation on the � unit
interpolation result of less than ����� When noise is added� the less redundant codings fare
worst� as would be expected� The discrete thermometer coding is una
ected� but remains
worse than any of the continuous coding methods� Of these� multi	unit interpolation is the
clear winner�

For the robot arm problem� shown in table ���� the two simplest codings� analogue and
two unit interpolation� fare much the best in the absence of noise� Of the others� continuous
thermometer is again the worst� while multi	unit interpolation is the best� The absolute level
of performance is distinctly worse for this problem� since the output range is only �	�� the
errors should be multiplied by � for comparison with those in table ���� Adding noise only
a
ects the two less	redundant codings� reducing them to a similar level of performance to
multi	unit interpolation� The e
ects of noise appear to be within the errors already made by
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Weights No� of units Without noise With noise
Coding type inc bias � � � Avg err Max err Avg err Max err

Value unit ��� �� �� �� ���� �� not tested
Discrete therm� ��� �� �� �� ���� ��� ���� ���
Analogue �� � 	 � ���� ��� ��� ���
Analogue �� � �� � ���� ��� ���� ���
Continuous therm� ��� �� �� �� ���� �� ���� ��
Gaussian coarse ��� �� �� �� ���� ��� ���� ���
Interpolation�
Simple � unit ��  ��  ���� ��� ���� ���
Simple � unit ��� �� �� �� ���� ��� ���� ���
Multi	unit ��� �� �� �� ���� ��� ���� ���

Table ���� Results for the simultaneous equation problem� average of �� runs

Weights No� of units Without noise With noise
Coding type inc bias � � � Avg err Max err Avg err Max err

Analogue � � �� � ���� ��� ���� ���
Continuous therm� ��� � �� � ���� ��� ���� ���
Gaussian coarse ��� � �� � ���� ��� ���� ���
Interpolation�
Simple � unit �� � �� � ���� ��� ��� ���
Simple � unit ��� � �� � ���� ��� ���� ���
Multi	unit ��� � �� � ��� ��� ���� ���

Table ���� Results for the robot arm problem� average of �� runs
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Simultaneous equation problem

Sigma � ��� � ��� � � 
Average error ��� ���� ���� ���� ���� ��� ���

Robot arm problem

Sigma in ��� Sigma out� �� ��� ��� ��� ��� �� ��� ���
Average error ��� ���� ���� ���� ���� ���� ���� ����

Sigma out ��� Sigma in� ��� ��� ��� �� ���
Average error ���� ���� ���� ���� ����

Table ���� E
ects of altering � in Gaussian coarse coding

the more complex codes�

E�ects of response curve spread

As noted above� it is to be expected that the performance of Gaussian coarse coding and
multi	unit interpolation coding would depend on the spread of the units� response curves�
Lorquet et al ������ continued the study of the relative merits of these coding methods�
introducing an adaptive coding� similar in spirit to that used by Moody and Darken ������
to tune RBFs� Lorquet et al note that they did not try varying the response curves� �because
it is determined according to Shannon�s criterion�� They do not state the resulting values�
except for a diagram which implies a spread of �� in the terminology used here� for multi	unit
interpolation coding� Shannon�s criterion suggests that a signalling unit should be on ��� of
the time for maximum information transmission� For continuous units� this implies that the
average output� over the whole input domain� should be ���� This is the case for the analogue
and �	unit interpolation codes used here� For multi	unit interpolation and Gaussian coarse
coding� the situation is less obvious� because of overlapping RFs and edge e
ects� Numerical
integration over the four RFs for Gaussian coarse coding indicates an average response of ���
if � � ��� for the simultaneous equation problem� and � � ���� for the input of the robot
arm problem� Trials were run for a range of values� the results reported in tables ��� and ���
were the best obtained� averaged over �� runs� The e
ects of varying the response spread for
Gaussian coarse coding are shown in table ��� and the best values for input � are indeed close
to those predicted� The optimal value for the output is probably de�ned more by interactions
with Backprop�s sigmoidal output function than by information content� and is larger than
the predicted value of �����

The results for multi	unit interpolation coding are shown in �gure ���� The analysis gives
a predicted spread of ����� This is quite a good value for both problems� but the behaviour at
larger values di
ers� and both show a marked minimum at ���� The complex pattern of results
in this case suggests competing e
ects� probably again with the sigmoidal output function�
Note that a spread of ��� corresponds to an RF that will just cover the input domain� and so
would give an average response of ��� from a central unit�

These results suggest that the analysis is useful� the predicted values giving good if not
optimal performance� A consequent prediction is that units placed near the edges of the input
domain should have a larger receptive �eld than those in the middle� to increase their average
response�
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Figure ���� E
ects of varying i�o spread on average test error for multi	unit interpolation
coding on the two problems�
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Figure ���� Log of frequency of occurrence of errors of given size for simultaneous equation
problem �left� and robot arm problem �right�� Note that log��� is regarded as ��

Consistency of results

In some applications� consistency of results may be more important than minimising the
average error� For instance� with a robot arm� it may be better to be always in approximately
the right place� rather than usually spot	on� and sometimes wildly out� Tables ��� and ���
show that the maximum error is not always closely related to average error� Figure ��� shows
histograms for the �log� frequency of occurrence of errors of various sizes on the two problems�
The distribution of errors does indeed di
er between the codings but unfortunately not with
any consistency� Thus Gaussian coarse coding is best for the robot arm problem� but worst
on the simultaneous equations�

The accuracy of the results also varies over the output range� though more so for the
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simultaneous equation problem than for the robot arm� Average errors for each target output
value are shown for the former in �gure ��� Gaussian coarse coding does badly at �� �� � and
��� which are the centres of response of the units� and at the ends of the range� especially
��� where only one unit is responding well� Multi	unit interpolation coding also shows clear
peaks of error on the four unit response centres� Two	unit interpolation shows a strange
double	humped pattern when only two layers of units are used� Addition of a hidden layer
removes these two peaks of error� leaving only the extreme ends of the range� where the
sigmoid output function is �attest�

Continuous
thermometer

Multi-unit
interpolation

Gaussian coarse

Simple interpolation
2 units, 2 layers

Simple interpolation
2 units, 3 layers
Simple interpolation
4 units, 3 layers

0      2      4     6     8    10    12   14

Figure ��� Distribution of average size of error with target output value for the simultaneous
equation problem� Note that the scale is only constant within each histogram�

Conclusions

Discrete coding methods such as value unit do not work well for these numerical problems� For
many problems the simplest� single unit analogue code may be best� since this also minimises
the number of units� and� therefore� connections to be trained� However� the additional
redundancy o
ered by two	unit interpolation is certainly worthwhile for the simultaneous
equation problem� the error rate being halved� For real problems requiring numerical input�
it would probably be worth trying both methods�

The more redundant coding methods do fare better in the presence of arti�cial noise�
Multi	unit interpolation coding does best� though care is needed about the choice of spread�
From these results� however� it is only fair to conclude that they are not well	suited to use with
Backprop� partly because of interactions between the coding and the sigmoid output function�
Gaussian coarse coding is especially vulnerable� because of its own Gaussian response� the
unit outputs are more often in the inaccurate tails of the sigmoid�

The multi	unit codings are least accurate around the centres of response of the units� A
common biological model appears to be to cover an input space at several di
erent scales� so
that cells with small receptive �elds cover the same area as others with larger �elds� If this
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Decimal Binary Gray Decimal Binary Gray

� ���� ���� � ���� ����
� ���� ���� � ���� ����
� ���� ���� �� ���� ����
� ���� ���� �� ���� ����
� ���� ���� �� ���� ����
� ���� ���� �� ���� ����
 ���� ���� �� ���� ����
� ���� ���� �� ���� ����

Table ���� Comparison of Gray and Binary coding

hierarchical model were used in simulation� it might be best to avoid units at several scales
having the same centre of response� since they would then all be least accurate in the same
place�

This work appeared in the proceedings of the ���� Connectionist Models Summer School �Han	
cock� ����a� and has since found some diverse applications� Guan and Gertner ������ found
that Gaussian coarse coding gave an improvement over a less constrained analogue coding in
a model of Red Pine tree survival� while Dyck et al ������ used it in a net to help determine
the mesh density needed to model magnetic devices�

����� Coding the alphabet

This piece of work originated from a talk given at Stirling by a visiting speaker �Tony Sanford��
who had been trying to teach a net the sequence of the English alphabet� For each letter
input� the net was to output the next letter in the sequence� He had been using binary coding�
thus A was ������ B was ������ etc� The net used was that proposed by Elman ������� which
has a recurrent feedback loop� The input consists of the current letter� plus some units which
receive input from the hidden layer units� These units thus provide a context� D is preceded
by C which was preceded by B and so on� The units are set to zero when A is presented�
Thereafter their activity a at time t is given by mixing in some of the hidden unit activity h�

at � ��� f�� at�� � f � ht��

The feedback parameter f is usually set to ���� Thus the extra input units carry a decaying
history of the hidden units� activity�

Although billed as coding the alphabet� this experiment might as well be numeric� i�e�
teaching the net to output the code for the next number� since Sanford simply coded the
letters as binary numerals� The discontinuities of binary coding might be expected to make
the task rather di�cult� A number of alternatives were tried� value unit coding� Ballard�s
interpolation coding �Ballard� ������ which was successful in the previous experiments� and
Gray coding� Gray codes have the property that the binary codings of adjacent integers di
er
in only one bit� see table ���� For instance� the Gray code for � is ����� for � it is �����
whereas in normal binary coding� � and � are maximally di
erent� It was expected that the
increased adjacency in the codes for neighbouring numbers would assist learning�
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A B C D E

Binary � � � � � � � � � � � � � � � � � � � �
Gray � � � � � � � � � � � � � � � � � � � �
Value unit � � � � � � � � � � � � � � � � � � � � � � � � �
Interpolation � � � � � � ��� ��� � � � �� �� � � � ��� ��� � � � � �

Table ��� Four di
erent codings for the alphabet

Target
max error

Interpolation code ���� ���

�� ����� ���� ����� � ��� ���
�� ���� ���� ���� � �� ��
�� ���� ���� ���� � ��� ���
���� ���� ���� ���� ��� �� ��

Table ���� Average number of epochs required to reach target maximum error for various
di
erent interpolation codings

Initial experiments using just four units suggested that while Gray coding was somewhat
better than binary coding� interpolation coding required �� times fewer epochs to achieve
learning� However� there are a number of ambiguities concerning the interpolation coding�
One concerns the learning rate� Because the coding is easier to learn� the learning rate may
be increased without encountering local minimum problems� While doing so is clearly valid�
it confuses direct comparison� Another ambiguity is the endpoint for learning� Completion in
a Backprop system is typically regarded as getting to within ��� of the correct value� While
this is satisfactory with binary codings it may not be when values between � and � have
speci�c meaning as with interpolation coding� Reducing the maximum error from ��� to ���
may take longer than getting it down to ��� in the �rst place�

A third aspect of interpolation coding in this discrete application is the spacing between
adjacent points� Usually the spacing is regular� as in �� ����� ���� ����� �� However� the output
function in standard back	propagation is sigmoidal� so that the top and bottom of the range
are compressed� It might be that an irregular spacing such as �� ���� ���� ���� � would be more
appropriate� Alternatively it might be better to avoid the extremes of the sigmoid thus� ����
���� ���� ���� ���� Using  units� that will code �� letters� a variety of tests were tried� These
used �� hidden units� � � ���� � � ���� f � ���� random weights ����� Figure ��� shows
results averaged from  runs� from the same sets of random weights for each coding�

This is a complex pattern of results which implies more than one competing e
ect� It is
extraordinary that an apparently minor change in the coding� from � to ��� and from ��� to
���� should reduce training time by a factor of four� Yet if the training is pursued a little
further� the relative performance reverses� It is clear that increasing the required accuracy
from ���� to ��� requires a lot of work� The second coding comes out best on both and was
therefore used in tests on the whole alphabet�
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� � ��� � � ��� � � ��� � � ���

Value unit ��� ���
Interpolation �� ��� � ��� ��� ���
Interpolation �� ��� ��� ��� � ��� ��
Gray �� �� ���
Binary � ��� ��� ���

Table ���� Average number of epochs required to reach maximum error of ��� for various
di
erent codings� Figures in brackets are number of times the target was not reached within
���� epochs�

Binary �	 � ���� ������ � � ��� � � ���
Gray �	 � ���� ��� � � ��� � � ���
Interpolation �	 � ����� ������ � � ��� � � ���
Interpolation �	 � ���� ���� � � ��� � � ���

Table ���� Number of epochs required to reach target maximum error 	�

� characters requires �ve units with binary and Gray codings� � for value unit encoding
and something in between for interpolation depending on the spacing� In addition to the �ve
level interpolation coding above� which requires � units� a wider spacing of �� ���� � was tried�
This requires �� units� The target maximum error was ���� other run details were as above�
The results are shown in table ����

The �gures in brackets are the number of times when solution was not reached within the
epoch limit of ����� Usually this implies that the system is stuck with a maximum error of
�� a common problem when using binary outputs and too high a learning rate� From these
results it is clear that the Gray coding is better than binary� but it appears that the �ve level
interpolation coding is easily the best� However� these �gures all relate to a maximum error
of ���� A fairer comparison would be an error of ��� for the binary codings� and ���� or even
��� for the interpolation coding� ���� might be su�cient� because of the inherent redundancy
in interpolation coding� The best results obtained at these error levels are shown in table ����

With the necessary accuracy requirements� interpolation coding loses out� Gray coding
remains clearly better than binary� The results should not be surprising� the sigmoidal output
function is designed for binary representations and is not well suited for accurate analogue
coding� Other things being equal� it is much easier to learn mappings where similar inputs
give similar outputs� Analogue codings should be better when the net is speci�cally designed
for them� for instance by putting inhibitory connections between the output units�

��� Coding images

The interpretation of images must rate with natural language comprehension as one of the
Holy Grails of arti�cial intelligence� A task that we perform apparently so e
ortlessly turns
out to be �endishly di�cult to specify in traditional programming terms� Since neural nets

��



Area Mass Centroid Length Width Ratio Axis

���� ���� �����	���� ���� ���� 	��� ����
���� 	���� �����	���� ���� ���� ���� 	��
���� 	���� 	�����	���� ��� ���� ���� ����

Table ����� Example of Mirage �blob� descriptions�

claim some biological inspiration� it seems natural to apply them to images and there have
been many and varied attempts�

Images require processing before application to a mapping net� a typical ��� �� pixel
array contains far too much data� Apart from the training times� it would be di�cult to
constrain the net su�ciently to prevent it learning the training set on the basis of individual
pixel grey levels� One approach is simply to reduce the resolution� perhaps to �� � ���
This is the method used by Pomerleau ������ as the input to his vehicle navigation system
and by Cottrell and Fleming ������ in a face recognition system� Cottrell and Fleming
then further compress the data using an encoder arrangement of Backprop� that produces a
coding resembling the principal components of the input� This method is also used in Sexnet�
a system used to identify the likely sex of a face �Golomb et al�� ������ These methods di
er
from the PCA approach of the previous chapter in that the whole image is coded in one set
of components� which would therefore be speci�c to the subject matter�

There are many more complex input codings in the literature� For input to their �TRAF	
FIC� system� Zemel et al ������ use the internal angles of the triangles between triples of
stars� to recognise constellations� Kanerva ������ uses a contour map� i�e� lines of equal inten	
sity in the image� coded as three component vectors sampled on a regular matrix� Weinshall
et al ������ and Frohn et al ������ use a feature map� though without specifying how the fea	
tures might be obtained from the image� The principal components procedure of section ���
seems a possible candidate for generating suitable feature detectors� such a method has been
used as the input to a system to classify textures by Sanger ������ and by McWalters �������
There seem to be two general approaches� either assume preprocessing and code data in a
way that aids later stages of processing� or make some attempt to follow biology�

The experiments reported here are based on a single	resolution simpli�cation of Mi	
rage �Watt � Morgan� ������ This model of early visual processing� so named because the
authors did not at �rst believe in it� was developed to account for many results from visual
psychophysics� Since Mirage appears to have some biological foundation� it was of interest to
see how its output might be applied to a neural net� The experiments also explored the e
ect
of structuring the hidden layers of the net on the test performance�

The pre	processing consists of a Laplacian of a Gaussian �LoG� �lter� followed by thresh	
olding� This breaks the image up into positive and negative �blobs�� see �gure ���� Each
blob may then be coded by parameters such as its centroid� mass and shape� The processed
image can be described by a set of �sentences�� table ���� showing the �rst � from a set of
���

There is clearly a problem in scaling such �sentences�� it will be the relationship between
the di
erent blobs which will be of importance in mapping the images� not their absolute
sizes� The values given in table ���� are in terms of standard deviations away from the
original mean value of each �eld� so that the new mean of each �eld is �� This introduces a
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degree of invariance with respect to image size and position� Very early trials without this
simple form of invariance produced excellent results� which turned out to be based solely on
how close the camera was to the subject�

a� b� c�

Figure ���� a� ��x�� original image� b� After Laplacian of Gaussian �lter with standard
deviation �SD� � � pixels� c� After thresholding �at ��� times the SD of the pixel brightness�

This indeterminate number of sentences� in no particular order� must be coded in a way
suitable for application to a net� ie as a �xed	length vector� Three types of coding are tried
here� A simple method �Type �� is to order the blob descriptors by mass and use only the
n largest� Applying a LoG �lter with standard deviation of � pixels to the image usually
gives about �� blobs� so n � � was chosen� This means using �� input units� the area
and ratio �elds were not used� being essentially redundant� The other values were passed to
the net unaltered� giving an input range of approximately ��� The position of each blob is
given explicitly� by the value for x and y of the centroid� Thus the input layer is not at all
retinotopic� One result of this is that the position of each sentence in the input layer depends
on all those before it� Thus� if one blob in a particular image becomes two in another� due to
slight di
erences in lighting or camera angle� the position in the input layer of all the smaller
blobs will be a
ected�

An alternative coding �Type �� is to give the input to the net a topological structure that
re�ects that of the image� �gure ���� Thus the input layer has some degree of retinotopicity�
For this� an array of nodes was used� each implicitly corresponding to a particular location
in the image� At each node are �ve units� which carry information about the blob nearest
to their implicit location� Four of these units code the mass� length� width and orientation
values� the �fth codes how near the centroid of the blob being described is to the node�s
centre� A direct hit gives a value of �� If the nearest blob is outside of the node�s receptive
�eld� then all the node values are set to �� The values for mass etc� are rescaled to run from
� to �� A value of � in one of these �elds is therefore ambiguous� if the distance unit is set to
zero then no blob is present� if not then zero indicates that that value is � standard deviations
or more below the mean� Tests were carried out with di
erent input layer sizes� the results
reported here are from an ��� �� array of nodes� giving �� input units�

A simpler alternative is to ignore the sentence level description of the image generated
by Mirage completely and code the thresholded LoG �lter output directly �Type ��� Input
units are arranged in an array� each with a Gaussian receptive �eld �RF�� see �gure ���� Each
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0, 0, 0, 0, 0

0.4, 0.5, 0.5,0.5,0.5

0.8, 0.5, 0.5,0.5,0.5

0.3, 0.2, 0.6, 0.3, 0.2

0.9, 0.2, 0.6, 0.3, 0.2

Figure ���� Example of Type � coding� Each cross represents the centre of response for a node�
each containing � units� Example responses are shown for � such nodes� The �rst number
is a measure of how close the centre of the nearest blob is to the node centre� The receptive
�eld radius is twice the distance between nodes� The next four �gures code the mass� width�
height and orientation of the blob� these values are the same for all nodes coding the same
blob�

unit integrates the image within its RF� and signals the result as a value between 	� and
�� The disadvantage of this is that it loses any kind of position or size invariance� This
may be regained by using the statistics of the whole image to centre and scale the RFs�
After thresholding� the centroid and sd of all the blobs combined �ie the whole image� are
calculated� The centroid then becomes the centre for the input array� an operation equivalent
to centering the attention of the net on the face� The area covered by the array is determined
by the sd of the combined blobs� with unit RF centres up to � sds from the centroid� If
this results in units falling outside of the image then the centre and if necessary the area
are altered appropriately� The provision of the values for the input layer is then a two	stage
process� with the �rst stage providing some size and location invariance�

-0.1  -0.3  -0.3  0.0  0.0
-0.2  -0.7  -0.5  0.0  0.0
 0.0   0.6    0.1  0.2  0.3
 0.0   0.9    0.1  0.4  0.7
 0.0   0.0    0.0  0.0  0.0

Figure ���� Example of Type � coding� Each circle represents the receptive �eld of an input
unit� The blobs within that �eld are integrated� producing a value that is then normalised to
the range 	� to ��

����� Mapping net structure

The simplest possible structure for a mapping net is to have input units directly connected
to the output units� with no hidden layer� If the inputs are linearly separable then this may
be su�cient� However� although the net may learn the training set� it may not predict the
test set as well as more complex architectures� A two layer net gives a baseline performance
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to compare others against�
The simplest three layer net will have a feedforward structure with a number of hidden

units� fully connected to the input and output units� However� for the �rst two input repre	
sentations that code blob information� di
erent units carry di
erent types of information� A
fully	connected net will have to learn this from the example data� The process can be assisted
by building in suitable connectivity� A given hidden unit might contact for example only the
mass input units� or perhaps some combination of types of input unit� Even with only a few
hidden units� there are a vast number of possible combinations of connectivity�

For the two codings that use an array input the net would tend to pick up some of the
underlying structure because of the repeated correlations between the inputs� However� it
may be better to build structure into the net to re�ect the topology of the input� to identify
which input units are near in the image space� This may be achieved by giving the hidden
units receptive �elds� so that they receive input from a group of neighbouring input units�
This arrangement may be continued for more than one hidden layer� to give a hierarchy with
a reducing number of units with bigger RFs e�g� �Linsker� ���� Fukushima� ������

The simulator allows run	time generation of nets with such complicated architectures�
The di
erent types of connectivity may be combined� for instance within a layer of hidden
units one set might have large� overlapping RFs� contacting all the input units� another set
might have small� non	overlapping RFs� and contact only the x and y inputs� and another
single hidden unit might contact all the mass input units� There is a potential combinatorial
explosion here� and experiments using a genetic algorithms to search the space are reported
in chapter �

The nets were trained using Quickprop �Fahlman� ������ The output coding used was
a simple binary coding of identity� plus a single bit for gender� The identity was coded in
four bits� using the six di
erent ways of having two bits high� This represented a compromise
between completely localised coding and a minimisation of the number of output units� A test
with a one of six coding for identity actually performed slightly worse� and took ��� more cpu
time� The more compact coding also allowed investigation of the role of an auto	associative
net in cleaning up the output from Backprop� reported in Hancock and Smith �������

Results

Numerous simulations were run� with variations of numbers of hidden units and their connec	
tivities� details of coding� learning rates etc� The details are of little consequence here� the
aim being to get a feel for the e
ects of the various parameters� Summary results only are
therefore presented�

The data set used consists of ten examples of each of six di
erent faces� four being male�
Each net was trained on nine examples of each face� and had to identify the tenth one� The
training set thus contained �� images� Each image was used for testing in turn� so that the
�rst test set contained the �rst image of each person� giving �� di
erent training sets� Each
training set was run �� times from di
erent start weights to give an average performance� In
all� each net was thus trained and tested ��� times� a process which took anything from � to ��
cpu hours on a MicroVax II �the longer run times resulted from fully connected nets�� During
testing� the unseen images were applied and the net run forward to produce an output� If
this output was closest in terms of squared error to the target then it was counted as correct�

The learning algorithm was Quickprop� using learning rate � � ��� and maximum weight
growth rate 
 � ���� The weight decay factor r was ������� Learning was stopped when all
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Coding Network type Size Avg� correct

� layer ���� �����
Type � � layer� fully connected ������ �����

� layer� structured ������� �����

� layer ���� ����
Type � � layer� fully connected ������ ����

� layer� structured ������� �����

� layer ����� ����
Type � � layer� fully connected ������ �����

� layer� structured �������� �����

Table ����� Results for the three di
erent codings�

bit errors were less than ���� Weights were initialised randomly in the range ���
Table ���� gives the overall performance for the three di
erent coding schemes� giving the

average score on the unseen images� Results are given for a � layer net� an unstructured �i�e�
fully connected� � layer net� and for the best structured net found by trial and error� There
is no reason to suppose these particular structures are the best possible even for these data
sets� and they might well be worse than other structures tried given di
erent data� The aim
was to explore some of the possibilities� and con�rm that there are gains to be had from using
structured nets� In particular� maintaining topology in the hidden layer is of bene�t� It also
appeared that the information on orientation of the blob is of little use�

Type � coding�

A � layer net performs quite well� better than an unstructured � layer net� This suggests
that our task is not well constrained� there is not su�cient data to train the larger net� A
structured net helps to limit the degrees of freedom during training� The net which gave the
best result is quite complex� � hidden units contacting the mass and x coordinate �elds� �
contacting mass and y coordinate� � each contacting only mass� length� and width� and �
contacting both length and width�

Type � coding�

In this case� the structured net consisted of two separate �x� arrays of hidden units� Each
hidden unit had a RF of �x�� overlapping by one with neighbouring RFs� One of the arrays
contacted only the distance and mass units� the other contacted distance� length and width
units� no connection was made to orientation units� Overall scores are higher than for Type
��

Type � coding�

The structured hidden layer here consisted of a �x� array of units with an RF of �x�� over	
lapping by �� The scores are the best of the three coding types� with even the � layer net
making only �� errors� This may partly re�ect the input normalisation procedure� but also
the fact that there is more information present in the input� since the blob description step
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has been omitted� Adding a structured hidden layer almost halved the number of errors� Even
these results are not that good� the images are not very dissimilar and any human observer
should manage ���� without di�culty� The variance hidden within the scores is quite high�
typically � or � of the images would score close to ����� with just one or two being much
lower� It is encouraging that the particular images found di�cult di
ered between the three
coding methods� This opens the possibility of combining di
erent codings in future work�

The relatively good results from systems with no hidden layer re�ect the rather small data
set for the number of input units� With such an input space many vectors will be linearly
separable� The poor showing of fully connected � layer nets also re�ects the small training
set� the nets are not su�ciently constrained to generalise well�

Including topological information on the input layer is helpful� Making the structure of
the hidden layer re�ect that of the input layer is also bene�cial� both when the structure is
sentential �Types � and �� and when it is topological �Types � and ��� It is somewhat dis	
appointing that the Type � coding� which combines both sentential and topological features�
does not do better� This may be due to some of the low	level details of the coding� which
need looking at further�

��� Principal components as a preprocessor

One of the problems of the work reported in the previous section was that the nets were
generally under	constrained by the data� with several hundred input units and only a few
dozen training examples� As noted in section ���� there are a number of neural net methods
for extracting the principal components of a data set� These can e
ect a data compression�
capturing much of the variance of hundreds of inputs in perhaps only ten� Their use as
pre	processors to classi�cation nets has been suggested by a number of workers e�g� �Hyman
et al�� ����� Ghaloum � Azimisadjadi� ����� Vrckovnik et al�� ����� Golomb et al�� ������ Such
use of PCs as a preprocessor has recently been shown to have the same underlying e
ects
as Optimal Brain Damage �Le Cun et al�� ����� and weight decay �Rumelhart� ����� in
reducing over�tting �Guyon et al�� ������ This section reports a short experiment to compare
the relative merits of the Sanger and Oja rules described in section ��� for preprocessing the
Type � image data of the previous section�

The data used were from a rather harder set than that of the previous section� produced
during some of the work to be described in chapter � It consists of � examples of each of
�� individuals� This was segmented � ways� to produce training and test sets such that each
image was used in turn for testing� The training set thus had �� patterns� These data were
processed by two di
erent generalisations of Oja�s ������ learning rule� Sanger�s rule produces
the genuine principal components �or near approximations�� Oja�s rule produces orthogonal
vectors which span the same space� Intuitively� the latter may be better for subsequent net
processing� since it produces a more even distribution of variance across the units� This is
illustrated in Table ����� The Sanger technique produces a �rst component with high average
value and little variance �because the data have non	zero mean�� the following components
have averages of around zero and generally decreasing variance levels� The Oja method
produces an apparently random set of averages and more similar variances�

In practice Oja�s algorithm converges more rapidly than Sanger�s� Both bene�t from a
simple annealing schedule for the learning rate� For this experiment �� mapping units were
used� � was started at ����� and divided by � every �� epochs for ���� � was then reset to
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Oja Sanger

Component Avg Variance Avg Variance

� ���� ���� ������ ����
� ����� ��� ����� ���
� ����� ���� 	���� ����
� ���� ��� 	����� ����
� ���� ���� ���� ����
 ����� ���� ���� ����
� 	����� ��� ����� ����
� 	����� ���� ����� ����
� 	���� ��� ����� ���
�� 	����� ��� ����� ����
�� ���� ���� 	����� ����
�� ���� ��� ����� ����

Table ����� Average values and variance of twelve components for Oja and Sanger techniques
from one of the data sets

Algorithm Stim� Stim� Stim� Stim� Stim�

Oja ����� ����� ������ ����� ������
Sanger ������ ����� ������ ����� ������

Table ����� Residual sum	squared	errors for training on the �ve data sets�

������� and the system run for another ��� epochs� The residual sum	squared	errors for the
two algorithms are shown in Table ����� Note that� given the same training schedule� the Oja
algorithm has consistently lower residual error levels� i�e� it has accounted for more of the
input variance�

The twelve	component outputs from each run were saved into �les� together with the
target identities to be used for training a Backprop net to recognise the faces� In each case
the twelve images that had not been used for extracting the PCs were also processed and
used as a test set� As shown in Table ����� the average values for some of the data sets were
quite high� A second set of experiments was therefore run� where each of the twelve input
�elds were normalised by linear adjustment to lie in the range �	�� Each data set was used
to train a �������� Backprop net �the extra output being the gender of the individual��

Some initial tests were carried out to establish reasonable parameters for online Backprop�
Those chosen were � � ����� � � ���� initial weight range ����� error limit ���� with a
maximum of ��� epochs� Under these conditions some of the runs did not converge within
the epoch limit� however� there was a generally inverse relationship between training ease and
test performance� see Table �����

The results shown are not very conclusive� The standard errors on the individual test
results are around ��� so most of the di
erences shown on individual data sets are formally
signi�cant� However� they are not consistent� so that� for instance� for both rules the nor	
malised data performs better than the original data on some sets and worse on others� On
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data Oja Oja normalised Sanger Sanger normalised
set test� epochs test� epochs test� epochs test� epochs
� ��� �� ���� ��� ��� ��� ��� ��
� ���� ��� ���� ��� ���� ��� ���� ���
� ���� �� ����� ��� ��� ��� ���� ���
� ���� ��� ���� ��� ���� ��� ���� ���
� ���� ��� ���� ��� ���� ��� ���� ���

avg ���� ���� ���� ����

Table ����� Backprop test performance and average epochs for training� average of �� runs�

average the normalised Oja data is the best� with little to choose between the two original�
unnormalised sets of data�

Much more conclusive is the improvement over a fully	connected net working on the orig	
inal �� input data� The best result obtained there was ���� �see �gure ��� on page ���� All
four of the results here are therefore dramatically better� at around half the error rate� Since
there must actually be less information present in the reduced data sets� the improvement
must come from the reduction in the size of the net� With less opportunities to over	�t the
data� generalisation has been improved�

��� Conclusions

The coding of data is central to the performance of any computer program� and this chapter
has done little more than scratch the surface of codings appropriate for neural nets� The most
suitable coding will be problem	dependent� but a couple of claims will be made�

� If in doubt� keep it simple� Analogue coding performed well in the number coding
experiment� and with faces the Type � coding that ignored the Mirage descriptive
output did best� It probably bene�ted from having more information� but it was the
Mirage thresholding process that reduced it for Type ��

� PCA seems useful as a preprocessor� On the evidence of one experiment� the Oja
algorithm that gives more similar variances across units appears better than pure PCA�

The more complex� multi	unit coding types� such as Gaussian coarse coding� show complex
interactions� There will be edge e
ects that were ignored in the experiments� that should be
addressed by varying the receptive �eld width� There may also be interactions with the
training process� Although the increased number of inputs appears to make training more
di�cult by increasing the number of weights� these weights will not be independent� The
redundancy of the coding means that the relevant weights must be related� which will reduce
the degrees of freedom in the net� This may explain why �	unit interpolation coding was able
to out	perform simple analogue coding in one of the numeric problems�

Exploring all these interactions is beyond the work of one thesis� There is a huge range
of codings already in the literature� and the best is problem	dependent� even for the two
numerical tasks of section ������ interpolation and analogue coding each fared best on one�
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The focus of this work moved to the problem of specifying the structure of nets by genetic
algorithm� This raised the question of appropriate coding in the GAs� which is the subject of
the remaining chapters�
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Chapter �

An overview of Genetic Algorithms

God is a hacker�
Francis Crick� �����
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��� Introduction

This chapter is an introduction to genetic algorithms� a class of optimisation algorithms
that draw their inspiration from evolution and natural selection� GAs were de�ned by John
Holland in his ���� book	 
Adaptation in Natural and Arti�cial Systems� �Holland� �����
Since then the GA community has gradually grown� mostly in the USA� with a series of
international conferences starting in ����� However� Holland�s book is rather theoretical�
and a more accessible book� Goldberg�s 
Genetic algorithms in search� optimisation and
machine learning� �����b appeared only relatively recently� With the arrival of this and
Davis�s 
Handbook of Genetic Algorithms� �����b� interest in GAs looks set to increase
further� What follows is a review of the art of GAs� gleaned both from the literature and
experimentation�
GAs are not the only optimisation algorithms to be inspired by evolution� Fogel worked

on 
simulated evolution� in the �����s �Fogel et al�� ����� This work di�ers from the GA
approach in being driven mostly by mutation� In this it is similar to the mainly German

EvolutionStrategie� �ES model� This originated with Rechenberg ����� and has been
developed by Schwefel ������ ����� The two schools� GAs and ESs� developed apparently
largely in ignorance of each other� The work described in the following chapters falls mostly
in the GA mould� This chapter therefore concentrates on the GA model� though further
reference to ESs will be made when discussing the interaction of mutation and coding� The
isolation of the two schools was ended with a workshop 
Parallel problem solving from nature�
in ���� �Schwefel �M�anner� ����� and the resultant cross�fertilization promises to be fruitful�

��� The bare essentials

A GA operates on a problem that is speci�ed in terms of a number of parameters� For
a function optimisation� these may be the values of coe�cients� for the real time running
of an industrial plant� the control settings� for a neural net� the numbers of units or the
learning rates� One key feature of GAs is that they hold a population of such parameters�
so that many points in the problem space are sampled simultaneously� The population is
generated either at random or by some heuristic� The former is usual when the aim is to
compare di�erent algorithms� the latter may be more appropriate if the object is to solve a
real problem� Each set of parameters may be regarded as a vector� but the traditional name
is a string� Another key feature of Holland�s GA is that these are bit strings� with real or
integer valued problem parameters being coded by an appropriate number of bits� The nature
of this coding is functionally extremely important and is discussed further in section ������
but is not of concern in this general description� Each string is rated� by running the system
that is speci�ed� In the case of a function evaluation� this may be very quick� for an aircraft
simulation �Bramlette � Bouchard� ���� or a neural net the evaluation might take minutes
or even hours� A new population is then generated� by choosing the best strings preferentially�
A simple way of doing this is to allocate children in proportion to the test performance �or
rather� in proportion to the ratio of a string�s test performance to the average of all the
strings� With no other operators a�ecting the population� the result of this is that the best
string increases in number exponentially� and hence rapidly takes over the whole population�
Novel structures are generated by a process resembling sexual reproduction� Two mem�

bers of the new population are chosen at random� and new o�spring produced by mixing
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parameters from the parents� In the earliest work �DeJong� ����� a single crossover was
used� where parameters were copied from one parent up to some randomly chosen point�
and then taken from the other� Thus the strings ABCD and EFGH might be crossed to
produce AFGH and EBCD� Much subsequent work on GAs has studied the relative merits
of di�erent recombination algorithms� The preferred form of recombination is problem and
coding�dependent and some other possibilities will be discussed further below�
A second operator that introduces diversity is mutation	 the value of a parameter gets

changed arbitrarily� This process is not the major source of new structures	 that is the role of
recombination� but it serves to produce occasional new 
ideas�� and to replace combinations
that might get lost in the stochastic selection processes� The precise role of mutation depends
on the coding used in the genes and is also discussed further below�
That� in essence� is it	 generate a population of parameter sets� test them against the

problem� select for reproduction on the basis of performance� recombine pairs of parameter
sets and mutate a few to generate the new population and start the cycle again� We shall
now look at each aspect of the algorithm in more detail�
First a note about terminology� GAs are inspired by biological evolution� and exponents

often borrow terms from the study of natural genetics� Some workers refer to strings as
chromosomes� their natural analogue� Genotype and phenotype may be used to describe the
genetic string and the decoded parameter set respectively�� We need to distinguish between
the parameters of the target problem and the components of the genetic string� The term
gene is often used for the components� This is strictly inaccurate� since in biology a gene is
usually taken to be something that codes for a whole trait� such as blue eyes� The natural
analogue of the bits in a bit string are the base pairs of DNA� However� the application of
GAs has not advanced to the point where this meaning of gene would be useful� Therefore
the term will be adopted here to mean the individual components of a string� while parameter
refers to the target problem� A real�valued parameter might thus be coded directly by a real�
valued gene� or by a number of binary genes� Possible values of a gene are commonly known
as alleles	 � and � for a bit string� The set of possible alleles is known as the alphabet� Finally�
a distinction will be made between crossover and the more general recombination� Crossover
is the traditional form of recombination� simply selecting between the parent strings and not
a�ecting gene values� The simplest form of crossover changes from one parent to the other at
a single point� Although unknown in nature� there is no reason why parent genes should not
be mixed in more complex ways� such as averaging equivalent genes or parameters� These
will be referred to as recombination operators�

��� Evaluation

On the face of it there may not seem much to discuss about evaluation of the parameter
set� If the task is an arti�cial one� such as a function evaluation that is being used to test
out the GA� then there should indeed be no problem� provided the function is deterministic�
Where the function is stochastic� as many real�world processes are� there is the issue of how
much to try and reduce the noise� GAs are relatively immune to noisy evaluations� compared
with� for instance� gradient ascent methods that may be thrown right o� course by an odd
result� However� it is still naturally the case that accurate evaluations are to be preferred

�In most of the systems to be described here� the string thus is the genotype� Some GAs use more than
one string� see diploidy in section ����
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to noisy ones� The accuracy can be improved by doing n evaluations and averaging� the
noise decreasing with

p
n� However this may not be the best approach� particularly if the

evaluation takes a long time� There is evidence �Grefenstette � Fitzpatrick� ����� Fitzpatrick
� Grefenstette� ���� that it is better to do a fast� noisy evaluation and get on to the next
generation� rather than spend time accurately assessing each individual� However� some
averaging may be necessary� especially if� as in the work reported in section ���� there is a fair
chance of scoring ���� on a single test� The approach proposed there is to re�evaluate only
those individuals that perform well on the �rst test� A novel method of testing the e�cacy
of the evaluation procedure� by observing the elimination of penalty bits� is also discussed in
chapter ��
Another important aspect of the evaluation procedure is that it should re�ect the desired

target problem� One part of this is simple accuracy� Suppose the aim is to improve the design
of a jet engine� The parameters might be values such as the angle and size of fan blades�
Clearly the real engines won�t be tested as speci�ed� it would be done by computer simulation�
However� the end product can only be as good as the simulation� if this is inaccurate� the real
engine may be an expensive disappointment�
A rather more subtle aspect of the simulation has to do with constraining it su�ciently�

Were GAs human they�d be regarded as devious� forever �nding a cheating way to do well
at the evaluation without actually solving the problem� This became apparent in some work
on tuning neural net parameters �Hancock� ����b� Bramlette and Bouchard ����� give
a nice example in their work on aircraft design� Their GA discovered that by running the
engine at greater than ���� e�ciency� it could e�ectively generate fuel� This behaviour may
be summed up in a sentence borrowed from a debate on national performance assessment in
primary schools	 
What you test is what you get� �the acronym� WYTIWYG� should seem
familiar to many users of word�processors� The argument there was that teachers would aim
too much for good results on whatever tests were set� The GA has no alternative	 the only
information it gets is the evaluation result� usually a simple scalar value� When� for reasons
of evaluation time� the test is a reduced version of the real task� it must be very carefully
constructed�
One complication that may arise is the need to optimise more than one aspect of perfor�

mance simultaneously� or to optimise one subject to some constraints� For instance a net may
be required to do as well as possible� but quickly� or without exceeding some size� It may be
possible to build such constraints into the operators that produce new strings� This is usually
to be preferred� since it both avoids the problem at evaluation time and concentrates search
in fruitful areas� However� such operators may not be feasible� either because it is simply
very di�cult to satisfy all the constraints� or because the various factors� test score and run
time in the net case just mentioned� only become available after evaluation�
The standard GA requires a scalar evaluation value for the parent selection process� so the

various test values and constraints need to be combined� The easiest method is some linear
combination� It is here that the WYTIWYG principle becomes particularly apparent� If the
balance between the components is not good� the GA will surely optimise the easiest one at
the expense of the others� It may be that the only way to discover the correct combination is
trial and error� A possibility that might merit investigation is to alter the balance dynamically�
For instance if� during the GA run� the evaluation time dropped below some limit� the time
element in the evaluation function could be reduced�
Richardson et al ����� have looked at various ways of handling penalty functions for

constraint satisfaction� It might be thought that violation of constraints should be harshly
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penalised� However� Richardson et al argue that this may cause the GA to fail� especially
if it is di�cult to satisfy the constraints� Their suggested solution is to try and construct a
penalty function that is proportional to the distance of the string from feasibility� rather than
simply counting the number of constraints that have been violated�
In some cases there is more than one potential measure of the same aspect of a string�s

performance� In section ��� the application of GAs to learning the weights for a net are
discussed� The error of a net may be measured in a number of ways� for instance the sum
squared error across all the training set� or the worst individual bit error� While the aim
of training is usually taken to be minimising the squared error� the real target for a binary
training set is to get each individual bit the correct side of ���� However� if this was set as an
evaluation target when using the traditional sigmoidal output function� the GA always got
stuck with all the values just above ���� If the squared error alone was used� the GA tended
to minimise it quickly by solving the easy bits� and letting the hard ones go to ��� error� It
was then unable to correct the remaining bits� A combination had to be used	 the author
has experimented with using the squared error� provided the worst bit error was below ����
but applying a steep penalty function for bit errors in excess of ����
GAs are by no means infallible� and sometimes no progress is made on a problem� Perhaps

there are too many constraints� or the area of the possible search space that gives scores sig�
ni�cantly better than zero is too small� A possible approach used in some work on parameter
tuning �Hancock� ����b and in section ��� is to alter the evaluation function during the GA
run� The problem is initially made easier� perhaps by relaxing some of the constraints� so
that the GA is able to make some progress� When some performance level is achieved� the
task is gradually made harder� This approach makes strong assumptions about the presence
of a fairly continuous path in the search space as the task changes� which may be unjusti�ed�
While a GA may be expected to do a reasonable job of �nding a way past some discontinuities
there can be no guarantees� though the results in chapter � are encouraging�
In some optimisation procedures� it is natural to talk about the optima being small values�

Thus Backprop is a form of gradient descent� used for minimising errors� Others are more
naturally described as hill�climbing algorithms� It makes no real di�erence to a GA whether it
is aiming to go up or down� However� descriptions of strings as being high�ranking� or having
high �tness� suggest that hill�climbing is the natural target� Except where stated otherwise�
this will be the case in this work�

��� Selection

Having evaluated the strings� the best need to be selected in some way to form the new
population� There are two aspects to this process	 how to decide what proportion of the new
population should come from each string� and� having decided the ideal number� how to cope
with the reality of a �nite population size and necessarily whole numbers of copies of any one
string�
The simplest means of allocating strings to the new population is in proportion to the ratio

of their evaluated �tness to the average of the whole population� Thus if a particular string
has twice the average �tness� it would be expected to be chosen twice to act as a parent� This
was the method used in the �rst thorough experimental work on GAs� reported in deJong�s
thesis �DeJong� ����� While it works well enough for nicely behaved functions� it can cause
problems if the function has large areas of poor performance� with localised good spots�
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Once one string �nds a good area� its �tness will be far above the average� It will dominate
the next generation� with consequent loss of diversity� a phenomenon known as premature
convergence� Conversely� towards the end of an optimisation� most of the population should
be highly rated� Those that are slightly better than average get little selective advantage�
and the search stagnates�
The traditional approach to this� implemented in Grefenstette�s public domain GA pro�

gram Genesis �Grefenstette� ����� is to use a movable baseline for the evaluation� This is
typically set to the evaluation score of the worst string� either in the current generation or
within some small ����� window of recent generations� The baseline may be set somewhat be�
low the worst value� to ensure that even the worst string gets some chance to reproduce� This
can be important� both as a general guard against premature convergence and because poor
strings may be poor because they are on the shoulder between di�erent maxima� Galar �����
showed that allowing poor individuals to reproduce allowed his evolutionary system to escape
local maxima� The baseline re�expands the �tness scale such that� for instance� the ratio
between � and � is the same as that between �� and ���� The problem of exceptionally good
strings is handled by using a scaling algorithm that ensures a constant �tness ratio� typically
about �� between the best and the worst�
A more radical approach suggested by Baker ����� is to use the �tness scores only to

give a ranking and then assign a �xed hierarchy of selection probabilities� Montana and
Davis ����� use a geometric scaling� such that the best string is assigned a �tness of say
���� the second� ����� the third� ���� and so on� The scaling factor can be varied during the
run so as gradually to increase the selection pressure� perhaps starting at ���� and ending at
����� One potential advantage of this method is that the evaluation no longer needs to return
a single scalar value� In the net structure work in chapter �� strings are initially ranked on
test score� Where two strings have the same score� quite likely given the modest size of the
test set� they are ranked on elapsed time� The search thus concentrates on test score� but
automatically switches to reducing time if no progress is being made� without the need to
combine the scores into a single value�
A disadvantage of the method is that the selection pressure� in terms of the ratio of

selection probability of best to worst� is dependent on the population size� This must be
remembered when comparing di�erent GA runs� Whitley has suggested an alternative algo�
rithm for use in Genitor that avoids this e�ect �Whitley� ����� However� this implements a
linear scaling rather than the geometric scale proposed by Montana and Davis� The latter
gives relatively more reproductive opportunities to the better strings�
Having decided the ideal proportions� some �nite number of copies of each string must

actually be chosen for reproduction� The simplest method of doing this is to add up the total
�tness �whether scaled or not� Then� for each string to be selected� pick a random number
between � and that total and work through the list of strings� summing their �tnesses until
a number bigger than the random one is reached� Each string will then be chosen with a
probability that re�ects its share of the total �tness� The process is known as roulette wheel
selection� it being equivalent to spinning a wheel where the sectors are allocated according to
each string�s �tness� However� Baker ����� showed that the random nature of the algorithm
can result in signi�cant inaccuracies in the selection process� While the proportions would
be asymptotically correct with increasing number of generations�� on any one trial they are

�What is correct will normally vary between generations as the population changes� The total number of
occasions a string is selected should become increasingly accurate as generations pass�
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likely to be signi�cantly wrong� Thus� for instance� the best string may not be picked at all�
This source of noise impairs performance� and can even lead to the complete loss of important
alleles� Baker suggested a more accurate algorithm� called stochastic universal sampling �SUS
that guarantees the correct whole number of o�spring for each string� Fractional numbers
of expected o�spring are allocated pro�rata� so if ��� are expected� � will be obtained with
probability ��� and � with probability ���� Another way of looking at the algorithm is as a
modi�ed roulette wheel� with as many� equally spaced pointers as strings to be selected� One
spin only is required� Particularly in small populations this algorithm can make a remarkable
di�erence in performance	 the author has seen an order of magnitude improvement in solution
time� Figure ��� on page �� shows that it can even make the di�erence between success and
failure because of the accidental loss of low frequency alleles�

��� Generations and Crowding

The simplest method of running a GA is to replace the whole population each generation� In
this case� therefore� the generation size �the number of strings evaluated in each generation
is equal to the population size� This was the method used for most of deJong�s seminal
work �DeJong� ����� A more conservative method is to ensure that the best string from
the previous generation survives� by simply adding it to the pool of the new generation
if necessary� DeJong calls this the elitist strategy� and he showed that it generally improves
performance on unimodal functions� Note that this is not simply a hedge against an inaccurate
selection algorithm� since the best string may be selected correctly� but then lost during
recombination or mutation� The elitist strategy ensures the best string survives the whole
generation procedure� On multimodal functions the strategy may be less bene�cial� since it
can make escape from a local maximum more di�cult� A compromise that has been used by
the author was to keep the best for a few� perhaps �� generations� but then kill it if no further
progress has been made�
The generation size may be smaller than the population� in which case some method must

be used to decide which of the old population to kill o�� This may be done at random� or
weighted to make the worst most likely or even certain to go� An interesting alternative�
intended to reduce premature convergence� was introduced by deJong ����� when tackling a
function designed to have multiple local maxima� For each member of the new generation� a
small number N of the old population are chosen at random� The one with the highest number
of bits in common is replaced by the new string� This e�ectively introduces competition
between strings that are close together in the parameter space� discouraging convergence on
one good spot� The strategy gave signi�cantly enhanced performance on the multi�modal
function� The required value of the crowding factor N is surprisingly small � � or � for a
population of ���� If it is much larger ���� say then the system will have di�culty converging
on any maximum�
A signi�cantly di�erent GA model uses a generation size of just one� This was introduced

by Whitley with his Genitor system �Whitley � Knuth� ����� and termed steady�state
reproduction by Syswerda ������ Genitor is very conservative	 the o�spring is only added
to the population if its performance exceeds the current worst� which is then deleted� An
apparent drawback of this method is that the one�at�a�time selection procedure inevitably
su�ers from the same kind of sampling error as roulette wheel selection� This is unlikely to
a�ect good strings� since they will in any case survive for many evaluations �until they become
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the worst� but may result in the worse strings getting less chance to breed than they should�
This potential loss of diversity is mitigated by ensuring that there are no duplicate strings�
However� the potential sampling error on poor strings combined with the very conservative
retention of the good ones suggests that the system may have di�culty in escaping from local
minima� This is supported by Whitley�s own results on deJong�s original test set �Whitley�
����� The only function where Genitor does worse than the standard model is the multi�
modal one� The general utility of the model is contentious� Radcli�e �����b sees little merit
in the idea� and reports no empirical advantage� Davis �����b reports that in his experience
it usually does o�er an improvement in terms of performance achieved for a given number
of evaluations when compared with the traditional generational model� He notes a speci�c
exception for noisy functions� because a lucky evaluation will give a string an arti�cially high
ranking that it will keep as long as it survives� The model was tried on some of the net
optimisations of chapter �� with no suggestion of any improvement over systems with a larger
generation size�
Goldberg and Deb have recently cut through some of the empirical confusion with an

analysis of a variety of selection schemes� including that used in Genitor �Goldberg � Deb�
����� They conclude that Genitor achieves its results because of the high e�ective selection
pressure and predict di�culties of premature convergence with di�cult problems�

��� Reproduction and coding

This section discusses the various operators used to create a new generation from the strings
selected to be parents� The key to the explorative power of GAs is held to be recombination�
This claim puzzles some biologists� who maintain that the e�ect of sex in real genetics is
exactly the opposite	 it causes the population to stay genetically fairly uniform� The key
to understanding the di�erence of opinion is to see that most biological systems are already
fairly �t in their chosen niche�� whereas most GAs start with a completely random population�
An interesting biological example is given by green�y� which breed asexually during the easy
months of summer� but revert to sexual reproduction to remix the gene pool prior to the
rigours of winter� The numerical argument in favour of recombination are easy to see �Davis�
����b� Suppose two new alleles are required to bring about a big �tness improvement in a
population� Such new alleles can only come from mutation� which happens infrequently� say
with a probability of ���� per reproduction� If each new allele confers some advantage� then
without recombination strings containing one or other will eventually appear and prosper� but
still have to wait for another rare mutation to acquire both� With recombination it requires
only that two strings each with one of the alleles interbreed�
Despite this� there have been claims that recombination contributes nothing to the opti�

misation process �Fogel � Atmar� ����� Whether or not it does contribute usefully depends
very much on how it interacts with the underlying coding of the strings� This interaction is
the prime concern of this section	 we turn �rst to the issue of coding�

�Though Stork ������ argues that this should not be taken to mean that biological systems are actually
optimal� since most are derived by adaptation of organs previously intended for some other function�
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����� Coding

One of the important di�erences between the ES approach and Holland�s GA is the form of
coding of the parameters� ESs hold the parameters as normal computer variables	 integer or
real as appropriate� While some work on GAs also uses this form of coding� Holland speci�ed
a bit�string coding� Some problems contain boolean parameters for which such a coding is
ideal� However� real or integer parameters may be coded with arbitrary precision by using
su�cient bits� Any digital computer will have such a bit coding in any case� but the details
are usually hidden from high�level languages�
Whether or not to use bit coding is a contentious issue� GA�purists tend to regard real�

coded algorithms as not being proper GAs� Meanwhile more pragmatic experimenters have
produced good results with real codings and suggest that if theory indicates bit coding should
be superior� the theory needs revising� We shall �rst consider the advantages claimed for bit
coding�
Access to the bit level gives the crossover operator the ability to explore the whole search

space� Given just the strings containing all ones and all zeros� repeated application of simple
crossover can in principle produce any desired bit pattern� and therefore any parameter values�
Contrast this with parameters held directly as real values� where crossover can only explore
new combinations of the values extant in the population�� Actually the same is true of bit�
coded GAs	 crossover cannot a�ect a bit that has the same value in every member of the
population� This is the role of mutation� to replace bit values that may have been lost so
that crossover may form new combinations� Real�coded algorithms depend more heavily on
mutation to provide new values� Since mutation is random� it will destroy good parameter
values as well as improving bad ones�
A possibly more important reason for using bit coding has to do with the way the search

space is sampled� It maximises the e�ect known as intrinsic parallelism� a prediction of schema
theory� to which we now turn�

����� Schemata

A problem with any optimisation problem is credit assignment� Suppose we have a good result	
which of the parameters caused it� Most likely several in combination� A similarity template

or schema� in this context� speci�es some of the parameters� leaving others as 
don�t care�
�usually shown as 
��� Schemata provide a way of describing the underlying similarities
between successful strings� There are many such schemata contained within even a short
binary string	 for instance ���� contains �� � �� ����� �� � �	 �� ��� in all� All �� of
these schemata are evaluated when the complete string is� All �� are also selected	 the
reproduction operators are processing not only the basic strings but also all the constituent
schemata� Each schema is likely to be represented by many strings� so it is possible to work
out an average score for each� Such explicit calculation is unnecessary� however� as the process
is automatically handled by the selection of whole strings� Good schemata will thus tend to
increase in numbers� Using fS as the �tness of schema S� CS�g as the number of copies in
the population at generation g and �f as the average �tness of the whole population� we can
write an expression for the expected number of copies in the next generation	

�Though it is possible to hold the parameters as real values and still crossover at the bit level �Bos 	 Weber�
�����

��



E�CS�g � � � CS�g
fS
�f
p�S

The unexplained term p�S is the probability that the schema survives the reproduction
operators� The likelihood that a schema is a�ected by mutation depends on the number of
de�ned bits in the schema� known as the order of the schema� The likelihood that a schema
of order oS survives mutation is ���pm

oS � with pm being the probability of mutation at each
bit� For the typically small values of pm that are used� this may be approximated by ��oS �pm�
Note that some users take pm to be the probability that a bit is randomly reset� so that the
chance of it being changed is actually half pm� This is implemented in Grefenstette�s public
domain Genesis package �Grefenstette� ����� though it has been changed back to the more
natural use in Schraudolph�s GAucsd development of Genesis �Grefenstette � Schraudolph�
����� Readers need to be wary of this unfortunate confusion�
The probability that a schema survives crossover is a function of its de�ning length dS �

This is the distance between the �rst and last de�ned bits� Thus the schema � � � � � has dS
� �	 there are two possible positions where a crossover could come between the de�ning bits�
Short schemata have a proportionately better chance of surviving crossover than longer ones�
For a string of total length l� the chance of a schema surviving a single point crossover is

p�S � �� pc
dS

�l� �
because there are l � � possible positions for the cross site� The inequality is because�

unlike mutation� crossover does not imply loss of the schema� In the limit� crossing two
identical strings will have no e�ect on any schemata� So the calculated loss is a worst case�
This gives the following expression for the expected number of copies of a schema	

E�CS�g � � � CS�g
f�S
�f
��� pc

dS
�l� � � oS �pm

This is the schema theorem� dubbed The fundamental algorithm of Genetic Algorithms

by Goldberg �����b� Provided that the �tness of a schema is su�ciently above average to
outweigh the loss terms� its proportion in the population will grow exponentially� This is
most likely for short de�ning length� low order schemata�
One source of the power of GAs is that many schemata are being processed simultaneously�

The number may be estimated �Holland� ����� Goldberg� ����b	 after allowing for the likely
disruption of schema it is of the order of n�� where n is the size of the population� This
phenomenon is known as intrinsic parallelism� and has been described as the only case where
an exponential explosion works to our advantage�
The order of n� estimate hides an assumption as to the value of n� which is chosen so as

to expect one copy of each schema being processed� The derivation of the estimate is given
by Goldberg �����b� The chance that a schema survives crossover is related to its de�ning
length� Depending on the selection pressure within our GA we may set a required survival
probability for schema that will be processed usefully� i�e� that will be able to increase in
number if their quality merits it� By using the survival probability equations from above we
may calculate a maximum useful schema length ls� The estimate for the number of usefully
processed schemata ns is then �Goldberg� ����b	
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ns � n�l� ls � ��
ls��

The order of n� estimate arises from assuming a population size of �ls��� This is done to
prevent over estimating the total number of schemata by having many copies of each in a
large population� For a given small population� it is clear that ns is highly dependent on ls�
This is the origin of the desire for a low cardinality alphabet� i�e� a coding where each gene
has few possible alleles� preferably �� since then the length of the string� and therefore the
value of ls will be maximal�
Unfortunately� the success of this parallel search is not guaranteed� It requires that two

good genes in combination will produce a better result than either alone� This is known as the
building block hypothesis� It�s all very well rating lots of schemata in parallel� but how does the
performance of a given schema� say ������ relate to the performance of more de�ned schemata
that incorporate it� such as � � � � �� For an extremely simple optimisation problem such
as maximising the number coded by the binary string� the combination is straightforward�
� � � � � will be highly rated� � � � � � much less so� but higher on average than � � � � �� so
its numbers should increase� If it doesn�t already exist� crossover will soon produce � � � � ��
which will be better than either parent�
Although tasks almost this trivial have been used for testing GAs� it is not immediately

clear that the hypothesis applies so well in other problems� It is possible to test the behaviour
of GAs under such circumstances by designing problems that are deliberately deceptive and
thus might be expected to mislead the algorithm� Such deliberately deceptive problems are
considered further below in section ����� but deception may lurk in the simplest of problems
because of the binary coding� Suppose that an integer parameter happens to have a maximum
at �� If the function is smooth� then � will also get a good score� but its binary coding will be
very di�erent� The schema � � ��� may be quite highly rated� but is a red herring on the way
to ������ This 
Hamming cli�� problem is familiar from the preceding discussion of neural
nets �section ������ as is one possible solution� the use of Gray codes�

����� Gray codes

Gray codes have the property that the binary codings of adjacent integers di�er in only one
bit� see table ��� on page ��� For instance� the Gray code for � is ����� for � it is �����
This means that such changes can always be made by a single mutation� The use of Gray
coding might therefore be expected to improve the hill�climbing ability of a GA� Its use was
suggested by Hollstien ������ who reported tentative bene�ts� and by Bethke ������ who also
reported empirical success� Caruana and Sha�er ����� report that it improves performance
on deJong�s classic � problem test suite �DeJong� ����� Some authors have therefore adopted
Gray coding as standard �Eshelman et al�� ����� Schraudolph � Belew� ����� while it is an
option on the Genesis package�
There are also arguments against the use of Gray codes� to do with the schema theorem�

Goldberg �����a hints at a problem in his analysis of the use of Walsh codes in deception�
but it is quite easy to demonstrate� With simple binary coding� a given bit always makes
the same contribution to the value of the external parameter� With Gray coding� this is
not the case� Thus� coding integers from � � �� in normal binary� the schema � � �� has an
average value of �� while � � �� has an average of �� re�ecting the value of the least signi�cant
bit� With Gray coding� both schemata have the same average� ���� There is no longer any
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Table ���	 DeJong�s �ve test functions

information about the merits of setting this bit from the overall averages� which suggests
that the degree of implicit parallelism will be reduced� Such interdependence between bits is
commonly known as epistasis� another term borrowed from biology�
The e�ects of a single bit mutation clearly di�er between the two coding strategies� Mu�

tating the most signi�cant bit in a standard binary coding causes a big change in the number
being represented� In Gray coding� adjacent numbers di�er in only one bit� so it might appear
that a single bit mutation will cause less dramatic e�ects� This is true if it happens to be
the bit that di�ers that is changed� However� there are still highly signi�cant bits in a Gray
code� it�s just that it isn�t always the same bit� For instance� the Gray code for � is ����� as
with ordinary binary� but �� is ����� The possible big changes balance out the small ones� so
that the expected average change caused by a single mutation is the same for both codings	
���� over the range �����
If the use of Gray coding interferes with the parallel search� but makes mutation�driven

improvements easier� a Gray coded GA should be more sensitive to the mutation rate� This
prediction was tested by looking at deJong�s ����� test set� using a version of the GAucsd
simulator �Grefenstette � Schraudolph� ���� modi�ed to gather more statistics� These
experiments di�er from those reported by Caruana and Sha�er ����� in that they did not
vary the mutation rate� instead using only the set of parameters �population size� mutation
and recombination rates� etc suggested by Grefenstette ������
The test set� although quite carefully constructed to include a variety of problems� is

now showing its age� The �ve functions are given in table ���� They have been heavily
criticised by Davis �����a� who shows that a simple bit climbing algorithm out�performs
standard GAs on all but one of them� This is because they are rather regular� for instance
the optima are conveniently placed at zero in F� and F� and at one end of the range in F��
F� looks horrendous� being a plane with �� sixth order fox�holes� di�ering only slightly in
depth� However� the holes are laid out on a regular grid� that actually makes solution rather
easy since a change in only one parameter can cause the move to the adjacent hole� It seems
clear from Davis�s results that these functions should no longer be used for comparison of
new algorithms� They are used here simply to demonstrate some of the di�erences caused by
changes in coding strategy�
With the exception of F�� all the runs used a population and generation size of ���� the

elitist strategy and a two�point crossover probability of ��� �if not selected for crossover� a
string is passed to the next generation unaltered except for possible mutation� They were
run for ���� evaluations� or� since strings that were simply duplicates of a parent were not
re�evaluated� until two generations had passed with no evaluations� F� has a much longer
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Figure ���	 Comparison of best performance of binary � and Gray coding � on deJong�s �ve
test functions at a variety of mutation probabilities�

string than the others� and showed a tendency to premature convergence with a population
of ���� It was run with a population of ���� for ����� evaluations� but with duplicates being
re�evaluated� since the function has noise added� The results are shown in Figure ���� The
graphs give the best value obtained� averaged over �� experiments� at a variety of mutation
rates� Note that deJong�s functions are de�ned as minimisation tasks� so low values are good�
The most striking result is given by the simplest unimodal task� F�� The Gray coded

algorithm showed a very marked dependence on mutation rate� being signi�cantly better
than normal binary coding only over a fairly narrow band� and much worse if the mutation
rate was too low� This �ts with the hypothesis that Gray coding is more dependent on
mutation for progress� but is potentially better at hill climbing� The results for F� and F�
show a similar mutation�dependency for Gray coding� for which the results are somewhat
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worse than simple binary� Gray coding appears better for F� and F�� Note that the optimum
of F� is unde�ned� because of the Gaussian noise term� which accounts for the negative values
shown on the graph� F� in particular bucks the trend� since mutation appears to have no
bene�cial e�ect at all� This was con�rmed by a run with zero mutation� hard to show on a
log plot� which performed as well as any�
These results have been included to show a number of e�ects	

� Even when averaging over �� runs� there is a fair amount of noise in the data� GAs are
stochastic algorithms� and any paper claiming comparative results based on just one
run� of which there are a surprising number� should be treated with suspicion�

� Mutation� on the whole� has the expected e�ect	 too little or too much being deleterious�
Too little usually results in premature convergence� too much is disruptive� However� the
ideal rate varies between di�erent problems� It is related to string length l� a reasonable
�rst approximation being ��l�

� Gray coding is certainly not a panacea� Even in the simple hill�climbing case of F��
precisely the sort of problem it is intended to address� its relative sensitivity to mutation
rate means that its advantage over simple binary coding is not consistent�

It is not surprising that Gray codes are not consistently better	 it can be shown that all
�xed coding schemes of a given length work out equally well when all functions are averaged
over �Caruana � Scha�er� ����� However� this result depends on averaging over literally all
functions� including those which are random look�up tables	 any given coding then simply
reshu es the entries in the table� Attempting to optimise such functions is rather futile	
real�world problems usually have at least some continuity� The relative empirical success of
Gray coding suggests that it matches the GA to the continuities of such problems� at least
better than the inherently discontinuous binary coding�
Just as coding is related to learning rules in neural nets� so coding is intimately connected

to reproduction operators in GAs� The nature of this relationship will be developed further
by considering the merits of coding parameters directly as real values�

����� Real valued genes

Mutation

The arguments against holding parameter values directly as real numbers on the genetic string
are the loss of intrinsic parallelism and the inability of crossover to produce new parameter
values� The arguments in favour are largely empirical� with Davis and co�workers in partic�
ular reporting considerable success with real�coded GAs �Davis � Coombs� ����� Montana
� Davis� ����� Part of the reason for this success appears to be the mutation operators
employed� Consider �rst the e�ects of mutation on binary coding� A single bit mutation will
produce a random scatter of powers of � change in the integer value encoded� Gray coding
also gives powers of � changes� but the scatter is no longer random	 there being by de�nition
always two ways of producing a change of �� What might be an appropriate operator for a
real valued parameter� Two possibilities are immediately obvious	 small changes from the
given value� and completely random values within the speci�ed range� The former should aid
hill�climbing� the latter will introduce variety� Real�coded GAs often use both of these �Davis�
����� Montana � Davis� ����� the small change operator sometimes being known as creep�
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Intuitively� these operators have a better feel about them than random scatters of powers of
�� These intuitions will be formalised later� However� �rst note that we don�t have to hold
the parameters directly as real values in order to implement the operators� It is quite possible
to de�ne a form of parameter mutation for binary coding strategies� It simply requires that
the parameter be decoded� changed� and recoded onto the string� Such a technique has been
used by Lucasius and Kateman ������
The e�ects of such a creep operator on deJong�s F� function are shown in Figure ���� In

this experiment� the underlying coding remains binary� while four di�erent creep operators
are compared� The range of the parameter values is ������ covered in ���� steps� The four
operators are	 an addition of a Gaussian random variable� with an sd of �� �� and ��� steps�
and a change by �� step� The performance of all four exceeds simple binary coding and
mutation� with the smaller changes doing better� though not quite as well as Gray coding at
its best� However� the sensitivity to mutation rate is considerably less than for Gray coding�
The optimal mutation rate is around an order of magnitude higher for the simple reason that
one parameter replaces ten bits�
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Figure ���	 Comparison of di�erent mutation methods on F�	 binary and Gray coding with
simple bit mutation� and binary coding with four di�erent creep mutation operators�

Part of the criticism aimed at deJong�s test suite by Davis �����a is that the minima
are often rather conveniently located� For F� it is at �� which is coded by a suspiciously
easy�looking ���������� in the binary coding� Davis suggests shifting the functions� so that
the minimum is displaced by ��� of the range� to ��� in the case of F�� This is done by
subtracting ��� from the decoded parameter value	 values that come out below ����� are
simply wrapped around to �ll the gap above ����� This has no e�ect on the function� only on
the string coding of each location on its domain� With no change in the function� one might
hope there would be no change in performance�
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Results for binary and Gray coding with bit mutation� and binary coding with �� creep
mutation are shown in �gure ���� Gray coding indeed shows little change� supporting the
conclusion that it is operating largely by creep mutation� Straight binary coding shows
a marked deterioration at low mutation rates� con�rming Davis�s results and supporting
his opinion that the original F� is particularly convenient for crossover with binary coding�
However� the most spectacular change comes when the creep operator is added� At low
mutation rates it is less successful on the shifted function� as in the normal binary case� but
at higher rates it �nds the global optimum every time� There is no obvious explanation for
this e�ect	 it must be some fortuitous interaction between crossover and the creep operator�
However� it does clearly show the potentially dramatic e�ects of a simple coding change� Davis
now recommends that any function used for testing GAs should be shifted to several random
positions to help eliminate such interactions from comparative results �Davis� GA�digest�
�����
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Figure ���	 Comparison of best performance on F� �� and Shifted F� ��� for �a binary
coding and mutation� �b Gray coding� �c binary coding with �� creep mutation�

Such a procedure seems profoundly dissatisfying� We should surely rather seek methods
to analyse and remove the interaction� Otherwise any application of GAs remains subject to
trial and error� In this case much of the problem seems to be due to the underlying binary
coding� So we return to the possibility of holding parameters directly as real�valued genes�

Virtual alphabets

Goldberg ����� has discussed arguments for and against real coding� He argues that selection
by the GA rapidly reduces the range of parameter values present in the population� to form a
virtual alphabet� which is then used for further processing� His reasoning may be summarised
as follows� In the early generations of a GA� each parameter can be treated individually�
since there has not been time to collect much information about combinations of parameter
values� An average �tness can be calculated �in principle for all values of each parameter�
by integrating over all values of all the other parameters� Goldberg calls this a mean slice�
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Unless the parameter has no e�ect on the function�� some parts of its range will be better
than others� Goldberg and Deb ����� show that these above�average regions will come to
dominate the population very quickly	 in the order of log log n generations� where n is the
population size and log is in base �� Thus for a typical population of ���� only above�average
alleles are left after � or � generations� Note that an allele in this case may be a sizeable
region of the parameter�s range� and that there may be several disconnected regions within
the range� After the initial selection has taken place� the action of crossover is limited to
exploring combinations of these sub�ranges� �gure ���� Goldberg argues that� presented with
a high �in�nite cardinality alphabet� the system e�ectively produces its own lower�cardinality
virtual alphabet� one speci�cally tailored to the problem in hand� This may explain the
empirical success of real�coded GAs�

Range of parameter A

Range
of
parameter B

Figure ���	 Simple crossover with a virtual alphabet� After the �rst few generations� the
parameter values become restricted to the grey areas� Crossover can then only explore the
intersection of these areas�

Goldberg then goes on to point out that for some functions� the initial� individual param�
eter �tness averages may not hold the global solution� Figure ��� is an example of a function
that is designed to confuse such a real�coded GA� The central maximum is too small to have
much e�ect on the global averages� so in the initial few generations the population settles
into the two broad humps� Thereafter� no amount of crossover will reach the central peak�
Creep mutation will also have a hard time� because of the ring fence of local maxima� Gold�
berg describes such functions as being blocked� and argues that this is a potentially serious
shortcoming of real�coded GAs�
However� this blocking presupposes the traditional form of crossover� that cuts strings

between genes� Just as for mutation� we may ask what is an appropriate form of recom�
bination for real�coded genes� Again� an obvious possibility works quite di�erently	 cross
the gene values to produce a new value somewhere in between those of the parents� Such a
recombination works extremely well on the function shown in �gure ���� because the global
maximum is conveniently situated in the centre of the range� between the two broad local

�Or it interacts with the other parameters in such a way that the average 
tness comes out level�
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Figure ���	 Example of a function that might� by Goldberg�s analysis� cause problems for a
real�coded GA�

maxima� Radcli�e reports that this recombination� that he calls �at crossover� along with
a mutation operator that introduces new alleles at the end of a gene�s range� works better
than binary coding on the �rst four of deJong�s functions �Radcli�e� ����a� Again this is
not surprising� given their conveniently situated maxima� However� it should be clear that
the form of recombination operator can dramatically a�ect the behaviour of the GA and has
the potential to overcome Goldberg�s concern about blocking�

Formae

Radcli�e suggests this operator as a result of an analysis that extends the traditional notion
of schemata� Schemata are intended to capture underlying similarities between successful
strings� but we have seen that the nature of binary coding results in a failure even to recog�
nise the similarity between� for instance� � and �� What is needed is	 a a method of describing
similarities in the target problem� whether it be real valued parameters in a function optimi�
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sation� or� as will be discussed in the next chapter� the structure of a neural net� and b ways
for the GA to process these similarities in a way that allows their constructive combination�
Radcli�e �����b� ����a� ���� and Vose and Liepins ����� have extended the notion of

schemata in similar ways� although with very di�erent formalisms� Radcli�e terms this more
general notion of similarities in the target problem formae and identi�es some requirements
of operators that will process them� Two formae are termed compatible if it is possible for a
string to be a member of both� i�e� their intersection is non�zero� Two of the key requirements�
together with informal illustrations from �Radcli�e� ����� are as follows	

� Respect	 
Crossing two instances of any forma should produce another instance of that
forma� !If both parents have blue eyes then all their children produced by recombination
must have blue eyes�"� If recombination does not respect formae� then it will be di�cult
even to identify good building blocks� since they are liable to be destroyed�

� Proper assortment 
Given instances of two compatible formae� it should be possible to
cross them to produce a child which is an instance of both formae� !If one parent has
blue eyes and the other has brown hair it must be possible to produce a child with blue
eyes and brown hair as a result of the cross�"� This requirement allows building blocks
to be brought together constructively�

Respect� in this sense� may seem almost inevitable	 if you cross �� with ��� surely you must
get ��� Certainly traditional crossover respects traditional schemata� but in the next chapter
we shall see that it is actually very di�cult to devise a recombination operator that respects
the similarities of neural net structures� Proper assortment is less straightforward� Radcli�e
gives an example of strings ���� and ����� members of schemata ���� and ���� respectively�
These schemata are compatible� with intersection ����� but single point crossover cannot
produce this result� An alternative crossover that can is uniform crossover� which simply takes
each gene from either parent randomly� Traditional analysis has frowned on this crossover�
since it is likely to disrupt schemata� However� in an empirical comparison� admittedly using
the deJong test set� Eshelman et al ����� show that uniform crossover performs better than
single point� However� a compromise� that crosses in � randomly selected positions on the
string� came out best�
The term proper assortment is perhaps somewhat unfortunate� since it disguises many

degrees of propriety� By the de�nition� for a recombination operator to assort formae properly
requires only that it is able to produce a child which is an instance of both parent formae�
Other things being equal� a recombination operator with the greatest likelihood of achieving
this seems preferable� This point will also be important in the consideration of operators for
processing neural net structures in the next chapter�
Radcli�e �����a suggests plausible similarities for real�valued genes are described by

intervals speci�ed by a value and a radius� fc� rg� such that c � r � x � c � r� This does
indeed capture an intuitive notion of similarity� Radcli�e goes on to show that standard
crossover with real genes will not properly assort formae built from such similarities� but that
�at crossover� described above� does�
A severe problem with this recombination operator is that� even with no �tness di�erences

between any strings� the population will rapidly converge� on the centre of the range of each
parameter� To help counteract this Radcli�e also suggested end point mutation so as to re�
introduce alleles at the ends of the parameters� ranges� However� in practice the convergence
is so strong that the operator needs to be used rather sparingly�
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Radcli�e�s �at crossover treats each gene pair individually� It is also possible to produce
a recombination operator that works at the level of the whole string� Wright ����� suggests
crossing two points p� and p�� to yield three children	 �

�p� �
�
�p��

�
�p�� �

�p� and
�
�p�� �

�p��
The �rst of these is the mid point� the other two lie on the line de�ned by the two parents�
but outside of either� All three new strings are tested� and the best two incorporated into
the new population� On deJong�s functions� plus three others� this linear crossover� in ��	��
combination with a two point version of traditional crossover� performed signi�cantly better
than both Gray coding and real coding with just the traditional crossover �Wright� �����

Real valued mutation revisited� the ES approach

Mutation of real�valued parameters lies at the heart of the ES strategy� A gene is usually
altered by adding a Gaussian random variable� The critical point is that the spread of the
Gaussian is held as a parameter� usually one for each gene� which are themselves subject to
mutation� The ideal size of mutation will vary	 large if the �tness value changes slowly with
a change in the parameter value� small if this derivative is large� Rechenberg identi�ed a
guideline for changing the mutation size that appears to work well in practice	 if more than
� in � trials leads to an improvement� increase the variance� if less� decrease it� However�
allowing the variances to evolve with the string should change them automatically� since a
string with the best step size is most likely to improve�
Unfortunately� there is a potential drawback to this approach� If one of the variance

parameters gets set to zero� then the associated variable will become �xed� This string is now
searching a smaller space and consequently can� at least for a while� make faster progress�
eliminating competitors� However� eventually it is bound to get stuck� One answer is simply
to put a lower bound on the step size� another is a side e�ect of introducing correlated

mutation �Schwefel� ����� Just as it was possible to treat the whole string as a point for
recombination� so it is for mutation� Large step sizes are possible in directions where the
derivative of the �tness surface are low� but there is no reason in general to suppose these
directions will be along any of the parameter axes� By introducing another set of control
parameters� mutations in a number of parameters may be correlated� to give movement in an
o��axis direction�
Such sophisticated mutation operators make ESs e�ective mutation�driven hill�climbers�

Rechenberg ����� gives a very simple program for an ES without correlated mutation in just
a few lines of BASIC� Tried on deJong�s F�� the initial parameter settings gave a performance
slightly better than the best of the GA runs reported above� A bit of �ddling with the step�
size change parameter resulted in the system consistently converging to around ����� within
���� evaluations� this being the real number precision limit of the computer used� No real
problem will be this easy� but it does seem evident that GA practitioners may have something
to learn from the ES approach�

����� Adaptive coding

A problem with coding real variables in a �xed number of bits is the limit on precision that
results� When coding a problem for a GA� a sensible designer will restrict each parameter to
a reasonable range� but there will still be some compromise between covering this range� and
su�cient precision in whatever turns out to be the important part of it� Schraudolph and
Belew ����� have suggested a solution� which they call dynamic parameter encoding �DPE�
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Genes initially code for the whole of the parameter range� However� when a gene converges
su�ciently on one part of the range� the coding automatically 
zooms in� on this area� The
allocated number of bits is thus brought to bear on a reduced parameter range� increasing the
available precision� The process may be iterated as the GA homes in on the best area of each
parameter� This method means that each gene can use fewer bits� resulting in faster operation
and convergence of the GA� Schraudolph and Belew report encouraging results� again using
deJong�s test set� but there are attendant risks� since it is possible to narrow the search too
quickly and miss something important� Thus their performance on the multi�modal F� was
worse than without DPE� because there was insu�cient resolution to �nd the correct hill to
climb�
A more complex adaptive coding strategy has been suggested by Shaefer ������ His

system� known as ARGOT� dynamically adjusts the parameter range coded by each gene�
If the population clusters in a small part of the range� the boundaries are drawn in� much
as in DPE� However� they may also move out if the population is widely distributed� If
the population approaches one end of the range� the boundaries are shifted to re�centre
it� The boundaries may also be 
dithered�	 moved randomly by small amounts to e�ect a
general mutation� Finally� the number of bits used may be changed� depending on the degree
of convergence� Shaefer�s results� for a number of function optimisations� indicate that the
adaptive strategy compares well with a simple GA approach� However� it is obvious that there
are many parameters associated with decisions about changing the coding� and these are not
speci�ed� It seems likely that di�erent adaptive strategies would be necessary for di�erent
problems� Referring to the range expansion� Schraudolph and Belew ����� comment that
they 
believe it would be impossible to establish a well�founded� general trigger criterion for
this operator�� Nevertheless� such adaptive methods clearly have potential�

����� Conclusions

In this section we have looked at some possible codings and reproduction operators for numeric
parameters� Many optimisation problems can be expressed purely in numerical terms� but
there are also many that cannot� particularly order�based tasks such as the travelling salesrep
problem� while the coding for neural net structure used in chapter � is largely boolean� The
same underlying rule will apply	 it is necessary that the reproduction operators can process
similarities in the task in such a way as to combine useful building blocks� The real art of
applying a GA to a task is therefore	

�� To identify the potential building blocks in a problem�

�� To design operators� principally recombination� that can process these building blocks�

Davidor ����� has counted �� di�erent recombination operators in the literature� some
more will be introduced in chapter �� It may seem unfortunate that so much design e�ort is
needed for each new application of a GA� it may also be di�cult to identify what the suitable
building blocks are� One approach to this problem is to adapt the probabilities of individual
operators online� This allows a number of di�erent recombination and mutation operators to
compete	 the algorithm will use the ones that allow progress to be made� This also addresses
the problem of the sensitivity to operator probability displayed in �gure ��� and one approach
will be discussed in the next section�
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��� Tuning GAs

Optimisation tasks of the sort considered in this chapter consist essentially of two parts	 a
search of the parameter space and hill climbing� There are numerous techniques for the second
job �see Schwefel ����� for a comparative review	 one approach to the �rst is to restart
repeatedly from di�erent positions� The two phases are traditionally called exploration and
exploitation� GAs have the ability to do both� Some researchers seek to advance on the Holy
Grail of a universal optimisation algorithm� that will cope with any �tness surface� DeJong�s
work aimed to provide a set of parameters for a GA that are reasonably robust� but such
general algorithms will inevitably be beaten on any one problem by an algorithm that is tuned
to the task�
The e�ect on the balance of exploration and exploitation of a number of GA parameters

may be summarised	

Population size A small population will tend to converge more rapidly�

Generation size Changing only a fraction of the population each generation increases iner�
tia� preventing convergence�

Mutation rate Depends on the size of mutation� Big mutations encourage exploration�
small mutations can be a means of hill climbing�

Recombination rate Higher recombination rate encourages exploration while the popula�
tion is diverse� but reduces it when the population has converged�

Selection pressure If selection pressure is increased� either by scaling �tnesses or by a high
value for the scaling factor in rank�selection� hill�climbing will be encouraged�

Crowding Maintains diversity� thus promoting exploration�

Elitist strategy If the best individual from the previous population always survives� hill
climbing is encouraged�

One possible method of matching these parameters to a given problem is to use a meta�
level GA to tune them� The meta�GA speci�es a population of GAs that act on the target
problem� These are evaluated �see section ��� and the information used to improve the match
of parameters to the task� CPU demand rather rules out this approach for any real�world
task� but Grefenstette ����� was able to provide an improvement on deJong�s parameter set
for his � functions�
Other workers have attempted introducing controls within the GA� which monitor conver�

gence of the population and adjust control parameters accordingly �Shaefer� ����� Whitley
et al�� ����� Goldberg� who rather seeks the Holy Grail� argues against such 
central author�
ity� in his delightfully named 
Zen and the art of Genetic Algorithms� �Goldberg� ����a�
on the grounds that it is not easy to establish robust criteria for making any adjustments�
However� Ackley ����� reports empirical success with an ingenious system he calls 
Stochas�
tic iterated genetic hillclimbing�� This implements a kind of voting system� such that the
algorithm climbs up a hill until it e�ectively gets bored with it� whereupon it goes o� to �nd
another hill to climb�
Tanese ����� has suggested a multiple population GA� intended for running on separate

processors� where the di�erent populations have di�erent parameter settings� the hope being
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that one will be near the ideal for the problem in hand� The author has experimented with a
more deliberate approach that has just two populations� One� the 
tortoise�� is large� with a
small generation size� low selection pressure and high crowding factor and mutation rate� this
feeds a small population� the 
hare�� with no crowding� small mutation and high selection
pressure� This model introduces yet more parameters� not just those for the two populations�
but those for deciding which strings to transfer and when� Results� even on a multimodal
problem� suggested that the extra complexity was of doubtful worth�

����� Adapting operator probabilities

An alternative approach to the tuning problem� mentioned in section ����� is to adapt operator
probabilities while the GA is running� One approach to this is to code� say� the mutation
rate on the genetic string� where it will be selected along with the target parameters� This
is e�ectively what is done in an ES� Another� suggested by Davis ����� takes a rather more
interventionist approach of keeping a record of the improvement in �tness caused by each
operator� and using this score periodically to adapt the probability of applying each operator�
However� there is a credit�assignment problem� since operators often work in harness� For
instance� mutation might generate an important new allele� but recombination might combine
it with others to produce the good string� If credit is given only to recombination� mutation
might die out� whereupon the search stagnates� So credit is handed back� like a bucket�
brigade� through parents� to the operators that produced them� Montana and Davis �����
use this method to good e�ect in evaluating potential operators for use in training neural net
weights� It has the advantage that di�erent operators may be of value at di�erent stages of
the search� the adaptive procedure allows those that are contributing most at any point to
be selected� It also allows di�erent operators to be compared	 those that contribute little die
out�

��� Evaluating GAs

Traditionally the performance of GAs� and other optimisation techniques� has been reported
in terms of online and o�ine performance� The latter is the average of the best individuals in
each generation� the former refers to the average performance of all the strings since the start
of run� This is of particular relevance when the system being optimised is a real�time one� like
running a plant� and where getting it wrong costs something� Another measure is best�yet�
simply the best performance so far seen� which is usually the �gure that is of concern� certainly
in the work reported in the following chapters� An alternative is the number of evaluations
to achieve a given performance� That it is evaluations� not generations� is important� since
for any complex problem evaluations are expensive� Sometimes authors fail to notice the
signi�cance of this� Herdy �working with an ES� but the principle is the same reports results
for a system with a variety of generation sizes� from � to �� �Herdy� ����� The size �� system
requires ��� generations to completion� which is claimed to be better than the single string
system� which takes ����� In fact� the single string system requires fewer evaluations than
any of the others� the result of a very simple hill�climbing task�
A complication arises because of the inherent noisiness of GAs� As has been noted� it is

important to average over a number of runs� Even then� comparison is complicated by the
typically non�normal distribution of results� especially with multi�modal functions� Just as
with neural net training� some runs converge rapidly on the correct maximum� while others
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may get �rmly stuck on a local peak� As before� what is good will be problem�dependent�
but it seems more likely that an algorithm that consistently �nds the global maximum will
be better than one that does so on average more rapidly� but sometimes fails altogether� As
ever� it is important to specify the test conditions fully�
An interesting alternative method of comparing GAs is to let them compete directly�

Fogel and Atmar ����� took this approach in comparing a GA with crossover to one without�
Rather than run them separately� they divided the population of strings into those that would
use crossover and those that would not� If crossover provided a selective advantage� those
strings should prosper at the expense of the others� In fact the opposite occurred� a result of
the particular problem chosen� This method of comparison should be highly e�ective� since
small di�erences in e�ciency will be ampli�ed by the selection process� An example is shown
in �gure ��� on page ����

��	 Extensions to GAs

One of the entertaining aspects of working with GAs is the degree to which it is possible to
incorporate other ideas from natural genetics� While not of immediate relevance to the work
discussed in the following chapters� a few of these are worthy of note�

Parallel GAs GAs have been described as embarrassingly parellelisable� by which was meant
that it is so obvious that they can be run in parallel that one gets no credit for saying
so� The most obvious method is to distribute the function evaluations across processors�
With most real�world problems� most of the computation is spent on evaluation� so this
is quite e�cient� Robertson and Sharman ����� have suggested an interesting alterna�
tive selection model that appears to work quite well and avoids the excessive commu�
nication overhead of the usual method for cases where the function evaluation is rapid�
However� a number of reports indicate that it is more e�cient to have several smaller
sub�populations that are relatively isolated� exchanging only occasional strings �Cohoon
et al�� ����� Tanese� ����� Whitley � Starkweather� ����� This mimics the e�ect of
natural populations separated by oceans or mountains

Inversion was suggested by Holland ����� as a method of combating the disruptive e�ects
of crossover on long schemata� The idea is randomly to reorder the genes on the string
�while maintaining a tag so that it is known what each gene does�� in the hope of bring�
ing useful genes close together� to form small building blocks� Goldberg ����� reports
an advantage with suitably constructed functions� However� Whitley ����� suggests
that merely tagging the genes� and giving the initial population random orderings� may
be equally e�ective� since the usual processes of selection will cause the helpful orderings
to dominate�

Diploidy In the terms of natural genetics� the GAs we have considered so far are haploid �
they have a single genetic string� Most higher forms of life are diploid	 there are two
copies of each gene� The original reason is to guard against mutation	 it being unlikely
that both genes would be damaged� Where they di�er� one is usually dominant	 thus
the human gene for blue eyes is recessive and only expressed if speci�ed by both genes�
A side e�ect of this is to carry a reservoir of genes that may have proved useful in the
past� but would otherwise be weeded out by selection� The dominance system allows
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such genes to be shielded� against the possibility that they will later become useful�
The classic natural example of this is the peppered moth� which switched from light
to dark form as the industrial revolution killed the lichen on the trees� The principal
application in arti�cial systems is also to track a changing� particularly a cyclically
changing� task �Goldberg � Smith� �����

Darwin vs Lamarck In biology it is generally accepted that learned characteristics are
not inherited� There are occasional odd results� such as Hall�s ����� observation of
apparently directed mutations in bacteria� but these can be explained without invoking
Lamarckian inheritance of acquired characters �Foster� ����� Mittler � Lenski� �����
In computer simulation� it is quite possible to allow phenotypic learning to in�uence
the genotype� One approach� advocated by M�uhlenbein ����� and Davis �����b� is
to incorporate local hill�climbing operators suited to the problem� Davis speci�cally
advocates approaching an optimisation problem by taking an existing algorithm and
grafting genetic techniques onto it to form a hybrid� suggesting that the results are
likely to outperform either alone� For the optimisation of neural net weights� Montana
and Davis ������ use Backprop as a local hill�climber�

���
 Deceptive Problems� a look at a GA in action

This short tour of GA theory and practice will be concluded with a detailed look at an example
problem� one speci�cally designed to study the behaviour of a GA in di�cult circumstances�
The central claim of GA theory is that they work because they identify highly performing
building blocks and can then splice them together� It is possible� however� that combination
of these building blocks will move away from the global optimum� Goldberg ����� describes
such problems as deceptive� He de�nes the minimal deceptive problem �MDP� which has
only two bits� He identi�es two types� I and II� which di�er in di�culty� with type II being
harder� An example of such a problem� discussed by Goldberg� sets the following �tness
values for the four strings	 �� � ���� �� � ���� �� � ��� and �� � ���� �� is the global
optimum� but the average value for the schema �� is ���� while the average for �� is ����� The
schema theorem predicts that the latter should therefore increase in number at the expense
of the former� The averages for �� and �� are ��� and ���� respectively �it isn�t possible to
get deception on both bits while maintaining �� as the global optimum� The best building
blocks appear to be �� and ��� but their combination yields a sub�optimal string�
With such a simple system� it is possible to write out the equations for gain and loss of

each of the four types of string and then perform a numerical simulation of an ideal GA�
This is what would happen in a GA with an in�nite population and� therefore� no need for
mutation �in an in�nite population� no allele would be lost� The results are consequently
deterministic� and the results from such a simulation for this type II problem are shown in
�gure ����a� After an initial decline in the proportion of the optimal string� it climbs back
to take over the whole population�
Computational reality demands �nite populations� and typically a number in the order of

��� is chosen� As noted in section ���� this will introduce stochastic e�ects� The inadequacy
of the simple roulette wheel selection algorithm becomes clear in �gure ����b�d where its
behaviour on the same MDP is compared with the Baker SUS algorithm� The graphs are av�
eraged from ��� runs of a real GA using a population of size ��� The Baker selection algorithm
produces the results expected from the numerical simulation� The roulette wheel algorithm
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Figure ���	 �a Numerical simulation of a minimal deceptive problem� after Goldberg ������
�b�d Results of running real GA on same MDP using �b Baker selection procedure� no
mutation� population ��� �c as �b� but using roulette wheel selection� �d as �c but
mutation probability �����

does not� The roulette wheel results come from an averaging of two outcomes	 the correct
solution� and one where the errors in sampling result in the sub�optimal �� string taking over
the population� Introducing mutation allows important lost alleles� in this case � in position
�� to be reintroduced� thus mitigating the e�ects of such sampling errors ��gure ����d�
As noted in the discussion about �gure ���� too much mutation will slow down convergence

by disrupting good strings� However� using a very di�erent analytical method� Vose�����
claims that a GA will converge on the sub�optimal solution of an MDP when mutation is
included� Goldberg� and the results shown above� consider only the e�ects of crossover�
With such a simple problem� it is possible explicitly to compute the e�ects of mutation in
a theoretical� in�nite population� The schema theorem gives an estimate for the proportion
of a string in a new population� However� it is a lower bound� because it ignores the gains
caused by crossover and mutation of other strings� The loss of a string due to crossover may
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be obtained by noting that only a cross with one of the other three strings will e�ect a change�
Thus crossing �� with �� or �� will result in the same pairs of strings� while crossing �� with
�� will result in �� and ��� This leads the following expression for the proportion of the ��
string	

P���g � � � P���g
f��
�f
��� pcP���g

f��
�f
 � pcP���g

f��
�f
P���g

f��
�f

Similar expressions are obtained for each of the other strings� and it is the numerical
simulation of these equations which gives the result shown in �gure ����
The gains and losses due to mutation can also be calculated explicitly for this simple

problem� A string will be changed if there is a mutation in either or both bits	 it will therefore
survive mutation with probability ���pm

�� It will gain due to appropriate mutations in other
strings� Denoting the proportion of a string selected for reproduction by S	 S�� � P���g

f��
�f
�

we can then write the full expression for the proportion of the string ��	

P���g � � � S����� pcS����� pm
� � pcS��S�� � pm��� pm�S��� S�� � p�mS��

Similar expressions give the proportions of the other strings� These equations can be sim�
ulated numerically as before� Vose ����� considered an MDP with string �tnesses ��������
������� �������� ������� Without mutation� this converges successfully to the global opti�
mum� though very slowly due to the small di�erence in string �tness between �� and ��� With
a mutation probability of ����� the �� string is dominant� as shown in �gure ���� which con�
�rms Vose�s analytical result� The main reason for the change of behaviour is that mutation
of the initially dominant �� string produces a continuing population of �� strings� This is the
string that crosses with �� destructively� su�ciently to overcome its slight �tness advantage�
However� even if the �� strings are removed arti�cially� the �� string cannot take over the
population� due to continuing loss from mutation� The same e�ect occurs with the string
�tnesses of Goldberg�s example� but the mutation probability required to prevent correct
convergence is rather higher� at around �����
Goldberg states	 
it is surprising that all Type II problems converge to the best solution

for most starting conditions� ������b� p��� It is indeed surprising� since they are speci�cally
designed to mislead a GA� The reason for the success is that the GA does not 
know� the
true schema �tness� only the current average in the population� When the GA is started with
equal populations of all strings� the true average and the population estimate of the schema
�tnesses coincide� and the overall proportion of �� does decline� However� the very low �tness
of �� causes that to be lost rapidly� so that the representatives of �� become skewed in favour
of ��� For string �tnesses of �� � ���� �� � ���� �� � ��� and �� � ��� as in the �rst example
above� the true schema values are ��� for �� and ���� for ��� However� when the ratio in the
population of �� to �� reaches �	�� the estimated average for �� will be ������ better than ���
At this point in the run� the proportions of �� and �� have also changed� but in a direction
such that the estimated value of �� is actually lower than ����� Thus it is that �� wins out
in the end� However� if there is not a su�cient proportion of the higher ranking strings� the
�� schema will be eliminated�

���� Conclusion

This chapter has attempted to give an overview of the current art of GAs� with particular
emphasis on the problems of coding� If clear conclusions seem lacking� it is because there is
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Figure ���	 Numerical simulation of an MDP with string �tnesses of �������� �������
�������� ������� a with no mutation� b with mutation at a probability of ����

still uncertainty about the best means of approach� Application of GAs does remain rather
empirical� despite attempts to develop theory �Rawlins� �����
For numerical tasks� it should be clear that the actual coding strategy used is not that

important� since varying the reproduction operators can change the way the coding relates to
the real task� Thus binary coding with binary mutation has severe Hamming cli� problems�
which are signi�cantly reduced by the introduction of a creep operator� The real task is
to design the operators� especially recombination� that enable useful building blocks to be
identi�ed and processed� The design of such operators for the task of optimising neural nets
is the subject of the next chapter�
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Optimisation of Neural Nets by
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��� Introduction

This chapter looks at the possibilities for optimising neural nets by genetic algorithm� Three
potential areas are discussed� parameter tuning� direct learning of the weights and de�ning
the structure of the net� They are by no means exclusive� it would be possible� for instance�
to try and evolve the connectivity� weights and unit activation functions of a net simultane�
ously� There is relatively little reported work on parameter tuning alone �Bengio � Bengio�
�		
� Chalmers� �		
�� though some authors have used the GA to control learning rates for
use by Backprop e�g� �Harp et al�� �	�	a�� This parameter tuning is a standard numerical
optimisation� like those discussed in the previous chapter� with no need for special genetic
operators� The author has used a GA to adjust the parameters of a complex simulation of
some of von der Malsburgs dynamic link ideas �von der Malsburg� �	���� This simulation
required modelling at the level of cell action potential and had numerous parameters� which
the GA was able successfully to adjust �Hancock� �	�	b��

There is more reported work on evolving weights and structure� both independently and
together e�g� �Harp et al�� �	�	a� Kitano� �		
b� Koza� �		
� Miller et al�� �	�	� M�uhlenbein �
Kinderman� �	�	� Nol� et al�� �		
� Whitley et al�� �		
�� Evolving the weights is a method
of training the net to a task and thus serves the same role as Backprop� However� it is
more �exible� since there need be no restrictions on recurrent connections or requirement for
di�erentiability of the output function� A slightly di�erent approach is to use the GA to de�ne
initial weights� which are then trained by an algorithm such as Backprop� There have been a
number of such studies� looking at the interaction between learning and evolution e�g� �Hinton
� Nowlan� �	��� Belew� �	�	� Cecconi � Parisi� �		
� Keesing � Stork� �		�� Nol� et al��
�		
�� Evolving the connectivity is of interest because it is known that the internal structure
of a net a�ects the generalisation performance� see section ���� In particular� when the input
has a � or more dimensional structure� such as the images of section ���� there may be bene�t
in re�ecting this structure in the hidden layers�s�� Unfortunately� both weights and structure
have an apparently severe representational problem� because of the many symmetries and
possible permutations inherent in the parallel nature of nets� Although some authors have
recognised this� few have attempted to address it �Radcli�e� �		
b� Radcli�e� �		�� Montana
� Davis� �	�	�� The problem is mentioned brie�y in two recent reviews of the application of
GAs to NNs �Yao� �		�� Jones� �		���

Section ��� outlines the nature of this permutation problem� while sections ��� and ���
survey the literature and discusses possible solutions to the problem for weight learning and
structure respectively� Finally� section ��� reports an empirical comparison of recombina�
tion operators for net structure design� using a simulated evaluation procedure that allows
statistically signi�cant results to be obtained rapidly� First� a brief look at net parameter
tuning�

��� Parameter tuning

As noted in the introduction� parameter tuning for net simulations is a straightforward appli�
cation of GAs to a numerical optimisation� without the particular problems associated with
evolving weights or connections� Most reported combinations of NNs and GAs have used
Backprop as a training algorithm� Depending on the precise version of the algorithm� there
are a number of parameters that might be tuned� Harp et al ��	�	a� �		��� primarily in�
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A B B B BA AA

Figure ���� Recombination of two nets� which have the same solution but with the hidden
units playing opposite roles� produces two nets each containing only part of the solution

terested in evolving the structure of their nets� also use the GA to specify the learning rate�
They specify an initial rate� plus an exponential decay rate� for each of several areas within
the net�

Modi�ed Backprop algorithms may obviate the need to evolve the learning rate� There
have been a number of attempts to vary learning rates automatically as training proceeds�
eg �Jacobs� �	��� Tollenare� �		
�� while Fahlmans ��	�	� Quickprop algorithm appears
much less sensitive than �vanilla� Backprop to its learning rate parameters� Unfortunately
the automatic parameter tuning methods seem to show an increased tendency to get stuck�
which would add to the evaluation noise for the GA� In the experiments reported in section ����
the author used Quickprop�

It is also possible to evolve more detailed aspects of learning rules� The author has
experimented with tuning the weight increment and decrement parameters of biologically
motivated learning rules to maximise the capacity of auto�associative nets �unpublished��
Bengio and Bengio ��		
� discuss the possibility of searching for the parameters of a synaptic
modi�cation rule for a feed�forward net by GA� but do not present results� Chalmers ��		
�
evolves a learning rule by allowing the GA to specify the weight change as a function of four
local variables� input and output activations� training signal and the current value of the
weight� The rules were evaluated on their ability to train a single layer net on a suite of
binary input classi�cation tasks� The GA discovered the delta rule on about �
� of the runs�

��� The permutation problem

In principle the application of a GA to learning the weights or de�ning the connectivity of
a net seems quite straightforward� use one gene per link� This was the approach taken by
Miller et al ��	�	� for structure de�nition� and by Montana and Davis ��	�	� for weight
learning� That there might be a problem with this may be seen by considering a trained
net with just two hidden units� �gure ���� Unless the task is really trivial� the two units
will play di�erent roles� A and B� in achieving the correct solution� Which unit does which
job will be immaterial� the order� in the sense de�ned by the list of units in the computer
program� may be AB or BA� Consider now a GA� attempting to optimise the weights of the
net� If it attempts to cross a net that has the order AB with one that has order BA� it
may produce o�spring AA and BB� both of which fail to solve the problem� The number of
possible orderings is the factorial of the number of units� Thus for a modestly sized net with
�
 hidden units� there are over three million permutations�

The situation is actually worse than this� because there is often more than one way of
solving a problem� One net might have roles A and B� another� roles C and D� Crossover
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will now combine incompatible roles� It is not in general possible to put a number on the
scale of this problem� Xor with two hidden units has two major solution types� but it must
be expected that the number will rise with additional degrees of freedom in the net�

The preceding discussion rather assumes that crossover treats a unit with all its connec�
tions as a single entity� although the problems will still occur if crossover is not so constrained�
since mixing two units that are attempting to play di�erent roles is also likely to be disruptive�
Con�ning crossover to node boundaries does tackle a third problem� This is caused by the
fact that� with anti�symmetrical output functions such as the sigmoid� changing the sign of
all incoming and outgoing weights of a unit will have no e�ect on its behaviour� As well as
the solution AB� we now have �AB� A�B and �A�B� The number of combinations has risen by
a further �n� If crossover does not disrupt a unit� then A and �A may be interchanged with
impunity� However� doing this means that changes in the weights of a unit can only be made
by mutation� with crossover limited to producing new combinations of the units� There is
also a problem for nets with more than one hidden layer� to which unit does a weight belong�
With two hidden layers� only units in one layer may be respected�

A similar problem may occur where the GA is de�ning the structure of a net� which will
then be trained by another algorithm� The aim is to produce a net which is tailored to the
task� Thus� roles A and B in the example above might require di�erent sets of inputs� In
that case� the situation is the same as before� with crossover liable to produce a net with
two units of the same connectivity� An example for a ��D input is given in �gure ���� In
general� the problem may not be quite so bad� since any units with identical connectivity are
in fact interchangeable� The factorial is now an upper bound� with � as the lower bound in
the rather unlikely situation that all the units have identical connectivity�

1
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Parent 1: 1234 Parent 2: ABCD Child 1: AB34 Child 2: 12CD
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Figure ���� Recombination of nets with localised receptive �elds� The parent nets each have �
similar hidden units� but de�ned in di�erent orders on the genetic string� so unit � on parent
� is most like unit C on parent �� Here� there is a single crossover point� between the second
and third unit de�nitions� The resulting nets each have two copies of similar hidden units�
and do not cover the input space�

We can now see the basis of the comment in section ����� that it is di�cult to design a
recombination operator that respects similarities of neural nets� Using the role descriptions
A and B� formae for the net might be multisets such as fA� �g and fB� �g� being sets the
order is unimportant� Simple crossover may cross two instances of fA� �g to produce fA�Ag
and f� �g�

The problem stems from the fact that functionally equivalent nets may be de�ned by many
di�erent genetic strings� Radcli�e calls this a redundant coding� and one of the principles
of coding for GAs in �Radcli�e� �		��� mentioned in section ������ is that codings should
be minimally redundant� In the following sections we shall consider ways to reduce this
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redundancy�
First� a brief note about terminology is required� There are two possible meanings of the

word redundancy when applied to codings� One� used here by Radcli�e� is that there are
many possible ways of coding the same thing� �Newspeak� in George Orwells book ��	���
was an extreme attempt to eliminate this kind of redundancy from the English language�
The other sense of the word is akin to tautology� coding the same information more than
once� This kind of redundancy is often deliberately designed into codes to allow some error
correction� simple examples being check digits and parity bits� It has been suggested as a
means of addressing permutation problems in GAs �Gerrits � Hogeweg� �		��� unfortunately
it is not obvious how to apply this technique to net design�

��� Evolving weights

Producing a set of weights for a net is a high dimensional optimisation task� The now standard
method is the gradient descent technique of Backprop� However� gradient descent can get
trapped in local minima� Genetic algorithms have the potential to escape such minima� one
reason perhaps why there are many reports of using GAs to train weights� e�g� �Ackley �
Littman� �	�	� Belew et al�� �		
� Bos � Weber� �		�� Caudell � Dolan� �	�	� Cecconi
� Parisi� �		
� Fogel et al�� �		
� de Garis� �		
� Heisterman� �		
� Je�erson et al�� �		
�
Keesing � Stork� �		�� Kitano� �		
b� Menczer � Parisi� �		
� Montana � Davis� �	�	�
Nol� et al�� �		
� Parisi et al�� �		
� Radcli�e� �		
b� Torreele� �		�� Whitley� �	�	� Whitley
� Hanson� �	�	�� In addition� Backprop requires that output functions be di�erentiable�
while recurrent connections demand a considerably more complex algorithm� Neither of these
problems a�ect a GA�

For a simple� feed�forward net with the typical sigmoidal output function� it seems unlikely
that the blind search of a GA would compete with the gradient descent of Backprop for speed
of solution� unless the error surface is so full of local minima that Backprop requires many
restarts� Another possible advantage comes from the relative ease of implementation of a
GA on parallel computers� Nonetheless� Montana and Davis ��	�	� report that a GA will
outperform Backprop� Since they do not give their training data the claim is unveri�able�
and it must be regarded with suspicion as there is no suggestion that they attempted to
optimise the Backprop parameters� while they certainly worked on the GA� Kitano ��		
b�
compares Backprop with a GA on the two�spiral and encoder problems� and concludes that�
although competitive on very small problems� GAs are much slower on bigger ones� Whitley
et al ��		
� report GA results that are about as good as Backprop� but suggest that a GA
will only really be competitive with more speci�c methods when no gradient information is
available� They give an example of pole�balancing� when the only feedback to the net is
when failure has occurred� Given this limited information� their GA out�performs Andersons
Adaptive Heuristic Critic algorithm �Anderson� �	�	��

Whitley et al obtain these results by a method they refer to as genetic hill climbing�
which is in e�ect an ES without any sophisticated mutation size control� Mutation rate is
high� crossover rate low� and the weights are held as real values� Having a population of
strings is equivalent to doing multiple starts in parallel� small populations sometimes do very
well� but also fail more often than larger populations� The elimination of crossover from the
algorithm is the most common approach to the permutation problem� e�g� �Cecconi � Parisi�
�		
� Fogel et al�� �		
� de Garis� �		
� Nol� et al�� �		
� Parisi et al�� �		
�� Given the
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centrality of recombination in the GA model� this seems rather drastic� There appears to be
only one report of simple crossover giving an improvement over a mutation only algorithm�
Menczer and Parisi ��		
� �		�� show that adding ��� crossover gives a small improvement
in performance�

Two authors have tackled the permutation problem head�on� Radcli�e ��		
b� and Mon�
tana and Davis ��	�	�� The key is to try and identify equivalent hidden units� Montana
and Daviss approach is to apply a subset of the training inputs to the net� and monitor the
outputs of the hidden units� Prior to crossover between two strings� the units which are most
correlated are matched� They report that this method does improve performance particu�
larly early in the run� when the population is most diverse� There is obviously a considerable
computational overhead� which perhaps explains why no one else appears to have taken up
the idea�

Radcli�es method involves a labelling algorithm� which also applies to network structure
speci�cation� Unfortunately� despite again incurring considerable computational cost� the
algorithm will only succeed in making the match if the nets are e�ectively identical �apart
from the permutation�� As Radcli�e himself puts it� this is computationally useless �Radcli�e�
�		
b�� What is needed is either some similarity metric� or some means of imposing an order
that will break the symmetries�

A possible approach to breaking the symmetries is to add connections between hidden
units� Each hidden unit would have an inhibitory connection to all those after it in the layer�
The �rst unit thus inhibits all the others� but is inhibited by none� the last is inhibited by all
the others and inhibits none� The net thus remains feed�forward� but no longer has a simple
single hidden layer� �gure ���� The units are clearly no longer equivalent� but whether the
symmetries have been broken will depend on the strength of the inhibition� If the inhibition
is very weak� there will be no noticeable e�ect� but if it is very strong it may be di�cult to
�nd a solution to the target problem at all�

Figure ���� A feed�forward net� with inhibition in the hidden layer �arrows��

An alternative approach to the problem is to side�step it� by avoiding a fully�connected
net� If the hidden units are no longer interchangeable� there is no permutation problem� In
general this claim will be too strong� simply removing� say� one di�erent connection from
each hidden unit will not guarantee that they each have consistent roles in the �nal trained
net� It is the interchangeability of hidden unit roles that produces the permutation problem�
if the roles are consistent the permutations will be removed� The aim of the work discussed
in section ��� is to produce a reduced connectivity net that is tailored to the problem in
hand� The ideal might be to produce a net that admits only one solution to the problem�
As is noted in section ������ it does appear to be possible to produce sparse nets that train
very consistently� It may be that a way to reduce the e�ect of the permutation problem for
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evolving weights would be to evolve the structure simultaneously�
Another possibility is suggested by the analysis of the symmetries of network weights

by Hecht�Nielsen ��		
� �		�� and Chen and Hecht�Nielsen ��		��� They note the various
symmetries discussed above� and show that gradient descent techniques will always stay within
the boundaries of one symmetry sub�space� The permutation problem for GAs is precisely that
they do not� recombination does not respect the symmetry sub�space boundaries� However�
they show that it is possible to de�ne which symmetry group the system is in solely by the
bias weights for each hidden unit� This raises the possibility of specifying that all members
of the GA population will be in the same symmetry sub�space� Their method� discussed also
by Roberts ��		��� is to order the size of the n hidden unit bias weights bi such that


 � bi � bi�� � � i � n� �

On its own� this prescription will not be su�cient� since there is no guarantee that�
following crossover� the inequality will still hold� This may be addressed by setting tighter
limits for each bias weight in the initial population�

�i� ��r � bi � ir � � i � n

where r is a constant in the region of 
��� This will ensure that the bias weights of equiv�
alent units are in the same range� so that the ordering still holds after crossover� A mutation
to the bias weight may still cause problems� by disrupting the ordering� This was addressed
in some preliminary experiments by preventing mutations to the bias weights altogether� The
method was tested on an ����� encoder problem� �ve hidden units being used to increase the
number of permutations� There was a signi�cant but small decrease in the total error after
�

 generations when the bias weights were ordered� Unfortunately� it was discovered that
the change remained when crossover was disabled� it appears that the speci�ed bias weights
make the problem easier for mutation�based hill climbing alone� Preliminary experiments
using inhibition between hidden units also failed to show any signi�cant advantages�

����� Evolution and learning

Before leaving the subject of evolving net weights� it is worth elaborating a little on the
possibility of evolving the start weights� to be trained subsequently by an algorithm such as
Backprop� It is found that the action of learning can guide evolution� This is known as the
Baldwin e�ect� having been suggested by Baldwin last century �Baldwin� ��	��� It is not
Lamarckian� the learned weights do not in�uence the genetically determined start positions
�though such a local �hill climbing� operator is used by Montana and Davis ��	�	��� Hinton
and Nowlan demonstrated the e�ect in simulation �Hinton � Nowlan� �	���� Their task was
to �nd a sharp minimum located on an otherwise �at plateau� Exploration of the weight space
by the phenotype� in this case just by random adjustment of the weights� is able to improve
the �tness of genotypes that are close to a solution� The pinhole minimum is e�ectively
smoothed into a much broader valley�

Nol� et al ��		
� showed that the e�ect is reciprocal� learning guides evolution� but
evolution can also produce systems that learn better� This happens even when the evolved
task and the learned task are di�erent� In Nol�s work� the evolved task is to produce a
simulated animal that can �nd food� the learned task is for the creature to predict its next
sensory input� The output units for the two tasks are separate� but they share hidden units�
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and it appears that the representations learned for sensory prediction are also useful for the
food��nding task� However� Parisi et al ��		�� have found that even learning a task such as
Xor can assist evolution of the food��nding ability� In this case it seems implausible that the
representations required for Xor are useful for food��nding� and the mechanism is likely to be
e�ectively random weight adjustment like that used by Hinton and Nowlan�

Such combinations of learning and evolution can produce remarkably sophisticated be�
haviour� The cpu cost is rather high� Collins and Je�erson report using � days on an �K
processor Connection Machine �Collins � Je�erson� �		��� Nets tend to be small� but it
appears fairly general for workers in this �eld to use mutation only algorithms in a bid to
avoid permutation e�ects� A notable exception is the work of Menczer and Parisi mentioned
above� where it was found that a probability of simple crossover of 
��� is helpful �Menczer
� Parisi� �		
� Menczer� �		���

��� Net structure optimisation

As discussed in section ���� the internal structure of a net can have a considerable e�ect on
its performance� That section considered brie�y some of the possible approaches to matching
the structure to the problem� algorithms that adjust the number of hidden units and weights
in response to various measurements of the nets behaviour� An alternative approach is to
do a blind search on the space of network structures� The discontinuous nature of the search
space and the noisiness of the evaluation makes the use of GAs appealing�

There have been a number of attempts to use GAs in this way� A common approach
is to de�ne a net which is then initialised with random weights and trained� usually with
Backprop �Dodd et al�� �		�� Falcon� �		�� Hancock � Smith� �		�� Harp et al�� �	�	a�
Harp � Samad� �		�� Miller et al�� �	�	� Robbins et al�� �		�� Schi�mann � Mecklenburg�
�		
� Schi�mann et al�� �		�� Vico � Sandoval� �		��� One exception is a pruning technique
suggested by Whitley et al ��		
�� A number of authors have used GAs to specify the input
to a net �Anthony et al�� �		
� Badii� �		
� Chang � Lippmann� �		�� H�o�gen et al�� �		���
This kind of feature selection does not pose any permutation problem� since the inputs impose
an ordering� They will not be considered further here� the other two will now be looked at in
more detail�

����� Genetic pruning

Whitley et al ��		
�� use a GA to prune down a trained net� thus achieving an e�ect similar to
other pruning algorithms �section ����� Whitley et al took this approach because of the prob�
lem of excessive cpu requirement when training a net from random weights with Backprop�
A net� fully connected in the examples given� is trained on the problem� Pruning is speci�ed
by the GA� using one bit per connection� The pruned net is evaluated by instantiating the
remaining connections with their trained weights and then retraining with Backprop� By
seeding the weights in this way it may be hoped that the net is relatively near to a solution�
so that retraining will require fewer epochs than a randomly initialised net� This can only be
a hope� since omission of vital connections may make it impossible to reach a solution at all�
However� the GA may be expected to discover which are the important links�

Whitley et al acknowledge that there is no guarantee that a net that learns well from
this initial position will do so when started from random start weights� They report only
Exclusive�Or� and a ��bit adder problem� with four hidden units� However� in the latter
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case the design does learn well� and very consistently� from random start positions� The
GA appears to have been successful in �nding a design that guides Backprop to a speci�c
solution and avoid local minima� This is potentially quite signi�cant� since Backprop can
�nd it di�cult to break symmetries in the weights �Hancock� �		
b�� Most experimenters
will have come across times when it appears stuck on a plateau� and makes no progress at all
for a while� Although this problem is probably most apparent in toy problems like Xor� it is
still possible to speed up training on real�world problems considerably� as will be shown in
the following chapter� This raises the possibility of producing a net tailored to a task� such
as face recognition� that will not only generalise well with a new set of data� but also train
relatively quickly�

It is not clear from �Whitley et al�� �		
� whether the authors realise that they have also
found a possible solution to the permutation problem� Because the net starts from a trained
position� the units are all e�ectively labelled� The units have their roles in the solution pre�
de�ned� the GA simply has to discover which connections are super�uous to that role� This
approach is clearly worthy of consideration� some experiments on rather larger problems than
Whitley et al used are reported in section ����

����� Genetic net de�nition

Coding

In the previous chapter it was argued that the coding of a problem� and its interaction with
reproduction operators� is critical to the ability of the GA to make progress� There are
many possible string codings for net structure� Miller et al ��	�	� suggest a possible metric
for classifying them� Strong coding schemes de�ne each connection individually� while weak
schemes specify more general growth rules� It is clear that biology uses a weak coding method
at least for higher animals� though even for animals as complex as insects it appears that their
neural circuitry is largely genetically speci�ed �Bentley� �	���� In mammals there simply is
not room in DNA to specify every cell in their complex brains individually� still less every
connection� The human genome contains about � � �
� base pairs� each carrying � bits of
information� compared with at least �
�� cells in the human brain� Miller et al use a strong
speci�cation scheme� This has the potential to produce very speci�c� compact designs to suit
a particular problem� It also frees the GA from the preconceptions of the experimenter� which
might limit exploration of fruitful areas� This freedom is a two�edged sword� however� the GA
may also spend its time blindly exploring useless areas� which the experimenters knowledge
of the problem could have prevented� How much to build in will depend on the aim of the
work� Miller et al were principally interested in seeing what designs an unfettered GA might
come up with� If the aim is to solve a particular problem then standard engineering practice
is to build in available knowledge�

Miller et als coding scheme� a reduced version of that suggested by Todd ��	���� is a simple
connectivity matrix� where a � represents a connection between two units� They claim that
this scheme requires less checks for legality than weaker coding methods� However� it is still
quite possible to have units with no input and�or no output� and recurrent connections� The
latter cannot be trained by standard Backprop� and have to be removed by the net generation
routine� Unconnected units do no particular harm� other than wasting cpu time� and are the
systems method of controlling the number of units� which has a �xed maximum� Nets which
have no path from input to output are weeded out at birth� There is no attempt to address the
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permutation problem� other than implicitly by attempting only relatively small nets where
the problem is not severe� On problems such as XOR and a real�valued version of XOR called
the four quadrant problem� their method shows promising results� Anthony ��		
� reports
some success using a similar method on a slightly larger task� of predicting the central pixels
from their surroundings in a medical image�

Harp et al use a �blueprint� speci�cation� towards the middle of Miller et als scale� They
de�ne a number of areas of units� along with their projective �elds� Each area can have a
variable number of units� stepped in powers of two� They may also have two dimensional
structure� to accommodate image�type data� They can make connections to other areas�
using either absolute or relative addressing� The latter possibility is intended to allow the
development of cooperating areas that reside physically close on the genetic string� The
connections may also have a � dimensional extent� allowing localised receptive �elds� with
an adjustable connection probability within the speci�ed �eld� The di�erent areas of cells
allow the construction either of multiple�layer nets� or of quite complex single hidden layers�
The string length� and hence number of areas is not �xed� being altered by the action of
crossover� This is constrained to act at one of a number of homologous points de�ned within
each area speci�cation� which ensures that any string generated is legal� The net speci�ed by
the string� however� may not be� as there is the same potential for isolated units and recurrent
connections� These are� as in Millers scheme� dealt with at net generation time� Even so
there may be multiple connections between units� one example of a single layer net for digit
recognition �Harp et al�� �	�	b� has �� input units� �� output units and ���� connections
between them� There is again no explicit attempt to address the permutation problem� which
exists because the same net may be generated by many di�erent strings� simply by swapping
area labels�

Despite the potential for generating complex net architectures� Harp et al have reported
only relatively small test problems� XOR again� a digit recognition task and modelling the
sine function� One reason for this is lack of computer power� although a small problem� XOR
is quite di�cult for Backprop to learn� and one generation of the GA is reported to take a
day or two to run on a Symbolics Lisp Machine�

Schi�mann et al ��		
� �		�� use a mutation�only evolutionary strategy to produce net
structures� This side�steps the permutation problem� which may be the reason for its adop�
tion� though this is not explicitly stated� The precise coding scheme is also not de�ned� but
they start with a fully connected single layer net and gradually add units by random muta�
tions� The mutations may also add and remove connections between existing units� but not�
apparently� remove units� The algorithm produces spectacularly �deep� networks� with as
many as �� hidden layers� Although not stated� this cannot be a simple hierarchical design�
since Backprop has di�culty with more than � or � consecutive hidden layers� The nets
are selected for training performance� and do train more rapidly than simple fully connected
designs� but are no better at generalisation�

Kitano ��		
a� uses a net generation method that is� at �rst sight� towards the weaker
end of Miller et als scale� Rather than coding units and connections directly� the GA speci�es
a set of rules for a grammar� Capital letters are expanded to a �� � matrix of other letters�
lower case letters expand into a � � � matrix of ones and zeros which specify the presence
of connections� The coding is therefore strong� since each connection can be individually
speci�ed� However� changing one connection may require several alterations to the genetic
string� because a change to one rule may have e�ects elsewhere in the connection matrix�
Kitano reports that his methods result in nets which train much more rapidly than fully

	




connected nets� The claim needs to be regarded with some doubt� however� since it is not
only based solely on the rather unrepresentative encoder problem� but the fully connected
versions of the net have as many as �
 hidden units for � input and output units� One potential
strength of the speci�cation method is that it leads rather naturally to regular patterns of
connectivity� which might suit larger problems such as image processing� However� there is
still a problem of redundancy� the same net may be coded by more than one genetic string�

Recently� Gruau ��		�� has proposed another grammar coding method that he calls Cellu�
lar Encoding� He suggests a number of properties desirable in a coding� such as completeness�
the ability to code any connectivity� compactness� to keep the search space small� and closure�
that any net generated should be valid� He does not mention redundancy� indeed� the paper
does not specify how the grammar is to be coded on the GA string at all� This makes the
system hard to assess� it seems promising� but would appear still to su�er from redundancy�

Nol� and Parisi ��		�� have experimented with de�ning growth rules for nets� Each unit
grows an output axon in the shape of a fractal tree� The genetic string speci�es the x�y
location of each unit� the length of each branch and the branching angle� Units with the
maximum y value are output units� those with the minimum value� inputs� The x coordinate
of a unit has no signi�cance other than its spatial relationship to the other units� Each fractal
tree branches four times� Connections are deemed to be made to any units that happen to be
crossed by one of the branches of the axon� Any isolated units or dead ends are then removed�
The weight of all the outgoing connections from a unit is set to the same value� also held on
the string� The resultant net is used to control a food��nding animat� They report successful
results� with the �nal nets being compact�

Nol� and Parisis growth rules e�ectively de�ne the projective �eld of each unit� This
is successful partly because their animats have only two types of input unit� For Backprop
nets� especially those used for classi�cation� de�ning the receptive �eld is more natural� since
there is usually a relatively large number of inputs� The coding could be amended to do this�
De�ning hidden unit projective �elds might be useful if there are many output units� As it
stands� their coding scheme would also produce nets that have too many layers of hidden
units to train well with Backprop� This too could be amended� However� it is not obvious
that a fractal tree is a better way of specifying a receptive �eld than� say� a circle de�ned on
an array of input units� Their coding is possibly best suited for the purpose for which it was
designed� specifying the nervous systems of animats� It still su�ers from the permutation
problem� there being many ways to code identical nets�

����� Addressing the permutation problem

In the work described so far� there have been two principal approaches to the permutation
problem� ignoring it� or avoiding it by removing crossover from the algorithm� Radcli�e has
recently suggested a method of addressing the problem �Radcli�e� �		��� This proposal is
quite di�erent from his matching algorithm referred to in section ���� He speci�es a recombi�
nation operator that attempts to respect similarities in net structures� Unfortunately� as we
shall see� it does not actually respect similarities� only identities�

Radcli�e identi�es a hidden layer structure as a multi�set� the elements of which are the
possible patterns of connectivity of one hidden unit with the input and output units�� Given
n input and m output units there are thus �n�m possible elements� which may be labelled

�For simplicity this analysis is restricted to one hidden layer
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a� b� c���� The layer is a multiset because it is quite possible for two or more units to have the
same connectivity� A given hidden layer might be described by fa� a� d� fg� which would be
an instance of� in this case� twelve formae of the type fa� �g� fa�a��g� fa� d� f� �g� where � here
means one or more other elements� According to Radcli�es principles for GA design referred
to in section ����� the recombination operator should respect and properly assort these formae�
Recall that respect means that a child will always inherit characteristics that are common to
both parents� while formae are properly assorted if it is possible for the operator to produce
a child which is an instance of both formae�

Unfortunately� it is not in general possible simultaneously to respect and properly assort
these formae if the sets are of �xed size �Radcli�e� �		��� The sets fa� d� fg and fa� b� eg are
examples of the formae fd� f� �g and fb� �g �amongst others� respectively� These formae have
an intersection� namely fb� d� fg� which should be obtainable if they are properly assorted�
but respect demands that the child be a member of fa� �g since both the parents are� There
is no solution to this conundrum� in Radcli�es terms the formae are non�separable� Radcli�e
therefore suggests a compromise� such that elements common to both parents are more likely
to be copied to a child than those present in just one� The process may be tuned� as respect
becomes less likely� proper assortment becomes more possible�

If the constraint of �xed set size is lifted� the formae become separable� The solution to
the above problem is fa� b� d� fg� Although there is in general no reason to constrain hidden
layers to a �xed size� there will usually be some kind of limit� if only imposed by something
mundane such as array sizes� The probabilistic copying of strings common to both parents
will therefore be adopted since it is a general solution to the problem�

This method of recombination will only remix the elements already present� As noted� the
number of possible elements is large� such that given a typical population size of �

� many
elements may not be represented� To allow recombination to explore this space� Radcli�e
suggests that one or two of the elements in a child be produced by a traditional� uniform
crossover of the bit strings that de�ne two elements in the parents�

Radcli�es algorithm may be summarised�

�� Decide on the number of units in the child� somewhere in the range bounded by the
numbers in each of the parents� except for the possibility of mutation moving one beyond
this range��

�� Match the hidden units of the two parents to identify any that are identical� There may
be more than one copy in each parent� Copy these to the child with a high probability�

�� Fill all but one or two of the remaining slots in the child at random� without replacement�
from the parents remaining unit de�nitions�

�� Fill the remaining child units by crossover of two units from the parents� picked at
random�

The problem with all this is that there is still no notion of similarity� only of identity� If two
potential parents have some hidden nodes that are identical� then they will be matched� if they
di�er by one connection they will be treated as if they di�ered in every connection� Radcli�e
�personal communication� argues that the tendency of GAs to start convergence fairly rapidly

�Radcli�e actually suggests that the upper bound should be given by the size of the union of the two parent
sets� but agrees that this seems likely to lead to excessively large hidden layers �Personal communication�
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Figure ���� X�Y sorting of hidden unit receptive �eld labels prior to recombination� Although
some are transmitted consistently ������ the repositioning of the �th RF of the �rst parent
downwards in the second parent causes a relabelling of that row� leading to duplication of
coverage in the o�spring�

suggests that there will be a useful number of identical nodes to process� Against this it might
be argued that the preferential selection of any nodes that just happen to be the same early
in the run may give them an unwarranted advantage and encourage premature convergence�

Similarity metrics

What might be used as a metric of similarity in hidden nodes� In a continuation of the work
reported by Hancock and Smith ��		��� which is described in section ���� the author has
proposed two methods� The �rst is applicable to the ��D input used in that study� the second
is more general�

�� X�Y sort� The input data used by Hancock and Smith ��		�� were processed images
of faces� that retained a ��D structure� The hidden units had a localised receptive �eld
�RF�� de�ned by a centre and �approximately� a radius on the input units� A simple
means of imposing an order on these hidden units is to sort them into x within y order�
Crossover then acts on the sorted strings� Although this might be more successful than
an unsorted crossover� it will not be very reliable� since a small change in position of an
RF can cause a signi�cant reordering of other units� see �gure ����

�� Overlap sort� A much more general method of assessing hidden unit similarity is to
count the number of input units they have in common� In the work continuing from
Hancock and Smith ��		��� the hidden layer was fully connected to the output units for
simplicity� but the notion of similarity could clearly be extended to hidden�output unit
connections� The hidden unit de�nitions are sorted by overlap prior to crossover�

How might this notion of overlap similarity be added to Radcli�es proposal� For sim�
plicity� the following discussion will assume that only input connections are being changed�
though for a single hidden layer� output connections can be treated identically� It is clear
that the node labels a� b� c��� are not helpful� since in common with other high�cardinality
alphabets� they give no clue about similarity� The connections of a hidden node may be
described by a binary valued vector� we are not interested here in the connection strengths�
which will be learned once the net has been created� It therefore appears that this is a case
where the traditional binary schemata are ideal for the problem� A metric would then be
given by counting common bits�

distance �
Hamming distance

number of bits

	�



overlap � �� distance

Further thought indicates a problem� concerning just how useful 
 is as an indicator of sim�
ilarity� Consider two hidden unit de�nitions for an ��input net� f��





g and f





��g�
These are both members of the schema f� � 



 � �g� Would we really wish to say that
these units are more alike than the pair f���




g and f




���g� which are members of
f� � �

 � ��g� In terms of the overall functioning of the net� a schema such as f� � �

 � ��g
might be meaningful� If it became very frequent� it might suggest that the two middle input
units carry little information relevant to solving the given task� For the purpose of identifying
units that perform similar tasks� however� such schemata seem uninformative� we are really
only interested in where there are connections� This would suggest rather strange�looking
schemata composed of just � and �� There is then no schema that contains either of the pairs
above� they have nothing in common� A metric is given by counting just the �s� for units
de�ned by binary strings k and l�

overlap �
inputs in common

total inputs connected
�
jk�and�lj

jk�or�lj
�����

The preceding discussion makes no assumptions about the inputs� If the input has a
spatial structure of the kind advocated in chapters � and � it might be advantageous to
extend the notion of similarity� For instance� it might be that f��





g and f

��



g
actually are more alike than f��





g and f





��g� Schemata drawn from f�� �g would
clearly not capture such similarities� A suitable extension that applies to the simple binary
connection lists is not obvious� and would in any case be highly problem�dependent� The
approach taken in the face recognition work ��Hancock � Smith� �		�� and section ���� is
to limit the connections of a hidden unit to a local receptive �eld� The x�y sorting method
described above then does capture something of this notion of similarity for a ��D input space�
albeit rather crudely� It only imposes an ordering along the x axis� and then not consistently�
Referring to �gure ���� it may be seen that while the labelling of units ��� correctly re�ects
their separation� it does not get ��� and ��� correct�

Building knowledge of the input coding into the similarity metric would be expected
to improve performance� at the expense of generality� A general approach to reducing the
permutation problem remains of interest� Schemata composed from f�� �g capture such a
general notion of similarity for connectivity� Having identi�ed the similarities� we need an
appropriate recombination operator�

The essence of Radcli�es approach is to identify identical units� transmit those with
high probability� and then �ll remaining slots at random� Now suppose there are units on
the two parents that di�er in only one connection� By analogy� at least the common bits
should be transmitted with high probability� This could be achieved either by choosing
one or other� or by crossover between them� Consider the following example� two strings�
each de�ning two hidden units with connections from six input units� f���


�


�
�g and
f���


�



��g� The strings agree on one of the units� once matched� any form of crossover
would not a�ect the de�nition� However� the other units are di�erent� agreeing on only one
out of three connections� There is the usual choice between exploration and exploitation�
Where the overlap is this small� the conservative choice would be to use Radcli�es suggestion
of choosing one or other of the parent de�nitions intact� However� it may really be the case
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that the schema f� � � � ��g is highly rated� Uniform crossover will both respect and properly
assort schemata drawn from f�� �g� just as it will those drawn from f�� 
� �g �Radcli�e� �		���
The problem with its use on unmatched unit de�nitions is that it will tend to disrupt them�
that is� the exploration component will be too large� Here� since the unit de�nitions have been
sorted prior to crossover� it should be possible to increase the probability of such crossover�
as any points of agreement will in any case be preserved� A straightforward approach is to
regard the unit de�nitions as having been matched� and therefore apply uniform crossover
between them� with a probability equal to their overlap on the similarity metric�

The sorting algorithm needs to be speci�ed rather more precisely� Should unit de�nitions
in the two parents be paired o�� or matched with the one they most resemble� And what
should be done when the parents have di�erent numbers of units� Some possibilities may
be considered� In each case� it is assumed that there are two strings with i and j units
respectively� where j � i�

�� Match each unit in each string with the one it most resembles in the other string� This
will give j � i pairs� with up to j � � child slots to �ll �allowing for possible mutation
in the number�� A problem comes in trying to see how to �ll these slots� Any matching
units should be transmitted with high probability� So pairs might be chosen with a
probability that is related to their similarity� with the child unit being produced by
uniform crossover of the parents� However� where units match� there will now be two
pairs� If both get the same high probability of being chosen� it is likely that there will be
two copies in the child� which� being a form of mutation� should happen only rarely� To
prevent this� the second pair might be eliminated� either prior to selection or if the �rst
pair is selected� In the latter case the second string would provide another opportunity
for the unit to be transmitted if the �rst pair failed� This could be addressed by lowering
the probability of selection to compensate� However� there remains a problem of what
to do with partially matched pairs� Returning brie�y to the use of labels for unit
de�nitions� suppose we have the strings fabg and fcdg� where a overlaps most with c�
but c overlaps most with b� Assume the ac pair gets picked for copying to a child slot�
If the cb pair is left in the pool for selection and picked� c will be over�represented in
the child� If it is removed� b will not be represented� Some form of bias is inevitable�

�� For each member of the longer string �or one at random if the same length�� �nd the
unit de�nition in the other string with which it most overlaps� This will give j pairs�
plus any unpaired units from the shorter string� from which to �ll j � � slots� Pairs
might again be selected with a probability related to their overlap� with the child being
produced by uniform crossover� This may leave some slots vacant� Since the purpose
of not always copying matched pairs is to allow the possibility of producing a child
containing only unmatched units �to allow proper assortment�� it seems sensible that
priority in �lling vacant slots should go a� to any unpaired units from the shorter string�
b� to the paired units� with probability inversely related to their overlap�

�� Pair o� the units� by comparing all with each other� and picking pairs in order of overlap�
Where a unit overlaps equally with two or more others� attempt to break ties by picking
the one that would do least well if given its second choice� This will give i pairs� plus
j � i unmatched units from the longer string� Filling the child slots would proceed as
for the previous method�
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The �rst of these seems to raise too many complications to be worth considering� Of the
others� the third seems preferable� Consider the two strings f���


���



g and f���


�



��g
again� If the �rst is chosen as the primary one for matching by the second method� the pairs
will be ���


����


 and ��



����


� With high probability� this will ignore the 



��
unit completely� The third method will give equal weight to the two non�identical unit de��
nitions� It will also leave unpaired units from a longer string� but these will have a chance of
being copied into the vacant slots of the child�

The suggested revised recombination algorithm is thus�

�� Decide on the number of units in the child as before�

�� Sort the unit de�nitions� by matching pairs using the overlap measure equation ����
until all the units of the shorter string have been paired�

�� Transmit identical pairs to the child with a high probability pt� transmit less well
matched pairs with probability of pt � overlap� Produce the child unit de�nition by
uniform crossover of the parent strings�

�� Fill most remaining places in the child by selecting parent unit de�nitions at random�
weighted towards those that are unpaired or with little overlap�

�� Fill the one or two remaining slots by uniform crossover of two elements from the
parents� picked at random�

Despite the extra complexity� this algorithm does not need any parameters in addition
to the matched pair transmission probability of Radcli�es method� The selection process
for step �� �lling most remaining places� may conveniently be done using Bakers SUS algo�
rithm �Baker� �	���� The ��tness� of each unit de�nition is initially set at �� and reduced by
the overlap measure from step �� Thus units which matched perfectly in step � do not get a
chance to be selected at stage �� while those which had an overlap of 
�� will get only half
the chance of unpaired units�

The process of matching and selection means that this recombination algorithm will carry
greater computational overhead than a simple crossover� However� any such overhead will
be negligible when compared with the cost of evaluating each net design� which might take
several minutes�

����� Summary

This section has considered some approaches to the genetic de�nition of nets� Most previous
work has failed to tackle the permutation problem that results from the many symmetries
present within in most nets� The exception is Radcli�e� who treats a hidden layer as a multiset�
and advocates a matching process to ensure transmission of units that are common to both
parents with high probability� This matching process was extended by the introduction of a
similarity metric for hidden units� based on the number of common connections�

��� Evaluating the operators

The acid test of the proposed recombination operators will be their ability to produce ef�
fective net designs� Some such experiments are reported in the next chapter� However� the
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full procedure of instantiating� training and testing a net is extremely cpu�intensive for any
realistic dataset� Since both GAs and Backprop�trained nets are stochastic� several runs are
required for each set of parameters with each operator if signi�cant results are to be obtained�
A faster method of evaluating the operators is highly desirable� Some of the results of this
section are reported elsewhere �Hancock� �		�c� Hancock� �		�a��

The method used in this section is to specify a net design manually� and test the GAs
ability to produce a matching net� This may be done by comparing the connections of each of
the target hidden units with each of those speci�ed by the GA� An overlap matrix is built� like
that used for the overlap operator� Target and test units are paired o�� in order of decreasing
overlap� The �tness is given by the sum of the pairs overlaps� minus an arbitrary penalty of
one per unit de�ned in excess of the number in the target net� No speci�c penalty is required
for having too few units� since such nets will be penalised by being unable to match all the
target units� The matching process means that the required units may be de�ned in any
order on the genetic string� so the permutation problem is present�

This match may be evaluated in a fraction of a second� allowing detailed comparisons
between the algorithms to be made� The method also allows the operators to be compared on
di�erent types of net� It might be� for instance� that one operator fares best if the receptive
�elds of the hidden units do not overlap� but another is better when they do� or when there
are multiple copies of the same hidden unit type�

There are a number of potentially important di�erences between this method and the
evaluation of real nets�

�� The connections of a real net typically di�er in importance� whereas the overlap measure
treats all equally�

�� It is likely that a real net design will show a signi�cant degree of epistasis� i�e� an inter�
dependence between the various units and connections� The value of one connection
may only become realised in the presence of one or more others�

�� Linked to this is the possibility of deception� one con�guration for a particular unit may
be good on its own� but a di�erent con�guration much more so only when combined with
another particular unit type� For example� one large receptive �eld might be improved
on by two smaller ones� but be better than either small one on its own�

�� The evaluation of real nets will be noisy�

All of these factors may be added in to the evaluation procedure� albeit not with the
subtlety that is likely to be present in a real net�

����� The recombination operators

Initial trials were performed with a variety of net designs and three di�erent recombination
operators� Radcli�es matching algorithm� the overlap extension to it� and a simple GA using
a traditional crossover� A number of things became clear�

� The overlap operator performed better if all matching pairs �i�e� all pairs with an
overlap greater than 
� were transmitted to the child with probability pt� rather than
pt � overlap as de�ned in section ������
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� Radcli�es prescription of �one or two� unit de�nitions to be produced by uniform
crossover of parent units chosen at random is too disruptive� A better result was ob�
tained by producing one unit this way with a probability pr of around 
���

� The simple GA performed well� rather better on the initial tests than either of the more
complex operators�

The last result was particularly unexpected� suggesting that the permutation problem
may not in practice be very signi�cant� More extensive trials were therefore conducted using
�ve di�erent operators�

�� Random� Like Radcli�es operator� but without the matching procedure� A child
unit was produced by uniform crossover of two parent units with probability pr� the
remainder were picked randomly� without replacement� from the union of the parent
unit de�nitions� This does nothing to address the permutation problem� but is blind to
it� the expected result will be the same whatever the order of units on the two parent�
It was included to give a baseline performance�

�� Match� Radcli�es operator as described above� with one child unit produced by uni�
form crossover with probability pr�

�� Overlap� The overlap extension to Match� with amendments just described�

�� Uniform� A simple GA� with crossover at unit de�nition boundaries more likely �prob�
ability pu� than at other bits �probability pb�� Like Random� this does nothing to address
the permutation problem� but the results will depend strongly on the ordering of the
two parents�

�� Sort� An extension to the simple GA� that matches the unit de�nitions in the two
strings� using the same distance measure as Overlap� and sorts the strings into overlap
order prior to performing crossover� The major di�erence between this algorithm and
Overlap is that the latter produces child unit de�nitions by uniform crossover of the
matched parent de�nitions� while Sort is likely to choose one or other� with only a small
probability pb of a cross occurring at any given bit within the de�nition�

In addition� the evaluation procedure may be amended to remove the permutation prob�
lem� so as to investigate what e�ect it has on Uniform� This is the only operator which does
not rearrange the order of the unit de�nitions during recombination and should therefore be
most a�ected by the permutations� The task for the GA is then simply to match a bit string
in the order given� which� at least in the absence of deception� should be trivial� In the graphs
that follow� this is labelled NP �no permutation��

One other change made to the algorithms described in section ����� was to alter the way
in which the number of units is speci�ed� As noted in section ������ Radcli�es suggestion of
using �at crossover� which gives a value somewhere in the range bounded by the two parents�
causes a strong convergence to the centre of the allowed range� The number of units in the
child was therefore speci�ed by picking the number from one of the parents at random� This
number might be mutated up or down by one �subject to staying within the range of one to
the maximum allowed� with a mutation rate that gave approximately one such change per
generation� The genetic string was �xed length� consisting of a number of unit de�nitions�
preceded by a parameter that speci�es how many of the units will actually be built� For all
the experiments reported below� the maximum number of units allowed was twelve�

	�



����� Evaluation

The initial evaluation algorithm used exactly the same measure of overlap to compare target
and test unit de�nitions as the Overlap operator uses for its matching� It was felt that
this might give undue advantage to Overlap and Sort� since they are speci�cally attempting
to propagate the same similarities that would then be used to evaluate the result� Two
other overlap measures were therefore tried� The �rst simply replaced the measure from
equation ��� with Hamming distance� The same penalty of � per unit de�ned in excess of the
target number was applied� The second matched each pair of target and test units purely on
the basis of the fraction of the target connections present in the test unit� A perfect match
for any target unit would therefore be obtained by switching on all the connections in the test
unit� However� the test string was then penalised for every connection in excess of the total
in the target string� If this penalty was too large� the GA tended to respond by reducing the
number of units speci�ed in the test string� since this is the quickest way to reduce the total
number of connections� A similar e�ect might be produced with real nets if the cpu time
component of the evaluation function was too large� The penalty used in the tests reported
here was 
��� �� � test total

target total
�� This replaces the penalty for excess units used in the other

two procedures� The maximum score in this case is ��
� while in the other two it is equal
to the number of target units� The three evaluation operators may be summarised� in each
case the summation is over the pairs of test and target unit de�nitions after they have been
matched�

�� E� F �
Pi�ntarget

i�� ovi � �ntarget � ntest�

�� E� F �
Pi�ntarget

i�� Hi � �ntarget � ntest�

�� E� F �
Pi�ntarget

i�� jtesti�targetij

target total
� 
��� ��� test total

target total
�

where F is the performance� and the over�size penalty only applies if the test size is bigger
than the target size�

Noise was introduced by addition of a Gaussian random variable to the �nal score for a
string� The results below used a standard deviation of �� of the maximum evaluation score�
which is similar in size to the evaluation noise of Backprop trained nets �see section �������

Epistasis and a form of deception were introduced by giving the GA two target strings�
The �rst was scored as usual� For the second� the target units were grouped� with the score for
the group being given by the product of the scores of the constituent units� This is epistatic
because the score for one unit depends upon the match of others� It can be made deceptive
by increasing the value of the group so that it exceeds the combined score of the equivalent
individual units in the �rst string� The building blocks given by the easy task of matching
the units of the �rst string do not combine to give the better score obtainable by the harder
job of matching the second string� Although not formally deceptive in the sense de�ned by
Goldberg ��	���� such an evaluation function may be expected to cause problems for the GA�
In the experiments reported below� the units were gathered in four groups of three� Since
each unit scores � if correct� the maximum score for the group� being the product of three
unit scores� is also �� The sum of the group scores was multiplied by 	� to give a maximum
evaluation of ��� compared with �� for matching the �rst string� The rather high bonus for
�nding the second string was set so as to ensure that it was in fact found �by all but one of the

		



operators� as noted below�� There are two points of interest in comparing the recombination
operators� are there di�erences in the frequency of �nding the second string� and� having
found it� are there di�erences in the rate of convergence on it� At lower bonus values� all the
operators sometimes failed to �nd the second string� Despite averaging over �


 runs� no
signi�cant di�erences could be found between the operators in their ability to �nd the second
string� The bonus was therefore increased to test convergence� since stochastic variations in
the number of failures might cause di�erences in the average performance bigger than those
produced by the di�erences in convergence�

Target nets

While a variety of target net designs have been used� results from just three are reported
here� These are

�� N� A net with �
 hidden units and �
 inputs� Each hidden unit receives input from
three adjacent inputs� such that RFs do not overlap� Target string length l � �

�

�� N� A net with �
 hidden units and �� inputs� arranged in a �x� matrix� The hidden unit
RFs tile all the �x� squares of the input matrix and are therefore heavily overlapping�
Target string length l � ��
�

�� N� A net with �� hidden units and �
 inputs� The input connections of �
 hidden units
were generated at random� with a connection probability of 
��� Two of these units
were then duplicated� This was the design used for the deceptive problem� a second
target being produced in the same way� using a di�erent random number seed� Target
string length l � ��
�

Note that some combinations of net and evaluation method ought to be quite straight�
forward� being soluble in a single pass by the simple algorithm of �ipping each bit in turn
and keeping the change if it gives an improvement� This requires just l evaluations� Such
an algorithm will probably fail in the presence of noise or deception� but in the absence of
these can solve problems using E� or E�� E�� the overlap measure� may require more than
one pass� because a target and test unit pair which do not overlap will have a score of zero�
which is una�ected by changing any bits not set in the target�

����� Results

There are �ve di�erent operators to compare� with three target nets and three evaluation
procedures� To each evaluation� noise and or deception may be added� In addition to regular
GA parameters such as population and generation size� selection scaling factor and mutation
rate� each of the recombination operators has parameters such as transmission probability
pt� It is clearly not possible to report detailed results for all the possible combinations� A
number of extensive runs were made� stepping through the key parameter values to get a feel
for their interactions� The results were used to guide the parameter settings used in the runs
that are reported� The main points may be summarised�

All the experiments used rank�based selection� with a geometric scaling factor� In the
absence of noise� the selection pressure could be very high� with a scaling factor as low
as 
���� which gives over half the reproduction opportunities to the top �ve strings� This
underlines the essential simplicity of the task� For all the experiments reported below� the
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scaling factor was set at 
�	�� a value more like those used in earlier work with real nets�
reported in chapter ��

The mutation probability pm has a marked e�ect on convergence rates� the optimal value
being of the order of the inverse of the string length� For Match� Overlap and Random� the
probability of producing a child unit by uniform crossover of two parent units at random� pr�
is related to the mutation rate� Both are playing similar roles of introducing diversity� So if
one is set high� the other may need to be reduced to compensate� However� their roles are
to some extent complementary� and it proved bene�cial to have pr at around 
�� even at the
best mutation rate�

For Overlap and Match� the probability of transmitting matched pairs to the child should
be ��
� This is encouraging� since it indicates that� at least for these evaluation procedures�
the matching process is doing something useful�

Uniform and Sort are not sensitive to variations in pb� the probability of crossover in
between unit de�nition boundaries� It was set at 
�
�� For Uniform� pu� the probability of
crossover at unit boundaries should be 
��� corresponding to picking each unit from either
parent at random� For Sort� pu was best set to ��
� which implies picking from the two parents
alternately� This odd result was checked for many combinations of target net and evaluation
procedure� and was consistent� It appears that maximal mixing of the two parents confers
some real advantage� but quite how is unclear�

Generation size has a strong e�ect� especially for Match� Random and Overlap� In the
absence of noise� a slow turnover works best� a generation size of �
 for a population of �

�
In the presence of noise� a small generation size is inadvisable� because poor individuals which
receive a fortuitously high evaluation can linger in the population� However� increasing the
generation size to equal the population size causes problems� with the GA unable in some cases
to progress beyond about 
�� of the maximum evaluation score� It appears that the operators
are too disruptive and need a reservoir of proven strings upon which to build� The solution
is to apply the recombination operator with a probability lower than ��
� typically 
��� The
remaining �
� of strings are copied from one of the parents at random� and re�evaluated�
The re�evaluation is critical and simply reducing the generation size to �
� of the population
does not work� Figure ��� shows results for Overlap� with N� and E�� for generation sizes of
�
� �
 and �

� and a generation size of �

 with a recombination probability px of 
��� all
with population size �

� Without noise� �gure ���a� there is relatively little di�erence in �nal
performance� though the run with px of 
�� is worst because of the unnecessary re�evaluations�
With noise� the two runs with generation size smaller than the population get stuck� while
that with px of 
�� fares best�

Figures ��� to ��� show the results for the main sequence of tests of the three target
net designs� with the three evaluation procedures� All used a population size of �

� with a
generation size of �
 for the runs without noise� and �

 for those with� The results shown
are for the best individual in the population� averaged over �
 runs from di�erent starting
populations� When noise was added to the evaluation� the results are shown for the true
evaluation of the string� without the noise� Note that� in order to maximise distinguishability
of the lines� the axes of the graphs are not uniform� Figure ��� is for N� �with non�overlapping
RFs�� Mutation rate pm was set at 
�

�� Figure ��� is for N� �with overlapping RFs�� with
pm 
�

�� Figure ��� is for N� �random connectivity�� with deception� The third method
of evaluation is not shown because it is not compatible with the deceptive problem� The
evaluation rates the whole string at once� while the deception works at the level of individual
units� Mutation rate for this problem was set at 
�
��

�
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Figure ���� E�ects of varying generation and population sizes� for Overlap with E� and N��
a� without noise� b� with noise added

Of the �rst three recombination operators� there is a clear rank order as expected� Overlap
is better than Match which is better than Random� The unexpected result� mentioned above�
is that Uniform does so well� in the presence of noise often better than Overlap� It appears
that the GA is less troubled by the permutation problem than had been thought� This is
con�rmed by the results when the permutation �problem� is removed� the results are quite
consistently worse�

The explanation for this is pointed to by the consistently poorer starting evaluation for
NP in all the results� When a string is compared to the target in NP� it has to match each
unit with whatever is in that position on the string� When the matching algorithm is added
to the evaluation� there are n� ways for each string to be arranged to match the target� With
�
 hidden units� there are ���� �
� extra maxima� while the search space remains constant�
de�ned by the string length� On average therefore� the initial population with a permutation
scores signi�cantly better than NP� The permutation problem is that the strings corresponding
to these maxima are all in di�erent orders� so a simple GA should have di�culty combining
them� These results indicate that the bene�ts outweigh the drawbacks and in most cases
Uniform is able to keep its advantage over NP� That there is indeed a permutation problem is
con�rmed by the consistently superior performance of Sort� This reaps the advantages of the
permutations� but then seeks to reorder the unit de�nitions so that they may be recombined
advantageously�

Most of the graphs tell the same story� Sort fares outright or equal best in all but one�
Sometimes the di�erence is quite marked� for instance for N� in the presence of noise� �g�
ure ���� Note that the gently asymptotic curves can hide quite signi�cant di�erences in
evaluations required to reach a given performance� often a factor of two� which might be sev�
eral days cpu time with real net evaluations� The performance of Overlap is frequently very
close to and occasionally better than Sort� but it seems to deteriorate more in the presence
of noise� This is partly an e�ect of the need to re�evaluate some of the strings and is clearly
unfortunate given that the evaluation of real nets is certainly noisy�
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Figure ���� Performance of the various recombination algorithms on a �
 hidden unit� non�
overlapping receptive �eld problem N��
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Figure ���� N�� Overlapping RF problem
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Figure ���� N�� Deceptive problem� The failure of NP is discussed in section �����

It does not appear to be the case that the original evaluation procedure� E�� was unduly
favourable to Sort and Overlap� the results from the three evaluation procedures are broadly
similar� If anything� Overlap improves relative to Uniform for E� and E��

����� Solving the permutation problem

The most unexpected result here was that permutations are more of a help than a hindrance�
Radcli�e devotes much of his thesis to the permutation problem �Radcli�e� �		
b�� Belew et
al ��		
� and Whitley et al ��		�� discuss it extensively� while several authors have eschewed
crossover to avoid it �Cecconi � Parisi� �		
� Fogel et al�� �		
� de Garis� �		
� Nol� et al��
�		
�� That permutations should give an initially better evaluation seems clear enough� the
surprise is that Uniform is able to maintain its advantage over NP�

It appears that Uniform is able to resolve the permutation problem in practice� An obvious
question is how� does it solve the permutation and then get on with the target problem� or do
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both concurrently� It is possible to observe it in action� by counting how many times a given
target string unit appears in each of the possible positions in the population of test strings�
If it is in the same position in �nearly� every string� the GA has �e�ectively� solved that bit
of the permutation problem� The test unit de�nition does not have to be fully correct� or the
same in every string� merely closer in each case to the same target unit than to any other�
Displaying the data for all the unit de�nitions gives an indecipherable graph� so �gure ��	
shows the �rst and last unit to be solved� averaged over �ve runs� using N� and E��
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Figure ��	� Uniform operator solving the permutation problem� In addition to performance of
the best string� the number of strings that have the same unit de�nition in the same location
on the string are shown� for the �rst and last units to be resolved�

This and many other runs �not shown� indicate that solution of the permutations is fairly
gradual� and certainly does not precede improvement on the target problem� Resolving the
permutations appears to be a semi�sequential process� with each position becoming �xed
independently� apart from the last two which must go together� As positions become �xed�
the size of the permutation problem is rapidly reduced� However� there is nothing to suggest
that the process of solving it accelerates� indeed� �gure ��	 indicates that the �nal pair of
positions becomes �xed more gradually than the �rst one� This is probably because there is
more e�ective competition between the remaining permuted strings�

What evidently happens is that the whole population gradually gets �xed in the order of
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the best few individuals� The average initial score is about � out of �
� If it is supposed that
this results from having got three units correct� and seven with no score �obviously not the
case�� then it is possible to calculate the probability of combining two random individuals and
producing an o�spring with four or more units correct� It is in the order of 
��� quite high
enough for the GA to make progress� MonteCarlo simulations would be required to estimate
the probabilities for the real problem� However� it is evident that the permutation problem
is not as severe as had been thought� It is not necessary to solve it in one go� provided there
is a reasonable chance of bringing good alleles together� the GA will do the rest�

A sceptic might suppose that crossover is not contributing to the solution� and that
permutation problem is overcome by a mixture of selection and mutation alone� i�e� the
system is acting as what Whitley et al ��		�� call a �genetic hill�climber�� This is easily
checked� �gure ���
 shows Uniform� using N� and E�� with and without crossover enabled�
at three mutation rates� Mutation alone evidently can solve the problem� but even with this
very simple problem the addition of crossover causes a marked improvement�
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Figure ���
� Uniform on N� with E�� with and without crossover enabled

Resolving the permutations is aided by high selection pressure� by increasing the dom�
inance of the top�ranked string� it is better able to enforce its order on the population� It
was therefore thought that deceptive problems would pose a challenge� since too high a rate
of convergence would appear to reduce the chances of �nding the deceptive solution� As �g�
ure ��� shows� NP was actually worse than Uniform� failing to solve the deceptive problem
in three out of four cases� The reason is the same as before� when many permutations can
be tried there is a better chance of �nding a combination of units that scores well on the
harder task� If the value of the second string is increased su�ciently� NP will also �nd it
every time� NP is successful when using Hamming distance� E�� in the presence of evaluation
noise� The noise appears to inhibit convergence long enough to allow the better strings to
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emerge� However� despite extensive testing� no problem could be found for which NP out�
performed Uniform� unless the selection pressure was arti�cially reduced �Hancock� �		�a��
The permutation gains still outweigh the drawbacks�

This raises the intriguing possibility that it might be worth deliberately adding permuta�
tions to a problem where they do not exist� This possibility was tested using Genesis and a
modi�ed version of deJongs F�� see section ������ The modi�cation was to make the three
target parameter values di�erent� so the optimal values were at ��� 
 and �� The three test
values from each string were tried in each position� with the best evaluation result being
returned� As expected� the initial performance was better than for an algorithm without the
permutation search� however� with the relatively weak selection pressure available with Gen�
esis� the advantage was maintained for only around �


 evaluations� Even this advantage is
largely illusory� since each �evaluation� of the permuted problem is in fact six separate eval�
uations� with the best value being returned� With most problems� every di�erent ordering
of the parameters will require such separate evaluation� There is therefore little mileage in
adding in permutations� the point about a net design is precisely that it doesnt matter which
unit is de�ned where� all orderings will give the same result�

����� Summary

This section has presented an empirical comparison of �ve recombination operators on a sim�
ulated net�design task� On this evaluation� the Overlap operator performs better than the
simpler Match� However it is rarely better� and sometimes worse� than a simple crossover
operator and on this evidence the considerable extra complexity cannot be justi�ed� The per�
mutation �problem� was shown to have two components� a bene�cial increase in the number
of possible solutions and a di�culty in bringing together di�erent bits of the solution� For
these problems� the advantages outweigh the drawbacks� and a GA using the same crossover
operator� but without the permuted evaluation consistently does worse� That there is a prob�
lem in combining building blocks is demonstrated by the consistently good performance of
Sort� which attempts to realign unit de�nitions prior to crossover� On the basis of these
comparisons� Sort is the operator of choice�
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��� Introduction

Gannet is a rather obvious acronym for the combination of genetic algorithms and neural
nets� and its use seems to have evolved independently on at least three other occasions �Rad�
cli�e �����b�� who is principally concerned with learning weights� Spo�ord and Hintz ������
and Robbins et al �������	 The author has used it in the context of net structure speci
ca�
tion �Hancock� ����a� Hancock � Smith� ������ which is the subject of this chapter	

The underlying motive for the work in this chapter is the production of better�generalising
nets� as was discussed in section �	� by matching the structure of the net to the problem	
Because of the permutation e�ects discussed in the previous chapter� the focus shifted to
an investigation of the problem of how best to code the net on the genetic string� and how
to construct a useful recombination operator	 The nets are feed�forward designs for use as
classi
ers� amongst the simplest types of net� but quite complex enough to demonstrate the
permutation e�ects described in the previous chapter	 Most of the work was completed before
the results reported in the previous chapter� it was the di�culty of obtaining statistically
signi
cant results with real nets that prompted that work	

Three separate experiments are described in this chapter	 The 
rst started out as an
automated method of searching the space of net designs for the face recognition data of
chapter � and continued to look at ways of addressing the permutation problem	 The overlap
measure described in the previous chapter was conceived during this work	 The second
experiment reports results from the use of Whitley�s ������ pruning method on some of the
same data	 The 
nal experiment looks at the e�cacy of the various recombination operators
described in the previous chapter on the real problem of designing nets	

All of these experiments consider feed�forward nets used for classi
cation of input data	
The GA speci
es the internal connectivity of the net� which will then be trained by Backprop�
or some equivalent	 The principal aspect of performance to be optimised is therefore the
ability to generalise from the training data	 An estimate of this ability is obtained by scoring
a test set	 Subsidiary aspects of performance are training time and net size� which are
not necessarily simply related	 As stressed in chapter �� the evaluation procedure used is
important� especially since the test performance of a given net is so variable	 In section �	�	�
a method is introduced which gives extra evaluations to the best designs� and its e�cacy is
demonstrated	

The ability of a GA to design a net may be considered at two levels	 The 
rst is the
level of feasibility� is it possible for a GA to manipulate net structures in such a way as to
produce a better test score� For this purpose� the test data may be within the loop of the
GA�s evaluation cycle �though not� of course� seen by Backprop during training of the net�	
If the GA is successful� the net may produce very high scores on that particular test set�
which would not be a true estimate of its wider generalisation ability	 The second level asks
whether a GA can stand comparison with other ways of optimising a net� constructive or
pruning algorithms� weight decay etc	 In this case� the test data must be kept out of the
GA�s loop� in order for the comparisons to be valid	 Most of the work reported below is at
the 
rst level� of feasibility studies	
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Parameter Possible values

� Active unit f���g
 Cluster type f���g
� RF x�centre f���		���g
� RF y�centre f���		���g
� Receptive 
eld type f����		��g
� Contact blob position units f���g
� Contact blob mass units f���g
� Contact blob width units f���g
� Contact blob height units f���g
�� Contact blob orientation units f���g

Table �	�� The ten parameters that specify a cluster of hidden units	

��� Face recognition

The work described below continues looking at the face recognition data from chapter �	 The
experiments reported there indicated that the internal structure of the net had a signi
cant
e�ect on the test performance	 Manual search of possible structures was laborious� however�
since enough runs to achieve signi
cant di�erences took several cpu hours	 A GA was built
to explore the structure space automatically	 The dataset chosen was the Type  coding� for
two reasons� the combination of topographic and symbolic coding gave a large input space to
work with� while the best manually�coded 
gure of �� on test left more room for possible
improvement than the Type � coding	

The investigation proceeded in two phases	 Initially� the net speci
cation method was
quite powerful� in that arrays of hidden units like those found to be useful during the manual
search were generated by one set of parameters	 This speci
cation method turned out to be
so powerful that it left the GA little to optimise	 So in the second phase� the task was made
harder by weakening the speci
cation method	 This raised the permutation problem� which
was addressed by using ordering operators prior to crossover	

��� Phase �

����� Net coding

The size of net developed manually� several hundred input units and perhaps a hundred hidden
units� ruled out the possibility of a complete� strong coding like that of Miller et al ������	 A
system closer to that used by Harp et al �����a� was employed� but more speci
cally tailored
to the given task	 The number of units and connections is speci
ed precisely� but a whole
cluster is de
ned by one set of genes	 These were set up so that the GA could explore a
similar space to the earlier manual methods	 As the earlier work had indicated no bene
t
from more than one layer of hidden units� only one layer was allowed	 This considerably
simpli
es coding� and means that relatively few checks are needed for �illegal� designs such
as isolated units	

The genetic string has eight blocks� each de
ning a �cluster� of hidden units	 Each block
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a� Single unit �clusters�
Type� � �  � � � � �
Synapses � � � �� � � �� ��

b� Array type clusters
Type � �  � � � � �
RF size �x� �x� �x� �x� �x� �x� x �x�
RF Overlap � �  � � � � �
Units � � � � � �� ��� �
Synapses ��� ��� � � �� ��� ��� ���

Table �	� Receptive 
eld sizes and patterns	 a� for single units where type codes the number
of synapses� b� for array type clusters	

has ten parameters� listed in Table �	�	 The 
rst parameter is a switch which speci
es whether
the cluster actually exists	 If it is o�� then the rest of the block is ignored when the string
is being interpreted	 This method allows a variable number of clusters without the added
complexity of allowing variable string lengths	 It has a side e�ect in that unexpressed blocks
may still undergo mutation without su�ering any selection	 A mutation on the switch bit will
then cause a new� untried cluster to appear	

The second parameter speci
es one of two types of cluster	 One type is in fact a single
hidden unit� which may be connected to a speci
ed subset of the input units	 The other
type is a square array of units� matching the topology of the input layer� each with its own
receptive 
eld �RF�	 The array format was that found to be useful during the manual trials	
The single unit type was added to give room for the algorithm to put extra discriminative
power� in the form of more trainable inputs� where it was needed� perhaps in the centre of
the face	

The next two parameters are only meaningful for single unit clusters� and specify the x
and y centres for the speci
ed receptive 
eld	 The same comment about hidden mutation will
apply� if the block speci
es an array cluster the x and y parameters will not be subject to
selection� but may be expressed later if a mutation causes the block to specify a single unit	
The 
fth parameter speci
es the RF of the unit�s� in the cluster	 This is implemented via a
look�up table which di�ers for the two cluster types and is shown in table �		 The RFs are
arranged in order of increasing net size� in terms of synapses and units	 In phase one� these
three parameters were coded directly as integers� see section �	�	�	

The remaining 
ve parameters are simple switches that specify which of the 
ve types of
input unit members of the cluster will contact	 A check is made when each new o�spring
is generated to see that at least one of these switches is on	 If not then one is turned on
at random	 A similar mechanism ensures that at least one of the blocks speci
es an active
cluster	 No other checks for net �legality� are required	

No attempt was made at this stage to address the permutation problem� precisely the same
net may be coded by many di�erent strings	 However� the worst e�ects of the problem are
ameliorated by the array cluster speci
cation	 Here� one set of parameters de
nes potentially
a whole layer of hidden units� in a speci
ed order	 The relationship between all these hidden
units is therefore 
xed	 However� there remains the problem that another string might contain
the same array speci
cation in a di�erent location� so that crossover produces two such arrays
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or none	
The output layer was fully connected to whatever hidden layer was produced by the GA	 It

is obviously possible that reduced connectivity between these layers would be bene
cial� but
it was decided that specifying one layer was complex enough	 It also maintained continuity
with the manual design approach	 For the same reason� the 
ve unit output coding of the
earlier experiments �section �	�	�� was retained	

����� Evaluation

There are a number of possible performance criteria for nets	 Usually the most signi
cant
is its generalisation ability� since this is the task the 
nal net will have to perform	 This is
usually estimated by counting errors on a test set� unseen during training	 Where the training
set is di�cult� or the aim is fast learning� the squared training error may be used as a target
e	g	 �Schi�mann et al�� ����� Anthony et al�� �����	 Simply learning the task may be the 
nal
aim� for instance in neuro�controllers such as a pole�balancer �Wieland� ����� Whitley et al��
������ where the score is the length of time balance is maintained	 Harp et al �����b� use a
performance measure constructed from several components� so that they may tune the search	
For instance they can give credit for having units with a small fan�out� which is advantageous
if the design is ever to be cast in hardware	 In the work reported here� we are principally
interested in reducing the classi
cation errors on test� and so this is the measure used	

The scoring was done as for the manual test �see section �	�	��� again using Quick�
prop �Fahlman� ����� for training	 The procedure involves repeatedly segmenting the data
into training and test sets� such that each set of images is used in turn as the test set	 This
kind of testing� a form of cross�validation� is familiar to statisticians as a means of evaluating
a classi
cation algorithm	 As noted above� since the test data is within the evaluation loop
of the GA� the performance cannot be taken as an indicator of the net�s wider generalisation
ability	

The e�ect of noise on the evaluation is a signi
cant issue	 Backprop trained nets vary in
performance from run to run� especially if the net is under�constrained by the data	 One aim
of the work is to generate a net that is well�constrained by the data� so it might be hoped that
evaluation noise would gradually decrease� but the question remains of how much e�ort to
expend on reducing noise	 There is some evidence �Grefenstette � Fitzpatrick� ����� that it
is better to get quick� noisy results and therefore get through more generations than to spend
time assessing each individual	 One evaluation here took about � minutes of MicrovaxII cpu
time� but unfortunately also gave a reasonable chance of scoring ���� on test	 If the best
nets are to be distinguished� some averaging seems necessary	 The scheme adopted was to
retest any net scoring more than ��� and taking less than ��� cpu seconds to complete the
test procedure	 If the average was still better than ���� a further two tests were run and
the results averaged again� relatively few nets achieved this	 The e�cacy of this evaluation
procedure was tested by observing the elimination of a penalty bit� see section �	�	�	

While the primary desire was to improve test performance� it seemed wise� not least
because of the evaluation times� to encourage the production of fast learning and smaller
nets	 This was done in three ways	 Nets that required more than ��� cpu seconds to
evaluate received a 
xed penalty of ��	 When the strings are ranked for selection� nets with
equal test scores� a fairly frequent occurrence due to the rather coarse quantisation of the
test scores� preference was given to those using less cpu time	 Slow learning nets were further
penalised indirectly by setting a limit of �� epochs	 As the best manual design required an
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average of � epochs� this was� intentionally� a tight limit	 Large� slow�learning nets are also
most likely to hit the cpu�time limit	

Because of the evaluation noise� there is no guarantee that the highest ranking net found
during the run will remain the best when tested again� external to the GA	 Occasionally
an average net will perform well enough to appear high on the ranking list	 Several of the
better nets were therefore retested manually� averaging over at 
rst � and later �� restarts	
The best scores seen during the GA run are inevitably optimistic� being samples from the
top end of the distribution of performance for the net in question	 This was re�ected in the
consistently lower scores observed when nets were retested after the run	

����� The Genetic Algorithm

Crossover was limited to the cluster boundaries� an arbitrary decision �considered further
below in section �	�	�� that will encourage the system to explore new combinations of existing
clusters rather than new cluster designs	 Crossover probability was �	�� meaning that cluster
de
nitions were chosen� in order� randomly from either parent	 Mutation acted as usual for
binary switches� but was weighted to produce relatively small changes in the values of the
integer variables	 Mutation rate was set at a probability of �	� per gene� a higher than
usual rate because the cpu load required the population to be rather small for the size of the
parameter space	 Goldberg�s �����c� analysis suggests a population of over ������� for a string
length of ��	 As that was out of the question� a traditional �DeJong� ����� value of �� was
chosen for most of the runs	 The e�ects of a small population were reduced further by using
a generation size considerably smaller than the population� typically �� �in DeJong�s ������
terminology� a generation gap of �	�	

Selection was done on the basis of rank� using a scaling method �see section �	��	 This helps
to prevent premature convergence caused by exceptionally good individuals dominating the
selection� a problem likely to be exacerbated by the noisy evaluation	 It also obviates the need
to combine test score and cpu time into a single 
gure of merit	 The selection algorithm used
was initially a simple roulette wheel� later replaced by Baker�s optimal stochastic universal
selection algorithm �Baker� �����	

����� Results� selecting for performance

Two initial experiments� with population sizes of �� and �� were run for around �� generations
of size ��� which took about �� days on a MicroVaxII	 Both produced several designs that
scored ��� on the four trials of the internal evaluation� which fell to around ��� when
averaged for �	 The best was ��	�� a slightly better 
gure than the best manual design
��	���� though the di�erence is not signi
cant	 However� this was encouraging� since the
best manual design was around �� better than any of the others	 The GA was thus able to
match the best that had been done manually	 The GA designs learned rather more rapidly�
in around � epochs� compared with � for the manual design	 The nets were slightly bigger�
but there was still a net saving in cpu time for training	

A control run was then tried� using the same program� but with the selection scaling factor
set at �	 Performance was thus not taken into account when selecting parents	 The average
performance did not improve� as expected	 However� in the �th generation an individual
was produced that scored ��� when tested for � runs	 The net was rather larger than that
produced by the �live� GA� but the result does suggest that the GA is not achieving very
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much	
A new pair of experiments were tried� from the same� new� random start population of

size ��	 Generation size was ��� the scaling factor was set to �	�� in one� and �	� in the
other	 Both ran for �� generations� with very similar results to the 
rst runs	 The best live
GA design scored ��	��� the best control� �	��	 It was discovered subsequently that the
best of the initial random population also managed ��	 It thus seems that the GA was
achieving very little	 The di�erences are not signi
cant� despite averaging over � runs� since
the standard deviation of the scores is around ��	

More signi
cant di�erences lay in the size of the nets� the live design had ���� synapses�
the control design� ����� while the random net had ���	 Given the problem of training times
with Backprop� this is a useful improvement� but not really worth spending many cpu days
searching for	

����� Evaluating the evaluation

Given that the GA did not achieve very much� it is worth considering whether it was being
asked to do the impossible	 GAs are supposed to be resilient to evaluation noise� but perhaps
there was simply too much for the system to be able to make useful progress	 The standard
deviation of the scores on the external runs was around ��� large compared with the di�er�
ences between net designs	 The evaluation procedure was tested by adding an extra bit to
the genetic string� which� if set� caused a 
xed penalty to be deducted from the evaluation
score	 Figure �	� shows that the system is able to eliminate even a �	�� penalty	 This is an
order of magnitude less than the standard deviation of the evaluation noise and suggests that
the GA should indeed be able to make 
ne distinctions between nets	
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Figure �	�� Elimination of a penalty �ag of value � and �	��� number of penalty bits set
in a population of �� are gradually reduced	
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Selection method hidden units connections test score training epochs cpu secs

Test score ��� ���� ��	�� �	�� �	� �	�� ��	� ��	��
Speed � ��� ��	�� ��	�� �	� �	�� �	� �	��

Table �	�� Comparison of nets selected for test performance and for speed� average of �� runs	
Figures in brackets are standard deviations	

����� Selecting for speed

Since the improvements seemed to be coming from training times rather than recognition
performance� an experiment in selection for speed was tried	 The time taken to learn the
complete set of �� stimuli once was measured� and multiplied by the number of epochs to give
a 
gure of merit	 Since cpu time is itself dependent on the number of epochs� the evaluation
is quadratic in epochs� and linear in net size	 It will also be very noisy� but much quicker
than the earlier generalisation test	 Two runs were tried� both with population size ��� but
one with a generation size of �� and the other of ��	 The latter was tried as a hedge against
the noisy evaluation� if the whole population is replaced then a freakishly good result will
not gain undue advantage	

The results during the run favoured the smaller generation size� which gave a noticeably
lower average evaluation time	 The scores of both improved during the run� but the end
results were similarly disappointing	 Not only were the recognition rates consistently below
���� but the average number of epochs required for training increased to � or �	 However�
the cpu usage did indeed come down	 Despite the emphasis on epochs in the evaluation score�
the GA apparently found it easier to reduce the size	 Table �	� gives a detailed comparison
of the results for two of the best nets found by the di�erent selection procedures	 The speed�
selected net is smaller� requiring slightly more training epochs but much less cpu time	 If it
were particularly desired to reduce the training epochs� the contribution of this term in the
evaluation function would evidently need to be increased	

����� Phase � conclusions

Test Training
Origin score Connections epochs cpu secs

Manual �	�� ���� � ���
Random �� ��� � �
Control �	�� ���� � �
Live GA ��	�� ���� � ���

Table �	�� Summary of results for best nets from initial population� control run and the GA�
together with best manual design� average of �� runs	

The aim of this piece of work was to see whether a GA could automate the task of searching
for a net architecture that generalised well	 The net speci
cation method was deliberately
designed so that the GA could readily explore a similar space to that of the manual search	
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The results are summarised in table �	�	 Nets were indeed produced that performed at least
as well as the best manual design	 Since that net had been better by several percent than any
other� the aim initially appeared to have been ful
lled	 However� the performance of control
runs� and indeed of the initial random population� indicate that the power came from the
speci
cation method� rather than the genetic search	

The ability to specify individual hidden units was included to give the GA some freedom
to add extra discriminatory power where it was needed	 The best performing net only had
one single unit� when this was deleted� performance averaged over �� runs fell� but only from
��	�� to ���	 Although the penalty bit experiment indicates that a di�erence of this size is
detectable� there is unlikely to be strong selection pressure on such a single unit	

The manual testing had suggested that the blob orientation information was of little use�
and all the later hand�coded designs had no connection to the orientation units	 The best GA
design included such connections	 These were deleted manually� and the net retested by the
full procedure of �� runs	 Performance fell from ��	�� to ��	��� a relatively large di�erence
that suggests that there is indeed useful information in the orientation data	 It is precisely
this kind of decision that is di�cult to make manually� with so many interacting variables
it is hard to see which are responsible for improvements	 The disappointment is that the
GA was not able to improve signi
cantly on the end performance� especially given its extra
exposure to the test set during evolution	

The system appeared to hit a limit of around ��� on test	 It seemed possible that the limit
might either be imposed by the data� or re�ect a failure by the optimisation technique	 For
instance� it might have been that the building blocks o�ered by the net speci
cation method
did not combine successfully� since no attempt was made to address the permutation problem	
There might also have been too much of the experimenter�s assumed knowledge built�in� such
that the net�speci
cation method simply did not allow better nets to be produced	 It is
certainly the case that the number of connections in the nets produced is still high compared
to the number of examples in the training set	

One answer appears from the speed�selected runs� the evaluation performance of which did
improve steadily through the generations	 It appears that� in this case at least� the GA is able
successfully to combine the building blocks to produce better performance	 Unfortunately this
experiment fell foul of the WYTIWYG syndrome� while evaluation performance improved�
the end results on the real task did not	

Near the completion of work reported in this section� a K�nearest neighbours �KNN�
classi
er was written	 This works by measuring the Euclidean distance between a test vector
and each of the training vectors	 The test vector is classi
ed as the target that appears most
frequently among the k nearest training vectors	 This algorithm can be expensive in storage
space and search time	 In this case it is also very e�ective� values of k from  to � always
scoring ���� on any of the ten di�erent segmentations of the data set	 It became evident
that the performance limit observed was not imposed by the data	 Given the size of the nets�
a plausible explanation is over�
tting of the limited training set	

Even before the KNN result� it did not seem worth pursuing this set of experiments
further	 The average performance was too good for di�erences to be easily distinguishable	
It was therefore decided to create a similar� but harder data set	 This could be used as a
test�bed for addressing the possible permutation problems more directly	
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��� Phase �

In this work the task for the GA was made harder� not only with a new data set� but
by removing the ability to de
ne arrays of hidden units in a single de
nition	 The aim
here was twofold	 By removing array clusters� some of the experimenter�s preconceptions of
good structures were removed	 This would allow the GA freedom to explore new designs�
particularly more compact nets that should reduce the problems of over�
tting of the training
set	 The freedom brings the drawback of a signi
cantly worse permutation problem	 In
phase one� there had been only � cluster de
nitions	 With every �cluster� now reduced to
only a single hidden unit� the number of clusters allowed was increased	 Since there are n�
permutations� the second aim was to 
nd ways to address the problem	

����� Data

A new data set was produced by doubling the number of identities� and halving the number
of examples of each �i	e	 � examples each of � individuals� � of each gender�	 The variety
of poses was also increased	 Output coding was kept as four bits for identity� one for gender�
for compatibility with the earlier work	 This meant that � of the �� possible combinations
of � bits were used	 It became clear later that this was a bad choice� and that a simple � of n
coding would have been preferable� giving better results in less cpu time	 However� the main
series of results below used this � bit coding	

Subsequent to most of the GA work� the data set was classi
ed by the KNN technique	
This con
rmed that it was more di�cult� producing the results shown in table �	�	 However�
with k�� an average score of �� was returned� better than any of the Backprop results
below	

Test set k� � � � ��

� �� �� �� ��
 � �� �� ��
� � �� �� ��
� ��� ��� �� ��
� � ��� � ��

Average � �� �� ��

Table �	�� Performance of K�nearest neighbours classi
er on the second face data set� �
correct on the 
ve di�erent segmentations� for varying values of k	

����� Net coding

The only change to the net coding from the previous runs was the removal of the facility to
de
ne array clusters	 The second parameter� that de
ning the cluster type� was removed�
leaving nine	 Initially the number of cluster de
nitions �now meaning simply the maximum
number of hidden units� was increased to �	 In the light of initial trials� this was further
increased� 
rst to ��� then to ��	 All these numbers are arbitrary and it is quite possible that
a larger number would give better performance	 However� the aim is to explore the interaction
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between GAs and NNs� rather than achieve the ultimate performance on this particular data
set	

The three parameters that de
ne the position and size of the receptive 
eld had been
coded directly as integers in the phase � experiments	 For comparison� trials were carried out
with a more traditional binary coding� with � bits to code the �� possible RF locations in each
axis� and � bits to code the � possible sizes	 One of the disadvantages of this binary coding
is the need to do something with the surplus resolution� � bits giving �� possibilities	 In this
case� each bit contributed ����� to the value� which was then rounded to the nearest integer	
This meant that some integer values had more than one binary representation	 Because of the
binary coding� adjacent integers� and possibly even the two di�erent codings of the same value�
might have very di�erent bit patterns	 To counteract this a creep operator �see section �	�	��
was introduced� in addition to the usual binary mutation	 This allowed mutation to move
between adjacent integer values without an unlikely combination of bit �ipping	

����� Initial trials

The purely single unit coding was 
rst tried on the original data set� allowing up to �
units	 A number of GA runs were carried out� varying parameters such as mutation rate
and scaling factor� but making no attempt to address the permutation problem	 The best
performance observed� when averaged over �� trials on retest� was ��	��	 A number of the
better performing nets from these trials were retested against the second data set	 The results
of this comparison are shown in 
gure �		 There is very little correlation between the scores
on the two nets �r��	���	 This may be seen as good or bad� it indicates that the GA was
successful in tuning the net to the 
rst data set� but was unsuccessful in producing a net
that generalised well to a di�erent example of the same task	 The poor generalisation is not
surprising given the small number of examples relative to the size of each input vector	 The
problem is one stage removed from that of training a net with insu�cient data	 In that case�
the net may learn a look�up table on the training set� and fail to generalise to the test set	 In
this case� the GA may produce a net that performs well on the given test set� by e�ectively
learning the relationship between the training and test sets	

A question of immediate concern� given the lack of much obvious contribution from the
GA in phase �� is whether live runs fared any better than control experiments	 This was
checked� as before� by running the same algorithm with a selection scaling factor of �	�	 The
result was reassuring� the best found by the control run being only ��	��� despite searching
for twice as many generations as a live run that gave ���	 The control nets were also slower
to train� taking ��� hours for �� trials� compared with ��� hours for the live run nets	

����� Evaluation

There are two aspects to evaluation here� evaluation of the net within the GA� and evaluation
of the GAs themselves	 The internal evaluation was modi
ed in the light of early trials to
take account of the harder data set� an additional evaluation being carried out if the score
exceeded ���� and a further two if it still exceeded ��	 Evaluating the GA is more of a
problem	 Being stochastic� performance will di�er from run to run	 Ideally� therefore� results
should be averaged from many runs with di�erent random number seeds	 Unfortunately� even
with a move to faster workstations� a run of ��� generations of size �� took about a week	
So �many� became four di�erent initial populations� which were used to compare di�erent
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Figure �	� Comparative performance on 
rst and second datasets of nets evolved using the

rst data	

algorithms	 At the end of the run� which was arbitrarily 
xed at ��� generations� the best

ve nets from each population were retested� averaging over �� trials	 This produced twenty
results� which are the runs shown on several performance graphs below	 It will be seen that
there is a wide variation in the results from nets produced by a single run of the GA	 We
are primarily interested in the best performance produced� so one means of evaluation is to
compare the best scores produced by a given GA from each of the four start positions	 These
scores� along with the error bars resulting from averaging over �� Quickprop runs� are also
shown below	

A more formal means of comparison is given by a two�way analysis of variance �anova��
the 
rst factor being the two GAs to be compared� the second being the four di�erent start
populations	 This averages over all the nets tested from each GA	 �� trials of each of 
ve
nets from four di�erent runs gives a total of ���� data points for each GA� which allows
quite small di�erences to be resolved	 Usually� p � ���� is accepted as being a signi
cant
di�erence for one�o� comparisons	 Since a number of GAs are being compared the acceptable
p value needs to be rather smaller� to counter the increased chance that a null result will
show as signi
cantly di�erent	 The statistic needs to be regarded with some caution in any
case� because the range of performances produced even by the 
ve nets from one run can be
bigger than the di�erence between the means for the two GAs	 In all cases� therefore� the
calculated p value will be given� usually along with the two mean values� �� and ��	 A value
of p � ����� will be regarded as signi
cant	

There are a number of parameters associated with a GA� which may have a signi
cant
e�ect of performance� population size� selection pressure� mutation and crossover rates etc	
A number of early trials indicated no preference for anything other than a population of ��
and a generation size of ��� so these values were adopted for all the other work reported here	

Given the amount of evaluation noise� selection pressure was felt to be especially impor�
tant� too high and the system might converge prematurely� too low and the noise might
swamp useful di�erences	 Eight runs were carried out� varying initial seeds and other at�
tributes of the algorithm� to compare selection scaling values of �	�� and �	��	 An anova run
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from a total of �� extended trials was signi
cant �p � ������ in favour of �	��	 Some trials
with a scaling value of �	� indicated that selection pressure was then too high� leading to
very early convergence	 A value of �	�� was therefore chosen	 This decision was supported
later by a repeat of the penalty elimination test� using the proportionate overlap crossover
algorithm to be described below	 This indicated that a scaling value of �	�� was able to elim�
inate a �	�� penalty� while a scaling value of �	�� was not	 We are not particularly concerned
with the optimum value of such a parameter� merely one that works su�ciently well to allow
other changes in the algorithm to be compared	 Unfortunately� there is always the possibility
of interactions between the parameters� for instance di�erent recombination operators might
react di�erently to variations in selection pressure	 This might be addressed either by varying
the parameters with a meta�level GA �Grefenstette� ������ or by exhaustive manual variation
of each parameter	 The evaluation time rules out either possibility� the best that can be done
is to keep to fairly conservative values for parameters such as selection pressure and mutation
rate� and accept that the various algorithms may not be displaying their full potential	

����� Other aspects

An obvious question associated with the move from speci
ed array structures to individual
hidden units is how many to allow	 A couple of runs with the original net speci
cation
method on the second data set achieved a best performance of ��	��	 Allowing up to �
hidden units scored only ��	��� allowing �� scored ��	��� while allowing �� managed ��	���
though this net only actually used �� hidden units	 As allowing �� units achieved a level of
performance comparable with the original scheme� this number was adopted for further work	
Although the recognition performances are comparable� the array�generated net are much
bigger� with over ��� hidden units and typically three times as many connections	 Despite
requiring fewer training epochs ������ cf ������� the overall training time is noticeably longer
for the array�generated nets ���� hours for �� runs cf ��� hours�	

Another detail of the GA is whether to con
ne crossover to the boundaries of hidden unit
speci
cations	 In the phase � work� this restriction had been imposed� because it was felt that
allowing unrestricted crossover between cluster de
nitions which� because of the permutation
problem� might be entirely di�erent would be too disruptive	 GA tradition� formalised by
Radcli�e as proper assortment �see section �	�	��� would argue against such limits� since it
would reduce exploration of untried hidden unit de
nitions to the e�ects of mutation	 In this
case the mutation probability was already set fairly high to counteract the small population	
There was the additional possibility of mutation occurring on the switch bit that controls
expression of a unit de
nition� that would bring into play untried combinations	 It seemed
that it might be more important to let crossover concentrate on exploring new combinations
of existing unit de
nitions	

This decision was tested� by the full procedure of four runs from di�erent initial popu�
lations	 The results are in favour of the restricted crossover �anova� �� � ����� �� � �����
p � ������	 It was therefore used for future experiments	

Coding of integers

Initially� the algorithms that used binary coding of the RF centre and size parameters did
not have a creep operator� and direct coding gave better results	 Introduction of the creep
operator brought about an improvement� so that a comparison between two algorithms that
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both used the X�Y sort �see below� showed a probable advantage for binary coding �anova�
�� � ����� �� � ����� p � �������	 This di�erence may partly be caused by di�erent e�ective
mutation rates� it being di�cult to equate the e�ects of a Gaussian random variable used
for the direct coding with the combination of a creep operator and bit �ips used for the
integer coding	 Ideally� a series of runs at various mutation rates would be compared� but
since the di�erence observed was not very big� and the cpu cost of such an exercise would be
considerable� it was not pursued further� and all the results below are from binary coding�
with a creep operator	

����� Addressing the permutation problem

Three methods� the 
rst two of which were outlined in section �	�	�� were developed to try and
address the permutation problem in this work	 All seek to identify units in the two parents
that may be playing a similar role� so that they may be paired prior to crossover	 The child
will then inherit one or the other	

�	 X�Y sort	 The hidden unit de
nitions were sorted according to the x� y coordinates of
the centre of their receptive 
elds on the ����� input array	 As explained in section �	�	�
and 
gure �	� on page ��� this will not be very reliable� since the position of units later
in the list will depend on those earlier	 It will also regard a unit at the right�hand end
of one row as being next to one at the left hand end of the row below	

	 Overlap sort	 Another problem with the X�Y sort is that there is no reason why two
units with the same RF centre should actually have any inputs in common� since there
are 
ve di�erent input types	 One might contact� say� blob mass units� the other the
width and height units	 Presumably such hidden units would serve di�erent roles	 On
the basis that units with similar inputs will have similar roles� they are matched on the
basis of what proportion of their inputs are in common	 An overlap matrix is built�
before pairing units in order of decreasing match	

�	 RF centre distance	 This was a late addition� matching units simply on the distance
on the input array between their RF centres� otherwise building a matrix as for overlap
sort	 It was intended to address the problem with row ends associated with the X�Y
sort� but still has the potential failing that matched units may actually have no inputs
in common	

The 
rst experiment compares X�Y sort with unsorted crossover	 Anova indicates a clear
advantage for the sort procedure ��� � ����� �� � ����� p � ������	 A graphical presentation
of the results is shown in 
gure �	�	 The left hand graph shows the test performance of all �
nets� arranged in ascending order for each algorithm	 There is no other connection between
points in the same x position for the two algorithms� each point may have come from any of
the four GA runs	 The intention is to give an idea of the range of results from each algorithm	
There is an overlap� although the unsorted algorithm is on average around � worse� its best
results are much better than the sorted algorithm�s worst	 Such a range of results from nets
which were all in the top 
ve at the end of the GA runs gives an indication of the problems of
evaluation noise	 Some of the worse results come from nets which were generated quite early
in the GA run� but got a fortuitously high evaluation� despite averaging over four trials� and
survived through to the end	 Other� later nets lower in the 
nal ranking might prove to be
better on extended testing	
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The right hand graph compares the best result from each algorithm for each start popu�
lation� here� x�position is signi
cant	 The error bars are standard errors resulting from the

fty evaluations of each net	 In this case� three of the four runs show a signi
cant advantage
for the sorted algorithm	 That the fourth does not is another indication of the di�culties of
evaluating the GAs	
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Figure �	�� Performance of nets produced by GAs using X�Y sort and no sort prior to
crossover	 A� Best � nets from each of four GA runs� in ascending order for each GA	
B� Best individual net from each of the four starting populations	

A set of runs was also performed with crossover disabled completely	 This was worse than
even the unsorted crossover ��� � ����� �� � ���� p � ������� recombination is bene
cial�
even in the presence of the permutation problem	
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Figure �	�� Performance of nets produced by GAs using X�Y sort and overlap sort prior to
crossover	
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Overlap sort

The next comparison is between X�Y sort and overlap sort� 
gure �	�	 Unexpectedly� the
overlap sort is quite clearly worse� by around �� ��� � ����� �� � ���� p � ������	 It
is even worse than the unsorted runs ��� � ����� �� � ���� p � ������	 The search for
an explanation led to 
gure �	�� which plots the test scores against the average number of
connections per hidden unit	 Although there is not a complete separation� the best results
all come from nets with relatively few connections per unit� which are produced by X�Y sort	
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Figure �	�� Test performance against average number of connections per hidden unit for X�Y
sort and overlap sort	

There is no obvious explanation for why the overlap sort should lead to larger RFs	 That
it was not caused by some systematic bias �a program bug� perhaps� was checked by switching
o� the selection pressure for both algorithms� there was no obvious drift in size	 Failing an
explanation� the receptive 
eld size parameter was 
xed at  in the algorithm with overlap
sort� corresponding to a � � � input array �see table �	 on page ���	 The performance of
the algorithm improved markedly� to become similar to that of the X�Y sort ��xy � �����
�ov � ����� p � �����	 However� restricting the RF size on the algorithm with X�Y sort
improved that as well� though the di�erence is still not signi
cant ��xy � ����� �ov � �����
p � ������	 Figure �	� shows the results as before� and indicates that averages can be
deceptive	 The X�Y sort algorithm gives remarkably consistent results� while those from the
overlap sort vary by almost ���� so it returns the � or � best and worst� the 
nal GA run
producing most of the latter	 Although promising� this behaviour is somewhat disconcerting�
given the cpu costs of a run it might seem advisable to use the more consistent X�Y sort	

To try and separate the two algorithms more clearly� two methods were used	 One was to
continue the GA runs for another �� generations� to give ��� in total	 As would be hoped�
both sets of results improved� but there was even less di�erence between them ��xy � ����
�ov � ���� p � ����	 The other method was a direct competition� similar to the method used
by Fogel et al ������	 An extra bit was added to the string	 If set in the 
rst parent chosen
for reproduction� X�Y sort is used prior to crossover� if not set� overlap sort was used	 The
child acquired the bit corresponding to the method used to produce it	 The bit was set in half
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Figure �	�� Performance of nets produced by GAs using X�Y sort and overlap sort prior to
crossover� with 
xed size receptive 
elds

the start population and the GA left to run	 If one sort method persistently produces better
o�spring� its bit setting should take over the population	 To guard against the possibility that
the half of the population with the bit set happened to be signi
cantly better or worse than
the other half� the run was then repeated from the same start position� but with the meaning
of the bit reversed	 If the e�ect is genuine� the number of bits set will move accordingly	 Since
any small di�erences in e�cacy will be ampli
ed by the selection of the GA� this should be
a sensitive test	

The 
rst run produced an unambiguous result in favour of the overlap sort� 
gure �	�a	
Unfortunately the other runs were less convincing� a result re�ected in the average of the
four runs� 
gure �	�b	 This suggests that overlap sort is better than the X�Y sort� but the
di�erence must be small	

Sorting on RF distance

The 
nal method of sorting the hidden unit de
nitions is on the basis of the distance between
their RF centres	 As noted above� this was a late addition� introduced to try and improve on
the already unexpectedly successful X�Y sort by removing the problem that a unit at the end
of one row is seen as being close to one at the beginning of the next	 However� a comparison
without any restriction on the size of RFs indicated no signi
cant di�erence ��xy � �����
�dist � ����� p � ������	

The test was repeated with the RF size 
xed at � and� as with the overlap sort� there
was a marked improvement� shown in 
gure �	�	 With the exception of one stray result�
again a fortuitous survivor from an early generation� there is a signi
cant advantage for the
distance�based sort ��xy � ����� �dist � ����� p � ������	

����� Conclusions

The experiments reported in this section required rather more than a cpu year� running in the
background on a number of workstations	 Each GA run lasted about a week	 One reasonable
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Figure �	�� Performance of nets produced by GAs using X�Y sort and sort on RF centre
distance prior to crossover� with 
xed size receptive 
elds	

conclusion� therefore� is that the project was somewhat ill�judged� especially since the use of
only one� rather strange� data set makes the generality of the results questionable	 With that
caveat in mind� there are a number of points to be made	

Recombination is bene
cial� even in the presence of the permutation problem	 Sorting
unit de
nitions prior to crossover can give a further signi
cant improvement	 However� it
seems that matching units by counting common input connections is not especially helpful	
Though perhaps marginally better than the X�Y sort� a sort based simply on the distance of
RF centres was clearly superior	

The overall results produced are really rather poor� at best around ���	 As mentioned
above� this was partly caused by the output coding� that used just four units for identity	 A
run was tried using one of n output coding and an amended evaluation routine	 Any net that
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scored above the current population average was tested again� if it was still good enough for
the top ten� it was tested twice more� if then in the top 
ve� another four evaluations were
given	 The average scores were recalculated at the end of each generation	 Using distance
sort for ��� generations produced a net which averaged ��� on test	 This is only slightly
better than the best of the results from the PCA pre�processed data reported in section �	�
and worse than K nearest neighbours �table �	��� despite having seen the test data within the
GA loop	 The problem is presumably still over�
tted� since this net had �� hidden units and
��� connections	

The result suggests a failure by the GA� if a smaller net would generalise better� why
weren�t they produced� Some of the problem may be caused by the coding of the net� which
speci
ed that connections be made to neighbouring input units	 That this is at least not the
entire story is indicated by the improvement observed when the size of the input RFs was

xed	 If this size produced better results� the GA should have been able to 
nd it	 Perhaps
it would� given more time �another cpu month or two			�	 There was no indication from the
runs that were pursued for ��� generations that they had by then stopped making progress�
though the population diversity was understandably reduced	

A further indication that the GAs had not converged was the absence of any obvious
consistency in the di�erent net designs	 A display program was written to show the input
connectivity of the nets� unfortunately� they cannot readily be reproduced without colour	
In any case� there is little of signi
cance to show� there being nothing obvious to indicate
what caused successful nets so to be	 The only result that did appear consistent was that the
overlap sort was more successful than the X�Y sort in producing nets that covered the whole
of the input array	 The X�Y sort�produced designs had RFs that tended to cluster along one
edge of the input space� an apparent defect which was not re�ected in the test performance	
The variety of designs produced is also likely to be another re�ection of the lack of constraints
imposed by the training set� there are probably many similarly e�ective designs	

Figure �	� shows the correlation� or lack of it� of test performance with a number of other
measures	 ��� of the results were picked at random �or� at least� without any design� from
the notebook	 Figure �	�a shows that there is a reasonable correlation between training time
and test performance� and in the right direction� better nets training more quickly	 Given
that training of nets is often inconveniently slow� this is an encouraging trend	 There is
actually rather little correlation between performance and the total number of connections
or the number of hidden units� but a moderate one with the average number of connections
per unit	 This will be a�ected by the inclusion of some results from runs where the RF size
was 
xed� but was evident before those experiments �which is why they were tried�	 It does
seem that there is pressure towards simpler net designs� but since most had several hundred
connections there was still a fair way to go	

The evaluation procedure� that retested the better designs� was moderately successful	
Its e�cacy was demonstrated by showing that it could remove a small value penalty �ag
from the population	 However� designs produced early in the run occasionally remained in
the population through to the end� resulting in a scatter of bad results from the 
nal top

ve nets	 The amended evaluation procedure used for the one of n coding� which gave eight
evaluations to any net getting into the top 
ve� did seem to produce more consistent end
results	 An alternative that might be worth considering would be to increase the probability
of removal of strings as they get older� a technique used by Robertson and Sharman ������	
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Figure �	�� Correlating test performance with� A� training time� B� Total number of connec�
tions in net� C� Number of hidden units and D� average number of connections per hidden
unit	

��� Pruning a net by Genetic Algorithm

This section reports some experiments using Whitley et al�s genetic pruning method �Whitley
et al�� ������ described in section �	�	�	 Weights from a trained� fully�connected net are used
to initialise the connections of a pruned version of the net	 Whitley reported results only
from toy problems� and has not tried using real�world data �personal communication�	 The
main motive behind the method is to reduce the cpu cost of evaluation� but� as noted above�
it also addresses the permutation problem almost as a side�e�ect	

The procedure is to pick a plausible fully�connected architecture� and train it as usual
using Backprop �or potentially� some other training algorithm�	 The genetic string contains
one bit per weight	 When a net is instantiated for evaluation by the GA� the speci
ed
connections are set to the value of the equivalent weight in the trained net	 The pruned net
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is retrained� using the same data	 The evaluation is given by the performance on a test set	
In these simulations� nets with the same test score were ranked according to which had used
least cpu during training	

The evaluation in this case is not noisy� since the initial weights are not random	 However�
the sensitivity of Backprop to its initial conditions �Kolen � Pollack� ����� suggests that it
might be sensible to hold several di�erent sets of start weights� and use an average score	
This would be counter�productive� as it would reintroduce permutation e�ects	 The di�erent
sets of weights from a fully connected net would be most likely to represent at least di�erent
permutations of the solution� if not completely di�erent methods of solution	 It seems reason�
able that the permissible pruning will be strongly dependent on the nature of the solution	 If
the net is required to accommodate a range of solutions� little pruning may be possible	 By
sticking to just one set of initial weights� the GA will produce a net tailored for that solution	
Eliminating repeat tests further speeds up the evaluation cycle	

Two data sets are used in the experiments reported here �Hancock� ���b�	 These were one
partition of the face data from section �	�� and the sonar data of Gorman and Sejnowski ������	
The experiments are mostly at the level of feasibility� with the test data within the evaluation
loop	

����� Face data

In the previous section� the face data was segmented 
ve di�erent ways� with the test score
being the average of all 
ve	 It was not possible to do this with the pruning technique� since
each of the 
ve training sets would need a di�erent set of start weights	 Just the 
rst partition�
which seems to be the hardest� was used	 It scored ��� ������ by K�nearest neighbours�
table �	�� and ��	�� at best using principal component pre�processing� table �	��	 A fully
connected �������� net was used� which scored ��� ����� on test	 The GA was run with a
population of �� and a generation size of ��� using rank selection with a geometric scaling
factor of �	��� a mutation probability of �	�� and a crossover probability of �	�	 Each net was
retrained for up to � epochs using online Backprop� � � ��� � � ���	 After ��� generations
the best was �� ���� correct� with a population average of ��	� ���	���	 It is evident that
the GA is indeed able to tailor the net to give a good performance on the evaluation test set	
Whitley et al report that their pruned nets also train well from random initial weights	 In
this case� however� randomly initialised nets did no better than the original� fully�connected
net	

This may not be a problem� since the train� prune and retrain sequence may be an
acceptable learning algorithm	 However� it remains of at least academic interest whether
it is possible to produce a net that does train well from random weights	 This was addressed
by gradually changing the start weights� using linear interpolation� from their pre�trained
positions to random ones� during the GA run	 The hope was that the GA would 
nd a
path through the space of structures from one that trained well from the initial weights� to
one that trained well from a random start	 The generation size was increased to match the
population size of ���� so that good scores obtained from early generations� seeded by the
trained weights� did not remain in the population as the evaluation criteria changed	 The
selection pressure was reduced by using a scaling factor of �	��	 After ��� generations a net
was obtained that consistently scores �� on the test set� from random start positions	 The
run required several days on a  M�op workstation	

This result gives some idea of the extent to which it is possible to 
t a net to a given data
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set	 The GA has managed to produce an architecture which� when trained on one particular
set of data� consistently 
nds a solution that does well on another particular set	 The net is
still vastly under�constrained by the �� training examples� there being ���� connections�

����� Sonar data

This data was that used by Gorman and Sejnowski ������� obtained from the archive at
Carnegie�Mellon University	 It consists of sonar returns from objects on the sea �oor� pre�
processed by a Fourier transform to give �� inputs	 The objects are either rocks or mines	
There are ��� examples in both training and test set� Sejnowski ������ is of the opinion that
 or � are misclassi
ed �by the US Navy��	 A fully connected net with �� hidden units scores
an average of around ��	�� correct� with a top score of ���	 K nearest neighbours gives ���
correct	 The GA was seeded with a net that used � hidden units� and scored ��	�� on test	
After ��� generations� using the technique of gradually changing to random start weights� a
net was produced that scored ��� on test	

Having established that the GA is able to prune the net to improve performance on a
given test set� the second question is whether the GA can produce a net that generalises well
to unseen data	 A validation set is required� to use within the GA�s evaluation loop	 One
possibility is to halve the training set and use each half in turn as training and test sets�
summing the total score for the evaluation to be passed back to the GA	 Using this method
for the sonar data� a net was produced which averaged ��� on the unseen test data� thus
almost halving the error of the unpruned net	 It has to be said� however� that this result�
although itself consistent� was distinctly better than any other obtained� the next best being
only ���� despite a number of GA runs with variations on parameters	

The pruning technique appears to be quite powerful as a method of 
tting a net to a given
set of data	 Unfortunately� on the evidence presented� it is not really possible to claim that
it is useful for designing nets with wider generalisation abilities	

��� Testing recombination operators� Sort� Overlap and Uni�

form

The aim of the work in this section was to test the recombination operators described in
the previous chapter on some real net design problems	 Since the process is extremely cpu�
demanding� only the three more promising operators� Sort� Overlap and Uniform� were tested	
Three di�erent data sets were used� the face and sonar data sets of the previous section� and
a version of the robot arm data from section �	�	�	

The algorithms and parameters used were exactly as in chapter �� see table �	�� the only
di�erence was to change the evaluation procedure to instantiate a net with random weights in
the range ���� and train it with online Backprop prior to testing	 Population and generation
size were ���	 The bit mutation rate was �	���� the probability of mutating the number of
hidden units up or down by one was �	�	

����� Face data

The same single partition of the phase  face data was used as in the previous section	 The
nets were allowed up to �� hidden units� and trained for up to ��� epochs� with � � ��� and
� � ��	 After ��� generations� the best 
ve nets were retested� averaging over � runs	
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Parameter Sort Overlap Uniform
Transmission probability pt � �	� �
Recombination probability px �	� �	� �	�
Per bit crossover probability pb �	�� � �	��
Per unit crossover probability pu �	� �	�
Probability of uniform crossover pr � �	� �

Table �	�� Parameter values for the three recombination operators

All three algorithms produced nets which scored ���� during the run� Sort actually
produced two that scored �	 However� the average results of the top 
ve at end of run were
unambiguous	 The nets produced by Uniform averaged ��	�� while those produced by Sort
and Overlap both averaged �	�	 The standard error on these results is around �	�� so the
di�erence is signi
cant	

It appears that sorting based on input overlap� by either method� does not suit this
problem and that its application hinders the GA	 Uniform produced two nets that consistently
scored ��� a result equalling that from the net pruning� but without the need to change the
starting conditions during the run	 The nets produced� with �� hidden units and over ����
connections� are again hugely under�constrained by the data	 The GA again appears able to

t the net to the particular test data	

����� Sonar data

This was the same data that was used in section �	�	 The nets were again allowed up to ��
hidden units� and this time trained for up to �� epochs� with � � ��� and � � ��	

This data set turned out to be too easy to show up any di�erences between the algorithms	
Most runs converged to solutions with just two hidden units and around �� connections� there
isn�t much of a permutation problem to solve with only two units	 The best nets consistently
scored ��� on test� again mirroring the best produced by the net pruning method	

During testing� it was noticed that the test performance tended to peak at around ��
epochs of training	 Figure �	�� shows a typical example� in this case the best appears to be
around ��� epochs	 The fall�o� above �� epochs is typical of over�
tting	 Recall that during
the GA run� the nets were trained for �� epochs	 The GA has contrived to produce a net�
which� when trained for ��� epochs� performs near optimally on this test set� a striking case of
WYTIWYG	 By way of con
rmation� the GA run was repeated� with all parameters the same
except that training was extended to �� epochs	 The test results of this are also shown in

gure �	��� this net reaches is peak performance� which as might be hoped is slightly better�
at �� epochs	 This run produced the best results observed on this data set� �� out of ���
correct on test	

����� Robot arms revisited

The search for another problem that was computationally tractable and yet might require
su�cient hidden units to demonstrate the permutation problem led back to the robot arm
problem of chapter �	 This requires the net to output the xy coordinate of the end of the
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Figure �	��� Test performance �� correct� of GA designed nets after various lengths of training
on sonar data	 Results are shown for two di�erent runs of the GA� with di�erent training
periods during the evaluation	 They are an average of � test runs	 The fall o� with longer
training is characteristic of over
tting	

arm� given the four joint angles	 Gaussian coarse coding was chosen� since this has a de
nite
input structure� with four units coding the value� at least two of which must be consulted
to decode it	 The other advantage of this problem is that� because the data comes from a
function� the supply is not limited	 This allowed the use of a validation set for use during
the GA run	 �� examples were used for training� the evaluation for the GA being given by
the test performance on a validation set of ���	 A separate test set of ���� was then used to
evaluate the nets at the end of the GA runs	 The nets were again allowed up to �� hidden
units� and trained for up to �� epochs� with � � ��� and � � ���	

The relative performance of the three GAs may be compared in two ways� by recording
the best net on the internal evaluation after each generation� and by the usual process of
testing the best 
ve nets at the end of run	 Results for the former� averaged from three
separate runs for each GA� are shown in 
gure �	��	 The rank order follows that suggested by
the experiments of section �	�� Sort � Uniform � Overlap	 This is con
rmed by the results
from end of run� which show signi
cant di�erences in the same order	

While the 
rst two runs were in progress� it was noticed that a mistake had been made
when generating the data	 A parameter in the program sets the standard deviation of the
Gaussian response used in the coding� and this had been set to �	� at input and output	
The best value for the input from section �	�	� was �	�	 Since this should give better results�
subsequent tests used a new set of data� the same values� but di�erently coded	 For reasons
which are unclear� the performance of Overlap improved relative to Uniform� to become
indistinguishable from Sort� 
gure �	�	 Since Sort did well in both runs� it appears preferable	
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Figure �	��� Performance of best net tested �on the validation set� during GA runs� 
rst
robot arm data set

An indication of what the GAs are achieving is given by 
gure �	��� which shows perfor�
mance on the 
rst data set of the best GA designed net �from Sort� and a fully connected
net with � hidden units� using the same learning rate parameters	 The GA designed net
learns much more rapidly than the fully connected version	 However� in another clear exam�
ple of WYTIWYG� the GA design abruptly asymptotes� making little further progress after
��� epochs� while the full net continues its steady downward trend	 The GA was asked to
produce a net that performed well after �� epochs of training� and that it has done	 In this
case it wasn�t quite able to peak at �� epochs� but it is clear that� if the aim is to produce a
net which outperforms the fully connected one in ultimate performance� much longer training
will be necessary	 As it was� these runs took a week each� on rather faster machines than
were available for the work of section �	�	

��	 Conclusions

There were two principal aims of this work� to investigate the utility of GAs for the speci
�
cation on net structure� and to address the permutation problem	

The results from phase  of the 
rst set of experiments suggest that it is possible to reduce
the impact of the permutation problem� by appropriate sorting of the hidden unit de
nitions	
However� sorting based on common input connections does not appear to be generally helpful�
although better than no sort in that case� a sort based on RF centre distance was better	 In
other experiments� sort on input connections is ambiguous� with one success and one failure	
A general method has still to be found	

That GAs can manipulate net structures has been amply demonstrated	 Whether or not
they can do so usefully is another question� the WYTIWYG principle is very powerful	 The
GA sees only the particular evaluation conditions and will readily over
t the net to those
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Figure �	�� Performance of best net tested during GA runs� second robot arm data set

conditions	 The result is a net that performs very well as speci
ed� but whose wider utility
may be limited	

The 
nal� serious question mark concerns the computing time required	 One extended
run on a Microvax failed after about � days	 On investigation� this was found to be because
of an integer over�ow on the variable used to read in the cpu time� Most of the runs reported
here required in the order of a cpu week� and the GAs had rarely converged then	 Ever�faster
machines will help and the problem is particularly suited to coarse�grained parallel machines
such as those based on transputers	 Each node can get on with evaluating a net� which will
take perhaps a minute or two� so communication overhead is minimal	 However� these are
still relatively small problems and evolving a better structure for� say� the Nettalk task� which
takes hours to train� would still not be practical	
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Figure �	��� Test error of GA designed and fully connected nets after various lengths of
training on robot arm data	 Average of � runs	
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Central to this thesis has been the theme of appropriate similarity metrics� It is no news to
computer scientists to say that input�output codings are important� the aim of this work has
been to explore the interactions between neural nets� genetic algorithms and coding strategies�

The work reported is largely empirical� which requires the usual hesitations about general
applicability of results� One way of strengthening the claim for an empirical �nding is to
match it to another� especially if the results come from di�erent disciplines� The �t between
our PCA data reported in Chapter 	 and the psychophysical model of Foster and Ward is
striking� It is perhaps unlikely that there are any single cells with the response properties that
our simulation gives� but the match suggests that in some way the two systems are performing
similar functions� Roland Baddeley and Ben Craven are pursuing the relationship between
image statistics and psychophysics� A promising area for future computational modelling
work is to consider the formation of stereo receptive �elds� using appropriate pairs of images�
The target would be to match the measured RFs reported by deAngelis et al 
����� �

The work in Chapter � indicates some of the ways that coding of inputs and outputs
can have an e�ect on the performance of a net� It is also apparent that there are complex
interactions between the coding� the learning rule 
including aspects such as the necessary
output function� and the architecture of the net� That binary coding is not helpful for nets is
better known now than when the work in section ����� was performed� yet appropriate coding
still remains relatively little discussed in the recent plethora of NN books� Consequently�
those new to the �eld may continue to use inappropriate methods� The recommendation
from the work of chapter � is to use a simple analogue or 	�unit interpolation code for
continuous variables� Where the data is pre�categorised� for instance into age bands� the
coding used should reect the information that age ���� is adjacent to ���	�� for instance by
Gaussian smearing of adjacent units� responses 
Pomerleau� ������ If resolution or accuracy is
limited� as it may be in hardware implementations of nets� the added redundancy of multi�unit
interpolation coding might be valuable�

The encoding of images described in section ��� is at best preliminary� though it served
to illustrate some of the interactions between coding and architecture� and led to the in�
vestigation of genetic design of nets� The method of pre�processing images into a set of
blob descriptions is not readily amenable to further processing by a net and requires further
thought� A key aspect of future work would be to combine data from more than one reso�
lution� as speci�ed by the full Mirage process 
Watt � Morgan� ������ An observation from
section ����� to be borne in mind is that RF centres at the di�erent resolutions ought not to
be coincident� because accuracy is low at the centre�

In nets there is an interaction between coding and learning rules� in GAs there is a similar
interaction between coding and genetic operators� At the heart of any application of GAs
is the need to identify the building blocks that may be used� and attempt to ensure that
the reproduction operators process them e�ectively� Unfortunately it is therefore the case
that GAs� like any other optimisation algorithm� cannot be treated as a black box� and their
successful use will always be application�speci�c� Current attempts to provide a theory of
GAs tend to require that the system be simpli�ed beyond recognition� for example to try and
estimate the optimal mutation rate� recombination had to be excluded 
B�ack� ���	��

Chapters � and � concentrated on the problem of designing NNs by GA� and particularly
on addressing the permutation problem� The novel use of a simulated net building task
allowed preliminary comparison of a number of recombination operators in a fraction of the
time normally required� An unexpected side result was the discovery that the GA seems able
to overcome the permutation problem in practice� so that a simple crossover operator is quite
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successful� contrary to the analysis of Radcli�e 
������
The simulated net building results suggested that a method of sorting the hidden unit

de�nitions by overlap of connections assisted convergence� Unfortunately� the empirical tests
on real nets gave somewhat mixed results� so it is not possible to claim that a general method
has been identi�ed�

A problem common to all attempts to �t a net to data is the possibility of over�tting�
The WYTIWYG principle causes GAs to �t the net to the particular test conditions� rather
than giving the wider generalisation that is sought� This might be addressed by altering the
evaluation procedure� For instance� the �tting of the net to the number of training epochs
reported in section ����	 might be reduced by randomly varying the number of epochs� as
suggested by Keesing and Stork 
������ A more general approach might come from work
done on the problem of over�tting during the training of nets� This has been addressed by
the application of Bayesian methods 
MacKay� ����� MacKay� ���	�� and on information
theory grounds� for instance generalisations of Akaike�s information criterion 
Akaike� �����
Fogel� ����� Moody� ���	�� The underlying aim of both approaches is to penalise complex
nets� In principle� such methods might be applied to GANNET work� Thus� instead of
simply using test performance as the evaluation of a net� its complexity measure might be
computed� However� there must be a strong suspicion that the WYTIWYG syndrome would
strike again� Fogel�s measure� for instance� requires that the distribution of output activations
be approximately normal� With so many degrees of freedom to play with� it seems likely that
a GA would �nd some way to satisfy the evaluation procedure� with no guarantee as to its
performance on the real problem�

GAs are most relevant to problems for which there is no gradient information available� for
instance because of discontinuities in the search space� It thus appears unlikely that they will
out�perform gradient descent techniques for training the weights of nets� In addition� it seems
possible that recent advances in network pruning algorithms� e�g� Hassibi and Stork 
������
will out�perform GA design of nets at least in cpu time taken� though direct comparisons
need to be made� It is a sad conclusion after much work� but the enterprise of using GAs to
design nets for tasks such as classi�cation may have little practical value�

A more fruitful area of interaction between GAs and NNs may be the emerging �eld of
�arti�cial life�� Even a simple simulated animal looking for food cannot readily be trained
by gradient descent techniques� since the target outputs are not speci�ed� More complex
systems� with multiple organisms and richer environments show emergent behaviour� such
as a tendency for organisms to avoid each other if competing for food 
Floreano� ���	��
Such systems will provide a rich testbed for exploring coding strategies within nets� and
GAs remain the obvious way of adapting them� As the size of the nets increases� it may be
more appropriate to use growth rules� rather than the strong coding scheme used here� With
the coding schemes will come a requirement for appropriate genetic operators� Since most
currently proposed coding schemes contain some element of the permutation problem� the
result that the GA is able to overcome it in practice remains relevant�

Finally� a problem common to many optimisations is noise� against which GAs are said
to be relatively robust� Recent theoretical work 
Goldberg � Rudnick� ����� has suggested
a basis for estimating the reliability of a GA� if the form of the noise is known� In practical
applications� such as evaluation of a net� this information may not be available� In such cases�
evaluation of the evaluation procedure� by adding a penalty bit as suggested in section ������
may o�er reassurance that the GA is not being asked to do the impossible�

���



Appendix� decoding routines

The accuracy of the calculated results in section ����� depends partly on the algorithm used
to decode the unit outputs� Those used were as follows�

Gaussian coarse coding� Each of the units A��D has a value at which it gives a peak response�
PA��PD�

�� Find the unit� x� with highest output� Ox� The decoded value must be somewhere
near Px� but to �nd out which side of it� it is necessary to consult the unit with the
second highest output�

	� Find the unit� y� with the second highest output� Oy�

�� Calculate the o�set �y from Py using �y � �
q
�	ln
Oy�

�� Calculate an initial estimate for the decoded value Ey �

if Px � Py then Ey � Py � �y else Ey � Py � �y

�� Form an estimate Ei for each of the other units i�

if Ey � Pi then Ei � Pi � �i else Ei � Pi � �i

�� Calculate the decoded output value by weighting each of the individual estimates by
the actual unit outputs�

Output �
P

EiOiP
Oi

Value unit coding� If no unit has output � ����� return zero� Otherwise� the unit with the
biggest response is declared the winner� The value of ����� rather than ���� was used
to reduce the number of false zeros� as each unit is only switched on infrequently the
active values tend to be rather low�

Discrete thermometer coding� If the �rst unit has an output below ���� return zero� Oth�
erwise� the units are examined in ascending order� adding one to the decoded value
for each unit with output of ��� or greater� Counting is stopped at the �rst unit with
output below ���� Thus a pattern of outputs such as �� �� �� ���� ���� ���� ��	��� would
be returned as �� with the active unit � being ignored� In practice� the nets were not
observed to give such spurious outputs�

Continuous thermometer code� Each of the units covers one quarter of the total coded range�
R� The units are examined in ascending order� If the output Oi � ���� it is counted
as �� and ��	�R is added to the output value� For the �rst unit with output below ����
��	�OiR is added to the decoded value� Any remaining units are ignored� Thus� for
R � �� the outputs ���� ����� ���� ��	 would be decoded as ��
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Interpolation coding� Find the unit� x� with maximum output Ox� If it has two neighbours�
pick the one� y� with the bigger output Oy � The decoded value lies between the two

units� centres of response� Px and Py � Output �
PxOx�PyOy

Ox�Oy

Multi�unit interpolation coding� The process used is similar to that for Gaussian coarse
coding� The o�set is easier to calculate� �i � 
��Oi��s�g� where s is the spread� and
g is the inter�centre gap� The estimated values from all units with output greater than
���� were then averaged� When spread was �� the average error returned was within
���� of that given by the simpler process for simple interpolation coding above�
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