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Abstract

In this paper, we investigate the reconstruction of nonlinear systems from locally identified linear
models. It i3 well known that the equilibrium linearisations of a systern do not uniquely specify the
global dynamics. Information about the dynamics near to equilibrium provided by the equilibrium
linearisations is therefore combined with other information about the dynamics away from
equilibrium provided by suitable measured data. That is, a hybrid local/global modelling approach is
considered. A non-parametric Gaussian process prior approach is proposed for combining in a
consistent manner these two distinct types of data. This approach seems to provide a framework that
is both elegant and powerful, and which is potentially in good accord with engineering practice.

1. INTRODUCTION

Nonlirear system identification methods have been
extensively studied over the last ten years (e.g. there is
a substantial literature on neural/fuzzy approaches and
NARMAX methods). The developed methods certainly
perform well in appropriate situations. However, they
frequently prove less satisfactory in complex
engineering applications. With regard to current
system identification practice it is probably fair to say
that, except in specific circumstances where collection
of a single data-set covering the entire cperating
envelope is feasible, the approach almost universally
employed is to collect data from a number of
identification experimenis each of which excites a
system in only a relatively small part of the operating
envelope at any one time.'! Factors such as safety

! For the sake of clarity, it is worth noting that although
blended multipte model representations (e.g. local
model networks, Takagi-Sugeno fuzzy models, see the
teview by Johansen & Murmay-Smith, 1997) often
appear to be motivated by the need for a divide and
conquer approach, identification of such models (even
with so-called “local” learning methods ) is always
carried out in an essentially “global” manner. That is,
the nonlinear system is not reconstructed from a family
of individually identified systems. This is not simply
because divide and conquer identification methods have
not been considered in the context of blended multiple
model systems. Rather, recent theoretical results
confirm  empirical  experience  that  “global”
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requirements, operating constraints and minimising
disruption to normal operation/production all typically
require the adoption of such a practice which leads
naturally to a divide and conguer type of identification
campaign, Other important advantages of such an
approach include {) relatively well-developed system
identification methods for linear systems can be used
when performing the local identifications near to
equilibrium and (ii) a degree of transparency is
maintained which often plays a vital role in achieving
successful esnlts when dealing with complex systems.
However, each linear model is only valid in the vicinity
of a particular equilibrium point and the family of linear
models only describes the dynamics near to equilibrium
operation. Clearly this can imply a very substantial
restriction on the utility of such models in the context
of strongly nonlinear systems. Moreover, inference of
the characteristics of the underlying nonlinear dynamics
from the characteristics of the identified linearisations
is typically camied out in a somewhat ad hoc manner at
present. We wish to investigate the possibility of
developing a sound theoretical framework within which
to consider the reconstruction of nonlinear systems
from locally identified linear models.

In the present paper, attention is focussed on
methods  which  utilise  classical  equilibrium.
linearisation models. (Note, linearisation frameworks

identification approaches are necessary in view of a
number of chamcteristics fundamental to the blended
multiple model representations typically employed
(Shorten er al. 1999, Leith & Leithead 1999).



which are more general than this do exist, see for
example the VB approach of Leith & Leithead 1998).

It is, of course, well known that the equilibrium
linearisations of a system do not uniquely specify the
global dynamics. We are therefore interested in
combining the information about the dynamics near to
equilibrium provided by the equilibrium linearisations
with other information about the dynamics away from
equilibrium provided by suitably measured data, That
is, a hybrid local/global modelling approach is
considered. Note that we would like to use the smallest
quantity of off-equilibrium data consistent with
resolving the ambiguity present in the linearisation
data,

Such a hybrid approach necessarily entails
combining in a consistent manner two distinct types of
data: estimates of the equilibrum linearisations
(derivative/tangent - map ‘data) and input-output
trajectory data measured during transitions between
equilibria and operation far from equilibrivm. In the
special case where only input-output trajectory data is
involved, the modelling problem essentially reduces to
the usual global nonlinear identification situation
studied by many researchers. In the special case where
cnly tangent map data is invoived, the modeiling task is
to simultaneously interpolate/smooth the tangent
information while integrating to recover the original
nonlinear map. Note that when working in dimensions
higher than two, there exist functions which are not
integrable. Consequently, it is necessary to impose
{either implictly or explicitly) an integrability constraint
on the interpolaticn/smoothing procedure. This is, of
course, a highly non-trivial requirement. Both of these
special cases are subsumed within the more general
framework considered here. ’ '

Full state information is not assumed in this paper
and consequently the equilibrium lincarisations must be
estimated from input-ocutput data alone. This is not
unusual: the transfer function of the linearisation is
estimated or, equivalently, the state space matrices are
estimated up to a non-singuiar linecar state
transformation. However, when. combining the
linearisations at a number of equilibria it is necessary to
choose compatible state co-ordinates. This issue is
discussed in section 2. In section 3, the consistent
combination of derivative and function data is
considered and the results illustrated by a simple
example. The conclusions are summarised in section 4.

2, EMBEDDING THEORY

Consider a nonlinear system
X =1(x;,5), ¥i=38(x;) O]

with state =R, input =% and output ye3R It is
assumed that the input and output are measured but that
the state is not. .The latter is of course a fundamental
issue in empirical modelling. Essentially, we are trying
to fit the mapping that lies on the right-hand side of a
difference equation without being able to directly
measure all of the quantities on which the output of the
map depends. Indeed, the subset of the dependent
variables associated with the state is not only
unmeasurable but also its relationship te the measured
input and output is generally completely unknown and
must be inferred. Fortunately, Takens embedding
theorem, and generalisations thereof, provide a basis for
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analysing the time series data generated by a nonlinear
dynamic system (Stark et al. 1997, 2001, for early work
in a control context sce also Narendra et al. 1996). This
family of theorems allows us to reconstruct the
unknown dynamics from an observed time series by
constructing a new state-space out of successive values
of the time series.

Theorem (Takens’ theorem for forced systems, Stark et
al. 1997, 2001). Consider the system (1). Let xeM
and reN with M and N compact manifolds of
dimension m2! and n respectively. Let the map
fMxN—-M be such that fM—M is a

diffeomorphism of M for any y, where f,(x)=fx,y), and
let gM—2%R be ¢ with 21  Suppose that &2m+l.
Then the delay map °M—2"ﬂ ‘M = R defined by

@ D =[yi ¥in Yisai]

-1 R
: T
=[gx) g6 @) - Bl &)
is an embedding for almost all {f,g} and inputs, r.

Hence, ¢M_2__q :M — R? is smooth and invertible.
|
Under  the conditions of the theorem,
T
Z; =¢“_,A,,q (xi):‘[Yi Yisl Yisg-1, defines an

alternative state space for the system and the dynamics
may be expressed in terms of readily available input-
output quantities as
Yird = FOL Y10 Yisd-0 5 Sisn - Fivam) (D

which is of course simply a form of NARMAX
representation. Hence, at the cost of moving to a non-
minimal realisation when d>m, embedding theory
allows us to address the issue of selecting the state-
space realisation.

Remark; Non-minimal realisations of equilibrium
{finearisations Suppose that we have an estimate of the
linearised dynamics about an equilibriam point
(cbtained for example from local input-output data).
More precisely, the input-output map of the equilibrium
linearisation has been identified since full state
information is not assumed to be measurable, ie. the
transfer function of the linearisation has been estimated
or, equivalently, the state space matrices are known up
to a non-singular !incar state transformation. As linear
identification techniques generally estimate a tinimal
model, the identified local linear dynamics will be order
m in line with the order of the underlying nonlinear
system {note that in the case of linear systems, an
embedding dimension of m is sufficient). From
Taken’s theorem, the nonlinear realisation (2) fs,
however, generally non-minimal and, consequently, the
associated equilibrium linearisations have non-minimal
realisation. Nevertheless, we can readily derive the
required non-minimal realisation of linearisation from
any identified minimal realisation.

3. IDENTIFICATION COMBINING INPUT-
OUTPUT DATA & ESTIMATED LINEARISATIONS

The empirical modelling task is to infer the nonlinear
mapping F in (2) relating yi.4 to the associated vector of
delayed outputs and inputs. When input and output .
time histories have been accurately measured, we can



form the vector of delayed inputs and outputs
associated with each output value. The modelling task
can then be formulated as a regression problem. In
this paper, we consider the situation where this input-
output data is augmented with estimates of the
equilibrium linearisations of the nonlinear system. The
requirement is therefore to derive a consistent model of
the nonlincar dynamics which fuses the measured
input-output data with the linearisation estimates.

In the recent statistics literature, there has been
considerable interest in non-parametric modelling
approaches. These offer flexible modelling tools which
typically require only relatively ~weak structural
assumptions and provide appropriate regularisation.
The latter is essential when working with sparse data,
as is the situation in local modelling metheds and also
when modelling in high dimensional spaces.
Conversely, a disadvantage of many non-parametric
modelling methods is that the computational burden
rapidly increases with the size of the data set. The
latter suggests that a fairly clear synergy might exist
between a hybrid local/global modelling approach and
non-parametric fitting methods, at least in the context
of dynamic systems. In dynamic systems, it is
inevitably the case that much more data is available in
the vicinity of the equilibria than i available far away
from equilibrium. This is because the off-equilibrium
regions are associated with transient siates of the
system. The system will rarely linger for long in such
regions and consequently measurements are typically
sparse. (Note that while there is clearly an experiment
design issue to be considered here, safety and
operational restrictions also often mitigate against
collecting much data in regions far from equilibrium
and so the sparsity of data is often unavoidable).
Conversely, there is typically a great deal of data
available in the vicinity of the equilibria. Consider
therefore & hybrid approach whereby the equilibrium
data is summarised through local linear models while a
non-parametric model is used to incorporate the
(sparse) data characterising the dynamics far from
equilibrium. In addition to the potential for
computational efficiency, as noted previously such an
approach provides an elegant and powerful framework
which seems in good accord with engineering practice.
In this paper, a non-parametric approach based on
Gaussian process priors is adopted.

This section is organised as follows. Non-
parametric Gaussian process prior models are
introduced in section 3.1. In section 3.2, the use of
such models to combine derivative and non-derivative
observations in a consistent manner is discussed. A
simple example illustrating the application of this
approach is presented in section 3.3.

3.1 Gaussian Process Prior Models

Consider a stochastic process with output y conditional
on input z (note that in this section, and in section 3.2, z
denotes the input to a stochastic process rather than
delay co-ordinates, but there should be no scope for
confusion); specifically, the situation with y(z)=F(z)}+n
ie a smooth scalar function F(z) with additive
Gaussian white measurement noise n, Observe that this
is a regression formulation and within the context of the

present paper it is assumed the input z is noise free?
Suppose N measurements of input-output pairs,

{(zi,yi)}il , are available and denote them by M. It is

of interest here to use this data to learn the mapping
F(z) or, more precisely, to determine the probability
distribution of y for a néw input value z; that is, p(y[z,
M).

Consider initially the situation with standard
parametric modelling approaches. For example, say we
believe that ¥F(z) has the form W(z)0
with¥(z) =[tp;(z) ?p (z)] and @ the model
parameters (that is, F(z) consists of a weighted
combination of fixed basis functions (z),i=1..p). We
have that p(y|z, M) = [p(y|z,8)p(6{M)8 where p@M)
is the probability distribution over the set of possible
models. Bayes' Rule states that
p(@|M) = p(M|[B)p(0)/ p(M) where the likelihood
p(M]8) embodies the information provided by the
measured data, the prior p(@) embodies our prior
beliefs regarding the process and p(M) is simply a
normalising factor which is hereafter ignored. Then we
might have .

p(8|M) & f.xp[—%(y - Q)T A Y- \“f)]
p(Mly(x)
x texp[—--;-(e -E)T A8 —5):]

ply(x}
where Y=[y; ... ynJ' is the vector of measured outputs,

?:[‘I’(z,)ﬁ Y(z, )G]T, A, is the measurement

noise covariance, @ and Ag the mean and covariance of
the prior (with large variance specified when we have
little confidence in our prior knowledge). Commonly,
it is assumed that the probability distribution p(y(z)|M)
is sharply peaked so that

p(y|z.M) = p(¥]% Opsap)
aexp[—%(y ~W(2)Byup) AT (Y - F (@0 MAP)]
@

where By ap is the value of the parameter vector 8 for
which p(@M) is maximal. The mean prediction from
this model {.e. the fit to the function F(z)) is therefore
¥ (z)0@Map, with variance A,.

In non-parametric approaches, the prior belief is
simply that the function F(z) is smooth in some
appropriate sense. In this way, the imposition of a
specific parametric structure is avoided. To achieve
this the prior is placed directly on the function space.
In particular, in a non-parametric Gaussian Process
prior tmodel (see, for example, Juditsky et al 1995,
Williams 1998} it is assumed that p(yf) is Gaussian
with zero mean (the zero mean is for convenience only
and may be relaxed) and covariance function
Cly)y @) coviy @)y The  Gaussian
assumnption may seem strangely restrictive initially, but
recall that this is simply a prior on the relevant function
space and so places few inherent restrictions on the
class of nonlinear functions that can be modelled.

@

*No attempt to being made here to propagate a
Gaussian or other distribution through a nonlinear

function.
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Indeed, it can be shown that the result is, in fact, a
Bayesian form of kemel regression model (Green &
Silverman 1994). This model is used to-carry out
inference as follows. Clearly

POIZ.M) = p(y, {y Hiiiz {2}k )/ p(M) where p(M) is

a normalising constant. Hence, with the Gaussian prior

assumption
AT
Y
Azz] o ]

1 A
p{ﬂ LM) o ex;{-;[y Y]T[ A?

where Ay is C(y(z),y(@)), the ij“' element of the
covariance matrix Aj; is C(y(z;),y(z;} and the i clement
of vector Az is C(y(z),y(z;)). Applying the partitioned
matrix inversion lemma, it follows that

pizM) o exp[—%{y—ﬂz))’A“(z){y—sr(z))] ©

with $(2)= ALANY, A@=Ap-ALAA;.  The
mean prediction from this model is therefore ${z), with
variance A{z). Note that §(z) is simply a weighted
linear combination of the measured data points, Y,
using weights AlzTA, 1",

Remark A Gaussian process model is fully specified by
its mean and covadance function. Here, for
convenience, we assume a prior with zero mean. A
common choice of covariance function is a smoothness
prior which embodies a belief that outputs associated
with nearby inputs should have higher covariance than
more widely separated inputs; spec1ﬁcally,

Cotasia)= oo -T(e) (), ) 120 ]+3
©®

where (z)} denotes the K element of vector 2. The
value of ay characterises the rate of variation of the
function in dimension k, thereby, estimating the relative
smocthness of different input dimensions. The
parameter § is the variance of the measurement noise,
n, on the inputs. The hyperparameters § ax, Y) arc
typically adapted to maximise the likelihood

Pt 21}, M, (8,0, 1))

3.2 Mixed Function and Derivative Observations

The Gaussian process prior modelling framework is
readily extended to include situations where derivatives
of a function F(z) are observed rather than values of F
itself (O'Hagan 1992). It is a standard result that the
derivative process associated with the Gaussian
stochastic process y is also Gaussian with

ay g T2y
E(—a-z(z.,)sfj-(z,»=viV,-Q(zo,z,) o
where Q(z,,2,) denotes E(y(z,)y(z:)), dy/oz; denotes the
partial derivative of y with respect to the i clement of
z, V;Q denotes the partial derivative of Q with respect
to the ! element of its first argument, efc and it is
assumned that Q is continuously twice differentiable. In
the ‘Gaussian process model, to work with derivative
observations we need only replace the covariance
function C{y(@).y@) by (7). In this case, the
Gaussian process model acts te integrate and smooth
the noisy derivative observations. The situation with
mixed functional and derivative observations is similar.
Provided we can define the covariance relating any two
data points (namely, cov(y(z.)y@)), cov(y(z.),
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dy/dzi(z;)) and cov(@y/dzi(z,)), dy/dzj(z1)) ), and this
covariance function is differentiable, as it is in equation
(6), the Gaussian process prior fit to the function F(z}
is specified by the analysis in section 3.1,

The useful role that derivative information can play,
even in the context of modelling static. maps, is
illustrated by Figure 1. The dashed line marks the true
function which is to be estimated. The values of this
function which have been measured at the the data
points marked by asterisks. Evidently, this is a sparse
data set. Using these function meavrements, the mean
prediction obtained using a2 GP with covariance
function (6) is labelled in Figure 1 as “fit without
derivative” and it can be seen that this is fit is quite
poor as might be expected in view of the few data
points measured. Now consider augmenting these
measurements with observations of the derivative of the
function at the points x=-2 and x=2. The resuiting
mean prediction is also shown in Figore 1. It can be
seen that the additional derivative information ieads to
a greatly improved fit.

3.3 Example
Consider the nonlinear dynamics

Yis = tanh{0.9tanh ™ (y;) +0.5r;) ®)
Thirteen equilibrium points uniformly spanning the
operating region of interest are selected. At each
equilibrium point a smail-scale random Gaussian
perturbatien input signal with mean 0 and standard
deviation §.02 is applied with the corresponding output
signal contaminated with uniform measurement noise
in the range [0.005,0.005]. A linear approximation to
the local dynamics at the equilibrium peint is identified
using the MATLAB salgorithm ARX. A global input
signal is utilised which drives the system over its
operating envelope, ‘with the cofresponding output
signal corrupted by uniform measurement noise in the
range [0.02,002]. A small sparse set of input-output
data is selected (only 7 data points are used). A non-
parametric Gaussian process prior model is constructed
using the following training information:
1. Thirteen equlhbnum input-output values spanmng
the operating region of interest.
The set of partial derivatives of the output
comresponding to 1. (These are simply the
coefficients of the identified linear models).
3. The seven input-output values.
The training data, test data and corresponding outputs
are depicted in Figures 2a and 2b. It can be seen that,
despite the small number of data points used, the output
of the Gaussian process prior model is a good match for
the output of the exact system.

2.

4. ELLE SYSTEMS

Any nonlinear dynamics
Yied = FOO Vil Visa-t i Tints  Tigg-1) O)
may be reformulated as '
ziy = Az +Br +f(p), ¥; =Cy (0
where,Z=%; Y Yaad =8 Fa o Taga] »

A, B, C are appropriately dimensioned constant
matrices, f{#} is a nonlinear nonlinear functions and
pi=Mz;+Nr; embodies the nonlinear dependence of the
dynamics on the delayed inputs and outputs. Trivially,
this reformulation can always be achieved by letting p;



= 1z; 7 r,; T[T, in which case the dimenision qof pi equals
2d. However, the nonlinearity of the system may be
dependent on only a subset of the delayed inputs and
outputs, in which case the dimension, q, of p; is less
than 24. We have that,
,V'Izi"’l =A+Vf(ﬂ)M Vr’ziﬂ =B+V‘m)N, vﬁYi =C
(11}

Observe thai the tangents, {11), are parameterised by p;.
Let E= {z",r“ :Az° +Br® +f(Mz°® + Nr%) =z°}
denote the set of equilibrium points of the system (10,
R,(E) denote the range of p; on E (i.e. Ry(E}-{ Mz+Nr:
{{zx) €E}) and R, (®) the range of p; on the full
operating space of the system, &={(zr): ze 9%",
re®}. Systems, (10), for which

Ry(Ey=Ro(P) (12
are referred to here as extended local linear equivalence
{ELLE) systems (note that a more general form of
ELLE system is also considered by Leith & Leithead
(1998) in the context of gain-scheduling control
design). The condition, (7), simply corresponds to the
requirement that p; is parameterised by the equilibrium
points. It follows immediately that the tangents (11)
are parameterised by the equilibrium points.
Consequently, the equilibrium linearisations, together
with knowledge of pi, completcly defines an ELLE
system. In view of the importance of equitibrium
information in classical theory (particularly gain-
scheduling theory), and the relative ease with which
equilibrium dynamics may be identified from measured
data, the ¢lass of ELLE systems is of considerable
interest in its own right. In the context of the present
paper, the importance of ELLE systems is self-evident.
Note that even if nof exactly satisfied, it is often
possible to utilise, within a useful operating cnvelope,
an ELLE approximation to a non-ELLE system.

4.1 Example
Using an identical approach to the example in section
3.3, the system

Yier = 0.9¥; + 0.1tanh(5r,) (13)
ts estimated. The training information is depicted in
Figure 3a together with the test input and the
corresponding output for the exact system and the
output for the Gaussian process prior model are
depicted in Figure 3b together with output for each of
the equilibrium linearisations. From Figure 3z it can be
observed that the training data is once again very
sparse.  Nevertheless, the output of the Gaussian
process prior model matches well the output of the
exact system, see Figure 3a. -

Remark 1t is important to stress that the equitibrium
linearisation input-output maps alone do not fully
specify a nonlinear dynamic system, even when the
system belongs to the ELLE class (in the latter case, as
noted previously, it is necessary to have information
regarding p; in addition to knowledge of the
linearisations). In particular,  the systems
¥y = 0.9y; +0.Itanh(5r;) and
Yi = tanh(0.9tanh"(y,-)+ 0.5ri) both have
linearisations with the same transfer function at every
equilibrium point. To distinguish between such

systems, additional information is required.  The
foregoing results nevertheless demonstrate that it can be

enough to include only a small amount of additional
information in order to obtain models which are
accurate within a large region.

5. CONCLUSIONS

In this paper, we investigate the reconstruction of
nonlinear systems from locally identified linear models.
It is, of course, well known that the equijlibrium
linearisations of a system do not uniquely specify the
global dynamics. Information about the dynamics near
to equilibium provided by the equilibrium
linearisations must therefore combined with other
information about the dynamics away from equilibrium
provided by suitable measured data. That is, a hybrid
local/global modelling approach is considered. A non-
patametric Gaussian process prior approach is proposed
for combining in a consistent manner these two distinct
types of data: namely, estimates of the equilibrium
linearisations {derivative/tangent map data) and input-
output trajectory data measured during tramsitions
between equilibria and operation far from equilibrium.
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