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Abstract

We investigate the relationship between spatial stochasticity and non-continuum effects in gas

flows. A kinetic model for a dilute gas is developed using strictly a stochastic molecular model

reasoning, without primarily referring to either the Liouville or the Boltzmann equations for di-

lute gases. The kinetic equation, a stochastic version of the well-known deterministic Boltzmann

equation for dilute gas, is then associated with a set of macroscopic equations for the case of a

monatomic gas. Tests based on a heat conduction configuration and sound wave dispersion show

that spatial stochasticity can explain some non-continuum effects seen in gases.
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I. INTRODUCTION

The Boltzmann kinetic equation is the standard model for dilute gas flows. However, as

this equation lacks an exact solution, rarefied gas models generally consist of approximate

solutions [1]. Most of these approximate models are constructed so that they reproduce

the Navier-Stokes-Fourier model of continuum fluid mechanics under relevant assumptions.

These kinetic models generally predict weakly thermodynamic disequilibrium flows well.

However, “in a gas in which finite departures from equilibrium are imposed by forces too

strong or too rapid to be overcome by collisions, a satisfactory comparison between kinetic

theory and experiments is much harder to achieve” [2].

The Boltzmann kinetic model states an evolution equation of gas media presumed from

deterministic equations of molecular motions. Subsequently, most derivations of it start with

the deterministic Liouville equation, which enforces conservation of the microscopic phase

space probability density [1, 3]. The main characteristics of the Boltzmann equation are: it

contains a collision integral describing the exchange of momentum between molecules; po-

sition and velocity variables are treated as independent variables; finally, and importantly,

it does not involve an explicitly obvious stochastic component in the spatial variable. How-

ever, a large number of gaseous molecules exchanging momentum and positions represents

a perfect example at the kinetic level of a physical stochastic process in both position and

velocity spaces [4].

Recognizing the distinction between a physical region in hydrodynamics and a physical

region in kinetic theory, Klimontovich introduced a length scale separation, with averaging

over kinetic space/volume, to arrive at a generalized kinetic equation that, in fact, is just

a stochastic version of the deterministic Boltzmann equation (i.e., the Boltzmann equation

with an additional spatial diffusion term) [5]. Zimdhal showed the importance of the Klimon-

tovich version in deriving the relativistic Boltzmann equation [6]. Others, such as Ueyama

[7], and Stryjewski et al [8], have also claimed a spatial stochastic term should be included in

the deterministic Boltzmann kinetic model. Note that the stochastic Boltzmann equation is
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now known to derive from the more general stochastic Liouville equation [9, 10]. While these

works on stochastic Liouville and stochastic Boltzmann equations are mostly oriented to-

ward other fields [8, 11], dilute gas flows remain predominantly the field of the deterministic

Boltzmann equation. The various approximation solutions to the Boltzmann equation, and

associated continuum equations, have their advantages and known limitations [12–14]. More

precisely, the local-equilibrium assumption underlies most of these approximation models.

In this paper we develop a kinetic equation using strictly stochastic reasoning, without

primarily referring directly to the Liouville or Boltzmann (deterministic) equations. The

resulting kinetic equation, which is a stochastic version of the Boltzmann equation, is then

associated with a set of macroscopic equations for the case of monatomic gases. The deriva-

tion is presented in a way that explicitly traces the impact of the additional spatial kinetic

stochastic term on the macroscopic conservation equations of mass, momentum and en-

ergy. Predictions of thermodynamically non-equilibrium heat conduction and sound wave

dispersion are then used to assess the role of the spatial stochastic terms.

II. A STOCHASTIC KINETIC MODEL FOR GAS FLOWS

A. The Brownian model in position space

Consider an arbitrary particle moving in physical space, with its position X at a time

t. This moving particle performs random walks in the sense that its trajectory is changing

randomly. Then the problem is to obtain the spatial evolution in time of the particle, repre-

sented by a probability density function, g(t, X). According to the Einstein-Smoluchowski

model of Brownian motion, g(t, X) satisfies the equation:

∂g

∂t
+∇ · J = 0, (1)

with J given by,

J = −κ∇g, (2)
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with κ being a diffusivity coefficient. Equation (1) describes pure random movement, with

no additional continuous displacement over time. If a smooth displacement, or drift motion,

exists in addition to the pure random walk, then equation (1) becomes the Fokker-Planck

model,

∂g

∂t
+ (ξ · ∇)g +∇ · J = 0, (3)

where ξ is the particle drift motion velocity.

Equation (3) is stochastic, in the sense that the third term on the left-hand-side, i.e. the

spatial diffusion term, describes a spatial Brownian process [10]. Equation (3) can be used

as a model for the spatial evolution of a targeted particle, where the focus is on the change

in its position and trajectory due to the presence of a large number of other particles that

obstruct its paths without transferring momentum to it [4, 9].

B. The Brownian model in velocity space

Consider now an arbitrary particle and focus on its velocity ξ at a time t, while dis-

regarding its position. We assume that this targeted particle is changing velocity in an

uncontrollable way, and discontinuously. This is a random walk problem similar to the one

in the previous section, but now in terms of velocity changes. So the problem is to obtain

an evolution of the velocity distribution in time, described by a probability density func-

tion h(t, ξ). A first attempt could be to use the Einstein-Smoluchowski equation (1) but

substituting variable ξ for X [10]. However, as the velocity variable (as opposed to the posi-

tion variable) is related to the momentum and energy of the particle, a more representative

Brownian model should be used for the evolution of the velocity distribution (see also the

Appendix on why a Laplacian operator may not be a good velocity space Brownian model).

Let us represent the change in velocity or momentum of the targeted particle more gen-

erally by an operator, denoted Iξ(h(ξ)), so that an equation for the velocity probability

density reads:

∂h

∂t
− Iξ (h(ξ)) = 0. (4)
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No particular assumption is made about the form of the operator Iξ(h(ξ)), which remains

just a general Brownian model operator at this point [15].

Rather than detailing the form of this operator, we wish to impose instead a certain

number of requirements that it has to satisfy, based on the physical process driving velocity

or momentum changes. For the case of hard-sphere particles, and assuming that the targeted

particle changes its momentum in a way similar to elastic collisions between two solid bodies,

the classical dynamic laws of collisions allow us to make the conditions:

∫

MIξ(h(ξ))dξ =

∫

MξIξ(h(ξ))dξ =

∫

Mξ2Iξ(h(ξ))dξ = 0, (5)

that is, mass, momentum and energy are invariant under the velocity transformation rep-

resented by Iξ(h(ξ)), after summing over all possible velocity states. In equation (5), M

represents the mass of the particle.

Equations (4) with (5) are a model for the probability density of a Brownian process in

velocity space without drift. If a drift motion is considered as resulting from an additional

external force, then a full stochastic version of equation (4) is given by:

∂h

∂t
+ (Fext · ∇ξ)h− Iξ (h(ξ)) = 0, (6)

with Fext denoting the external body force and ∇ξ the gradient operator in velocity space.

C. A stochastic kinetic equation and its macroscopic equations for a monatomic

gas

Consider now the complete physical situation, where a targeted monatomic gaseous

molecule, moving within a group of similar gaseous molecules, changes both its trajectory

and velocity or momentum in a stochastic way. Taking the position and velocity variables as

independent, an equation for the multi-random-variable probability density, f(t, X, ξ), can

be written directly by combining equations (3) and (6) into:

∂f

∂t
+ ξ · ∇f +∇ · J + Fext · ∇ξf − Iξ(f) = 0, (7)
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or, after substituting equation (2),

∂f

∂t
+ ξ · ∇f −∇ · κ∇f + Fext · ∇ξf − Iξ(f) = 0. (8)

Equation (8) is a model stochastic kinetic equation for monatomic gases in which there are

microscopic diffusion processes in both position and velocity. In fact, equation (8) can be

regarded as a Fokker-Planck equation written for both position and velocity with drift [10],

where the diffusive velocity flux is given by an operator specified by conditions (5) rather

than being associated with a gradient operator.

Next, we derive a continuum-fluid macroscopic model of gas flow from kinetic model (8)

and then compare it with the conventional model in two flow configurations. Hereafter, we

disregard the body force Fext, although our analysis will remain general.

1. Macroscopic flow properties

Macroscopic mass-density ρ(t, X) and macroscopic flow velocity U(t, X) may be defined

through,

ρ =

∫

Mf(t, X, ξ)dξ, (9)

and

ρU =

∫

Mξf(t, X, ξ)dξ. (10)

Then the peculiar velocity corresponds to

C = ξ − U, (11)

so that internal energy ein(t, X) and the macroscopic momentum and energy diffusion flux

tensor and vector, Pij(t, X) and q(t, X), respectively, can be associated via:

ρein =

∫

1

2
C2fdξ, Pij =

∫ ∫

CiCjfdξ, q =

∫

1

2
C2Cfdξ. (12)

In these definitions, which involve summing over the velocity space, it is assumed that

at a position centered at X one may find a large number of molecules, covering a wide
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range in the velocity space, and each satisfying, individually, equation (8). Therefore during

this averaging process, variable X loses its kinetic spatial variable meaning and becomes a

continuum type of position variable. This averaging is also consistent with imposing, locally,

the conservation conditions (5) for the large number of molecules in velocity space. However,

regarding an individual molecule, in equation (8) the spatial diffusion term represents the

way surrounding molecules affect its position, while the velocity diffusion represents the way

surrounding molecules affect its momentum. Consequently, equation (8), although derived

assuming the position variable is independent of the velocity variable, and using a single

particle density distribution, does contain explicitly information on correlations between the

molecules in both position and velocity space. The presence of an explicit spatial diffusion

term, beside velocity diffusion, is due primarily to the fact that in the kinetic statistical

treatment position is not regarded as the integral of velocity but an independent variable in

its own right.

2. A macroscopic continuum set of equations

Multiplying the stochastic kinetic equation (8) by M,Mξ,Mξ2/2, and integrating over

velocity space, gives, respectively:

Mass-density

∂ρ

∂t
+∇ · [ρU−κ∇ρ] = 0, (13)

Momentum

∂ρU

∂t
+∇ · [ρUU ] +∇ · [pI+Π]−∇ · [κ∇ (ρU)] = 0, (14)

Energy

∂

∂t

[

1

2
ρU2 + ρein

]

+∇ ·
[

1

2
ρU2U + ρeinU

]

+∇ · [(pI+Π) · U ] +∇ · [q]

−∇ ·
[

κ∇
(

1

2
ρU2 + ρein

)]

= 0, (15)
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where I is the identity matrix, Π = P−pI with p the kinetic pressure related to the internal

energy by 3p = 2ρein. Compared with the conventional fluid dynamic set of conservation

equations, new terms in the above set are underlined. These terms all have clear meaning

from the derivation: the underlined term in the mass-density equation is a mass or volume

diffusion component resulting from random spatial distribution of molecules; similarly, the

underlined terms in the momentum and energy equations are, respectively, momentum and

energy diffusion resulting from the same random change in positions at the microscopic level

(not the random exchange of momentum). The shear stress and heat flux, which result from

molecular level exchange of momentum and energy, can be given their Navier-Stokes and

Fourier’s Law expressions:

Π = −µ
[

∇U + (∇U)tr
]

+ η∇ · UI and q = −κh∇T, (16)

with µ/η and κh being, respectively, the dynamic/volume viscosity and heat conductivity.

Temperature, T , is associated, according to the kinetic theory definition, with ein = 3/2RT ,

with R being the specific gas constant.

III. EFFECTS OF THE ADDITIONAL DISSIPATIVE MASS/VOLUME FLUX

The main result of the approach followed in the preceding section is that there is now

in the new kinetic equation a diffusive term related to spatial variables, which leads to

additional diffusive terms in the macroscopic fluid equations. To investigate the effects of

such dissipative terms, particularly the mass or volume diffusion term in the macroscopic

density equation, we investigate two thermodynamically non-equilibrium fluid situations:

pure heat conduction, and sound wave dispersion.

A. Density profile in heat conduction between parallel plates

For the sake of clarity, the traditional set of conservation equations in fluid mechanics

are set down here:
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Mass-density

∂ρ

∂t
+∇ · [ρU ] = 0, (17)

Momentum

∂ρU

∂t
+∇ · [ρUU ] +∇ · [pI+ Π] = 0, (18)

Energy

∂

∂t

[

1

2
ρU2 + ρein

]

+∇ ·
[

1

2
ρU2U + ρeinU

]

+∇ · [(pI+Π) · U ] +∇ · [q] = 0, (19)

which are the Navier-Stokes-Fourier equations when closed with equations (16).

Consider one-dimensional steady-state pure heat conduction in a dilute gas between par-

allel plates, using equations (17)-(19). As U = 0 and no shear stress is involved in this

situation, this set of equations reduces to:

∇ · [pI] = 0, (20)

∇ · [q] = 0. (21)

So, momentum equation (20) provides a constant pressure, while energy equation (21), if

conductivity is assumed constant, will provide a linear temperature profile. Note that density

equation (17) vanishes when U = 0, so no information on the density is given by the set of

equations (17)-(19).

The gas local-equilibrium equation of state could be invoked in an attempt to address

this density profile problem; but a linear temperature profile in p = ρRT leads to a hyper-

bolic density profile as the pressure is kept constant. However, in heat conduction in the

continuum-fluid limit it is generally admitted that the density is constant. Consequently,

the solution of the conventional set of equations (17)-(19), along with an equation of state,

appears in contradiction with the expected solution. Furthermore, experiments on a rarefied

gas confined between two parallel plates indicate that density profiles are linear to a first

approximation [16].
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Now consider instead this one-dimensional steady-state heat conduction problem using

our new set of equations (13)-(15). This set of equations reduces to:

∇ · κ∇ρ = 0, (22)

∇p = 0, (23)

∇ · [q]−∇ · [κ∇ρein] = 0. (24)

So, the momentum equation provides again a constant pressure for this configuration. With

3p = 2ρein, the solution set of equations (22)-(24) is equivalent to:

∇ · κ∇ρ = 0, (25)

∇p = 0, (26)

∇ · [q] = 0. (27)

This predicts simultaneously a linear density profile and a linear temperature profile (sub-

ject to constant conductivity coefficients), which is more in agreement with experimental

observations [16].

B. Sound wave dispersion in rarefied gases

Another compelling configuration that may be considered is the prediction of sound wave

speed and damping in monatomic gases. In this case, the set of unsteady one-dimensional

equations is considered, and linearized around the flow variables ρ0, T 0, p0 = Rρ0T 0, U0 = 0.

Perturbations around this ground state are given through:

ρ = ρ0(1 + ρ∗), T = T 0(1 + T ∗), (28)

U = U∗
√
RT 0, p = p0(1 + p∗),

where the asterisked variables represent dimensionless quantities. Linearizing p = ρRT gives

p∗ = ρ∗ + T ∗. The dimensionless space and time variables are given by,

x = Lx∗, t =
L√
RT 0

t∗ = τt∗, (29)
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with τ = L/
√
RT 0 and L a flow macroscopic length scale. The dimensionless linearized

equations derived from (13)-(15), closed with equations (16), are then written:

Mass-density

∂ρ∗

∂t∗
+

∂U∗

∂x∗
− κ∗ ∂

2ρ∗

∂x∗2
= 0, (30)

Momentum

∂U∗

∂t∗
− (

4

3
µ∗ + κ∗)

∂2U∗

∂x∗2
+

∂ρ∗

∂x∗
+

∂T ∗

∂x∗
= 0, (31)

Energy

∂T ∗

∂t∗
+

2

3

∂U∗

∂x∗
−
(

κ∗ +
2

3
κ∗
h

)

∂2T ∗

∂x∗2
= 0 , (32)

where the different dimensionless transport coefficients are given by:

µ = Lρ0
√
RT 0µ∗, κ = L

√
RT 0κ∗, κh = Rρ0L

√
RT 0κ∗

h. (33)

Then the disturbances ρ∗, T ∗ and U∗ are assumed to be wave functions of the form:

φ∗ = φ∗
a exp [i (ωt

∗ −Kx∗)] , (34)

where ω is the complex wave frequency, K the complex wave number, and φ∗
a the complex

amplitude, so that:

∂φ∗

∂t∗
= iωφ∗,

∂φ∗

∂x∗
= −iKφ∗,

∂2φ∗

∂x∗2
= −K2φ∗,

∂3φ∗

∂x∗3
= iK3φ∗.

The linearized hydrodynamic set of equations then yields the homogeneous system,












iω + κ∗K2 0 −iK

0 (2
3
κ∗
h + κ∗)K2 + iω −2

3
iK

−iK −iK (4
3
µ∗ + κ∗)K2 + iω

























ρ∗

T ∗

U∗













= 0. (35)

The corresponding dispersion relation from the degeneracy requirement is then:

(

K2

(

2κ∗
h

3
+ κ∗

)

+ iω

)(

2iK2ωκ∗ +
4

3
K4µ∗κ∗ +K4κ∗2 +

4

3
iK2ωµ∗ +K2 − ω2

)

+
2

3
iK

(

Kω − iK3κ∗
)

= 0. (36)
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Experimental data considered for comparison here are from Meyer and Sessler [17]. These

experimental data are given in dimensionless form, using a dimensional analysis correspond-

ing to the following expressions for dimensionless speed Υ and dimensionless damping coef-

ficient Λ:

1

Υ
=

√

5

3

Re[K]

ω
and Λ = −

√

5

3

Im[K]

ω
. (37)

When expressing the speed and damping as in equations (37), sound modes are identified

as harmonic pressure waves, and ω in that situation signifies a real positive dimensionless

frequency and can also be a measure of Knudsen number and non-continuum behaviour [18].

Prandtl number is traditionally expressed as,

Pr =
γ

γ − 1
R

µ

κh

= cp
µ

κh

. (38)

Substituting equations (33) into (38) gives the Prandtl number in terms of the present

dimensionless transport coefficients as:

Pr =
cp
R

µ∗

κ∗
h

=
5

2

µ∗

κ∗
h

, (39)

using the monatomic value of cp = (5/2)R. A monatomic gas has a Prandtl number of

2/3 and an adiabatic exponent of 5/3. To compare with experiments in this paper, we set

Pr = 2/3, κ∗
h = 1, then from equation (39), µ∗ = 2/3 × 2/5: in other words a combination

of these coefficients giving the classical values of Prandtl number and adiabatic exponent,

which in turn specifies also the sound speed in the continuum limit.

In our new stochastic continuum flow model, the value of the volume/mass diffusion

coefficient κ∗ requires further investigation. Nevertheless, the Schmidt number and Lewis

number are two known dimensionless numbers that can relate to a mass diffusion process:

Sc =
µ

ρκ
and Le =

κh

ρcpκ
, (40)

or in terms of our dimensionless coefficients:

Sc =
µ∗

κ∗
and Le =

2

5

κ∗
h

κ∗
. (41)
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Measurement data from [19] gives for Ar/CO2 diffusion, which has a mass ratio of 1.1, a

value of Le = 1.085. As the species mass ratio is almost 1, that value of the Lewis number

can be taken as a reasonable value for self-diffusion in Argon. Meanwhile, the value of Sc

indicated in the literature for a monatomic gas is 3/4. Note that either the Lewis or the

Schmidt number is required to specify κ∗ and solve the dispersion relation (36), but neither is

involved in solving the dispersion relation that comes from the Navier-Stokes-Fourier model

of equations. For our comparisons with experiment the two options of evaluating κ∗ via Sc

and Le have been investigated.

Figures 1 and 2 show, respectively, the predicted dimensionless damping coefficient and

inverse dimensionless phase speed variation with inverse dimensionless wave frequency ω,

along with the argon gas experimental data from [17] and the predictions of the conventional

Navier-Stokes-Fourier model. It is clear from the two figures that the new terms in the

stochastic model produce an improvement in the predictions. The damping coefficient is

usually the most difficult to predict [20], but figure 1 shows that our new stochastic model

captures exactly the peak in the experimental prediction, and agrees with experiments well

beyond ω = 1, while the Navier-Stokes-Fourier model fails already by ω ≈ 0.2. Our new

model shows also a visible improvement in the prediction of the phase speed. It should

be noted that the experimental data are believed to be doubtful only for ω >> 1, because

of incompatibility of the experimental configuration with the definition of sound waves for

large ω [2]. However, the Navier-Stokes-Fourier model fails well before ω = 1. In contrast,

the corrections introduced by the new stochastic model improve predictions usefully in the

validity range of the experimental data for both the damping and speed.

In figures 1 and 2 the Prandtl number and adiabatic exponent of a monatomic gas have

their conventional values; the dimensionless volume/mass diffusion coefficient is then given

by κ∗
h/κ

∗ = 1.18. This ratio is close enough to the experimental value of Le = 1.085 to

suggest that it should correspond to the Lewis number from [19]. On the one hand, this

appears to corroborate a previous suggestion that the volume/mass diffusivity coefficient

should be equal to either the thermal diffusivity or the kinematic viscosity [21]. On the
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FIG. 1: Normalized damping coefficient varying with inverse dimensionless frequency.
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FIG. 2: Normalized inverse phase speed varying with inverse dimensionless frequency.

other hand, the conventional expression of the Lewis number given in (41) has an additional

factor of 2/5. This factor may be explained as follows: comparing energy equation (21)

of the Navier-Stokes-Fourier model with our non-conventional model equation (24), the

heat flux is affected by the mass/volume diffusion. As heat flux, and particularly heat

conductivity, are conventionally measured without taking into account any mass/volume

diffusion process or density/pressure gradient, it is possible that a disparity may exist in

conductivity coefficients between the different continuum fluid models, which may affect
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the Prandtl or Lewis number. We found during our investigations that it is possible to get

good agreement with the experimental data using a Schmidt number of 3/4, if the Prandtl

number is reinterpreted to account for the mass/volume diffusion.

IV. CONCLUSION

Two gas flow configurations have been investigated in the context of non-continuum

and non-local-equilibrium behaviour. A stochastic kinetic model and associated set of

continuum-fluid equations have been derived in order to assess the relationship between

spatial stochasticity and non-continuum gas behaviour that the traditional Navier-Stokes-

Fourier model does not account for. In contrast to the conventional Boltzmann kinetic

equation, our new kinetic equation incorporates a microscopic spatial diffusion, which leads

to a volume/mass diffusion contribution to the macroscopic continuum-fluid equations. Our

final continuum model is broadly similar in structure to those suggested by some previous

investigators [5]. New results reported in this paper for the heat conduction and sound

wave dispersion problems strengthen the connection between spatial stochasticity and non-

continuum effects [18, 22, 23]. However, we note that the existence of volume/mass diffusion

in the continuum-fluid model is controversial with regard to macroscopic thermodynamics

and some classical mechanics principles [24]. A thermodynamic framework consistent with

a volume/mass diffusion continuum-fluid model is still to be clarified.
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Appendix

In the Einstein-Smoluchowski equation (1), the Brownian operator is given by the spatial

diffusion operator (∇·∇). Let us test this operator for representing velocity diffusion within

the stochastic kinetic description of a monatomic gas, i.e:

Iξ(h) = κξ (∇ξ · ∇ξ)h, (42)

where κξ is a kinetic velocity diffusivity coefficient and ∇ξ is the gradient operator in velocity

space. In this case we have,

∫

MIξ(h(ξ))dξ =

∫

MξIξ(h(ξ))dξ = 0, (43)

but
∫

Mξ2Iξ(h(ξ))dξ = 2κξρ. (44)

This means that the diffusion operator (42) conserves, locally, mass and momentum but

does not conserve energy. Consequently, it rules out the choice of this operator for diffusion

in velocity or momentum space. The Boltzmann collision integral may be regarded as

an example of a velocity-space Brownian operator; more generally, random walks can be

modelled by various Brownian operators [15]. It is therefore, essential to follow consistent

physical arguments when deciding on the correct operator to describe each microscopic

exchange [25].
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