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Abstract: Extensive experimental trials were conducted, emulating the conditions modelled, in 

order to validate the computational fluid dynamic results. Final results demonstrated that a more 

constricted nozzle was more effective at creating a stable gas column when subjected to side 

draughts. Higher shielding gas flow rates further reduce the gas column’s vulnerability to side 

draughts and thus create a more stable coverage. The results have highlighted potential economic 

benefits for draught free environments, in which, the shielding gas flow rate can effectively be 

reduced.  

Keywords:  CFD, GMAW, welding nozzle diameter, shielding gas coverage, side draughts    

 

LIST OF SYMBOLS 

 

k  turbulence kinetic energy 

ε  rate of dissipation 

µ  viscosity 

µt  turbulent viscosity 

Gk  generation of turbulence kinetic energy due to mean velocity gradients 

Gb  generation of turbulence kinetic energy due to buoyancy 

YM  contribution of the fluctuating dilation in compressible turbulence to the overall  

  dissipation rate 

σk  turbulent Prandtl number for turbulence kinetic energy 

σε  turbulent Prandtl number for rate of dissipation 

β  thermal expansion coefficient 

α  thermal diffusivity 
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ν  kinematic viscosity  

ρ  density 

g  gravity  

q  heat flux 

qrad  radiative heat flux 

hf  fluid-side local heat transfer coefficient 

hext  external heat transfer coefficient 

Tw  wall surface temperature  

Tf  local fluid temperature  

Text  external heat sink temperature  

T∞  temperature of radiation source or sink  

εext  emissivity of the external wall surface 

σ  Stefan-Boltzmann constant 

aP  centre coefficient 

anb  influence coefficient for neighbouring cells 

b  contribution of the constant part of the source term and boundary conditions 

Po  total pressure 

Ps  static pressure 

Sk, Sε  user defined source terms 

C1ε, C2ε, C3ε,  constants 

Cμ  constant 

φ  general variable 
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INTRODUCTION 

 

The shielding gas is a fundamental component in any gas shielded welding process and, as a 

result of individual gas properties, has the ability to significantly influence the appearance and 

overall weld quality as demonstrated by Vaidya’s (2002) in depth analysis of the effect of 

shielding gas mixtures for semi-automatic welds. The primary purpose of any welding shielding 

gas is to protect the molten metal during the arc transfer process and to protect the weld surface 

from reacting with atmospheric contaminants during solidification. This is shown in Tani et al. 

(2007) through their work investigating the effects of shielding gas in hybrid laser-MIG welding. 

In each case, the absence of sufficient quantities of shielding gas will generally result in the 

formation of porosity and other defects in the solidified weld and therefore compromise the 

quality and integrity of the weld.  

 

Shielding gases are commonly delivered to the welding region in a premixed state in order to 

take advantage of the beneficial properties of each gas. Argon-based mixed gases are generally 

used as the preferred shielding gas in cases where carbon steels are welded using the GMAW 

process. An argon/carbon dioxide (80/20) mixture is a commonly used GMAW shielding gas in 

Western Europe, particularly in carbon steel fabrication industries. In such cases, carbon dioxide 

is routinely added to an argon-based mixture as it has the ability to stabilize the arc and produce 

a more consistent weld than argon on its own as demonstrated by Chae et al. (2008).  

 

The correct shielding gas flow rate can vary considerably and is dependant upon the welding 

process, welding orientation, operating parameters and shielding gas composition. Typically, 
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GMAW shielding gas flow rates are in the region 15-20 l/min, although Campbell et al (Under 

review) have found that this can be lowered considerably with a flow rate of 6 l/min producing 

good quality welds in a draught free environment.
 
It is common for flow rates to be set in excess 

of 25 l/min, normally because the welder makes the assumption that more gas means better 

protection. However, other studies namely Uttrachi (2007) and Loxton Industries (2010) have 

explored the impact of the initial surge of shielding gas, at weld ignition, has on the stability of 

the shielding gas column. This effect has been reported to create turbulence in the flow, which, 

in turn draws atmospheric gases into the weld region potentially creating defects within the 

solidified weld. Lyttle and Stapon (2005) have shown this to also be the case after the initial 

surge with flow rates above approximately 23 l/min creating turbulence within the shielding gas 

column.  

 

Side draughts present a significant problem to the welding process from both a technical and 

economic viewpoint, potentially adversely affecting the shielding gas’s ability to protect the 

weld region from contamination by atmospheric gases such as nitrogen and oxygen. To 

counteract these effects, there is a generally accepted industrial mindset that more must be better, 

and for that reason shielding gas flow rates in the region of 20-25 l/min are typically used when 

draughts are present; however there is no scientific evidence to support this action. 

 

Very little published work is available on the specific subject of the application of CFD 

modelling to weld shielding gas coverage. A finite element model of a GMAW welding nozzle 

was developed by Dreher et al. (2009) (2010) using ANSYS CFX to analyse the effects of 

turbulence in the gas distribution, finding that turbulence significantly affects conditions at the 
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work piece. However, there is no literature at present reporting on the use of CFD to model the 

problem of side draughts during the GMAW process. The development of this tool could 

potentially be of major benefit and, would allow the simulation of potential welding 

environments to be evaluated without the need to consistently resort to expensive, time 

consuming and often-inconclusive plant trails.  

 

MODEL  

 

The present study investigated the effect that the shielding gas flow rate, side draught velocity 

and nozzle outlet diameter have on the shielding gas flow characteristics during GMAW through 

the use of CFD modelling. A multi-physics, 3D transient state model was therefore developed for 

three different welding torch nozzle diameters using the CFD software Fluent. In order to 

validate the CFD model, extensive experimental trials were conducted which replicated the 

geometry and welding conditions simulated.  

 

The model geometry was constructed in Gambit, in which, the welding nozzle is positioned with 

a 10 mm gap directly above the surface of a 250 x 500 x 8 mm thick plate. The nozzle and plate 

are situated within a defined volume of sufficient size to ensure that all flow development was 

captured, although the main area of interest which was the 10 mm between the tip of the nozzle 

and the plate surface. Fig.1 shows a 12 mm diameter hemisphere positioned directly below the 

nozzle which was used to represent the welding arc region. Boundary layers and zones were 

defined within the geometry of the model, enabling conditions for each to be set in Fluent. 

Finally, the model was then meshed using tetrahedral elements. 
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The generated mesh was then imported into Fluent, where the physics of the model were defined. 

The energy equation was initiated allowing heat transfer through the fluid and plate to be 

analysed. A combined convection and external radiation condition was used to model the heat 

transfer from the welding arc to the plate using Equation. 1.  

 

radfwf qTThq  )( )()( 44

wextwextext TTTTh    ……………………………………… (1) 

 

The gravitational acceleration components were input enabling buoyancy effects to be 

considered. The buoyancy forces were evaluated using Equation.2, a ratio of the Grashof and 

Reynolds numbers. 

 

22Re 

 TLgGR 
   ........................................................................................................................... (2) 

Buoyancy contributed strongly to the flow when the ratio in Equation.2 approached unity.  

Semi-empirical transport equations (Equation.3 & 4) for the standard k-ε turbulence model were 

used to evaluate the turbulent kinetic energy of the flow and its rate of dissipation.  

Fig.1: Nozzle and arc geometry in Gambit 
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The turbulent viscosity was determined by combining the turbulent kinetic energy and the rate of 

dissipation as shown in Equation.5. 

 


 

2k
Ct   ............................................................................................................................... (5) 

 

The side draught was modelled as a uniform laminar flow, as this best represented the 

experimental validation, by defining a pressure inlet within the fluid volume. This causes a 

pressure difference in the model and a stream of air to flow from the pressure inlet to the nozzle. 

The streams velocity was related to the total and static pressures through Bernoulli’s equation 

(Equation.6).  

 

2

0
2

1
vpp s  ……………………………………………………………………………...... (6) 
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The desired side draught velocities were generated by adjusting the total pressure. Shielding gas 

flow rates of 5, 10, 15 and 18 l/min through nozzle diameters of 11, 14 and 16 mm were 

simulated with 0-8 mph side draughts, with 1 mph increments. 

 

The shielding gas used during this work was 80%Ar/20%CO2, the properties of which were 

defined by importing the individual properties of argon and carbon dioxide from Fluent’s 

material property database, specifying their respective ratios and applying the rule of mixtures. 

These properties are shown in Table 1 and vary with temperature according to a defined 

polynomial function. A mass flow inlet condition positioned inside the nozzle allowed the flow 

rate of the shielding gas to be set.  

Property Argon Carbon Dioxide 80%Ar20%CO2 Mixture 

Density (kg/m
3
) 1.6228 1.7878 Ideal Gas 

Cp (J/kgK) 520.64 840.37 Mixing law 

Thermal Conductivity (W/mK) 0.0158 0.0145 0.0454 

Viscosity (kg/ms) 2.125e-5 1.37e-5 1.72e-5 

Molecular Weight (kg/kgmol) 39.948 44.00995 2.88e-5 

 

 

Jönsson et al. (1995) determined that the peak arc temperature during GMAW using a pure argon 

shielding gas was approximately 24,000 K. To ensure that the correct arc temperature was fed 

into the model, the heat transfer through the plate was found experimentally using K-type 

thermocouples to establish the temperature distribution.  The results from this were confirmed 

through thermal imaging measurements. The arc temperature was then systematically increased 

in Fluent until the correct heat transfer from arc to plate was achieved in the model. This 

occurred at a value of 32,000 K, higher than that determined by Jönsson et al. However this was 

expected given a shielding gas mixture of 80%Ar/20%CO2 was used and CO2 is known to 

Table 1: The required properties of Argon, Carbon Dioxide and the resulting mixture 
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produce greater penetration as shown by Chae et al. (2008). It was therefore anticipated that 

greater penetration would be the result of an increased arc temperature when compared to that of 

pure argon. 

 

An interface was defined between the fluid and plate volumes enabling Fluent to compute across 

this boundary as their respective meshes slide over one another. Finally, the convergence criteria 

of the simulations were set. Following each iteration, the residual sum (Equation.7) for each 

variable is computed, which ideally, will tend to zero as the solution converges. In reality, they 

reduce to a small value and then become constant.  

 

 
nb

nbnbPP baa   …………………………………………………………………………... (7) 

 

Equation.7 shows the conservation equation after discretisation for a variable φ at a cell P that is 

then summated over all cells. The model was considered to have solved when each residual 

simultaneously converged to a value of 1e-5.  

 

EXPERIMENTAL VALIDATION  

 

An integral part of this research involved experimentally validating the CFD model results 

through extensive trials emulating to the conditions simulated. The experimental validation took 

place in the form of bead on plate welds on 8 mm thick DH36 steel. 
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Trials were performed on an automatic welding rig that moved the plate at a pre-set velocity of 

3.2 mm/s beneath a stationary GMAW nozzle.  The nozzle was positioned with a 10 mm gap, 

centrally located above a 250 x 500 mm plate. The shielding gas used throughout the 

experimentation was 80%Ar/20%CO2.  

 

A pre-calibrated portable arc monitoring system was used throughout the experimentation in 

order to accurately measure the arc current and voltage, whilst a second welding monitor was 

implemented to measure the shielding gas flow rate; the experimental trials considered shielding 

gas flow rates of 5, 10, 15 and 18 l/min. The average welding parameters used throughout were 

an arc current and voltage of 210 A and 24.6 V respectively. A flow device capable of producing 

a constant laminar stream of air was used to produce a side draught at a consistent velocity. The 

velocity of the draught was measured using a pre-calibrated hot-wire anemometer in the region 

between the welding nozzle and the plate. The welding region was subjected to side draught 

velocities of 0-8 mph, in 1 mph increments. As in the CFD model, experimental data was also 

generated for constricted nozzles of diameter 11, 14 and 16 mm. Thermal data was generated 

through the use of K-type thermocouples and thermal imaging, enabling a clear view of the 

temperature distribution throughout the plate to be established. 

  

The weld quality was evaluated through a combination of visual and X-ray inspection; the latter 

being graded according to the level of porosity present. The X-Ray inspection results are shown 

in Tables 2(a-c) where green indicates a pass, yellow indicates dispersed porosity and red 

indicates a highly porous weld.  Figures 2a and 2b show the typical radiographic images from a 

pass weld and a highly porous weld. 
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(c) 11 mm Side Draught Velocity (mph) 
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RESULTS 

 

Each model was subjected to a series of simulations using the unsteady solver consisting of each 

gas flow rate evaluated at each side draught, a total of 32 simulations per nozzle. The results 

were evaluated using contour plots of mass concentration of argon; since the shielding gas 

modelled was 80 % argon and 20 % carbon dioxide, this meant that a contour of 80 % argon was 

Fig. 2a: An X-Ray image of a clear weld 

Table 2a, b and c: Grading of X-Ray inspections for 16, 14 and 11 mm 
 

Fig. 2b: An X-Ray image of a highly porous weld 
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equal to 100 % shielding gas. Fig.3 is a contour plot showing mass concentration of argon for a 

16mm nozzle with a shielding gas flow rate of 15 l/min and no side draught. In this instance the 

shielding gas achieves a 26 mm diameter column of coverage over the weld. This was measured 

by scaling the shielding gas contour plots to actual size enabling the shielding gas column 

diameter to be measured directly from the plot as shown in Fig. 3.  Tables 3(a-c) show the 

diameter of shielding gas coverage for the 16 mm, 14 mm and 11 mm nozzles respectively and 

refer to the diameter (mm) over which 100 % shielding gas is present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: Contour plot of mass concentration of argon with 26 mm of 100 % coverage 
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(a) 16mm Side Draught Speed (mph) 
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5 28 22 18 0 0 0 0 0 0 

10 26 24.8 22 18 14 0 0 0 0 

15 26 26 24 21.6 20 16 6 0 0 

18 26 26 26 22 21.2 18 14 2 0 

(b) 14mm Side Draught Speed (mph) 
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  0 1 2 3 4 5 6 7 8 

5 26.8 26.8 22 17.2 12 0 0 0 0 

10 26 25.2 23.2 20.8 20 18 14.4 6.8 2 

15 23.6 23.6 23.6 22 21.2 20 18.4 17.6 16 

18 22.8 22.8 22.8 22 21.2 20 19.2 18 18 

(c) 11mm Side Draught Speed mph) 

G
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  0 1 2 3 4 5 6 7 8 

5 26.4 26.4 22 18.4 17.2 10.8 0 0 0 

10 25.2 25.2 24.4 22 21.6 20.4 18.8 17.6 15.6 

15 23.2 23.2 23.2 22.4 22.4 22 20.8 20.8 20.4 

18 22.8 22.8 22.8 22.8 22.4 22 21.6 21.6 21.6 

 

 

 

 

 

A weld macrograph was produced for a section of weld generated in the experimental trials as 

shown in Fig.4; the weld width (15 mm) was then used for the generation of a grading system, 

which was subsequently applied to the CFD results. All gas columns of diameter 15 mm and 

above  were classified as good coverage (green), between 10-15 mm coverage was reduced 

quality coverage (yellow) and below 10 mm coverage was of poor quality (red). 

 

Table 3a, b and c: The diameter (mm) and classification of shielding gas coverage for 16, 14 and 11 

mm nozzles 
 

Fig.4: A weld cross-section showing width and penetration 
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The model presented good welds to have the shielding gases 100 % coverage centred directly 

below the nozzle. As the draught velocity was increased the 100 % coverage decreases and drifts 

off centre exposing one side of the weld as shown in Fig. 5(a-f). Eventually, the side draught 

becomes strong enough to prevent adequate coverage occurring. The side draught velocity at 

which this occurs increases as nozzle diameter decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

(a)                     

(b)                     

(c)                     

(d)                     

(e)                     

(f)                     

Fig.5 A comparison of 16 mm nozzle gas columns to 11 mm nozzle gas columns.  

(a) 16 mm nozzle at 15 l/min shielding gas flow with a 1 mph side draught  

(b) 16 mm nozzle at 15 l/min shielding gas flow with a 5 mph side draught  

(c) 16 mm nozzle at 15 l/min shielding gas flow with an 8 mph side draught  

(d) 11 mm nozzle at 15 l/min shielding gas flow with a 1 mph side draught 

(e) 11 mm nozzle at 15 l/min shielding gas flow with a 5 mph side draught 

(f) 11 mm nozzle at 15 l/min shielding gas flow with an 8 mph side draught 
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From Table 3a, the 16 mm nozzle results followed a pattern showing that as the gas flow rate 

was increased, the more resistance the shielding gas column had to side draughts, with the 15 

l/min and 18 l/min gas flow rates able to produce good welds up to draughts of 5 mph. From 

Table 3b, the 14 mm nozzle followed a similar pattern. As with the other diameters, higher gas 

flow rates from the 11 mm nozzle showed more resistance to side draughts. The 10, 15 and 18 

l/min flow rates each managed to withstand all the draughts to produce good welds. Fig.5 

compares the results of 1, 5 and 8 mph side draughts on the 16 and 11 mm nozzles. 

 

The change in gas flow distribution as the nozzle diameter decreases is noticeable from Tables 

3(a-c). The 11 mm diameter nozzle has been shown to provide the greatest resistance to side 

draughts of the three nozzle diameters considered. This is due to the principle of the conservation 

of mass. The smaller the nozzle exit diameter, the higher the velocity of the exiting gas as 

demonstrated in Fig. 6a and b. The 16 mm nozzle generates up to 5 mph shielding gas velocities 

through its exit while the 11 mm nozzle generates between 10-18 mph shielding gas velocities. 

 

 

 

 

 

Fig.6a and b: Shielding gas velocities through the 16 mm and 11 mm nozzle exits respectively 
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The faster the gas exits the nozzle, the greater the draught needed to push it off course. Although 

the coverage of 22.8 mm, from the 11 mm nozzle at 18 l/min with no draught, is low when 

compared to the 26 mm coverage the 16 mm nozzle manages, the 11 mm nozzle is able to 

maintain that level of coverage from 0 to 8 mph. The 16 mm nozzle is more susceptible to the 

draught and is unable to maintain the same coverage at the same flow rates.  

 

A critical ratio of shielding gas to side draught velocity can be determined, in doing so 

presenting the pass-fail boundary condition for each nozzle diameter. A ratio of approximately 2-

2.5 has been determined for a conventional 16 mm nozzle, whilst ratios of approximately 1.5 and 

0.8 for the 14 and 11 mm nozzles respectively. The critical ratio has been shown to decrease in 

line with the outlet diameter of the nozzle, thus highlighting the effectiveness of the reducing the 

nozzle diameter. 

 

The results for the experimental validation are shown in Tables 2(a-c). The results follow the 

same trends identified through the CFD model showing that as the shielding gas flow rate 

increased the gas columns resistance to side draughts also increased. The results also clearly 

indicate that the 11 mm nozzle was capable of producing good, clear welds under higher 

velocities of side draught than the 16 mm nozzle. This finding is significant as it presents the 

potential to make welding a more efficient process in terms of shielding gas usage, therefore 

reducing costs and run time.   
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CONCLUSIONS 

 

A CFD model has been developed to determine the effects of nozzle diameter and side draughts 

on the shielding gas flow coverage during GMAW. An economic benefit to industry of 

constricting nozzle diameter has been identified allowing for a lower shielding gas flow rate to 

be implemented whilst maintaining side draught resistance. The conclusions may be summarised 

as follows: 

 

1. It was shown that the simplified computational model and experimental trials correlate 

closely through the use of their respective grading systems. The results show that a good 

shielding gas coverage as determined in the CFD model translated into a good quality 

weld determined by X-Ray inspection of the experimental trials.  

 

2. The CFD model has demonstrated the ability of a 16 mm nozzle to produce highly 

concentrated shielding gas columns with diameters of up to 28 mm. From the 

experimental trails this can be seen as an excessive amount of coverage. A good quality 

weld was produced from shielding gas columns as small as 15 mm. 

 

3. Both the CFD model and experimental trials have highlighted the significant effect side 

draughts have on shielding gas columns and consequently weld quality. As anticipated, 

there is a progressive decrease in the shielding gas coverage and quality as side draught 

velocity increases. 
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4. A reduction in nozzle diameter has been found to increase the shielding gas columns 

resistance to side draughts. The model predicted that an 11 mm nozzle was capable of 

maintaining a shielding gas column even at higher side draughts. This was validated 

through X-Rays of the corresponding experimental trials showing good quality welds. 

 

5. The critical ratio of shielding gas to side draught velocity is shown to decrease with a 

reduction in the nozzle outlet diameter. This reinforces the effectiveness of reducing the 

nozzle outlet diameter when subjected to side draughts.  
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