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ABSTRACT 

In this paper, the proximity quotient control law, first developed by Petropoulos, is extended to 
account for both third body effects and solar radiation pressure. The perturbing effect of solar 
radiation pressure becomes relevant when dealing with solar sails, or large optics in space. Equa-
tions for the disturbing acceleration and disturbing potential function were derived for the per-
turbations, then analyzed to determine the minimum and maximum rate of changes of the Kep-
lerian elements given the thrust vector and true anomaly of the spacecraft. These were then ana-
lytically incorporated into the Q-law feedback function. The complete mathematical derivations 
are presented. The extended Q-law is compared to the fully optimal control law, stemming from 
optimal control theory, for the same dynamical model. Two missions are used as test cases. 
 

 
1 INTRODUCTION 

he proximity-quotient control law, or Q-law, was 
first proposed by Petropoulos (2003) to generate first 

guess approximations for propellant-optimal, low-thrust 
transfers between two Keplerian orbits. It is based on a 
Lyapunov feedback control law and calculates the optim-
al direction of thrust based on the proximity to the target 
orbit (i.e. the difference in the static Keplerian parame-
ters) and the current location of the spacecraft on the or-
bit (i.e. true anomaly). The basic Q-law was developed 
for the restricted two-body problem, based on Gauss’ 
planetary equations.  

In this paper, this Q-law is extended to account for 
both third body effects and solar radiation pressure. The 

perturbing effect of solar radiation pressure becomes 
relevant when dealing with solar sails, or large optics in 
space. Equations for the disturbing acceleration and dis-
turbing potential function were derived for the perturba-
tions, then analyzed to determine the minimum and max-
imum rate of changes of the Keplerian elements given the 
thrust vector and true anomaly of the spacecraft. These 
were then analytically incorporated into the Q-law feed-
back function. The complete mathematical derivations 
are presented.  

By accounting for the additional perturbations within 
the control law, this allows for a better optimization of 
the resulting transfer. The resulting Q-law is compared to 
the fully optimal control law, stemming from optimal 
control theory, for the same dynamical model. Two mis-
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sions are used as test cases. The first calculates the trans-
fer trajectories following the initial deployment of a for-
mation of spacecraft, into their final formation orbits. 
The second covers a more complex test case based on an 
asteroid deviation mission, where each spacecraft in the 
formation is required to constantly adjust their orbits in 
order to maintain a periodic motion with respect to the 
asteroid. 

… 
In general, NEO deflection techniques fall into four 

broad categories [7]: kinetic impacts, propulsive devices, 
induced changes to the asteroid surface, and ablation 
devices. A previous study by the authors compared the 
various deflection methods in terms of: achieved devia-
tion distance, required warning time, total mass into orbit 
and the estimated technology readiness level. The solar 
sublimation technique was found to be among the most 
effective methods. The idea was initially proposed [2] in 
1992 and was compared a year later to other deflection 
methods by Melosh [5]. The concept envisions a large 
mirror in space which would reflect sunlight onto the 
surface of the asteroid, sublimating the material and ge-
nerating a low, continuous thrust due to the force of the 
ejected debris. 

Further preliminary studies were undertaken deter-
mining the feasibility of such a mission, and developing 
an initial design for the mirror assembly and orbit of… 

2 DESCRIPTION OF THE TEST CASES 

The following section describes the assumptions and 
design used for NEO deflection mission using a solar 
sublimation technique, here used as the test case.  

2.1 Spacecraft Mirror Assembly Design 

Fig. 1 shows the mirror configuration design on-
board the spacecraft. The primary mirror is paraboloidic 
in shape, and focuses the rays onto a collimating lens (or 
system of lenses). The collimated beam is then directed 
by a smaller flat mirror onto the desired location on the 
asteroid surface. Due to the large required surface area of 
the primary mirror, e.g. diameter between 10-30m, any 
control law must accommodate the perturbations caused 
by the solar radiation pressure (SRP).  

The illuminated surface area is calculated based on 
the focal length lf , 
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and accounting for the blockage caused by the secondary 
mirror, 
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where dp is the diameter of the aperture on the parabolic 
mirror, dd is the diameter of the directional flat mirror 
and φ is the angle of reflection. The depth of the mirror is 
given in terms of a percent of the focal length, loffset set 
here to 80%. Clearly, the optimal depth would be equal 
to the focal length, however practically it is governed by 
the maximum allowable angle of incidence of the lens. It 
is also necessary to ensure that the flat mirror does not 
reflect the beam back onto any part of the parabolic mir-
ror due to both blockage, and temperature concerns. 
 The integrals in (2) are bounded by a lower limit of 
( )/ 2 cosdd ϕ , and an upper bound of dp / 2. 

2.2 Formation Orbit Design 

The spacecraft have to maintain their relative position 
with respect to the asteroid in order to keep the required 
power density on the same spot of the surface of the aste-
roid. Therefore, the formation orbits have to be periodic 
and in close proximity with low excursion in the relative 
distance from the asteroid. On the other hand the space-
craft should avoid, as much as possible, to fly in the irre-
gular regions of the gravity field of the asteroid. In addi-
tion, should also avoid any impingement with the plume 
of debris and gas coming from the sublimation of the 
surface material.  

߮ 
F1F2 

F3

lf 

y 

x 

Fig. 1. On-board dual mirror configuration for NEO solar
deflection method 
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In order to design the desired formation orbits, we 
start by considering the linearised relative equations of 
motion [8],  
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( ) ( )sin cos sin cos sinz r rf i i rfθ θ δ θ θ δ= + − − Ω& &&&  (8) 
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2sin 1hr ref f f e

r
η= = = −& &&   

which use the orbital element differences between a chief 
orbit (which can be virtual, and is located at the origin of 
the Hill reference frame) and a spacecraft in the forma-
tion [8]. This is a first approximation of the motion of the 
spacecraft that does not take into account the gravity field 
of the asteroid and the solar pressure but it is useful to 
identify some orbit geometries that answer to our re-
quirements.  

The orbital dynamics for the formation are relative to 
two rotating Hill reference frames, one centered on the 
asteroid A, and the other centered on the spacecraft S, 
both in the local radial x, transversal y and normal z di-
rections (see Fig. 2). 

The formation orbit can be thought of as an orbit 
around the Sun with a small offset in the initial position 
δr0 and velocity δv0. This offset can also be expressed as 
the difference between the orbital parameters of the chief 
(e.g. Apophis) and the formation. As long as there is no 
difference in semi-major axes, the two orbits will remain 
periodic. 

 [ ]s A a e i Mδ δ δ δ δ δω δ= − = Ωk k k  (9) 

As the mean anomaly is a function of the semi-major 
axis, the difference in mean anomaly will remain con-
stant throughout the orbit so long as δa = 0. 

If the optimal thrust direction that maximizes the dev-
iation is along the unperturbed velocity vector of the aste-
roid [10], then the exhaust gases will flow along the 
y-axis of the local Hill reference frame. Therefore, the 
size of the formation orbits projected in the x-z plane 
should be maximal. All the requirements on the forma-
tion orbits can be formulated in mathematical terms as a 
multi-objective optimization problem, 

 1min min
D f

J
δ

δ
∈

=
k

r  (10) 

 2 2
2min min

D f
J x z

δ ∈
= − +

k
 (11) 

subject to the constraint 

 ( )min ( ) 0ineq limf
C r f rδ= − >  (12) 

where rlim is a minimum-radius sphere imposed to avoid 
non-linearities in the asteroid gravity field [7], and D is 
the search space for the solution vector δk. 
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Fig. 2. Relative reference frames used in the orbital determina-
tion for the formation. 
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Fig. 3. δk parameters for the set of Pareto optimal solutions 
versus objective function J1 

Fig. 4. δk parameters for the set of Pareto optimal solutions 
versus objective function J2 

The objective functions in (10)-(11) were solved with 
a hybrid stochastic-deterministic approach based on a 
multi-agent search technique combined with a decompo-
sition of the search space [4][11]. The result was several 
groupings of formation orbits. As can be seen in Error! 
Reference source not found. and Fig. 4 the solutions are 
symmetrically distributed about the axis where the δk 

parameters are zero. The existence of families can be 
seen, for example, through δΩ and δω, where for a given 
input value there are multiple values for the objective 
functions J1 and J2. Fig. 5  shows the formation orbits in 
the A Hill frame. These solutions belong to four symme-
tric families of formation orbits, each one corresponding 
to a funnel. 

Fig. 5. Formation orbits from the Pareto-optimal solution set. 

 
Table 1. Optimized initial conditions for formation orbit test 

cases at t0 = 11429.75 MJD2000. 

Parameter Value 
J1 (m) 88.8845 2463.6755 
J2 (m) -241.1802 -892.0682 
δa (km) 0 0 
δe 6.9071E-12 -5.7472E-13 
δi (rad) -1.7903E-09 -1.2645E-08 
δΩ (rad) -2.3827E-08 -5.0000E-08 
δω (rad) 3.1574E-08 3.3794E-08 
δM (rad) 8.9855E-09 3.7997E-08 

 
Two representative formation orbits were chosen out 

of the Pareto-optimal set to test the control laws. The 
values for the initial δk are given in Table 1. The initial 
time was set to 5 years prior to the estimated date of im-
pact on 13 April 2036. Note, this is the start of the thrust-
ing maneuver, not the launch date from Earth. 
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Fig. 6. Two formation orbits used as test cases. 

 

3 CONTROL LAW EXTENSIONS 

3.1 Q-law Control 

The proximity-quotient control law, or Q-law, was 
first proposed by Petropoulos [6] in 2003 to generate first 
guess approximations for propellant-optimal, low-thrust 
transfers between two Keplerian orbits. It is based on a 
Lyapunov feedback control law and calculates the optim-
al direction of thrust [α, β ] based on the proximity to the 
target orbit (i.e. the difference in the static Keplerian pa-
rameters) and the current location of the spacecraft on the 
orbit (i.e. true anomaly f). The basic Q-law was devel-
oped for the restricted two-body problem, based on 
Gauss’ planetary equations, given below [1]. 
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where u represents the disturbing acceleration, 
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in the radial x, transversal y and normal z directions, 
[ ], , , , ,a e i fω= Ωk  is the set of Keplerian orbit elements, 

θ = f + ω is the true latitude, ( )21p a e= −  is the semi-
latus rectum, μ is the gravitation constant of the central 
body, n is the mean motion and h is the angular momen-
tum. 

Analytical equations were found for the direction of 
thrust [α, β] and true anomaly f that maximized the rate 
of change of each orbital element, xxk& . Since the Q-law 
was designed for transfer trajectories between two Keple-
rian orbits (and not “point-to-point” transfers), the rate of 
change of the true (or mean) anomaly was ignored. 

These maximized rates of change were summed, 
along with the desired difference in the time-invariant 
Keplerian parameters to generate the proximity-quotient 
equation [6]. 
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where Wk are a set of weights between [0 1], i and T are 
the initial and target states, and [ ]a e i fω= Ωk . 
The Lyapunov function is simply the rate of change of Q 
with time. The partial derivates of Q for each of the first 
five elements in k can be solved analytically. The optim-
al thrust angles at any point in time can be determined by 
finding the global minimum of dQ/dt.  

3.2 Technical Limitations 

For the maintenance of the formation orbit, a number 
of issues that arose when using the Q-law: the first was 
due to the high degree of accuracy need to maintain the 
funnel orbits. The difference in Keplerian between the 
NEO and the spacecraft are on the order of 10-7, and need 
to remain constant even as the NEO deviates. This re-
sulted in a lot of ‘chatter’ (over-shooting) around the 
target orbital elements, due to strong dependence on the 
time step δt and the magnitude of the control (which em-
ployed on-off shooting). Even at very small time steps, 
the magnitude of the over-shooting was too large for the 
system requirements. In addition, the effects of the indi-
vidual perturbations are relatively large (shown in Error! 
Reference source not found. and Error! Reference 
source not found.) and need to be compensated for on a 
continuous basis. 
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Fig. 7. Effects of third-body perturbations on an un-controlled 
formation orbit. 

 

Fig. 8. Effects of solar radiation pressure on an uncontrolled 
formation orbit with a 20 m primary mirror, and 1 m diame-
ter secondary mirror. 

Therefore a variant of the Q-law was developed to 
account for these limitations. Specifically: the inclusion 
of SRP and gravitational effects of the asteroid in the 

determined rate of change of the orbital elements, and 
inclusion of compensation for the disturbances to the 
mean anomaly δM. 

3.3 Perturbations 

The general equation for the magnitude of accelera-
tion due to solar radiation pressure is, 

 
2

20 12 ˆcoseff AU
SRP

s s

AS r
c m r

η
ϕ

⎛ ⎞
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⎝ ⎠
r n&&  (20) 

where S0 is the solar flux density at 1 AU (1367 W/m2), 
c is the speed of light, ηeff is the efficiency, A is the sur-
face area, ms is the mass of the spacecraft, rs is the dis-
tance between the Sun and the spacecraft, and lastly φ is 
the angle of reflection. The SRP always acts in the direc-
tion normal n̂  to the mirror surface. 

As the primary mirror is always aligned with the Sun, 
the net force F1 is inline with the radial direction in the 
spacecraft-centric reference frame S. For the secondary 
mirror, two forces are accounted for: F2, the reflected 
SRP from the primary mirror, and F3, the force due to the 
SRP from the Sun acting on the ‘back’ of the mirror (see 
Fig. 1). 

 0
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where 2
0 1 0AUP r S c= . In the following we will take into 

account only the contribution of the forces due to the 
orbital dynamics but it should be noted that the combina-
tion of F2 and F3 will induce a consistent torque on the 
mirror assembly. 

The unit vector for the direction of the solar pressure 
on the direction mirror ˆ dn  is derived in terms of Keple-
rian orbital elements relative to the Hill frame centered 
on the spacecraft. 
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Similarly, the vector from the spacecraft to the astero-
id, δr, can be expressed in the spacecraft-centered Hill 
reference frame S by means of geometry. 
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Note that it is also possible to use the linearised equations 
of motion in (3)-(8) as long as sr rδ á , however since 
the computation time is the same, the more exact equa-
tions were used. 

Lastly, the angle of reflection is re-derived in terms of 
the orbital elements, 
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2 cos( )sin sin sin( )
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2
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− Ω + −
=  (30) 

Since the effects of the asteroid's gravity field outside 
the imposed limiting sphere are relatively linear [7], and 
much less compared to those due the solar radiation pres-
sure, the asteroid is treated, as a first approximation, as a 
point mass with μA = 1.8016E-9 km3/s2 (the mass is taken 
as 2.7E9 kg). 

The Gauss equations in (13) can be re-expressed us-
ing a modified disturbing acceleration vector accounting 
for the solar radiation pressure, and the third body ef-
fects. 
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3.4 Mean anomaly 

Due to the nature of the formation orbits, the differ-
ence in mean anomaly must also be controlled. As such, 
the rate of change due to the perturbations for M was 
added to the modified Gauss equations. In this case, the 
rotation around the Sun (nδ t) is not considered as an un-
wanted perturbation, and is accounted outside the control 
law. 

 
( ) ( )( )* cos 2 sinx yp f re u p r f udM

dt e aμ
− − +

=  (32) 

3.5 Integration Approach 

In addition to accounting for the above perturbations 
within the control law, a number of changes were intro-
duced to further refine the algorithm to the specific test 
case. The first was to switch from minimizing only the 
thrust angles [α,β], to directly minimizing the compo-
nents [ux, uy, uz] which has the benefit of finding the op-
timal magnitude for the thrust, as well as the required 
angles. The new control function is given by, 
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,
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t
j

T j
j

dk
Q k dt

dt

δ

=

⎛ ⎞
= Δ −⎜ ⎟

⎝ ⎠
∑ ∫  (33) 

where ( )T i TΔ = −k k k  is the desired variation of the 
orbital parameters over the time interval δt.  

The function Q* is then minimized with respect to the 
applied control uc. Inherently, if the desired change in the 
jth element (ki,j – kT,j) is negative, than the rate of change 
is positive, and vice versa. As such, the control equation 
will always have a single minimum. Therefore there is no 
need to minimize the time derivative. 

3.6 Least Squares Approach 

If we consider that over very small time steps, we can 
assume as first approximation that the orbital parameters 
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in the Gauss equations are constant, than we can solve 
directly for control function Q*. The solution for the con-
trol vector u is found by using an ordinary least squares 
fitting to the linear systems of equations Auc = b. Here, 
the matrix A is set equal to the Gauss equations as a 
function of the applied control uc only (i.e. no perturba-
tions). The second vector b is given by, 

 ( )i T
perttδ

−
= −

k k
b A u  (34) 

where upert is given in (31). 
Again, this is equivalent to minimizing the quadratic 

function ( )2

, ,i j T jΣ Δ − Δk k  where Δki,j is the change of the 
jth orbital element over time δt calculated using the Gauss 
equations, and Δki,T is the desired change. Weights can 
also be used to scale individual δk parameters to increase 
(or decrease) their sensitivity.  

3.7 Integration Approach 

The least-squares approach provides a computational-
ly faster (for the same time step) but less accurate, espe-
cially over larger time steps. The integration approach 
uses the same control function Q* however numerically 
integrates the Gauss equations to determine Δki,j. 

4 SIMULATION RESULTS 

The algorithm used to simulate the deflection mission 
is given below. 

 
STEP 1: Initialize starting conditions at t0 for each 

spacecraft and NEO, kT = ki = k0. 
STEP 2: Determine optimal control vector uc solving 

using either the least-squared method or integration 
method, given current state ki, target state kT, and 
position of the deviated asteroid kA. 

STEP 3: Propagate r, v forward by time step δt using 
Gauss equations with input (uc + upert), and update 
the current state ki (t + δt). 

STEP 4: Propagate asteroid given thrust due to the solar 
sublimation again by numerically integrating Gauss 
equations, and update kA (t + δt). Note: a description 
for the method for determining the generated thrust 
can be found in [7]. 

STEP 5: Update target state, kT (t + δt) = kA + δk. 
REPEAT from STEP 2 until achieved deviation is 

achieved. 
 
 

5 CONCLUSION 
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