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ABSTRACT 

Objectives: Among many survival strategies, parasitic worms secrete molecules to modulate 

host immune responses. One such product, ES-62, is protective in the collagen-induced 

arthritis (CIA) model of rheumatoid arthritis. As IL-17 has been reported to play a 

pathological role in the development of rheumatoid arthritis, we investigated whether 

targeting of IL-17 may explain the protection afforded by ES-62 in the CIA model.  

Methods: DBA/1 mice progressively display arthritis following immunization with type-II 

collagen. The protective effects of ES-62 were assessed by determination of cytokine levels, 

flow cytometric analysis of relevant cellular populations and in situ analysis of joint 

inflammation. 

Results: ES-62 was found to downregulate IL-17 responses in the CIA model. Firstly, it acts 

to inhibit priming and polarisation of IL-17 responses by targeting a complex IL-17-

producing network, involving signalling between dendritic cells and γδ or CD4
+
 T cells.  In 

addition, ES-62 directly targets Th17 cells by downregulating MyD88 expression to suppress 

responses mediated by IL-1 and TLR ligands. Moreover, ES-62 modulates migration of γδ T 

cells and this is reflected by direct suppression of CD44 upregulation and, as evidenced by in 

situ analysis, dramatically reduced levels of IL-17-producing cells, including lymphocytes, 

infiltrating the joint. Finally, there is strong suppression of IL-17 production by cells resident 

in the joint, such as osteoclasts within the bone areas.  

Conclusion: Such unique multi-site manipulation of the initiation and effector phases of the 

IL-17 inflammatory network could be exploited in the development of novel therapeutics for 

rheumatoid arthritis.  

Key words: collagen-induced arthritis, inflammation, ES-62, IL-17 
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INTRODUCTION 

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory condition, which, despite 

recent advances in cytokine therapy, continues to increase in incidence in the Western World. 

However, in areas of the world endemic for helminth infections, rates of autoimmune 

diseases such as RA remain low leading to the hypothesis that certain helminth infections 

may protect against the development of autoimmunity [1]. In support of this theory, we have 

previously shown that ES-62, a phosphorylcholine (PC)-containing glycoprotein secreted by 

the filarial nematode Acanthocheilonema viteae, has broad immunomodulatory activities and 

can exert powerful anti-inflammatory action in the mouse collagen-induced arthritis (CIA) 

model of RA [2, 3].  

 

Originally it was proposed that the ability of ES-62 to inhibit disease severity in the CIA 

model reflected suppression of TNF-α production and associated Th1-mediated inflammation 

[2, 3]. However, it has become increasingly clear that Th17, rather than Th1 cells, appear to 

be the pathogenic drivers of inflammation in many autoimmune conditions, including CIA 

and RA [4]. Consistent with this, neutralization of IL-17 protects mice from disease, whilst 

over-expression of IL-17 exacerbates pathology [5]. Moreover, Th17 cells may be vital in 

promoting the chronic destructive phase of arthritis, due to their ability to induce the 

expression of RANKL and activate osteoclasts, thereby leading to bone resorption [6] as well 

as stimulating matrix metalloproteinases resulting in cartilage breakdown [7, 8]. Indeed, 

studies from RA patients have shown that IL-17 levels are raised in serum and synovial fluid 

samples compared to those from osteoarthritis or healthy control subjects [9]. By contrast, it 

has been proposed that IFNγ may play a protective role as IFNγR
-
/
-
 mice are more susceptible 

to the development of CIA [10], perhaps reflecting abrogation of counter-regulation of Th17 

development by IFNγ-producing Th1 cells [11]. Moreover, IFNγ is a potent antagonist of 
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osteoclastogenesis in mice and humans [12, 13] and thus may also act to prevent joint 

erosion. 

 

Therefore, given these new insights into CIA pathology, it was important to ascertain the 

effect, if any, that ES-62, a molecule being considered in the context of therapeutic 

intervention, has on pro-inflammatory IL-17 production, and thus to re-address its protective 

role, but in the perspective of IL-17-associated pathology.   
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MATERIALS AND METHODS 

CIA 

Animals were bred (BALB/c and C57BL/6 background) and/or maintained in the Biological 

Services Units in accordance with the Home Office UK Licences PPL60/3580, PPL60/3119 

and PIL60/12183 and the Ethics Review Board of the University of Glasgow. CIA was 

induced in male DBA/1 mice (8-10 weeks old; Harlan Olac; Bicester, UK) by intradermal 

immunization with bovine type II collagen (CII, MD Biosciences) in complete Freund’s 

adjuvant (FCA) and mice were treated with purified endotoxin-free ES-62 (2 µg/dose) or 

PBS subcutaneously on days -2, 0 and 21 [2, 3] and cells were recovered from joints [14] as 

previously described.   

Ex vivo analysis  

Draining lymph node (DLN) cells (10
6
/ml) were incubated ± 50 ng/ml PMA plus 500 ng/ml 

ionomycin for 1 h before addition of 10 µg/ml Brefeldin A (Sigma-Aldrich, UK) for 5 h at 

37
o
C with 5 % CO2. Phenotypic markers were labelled using anti-TLR4-APC (R&D 

Systems), biotinylated anti-CD44 (BioLegend; detected by streptavidin-PE, BD Pharmingen), 

anti-CD4-PERCP or biotinylated anti-CD4 (detected by Alexa Fluor-450 streptavidin, BD 

Pharmingen), or anti-γδ-FITC (BioLegend) antibodies before the cells were fixed and 

permeabilised using BioLegend protocols.  Cells were then labelled using anti-IL-17A-APC 

or anti-IL-17A-PerCP-Cy5.5 (BioLegend), anti-RORγt (eBioscience; detected by anti-Rat 

IgG-APC) and anti-MyD88 (Abcam; detected by anti-Rabbit IgG-PE) antibodies for 30 min 

prior to flow cytometry, gated according to appropriate isotype controls.  
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Cytokine analysis  

ELISAs for IL-17A, IL-10 (BioLegend), TNF-α, IL-6, IL-23 and IL-27 (eBioscience) were 

performed according to manufacturer’s instructions. Alternatively, IL-17A was detected by 

cytometric bead assay (FlowCytomix).  

 In vitro cell culture 

Bone marrow-derived dendritic cells (bmDCs) from male DBA/1, C57BL/6 or BALB/c mice 

(6-8 weeks old) were derived by in vitro culture in complete RPMI 1640 medium (containing 

2 mM glutamine, 50 U/ml penicillin, 50 µg/ml streptomycin and 10% FCS) supplemented 

with 10% conditioned medium from the GM-CSF-transfected X63 myeloma cell line and 50 

µM 2-ME at 37
o
C and in 5% CO2 for 6d. Naïve CD4

+
CD62L

+
 T cells and γδ T cells were 

isolated using Miltenyi magnetic bead technology. For bmDC-T cells co-cultures, bmDCs 

were incubated with ES-62 (2 µg/mL), matured with LPS (Salmonella minnesota; Sigma) 

and then pulsed with ovalbumin (OVA) peptide (0-300 nM) before incubation with naïve T 

cells derived from OVA-specific DO.11.10/BALB/c or OT-II/C57BL/6 mice for 4d. For in 

vitro polarisation of Th17 cells, naïve LN T cells from BALB/c mice were incubated in plates 

pre-coated with anti-CD3 (4 µg/mL) with anti-CD28 (1.5 µg/mL), anti-IFN-γ (5 µg/mL) and 

anti-IL-4 (5 µg/mL) antibodies and rIL-6 (20 ng/mL), rTGF-β (4 ng/mL), and rIL-1 (10 

ng/mL) ± ES-62 (0-1 µg/mL) for 4d. γδ T cells from BALB/c mice were activated with rIL-

1+ rIL-23 (both at 10 ng/mL) overnight ± ES-62 (2 µg/mL) before being incubated with 

bmDCs at different γδ:DC ratios (1:2, 1:5 and 1:20) and culture supernatants collected after 

24 h.   
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Immunofluorescence 

Tissue sections (7 µm) were deparaffinized in xylene, dehydrated in ethanol and antigen 

retrieved by incubation at 60
o
C for 2 h in 10 mM Tris-1 mM EDTA-0.05% Tween 20 buffer, 

pH 9.0. Samples were stained with a goat anti-mouse IL-17 antibody (R&D Systems; or goat 

IgG isotype control) and DAPI as counterstain, at 4
o
C for 12 h followed by a biotinylated 

rabbit anti-goat IgG antibody and streptavidin-Alexa Fluor 647. Images were obtained using 

a LSM510 meta confocal laser coupled to an Axiovert 200 (Zeiss) microscope and analyzed 

with the software Zeiss LSM Image Browser. 

Laser Scanner Cytometry (LSC) 

DLNs were fixed in 10% formalin at 4°C for 24 h, transferred to 30% sucrose in PBS for 48 

h before being frozen in liquid nitrogen in OCT (Bayer) and stored at -70°C. Sections (7 µm) 

were stained with anti-B220-FITC and anti-γδ TCR-PE (or isotype controls; BD Pharmingen) 

and mounted in Vectashield (Vector Laboratories). Quantitation of fluorescence was by LSC 

(CompuCyte) to generate tissue maps of the DLNs using WinCyte software version 3.6 

(CompuCyte). Briefly, setting of a positive staining B220
+

 B cell gate generated a tissue map 

of the localisation of B220
+
 B cells that allowed generation of the indicated gates designating 

the paracortical (T cell area) and follicular (B220
+
 B cell area) regions that were subsequently 

copied onto the γδ TCR
+
 T cell tissue map. This allowed unbiased statistical quantitation of 

γδ TCR
+
 T cells within follicular regions by the WinCyte software following merging of γδ 

TCR
+
 T cell and B220

+
 B cell tissue maps [15]. 
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qRT-PCR  

qRT-PCR and reverse transcription of RNA were according to the manufacturer’s 

instructions (Applied Biosystems). HPLC purified probes (VH Bio; Integrated DNA 

technologies) contained the reporter 5’-6-carboxy-fluorescein (FAM) and quencher 3’-6-

carboxy-tetramethyl rhodamine (TAMRA) dyes and sequences were: RORγt: F- 5’CCG 

CTGAGAGGGCTTCAC3’, R- 5’TGCAGGAGTAGGCCACATTACA3’ and 5’-FAM-

AAGGGCTTCTTCCGCCGCCAGCAG-TAMRA-3’. Applied Biosystems assay kits for IL-

17A, MyD88 and GAPDH  (Mm00439618_m; NM_010851.2 and 4352339E1) were used. 

Data were analyzed by RQ Manager software (Applied Biosystems), normalized to the 

reference reporter GAPDH.  

 

Statistics 

Parametric data were analysed by the unpaired two-tailed Student's t test or by 1-way 

ANOVA followed by the Newman-Keuls post-test. Normalised data were analysed by the 

Kruskal-Wallis test whilst the Mann-Whitney test was used for analysis of clinical CIA 

scores where *p<0.05, **p<0.01 and ***p<0.001. 
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RESULTS 

ES-62 protection against CIA is associated with down-regulation of IL-17 responses  

ES-62 exhibits anti-inflammatory action in terms of significant reduction of articular score 

and hind paw swelling in mice undergoing CIA (Figure 1A). Disease incidence was also 

delayed and reduced in such ES-62-treated mice (Figure 1A). Consistent with IL-17 playing a 

pathogenic role in CIA, we observed a strong positive correlation of IL-17 (IL-17A), but not 

IFNγ, levels in serum with disease scores in animals with CIA (Figure 1B and results not 

shown). Thus to assess whether protection by ES-62 is associated with suppression of IL-17-

mediated pathology, the effect of administration of the helminth product on serum cytokine 

levels was analyzed. Significantly higher levels of IL-17, but not IFNγ, were detected in the 

serum of mice with CIA, compared to naïve animals, and exposure to ES-62 in vivo reduced 

these towards the levels observed in naïve mice (Figure 1B and results not shown).  

In accordance with this, significant differences between the PBS-, but not ES-62-, treated, 

and naïve groups mice were found in terms of total numbers of DLN cells (results not shown) 

and significantly higher proportions of DLN cells from CIA-PBS animals produced IL-17 

relative to the ES-62-treated CIA mice following ex vivo stimulation with PMA plus 

ionomycin (Figure 1C). Moreover, although the differences did not reach statistical 

significance, analysis of spontaneous IL-17 production by cells recovered from the site of 

inflammation also showed a reduction in the proportion of IL-17
+
 cells infiltrating the joint in 

the ES-62 treated animals (Figure 1C). Corroboration that ES-62 suppressed Th17 responses 

was provided by data showing that RORγt mRNA levels were significantly lower in DLN 

cells from the ES-62-treated compared to PBS-treated CIA mice (Figure 1D). Targeting of 

RORγt and IL-17-associated responses by ES-62 was specific, since expression of the Th1-
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associated transcription factor, t-Bet was not affected by exposure to the parasite product 

(data not shown).  

ES-62 suppresses the levels of IL-17-producing CD4 and γδ T cells 

CD4 and γδ T cells were the two major IL-17 producing compartments (>90%) in the DLN 

of all treatment groups (Figure 2A). Although the mice with CIA (PBS) tended to have 

higher numbers of DLN CD4
+
 T cells than those from both the naïve and ES-62-treated 

groups (Figure 2B), there were no significant differences amongst any of these groups, either 

in terms of proportions or absolute numbers of CD4
+
 T cells spontaneously producing IL-17 

(results not shown). By contrast, following ex vivo stimulation with PMA plus ionomycin, 

whilst there were no differences in the proportions of such IL-17
+
 T cells (Figure 2C), 

significantly higher numbers of CD4
+
 T cells from the mice with CIA expressed IL-17 

relative to the naïve group and this was reduced by exposure to ES-62 (Figure 2D). Analysis 

of γδ T cell responses showed that there were no significant differences amongst the groups 

in terms of the total numbers of such cells present in the DLN (Figure 2B). However, both 

higher proportions and absolute numbers of γδ T cells from the mice with CIA, but not those 

exposed to ES-62 in vivo, spontaneously produced IL-17 when compared to those from the 

naïve group (Figure 2C&D). No differences were detected amongst the groups, however, 

following ex vivo stimulation with PMA plus ionomycin (results not shown). Interestingly, 

whilst unlikely to be related to its protective effects (lack of serum IFNγ-disease correlation 

as mentioned earlier and [10]) we found that ES-62 suppressed the % of CD4
+
, γδ

+
 and CD8

+
 

T cells spontaneously producing IFNγ (results not shown), data consistent with our previous 

reports that ES-62 suppressed IFNγ recall responses in CIA [2, 3].  
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ES-62 can attenuate Th17 responses by both indirect and direct effects  

ES-62 modulates DC-mediated priming and polarisation of Th cell responses in healthy mice 

[16-18]. Thus, we next investigated whether ES-62 modulated the capacity of DC to prime 

Th17 responses in CIA by pre-incubating bmDC first derived from naïve DBA/1 mice with 

ES-62 before “maturing” them with LPS in vitro. Although LPS-stimulated release of IL-10 

was unaffected (results not shown), we observed that ES-62 significantly inhibited the LPS-

induced secretion of the pro-inflammatory cytokine, TNF-α and two cytokines associated 

with polarisation and survival of Th17 cells, IL-6 and IL-23 (Figure 3A).  Similarly, bmDC 

derived from DBA/1 mice undergoing CIA (mean articular score of 7.1 ± 0.68) produced 

reduced levels of TNF-α, IL-6 and IL-23 when treated with ES-62 prior to LPS maturation, 

in vitro (Figure 3B). Moreover, whilst IL-23 could not be detected, bmDC derived from 

DBA/1 mice undergoing CIA (mean articular score 5.4 ± 1.6) spontaneously produced 

significantly more IL-6, but not TNF-α or IL-10, than those derived from either naïve DBA/1 

(articular score 0) mice or DBA/1 mice undergoing CIA that had been exposed to ES-62 

(mean articular score 1.8 ± 0.5) in vivo (Figure 3C and results not shown). Collectively, these 

findings suggested that ES-62 could suppress the generation of Th17-polarising cytokines by 

DC in CIA, and consistent with this ES-62-treated DCs show a reduced ability to skew naïve 

OVA-specific T cells towards a Th17 phenotype (Figure 3D).  

We next investigated whether ES-62 could also directly affect Th17 cells.  Naïve T cells were 

primed using anti-CD3 plus anti-CD28 antibodies in the presence of the cytokines, IL-6, 

TGFβ and IL-1β and neutralizing antibodies specific for IFNγ and IL-4 to induce in vitro 

differentiation of Th17 cells. When co-incubated with the parasite product, we observed that 

ES-62 was able to directly down-regulate IL-17 production in a significant and dose-
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dependent manner and this reduction in IL-17 release was reflected by reduced IL-17 mRNA 

levels (Figure 4A). We found expression of TLR4, which is required for ES-62 action [19], to 

be up-regulated during in vitro priming and differentiation of Th17 cells, in parallel with that 

of MyD88 and RORγt (Figure 4B). From a mechanistic point of view, whilst ES-62 did not 

appear to modulate either the surface or intracellular levels of TLR4 (data not shown), it did 

induce downregulation of the TLR signal transducer, MyD88 (Figure 4C) and this was also 

reflected at the mRNA level (Figure 4D).  

DCs are necessary for ES-62-targeting of IL-17 production by γδ T cells 

To address whether ES-62 could likewise directly modulate IL-17 production by γδ T cells, 

γδ T cells from naïve mice were stimulated to produce IL-17 in vitro in a TCR-independent 

manner using rIL-1+rIL-23 [20]. Such “activated”, but not resting, γδ T cells produced large 

amounts of IL-17.  However, ES-62 did not modulate this response (Figure 5A) and perhaps 

consistent with this, we could not detect TLR4 expression and culture with LPS did not 

induce γδ T cell activation (results not shown). Nevertheless, we found that ES-62 could 

inhibit γδ T cell activation as indicated by its ability to prevent upregulation of the cell 

surface marker CD44 in vitro (Figure 5A) and in vivo (Figure 5B).  

We therefore next investigated whether DCs were regulating production of IL-17 by γδ T 

cells by co-culturing LPS-matured DCs with resting or IL-1/IL-23-stimulated γδ cells that 

had been exposed or not to ES-62 and found that IL-17 production was reduced in such ES-

62-treated DC-γδ T cell co-cultures at all ratios tested (Figure 5C). Furthermore, IL-17 and 

RORγt mRNA levels were also reduced when the activated γδ T cells had been exposed to 

ES-62 (Figure 5C). DC maturation is required for these conditioning effects on γδ T cells as 

such immunomodulation did not occur with immature DCs. Also, whilst the results did not 

reach significance, the observed effects were associated with increased generation of IL-27, a 
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cytokine that antagonises IL-17 production [21, 22], in the co-cultures containing ES-62-

treated γδ T cells (results not shown). 

ES-62-mediated modulation of γδ T cell responses also appears to occur during CIA 

in vivo. Thus, such DLN γδ T cells not only displayed reduced expression of CD44 when 

analysed ex vivo (Figure 5B) but also in situ analysis demonstrated that γδ T cells in such ES-

62-treated mice exhibited altered localisation within DLN, showing reduced distribution in 

the B cell follicles compared to those from PBS-treated CIA animals (Figure 5D).  

ES-62 reduces the levels of IL-17 positive cells in the joints of CIA animals  

Consistent with a pathogenic effector role for IL-17 in the joint, in situ analysis showed that 

whilst little or no IL-17 expression could be detected in the joints of naïve mice (Figure 6A), 

there was strong expression of this cytokine in the joints from PBS-treated CIA mice, 

(articular scores 7&8). By contrast, expression of IL-17 was dramatically reduced in the 

joints of ES-62-treated mice (articular scores 3&0). Furthermore, examination of the cells 

producing IL-17 indicated that this reflected cells both infiltrating the joint (Figure 6B&C), 

including large numbers of lymphocytes as indicated by size and morphology (Figure 6C), as 

well as those in the bone such as multinucleated osteoclasts (Figures 6B). IL-17 produced at 

both sites appeared to be reduced in mice treated with ES-62 (Figure 6A). These data suggest 

that as well as suppressing early IL-17-driven pro-inflammatory responses in the DLN 

associated with the initiation of pathogenesis, exposure to ES-62 in vivo is able to reduce 

effector IL-17 responses in the affected joints. 
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DISCUSSION  

The recent proposal that IL-17 is a master regulator of CIA pathogenesis suggested that 

targeting of cellular producers of this cytokine might provide a mechanism for suppression of 

disease severity by ES-62 [2, 3]. Consistent with this, the highly elevated levels of IL-17 in 

the serum of mice with CIA, compared to naïve animals, were significantly reduced in the 

ES-62-treated CIA cohorts. Furthermore, ES-62 reduced the percentage of IL-17
+
 DLN cells, 

relative to their control CIA cohorts, such that these were not significantly different to those 

of naïve DBA/1 mice. Although, prophylactic treatment with ES-62 at d-2, -0 and -21 results 

in some 50-60 % suppression of articular score, it is likely that more frequent and/or higher 

doses of ES-62 would have further reduced IL-17 responses and resultant pathology. 

Alternatively, since ES-62 typically reduces IL-17 responses towards the levels observed in 

naïve DBA/1 mice, the residual pathology observed in the presence of ES-62 could reflect 

IL-17-independent pathogenic effector mechanisms. However, it is certainly the case that 

CD4
+
 and γδ T cell-driven pathogenesis in CIA relies on the ability of these cells to initiate 

IL-17 dependent responses [14, 23-25], albeit, it has recently been suggested that the 

induction of γδ T cells may be as a result of CFA-associated inflammation [14, 23]. However, 

we found that the levels of IL-17
+
 γδ T cells were not up-regulated in mice immunized with 

CFA alone (results not shown), indicating that IL-17 production by both CD4
+
 and γδ T cells 

plays a role in the collagen response and importantly, ES-62 targets both of these major IL-17 

producing compartments in our CIA model.  

 

DCs are a major target of ES-62 action in modulating priming and polarisation of Th cell 

responses [16-18]. Thus, we hypothesised that the reduction in Th17 cells reflected 

suppression of Th17 cell priming by DCs. We subsequently found that in vitro conditioning 

of bmDC with ES-62 significantly inhibited LPS-driven production of TNF-α, IL-6 and IL-
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23, the latter two cytokines implicated in the development and maintenance of the Th17-

phenotype, and a reduction of OVA-specific priming of IL-17 production by naïve CD4
+
 Th 

cells. However we also observed that ES-62 could modulate Th17 responses, directly. 

Although naïve CD4
+
 T cells do not express TLR4, the receptor required for ES-62 to 

mediate its anti-inflammatory effects in APC [19, 26], we found upregulation of TLR4 and 

MyD88 in parallel with the signature transcription factor, RORγt during in vitro polarisation 

to the Th17 phenotype. ES-62-mediated suppression of the resultant IL-17 response therefore 

likely reflects not only that TLRs can be expressed by most T cell subsets, but also that TLR 

agonists (e.g. for TLR3, 5, 7 and 9) can modulate effector or regulatory T cell responses in 

the absence of APC (reviewed in [27]) and LPS/TLR4 signalling can both induce and 

enhance IL-23-stimulated IL-17 release from in vitro differentiated Th17 cells [28].  We find 

that ES-62 suppresses IL-17 release from Th17 cells differentiated in vitro in response to IL-

1 but not in response to IL-23 (manuscript in preparation), a cytokine that has been shown to 

commit naïve T cells to a Th17 phenotype via STAT-3 activation independently of MyD88 

recruitment [29]. Therefore, ES-62 subversion of signalling via TLR4 with consequent 

downregulation of MyD88, a key signal transducer of the TLR/IL-1R family [30], would 

provide a molecular rationale for the observed decrease in Th17 polarisation given that it has 

recently been reported [31, 32] that IRAK4 and IRAK1, the downstream effectors of IL-

1R/MyD88 signalling are required for such polarisation. 

  

By contrast, ES-62 did not directly down-regulate IL-17 production by γδ T cells in response 

to activation with IL-1/IL-23 and consistent with this, we were unable to detect TLR4 

expression by γδ T cells, supporting the proposal that modulation of γδ T cell responses by 

LPS requires cooperation with DCs [33]. It was surprising therefore that we found that ES-62 

suppressed the upregulation of CD44 resulting from activation of γδ T cells in response to IL-
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1/IL-23. These data suggested that ES-62 might directly modulate γδ T cell activation, but 

not cytokine production, through some undefined receptor like those involved in recognition 

of small phosphorylated molecules present in Mycobacteria that lead to DC activation by γδ 

T cells [34, 35] in a TLR-independent manner [36-39]. In turn, mature DCs can stimulate γδ 

T cells to promote sustained immune responses [37, 40] and perhaps of relevance to this 

study, DCs have been shown to modulate IL-17 production by γδ T cells [41]. Thus as the 

active phosphorylcholine moiety of ES-62 [3] is structurally reminiscent of the 

phosphorylated mycobacterial molecules, this suggested that ES-62 was possibly targeting γδ 

T cells via such receptors to modulate bi-directional interaction with DC, a hypothesis 

supported by ES-62 downregulating IL-17 and tending to upregulate IL-27, a cytokine that 

suppresses CIA [22, 42, 43], production in DC:γδ co-cultures.  

 

The targeting of CD44 expression by γδ T cells observed in vitro and in vivo may be 

physiologically relevant to ES-62-mediated protection from CIA as such modulation would 

impact on lymphocyte migration during CIA [44], particularly to the joint [45]. Indeed, in 

situ LSC revealed that exposure to ES-62 in vivo modulates the localisation of γδ T cells 

within the DLN of mice with CIA and this may in turn modulate bidirectional signalling 

between γδ T cells and DC, to subvert initiation of the inflammatory phenotype driving 

autoimmunity. Moreover, and perhaps reflecting suppression of CD44-mediated migration of 

IL-17-producing lymphocytes to the site of inflammation, we have also shown that ES-62 can 

dramatically reduce the levels of IL-17
+
 infiltrating cells in the joints. This is likely to be of 

importance therapeutically as IL-17 produced during the initiator phase, induces the 

recruitment and accumulation of inflammatory cells, particularly neutrophils to the joints and 

the release of pro-inflammatory chemokines, cytokines and matrix metalloproteinases [7, 8, 

46], that ultimately results in osteoclastogenesis and bone destruction in situ [47]. 
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Interestingly, our data suggest that during the effector phase, infiltrating cells and bone cells 

could both be producing IL-17 in situ, as some of the IL-17
+
 cells in the bone appear 

multinucleated (Figure 6B), suggesting that they could be osteoclasts. Moreover, the 

infiltrating cells in the joints of mice with CIA contain large numbers of small IL-17
+
 

mononuclear cells that appear to be lymphocytes, consistent with ES-62 blocking the 

migration of pathogenic effector Th17 and/or IL-17-producing γδ T cells to the site of 

inflammation. Importantly, levels of all classes of IL-17 producing cells in the joint appear to 

be reduced in the ES-62-treated mice. 

 

Collectively, these data suggest that ES-62 targets the IL-17 inflammatory axis at several 

regulatory points in order to optimize safe modulation of pathogenic IL-17 responses (Figure 

6D).  Thus, it both targets cells of the innate immune system (DCs and γδ T cells) to inhibit 

initiation of pathogenic responses and also, by acting directly on Th17 cells, suppress 

ongoing adaptive responses. Mechanistically, given the increasing evidence for TLR 

signalling in the initiation (DC) and amplification of Th17 and γδ T cell-mediated IL-17 

responses and autoimmune inflammation [28, 31, 48], it is pertinent that ES-62 rewires TLR-

2, -4 and -9 driven maturation of DC to an anti-inflammatory phenotype in a TLR4-

dependent manner [19]. This is reflected here by the inhibition of LPS-induced TNF-α, IL-6 

and IL-23 production as well as increased IL-27 release, resulting in suppression of 

differentiation and/or maintenance of the Th17 phenotype. ES-62 can also act directly on 

CD4
+
 T cells to suppress IL-1-dependent Th17 differentiation and this likely involves TLR4-

mediated downregulation of MyD88, leading to un-coupling of IL-1R from IRAK1/4 signals 

that are essential for Th17 polarisation [31, 32]. As MyD88 is a key signal transducer for all 

TLR family members except for TLR3 (interestingly, signalling of which is not modulated by 

ES-62 [19]), the recent finding that Th17 responses and consequent autoimmune 
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pathogenesis are promoted by TLR2 signalling in vivo [28] suggests that ES-62 may 

downregulate MyD88 expression as a general mechanism of targeting aberrant Th17 

responses and inflammatory disease.  Interestingly, ES-62 also acts directly on γδ T cells, 

possibly via phosphoantigen receptors (pAgR), not only to modulate the bidirectional DC-γδ 

interactions required to drive subsequent adaptive Th17 responses, but also to downregulate 

CD44 expression and suppress migration of such pathogenic cells to the joints. Certainly, it 

dramatically suppresses pathogenic IL-17 production by effector cells within the joint.  

 

Hence, the use of ES-62 to modulate this highly inflammatory mediator by targeting both DC 

maturation and effector T cell responses through subversion of TLR4 signalling, without 

compromising the host immune response to infection [26], constitutes a highly appealing 

therapeutic strategy for RA. 
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FIGURE LEGENDS  

Figure 1. ES-62 protects against CIA.  

(A) Clinical scores (PBS, n=43; ES-62, n=32; left-hand panel) and paw width (n=9; middle 

panel), expressed as mean scores ± SEM for PBS (filled squares) or ES-62 (open squares)-

treatment groups of CIA mice and disease incidence (right-hand panel), indicated by the % of 

animals in the PBS- (solid line) and ES-62- (broken line) groups developing a severity score 

≥ 1. (B) Serum IL-17 levels are plotted, as the means of triplicate analyses from individual 

mice showing a significant correlation with clinical score (number of XY pairs = 26, Pearson 

r = 0.6050; p<0.001; left-hand panel) and as mean values of triplicate IL-17 analyses of 

serum from individual mice (naïve, n = 16; PBS, n = 26; ES-62, n = 23; right-hand panel). 

(C) The % IL-17
+
 DLN cells after ex vivo stimulation with PMA plus ionomycin; (PBS, 

n=19, ES-62, n=15; left-hand panel) and the % IL-17
+
 joint cells (PBS, n=11, ES-62, n=8; 

right-hand panel).  (D) Mean values ± SEM of RORγt/GAPDH mRNA (PBS, n = 4, ES-62, n 

= 3) as plotted for individual mice. 

 

Figure 2. ES-62 targets IL-17-producing CD4
+
 and γδγδγδγδ T cells. 

(A) Exemplar plots of gating strategy of intracellular IL-17 expression by DLN cells from 

PBS- and ES-62-treated mice with CIA show forward scatter (FSC) on the x-axis versus IL-

17 expression on the y-axis as well as the cellular expression of IL-17 by CD4 and γδ T cells. 

(B) The numbers of CD4
+
 T cells (left-hand panel) and γδ T cells (right hand panel) present 

in the DLN of individual mice (naïve, n=12; PBS, n= 19 and ES-62, n= 15) are shown. (C) 

Percentages of IL-17
+
 CD4

+
 T cells (naïve, n=12; PBS, n=19; ES-62, n=15; left hand panel;) 

after PMA plus ionomycin and IL-17
+
 γδ T cells (naïve, n=8; PBS, n=11; ES-62, n=9; right 

hand panel) spontaneously producing IL-17 cells in the DLN of individual mice. (D) 

Absolute numbers of IL-17
+
 CD4

+
 T cells (naïve, n=12; PBS, n=19; ES-62, n=15; left hand 
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panel;) after PMA plus ionomycin exposure and IL-17
+
 γδ T cells (naïve, n=8; PBS, n=11; 

ES-62, n=9; right hand panel) spontaneously producing IL-17 cells in the DLN of individual 

mice.  

 

Figure 3: ES-62 down-regulates DC driven Th17 cell priming in vitro.   

bmDCs from naïve (A) or CIA (B) DBA/1 mice were preincubated ± ES-62 for 24h prior to 

stimulation ± LPS (24h) before analysis of TNF-α, IL-6 and IL-23. Data are means (of mean 

values of triplicate samples) ± SEM from individual mice (A; RPMI, n=5; ES-62, n=4; B; 

RPMI, n=7; ES-62, n=4). (C) Spontaneous production of IL-6 from bmDCs from naïve, CIA 

(PBS) or ES-62-treated CIA (ES-62) DBA/1 mice is presented as means (of mean values of 

triplicate samples) ± SEM, n=4 individual mice.  (D) OVA-pulsed LPS-matured or immature 

(RPMI) C57BL/6 bmDCs, preincubated ± ES-62, were co-cultured with naïve OTII T cells 

for 4 d before measuring IL-17 levels by ELISA.  Data are mean values ± SD of triplicate 

samples from a single experiment (left-hand panel) or pooled results from 5 independent 

experiments where data were normalized to the LPS response at 300 nM OVA and presented 

as mean % maximum (LPS) response ± SEM (right-hand panel).  

 

Figure 4: ES-62 directly inhibits Th17 polarisation in vitro.  

(A) Th17 cells were differentiated in vitro ± ES-62 (0-1 µg/mL) and IL-17 measured. ELISA 

data are presented as mean values ± SD of triplicate samples from a single representative 

experiment (left-hand panel) or pooled from three independent experiments where the levels 

of IL-17 were normalized relative to the control Th17 cells (100%=no ES-62) and presented 

as the mean value ± SEM (middle panel). IL-17 mRNA expression levels relative to GAPDH 

are presented where the data represent the mean values ± SD of triplicate samples from a 

single experiment (right-hand panel).  (B) Expression of RORγt, surface TLR4 and MyD88 
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during in vitro Th17 polarisation was evaluated by flow cytometric analysis. Expression 

levels are shown at d-0 (tinted grey trace), d-2 (thin black line) and d-4 (thick black line) 

relative to isotype controls (broken line). (C) Expression of MyD88 (black line) was reduced 

by ES-62 (1 µg/ml; grey line) as indicated by flow cytometric analysis (left-hand panel) and 

geometric mean analysis (MFI; right-hand panel) and (D) MyD88 mRNA expression relative 

to GAPDH is presented where data represent the mean values ± range from two independent 

experiments. 

Figure 5: ES-62 modulates crosstalk between γδ T cells and DCs in vitro. 

(A) γδ T cells from BALB/c mice were activated in vitro with rIL-1+rIL-23 ± ES-62 (2 

µg/mL) and IL-17 release (means ± SD n=3; left-hand panel) and CD44 expression (resting, 

grey; rIL-1+rIL-23, line; rIL-1+rIL-23+ES-62, bold line; right-hand panel) analysed at 24 h. 

(B) The % of γδ T cells expressing CD44 in DLN from PBS- and ES-62-treated CIA mice. 

(C) Resting, activated (act) or ES-62-exposed activated (ES act) γδ T cells and LPS-activated 

DCs were co-cultured at the indicated cell ratios and IL-17 detected at 24 h. Data are mean 

values ± SD, n=3 from a single experiment or pooled normalized (% activated γδ T cell 

control response) presented for each ratio as mean (of mean values) ± SEM, n=4 independent 

experiments. IL-17 and RORγt mRNA levels relative to GAPDH were measured; data 

represent mean ± SD, n=3 from a single representative experiment. (D) LSC analysis of 

B220
+ 

(black) cells and % of γδ TCR
+
 cells (grey) within B cell follicles, gated as described 

in Methods. Plotted data are mean % (of two sections) ± SEM n=8 individual mice for both 

PBS and ES-62-treated CIA. 

 

Figure 6: ES-62 suppresses the levels of IL-17-producing cells in the joints of CIA mice.  

(A) Joint sections of naïve, PBS (articular scores 7& 8) and ES-62 treated (articular scores 

3& 0) were imaged (magnification x20) for IL-17 (red) and nuclei (blue). Isotype control 
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sections were IL-17 negative. Synovium (Sy), Pannus (P), Articular Cavity (Ac) and Bone 

(B) regions are indicated. IL-17
+
 cells in the bone (B) and synovium (C) derived from panel 

A are from the annotated (1-4) regions of PBS sections (magnification x40). A 

multinucleated cell (B) is indicated by the white arrow and yellow bars indicate relative 

magnification (C; left-hand panel 20 µm scan zoom 2.3, right-hand panel 10 µm scan zoom 

2.1; D; left-hand panel 5 µm scan zoom 2.5, right-hand panel 20 µm scan zoom 2.6). A 

model of the mechanism of action of ES-62 (D) modulating a complex network of DC-

CD4
+
T cell and γδ T cell interactions to suppress pathogenic IL-17 responses in CIA is 

shown.  
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Figure 1. ES-62 protects against CIA. (A) Clinical scores (PBS, n=43; ES-62, n=32; left-hand panel) and paw width (n=9; middle panel), expressed as 

mean scores ± SEM for PBS (filled squares) or ES-62 (open squares)-treatment groups of CIA mice and disease incidence (right-hand panel), indicated by 

the % of animals in the PBS- (solid line) and ES-62- (broken line) groups developing a severity score ≥ 1. (B) Serum IL-17 levels are plotted, as the means 

of triplicate analyses from individual mice showing a significant correlation with clinical score (number of XY pairs=26, Pearson r=0.6050; p<0.001; left-

hand panel) and as mean values of triplicate IL-17 analyses of serum from individual mice (naïve, n=16; PBS, n=26; ES-62, n=23; right-hand panel). (C) 
The % IL-17+ DLN cells after ex vivo stimulation with PMA plus ionomycin (PBS, n=19, ES-62, n=15; left-hand panel) and the % IL-17+ joint cells (PBS, 

n=11, ES-62, n=8; right-hand panel). (D) Mean values ± SEM of RORγt/GAPDH mRNA (PBS, n=4, ES-62, n=3) as plotted for individual mice. 
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Figure 2. ES-62 targets IL-17-producing CD4+ and γδγδγδγδ T cells. (A) Exemplar plots of gating strategy of intracellular IL-17 expression by DLN cells from 
PBS- and ES-62-treated mice with CIA show forward scatter (FSC) on the x-axis versus IL-17 expression on the y-axis as well as the cellular expression of 

IL-17 by CD4 and γδ T cells. (B) The numbers of CD4+ T cells (left-hand panel) and γδ T cells (right-hand panel) present in the DLN of individual mice 

(naïve, n=12; PBS, n=19 and ES-62, n=15) are shown. (C) Percentages of IL-17+ CD4+ T cells (naïve, n=12; PBS, n=19; ES-62, n=15; left-hand panel) 
after PMA plus ionomycin and IL-17+ γδ T cells (naïve, n=8; PBS, n=11; ES-62, n=9; right-hand panel) spontaneously producing IL-17 cells in the DLN 

of individual mice. (D) Absolute numbers of IL-17+ CD4+ T cells (naïve, n=12; PBS, n=19; ES-62, n=15; left hand panel) after PMA plus ionomycin 

exposure and IL-17+ γδ T cells (naïve, n=8; PBS, n=11; ES-62, n=9; right-hand panel) spontaneously producing IL-17 cells in the DLN of individual mice.  
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Figure 3. ES-62 down-regulates DC driven Th17 cell priming in vitro.  bmDCs from naïve (A) or CIA (B) DBA/1 mice were preincubated ± ES-62 for 

24 h prior to stimulation ± LPS (24h) before analysis of TNF-α, IL-6 and IL-23. Data are means (of mean values of triplicate samples) ± SEM from 

individual mice (A; RPMI, n=5; ES-62, n=4; B; RPMI, n=7; ES-62, n=4). (C) Spontaneous production of IL-6 from bmDCs from naïve, CIA (PBS) or ES-

62-treated CIA (ES-62) DBA/1 mice is presented as means (of mean values of triplicate samples) ± SEM, n=4 individual mice.  (D) OVA-pulsed LPS-
matured or immature (RPMI) C57BL/6 bmDCs, preincubated ± ES-62, were co-cultured with naïve OTII T cells for 4 d before measuring IL-17 levels by 

ELISA.  Data are mean values ± SD of triplicate samples from a single experiment (left-hand panel) or pooled results from 5 independent experiments 

where data were normalized to the LPS response at 300 nM OVA and presented as mean % maximum (LPS) response ± SEM (right-hand panel).  
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Figure 4. ES-62 directly inhibits Th17 polarisation in vitro. (A) Th17 cells were differentiated in vitro ± ES-62 (0-1 µg/mL) and IL-17 measured. 

ELISA data are presented as mean values ± SD of triplicate samples from a single representative experiment (left-hand panel) or pooled from three 

independent experiments where the levels of IL-17 were normalized relative to the control Th17 cells (100%=no ES-62) and presented as the mean value ± 

SEM (middle panel). IL-17 mRNA expression levels relative to GAPDH are presented where the data represent the mean values ± SD of triplicate samples 

from a single experiment (right-hand panel).  (B) Expression of RORγt, surface TLR4 and MyD88 during in vitro Th17 polarisation was evaluated by flow 

cytometric analysis. Expression levels are shown at d-0 (tinted grey trace), d-2 (thin black line) and d-4 (thick black line) relative to isotype controls 

(broken line). (C) Expression of MyD88 (black line) was reduced by ES-62 (1 µg/ml; grey line) as indicated by flow cytometric analysis (left-hand panel) 

and geometric mean analysis (MFI; right-hand panel) and (D) MyD88 mRNA expression relative to GAPDH is presented where data represent the mean 
values ± range from two independent experiments. 
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Figure 5. ES-62 modulates crosstalk between γδ T cells and DCs in vitro. (A) γδ T cells from BALB/c mice were activated in vitro with rIL-1+rIL-23 ± 

ES-62 (2 µg/mL) and IL-17 release (means ± SD n=3; left-hand panel) and CD44 expression (resting, grey; rIL-1+rIL-23, line; rIL-1+rIL-23+ES-62, bold 

line; right-hand panel) analysed at 24 h. (B) The % of γδ T cells expressing CD44 in DLN from PBS- and ES-62-treated CIA mice. (C) Resting, activated 

(act) or ES-62-exposed activated (ES act) γδ T cells and LPS-activated DCs were co-cultured at the indicated cell ratios and IL-17 detected at 24 h. Data 

are mean values ± SD, n=3 from a single experiment or pooled normalized (% activated γδ T cell control response) presented for each ratio as mean (of 

mean values) ± SEM, n=4 independent experiments. IL-17 and RORγt mRNA levels relative to GAPDH were measured; data represent mean ± SD, n=3 

from a single representative experiment. (D) LSC analysis of B220+ (black) cells and % of γδ TCR+ cells (grey) within B cell follicles, gated as described 
in Methods. Plotted data are mean % (of two sections) ± SEM n=8 individual mice for both PBS and ES-62-treated CIA. 
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Figure 6. ES-62 suppresses the levels of IL-17-producing cells in the joints of CIA mice. (A) Joint sections of naïve, PBS (articular scores 7&8) and 

ES-62 treated (articular scores 3&0) were imaged (magnification x20) for IL-17 (red) and nuclei (blue). Isotype control sections were IL-17 negative. 

Synovium (Sy), Pannus (P), Articular Cavity (Ac) and Bone (B) regions are indicated. IL-17+ cells in the bone (B) and synovium (C) derived from panel A 

are from the annotated (1-4) regions of PBS sections (magnification x40). A multinucleated cell (B) is indicated by the white arrow and yellow bars 

indicate relative magnification (C; left-hand panel 20 µm scan zoom 2.3, right-hand panel 10 µm scan zoom 2.1; D; left-hand panel 5 µm scan zoom 2.5, 

right-hand panel 20 µm scan zoom 2.6). A model of the mechanism of action of ES-62 (D) modulating a complex network of DC-CD4+T cell and γδ T cell 
interactions to suppress pathogenic IL-17 responses in CIA is shown.  
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