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Abstract. We examine the optical helicity, the optical spin and the ij-infra-

zilches in electromagnetic theory and show that these conserved quantities can

be combined to form a new description of the angular momentum associated

with optical polarization: one that is analogous to the familiar description of

optical energy and linear momentum. The symmetries of Maxwell’s equations

that underlie the conservation of our quantities are presented and discussed. We

explain that a similar but distinct set of quantities, Lipkin’s zilches, describe

the ‘angular momentum’ of the curl of the electromagnetic field, rather than the

angular momentum of the electromagnetic field itself.
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1. Introduction

In optics, it is well-established that a beam of light can carry both spin and orbital angular

momenta parallel to the beam axis. The spin angular momentum is associated with polarization

while the orbital angular momentum is associated with helical phase fronts [1, 2]. Surprisingly,

a fundamental description of these mechanical properties of light within electromagnetic theory

has proved controversial: it has long been known how to extract spin-like and orbital-like

pieces from the total angular momentum of the electromagnetic field [3, 4], but there has been

confusion as to whether these are separately meaningful as they are themselves not true angular

momenta [5, 6].

In this paper we focus upon the angular momentum associated with polarization. That is,

the spin angular momentum of light. The photon is massless and relativity suggests that it does

not possess a well-defined spin angular momentum vector. Rather, it is only the component

of the spin angular momentum in the direction of propagation, the photon’s helicity, that is

physically meaningful [5, 6]. Previously [7], we determined the form of the optical helicity

in electromagnetic theory and demonstrated its utility. In what follows, we expand upon this

work and show that the optical helicity can be combined naturally with the more familiar spin-

like piece of the total electromagnetic angular momentum, as well as with six new conserved

quantities, to form what is, perhaps, a more complete description of the angular momentum

associated with polarization.

Cartesian coordinates are used exclusively throughout. Greek indices α, β etc may assume

the values 0 and 1, 2, 3, corresponding to time, t , and spatial coordinates, x, y, z. Latin indices

i, j etc may assume the values 1, 2, 3. When an index appears twice in a term, summation over

its allowed values is to be understood. We make no distinction between raised and lowered

indices, although we respect convention and use raised indices to label the components of the

contravariant energy–momentum and zilch tensors.

2. Optical helicity

It was first suggested by Poynting [8], and was later confirmed experimentally by Beth [9],

that a beam of light possesses an intrinsic angular momentum associated with its polarization

equivalent to h̄σ per photon in the direction of propagation. The parameter −16 σ 6 1 takes

its limiting values of ±1 for left- or right-handed circular polarization and vanishes for linear

polarization. The pseudoscalar quantity h̄σ is the average helicity per photon [10]. Recently, we

asked how we might describe this property of light in electromagnetic theory. We recall below,

the reasoning that led us to the desired optical helicity [7].

We work with the electric field, E, and magnetic field, B, in vacuum so as to describe freely

propagating light. The fields obey the source-free Maxwell equations which are:

∇ · E = 0,

∇ · B = 0,
(2.1)

∇ × E = −Ḃ,

∇ × B = Ė,

in a natural system of units with ǫ0 = µ0 = c = 1.
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The optical helicity we seek should be a time-even pseudoscalar with the dimensions of

an angular momentum. A quantity with these properties has already been recognized in plasma

physics for some time: the magnetic helicity,M, is given by [11]:

M=

∫ ∫ ∫

A · B d3r, (2.2)

where the vector potential, A, is related to the magnetic field in the usual way: B = ∇ × A [12].

The magnetic helicity is used to quantify the twist of magnetic field lines [13], and formally

resembles the vortex helicity recognized in fluid mechanics [14]. However, the magnetic helicity

is not acceptable as a quantity that describes the helicity of freely propagating electromagnetic

waves. To demonstrate this, we need only consider a symmetry, due to Heaviside [15] and

Larmor [16], that is inherent in Maxwell’s equations (2.1) for the free-field: the equations retain

their form under a duality rotation:

E → cos θ E + sin θ B,
(2.3)

B → cos θ B − sin θ E,

for any pseudoscalar angle θ . Accordingly, any physically meaningful property of the field

must also retain its form under a duality rotation [17], a principle referred to by Berry [18]

as electric–magnetic democracy. To ask whether the magnetic helicity retains its form under a

duality rotation, we follow Bateman [19] and introduce a second (pseudo)vector potential, C,

such that E = −∇ × C. For the sake of brevity, we work with the Coulomb gauge (∇ · A =
∇ · C = 0) so that our vector potentials are purely transverse (A = A⊥, C = C⊥) and are,

therefore, gauge invariant and uniquely defined [4]. The fields can then be expressed in terms of

either vector potential as:

E = − ∇ × C = −Ȧ,

B = ∇ × A = −Ċ, (2.4)

and the duality rotation (2.3) is invoked by taking:

A → cos θ A + sin θ C,
(2.5)

C → cos θ C − sin θ A.

The electric–magnetic democracy principle is extended to the vector potentials by requiring that

physically meaningful properties of the field retain their form under the transformation (2.5).

It is immediately obvious that the magnetic helicity (2.2) does not retain its form under this

transformation and is therefore not an acceptable candidate for an optical helicity.

To proceed, we add half of the magnetic helicity to half of the corresponding electric-

helicity [7]. This gives us the desired optical helicity [20–22]:

H=

∫ ∫ ∫

1

2
(A · B − C · E) d3r. (2.6)

The optical helicity, H, is a time-even Lorentz pseudoscalar with the dimensions of an angular

momentum. It retains its form under a duality rotation (2.5), as required. The optical helicity is

a conserved quantity in that:

dH

dt
= 0. (2.7)
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By expanding the quantized field in terms of circularly polarized plane wave modes, we

find that the operator form, Ĥ, of the optical helicity is [7]:

Ĥ=
∑

k

h̄
(

n̂k,L − n̂k,R

)

, (2.8)

where n̂k,L and n̂k,R are number operators for the left- and right-handed circular polarizations

associated with the wavevector k. As the helicity of a photon is ±h̄ for these polarizations, we

see that (2.8) simply represents a sum over all modes of the number of photons in each mode

multiplied by their helicity.

The integrand of (2.6) suggests that we take the quantity:

h = 1

2
(A · B − C · E), (2.9)

to be the helicity density of the field. Our helicity density, h, has the dimensions of an

angular momentum per unit volume, is uniquely defined and retains its form under a duality

rotation (2.5).

3. Optical spin

The optical helicity, H, is not the only quantity in electromagnetic theory that describes the

angular momentum associated with polarization. We recognize, in addition, the optical spin,

which we now consider.

The total angular momentum, J , of the field is obtained by integrating the angular

momentum density, j = r × (E × B), over all space:

J =

∫ ∫ ∫

r × (E × B) d3r. (3.1)

Using integration by parts, it can be recast in the form [4, 23, 24]:

J =

∫ ∫ ∫

1

2
(E × A + B × C) d3r +

∫ ∫ ∫

1

2
[Ei (r × ∇) Ai + Bi (r × ∇) Ci ] d3r, (3.2)

provided the field falls off suitably as |r| → ∞. The first integral,

S =

∫ ∫ ∫

1

2
(E × A + B × C) d3r, (3.3)

makes no explicit reference to r and it therefore seems natural to associate this integral with the

spin angular momentum of light and the second integral with the orbital angular momentum

of light. Of course, the optical spin, S, is a time-odd pseudovector with the dimensions of

an angular momentum. Remarkably, however, it is not actually an angular momentum as its

quantized form does not satisfy the required commutation relations [5, 6]. Like the optical

helicity, the optical spin is conserved:

dS

dt
= 0. (3.4)

If we again expand the quantized field in terms of circularly polarized plane wave modes,

we find the operator form, Ŝ, of the optical spin to be [25]:

Ŝ =
∑

k

h̄
(

n̂k,L − n̂k,R

) k

|k|
. (3.5)
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This represents a sum over all modes of the number of photons in each mode multiplied by their

helicity and the unit vector k/|k| in the direction of propagation.

The integrand of (3.3) suggests that we take the quantity:

s = 1

2
(E × A + B × C), (3.6)

to be the spin density of the field [23]. Our spin density, s, has the dimensions of an

angular momentum per unit volume, is uniquely defined and retains its form under a duality

rotation (2.5).

4. The ij-infra-zilches

In addition to the optical helicity,H, and the optical spin, S, there exists a further six quantities

in electromagnetic theory that describe the angular momentum associated with polarization. We

refer to these quantities:

Ni j =

∫ ∫ ∫

1

2

[

δi j (A · B − C · E) − Ai B j − A j Bi + Ci E j + C j Ei

]

d3r, (4.1)

as the ij-infra-zilches, in homage to Lipkin’s ij-zilches (discussed in section 8) which are similar

in form. That only six of the ij-infra-zilches, Ni j , are independent, is a consequence of the

symmetry Ni j =N j i . The ij-infra-zilches are time-even quantities that change sign under a

parity inversion and have the dimensions of an angular momentum. Like the optical helicity

and the optical spin, they are conserved:

dNi j

dt
= 0. (4.2)

If we consider once more an expansion of the quantized field in terms of circularly

polarized plane wave modes, we find that the operator forms, N̂i j , of the ij-infra-zilches are:

N̂i j =
∑

k

h̄
(

n̂k,L − n̂k,R

) ki k j

|k|2
. (4.3)

These represent a sum over all modes of the number of photons in each mode multiplied by their

helicity and the i and j components of the unit vector k/|k| in the direction of propagation. It

follows that, strictly speaking, only five of the ij-infra-zilches are actually ‘new’ quantities: we

find that Nxx +Nyy +Nzz =H, as may be confirmed by comparing (4.1) with (2.6). This is a

reflection of the fact that
(

k2
x + k2

y + k2
z

)

/|k|2 = 1.

The integrand of (4.1) suggests that we take the quantities:

ni j = 1

2

[

δi j (A · B − C · E) − Ai B j − A j Bi + Ci E j + C j Ei

]

, (4.4)

to be the ij-infra-zilch densities of the field. Our ij-infra-zilch densities, ni j , have the dimensions

of an angular momentum per unit volume, are uniquely defined and retain their forms under a

duality rotation (2.5).

5. The helicity array

The similarity of (2.8), (3.5) and (4.3) suggests that the optical helicity, H, the optical spin,

S, and the ij-infra-zilches, Ni j , are related quantities. Indeed this is the case, as we now

demonstrate.
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We introduce the helicity array, N αβγ : a rank-three object with components given by:

N 000 = 1

2
(A · B − C · E) ,

N 0i0 = 1

2
(E × A + B × C)i , (5.1)

N i j0 = 1

2

[

δi j (A · B − C · E) − Ai B j − A j Bi + Ci E j + C j Ei

]

and

N 00i = N 0i0,

N 0i j = N i j0, (5.2)

N i jk = δi j N 00k + 1

2

(

−Ai∂kC j − A j∂kCi + Ci∂k A j + C j∂k Ai

)

,

where the symmetry N αβγ = N βαγ is to be understood in our definitions. Our helicity array has

27 independent components. We should be clear that it is not a tensor, despite its suggestive

structure. Looking at (5.1) we see, of course, that the component N 000 is our helicity density,

h (2.9); the components N 0i0 are those of our spin density, s (3.6), and the components N i j0 are

our infra-zilch densities, ni j (4.4).

The significance of our helicity array lies in the fact that it obeys the continuity equation:

∂γ N αβγ = 0. (5.3)

As N αβγ = N βαγ , we find that (5.3) expresses ten local conservation laws. It appears that

these completely describe the conservation and flow of the angular momentum associated with

polarization:

(i) For αβ = 00, (5.3) is:

ḣ + ∇ · s = 0, (5.4)

which describes the conservation and flow of optical helicity. Evidently, s plays a dual role in

that it is simultaneously the spin density and the helicity flux density (N 0i0 = N 00i ), as we have

noted previously [7].

(ii) For αβ = 0i , (5.3) is:

ṡi + ∂ j ni j = 0, (5.5)

which describes the conservation and flow of optical spin. Here we see that the ni j play dual

roles in that they are simultaneously the ij-infra-zilch densities and the components of the spin

flux density (N i j0 = N 0i j ).

(iii) Finally, for αβ = i j , (5.3) is:

ṅi j + ∂k N i jk = 0, (5.6)

which describes the conservation and flow of the ij-infra-zilches.

We emphasize that the optical helicity, H, the optical spin, S, and the ij-infra-zilches, Ni j ,

are distinct physical quantities. Their associated densities: h, s and ni j , however, are related by

a hierarchy of continuity equations. We see from (5.4), (5.5) and (5.6) that, loosely speaking,

helicity is conserved and is transported by spin, which is itself conserved and is transported by

the ij-infra-zilches, which are themselves conserved and are transported by the N i jk . This three-

tiered hierarchy is reminiscent of the two-tiered hierarchy found in the description of optical

energy and linear momentum, where it is well known that energy is conserved and is transported

by linear momentum (Poynting’s theorem [26]), which is itself conserved and is transported by

Maxwell’s stresses [12]. We pursue this analogy in section 7.
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For a plane wave of angular frequency ω, wavevector k and polarization σ , explicit

calculation reveals that the cycle-averaged components, N αβγ , of our helicity array, normalized

by the cycle-averaged energy density, w, are:

N αβγ

w
=

h̄σ

h̄ω

kαkβkγ

|k|3
, (5.7)

where, because of our choice of units, k0 = ω = |k|. We recognize h̄ω as the energy of a

photon which suggests, in turn, that the N αβγ are proportional to h̄σ per photon. Our classical

result (5.7) reflects (2.8), (3.5) and (4.3), and should be contrasted with the angular momentum

density, j = r × (E × B), for which the component in the direction of propagation of a plane

wave vanishes [7].

We noted earlier that the optical spin has been a source of controversy because it is

not a true angular momentum [5, 6]. Our present findings suggest, perhaps, that it is more

meaningfully thought of as one piece of a larger description of optical helicity, as embodied in

our helicity array: N αβγ .

6. Underlying symmetries

The optical helicity,H; the optical spin,S, and the ij-infra-zilches,Ni j , are conserved quantities,

as indicated by (2.7), (3.4) and (4.2). It was shown by Noether [27] that such global conservation

laws are associated with symmetries and it is instructive to ask what the symmetries underlying

our conservation laws are. This question may be answered most elegantly by considering the

transformations generated by our quantities.

We begin with the optical helicity. Considering the quantized electric and magnetic fields,

Ê and B̂, we find that:

exp(iĤθ/h̄)Ê exp(−iĤθ/h̄) = Ê + θ B̂,
(6.1)

exp(iĤθ/h̄)B̂ exp(−iĤθ/h̄) = B̂ − θ Ê,

where θ is an infinitesimal pseudoscalar angle. We recognize the transformation (6.1),

generated by the optical helicity, as an infinitesimal duality rotation (2.3). This is, of course,

a symmetry of Maxwell’s equations (2.1) in that the equations retain their form under the

transformation:

E → E + θ B,
(6.2)

B → B − θ E.

It follows that this, the Heaviside–Larmor symmetry, underlies the conservation of optical

helicity, as we have noted previously [7]. For a plane wave, it can be shown that the

transformation (6.2) invokes an infinitesimal rotation of the field vectors about the wavevector,

k, as depicted in figure 1. It seems reasonable, therefore, that the Heaviside–Larmor symmetry

is associated with optical helicity.

Let us now consider the optical spin. It has been shown previously [23] that:

exp(iŜ · θ/h̄)Ê exp(−iŜ · θ/h̄) = Ê + (θ × Ê)⊥,
(6.3)

exp(iŜ · θ/h̄)B̂ exp(−iŜ · θ/h̄) = B̂ + (θ × B̂)⊥,
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Figure 1. The optical helicity generates an infinitesimal duality rotation. For a

plane wave, the field vectors are rotated about the wavevector, as depicted. The

magnitude of this rotation has been exaggerated for the purpose of illustration.

Figure 2. The optical spin generates the closest approximation to an infinitesimal

rotation of the field vectors about θ that is consistent with the requirement that

the field remains transverse. For a plane wave, the field vectors are rotated in the

transverse plane through the angle θ · k/|k|, as depicted. The magnitude of this

rotation has been exaggerated for the purpose of illustration.

where θ is an infinitesimal pseudovector whose magnitude and direction define an axis and

an angle of rotation about that axis, respectively. The transformation (6.3) generated by the

optical spin is the closest approximation to an infinitesimal rotation of the field vectors, leaving

the spatial distribution of the field unchanged, that is consistent with the requirement that

the field remains transverse [23]. In fact, Maxwell’s equations retain their form under the

transformation:

E → E + (θ × E)
⊥ ,

(6.4)
E → B + (θ × B)

⊥ ,

and we associate this symmetry with the conservation of optical spin. The approximate nature

of the rotation (6.4) is a reflection of the fact that the optical spin is not a true angular

momentum [23]. See figure 2.

The considerations above serve to demonstrate that the optical helicity and the optical spin

are indeed distinct physical quantities. For a plane wave, the optical helicity generates an exact

rotation of the field vectors about the wavevector, k, whose orientation in space is, of course,

arbitrary. In contrast, the optical spin generates an approximate rotation of the field vectors

about an axis, defined by the direction of θ , that is fixed in space. When looking towards the

incoming wave, the sense of the rotation generated by the optical helicity is always seen to be
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anti-clockwise (for θ > 0), whereas the magnitude and sense of the rotation generated by the

optical spin is seen to depend upon the orientation of k relative to θ .

Finally, let us consider the ij-infra-zilches. We find that:

exp(i N̂i jθi j/h̄)Êl exp(−i N̂i jθi j/h̄) = Êl + 1

2
[(θ̃li B̂i)

⊥ + ǫli j∂i(θ̃ jk Âk)
⊥],

(6.5)
exp(i N̂i jθi j/h̄)B̂l exp(−i N̂i jθi j/h̄) = B̂l −

1

2
[(θ̃li Êi)

⊥ − ǫli j∂i(θ̃ jkĈk)
⊥],

where Â and Ĉ are the quantized vector potentials, ǫ123 = +1 is the Levi-Civita symbol and the

symmetric arrays of infinitesimal pseudoscalar angles θi j = θ j i and θ̃i j = θ̃ j i are related by:

θ̃i j = δi jθkk − 2θi j . (6.6)

The transformation (6.5) generated by the ij-infra-zilches resembles the infinitesimal duality

rotation (6.1) generated by the optical helicity, but with a sense of directionality mixed

in through the various θi j . Indeed, taking θxx = θyy = θzz = θ with θxy = θxz = θyz = 0

reduces (6.5) to (6.1), as it must. We may interpret (6.5) loosely as follows: The terms (θ̃li Bi)
⊥

and −(θ̃li Ei)
⊥ give the closest approximation to a directional duality transformation that is

consistent with the requirement of transversality. However, on its own, this transformation

‘breaks the rules’ and the additional terms ǫli j∂i(θ̃ jk Âk)
⊥ and ǫli j∂i(θ̃ jkĈk)

⊥ involving the vector

potentials are apparently required to ensure that the complete transformation, which is the

average of the two contributions, is physically acceptable. Maxwell’s equations do indeed retain

their form under the transformation:

El → El + 1

2
[(θ̃li Bi)

⊥ + ǫli j∂i(θ̃ jk Ak)
⊥],

(6.7)
Bl → Bl −

1

2
[(θ̃li Ei)

⊥ − ǫli j∂i(θ̃ jkCk)
⊥],

and we associate this symmetry with the conservation of the ij-infra-zilches. The physical

significance of the conservation of the ij-infra-zilches is considered below.

The formal derivation of the results above using Noether’s theorem sheds light on the

appearance of the transverse pieces of the vector potentials in our physical quantities. The fields

are simply related to these pieces by time derivatives (E = −Ȧ⊥, B = −Ċ⊥). Consequently,

when we rotate the vector potentials in the Coulomb gauge, the fields rotate in step with them.

We shall return to this point elsewhere.

7. An interesting analogy

The N αβ0 components (5.1) of our helicity array are remarkably similar in form to the

components of the contravariant symmetric energy–momentum tensor, T αβ = T βα, given by:

T 00 = 1

2
(E · E + B · B) ,

T 0i = (E × B)i , (7.1)

T i j = 1

2
δi j (E · E + B · B) − Ei E j − Bi B j .

The component T 00 is the energy density of the field, the components T 0i are those of the

energy flux density or linear momentum density and the components T i j are those of the linear

momentum flux density. The continuity equation ∂βT αβ = 0 expresses energy conservation for

α = 0 and linear momentum conservation for α = 1, 2, 3 [12].
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We note that the density components of our helicity array are mapped onto the components

of the energy–momentum tensor, N αβ0 → T αβ , when we make the superficial transformation of

the vector potentials:

A → B,
(7.2)

C → −E,

whilst leaving the fields unchanged (E → E, B → B), as may be confirmed by comparing (5.1)

with (7.1). The explanation of this follows from the observation that the vector potentials of a

left- (σ = +1) or right-(σ = −1) handed circularly polarized plane wave of angular frequency

ω are related to its fields by:

A =
σ

ω
B,

(7.3)

C = −
σ

ω
E.

Of course, an arbitrary optical field can be expressed as a superposition of many circularly

polarized plane waves. From (7.3) we see that the transformation (7.2) is equivalent to letting

h̄σ → h̄ω, which is simply a mapping of photon helicity to photon energy. Accordingly, we find

that N αβ0 → T αβ .

Our analogy is incomplete in the sense that our helicity array, N αβγ , has three indices

whereas the energy–momentum tensor, T αβ , only has two. We may enquire as to the physical

significance of the third index. In particular, we ask whether the conservation of the ij-infra-

zilches:

d

dt

∫ ∫ ∫

N i j0 d3r = 0, (7.4)

which has no analog in the description of energy and linear momentum,

d

dt

∫ ∫ ∫

T i j d3r 6= 0, (7.5)

is in any sense trivial or superfluous. That it is not, can be demonstrated as follows. Consider

the situation depicted in figure 3(a). Here we have two plane waves with equal amplitudes and

frequencies, but with opposite helicities (σ = +1 and σ = −1), propagating in perpendicular

directions. Suppose we were to ‘close our eyes’ at time t = t1 and open them later, at t = t2, to

find that both waves had changed the signs of their wavevectors and the signs of their helicities,

as depicted in figure 3(b). That is, suppose our two-wave configuration were to undergo a parity

inversion, spontaneously, during this time interval. Such an evolution is clearly unnatural and

yet is not forbidden by either helicity or spin conservation, as:

H(t2) =H(t1) = 0 and S(t2) = S(t1). (7.6)

In fact, our hypothetical evolution is forbidden by the conservation of the ij-infra-zilches, as:

Ni j(t2) = −Ni j(t1), (7.7)

which violates the conservation laws (7.4) because some or all of the Ni j are non-zero,

depending on the coordinate system used. Conservation laws are important because they

constrain the evolution of a system. Our simple argument demonstrates that the conservation of

the ij-infra-zilches is neither trivial nor superfluous: It provides constraints that the conservation

of optical helicity and optical spin do not.
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Figure 3. (a) A configuration of two waves with opposite helicities and

perpendicular wavevectors. (b) The configuration obtained by changing the signs

of the helicities and the signs of the wavevectors of both waves.

The helicity of a plane wave, which is proportional to σ , can be positive or negative.

Consequently, helicities can both add and subtract in general. Consider, for example, a linearly

polarized wave (σ = 0), which can be thought of as a superposition of circularly polarized waves

whose opposite helicities (σ = ±1) cancel. Similarly, H= 0 for the configurations shown in

figure 3. The simple argument above suggests that the conservation of the ij-infra-zilches is

necessary to account for the degree of freedom that is the sign of σ . This degree of freedom

is intimately related to the handedness, or chirality, of the field and indeed the ij-infra-zilches

change sign under a parity inversion. In contrast, the energy of a wave is strictly positive, which

perhaps explains why the conservation laws (7.4) have no analog in the description of optical

energy and linear momentum: (7.5).

8. Lipkin’s zilches

The appearance of the vector potentials, A and C, in our description of the angular momentum

associated with polarization is surprising and raises the question of gauge dependence. We stress

here that we are working with the transverse pieces of the vector potentials (A = A⊥, C = C⊥),

which are gauge invariant [4]. Nevertheless, it is natural to ask whether a description exists

which only makes explicit reference to the fields, E and B. We now address this question.

In 1964, Lipkin [28] introduced his rank-three zilch2 tensor, Zαβγ = Zβαγ , with

contravariant components given by:

Z 000 = 1

2
[E · (∇ × E) + B · (∇ × B)] ,

Z 0i0 = 1

2
[E × (∇ × B) − B × (∇ × E)]i ,

(8.1)
Z i j0 = 1

2

{

δi j [E · (∇ × E) + B · (∇ × B)] − Ei (∇ × E) j − E j (∇ × E)i

−Bi (∇ × B) j − B j (∇ × B)i

}

2 In his paper, Lipkin does not elaborate upon his choice of the name ‘zilch’.
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and

Z 00i = Z 0i0,

Z 0i j = Z i j0, (8.2)

Z i jk = δi j Z 00k + 1

2

(

−Ei∂k B j − E j∂k Bi + Bi∂k E j + B j∂k Ei

)

,

where we have omitted physically insignificant transverse contributions to the Zαβk components.

As may be confirmed,

∂γ Zαβγ = 0, (8.3)

which describes the conservation and flow of the quantities:

Zαβ =

∫ ∫ ∫

Zαβ0d3r. (8.4)

Lipkin referred to these quantities, Zαβ , as the αβ-zilches of the field. Nine of the zilches are

independent.

For a plane wave of angular frequency ω, wavevector k and polarization σ , explicit

calculation reveals that:

Zαβγ

w
= ω2 h̄σ

h̄ω

kαkβkγ

|k|3
. (8.5)

Evidently, for a plane wave, the cycle-averaged components, Zαβγ , of Lipkin’s zilch tensor are

proportional to the cycle-averaged components, N αβγ , of our helicity array, as may be confirmed

by comparing (8.5) with (5.7). In fact, it can be shown that this relationship:

Zαβγ = ω2 N αβγ , (8.6)

holds for any monochromatic field. This suggests that the zilches might provide a description of

the angular momentum associated with polarization that avoids the issue of gauge dependence,

as (8.1) and (8.2) make no explicit reference to the vector potentials. Indeed, in his original

paper [28], Lipkin noted that the zilches might be related to the intrinsic spin of the field,

although he recognized that their frequency dependence is unusual and that they do not have

the dimensions of an angular momentum. Shortly after the appearance of Lipkin’s paper, it was

conjectured by Candlin [20] that the zilches are members of an infinite hierarchy of conserved

quantities related to the helicity of the field (which he referred to as its screw action) and that

they possess no physical significance. A similar conclusion was reached by Kibble [29]. We

note that transforming the vector potentials (and the fields) into their curls:

A → ∇ × A,
(8.7)

C → ∇ × C,

maps our helicity array onto Lipkin’s zilch tensor, N αβγ → Zαβγ , as may be confirmed by

comparing (5.1) and (5.2) with (8.1) and (8.2), making use of (2.4). We may explain this

relationship as follows. The equations:

∇ · A = 0,

∇ · C = 0,
(8.8)

∇ × A = −Ċ,

∇ × C = Ȧ,
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which govern the vector potentials, A and C, are identical in form to Maxwell’s equations (2.1),

which govern the fields, E and B. The fields are given by the curls of the vector potentials (2.4),

suggesting the existence of a pattern. Indeed, we find that the curls of the fields, which we denote

G = ∇ × E and M = ∇ × B, satisfy the equations:

∇ · G = 0,

∇ · M = 0,
(8.9)

∇ × G = −Ṁ,

∇ × M = Ġ,

which are again identical in form to Maxwell’s equations. Furthermore, we find that the curls

of the curls of the fields obey a set of Maxwell-like equations and so on, ad infinitum. As a

consequence of this infinite hierarchy of Maxwell-like equations, we can take any conserved

quantity and replace, superficially, the fields with their curls, obtaining a ‘new’ quantity, of

different dimensions, that is also conserved. For example, it is well-known that the energy, W ,

of the field:

W =

∫ ∫ ∫

1

2
(E · E + B · B) d3r, (8.10)

is conserved (dW/dt = 0). The proof of this follows from Maxwell’s equations (2.1). Therefore,

replacing E and B with ∇ × E and ∇ × B in (8.10) yields a new quantity:

X =

∫ ∫ ∫

1

2
(G · G + M · M) d3r, (8.11)

which is itself conserved (dX/dt = 0) by virtue of the Maxwell-like equations (8.9). This

obscure quantity, X , is the ‘energy’ of the curl of the field and, as such, possesses no obvious

significance. We can repeat this procedure indefinitely, obtaining an infinite hierarchy of

quantities, all of which are conserved and have, for a monochromatic field, cycle-averaged

values that are proportional to the cycle-averaged energy of the field. Of course, only one of

these conserved quantities, namely (8.10), actually has the dimensions of an energy and couples

to matter in a physically meaningful way.

We recognize the optical helicity, H; the optical spin, S, and the ij-infra-zilches, Ni j , as

being physically meaningful because they have the dimensions of an angular momentum. The

zilches, however, do not. In fact, we see from (8.7) and the considerations above that the zilches

describe the ‘angular momentum’ of the curl of the field, rather than the angular momentum of

the field itself. Consequently, the zilches are no more meaningful as a description of the angular

momentum associated with polarization, than, for example, the quantity X above is meaningful

as a description of optical energy.

Recently, the zilches have been reintroduced into the literature by Tang, Cohen and

Yang [30, 31]. In particular, they refer to the 00-zilch density, Z 000, as the optical chirality and

have used it to successfully predict and describe the results of experiments [32–34]. We believe

that the quantity of interest in these experiments is in fact the helicity density, N 000, of the field,

rather than the 00-zilch density, Z 000, which we now recognize as being the ‘helicity’ density of

the curl of the field. The use of Z 000 to describe these experiments has, we suggest, succeeded

because of the existence of the proportionality (8.6), which only holds for the special case of

a monochromatic field. For example, the dissymmetry factor, g, derived by Tang and Cohen
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for a chiral absorbing molecule irradiated by a monochromatic field of angular frequency ω is

(equation 6 of [30]):

g = −

(

G ′′

α′′

)

(

2Z 000

ωwe

)

, (8.12)

where G ′′ and α′′ describe the response of the molecule to the field and we = E2/2 is the electric

energy density. Tang and Cohen advocate Z 000 as a measure of the chirality of the field on the

grounds that it appears in (8.12). However, making use of (8.6), their dissymmetry factor can be

written in the form:

g = −

(

G ′′

α′′

)

(

2ωN 000

we

)

, (8.13)

which now reflects the fact that the helicity density, N 000, not the 00-zilch density, Z 000,

provides a physically meaningful measure of the twist and chirality associated with the angular

momentum of the field.

A connection between the zilches and the helicity of the field was proposed recently by

Bliokh and Nori [35]. However, they restricted their attention to monochromatic fields and

were in fact observing the existence of the proportionality (8.6). This proportionality was also

observed recently by Coles and Andrews [36, 37]. We emphasize that this proportionality only

holds for the special case of a monochromatic field. In general, no proportionality like (8.6)

holds and, for this reason, we surmise that it is our helicity array, N αβγ , rather than Lipkin’s

zilch tensor, Zαβγ , that embodies the phenomenon of chirality.

9. Discussion

We have examined the optical helicity, the optical spin and the ij-infra-zilches in electromagnetic

theory and shown that these conserved quantities can be combined to form a new description

of the angular momentum associated with polarization: one that is analogous to the familiar

description of optical energy and linear momentum. The existence of this description

strengthens the idea that the division of optical angular momentum into parts separately

associated with polarization and the spatial distribution of the field is meaningful.

Our description is exact. Furthermore, it is gauge invariant, as we have only made reference

to the transverse pieces of the vector potentials (A = A⊥, C = C⊥). However, the isolation of

these pieces raises questions regarding locality and relativity. Ultimately, it is perhaps the total

helicity, H; spin, S, and ij-infra-zilches, Ni j , that are physically meaningful, rather than their

associated densities: h, s and ni j .

We have been concerned exclusively with the free-field. It remains for us to discuss the

significance possessed by our quantities in the presence of matter.

We shall return to these ideas in future publications.
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