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Transition Regime Analytical Solution to Gas Mass Flow
Rate in a Rectangular Micro Channel
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Abstract. We present an analytical model predicting the experimbntddserved gas mass flow rate in rectangular micro
channels over slip and transition regimes without the usanyf fitting parameter. Previously, Sone reported a class of
pure continuum regime flows that requires terms of Burnatenin constitutive equations of shear stress to be pratlicte
appropriately. The corrective terms to the conventionali®taStokes equation were named the ghost effect. We dernates

in this paper similarity between Sone ghost effect model rewlly so-called ‘volume diffusion hydrodynamic model’. A
generic analytical solution to gas mass flow rate in a recti@ngnicro channel is then obtained. It is shown that the mau
diffusion hydrodynamics allows to accurately predict the grass flow rate up to Knudsen number of 5. This can be achieved
without necessitating the use of adjustable parametersumdary conditions or parametric scaling laws for congti¢u
relations. The present model predicts the non-linear tiariaf pressure profile along the axial direction and algutwas

the change in curvature with increase in rarefaction.
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INTRODUCTION

Growing demands in microdevice technology involving thetiotoof fluids at micro- and nano-length scales open
a new branch in fluid mechanics requiring investigation offfilows occurring exclusively in ultra-small devices.
Examples of these mechanical systems include micro-puhgss, exchangers, jet polishing/cutting systems and,
more importantly, the entire range of Micro-Electro-Mecltal Systems (MEMS) encompassing their various bio-
engineering applications [1, 2, 3].

Knudsen [4] experimental study, was among the first desigmedport data pointing to anomalous behaviour of
rarefied gas flow through capillaries. Many experiments Isavee confirmed Knudsen's initial observations [5, 6, 7].
Meanwhile, it is now widely accepted that the standard séta mechanical equations, namely those due to Navier-
Stokes-Fourier, are inapplicable. Among recent develapsia predicting these phenomena, Gallis and Torczynski
[8] have presented a direct Monte Carlo simulation (DSMQ)rjiGet al. [9] obtained the mass flowrate by solving,
numerically, a velocity-space stochastic equation aditigsnolecular motions. Veltzke and Thaming [10] pointet ou
that the mass flowrate in the slip flow regime can be accuratelgicted by arguments of molecular spatial diffusion
effects without using any fitting parameter.

Sone [11] suggested a correction to the standard NavidkeS&quation, where the additional terms with character-
istics of Burnett equation terms were called ‘ghost effentis’. This is because they affect flows of continuum regime
despite being of high order in terms of Knudsen number diaaibn. Meanwhile, existence of different averaging
methods and the influence of molecular spatial stochastieive been pointed out as means of obtaining a Burnett
regime hydrodynamic model [12]. This model appears moreistent in terms of mechanical and thermodynamic
properties than a traditional full Burnett equation obéairby Chapman-Enskog series expansions applied to Boltz-
mann kinetic equation [12]. In the present paper we derivaraiytical solution to mass flow rate in microchannels
using this new emerging hydrodynamics and compare resithsswperimental data.



A CONSISTENT VOLUME DIFFUSION HYDRODYNAMIC MODEL: SONE GHO ST
EFFECT

Appearing in the following equations is the material detix@defined a® /Dt = d/dt + U, - 0, wheret is the time
variable andJy, represents mass-based average velocity: that is a flow stpiz velocity as seen in a conven-
tional continuity equation. A volume diffusion hydrodynemmodel consistent with mechanical and thermodynamic
principles is written [12]:
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The single bar over the velocity gradient in this last equratienotes the transpose operator, withe idemfactor. In
the above set of equations (1) to (p)is the mass density the pressurel the temperature, argh the fluid’s mass-
specific internal energy density, the latter related to ¢hegerature bg, = (3/2)RT, with Rthe specific gas constant.
Velocity Uy appearing in expression of the shear stress is the voluroeitselthat is a macroscopic velocity based on
averaging method that accounts for the fluid molecular apdistributions and not only their masses. Therefyre
is a volume diffusion flux that appears as we distinguish na&waveraging from mass or gravimetric averaging [13].
Presence of fludy, in the shear stress makes the above hydrodynamic model aEBdevel. Indeed, using the ideal
gas law written in the form
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volume diffusion momentum equation (2) becomes
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if local relative pressure variations are neglected. Ire¢iga (8), we observe that the third term involving temperat
gradients on the right-hand-side, is a thermal stress teairig obtained traditionally at the second order in Chapman
Enskog expansion; so it is a Burnett shear stress term. ghisit identical to corrective terms to the Navier-Stokes
equation called “ghost effect terms”; conveying that tkisihigher order Knudsen number term, which is found to
influence flows in the pure hydrodynamics or pure continuugimne. Derivation of volume diffusion hydrodynamic
set (1) to (5), does not involve any small parameter exparmiaocedure. Consequently, within this set of equatiores, th
volume diffusion presumably may have influence at any Knndsenber order; a situation that appears to corroborate
with Sone ghost effects.

While a classical set of full Burnett hydrodynamic equasiaterived using Chapman-Enskog expansion series
are known to have several mechanical and thermodynamia@mstencies [14], the above set of equations (1) to
(5) satisfies a series of mechanical principles and is cabiipawith linear irreversible thermodynamics [12, 15].
Phenomenological transport coefficients involved cordisti the fluid dynamic viscositysm = k/(cpp) the volume
diffusivity coefficient, andk, = ka,/cp, with k the Fourier thermal conductivity, namely the conductippearing in
the Prandtl number, with, andc,, the specific heat conductivities [see 16, section5.4.1dswl[see 15, section 5.2].



ANALYTICAL SOLUTION

We consider a steady-state isothermal pressure-driveroibowrring in a rectangular microchannel. The streamwise
flow coordinate variable is denotednd the wall normal coordinate is denoted he height and width of the channel
are denoted respectively hyandw, whereinw >> h such that the flow may be supposed two-dimensional. The
rectangular channel height-to-length ratid_ is assumed to be small to neglect the inlet and outlet effeelscity
componentUm = Um(X,y) is restricted to the streamwise direction and is a functionandy. Disregarding energy
equation, continuity and volume diffusion momentum equai(1) and (2) can be written as :

0-[pUm =0, 9)

In terms of boundary conditions, impenetrability of masshat channel walls requires normal component of mass
velocity Un, to vanish aty = +h/2. In addition, we impose on the volume velocity a form of glgndition so that all
boundary conditions are written:

Um, (X,£h/2) =0, (11)
and Lo Lta
Uy, Unn,
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In boundary conditions (11) and (12), subscrpndy refer to components imandy directions, respectively. Subscript
‘0, refers to the channel outlet, which is simply used here esrwenient arbitrary reference. Furthermoygis the
gas mean free path at the channel outlet. Note that equat®)ms(not a standard slip condition, as the equation can be
viewed as a constitutive equation for the volume flyat the boundary whemy,, = 0 (i.e., when the no-slip boundary
condition is imposed on the mass velocity).

A solution method starts with continuity and momentum eiqunt (9) and (10), reformulated as:
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The solution of equation (14) satisfying boundary conditi®?) is
~1dp 2 1
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in which we denot& = h’Kn,/(2v,), whereinv, denotes the kinematic viscosity at the outlet, &mg = A, /h is the
outlet Knudsen number. Substituting (15) into (13) and isgithe resulting expression for, , by subjecting to the
boundary condition (11) results in

1 <4y3_h2>1g{pdp}+E 1d%p k d?Inp
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C(x), (16)

where the integration constatx) is a function only oi. However, application of boundary conditions (12) reqgsiire
thatC(x) = 0 as a result of symmetry. The preceding equations furnisiptessure distribution in accordance with
the following scheme. Evaluate equation (16yat +-h/2, and use boundary condition (12) to obtain

2 2
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Eliminate the density in equation (17) in favour of the puzsssia use of the ideal gas lgwv= pRT, and subsequently
use the identitypd p/dx = (d/dx)(p?/2) to obtain

d [ , 24uRT k B
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Integration of equation (18) followed by rearrangemenidge
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Alternatively, in terms of the Knudsen and Prandtl numbers,

Kno_k—Aﬁx/zRT Pr=cou/k, F=12Kn, G= P2r:2Kn0, 1)

wherek, = /1/2 is a coefficient associated with the definition of the meae foath as related to the choice of
molecular collision model. Equation (19) is the pressustritiution, in which constants andD are determined from
knowledge of the channel inlet and outlet pressupés= 0) = p; andp(x = L) = po. This furnishes expressions

C=—[(PP-1)+F(P-1)+GInP|, D=P*+FP+G(nP+Inpo), (22)
whereP = p;/po, denotes the inlet/outlet pressure ratio. The mass flowategh the channel is given by the formula

_ h/2
M=w pUndy=const . (23)
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UsingUm, = Uy — 3y, with equations (15) and (5) we have that

1 dp 2 1 k dinp
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Multiply equation (24) byp and subsequently eliminagein favor of p on the right-hand side. Introduction of the
resulting expression into equation (23) yields

- wh® d [, 24uRT k
M__24uRT$<{p+ 2 <Ep+c—plnp>} (25)

The bracketed term in equation (25) is seen to be identidhledracketed term in equation (18). It follows that

- wh’p3
M=- 24LuRTC’ (26)

whereC is the constant given by equation (22). Thus, the mass flanisagiven explicitly in terms of the parameters
characterizing the problem as
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Equation (27) has a structure frequently obtained whenbgimdary conditions are used [17]. However, our goal in
this investigation is to demonstrate that, due to the uselofwe diffusive flux, equation (27) can reproduced faitlyful
the experimental data without the use of any fitting paramete

Indeed, in the course of gas-kinetic molecular descriptibthe hydrodynamic set of equations (1)-(5), volume
diffusion is a manifestation of the molecular-level spadiéfusion process that used to be ignored [18]. This, imfur
generates a second level of non-equilibrium scaling beyongarallel to, traditional Knudsen number scaling [12].
Veltzke and Thaming [10] demonstrated in this context tldtime diffusivity coefficient depends not only on the
properties of the gas but also on the channel geometry. €haislus to identify a volume diffusivity coefficient for
the rectangular channel corrected by the channel dimesisior,, = KmL/w. As thermodynamic expression of the
volume diffusivity coefficient is<m = k/(cpp), this geometrical correction only affects the Prandtl nendwefficient



TABLE 1. Summary of fluid properties and physical coefficients usdiure 1
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FIGURE 1. Mass flow rate as predicted by volume diffusion hydrodynansmmpared with experimental data

by a factorL /w in the final pressure distribution equation (19), and thesiasv rate equation (27). Full expression
of the micro gas mass flow rate in rectangular channel usiagdfume diffusion momentum equation is therefore
finally given by

~ wh®p}

= sipt (PZ—1)+12Kn0(P—1)+PZ;4WKn§InP], (28)
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in which, there appear only physical properties with no ficieht playing a fitting role such as a slip coefficient.
These physical properties in the case of Ewart et al. [7] exypantal data for gaseous helium are summarized in table
1. A full comparison between predictions by equation (2&8) experiments are seen in figure 1, plotted in the form of
dimensionless flowrat&,, vs the mean Knudsen number that are defined by

Ky M y wh !
Knjmean] = 21— V2RT,  Gm=Msx <7(pin - pout)> : (29)
h Bim Lv2RT

From the figure, the volume diffusion model, i.e. equatiaB)(2grees with experimental data up to a Knudsen number
of about 5 with all parameters possessing clear physicahingaas given in table 1 and a viscosity coefficient having
its appropriate experimental value. This agreement caralitas excellent achievement considering the fact that
conventional Navier-Stokes modified by slip boundary ottioms, gives agreement with the data within the slip but
not deep into the transition regime as the present volunfiesitih model does.

Figure 2 presents a comparison of normalized streamwissipre distributions against the experimental data of
Pong et al. [19] at various pressure ratiB}. Here, pressure is normalized with the outlet pressurke€hannel, and
the pressure ratio is defined as the ratio of inlet to outlesgures. The measurements by Pong et al. [19] were made
by embedding measurement ports in a microchannel in whiebspire transducers were mounted. The working gas
was nitrogen and the outlet Knudsen number was 0.044. Soetiead graphs are plotted using pressure distribution
equation (19) including nitrogen Prandtl numberRsf= 0.72 and the geometrical correction factofw from the
volume diffusivity coefficient. The comparison between pinesent volume diffusion model and the data is good.
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FIGURE 2. Pressure distribution as predicted by volume diffusion eh@@mpared with experimental data of Pong et al. [19]
for an outlet Knudsen number of 0.044 and various presstisi®).
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FIGURE 3. (a) Normalized pressure distribution along the streamdiistion for various Knudsen numbers, (b) dimensionless
deviation of the pressure distribution from the linear ptes distribution as a function of the dimensionless degan

The volume diffusion effect on the streamwise pressureiligton can be assessed by varying the Knudsen number.
Interesting results are observed as shown in the Fig. 3¢aa faressure ratio of 3. The curvature of the pressure
variation decreases with an increase in Knudsen numbenhengdressure distribution becomes linear in the early
transition regime. With further increases in Knudsen nuntbe curvature changes from convex (in the continuum
and early transition regimes) to concave (in the late ttemmsiegime). Change in curvature of pressure profile can
also be captured by the second-order slip model [20], homteeeclassical first-order slip model fails to predict this
phenomena. Fig. 3(b) shows the dimensionless deviatidreaftteamwise pressure distribution from a linear pressure
profile, as a function of dimensionless distance along tla@ehl. With an increase in Knudsen number, the rarefaction
effect tends to dominate compressibility effects, and theedsionless deviation becomes zero at a Knudsen number of
around 0.5. With further increases in Knudsen number, tiredsionless deviation changes from positive to negative
value. In the slip flow regime, where compressibility effeate still dominant, the pressure profile is unsymmetrical
with respect to the streamwise distance, but turns out taiiie gymmetric in the transition regimeléh = 2, where

rarefaction/volume diffusion effects are dominant.



CONCLUSION

In this paper we derived an analytical solution to Knudsedmeeeed mass flowrate phenomena in micro gas channels
using a volume diffusion hydrodynamic model. The solutiqoation is similar in form to that obtained using first and
second order slip boundary conditions. However, with tHaeme diffusion approach and volume diffusivity coefficient
that depends on the geometry of the channel, we obtain agrdemith the experimental data up to Knudsen number
of 5. It also allows the direct investigation of the non-Bn@ressure distribution, and predicts the change in cureat

of the streamwise pressure profile with an increase in retiefa(when the diffusive effects dominate the convective
fluxes).
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