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In this paper the inverse scattering method is applied to the Vakhnenko-Parkes equation.
We describe a procedure for using the inverse scattering transform to find the solutions that
are associated with both the bound state spectrum and continuous spectrum of the spectral
problem. The suggested special form of the singularity function gives rise to the multi-mode
periodic solutions. Sufficient conditions are obtained in order that the solutions become real
functions. The interaction of the solitons and multi-mode periodic waves is studied. The
procedure is illustrated by considering a number of examples.

Subject Index: 010, 011

§1. Introduction

It is of significance to look for exact solutions of nonlinear evolution equations in
many applications of physics and technology. Various effective approaches have been
developed to construct exact wave solutions of completely integrable equations. One
of the fundamental direct methods is undoubtedly the Hirota bilinear method,1),2)

which possesses significant features that make it practical for the determination of
multiple-soliton solutions. However, the direct methods can be applied only for
finding solitary-wave solutions or traveling-wave solutions. In this sense, the inverse
scattering method is the most appropriate way of tackling the initial value problem
although its employment is a fairly difficult procedure.3)–5)

This paper deals with a nonlinear evolution equation

WXXT + (1 +WT )WX = 0. (1.1)

This equation arises from the Vakhnenko equation6)–8)

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ u = 0 (1.2)

through the transformation9),10)

u(x, t) := U(X,T ) = WX(X,T ), x := x0 + T +W (X,T ), t := X. (1.3)

∗) Author for correspondence. E-mail: vakhnenko@ukr.net
∗∗) E-mail: e.j.parkes@strath.ac.uk



594 V. O. Vakhnenko and E. J. Parkes

The corresponding governing equation for U , namely

UUXXT − UXUXT + U2UT = 0 (1.4)

is given in the paper.9)

Equations (1.1), (1.2), and (1.4) arose as a result of describing high-frequency
perturbations in a relaxing medium.8) Following the papers,11),12) hereafter the
equation (1.1) is referred to as the Vakhnenko-Parkes equation (VPE).

Recently the Hirota method2),9) as well as the inverse scattering method13) have
been applied to obtain the exact N -soliton solutions of the VPE. In this paper we use
the inverse scattering transform method to study additionally the periodic solutions
of the VPE (1.1) associated with the continuous part of the spectral data as well as
to investigate the interaction of solitons with these periodic waves.

In §2 we formulate the spectral problem for the VPE by adapting the results
given by Caudrey14) and by Kaup.15) In §3 we find the solutions corresponding
to both the bound state and continuous part of the spectral data. In §4 we find
the corresponding real M -soliton and periodic N -mode solutions and study their
interactions. Our results are summarized in §5.

§2. The inverse spectral problem for the VPE

In order to use the inverse scattering method, one first has to formulate the
associated eigenvalue problem. In the paper,13) it is shown that the pair of equations

ψXXX +WXψX − λψ = 0, (2.1)
3ψXT + (WT + 1)ψ = 0 (2.2)

is associated with the VPE (1.1) considered here through the quantity W . In-
deed, the compatibility of Eqs. (2.1) and (2.2) yields the condition13) (WXXT +(1+
WT )WX)X = 0 or WXXT + (1 + WT )WX + h(T ) = 0, where h(T ) is an arbitrary
function of T . Now, according to (2.6) and (3.10), the inverse scattering method
restricts the solutions to those that vanish as |X| → ∞, so h(T ) is to be identically
zero. Thus, the pair of equations (2.1) and (2.2) can be considered as the Lax pair
for the VPE (1.1).

Note that the inverse scattering transform problem is related to a spectral equa-
tion of third order (2.1). The inverse problem for third-order spectral equations
has been considered by Caudrey14) and Kaup.15) We adapt the results obtained by
these authors to the present spectral problem and describe a procedure for using the
inverse scattering transform method to find the solutions of the VPE.

We follow the general theory of the inverse scattering problem for N spectral
equations which has been developed by Caudrey.14) According to this paper14) the
spectral equation (2.1) can be rewritten in the form13)

∂

∂X
ψ = [A(ζ) +B(X, ζ)] ·ψ (2.3)
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with

ψ =

⎛
⎝ ψ

ψX

ψXX

⎞
⎠ , A =

⎛
⎝ 0 1 0

0 0 1
λ 0 0

⎞
⎠ , B =

⎛
⎝ 0 0 0

0 0 0
0 −WX 0

⎞
⎠ . (2.4)

The matrix A has the eigenvalues λj(ζ) and left- and right-eigenvectors ṽj(ζ) and
vj(ζ), respectively, (j = 1, 2, 3). These quantities are defined through a spectral
parameter λ as

λj(ζ) = ωjζ, λ3
j (ζ) = λ,vj(ζ) =

⎛
⎝ 1

λj(ζ)
λ2

j (ζ)

⎞
⎠ , ṽj(ζ) =

(
λ2

j (ζ) λj(ζ) 1
)
, (2.5)

where ωj = e2πi(j−1)/3 are the cube roots of 1.
The solution of the linear equation (2.1), or equivalently Eq. (2.3), has been ob-

tained by Caudrey14) in terms of Jost functions φj(X, ζ) which have the asymptotic
behaviour

Φj(X, ζ) := exp{−λj(ζ)X}φj(X, ζ) → vj(ζ) as X → −∞. (2.6)

Here T is regarded as a parameter; the T -evolution of the scattering data will
be taken into account later. The solution of the direct problem (2.3) is given by the
equation system (4.5) in the paper.14) Since there is a set of symmetry properties
φ1(X, ζ/ω1) = φ2(X, ζ/ω2) = φ3(X, ζ/ω3) (see e.g. (6.14) and (6.15) in the paper14))
for Jost functions φj(X, ζ), we need only consider the element φ1(X, ζ) (as well as
Φ1(X, ζ)). In the general case it is necessary to take into account both the bound
state spectrum and the continuous spectrum. According to the relation (6.20) in the
paper,14) the solution of (2.3) is as follows:

Φ1(X, ζ) = 1−
K∑

k=1

3∑
j=2

γ
(k)
1j

exp{[λj(ζ
(k)
1 ) − λ1(ζ

(k)
1 )]X}

λ1(ζ
(k)
1 ) − λ1(ζ)

Φ1(X,ωjζ
(k)
1 )

+
1

2πi

∫ 3∑
j=2

Q1j(ζ ′)
exp{[λj(ζ ′) − λ1(ζ ′)]X}

ζ ′ − ζ
Φ±

1 (X,ωjζ
′)dζ ′. (2.7)

Equation (2.7) contains the spectral data, namely, K poles with the quantities γ(k)
1j

for the bound state spectrum as well as the functions Q1j(ζ ′) given along all the
boundaries of regular regions for the continuous spectrum. The boundaries between
regions, where the Jost function φ1(X, ζ) is regular, appear at Re(λ1(ζ ′)−λj(ζ ′)) = 0
over all j �= 1.14) The singularities on boundaries of these regions within the complex
ζ-plane are taken into account by the third term in the relation (2.7). The integral
in (2.7) is along all the boundaries (see the dashed lines in Fig. 1). The direction of
integration is taken so that the side chosen to be Re(λ1(ζ ′)−λj(ζ ′)) < 0 is shown by
the arrows in Fig. 1. It is necessary to note that we should carry out the integration
along the lines ω2(ξ+iε) and −ω3(ξ+iε) with ε > 0. In this case, as we will show in
§4.1.1, the condition (2.6) is satisfied. Passing to the limit ε→ 0 we can obtain the
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Fig. 1. The regular regions for Jost functions ffi1(X, ζ) in the complex ζ-plane. The dashed lines

determine the boundaries between regular regions. These lines are lines where the singularity

functions Q1j(ζ
′) are given. The dotted lines are the lines where the poles appear.

solution which does not satisfy the condition (2.6) (see §4.1). However, for any finite
ε > 0 the restricted region on X can be determined where the solution associated
with a finite ε > 0 (for which the condition (2.6) is valid) and the solution associated
with ε = 0 are sufficiently close to each other (see §4.1.1 for details). In this sense,
taking the integration at ε = 0, we remain within the inverse scattering theory14)

whereas the condition (2.6) can be omitted. The solution obtained at ε = 0 can be
extended to sufficiently large finite X. Thus, we will interpret the solution obtained
at ε = 0 as the solution of Eq. (1.1) which is valid on arbitrary but finite X.

Provided Q1j(ζ) ≡ 0 in (2.7), the consideration of the bound state spectrum
only gives rises to the purely soliton solutions. The procedure for finding the exact
N -soliton solution of the VPE via the inverse scattering method is described in the
paper.13) In the next section we study the solutions of the VPE taking into account
additionally the continuous part of the spectral data.

§3. The soliton and periodic solutions

Now additionally to the bound state spectrum we consider the continuous spec-
trum of the associated eigenvalue problem, i.e. assume that at least some of the
functions Q1j(ζ ′) are nonzero. At each fixed j �= 1 the functions Q1j(ζ ′) characterize
the singularity of Φ1(X, ζ). This singularity can appear only on boundaries between
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the regular regions on the ζ-plane. The condition Re(λ1(ζ ′) − λj(ζ ′)) = 0 deter-
mines these boundaries.14) According to the paper,14) we find that for Φ1(X, ζ) the
complex ζ-plane is divided into four regions by two lines

(i) ζ ′ = ω2ξ, with Q
(1)
12 (ζ ′) �= 0, Q

(1)
13 (ζ ′) ≡ 0,

(ii) ζ ′ = −ω3ξ, with Q
(2)
12 (ζ ′) ≡ 0, Q

(2)
13 (ζ ′) �= 0, (3.1)

where ξ is real (see Fig. 1). Analysis shows that the direction of the integration
in (2.7) is to be so that ξ sweeps from −∞ to +∞.

Let us consider the singularity functions Q1j(ζ ′) on the boundaries, on which
the Jost function φ1(X, ζ) is singular, in the form (n = 1, 2, ..., N)

Q
(1)
12 (ζ ′) = −2πi

N∑
n=1

q
(2n−1)
12 δ(ζ ′ − ζ ′2n−1)

Q
(1)
13 (ζ ′) = −2πi

N∑
n=1

q
(2n−1)
13 δ(ζ ′ − ζ ′2n−1) ≡ 0

⎫⎪⎪⎬
⎪⎪⎭ on the line ζ ′ = ω2ξ,

Q
(2)
12 (ζ ′) = −2πi

N∑
n=1

q
(2n)
12 δ(ζ ′ − ζ ′2n) ≡ 0

Q
(2)
13 (ζ ′) = −2πi

N∑
n=1

q
(2n)
13 δ(ζ ′ − ζ ′2n)

⎫⎪⎪⎬
⎪⎪⎭ on the line ζ ′ = −ω3ξ. (3.2)

For the singularity functions (3.2) and for M pairs of poles, the relationship (2.7) is
reduced to the form

Φ1(X, ζ) = 1−
2M∑
k=1

3∑
j=2

γ
(k)
1j

exp{[λj(ζ
(k)
1 ) − λ1(ζ

(k)
1 )]X}

λ1(ζ
(k)
1 ) − λ1(ζ)

Φ1(X,ωjζ
(k)
1 )

−
2N∑
l=1

3∑
j=2

q
(l)
1j

exp{[λj(ζ ′l) − λ1(ζ ′l)]X}
ζ ′l − ζ

Φ1(X,ωjζ
′
l). (3.3)

In the paper,13) it is proved that the poles appear in pairs only ζ(2m−1)
1 = iω2ξ1 and

ζ
(2m)
1 = −iω3ξ1, under the conditions γ(2m−1)

12 = ω2βm, γ(2m−1)
13 = 0, γ(2m)

12 = 0, and
γ

(2m)
13 = ω3βm, (m = 1, 2, ...,M). If we consider both the bound state spectrum

and the continuous spectrum, the constants βm are complex values in the general
case. The restrictions on the constants βm for real solutions U follow from a separate
problem, which will be analyzed in the next section.

As follows from the relationship (3.3) and the formula

φ1 X(X, ζ) =
i√
3

[φ1 X(X,−ω2ζ)φ1(X,−ω3ζ) − φ1 X(X,−ω3ζ)φ1(X,−ω2ζ)] (3.4)

given in the paper,13) for example, the singularities in the form (3.2) appear in pairs
ζ ′2n−1 = ω2ξn and ζ ′2n = −ω3ξn. From (3.4), on considering the limits ζ → ζ ′l and
X → −∞, it immediately follows that

q
(2n−1)
12 ω2 = q

(2n)
13 for n = 1, 2, ..., N. (3.5)
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Insofar as we have 2M poles and 2N coefficients q(2n−1)
12 and q(2n)

13 in the adopted
specifications (3.2) of the singularity functions Q1j(ζ ′), it is convenient to introduce
the notation

μji =

{
λj(ζ

(i)
1 ),

λj(ζ ′(i−K)),
p
(i)
1j =

{
γ

(i)
1j at i = 1, ...,K,
q
(i−K)
1j at i = K + 1, ...,K + L,

(3.6)

where K = 2M and L = 2N . Then the relationship (3.3) is rewritten as follows:

Φ1(X, ζ) = 1 −
K+L∑
i=1

3∑
j=2

p
(i)
1j

exp[(μji − μ1i)X]
μ1i − ζ

Φ1(X,μji). (3.7)

By defining

Ψi(X) =
3∑

j=2

p
(i)
1j exp(μjiX)Φ1(X,μji), (3.8)

we may rewrite the relationship (3.7) as

Φ1(X, ζ) = 1 −
K+L∑
i=1

exp(−μ1iX)
μ1i − ζ

Ψi(X). (3.9)

On the other hand, by expanding Φ1(X, ζ) as an asymptotic series in λ−1
1 (ζ), one

can obtain (see Eq. (5.11) in the paper13))

Φ1(X, ζ) = 1 − 1
3λ1(ζ)

[W (X) −W (−∞)] +O(λ−2
1 (ζ)). (3.10)

From (3.8) and (3.9), the following key relationship may be found (see also Eq. (6.38)
in the paper14)):

W (X) −W (−∞) = −3
K+L∑
k=1

exp(−μ1kX)Ψk(X) = 3
∂

∂X
ln(detM). (3.11)

Here the matrix M(X) is defined as follows:

Mil(X) = δil −
3∑

j=2

p
(i)
1j

exp[(μji − μ1l)X]
μji − μ1l

. (3.12)

Now let us consider the T -evolution of the spectral data. By analyzing the so-
lution of Eq. (2.2) when X → −∞, we find that φj(X,T, ζ) = exp[−(3λj(ζ))−1T ]
× φj(X, 0, ζ). Hence, the T -evolution of the scattering data is given by the relation-
ships (with i = 1, 2, ...,K + L)

λj(T ) = λj(0), p
(i)
1j (T ) = p

(i)
1j (0) exp{[−(3μji)−1 + (3μ1i)−1]T}. (3.13)
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Consequently, the final result for the solution of the VPE, when we consider the
spectral data from both the bound state spectrum and the continuous spectrum, as
well as taking into account their T -evolution, is as follows:

U(X,T ) = WX(X,T ) = 3
∂2

∂X2
ln (detM(X,T )) . (3.14)

Here M(X,T ) is the (K + L)×(K + L) matrix given by

Mkl = δkl −
3∑

j=2

p
(k)
1j

exp{(μjk − μ1l)X + [−(3μjk)−1 + (3μ1k)−1]T}
μjk − μ1l

, (3.15)

where, for i ≤M ,

μ1(2i−1) = λ1(ζ
(2i−1)
1 ) = iω2ξi, μ2(2i−1) = λ2(ζ

(2i−1)
1 ) = iω3ξi,

p
(2i−1)
12 = γ

(2i−1)
12 = ω2βi, p

(2i−1)
13 = γ

(2i−1)
13 = 0,

μ1(2i) = λ1(ζ
(2i)
1 ) = −iω3ξi, μ3(2i) = λ3(ζ

(2i)
1 ) = −iω2ξi,

p
(2i)
12 = γ

(2i)
12 = 0, p

(2i)
13 = γ

(2i)
13 = ω3βi, (3.16)

and for M < i ≤M +N ,

μ1(2i−1) = λ1(ζ ′2(i−M)−1) = ω2ξi, μ2(2i−1) = λ2(ζ ′2(i−M)−1) = ω3ξi,

p
(2i−1)
12 = q

(2(i−M)−1)
12 = ω2βi, p

(2i−1)
13 = q

(2(i−M)−1)
13 = 0,

μ1(2i) = λ1(ζ ′2(i−M)) = −ω3ξi, μ3(2i) = λ3(ζ ′2(i−M)) = −ω2ξi,

p
(2i)
12 = q

(2(i−M))
12 = 0, p

(2i)
13 = q

(2(i−M))
13 = ω3βi. (3.17)

For the solution (3.14), (3.15) there are (M + N) arbitrary constants ξi and
(M + N) arbitrary constants βi. The constants ξi are real, while the constants βi,
in the general case, are complex.

As will be clear from the examples in the next section, the solution (3.14), (3.15)
includes N discrete frequencies from the continuous part of the spectral data. For
this reason, the solution (3.14), (3.15), without solitons (i.e. with M = 0), will be
referred to as N -mode solution of the VPE. Evidently these discrete modes emanate
from the special choice (3.2) of the singularity functions Q1j(ζ ′).

The solution obtained through the matrix (3.15) is in general a complex function.
Consequently, there is a problem in selecting the real solutions from the complex
solutions. It turns out that we can obtain the real solutions by means of restriction
of arbitrariness in the choice of the constants βi. We have succeeded in finding these
restrictions.

§4. Real solutions for the VPE

The goal of this research is to find real functions for U = WX . We analyze a
number of examples, as well as the general case, for the interaction of the solitons
and multi-mode waves. To obtain the solutions of the VPE, one has to calculate the
determinant of matrix (3.15). Firstly, we present four results of such a calculation for
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M +N ≤ 4. For the sake of convenience we will use the auxiliary function F (X,T )
given by the definition F (X,T ) =

√
detM(X,T ). In particular, from (3.15),

1) for M +N = 1 we have

F = 1 + c1q1; (4.1)

2) for M +N = 2 we have

F = 1 + c1q1 + c2q2 + b12c1c2q1q2; (4.2)

3) for M +N = 3 we have

F = 1 + c1q1 + c2q2 + c3q3 + b12c1c2q1q2 + b13c1c3q1q3 + b23c2c3q2q3

+b12b13b23c1c2c3q1q2q3; (4.3)

4) for M +N = 4 we have

F = 1 + c1q1 + c2q2 + c3q3 + c4q4 + b12c1c2q1q2 + b13c1c3q1q3

+b14c1c4q1q4 + b23c2c3q2q3 + b24c2c4q2q4 + b34c3c4q3q4

+b12b13b23c1c2c3q1q2q3 + b12b14b24c1c2c4q1q2q4

+b13b14b34c1c3c4q1q3q4 + b23b24b34c2c3c4q2q3q4

+b12b13b14b23b24b34c1c2c3c4q1q2q3q4. (4.4)

For M +N > 4, the explicit expression for the function F (X,T ) can be obtained in
a similar manner. It is reasonable to present the quantities ci, qi, and bij involved
in the above formulas (4.1)–(4.4) separately for three distinct cases:

1. The purely solitonic case (i, j) ≤M assumes

qi = exp(2θi) 2θi =
√

3ξiX − (
√

3ξi)−1T, ci =
βi

2
√

3ξi
,

bij =
(
ξi − ξj
ξi + ξj

)2 ξ2i + ξ2j − ξiξj

ξ2i + ξ2j + ξiξj
, bij ≥ 0; (4.5)

2. The case of purely multi-mode waves M < (i, j) ≤M +N assumes

qi = exp(2θi) 2θi = −i
√

3ξiX + (i
√

3ξi)−1T, ci =
iβi

2
√

3ξi
,

bij =
(
ξi − ξj
ξi + ξj

)2 ξ2i + ξ2j − ξiξj

ξ2i + ξ2j + ξiξj
, bij ≥ 0; (4.6)

3. The case of a combination of solitons (i, i′) ≤ M and multi-mode waves M <
(j, j′) ≤M +N assumes

qi = exp(2θi) 2θi =
√

3ξiX − (
√

3ξi)−1T, ci =
βi

2
√

3ξi
,

qj = exp(2θj) 2θj = −i
√

3ξjX + (i
√

3ξj)−1T, cj =
iβj

2
√

3ξj
,
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bii′ =
(
ξi − ξi′

ξi + ξi′

)2 ξ2i + ξ2i′ − ξiξi′

ξ2i + ξ2i′ + ξiξi′
, 0 ≤ bii′ ≤ 1,

bjj′ =
(
ξj − ξj′

ξj + ξj′

)2 ξ2j + ξ2j′ − ξjξj′

ξ2j + ξ2j′ + ξjξj′
, 0 ≤ bjj′ ≤ 1,

bij =
(
ξi + iξj
ξi − iξj

)2 ξ2i − ξ2j + iξiξj
ξ2i − ξ2j − iξiξj

, |bij | ≡ 1. (4.7)

With the above found representation of the auxiliary function F (X,T ) and taking
into account the key relationship (3.11), we can write the explicit solution to the
basic nonlinear evolution equation (1.1) in the following concise form:

W (X,T ) = 6
∂

∂X
ln(F (X,T )) + const. (4.8)

The function F is complex-valued in the general case because the values of βi (and
hence of ci) are complex constants.

Since we are interested only in the real solution WX under real constants ξi, we
need the restrictions on the constants ci in (4.1)–(4.4).

4.1. The solutions associated with the continuous spectrum

We study the multi-mode solutions for M = 0 and N = 1, 2, 3, 4, while for
N ≥ 5 all formulas can easily be obtained by means of a generalization of these
examples.

4.1.1. The one-mode solution
In order to obtain the one-mode solution of the VPE (1.1) we need first to

calculate the 2×2 matrix M(X,T ) according to (3.15) with M = 0 and N = 1. For
the matrix elements Mkl(X,T ) we have

M11(X,T ) = 1 − iω2β1√
3ξ1

exp[−i
√

3ξ1X + (i
√

3ξ1)−1T ],

M12(X,T ) = −ω3β1

2ξ1
exp[2ω3ξ1X + (i

√
3ξ1)−1T ],

M21(X,T ) =
ω2β1

2ξ1
exp[−2ω2ξ1X + (i

√
3ξ1)−1T ],

M22(X,T ) = 1 − iω3β1√
3ξ1

exp[−i
√

3ξ1X + (i
√

3ξ1)−1T ], (4.9)

so that the respective determinant is

detM(X,T ) =
[
1 + c1 exp(−i

√
3ξ1X + (i

√
3ξ1)−1T )

]2
, c1 =

iβ1

2
√

3ξ1
. (4.10)

As has been noted already, the singularity functions in the form (3.2) with N = 1
give rise to a single frequency for the continuous part of the spectral data. Hence,
the expression (4.10), having been substituted into the concise formula (4.8), must
provide us with the one-mode solution.
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The condition that WX is real requires a restriction on the constant β1 (if the
constant ξ1 is arbitrary but real). We have succeeded in obtaining this restriction
(see Appendix A), namely that the constant c1, which in general is the complex-
valued one c1 = |c1| exp(iχ1), should possess the unity modulus |c1| = 1, while the
arbitrary real constant χ1 defines an initial shift of solution X1 = χ1/(

√
3ξ1) so that

detM(X,T ) =
[
1 + exp

(
−i

√
3ξ1(X −X1) +

T

i
√

3ξ1

)]2
. (4.11)

The final result for one mode of the continuous spectrum is the solution (4.8)
with (4.11), namely,

W (X,T ) = −3
√

3 ξ1 tan

(√
3

2
ξ1(X −X1) +

T

2
√

3ξ1

)
+ const. (4.12)

The corresponding solution for U = WX (with U governed by (1.4)) was obtained
recently by other methods, for example, by the sine-cosine method,16) the (G′/G)-
expansion method,12) and the extended tanh-function method.16),17) However, only
the approach developed here and the solution in the form (3.15) enable us to study
the interaction of solitons and periodic waves.

We obtain the periodic solutions even for N = 1. Let us call attention once
again to the condition (2.6) which in the final result is shown below to restrict
the region X for periodic solutions. At first glance it would seem that there is a
contradiction between the condition (2.6) and the periodic solution. Indeed, on the
one hand, the condition (2.6) demands that the solution W (X,T ) should vanish as
X → −∞; on the other hand, the periodic solution obtained here does not satisfy
the condition (2.6). Nevertheless, consideration of the details enables us to find a
reasonable explanation. So, in the paper14) at the derivation of the relation (2.7) (see
also (4.5) in the paper14)), the integral in (2.7) appears as a result of the integration
on two sides of the boundaries between regular regions. For an understanding of this
fact, the relationship (3.14) from the paper14) plays an important role. Hence, the
integration in (2.7) (also as in (4.5) in the paper14)) should be carried out over the
lines ω2(ξ + iε) and −ω3(ξ + iε) as ξ sweeps from −∞ to +∞, where ε > 0. As a
result, in the relationship (4.11) we should exchange ξ1 by (ξ1 +iε) and that enables
us to define the solution in the form

W (X,T ) = −i6
√

3 (ξ1 + iε)
exp(

√
3εX) exp

(
−i

√
3ξ1(X −X1) + T

i
√

3ξ1

)
1 + exp(

√
3εX) exp

(
−i

√
3ξ1(X −X1) + T

i
√

3ξ1

) , (4.13)

which tends to constants as |X| → ∞ at arbitrary ε > 0. Thus, on the one hand,
the condition (2.6) is satisfied, and, on the other hand, at small ε > 0 we have a
sufficiently large region over X where the solution associated with a finite ε > 0 and
the periodic solution associated with ε = 0 are sufficiently close to each other. The
region X with periodic solutions can be extended to sufficiently large, but finite, |X|.
For any sequence εn → 0 we remain within the inverse scattering theory14) where



Solutions Associated with Discrete and Continuous Spectrums 603

the condition (2.6) is not violated. Consequently, periodic solution obtained at ε = 0
is to be interpreted as the solution of Eq. (1.1) which is valid on arbitrary but finite
|X|.
4.1.2. The two-mode solution

Let us consider a two-mode solution of the VPE for which M = 0 and N = 2.
In this case M(X,T ) is a 4×4 matrix. According to (4.2) we find that√

detM(X,T ) = F (X,T ) = 1 + c1q1 + c2q2 + b12c1c2q1q2, (4.14)

where qi, ci, and b12 are defined by (4.6).
Since the solution WX should be real and the constants ξi are arbitrary, but real,

there are restrictions on the constants ci = |ci| exp(iχi). The real constants χi define
the initial shifts of solutions Xi = χi/(

√
3ξi). The analysis in considerable detail

shows (see Appendix A) that the relations |c1| = |c2| = 1/
√
b12 are the sufficient

conditions in order that WX be real. Thus, the interaction of two periodic waves for
the VPE is described by the relationship (4.8) with

F (X,T ) = 1 +
1√
b12

q1 +
1√
b12

q2 + q1q2, (4.15)

where b12 is as in (4.6), and the quantities qi now contain the phaseshifts Xi =
χi/(

√
3ξi) as follows:

qi = exp(i2θi), 2θi = −
√

3ξi(X −Xi) − (
√

3ξi)−1T. (4.16)

In explicit form, the two-mode solution is as follows:

W (X,T ) = −3
√

3
(ξ1 + ξ2) sin(θ1 + θ2) + b

−1/2
12 (ξ1 − ξ2) sin(θ1 − θ2)

cos(θ1 + θ2) + b
−1/2
12 cos(θ1 − θ2)

. (4.17)

4.1.3. The three-mode solution
For N = 3 and M = 0 in the relationship

F (X,T ) = 1 + c1q1 + c2q2 + c3q3 + c1c2b12q1q2 + c1c3b13q1q3

+c2c3b23q2q3 + c1c2c3b12b13b23q1q2q3 (4.18)

obtained from (3.15) (see, also (4.3)) with qi, ci, and b12 as in (4.6), we write ci =
|ci| exp(iχi). Then the arguments χi determine the initial phaseshifts of modes Xi =
χi/(

√
3ξi). As is proved in Appendix A, the conditions on the constants ci (or the

same on βi) are

|c1| = 1/
√
b12b13, |c2| = 1/

√
b12b23, |c3| = 1/

√
b13b23. (4.19)

Hence, the three-mode solution is the relation (4.8) with

F (X,T ) = 1 +
1√
b12b13

(q1 + q2q3) +
1√
b12b23

(q2 + q1q3)

+
1√
b13b23

(q3 + q1q2) + q1q2q3. (4.20)

Here the phaseshifts Xi are taken into account in qi by way of (4.16).
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4.1.4. The four-mode solution
For N = 4 and M = 0 the restrictions have the form (see Appendix A)

|ci| =
4∏

j=1
j �=i

b
− 1

2
ij , 0 ≤ bij = bji ≤ 1, i = 1, 2, 3, 4. (4.21)

The function F for a real solution (4.8) is as follows:

F (X,T ) = 1 +
1√

b12b13b14
(q1 + q2q3q4) +

1√
b12b23b24

(q2 + q1q3q4)

+
1√

b13b23b34
(q3 + q1q2q4) +

1√
b14b24b34

(q4 + q1q2q3)

+
1√

b13b14b23b24
(q1q2 + q3q4) +

1√
b12b14b23b34

(q1q3 + q2q4)

+
1√

b12b13b24b34
(q1q4 + q2q3) + q1q2q3q4. (4.22)

As before, the bij and qi are defined by (4.6) and (4.16), respectively.

4.2. The solutions associated with the bound state spectrum

The features of the solutions associated with bound state spectrum can be shown
by considering the two-soliton solution for which M = 2, N = 0. The solution (4.8)
can be obtained through (4.2), namely

F (X,T ) = 1 + c1q1 + c2q2 + b12c1c2q1q2 (4.23)

with (4.5), namely

qi = exp(2θi) 2θi =
√

3ξiX − (
√

3ξi)−1T, ci =
βi

2
√

3ξi
,

bij =
(
ξi − ξj
ξi + ξj

)2 ξ2i + ξ2j − ξiξj

ξ2i + ξ2j + ξiξj
, bij ≥ 0. (4.24)

In Appendix B it is proved that the constants ci can be only real ones. Moreover, the
signs of αi = ci/|ci| can independently take the values ±1, i.e. we have four variants,
namely α1 = α2 = 1, α1 = α2 = −1, α1 = −α2 = 1 and α1 = −α2 = −1. Note that
in the paper2) only the first two variants are observed. The standard soliton solution
for which α1 = α2 = 1 and the singular soliton solutions for which α1 = α2 = −1,
α1 = −α2 = 1 and α1 = −α2 = −1, are obtained by means of the relation (4.8)

U(X,T ) = W (X,T )X = 6
∂2

∂X2
ln(F ) = 6

∂2

∂X2
ln(Gi), (4.25)

where the Gi are defined by (B.6)–(B.9).
The forms (B.3), (B.6)–(B.9) for F are more preferable, since we see that the

solution is dependent on two combinations of the spectral parameters ξ1+ξ2 and ξ1−
ξ2, but not three values ξ1, ξ2, and ξ1 + ξ2 as it may appear from the relation (4.23).

For N ≥ 3 we give the conditions without proof. All the constants ci are to be
real and the signs of αi = ci/|ci| can equal to ±1 independently of each other.
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4.3. Real soliton and multi-mode solutions of the VPE

In this subsection we will consider the general case, when both the bound state
spectrum and the continuous spectrum are taken into account in the associated
spectral problem. We will find the conditions on ci for real solutions of the VPE. To
obtain the solution, we need to know the function F (see (4.1)–(4.4)).

Let the indexes i and i′ be related to the values involved in the bound state
spectrum for which (i, i′) ≤ M , while the indexes j and j′ are related to the values
involved in the continuous part of the spectral data for which M < (j, j′) ≤M +N .

4.3.1. The interaction of a soliton with one-mode wave
The interaction of a standard soliton with periodic one-mode wave can be de-

scribed by means of the relations (4.2)

F (X,T ) = 1 + c1q1 + c2q2 + b12c1c2q1q2 (4.26)

with qi and b12 as in (4.7), namely

q1 = exp(
√

3ξ1X − (
√

3ξ1)−1T ), c1 =
β1

2
√

3ξ1
,

q2 = exp(−i
√

3ξ2X + (i
√

3ξ2)−1T ), c2 =
iβ2

2
√

3ξ2
,

b12 =
(
ξ1 + iξ2
ξ1 − iξ2

)2 ξ21 − ξ22 + iξ1ξ2
ξ21 − ξ22 − iξ1ξ2

, |b12| ≡ 1. (4.27)

First, we emphasize that the soliton and one-mode wave (4.12) propagate in opposite
directions. The soliton propagates in the positive direction of the X-axis, while the
one-mode wave (4.12) propagates in the negative direction of the X-axis.

Here we restrict ourselves to the simplest case b12c1c2 = 1 that describes the
interaction of a standard soliton with a one-mode wave. As follows immediately
from Appendix C, for real solutions (4.8),

W (X,T ) = 6
∂

∂X
ln(F (X,T )) + const,

where F (X,T ) is

F (X,T ) = 1 +
1√
b12

q1 +
1√
b12

q2 + q1q2. (4.28)

There is an exceptional case at ξ1 = ξ2. Then we have b12 = 1, and F =
(1 + q1)(1 + q2). Consequently, the solution (4.8) is reduced to the relation

W = W1 +W2 = 3
√

3ξ1 tanh

(√
3

2
ξ1(X −X1) − T

2
√

3ξ1

)

−3
√

3 ξ1 tan

(√
3

2
ξ1(X −X0) +

T

2
√

3ξ1

)
+ const. (4.29)

Here W1 is the one-soliton solution and W2 is the solution (4.12) associated with one
mode in the continuous part of the spectral data. The relationship W = W1 +W2
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is easily verified also by direct substitution into Eq. (1.1). The two waves W1 and
W2 propagate in different directions with the same speed without change of wave
profile and phaseshift. In other words, only in the case ξ1 = ξ2 is there a simple
superposition of the solutions W1 and W2. It is obvious that interactions of the two
solitons with a one-mode wave and/or of the two-mode solution with one soliton do
not satisfy this form of the interaction.

4.3.2. Real solutions for M solitons and the N -mode wave
The interaction of M solitons and the N -mode wave (4.8) can be obtained by

means of the function F (X,T ) with restrictions (C.7) given in Appendix C, namely

ci = ±1

/√√√√√M+N∏
j=1
j �=i

bij , bij = bji, i = 1, ..., M +N, (4.30)

and with the retention of the phaseshifts Xi in the quantities qi (C.2). The signs
for ci in (4.30) can be chosen independently of each other. If the index i in (4.30)
is connected with the continuous part of the spectral data (M < i ≤ M +N), then
the solutions generated by ‘plus’ and ‘minus’ signs in (4.30) are different only in
the phaseshifts. However, for the index i from the bound state spectrum (i ≤ M),
the solutions have different forms of function dependencies. Here it is relevant to
remember that there are standard soliton solutions and singular soliton solutions
generated by different signs in the constants ci (4.30).

The solution will contain (M +N) real constants ξi for determining the values
bij and (M +N) real constants Xi to define the phaseshifts.

§5. Conclusion

The procedure for finding the solutions of the Vakhnenko-Parkes equation by
means of the inverse scattering method is described. Both the bound state spectrum
and the continuous spectrum are taken into account in the associated eigenvalue
problem. The special form of the singularity functions enables us to obtain the multi-
mode solutions. Sufficient conditions have been proved in order that the solutions
become real functions. Finally we studied the interaction of solitons and the multi-
mode wave.
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Appendix A
The Conditions on the Constants ci for Multi-Mode Waves

In this appendix we will prove the conditions on the constants ci = |ci| exp(iχi)
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for solutions associated with the continuous part of the spectral data only. We use
the case N = 4 as an example to prove the restrictions on the constants, at which
the solution WX(X,T ) is real. The auxiliary function F (X,T ) =

√
detM(X,T ) for

finding the solution is (4.4), namely

F (X,T ) = 1 + c1q1 + c2q2 + c3q3 + c4q4 + c1c2b12q1q2 + c1c3b13q1q3

+c1c4b14q1q4 + c2c3b23q2q3 + c2c4b24q2q4 + c3c4b34q3q4

+c1c2c3b12b13b23q1q2q3 + c1c2c4b12b14b24q1q2q4

+c1c3c4b13b14b34q1q3q4 + c2c3c4b23b24b34q2q3q4

+c1c2c3c4b12b13b14b23b24b34q1q2q3q4. (A.1)

Here we redefine the values ci in such a way that ci = |ci|, since the arguments χi

can always be introduced into the variables qi = exp(i2θi) with 2θi = −√
3ξi(X −

Xi)− (
√

3ξi)−1T and Xi = χi/(
√

3ξi) serving as the shifts of solutions. The solution
then has the form (4.8)

W (X,T ) = 6
∂

∂X
ln(F (X,T )) + const. (A.2)

The function F is complex-valued, i.e.

F = FRe + iFIm = |F | exp(iχF ), FRe = Re(F ), FIm = Im(F ),
tan(χF ) = FIm/FRe, (A.3)

hence,

W (X,T )/6 =
∂

∂X
ln(|F |) + i

∂χF

∂X
+ const. (A.4)

If we succeed in making ∂2χF /∂X
2 ≡ 0 by the choice of the constants ci, then the

solution WX(X,T ) will be a real function.
Let us write FIm and FRe in explicit forms, namely

FIm = c1 sin(2θ1) + c2 sin(2θ2) + c3 sin(2θ3) + c4 sin(2θ4)
+c1c2b12 sin[2(θ1 + θ2)] + c1c3b13 sin[2(θ1 + θ3)]
+c1c4b14 sin[2(θ1 + θ4)] + c2c3b23 sin[2(θ2 + θ3)]
+c2c4b24 sin[2(θ2 + θ4)] + c3c4b34 sin[2(θ3 + θ4)]
+c1c2c3b12b13b23 sin[2(θ1 + θ2 + θ3)]
+c1c2c4b12b14b24 sin[2(θ1 + θ2 + θ4)]
+c1c3c4b13b14b34 sin[2(θ1 + θ3 + θ4)]
+c2c3c4b23b24b34 sin[2(θ2 + θ3 + θ4)]
+c1c2c3c4b12b13b14b23b24b34 sin[2(θ1 + θ2 + θ3 + θ4)], (A.5)

FRe = 1 + c1 cos(2θ1) + c2 cos(2θ2) + c3 cos(2θ3) + c4 cos(2θ4)
+c1c2b12 cos[2(θ1 + θ2)] + c1c3b13 cos[2(θ1 + θ3)]
+c1c4b14 cos[2(θ1 + θ4)] + c2c3b23 cos[2(θ2 + θ3)]
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+c2c4b24 cos[2(θ2 + θ4)] + c3c4b34 cos[2(θ3 + θ4)]
+c1c2c3b12b13b23 cos[2(θ1 + θ2 + θ3)]
+c1c2c4b12b14b24 cos[2(θ1 + θ2 + θ4)]
+c1c3c4b13b14b34 cos[2(θ1 + θ3 + θ4)]
+c2c3c4b23b24b34 cos[2(θ2 + θ3 + θ4)]
+c1c2c3c4b12b13b14b23b24b34 cos[2(θ1 + θ2 + θ3 + θ4)]. (A.6)

Let us try to present FIm and FRe in the forms

FIm = 2G sin(θ1 + θ2 + θ3 + θ4) (A.7)

and
FRe = 2G cos(θ1 + θ2 + θ3 + θ4), (A.8)

where G is the same in both above formulas (A.7) and (A.8). This can be done, if
the following conditions are satisfied:

c1 = c2c3c4b23b24b34, c2 = c1c3c4b13b14b34, c3 = c1c2c4b12b14b24,

c4 = c1c2c3b12b13b23, c1c2b12 = c3c4b34, c1c3b13 = c2c4b24,

c1c4b14 = c2c3b23, c1c2c3c4b12b13b14b23b24b34 = 1. (A.9)

It turns out that all these relations are valid when

c1 =
1√

b12b13b14
, c2 =

1√
b12b23b24

, c3 =
1√

b13b23b34
, c4 =

1√
b14b24b34

. (A.10)

At these conditions (A.10) the expression for G reads as follows:

G = cos(θ1 + θ2 + θ3 + θ4) +
1√

b12b13b14
cos(θ1 − θ2 − θ3 − θ4)

+
1√

b12b23b24
cos(θ2 − θ1 − θ3 − θ4) +

1√
b13b23b34

cos(θ3 − θ1 − θ2 − θ4)

+
1√

b14b24b34
cos(θ4 − θ1 − θ2 − θ3) +

1√
b13b14b23b24

cos(θ1 + θ2 − θ3 − θ4)

+
1√

b12b14b23b34
cos(θ1 + θ3 − θ2 − θ4) +

1√
b12b13b24b34

cos(θ1 + θ4 − θ2 − θ3).

(A.11)

Now it is readily seen from (A.3) that

χF = θ1 + θ2 + θ3 + θ4 (A.12)

and as consequence we have

∂2χF

∂X2
=

∂2χF

∂X∂T
= 0. (A.13)

Hence, as follows from (A.4), the four-mode solution of the VPE can be reduced to
real form with four real constants Xi and four real constants ξi (see (4.22)).
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Without proof here we give the following conditions on the constants ci that
ensure the real N -mode solution of the VPE:

|ci| =
N∏

j=1
j �=i

b
− 1

2
ij , bij = bji, i = 1, ..., N, (A.14)

where the N constants ξi determine the values bij and the N constants Xi define the
phaseshifts for each mode. Note that these relations (A.14) are sufficient conditions,
but not necessary ones.

Appendix B
The Conditions on the Constants ci under the Interaction

of Two Solitons

Here we consider the conditions on signs for the constants ci under the interaction
of two solitons (M = 2, N = 0). We start with the relationship (4.2) and (4.5)

F = 1 + c1q1 + c2q2 + b12c1c2q1q2. (B.1)

Let us present the constants ci in the form

ci = αi|ci| exp(iχi) = b
−1/2
12 exp

(
−
√

3ξiXi + iσi

)
, σi = χi + π(1 − αi)/2. (B.2)

All new constants χi and Xi = − ln(|ci
√
b12|)/(

√
3ξi) are real. We assume that

−π/2 < χi ≤ π/2, then the values αi retain the signs of the constants Re(ci),
i.e. αi = Re(ci)/|Re(ci)|. It is convenient for analyzing to rewrite (B.1) (the same
as (4.2)) in the form

F = 2 exp
(
θ1 + θ2 +

i
2
(σ1 + σ2)

)
G (B.3)

with

G = cosh
(
θ1 + θ2 +

i
2
(σ1 + σ2)

)
+ b

−1/2
12 cosh

(
θ1 − θ2 +

i
2
(σ1 − σ2)

)
,

2θi =
√

3ξi(X −Xi) − (
√

3ξi)−1T. (B.4)

It is easily seen that only G defines the solution, since ∂2

∂X2 ln(F ) = ∂2

∂X2 ln(G), while
the conditions that the function G is real are as follows:

χi = 0, σi + σ2 = 2πk1, σi − σ2 = 2πk2 (B.5)

with ki = 0, 1. These restrictions (B.5) lead to the requirements α1 = ±1, α2 = ±1,
independently of each other, and χi = 0. Then the function F has the following
forms:

1) for α1 = α2 = 1,

F = 2 exp (θ1 + θ2)G1, G1 = cosh (θ1 + θ2) + b
−1/2
12 cosh (θ1 − θ2) ; (B.6)
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2) for α1 = α2 = −1,

F = 2 exp (θ1 + θ2)G2, G2 = cosh (θ1 + θ2) − b
−1/2
12 cosh (θ1 − θ2) ; (B.7)

3) for α1 = −α2 = 1,

F = 2 exp (θ1 + θ2)G3, G3 = − sinh (θ1 + θ2) + b
−1/2
12 sinh (θ1 − θ2) ; (B.8)

4) for α1 = −α2 = −1,

F = 2 exp (θ1 + θ2)G4, G4 = − sinh (θ1 + θ2) − b
−1/2
12 sinh (θ1 − θ2) . (B.9)

Hence, the standard soliton solution that follows from (B.6) and the singular soliton
solutions that follow from (B.7)–(B.9) are the real functions

U(X,T ) = WX(X,T ) = 6
∂2

∂X2
ln(Gi). (B.10)

Now we rewrite the restrictions in somewhat different form. By retaining the
values of the phaseshifts Xi in the quantities qi, we require

c1 = ±
√
b12, c2 = ±

√
b12, (B.11)

where the signs are independent of each other. Note that for this case there are two
arbitrary real constants ξi, and two arbitrary real constants Xi (i = 1, 2).

The notation in (B.6)–(B.9) shows that the solution is defined by two combina-
tions of the spectral parameters, namely ξ1 + ξ2 and ξ1 − ξ2, but not three values ξ1,
ξ2, ξ1 + ξ2 as it may appear from (B.1).

The foregoing proof points to a way for finding the restrictions for any M with
N = 0. Here it should be underlined that only at real ci with any sign of αi = ci/|ci|,
the soliton (or singular soliton) solutions are determined by a real function. The
conditions on the constants ci are as follows:

ci = ±1

/√√√√√ M∏
j=1
j �=i

b12 , i = 1, ..., M, (B.12)

with the retention of the phaseshifts Xi in the quantities qi. The signs for ci are
independent of each other. The solution will contain the M real constants ξi for
determining the values bij and the M real constants Xi to define the phaseshifts.

Appendix C
The Restrictions on the Constants ci in the General Case

In this appendix we will obtain the restrictions on the constants ci for real
solutions, in the general case, taking into account the spectral data from both the
bound state spectrum and the continuous spectrum. All features are inherent in the
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case M + N = 4 considered here as an example. To find the solution by means of
the inverse scattering method, one needs to know the function (4.4)

F = 1 + c1q1 + c2q2 + c3q3 + c4q4 + b12c1c2q1q2 + b13c1c3q1q3

+b14c1c4q1q4 + b23c2c3q2q3 + b24c2c4q2q4 + b34c3c4q3q4

+b12b13b23c1c2c3q1q2q3 + b12b14b24c1c2c4q1q2q4

+b13b14b34c1c3c4q1q3q4 + b23b24b34c2c3c4q2q3q4

+b12b13b14b23b24b34c1c2c3c4q1q2q3q4. (C.1)

For convenience we rewrite the variables qi in the somewhat different form

qi = exp(2θi), qj = exp(i2θj), 2θi =
√

3ξi(X −Xi) − (
√

3ξi)−1T,

2θj = −
√

3ξj(X −Xj) − (
√

3ξj)−1T. (C.2)

The phaseshifts Xi are the arbitrary real constants. The values bij in (C.1) are as
in (4.7)

bii′ =
(
ξi − ξi′

ξi + ξi′

)2 ξ2i + ξ2i′ − ξiξi′

ξ2i + ξ2i′ + ξiξi′
, 0 ≤ bii′ ≤ 1,

bjj′ =
(
ξj − ξj′

ξj + ξj′

)2 ξ2j + ξ2j′ − ξjξj′

ξ2j + ξ2j′ + ξjξj′
, 0 ≤ bjj′ ≤ 1,

bij =
(
ξi + iξj
ξi − iξj

)2 ξ2i − ξ2j + iξiξj
ξ2i − ξ2j − iξiξj

, |bij| ≡ 1, (C.3)

where (i, i′) ≤M , and M < (j, j′) ≤M +N . Note that bii′ and bjj′ are real values,
and b∗ij = 1/bij .

Without loss of generality, we will consider one set of values M and N , for
example M = 1 and N = 3. Now we will show that the restrictions (A.10)

c1 = ±1/
√
b12b13b14, c2 = ±1/

√
b12b23b24,

c3 = ±1/
√
b13b23b34, c4 = ±1/

√
b14b24b34 (C.4)

(with bij determined by (C.3)) are sufficient in order to obtain the real solutions.
For definiteness, we assume that

√
bij is a root of an equation x2 = bij with

−π/2 < arg
√
bij ≤ π/2. Let us rewrite the relations (C.4) in the form ci =

αi/
∏4

j=1
j �=i

√
bij , where αi = ±1. It is evident that we can always attain α2 = α3 =

α4 = 1 by choosing the phaseshifts X2, X3, and X4, while we need to consider the
two cases α1 = ±1. By defining σ = (1−α1)/2, we can rewrite the auxiliary function
F from (C.1) in the form

F (X,T ) = 2Geiπσ(b12b13b14)−1/4 exp(θ1 + iπσ/2 + iθ2 + iθ3 + iθ4),

Geiπσ =
[
(b12b13b14)1/4 cos(−iθ1 + πσ/2 + θ2 + θ3 + θ4)
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+(b12b13b14)−1/4 cos(−iθ1 + πσ/2 − θ2 − θ3 − θ4)
]

+(b23b24)−1/2
[
(b13b14/b12)1/4 cos(iθ1 − πσ/2 + θ2 − θ3 − θ4)

+ (b13b14/b12)−1/4 cos(−iθ1 + πσ/2 + θ2 − θ3 − θ4)
]

+(b23b34)−1/2
[
(b12b14/b13)1/4 cos(iθ1 − πσ/2 + θ3 − θ2 − θ4)

+ (b12b14/b13)−1/4 cos(−iθ1 + πσ/2 + θ3 − θ2 − θ4)
]

+(b24b34)−1/2
[
(b12b13/b14)1/4 cos(iθ1 − πσ/2 + θ4 − θ2 − θ3)

+ (b12b13/b14)−1/4 cos(−iθ1 + πσ/2 + θ4 − θ2 − θ3)
]
. (C.5)

Since b23, b24, and b34 are real, and b∗1j = 1/b1j for j = 2, 3, 4, it is evident that
G∗ = G, i.e. the variable G in the solution is a real-valued function. Hence, the
solution of the VPE

U(X,T ) = WX(X,T ) = 6
∂2

∂X2
ln(F ) = 6

∂2

∂X2
ln(G) (C.6)

represents a real quantity.
Using this example, one can prove without difficulty that the procedure consid-

ered above can be extended to anyM andN with restrictions (see also (A.14), (B.12),
and (C.4))

ci = ±1

/√√√√√M+N∏
j=1
j �=i

bij , bij = bji, i = 1, ..., M +N, (C.7)

while the quantities qi retain the phaseshiftsXi (see (C.2)). The signs in (C.7) can be
chosen independently of each other. For interaction of M solitons and the N -mode
wave there are (M +N) real constants ξi and (M +N) real constants Xi.

Note that the restrictions (C.7) are sufficient conditions in order that the solution
of the VPE becomes real.
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