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Adaptive template matching algorithm based on

SWAD for robust target tracking
G. Di Caterina and J.J. Soraghan

The Sum of Absolute Differences (SAD) is widely used in video coding and disparity
computation for its simplicity. However SAD is not very common in tracking applications
due to issues like partial occlusion and target changes, which can dramatically affect its
performance. In this Letter we present a novel adaptive template matching algorithm for
target tracking, based on a Sum of Weighted Absolute Differences (SWAD). The target
template is updated using an infinite impulse response filter, while a weighting kernel is
adopted to reduce the effects of partial occlusion. Simulation results demonstrate that
the proposed tracker outperforms conventional SAD in terms of efficiency and accuracy,
and its performance is comparable with more complex trackers, such as the Mean Shift

algorithm.

Introduction: ~ Visual tracking is the process of inferring information between detec-
tions of a selected target in consecutive frames, and it is an important task in many
video processing systems. Many algorithms with medium-high complexity have been
proposed in literature, as reported in [1]. As the majority of them deal with partial occlu-
sion, we argue that, for the same level of tracking performance, simpler algorithms are
preferable. The Sum of Absolute Difference is a well known metric and it is often used
in video coding and disparity computation for stereo images, due to its simplicity. How-
ever SAD is not very common in tracking applications, as issues like partial occlusion
and target template changes can dramatically affect its performance. In this Letter we
present a novel adaptive template matching algorithm for robust target tracking based
on a modified SAD called Sum of Weighted Absolute Differences (SWAD), where a
Gaussian weighting kernel is employed to reduce the effects of partial occlusion. The
target template is updated using an infinite impulse response filter approach, to implic-
itly deal with visual changes of the target, such as rescaling and rotation. Simulation
results demonstrate that the proposed SWAD-based tracker outperforms conventional
SAD in terms of efficiency and accuracy. The proposed algorithm is also compared

with the widely used Mean Shift tracker [2], to show that its performance is comparable
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to more complex algorithms. The simplicity and algorithmic structure of the SWAD-
based tracker makes it suitable for real time implementations in embedded systems

with fixed-point architecture.

Tracking Algorithm:  The novel tracking algorithm presented in this Letter is based
on template matching, and in particular on the minimization of a Sum of Weighted
Absolute Differences (SWAD) in a region of interest (ROI) R,; within the current frame
F,;, as shown in Fig. 1b. The target model is represented by a template T; of Np x Np
pixels, and computed as:

T;=(1—a)Ti_1 +aTi (1)

where a € [0,1] is a blending factor, and T;_; and T;_; are respectively target template
and best match in the previous frame F,_; (Fig. 1a). In the first frame Fg the target
template Ty is initialized as the portion of F containing the selected target. The ROI
R; in position q; is selected as the neighbouring area around T;_; in the previous frame
F,_1, with size of N x Ny pixels, where Np = Np + 2Ng and Ng is a spatial offset
around T;_;. The proposed algorithm requires single colour plane images, therefore it
can be applied to both gray scale and colour video sequences. In the case of colour
images, F; can be the luminance component. The absolute differences in the SWAD
metric are weighted by a kernel K of Ny x N pixels. In the current implementation a
Gaussian weighting kernel has been employed, to assign high weights to central pixels
and low weights to peripheral ones, as these pixels might belong to background or even

occluding objects. Assuming integer pixel values in the range [0, 255], the kernel K is:

_ _9(@y)
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where z,y € [0, Ny — 1] and g(«x,y) is 2-dimensional Gaussian function with mean

Q

(2)

u = (N7 — 1)/2 and standard deviation o = N /5, defined as:

T — )2 N2
o(,y) = exp <_( 205) B (y%ét) )

(3)

Given the current template T, its best match T, in F; is searched within R; (Fig. 1c).
For this purpose the SWAD coefficient ¢(z,y) at location (z,y) within R; is computed

as:
Nr—1Np—1

w(%y) = Z Z K(m7n)A(xay7m7n) (4)

m=0 n=0



where K is the Gaussian weighting kernel and A(z, y, m,n) is the pixel difference:
A(%%man): |Rl($+m7y+n)_ﬂ(mvn)| (5)

The position of the best match T; within R, for the given template T; is represented by
the 2-dimensional index b;, obtained by minimizing the SWAD coefficient as in (6):

b; = argmax (z,y) (6)
ac,yG[O,NR—NT]

The index b; refers to the top-left pixel of the best matching block T;. The position of T;
within F; is computed as p; = q;+b;, as illustrated in Fig. 1c. Once the best match T; in
the current frame has been found, the new target model T, for the next frame F;, 1 is
computed using equation (1), which describes an infinite impulse response filter and it
ensures that the target template is updated and adapts to changes, while guaranteeing
tracker stability by reducing the effects of partial occlusion. Moreover, updating the
template as in (1) implicitly deals with possible rescaling and rotation of the target. The
value of the blending factor « mainly depends on the approach one wants to follow to
update the target template. In a high frame rate implementation, « can be set to 0.5,
giving equal weight to current and past templates, so that T; can adapt to changes
fairly quickly. For a more conservative approach, i.e. to preserve the template and let it
adapt slowly, the blending factore can be « < 0.5. Finally a new region of interest R
for the next frame F,,; is defined around the position p; of T;, within F; (Fig. 1d). In

particular the position q;11 of R;4+1 in F; 1 is computed as:

¢i+1(1) = min (max (p;(1) — Ng,1),W — Ng)

¢i+1(2) = min (max (p;(2) — Ng,1), H — Ng) (7)

where W and H are respectively width and height of the frame. Equation (7) ensures
that R, is entirely within the frame F; ;. The steps of the proposed tracking algorithm

for each frame F; are summarized as follows:

1. Given R; and T;, minimize the SWAD coefficient ¢(z,y) as in (4)-(6), to obtain

the position b; of the best match T; in F;.
2. Given b; and the position q; of R; within F;, compute the target position p;.

3. Given T; and the best match T;, update the target model using (1).



4. Compute the position q;;1 of the ROI R, in the next frame F;,; from (7).

Evaluation: A comparison between Matlab implementations of the adaptive template
matching algorithm with both SWAD and SAD has been carried out to assess relative
tracking capability. Visual results for the PETS2006 video sequence S1-3 are shown
in Fig. 2, where the first and second rows refer respectively to SAD and SWAD. Both
trackers are initialized in frame #968, on the person with the backpack entering the
scene from the right, as shown in Fig. 2a and Fig. 2d. It can be seen that the SAD
tracker begins to lose the target in frame #1087 (Fig. 2b) and loses track at #1117 (Fig.
2c), while the SWAD algorithm keeps tracking the target (Fig. 2e-f). The SAD-based
tracker is obviously confused with the tile structure on the background.

The SWAD tracker was also compared against the Mean Shift tracker on the PETS2007
sequence S06-1, with the selected target being the blonde woman in red clothing en-
tering the scene from the top. From Fig. 3 it can be seen that the error distances from
the manually labelled ground truth in both trackers have roughly the same behaviour.
In this experiment, the error associated with MS has mean value . = 12.57 pixels
and variance o, = 6.23 pixels, while the error associated with SWAD has mean value
te = 9.47 pixels and variance 0. = 5.69 pixels. The error with MS is higher than the
error with SWAD in 88% of the frames, while the error with SWAD is higher in 12% of
the frames. This experiment shows that the performance of the SWAD-based tracker
is comparable to the more complex Mean Shift tracker approach.

Finally, the proposed tracking algorithm has been implemented on a DM6437 Evalua-
tion Module [3], equipped with a fixed-point DSP from Texas Instruments. The SWAD
algorithm takes advantage of the fixed-point architecture of such DSP and it runs at
16 ms per frame, largely meeting the real-time requirements of an embedded applica-
tion. The work in [4] presents an optimized implementation on the same architecture
of the Camshift face tracker, which is based on the Mean Shift tracker. Such imple-
mentation on the DM6437 runs at about 120 ms per frames, which is almost an order
of magnitude slower than the adaptive template matching algorithm proposed in this

Letter.

Conclusion: This Letter has presented a novel adaptive template matching algorithm



for tracking, based on the minimization of the Sum of Weighted Absolute Differences. A
Gaussian weighting kernel is used to assign different weights to pixels distant from the
target centroid, as these pixels may experience partial occlusion. The target template
is updated using an infinite impulse response filter to adapt to template changes, such
as rescaling and rotation. Despite its simplicity, experimental results have shown the
robustness of the tracker and its higher accuracy with respect to SAD-based tracking.
Moreover, the tracking performance of the proposed algorithm is comparable with the
ones of more complex trackers. The SWAD-based tracker is ideal for real-time imple-
mentations on devices with low computational capabilities, as in the case of fixed-point

embedded DSP platforms.
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Figure captions:

Fig. 1: Layout of the current frame F; showing the best match T;, the region of interest

R,; and their positions within F;.

Fig. 2: Comparison between SAD and SWAD: the first row refers to SAD tracking,
while the second row refers to SWAD tracking, where SWAD maintains high accuracy

in tracking, especially for frame #1087 and frame #1117.

Fig. 3: Error distance from ground truth for MS and SWAD trackers.
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Figure 2

(a) SAD - #968 (b) SAD - #1087 (c) SAD - #1117

(d) SWAD - #968 (6) SWAD - #1087 (f) SWAD - #1117
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