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Extension of Highly Elliptical Earth Orbits using 
Continuous Low-Thrust Propulsion 

Pamela Anderson* and Malcolm Macdonald† 
University of Strathclyde, Glasgow, G1 1XJ, Scotland, E.U. 

The extension of highly elliptical orbits, with free selection of orbit period, using low-

thrust propulsion is investigated. These newly proposed orbits, termed Taranis orbits, are 

enabled by existing low-thrust propulsion technology, offering a radically new set of tools for 

mission design and facilitating new, novel Earth Observation science. One particular 

example considered herein, using general and special perturbation techniques, is the 

application of continuous low-thrust to alter the ‘critical inclination’ of an orbit from the 

natural values of 63.4deg or 116.6deg, to any inclination required to optimally fulfill the 

mission goals. This continuous acceleration is used to compensate for the drift in argument 

of perigee caused by Earth’s gravitational field. Pseudo-spectral optimization techniques are 

applied to the 90deg inclination Taranis orbit, generating fuel optimal low-thrust control 

profiles, with a fuel saving of ~ 4% from general perturbation results. This orbit provides an 

alternative solution for high latitude imaging from distances equivalent to geostationary 

orbits. Analysis shows that the orbit enables continuous, high elevation visibility of frigid 

and neighboring temperate regions using only three spacecraft, whereas a Molniya orbit 

would require in excess of fifteen spacecraft, thus enabling high quality imaging which 

would otherwise be prohibited using conventional orbits. Order of magnitude mission 

lifetimes for a range of mass fractions and specific impulses are also determined. Finally, a 

Strawman mass budget is developed, where the mission lifetimes for spacecraft with initial 

mass of 1000kg, 1500kg, and 2500kg, are found to be limited to 4.3 years, 6 years and 7.4 

years respectively. 
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Nomenclature 

a = Semi-major axis, km 

ap =  Solar Electric Propulsion acceleration, mm/s2 

Cn,m = Harmonic coefficients of Earth potential 

e = Eccentricity 

Fn = Low-thrust normal perturbation scalar 

Fr = Low-thrust radial perturbation scalar 

Ft =  Low-thrust transverse perturbation scalar 

g0 = Gravity of the Earth, m/s2 

H = Altitude, km 

i = Inclination, degrees 

Isp = Specific impulse, sec 

J2 = Perturbation due to Earth oblateness 

ksa = Solar array specific performance, kg/W 

kSEP = Solar Electric Propulsion specific performance, kg/W 

L = Mission lifetime, years 

m = Mass, kg 

m0 = Initial mass, kg 

mf = Final mass, kg 

mp = Power system mass, kg 

mpay = Payload mass, kg 

mprop = Propellant mass, kg 

mSEP = Solar Electric Propulsion thruster mass, kg 

msys = System mass, kg 

mtank = Propellant tank mass, kg 

ṁ = Mass flow rate, kg/s1 

N = Normal perturbation acceleration, mm/s2 

p = Semi-parameter, km 
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Pmax = Maximum Power, kW 

Pn,m = Associated Legendre polynomials 

r = Orbit radius, km 

R = Radial perturbation acceleration, mm/s2 

Re = Mean radius of Earth, km 

Sn,m = Harmonic coefficients of Earth potential 

tf = Final time, sec 

T = Transverse perturbation acceleration, mm/s2 

Tmax = Maximum thrust, N 

U = Potential 

Uo = Point-mass gravitational potential 

Up = Perturbing component of potential body 

β = Declination of spacecraft, degrees 

Δt = Mission duration, sec 

ε = Elevation angle, degrees 

η = Nadir angle, degrees 

ηSEP = Solar Electric Propulsion efficiency 

θ = True anomaly, degrees 

λ = Geographical longitude, degrees 

λ0 = Earth central angle, degrees 

µ = Gravitational parameter of Earth, km3/s2 

ρ = Angular radius of Earth, degrees 

ω = Argument of perigee, degrees 

I. Introduction 

PACECRAFT provide a unique platform from which to view the Earth and conduct environmental science, 

offering higher temporal resolution on a global scale than any other observation platform. Consequently, space-

based Earth Observation (EO) measurements are of fundamental importance for validation and assimilation into 

S 
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Earth system models. However, the orbits used by spacecraft for remote sensing applications represent only a small 

subset of those potentially available. It is therefore important to consider whether the currently applied set of orbits 

can be expanded, introducing new vantage points and enabling novel remote sensing science.  

High latitude observations are conventionally conducted using a spacecraft on a Sun-synchronous orbit. With a 

spacecraft on such an orbit circumnavigating the Earth around fourteen to sixteen times per day [1]. During this 

time, imaging is conducted by taking measurements over a strip several tens to hundreds of kilometers wide, thus 

building up an image of a particular location. The problem associated with these orbits is that the temporal 

resolution provided is insufficient to observe large-scale variations on a diurnal frequency. Temporal resolution is 

improved by using either multiple spacecraft on similar orbits, or a spacecraft on a GEO. However, to provide 

continuous observations, with a data refresh rate of less than 15 minutes, as is typically required for so-called 

continuous meteorological observation, would require a prohibitively large number of spacecraft. Meanwhile, the 

observational capabilities of geostationary spacecraft are severely limited at latitudes above 55deg [2] due to the 

rapidly decreasing horizontal resolution and increasingly oblique viewing angle. As such, the breadth and depth of 

climate and meteorological data which is available for the tropics and mid-latitudes must be approximated by 

composite or mosaic images beyond around 55deg [2]. However, even with the large number of spacecraft required 

to provide a data refresh rate of 15 minutes, the data would be discontinuous in time and viewing geometry. Such 

composites are therefore, at best a compromise, leaving critical climate and meteorological datasets lacking the 

desired coverage of key frigid and temperate regions required for validation of Earth system models and near real-

time monitoring. 

The highly elliptical, 12-hr, Molniya orbit overcomes some of the problems associated with imaging of high 

latitude regions, as a spacecraft on this orbit spends a large amount of time over, say, the Northern Hemisphere as a 

result of apogee dwell. Characteristic of the Molniya orbits is the fixed 63.4deg or 116.6deg ‘critical inclination’ [3]. 

At either of these inclinations there is no rotation of the apsidal line due to the concentration of mass around the 

Earth’s Equator, and the position of apogee remains fixed. However, to ensure at least equal quality imaging to that 

given by geostationary platforms, an Observational Zenith Angle (OZA) of around 63deg is required to all 

longitudes at latitudes as far south as 55deg. This OZA cannot be achieved by a conventional Molniya orbit.  

 A significant amount of work has previously been conducted on the existence, stability and control of displaced 

Highly Non-Keplerian orbits for the two and three body problem [4-6]. Solar sail, Solar Electric Propulsion (SEP) 
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and hybrid solar sail / SEP systems have been considered to enable various missions. For example, recent 

investigation has been conducted into geostationary orbits (GEO) displaced above or below the equatorial plane to 

create new geostationary slots to aid the congestion in the conventional GEO ring [7].   

 Recent research has considered the use of continuous low-thrust propulsion for the extension of Sun-

synchronous orbits, enabling free selection of orbit inclination and altitude [8]. Within this recent work, unlike when 

considering Highly Non-Keplerian Orbits, the thrust magnitude required is not defined as a function of the local 

gravity field but instead by the magnitude of the perturbations within that field, augmenting the Earth oblateness 

perturbation to modify the Sun-synchronous orbit. 

 Hybrid SEP / solar sail systems have recently been proposed to modify the well-known Pole Sitter mission 

concept, enabling a spacecraft to be statically stationed high above one of the Earth’s poles at around 2- 3 million 

kilometers range. Thus, providing continuous hemispherical observation, throughout the year, using a single 

spacecraft [9-11]. The Pole Sitter mission offers an alternative to conventional Earth orbits for high latitude imaging; 

however, to achieve this, a relatively high thrust magnitude of around 200mN is required [12].  

 This paper builds on the principle of using low-thrust propulsion to modify the orbit perturbation introduced in 

[8] and, for the first time, considers the extension of highly elliptical orbits (HEOs), with particular focus on the 

Molniya orbit. Consideration is given to the application of using continuous low-thrust to modify the critical 

inclination, while maintaining the zero change in argument of perigee condition essential to a Molniya-like orbit. 

Noting that Molniya translates from Russian to mean lightning, such low-thrust extensions of the Molniya orbit are 

herein termed Taranis orbits, after the Celtic god of thunder.  

 The extension of HEOs using general and special perturbation techniques is presented. Optimization of these 

results, using pseudo-spectral optimization methods, is conducted for a 12-hr orbit inclined at 90deg. Optimization 

removes the assumptions which are used to generate the initial analytical expressions and allow a fuel optimal 

solution to be determined. Mission lifetime analysis and a Strawman mass budget analysis are also presented for a 

spacecraft on the 12-hr Taranis orbit. In addition to this, a visibility analysis is conducted to derive the number of 

spacecraft required for both the Molniya and 90deg inclination Taranis orbit to give continuous observation above 

55deg latitude, where conventional Earth orbits suffer limitations. The technology requirements to enable these 

Taranis orbits are also considered, in particular the possibilities for low-thrust ion engines capable of providing the 

required thrust, as well as sizing of solar arrays and propellant tanks. 
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II. Spacecraft Motion about an Oblate Body 

 Taranis orbits effectively use low-thrust propulsion to compensate for the drift in argument of perigee caused by 

the Earth’s gravitational field. Thus, to investigate the effects of low-thrust propulsion applied to HEOs, the 

gravitational potential of a body is considered [13] 
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For a body possessing axial symmetry the influence of periodic effects (tesseral and sectorial harmonics) can be 

neglected for most orbits, and with the notable exception of geostationary orbits this holds true for Earth. The 

gravitational potential may thus be written as, 
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Expanding Eq. (2), the gravitational potential becomes, 
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Considering only first order perturbations and using spherical triangle laws Eq. (3) simplifies to, 
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The argument of perigee must remain unchanged in order to ensure that the position of apogee is not severely 

affected by the perturbations caused by the oblate nature of the Earth. Using the Gauss form of the Lagrange 
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Planetary Equations, in terms of a spacecraft centered Radial, Transverse, Normal (RTN) coordinate system, the rate 

of change of argument of perigee is written as [14], 

( )
2 3

1
tan

d r r rRcos T sin sin N
d e p p i
ω

θ θ θ ω
θ µ µ

⎡ ⎤⎛ ⎞
= − + + − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (5) 

The disturbing force components due to J2 are [15], 
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Substituting Eqs. (6) - (8) into Eq. (5) and integrating over one orbital revolution results in the well-known 

expression for the change in argument of perigee, 
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To determine the critical inclination, Eq. (9) is set to zero and solved resulting in inclinations of 63.4deg and 

116.6deg. Thus, all Earth orbits inclined at these values show no rotation of the apsidal line, irrespective of the 

values of semi-major axis or eccentricity. These fixed critical inclinations place restrictions on orbit design and thus 

limit the possible applications of Molniya-like orbits. It is evident from Eq. (9) that altering the inclination from 

these critical values will result in a drift in the argument of perigee due to the effect of J2 perturbations. Thus, for 

each value of inclination there exists a constant acceleration magnitude which will negate this drift, and allow free 

selection of inclination. 

III. Spacecraft Motion about an Oblate Body with Low-Thrust Propulsion 

General Perturbations Technique  
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Low-thrust terms are added to the disturbing force components, using the argument of perigee locally optimal 

control law derived from the variational equation, given in Eq. (5), by consideration of the sine and cosine terms in 

this equation. Locally optimal control laws maximize the instantaneous rate of change of the argument of perigee, 

and provide the thrust orientation in analytical form [16]. The locally optimal control law gives the distinct position 

of the orbit where the sign of the thrust is required to switch direction. The combined J2 and low-thrust perturbations 

in each of the radial, transverse and out-of-plane directions are thus given by, 
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where the orbital radius is defined as, 

1
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=
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The expression for the rate of change of argument of perigee with the application of low-thrust propulsion is 

determined by inserting Eqs. (10) - (12) into Eq. (5) to give, 
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The change in argument of perigee is found by integrating Eq. (14) over one orbital revolution, employing the 

assumption that the eccentricity is not equal to zero or one and recognizing the positions on the orbit where the low-
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thrust terms change sign. The total change in argument of perigee is made up of four terms, consisting of the change 

in argument of perigee due to J2 effects and due to the effects of each of the R, T and N accelerations. The total 

variation in argument of perigee is given by, 
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It is also noted from Eq. (12) that the normal low-thrust component, unlike the radial and transverse low-thrust 

terms, switches sign as a function of argument of latitude. Consequently, the value assigned to the argument of 

perigee becomes important in this case. Thus, considering argument of perigee equal to both 0deg and 90deg results 

in two normal acceleration components, given as, 
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Substituting, Eq. (16) – Eq. (20) into Eq. (15) results in two solutions for the change in argument of perigee due 

to the applied acceleration. It is noted that if no out-of-plane acceleration is considered the two solutions are equal. 

Initially, consideration is only given to the application of continuous low-thrust in each of the RTN directions 

individually before multiple acceleration directions are studied. Considering each direction in turn, the analytical 

expressions, from Eq.(15), are solved using the values of orbital parameters in Table 1 to give the constant 

acceleration magnitude required to compensate for the effects of the J2 perturbation for a range of inclinations, out 

with the equatorial plane, between 5deg and 175deg. This is illustrated in Fig. 1. 

Table 1 Orbital parameters. 

  
Orbital Element Value 
Perigee Altitude 813 (km) 
Apogee Altitude 39540 (km) 
Ascending Node 330 (deg) 
Argument of perigee 270 (deg) unless otherwise stated 

 

Fig. 1   Required acceleration for thrust along a single axis to vary the critical inclination of the given 
Taranis orbit. 

Figure 1 shows the curves of minimum acceleration in any single axis required to alter the critical inclination of 

the orbit to a wide range of possible values for the orbit detailed in Table 1. It is noted, from Fig. 1, that a singularity 

occurs at an inclination of 90deg when thrusting in the normal direction. This is explained by examining Eqs. (19) - 

(20), where it is shown that normal low-thrust terms in these expressions contain the term cot(i), which at an 
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inclination of 90deg becomes undefined causing the singularity. This Figure also illustrates that to reach an 

inclination of 90deg by thrusting in any single direction a transverse acceleration of 0.094mm/s2 is the lowest 

acceleration magnitude required. Nevertheless, as shown in Fig. 2 this total magnitude is reduced to 0.0835mm/s2 by 

combining equal magnitudes of radial and transverse accelerations. However, it is of note that the same cannot be 

said for combining the out-of-plane acceleration with either the radial or transverse accelerations. The cause of this 

is once again the occurrence of cot(i) in the Normal direction low-thrust expressions in Eqs. (19) - (20), and the 

assumption of equal magnitudes in each thrusting direction; as a result of the cot(i) term the magnitude of this term 

depends on the inclination to be achieved pushing up the total thrust magnitude. The combined multiple direction, 

equal magnitude thrust is thus sometimes greater than individual direction thrust magnitude, depending on the value 

of inclination. This is a clear example that the general perturbation solutions are not optimal.  

Although, Fig. 1, shows the results for single axis acceleration for a particular orbit (as detailed in Table 1), the 

technique used to apply low-thrust to alter the critical inclination and generate the 12-hr Taranis orbit can be used on 

an orbit of any period. Applying the acceleration in each individual direction to orbits of various periods presents the 

same trends as shown in Fig. 1, with the acceleration required in each direction decreasing as the orbit period 

increases. Considering the case where the total acceleration magnitude, required to negate the effect of the J2 

perturbation when varying the inclination, is divided equally between radial and transverse directions. Fig. 2 gives 

the total acceleration required to achieve various inclinations for orbits with periods between 6 and 24 hours, while 

maintaining the perigee altitude defined in Table 1. 
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Fig. 2  Combined radial and transverse thrust. 

It is seen in Fig. 2 that orbits with lower orbital periods require larger total accelerations than higher period 

orbits. For example to reach an inclination of 90deg a 24 hour period requires 0.00378mm/s2 acceleration whereas 

an orbit with a period of 6 hours requires a total acceleration of 0.177mm/s2. 

Change in Orbital Elements  

Analytical expressions are also developed for the remaining orbital elements, semi-major axis, eccentricity, 

inclination, and ascending node angle using the Gauss form of the Lagrange Planetary Equations, in terms of a 

spacecraft centered RTN coordinate system [14]. This process is carried out to ensure the desired zero secular rate of 

change of orbital elements is maintained in the presence of continuous low-thrust. 
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Substituting appropriate expressions for perturbing forces gives, 
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Eq. (22) is then integrated over one orbital revolution to find the change in semi-major axis to give, 
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Inserting radial and transverse perturbations into Eq. (24) gives, 
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d ecos a e
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µ θ θ ω
θ

θ µ θ

µ θ θ ω
θ

θ θ

⎛ ⎞⎛ ⎞+ − + +⎜ ⎟⎜ ⎟= − +⎜ ⎟⎜ ⎟+ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞+ +⎛ ⎞⎛ ⎞ ⎜ ⎟+ + + −⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎜ ⎟⎝ ⎠ −⎝ ⎠

 (25) 

Integrating over one orbit, the change in eccentricity is written as, 

( )20 0e π
Δ =   (26) 

3. Inclination 

( )
2

3

nJ F
di r cos N
d p

θ ω
θ µ += +   (27) 

Substituting the out-of-plane acceleration, Eq. (26) becomes, 
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e
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⎛ ⎞− + + +⎜ ⎟= −
⎜ ⎟+ ⎜ ⎟−⎝ ⎠

 (28) 

Once more, the locally optimal control law state that normal thrust switches sign depending on the argument of 

latitude; consequently Eq. (28) integrated over one revolution using both argument of perigee equal to 0deg and 

90deg gives the changes in inclination respectively as, 

( )
2

2

0

4 na F sin
i π ω

µ
Δ = −   (29) 

( )2 2 2 2 2
0 2

2 2 2

1 (4 1 2 1
1

1 1 112 3 ln 3 ln )
1 1 1

ni a F cos e e e
e

e e eeArctanh e e
e e e

π
ω

µ
Δ = − + + − +

− +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + − − +
− − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (30) 

Inserting values of orbital elements gives the change in inclination for both cases as, 

( )20 0i π
Δ =   (31) 

4. Ascending node 

( )
2

3

nJ F
d r sin N
d psini

θ ω
θ µ +

Ω
= +   (32) 

Inserting the expression for the normal perturbation results in, 

( ) ( )
( )

( ) ( ) ( )

( )

2 42 2 2
2

3 44 2

1 3 1 2

sin 1 2 1
e

n

a e sin J R ecos sin i sind F
d i ecos a e

θ ω µ θ θ ω

θ θ

⎛ ⎞− + + +Ω ⎜ ⎟= −
⎜ ⎟+ ⎜ ⎟−⎝ ⎠

 (33) 

Similar to the inclination, the change in ascending node must be considered using both ω = 0deg and ω = 90deg 

giving the change in ascending node angle for each case respectively as, 
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 (35) 

Note that if no out-of-plane acceleration is considered; the change in ascending node due only to J2 effects is given 

by, 

( )
( )

2
2 2

20 2 2

3 cos

1
eJ R i

a e

π π
ΔΩ = −

− +
  (36) 

Orbital element values are substituted into Eqs. (34) - (35) to quantify the drift in ascending node for HEOs, of 

varying inclinations, over the orbit due to applied normal acceleration. It is of note that when the appropriate orbital 

elements are substituted into Eqs. (34) - (35), the change in ascending node is equal for both of these expressions. 

Taranis orbits enabled using continuous normal acceleration are compared with orbits of various inclinations under 

the influence of J2 effects only (from Eq. (36)) the results of which are shown in Fig. 3.  
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Fig. 3  Ascending node drift per orbit for extended HEOs and a Molniya orbit. 

Most significantly, Fig. 3 shows that the 90deg, 12-hr Taranis orbit experiences no drift in ascending node under 

the influence of J2 perturbations. It is also shown that between the inclination ranges of 5deg-70deg and 120deg-

175deg, Taranis orbits enabled using continuous normal acceleration have  the same order of magnitude change in 

ascending node as a conventional Molniya orbit. However, as the inclination approaches 90deg, the change in 

ascending node increases rapidly and the singularity described in Fig. 1 for the normal acceleration cases is also 

observed in Fig. 3.  

Special Perturbations Technique 

To verify the general perturbations solution a special perturbations solution is generated. This numerical model 

propagates the spacecraft position by integrating a set of Modified Equinoctial Elements [17], using an explicit 

variable step size Runge Kutta (4,5) formula, the Dormand-Price pair (a single step method) [18]. Numerical 

simulations include only perturbations due to Earth oblateness to the order of J2. The numerical model proves that 

not only is the change in argument of perigee negligible due to the applied low-thrust, but the change in all other 
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argument of perigee over seven orbital revolutions of the 12-hr Taranis orbit, inclined at 90deg to the equator, 

enabled by combined radial and transverse accelerations with a total magnitude of 0.0835mm/s2. 

 

(a)                                                                                      (b) 

 

(c) 

Fig. 4   Oscillation of orbital elements over seven orbital revolutions. (a) Semi-major axis. (b) Eccentricity. 

(c) Argument of perigee. 

Examination of Fig. 4 shows that although the semi-major axis, argument of perigee and eccentricity oscillate 

during one orbital period, all elements return to the same initial value. Examination of the inclination and ascending 

node angle revealed no oscillation over the orbital period as expected. 
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IV. Optimization of the Taranis Orbit Control Profile 

As discussed previously, the problem becomes more complex when low-thrust normal to the orbit plane is 

included, meaning it is no longer possible to obtain a general perturbations solution. A Pseudospectral Optimal 

Control Solver (PSOPT) [19] is used to determine a numerically optimal solution combining low-thrust in all three 

axial directions in-order to quantify the optimality of the general perturbations solution. PSOPT uses a direct 

collocation method including pseudo-spectral and local discretization, to solve the optimal control problem by 

approximating the time-dependent variables using polynomials. The previous assumption that the fraction of the 

total acceleration is equal in each direction is no longer made, thus coupled with an objective function to maximize 

the final spacecraft mass generating a fuel optimal solution. 

The results of the special perturbations solution are used as the initial guess for the optimizer, which once again 

propagates the spacecraft trajectory using a set of modified equinoctial elements [17]. The spacecraft initial mass is 

set to 1000kg, with a specific impulse of 4600sec, and a total constant acceleration of 0.0835mm/s2. The analysis is 

initially conducted including perturbations due to the oblateness of the Earth to the order of J2. This was 

subsequently extended to include J3 and J4, with no significant divergence found between the results. As such on 

order J2 results are presented herein. The optimized control profiles in the radial, transverse and out-of-plane 

directions are shown in Fig. 5. 

Each optimized solution was obtained using 17 nodes. It should be noted that due to the use of a variable step 

integrator within the special perturbations solution the initial guess does not simply contain equally spaced nodes 

and furthermore, due to the use of an adaptive mesh within the PSOPT tool the optimized nodes are not constrained 

by the initial guess. 
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(a) 

 
(b) 

 
(c) 

Fig. 5   Analytical and optimized control profiles for the 90deg. Taranis orbit, defined in Table 1. (a) 

Radial control profile. (b) Transverse control profile. (c) Normal control profile. 
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The control profiles show that as the assumption of equal acceleration magnitude is no longer made, the total 

acceleration is now composed of radial, transverse and out-of-plane components, with the fraction of the total 

acceleration in each direction varying with true anomaly. To complete one revolution of the Taranis orbit, the 

previous special perturbations technique required 80.5g of fuel, while the fuel optimal solution consumes only 77.5g 

of fuel, resulting in a reduction in fuel consumption of only 3.7%. Given that the analytical solution is <4% 

suboptimal this is likely to be considered an acceptable cost due to the significantly reduced complexity of flying a 

spacecraft using the general perturbations control profile over the optimized profile.  

V. Extended General Perturbations Solution 

 Although the analysis throughout this paper considers the total acceleration magnitude from the general 

perturbations method assuming equal magnitudes of radial and transverse accelerations, the general perturbations 

solution can be extended to consider solutions where this assumption is no longer made. Thus, allowing the 

minimum acceleration magnitude to be determined. 

  Substituting the orbital element values from Table 1 into Eq. (15) and setting the change in argument of perigee 

equal to zero results in the following expression for the radial acceleration as a function of transverse acceleration, 

1.58 4 1.676r tF e F= − − +   (37) 

 The transverse acceleration is assigned a range of values between 0mm/s2 and 0.1mm/s2, and the corresponding 

radial acceleration is found using Eq. (37). The results shown in Fig. 6 give a range of possible solutions for the 

90deg Taranis orbit, while maintaining a constant argument of perigee. 
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Fig. 6   Radial and transverse accelerations, total acceleration magnitude for zero change in argument of 
perigee. 

Figure 6 shows the possible solutions for the Taranis orbit, for a range of transverse accelerations between 

0mm/s2 and 0.1mm/s2, where between Ft = 0.059mm/s2 and Ft = 0.08mm/s2, the total acceleration magnitude of the 

solution is less than the previous general perturbations solution, i.e. using the assumption that the acceleration 

magnitudes are equal in both the radial and transverse directions. The previous general perturbations solution, where 

the two directional accelerations are equal in magnitude can also be seen in Fig. 6.  It is also shown that the 

minimum acceleration magnitude occurs when the transverse acceleration is equal to 0.07mm/s2 and the 

corresponding radial acceleration is -0.0406mm/s2 (from Eq. (37)). This results in a total acceleration magnitude of 

0.0809mm/s2, around a 3% reduction from the previous general perturbations solution. This solution is validated 

using a special perturbations method and is again optimized to obtain the fuel optimal control profiles. This process, 

as with the previous optimization gives a ~3.7% reduction in fuel consumption. This is again likely to be an 

acceptable cost due to the reduced complexity of flying the sub-optimal control profile. 
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VI. Mission Analysis 

Mission Lifetime  

By evaluating the performance of the Taranis orbit in terms of propellant consumption; possible mission 

lifetimes facilitated by means of Solar Electric Propulsion are determined. Defining the differential equation for the 

mass of the spacecraft as, 

.

0sp

Tm
I g

= −   (38) 

where T is the thrust magnitude of the SEP system given by, 

pT a m=   (39) 

Then making the appropriate substitution of Eq. (39) into Eq. (38) results in the following integral, 

0 0 0

f fm t
p

spm t

adm dt
m I g

= −∫ ∫   (40) 

Evaluating the integrals and applying the condition that t0 = 0 gives the following expression for the mission 

lifetime, 

0

0

ln f sp
f

p

m I g
L t

m a
⎛ ⎞

= = − ⎜ ⎟
⎝ ⎠

  (41) 

where the mass fraction mf/m0 is defined as, 

( )0

0 0

propf m mm
m m

−
=   (42) 

The lifetime of the 90deg 12-hr Taranis orbit detailed in Table 1 is thus determinable for a particular mass 

fraction and specific impulse. The resulting possible Taranis mission lifetimes are shown in Fig. 7. 
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Fig. 7   Taranis mission lifetime. 

Figure 7 shows that the possible mission lifetimes for the Taranis orbit range from around 1.2 years to around 69 

years depending on the level of available technology and mass fraction; for example, using a specific impulse of 

3000s and fuel mass fraction of 0.5 results in a mission lifetime of approximately 8 years. Fig. 7 shows the results 

for a range of specific impulses from specific impulses possible with current technology to far term low-thrust 

propulsion technologies. For example, although the maximum mission lifetime shown is 69 years, for an Isp of 

8000s, current ion engines are not currently able to provide this level of specific impulse. Thus, to allow mission 

lifetimes of this order of magnitude, developments in low-thrust propulsion are required; such as JAXAs µ10HIsp 

electric propulsion system, which has been under development since 2003, and will be capable of achieving a 

specific impulse of 10,000s [20]. As well as, NASAs Variable Specific Impulse Magnetoplasma Rocket (VASIMR) 

currently under development will be capable of providing between 5,000s and 50,000s of specific impulse‡. 

Mass Budget  

Although the mission lifetime analysis characterizes possible mission lifetimes of the Taranis mission in terms of 

propellant consumption, it should also be investigated whether these conditions allow a useful payload to be carried. 

The initial mass of the spacecraft, m0, is composed of many elements and subdivided as, 

0 sys prop tank SEP P paym m m m m m m= + + + + +   (43) 

                                                             
‡ http://web.mit.edu/mars/Conference_Archives/MarsWeek04_April/Speaker_Documents/VASIMREngine-
TimGlover.pdf 
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where the system mass includes, for example, telecommunications, data processing, guidance, navigation and 

control, structural mass and any power system requirements beyond the SEP systems requirements. Throughout the 

analysis, this system mass is assumed to total 500kg and the specific impulse is assumed to be 3000s. From Eq. (43), 

mprop, is the mass of the available propellant for a given mission duration, found using the difference between the 

initial spacecraft mass and the final spacecraft mass, mf. The final mass is approximated as, 

max
f 0

0sp

T
m m t

I g
= − Δ   (44) 

Thus, the mass of propellant over a given time, Δt is  

max

0
prop

SP

Tm t
I g

= Δ   (45) 

The mass of the propellant tanks, mtank, is found as a function of the mass of the propellant, as mtank = 0.1mprop. 

The mass of the SEP thruster, mSEP is then found as a function of the maximum power provided by the SEP system, 

Pmax, and is given by, 

SEP maxSEPm k P=   (46) 

With the specific performance of the thruster given as kSEP = 0.02 kg/W [21]. The thruster efficiency, ηSEP  is 

assumed to be equal to 0.7. In Eq. (43) mp is the mass of the spacecraft power system required to provide electrical 

energy to the SEP system. Thus, using a solar array the mass is given by, 

P maxSAm k P=   (47) 

Using a conservative estimate of the specific performance of the solar array, from [22], of ksa = 1 / 45 kg/W. The 

initial mass of the spacecraft is found as a function of maximum thrust, Eq. (39) the maximum allowable initial mass 

is thus determined for the given level of thrust, using a constant SEP acceleration of 0.0835mm/s2, as illustrated in 

Fig. 8. 
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Fig. 8   Maximum allowable initial mass for the 12-hr Taranis orbit in Table 1. 

Figure 8 shows the maximum possible initial mass of the spacecraft for a range of thrust values between 10mN 

and 310mN, where the shaded region above the line gives the spacecraft masses that cannot be achieved for a given 

level of thrust for the constant acceleration considered. It can be seen, from Fig. 8, that for spacecraft with maximum 

thrust values of 83.5mN, 125.3mN, and 208.8mN, the maximum allowable initial mass is 1000kg, 1500kg, and 

2500kg respectively. Inserting the appropriate values into Eq. (43), and solving for the payload mass, mpay, for a 

range of mission lifetimes results in Fig. 9. 

0	  

500	  

1000	  

1500	  

2000	  

2500	  

3000	  

3500	  

4000	  

10	   40	   70	   100	   130	   160	   190	   220	   250	   280	   310	  

In
i4
al
	  M

as
s	  [
kg
]	  

Ini4al	  Thrust	  [mN]	  

Forbidden Region 



26 
 

 

Fig. 9   Payload mass as a function of mission lifetime. 

Figure 9 shows the payload mass for each initial mass of spacecraft as a function of mission lifetime and allows 

the maximum mission lifetime to be determined, that is, where there is no longer any capacity for useful payload. 

This results in maximum mission lifetimes of 4.3 years, 6 years and 7.4 years respectively for each initial mass of 

spacecraft considered. Although mission lifetimes were outlined in Fig. 7 in terms of propellant consumption, Fig. 9 

shows that the actual mission lifetimes are significantly reduced when the availability for useful payload is 

considered. The mission lifetimes given in Fig. 9 for the 1500kg and 2500kg spacecraft are around the values 

expected for Molniya-like orbits [23]. However, the lifetime shown for the 1000kg spacecraft is lower, nonetheless a 

1000kg spacecraft is at the lower end of Earth Observation spacecraft currently being launched, and so the lower 

lifetime for this mass of spacecraft is of little concern. 

Thrust Range Analysis 

Altering the inclination to values other than the conventional critical inclinations requires an acceleration of 

constant magnitude to compensate for the drift in argument of perigee caused by Earth’s gravitational field. 

However, in reality as the propellant is consumed, the mass of the spacecraft decreases consequently a variable 

thrust SEP system is required. The thrust range necessary from the SEP system can be determined by finding the 

thrust at the beginning of the mission with all the propellant, and the thrust at the end of the mission with zero 
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propellant. These thrust ranges are shown for the three initial mass of spacecraft previously considered, for a range 

of mission lifetimes, shown in Fig. 10. 

 

Fig. 10  Thrust ranges required for SEP system. 

Considering the specific case of the 1000kg spacecraft with mission duration of 4 years, the thrust at the 

beginning of the mission with all the propellant is 83.5mN and at the end of the mission with all propellant 

consumed is 49.9mN.  

Technology Requirements 

 Given that the parameters of the Taranis platform are defined for the mass and power required, the systems and 

technology requirements for the platform can be investigated. Firstly, the requirements of SEP thruster are 

discussed. Assuming the total acceleration is constituted by two thrusters at any given time, one for each of the 

radial and transverse directions, the approximate required range per thruster for the three specified initial masses of 

spacecraft for given mission durations, are stated in Table 2.  
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Table 2 Maximum and minimum thrust per thruster. 

    
Initial Mass [kg] Mission Duration [years] Maximum Thrust [mN] Minimum Thrust [mN] 

1000 4 42 25 
1500 6 63 24 
2500 7 104 29 

 NASA’s Solar Electric Propulsion Technology Application Readiness (NSTAR) thruster, which has undergone 

significant ground testing in addition to a flight test on the Deep Space 1 (DS1) spacecraft [24], is capable of 

providing between 20mN and 94mN of thrust. Thus, four NSTAR thrusters, one per required direction, are capable 

of providing the thrust range required for the both the 1000kg spacecraft and the 1500kg spacecraft.  Furthermore, 

the QinetiQ T6 thruster,  is throttelable between 30mN and 210mN  and is thus capable of providing the required 

thrust range of the 2500kg spacecraft [25]. 

 To enable the 90deg Taranis orbit, the power requirements of the spacecraft must be considered.  The sizing of 

the required solar arrays is based on an end-of-life (EOL) solar array efficiency of 0.25 at 1AU. The power required 

by each spacecraft, the mass of the solar arrays (from Eq.(46)) and the required solar array area, found using the 

Solar flux of 1370W/m2 at 1AU, are given in Table 3. Where, it is shown that the required sizes of the solar arrays 

are modest and feasible using current solar array technology. With the solar arrays of Rosetta totaling 61.5m2 [26]  

and SMART-1’s arrays having an area of 10m2 [27] for spacecraft of 3000kg and 370kg respectively.  

Table 3 Solar array sizing. 

    
Initial Mass [kg] Maximum Power [kW] Solar Array Mass [kg] Solar Array Area [m2] 

1000 1.8 39 5 
1500 2.6 58 8 
2500 4.4 97 13 

 Finally, the storage requirements for the requisite propellant mass for a given duration are examined. For the 

maximum mission durations for each initial mass of spacecraft discussed in the previous section the mass of 

propellant is determined using Eq. (45) and shown in Table 4. 

        Table 4 Propellant mass. 
   

Initial Mass [kg] Mission Duration [years] Propellant Mass [kg] 
1000 4 358 
1500 6 806 
2500 7 1566 
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The NASA Dawn mission Xenon tanks have a capacity of 425kg of propellant, thus the Taranis spacecraft 

propellant mass requirements can be accommodated using one, two and four tanks of comparable capacity, 

respectively for each of the three spacecraft. The single tank volume is 0.27m3, so that the equivalent tank radius for 

a spherical tank is 0.4m, thus the total propellant mass requirements for the possible Taranis platforms can be 

accommodated in a modest volume. 

Radiation Analysis 

A brief radiation analysis is also conducted from The Space Environment Information System (SPENVIS)§, the 

results of which are shown in Fig. 11. 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

Figure 11 shows the total radiation experienced by a Taranis spacecraft for mission durations between 2 and 5 

years for various Aluminum absorber thicknesses. Using a typical absorber thickness of 4mm for all mission 

lifetimes it is necessary that the Taranis platform hardware must be space qualified. However, the values of radiation 

                                                             
§ www.spenvis.oma.be/ 
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Fig. 11  Radiation analysis. 
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are below those requiring radiation hard materials and are of the same order of magnitude as the radiation levels 

experienced by existing geostationary spacecraft, again demonstrating the viability of the Taranis mission using 

current technology 

Visibility Analysis 

The number of spacecraft required to provide continuous observation of the Frigid and neighboring Temperate 

zones, to 55deg latitude, using both the Molniya and 12-hr Taranis orbit are determined. The continuous visibility 

analysis is achieved by determining the time that spacecraft on both the Molniya orbit and the Taranis orbit can view 

ground stations located at longitude intervals of 10deg at the desired latitude limit. This is accomplished by 

assuming a value of the minimum elevation and calculating the maximum elevation angle (parameters are 

introduced in Fig. 12) for each ground station in turn; between these elevation ranges the spacecraft is in view of the 

ground station. The coverage for a number of spacecraft over time is then plotted to determine the minimum number 

of spacecraft required to achieve continuous coverage of the given region. In this instance the region under 

consideration is above 55deg latitude, due to the limitations of geostationary platforms beyond this. 

A relatively high minimum elevation angle is assumed throughout the visibility analysis; the basis for this 

assumption is the requirement to match the OZA of the defined latitude limit when viewed from geostationary orbit. 

Considering a geostationary spacecraft at an altitude of 36,000km viewing 55deg latitude, the minimum elevation 

angle is determined using the following relationships. Firstly, the angular radius of the Earth is calculated using, 

0sin cos E

E

R
R H

ρ λ= =
+

  (48) 

and the nadir angle is determined as,  

sin sintan
1 sin cos

ρ λ
η

ρ λ
=

−
  (49) 

The angular radius of the Earth and nadir angle are used to obtain the minimum elevation angle using, 

sincos
sin

η
ε

ρ
=   (50) 
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The geostationary spacecraft thus has a minimum elevation angle of 27deg, or an equivalent OZA of 63deg. 

Employing this minimum elevation angle for both the Molniya and Taranis orbits ensures that these provide at the 

very least data of equal quality to that produced by geostationary systems. 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 12  Angular relationships between satellite, target and Earth center. 

Conducting the analysis for the given visibility conditions, demonstrates that the Molniya orbit is, from a single 

platform, unable to provide any coverage to 55deg latitude at the desired observational zenith angle. Observation to 

55deg latitude from the Molniya orbit only begins to become feasible at an observational zenith angle of around 

69deg. However, this observational zenith angle is clearly too high for imaging of equal quality to that of 

geostationary systems. This highlights the requirement for an orbit capable of providing accurate imaging of high 

latitude regions. The 90deg inclination Taranis orbit is capable of providing continuous observation of this region 

using a constellation of only three spacecraft, as shown in Fig. 13. A possible configuration of such a Taranis 

constellation is demonstrated in Fig. 14. 
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Fig. 13  Taranis orbit observation above 55deg latitude. 
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Fig. 14  Taranis orbit, three spacecraft constellation. 

It is important to note that while Fig. 14 shows the constellation of spacecraft on the Taranis orbit at equally 

spaced ascending node values, this parameter has no effect on the coverage delivered. As such each spacecraft could 

have the same ascending node allowing them to be launched on a single launch vehicle, thus reducing the overall 

cost.   

VII. Electric and Chemical Propulsion Comparison 

The effective Δν to enable the Taranis orbits using continuous low-thrust propulsion can be found from the 

product of the required acceleration and mission duration, given by, 

pa tνΔ = Δ   (51) 

Comparison can thus be made with the use of high-thrust chemical propulsion to maintain the artificial critical 

inclination of the Taranis orbits. At an inclination of 90deg without any control the drift in argument of perigee is 
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minus 0.15 deg per day. To compensate for this change in argument of perigee chemical thrusters would be required 

to provide two equal impulses per orbit. The total Δν  through the application of the two impulses is given by 

Eq.(52) [28], 

( )2(2 / ) 1 /e a e

ω
ν

µ

Δ
Δ =

−
  (52) 

The respective Δν  and propellant mass fraction, Δm/m0, calculated using the rocket equation, for one year of 

operation are shown in Table 5, with the results extended over various mission durations shown in Fig. 15. 

Table 5. Δν  requirements for one year of operation. 

   
Propulsion System Δν  [km/s] Propellant mass fraction 

Electric (Isp = 3000-4600s) 2.63 0.086 – 0.057 
Chemical (Isp = 200- 340s) 1.96 0.632 - 0.444 

 

 

Fig. 15  Electric and chemical Δν  comparison. 

Figure 15 highlights the benefit of utilizing SEP to enable Taranis orbits, as chemical propulsion, although 

feasible for low mission durations becomes impractical for longer duration missions. Above 5 year missions the 
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chemical propellant mass fraction begins to tend to one, with low-thrust propulsion enabling much greater mission 

lifetimes. 

VIII. Conclusion 

The use of continuous low-thrust propulsion to extend conventional highly elliptical Earth orbits has been 

demonstrated. It is shown that low-thrust propulsion can be used to alter the natural critical inclination of Molniya-

like orbits to any inclination to optimally fulfill the mission goals, independent of the orbit period, perigee or apogee 

altitudes. These low-thrust extensions are termed Taranis orbits. The most significant finding is a Taranis orbit 

inclined at 90deg to the equator, with a constellation of three spacecraft on this orbit enabling high latitude imaging 

previously unfeasible using existing Earth orbits. Notably, these new Taranis orbits can be enabled with existing 

technology.  
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