
Strathprints Institutional Repository

Chen, Haofeng and Chen, Weihang and Ure, James Michael (2012) Linear matching method on the
evaluation of cyclic behaviour with creep effect. In: ASME Pressure Vessels and Piping Conference
2012, 2012-07-15 - 2012-07-20, Toronto.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9039543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


LINEAR MATCHING METHOD ON THE EVALUATION OF CYCLIC 

BEHAVIOUR WITH CREEP EFFECT 

 

Haofeng Chen*, Weihang Chen, James Ure 

Department of Mechanical Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK 

 

Abstract: This paper describes a new Linear Matching Method (LMM) technique for the direct evaluation 

of cyclic behaviour with creep effects of structures subjected to a general load condition in the steady cyclic 

state. The creep strain and plastic strain range for use in creep damage and fatigue assessments, respectively, are 

obtained. A benchmark example of a Bree cylinder subjected to cyclic thermal load and constant mechanical 

load is analysed to verify the applicability of the new LMM to deal with the creep fatigue damage. The cyclic 

responses for different loading conditions and dwell time periods within the Bree boundary are obtained. To 

demonstrate the efficiency and effectiveness of the method for more complex structures, a 3D holed plate 

subjected to cyclic thermal loads and constant axial tension is analysed. The results of both examples show that 

with the presence of creep the cyclic responses change significantly. The new LMM procedure provides a 

general purpose technique for the evaluation of cyclic behaviour, the plastic strain range and creep strain for the 

creep fatigue damage assessment with creep fatigue interaction. 

  

Keywords: creep, fatigue, creep ratcheting, direct method 

 

1 Introduction 

Many structural components or elements of modern engines and power plants are subjected to cyclic loading 

at high temperature. Operation at high temperatures means that numerous failure mechanisms must be 

considered in the design or integrity assessment process. 
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1.1 Response to Cyclic Loading without Creep  

In the analysis of structures subjected to cyclic loading histories for an elastic–perfectly plastic material, the 

component will experience either elastic/plastic shakedown or ratcheting depending upon the applied load level. 

The elastic shakedown limit is the highest cyclic load under which a material shakes down to an elastic response 

after the first few load cycles. When the elastic shakedown limit is exceeded, the structure may experience 

either alternating plasticity (plastic shakedown) or ratcheting. Local alternating plasticity is typically associated 

with the low cycle fatigue, where the number of cycles to failure is determined by the maximum plastic strain 

range. For industrial components, ratchetting should be prevented as the plastic deformations would accumulate 

and lead to an incremental plastic collapse of the structure [1]. 

 

1.2 Response to Cyclic Loading with Creep 

In the presence of creep, the response of the structure to cyclic loading changes significantly. The key feature 

of cyclic loading with creep is the synergistic interaction of plasticity and creep. A structure subjected to cyclic 

loading with creep can present different asymptotic behaviours: 

1) Without creep ratcheting [2], no stress relaxation is taking place, therefore the accumulation of creep 

strain is due to primary loads only during each load cycle. Because the creep strains are driven by the primary 

loads alone, the situation is similar to that of monotonic loading.  

2) With creep ratcheting [2] and limited dwell time, the stress relaxation process introduces a residual 

stresses field so that there is a tendency for regions of the component material to yield during unloading. Thus, a 

closed hysteresis loop is generated even when the applied loading levels would have resulted in elastic 

shakedown region if creep were not present. If the applied loading level were in plastic shakedown region, 

additional plastic strain is formed due to the interaction of plasticity and creep which enlarges the closed 

hysteresis loop. 

3) With creep ratcheting [2] and large dwell time, although the effect of creep and cyclic plasticity on the 

residual stress field causes the cyclic stress to reset on each load cycle, the large dwell time produces 

increasingly large creep strain compared with plastic strain (which is limited in magnitude by the residual stress 

field).   In other words, the appearance of the non-closed hysteresis loop would be due to creep strains, not 

plastic strains.  

4) With creep ratcheting [2], where a large stress relaxation occurs despite a low level of overall creep stress, 

which leads to an insignificant creep strain. However, larger plastic strain occurs upon unloading due to the 

significant stress relaxation, thus the non-closed hysteresis loop appears due to the dominant plastic strain. 



Therefore in an integrity assessment of components subjected to the cyclic load and under creep conditions, 

the above mechanisms need to be addressed. One of the notable analytical treatments concerning the creep 

ratcheting phenomenon was given by Bree [2], which presented an analysis in which the inelastic strains 

developed by thermal cycling were caused by both yielding and creep. In his paper, Bree defined the 

phenomenon of creep ratcheting, whereby the structure may experience additional creep strain due to relaxation 

of the creep stresses.  

This definition was applied to a cylindrical tube under the action of a sustained internal pressure and cyclic 

temperature gradients across its wall. Bree’s analysis assumes that the full stress relaxation occurs during the 

creep dwell. From this analysis it was found that any combination of applied steady state and cyclic loading 

which was above the elastic limit would cause creep ratcheting.  

Bree [3] also considers the same geometry and loading but with only partial relaxation of stress during creep 

dwell. In addition to plotting the stress contours through the tube wall, Bree also showed that the increase in 

plastic strains caused by increasing dwell time (and thus greater stress relaxation) would reach a limit 

(corresponding to the complete relaxation of the creep stresses).  

 

1.3 The Linear Matching Method  

Situations such as the Bree cylinder which can be solved analytically are rare, and so modern analyses of 

more complex engineering structures use Finite Element Analysis to obtain solutions. 

 Calculating the steady state response of structures subject to cyclic loading can require a large number of 

increments in full step-by-step analysis which becomes computationally expensive. As a result, direct methods 

have been developed to assess the stabilised response of structures subject to cyclic loading.  

Included in these methods are the Direct Cyclic Analysis [4, 5] and the Linear Matching Method (LMM) 

framework [6, 7]. The LMM is distinguished from the other simplified methods by ensuring that both the 

equilibrium and compatibility are satisfied at each stage [6, 7, 8, 9]. In addition to the shakedown analysis 

method [8], the LMM has been extended beyond the range of most other direct methods by including the 

evaluation of ratchet limit [6, 7, 9] and steady state cyclic behaviour with creep fatigue interaction [10]. The 

LMM ABAQUS user subroutines [11] have been consolidated by the R5 [12] research programme of EDF 

energy to the commercial standard, and are counted to be the method most amenable to practical engineering 

applications involving complicated thermomechanical load history [7, 9].  

The purpose of this paper is to present an analysis of creep ratcheting and creep fatigue damage of structures 

through a new extension of previous LMM [10]. The new method has been much improved both theoretically 



and numerically, and is expected to predict more efficiently and accurately the stable cyclic response of a 

structure under creep conditions and calculate the resulting cyclic stresses, residual stresses, creep strain, plastic 

strain range ratchet strain and the elastic follow-up factor. Firstly, the mathematical and numerical 

implementation of this method will be described. Secondly, in order to confirm and validate the applicability of 

the developed method, a benchmark example of a Bree cylinder is reanalysed in the present paper through the 

extended LMM, and the results are compared with existing analytic solutions in [2]. Finally, the structural 

response of a holed plate subjected to cyclic thermal loads and a constant uniaxial tension under high 

temperature is also analysed, to verify the applicability of the extended LMM to more general and practical 

problems. 

2     Numerical Procedures 

2.1 Cyclic load history  

Considering the following problem. A structure is subjected to a cyclic history of varying temperature 

λθθ(xk,t) within the volume of the structure and  varying surface loads λpP(xk,t) and acting over part of the 

structure’s surface ST. The variation is considered over a typical cycle tt 0 in a cyclic state. Here λθ and λp 

denote the load parameters, allowing a whole class of loading histories to be considered. On the remainder of 

the surface S, denoted by Su, the displacement uk=0. 

      Corresponding to these loading histories there exists a linear elastic stress history; 

 (1) 

where  ijˆ and p
ij̂ denotes the varying elastic stresses due to θ(xk,t) and P(xk,t), respectively.  

     The cyclic solution may be expressed in terms of three components, the elastic solution, a transient solution 

accumulated up to the beginning of the cycle and a residual solution that represents the remaining changes 

within the cycle. The general form of the stress solution for the cyclic problems involving changing and 

constant residual stress fields is given by 

(2) 

where ij denotes a constant residual stress field in equilibrium with zero surface traction on ST and corresponds 

to the residual state of stress at the beginning and end of the cycle. The history  

r
ij  is the change in the residual stress during the cycle and satisfies; 

                      (3) 
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For the cyclic problem defined above, the stresses and strain rates will become asymptotic to a cyclic state 

where;  

(4) 

 

2.2 Numerical Procedure for the Varying Residual Stress Field and Plastic Strain Range 

We adopted the same minimum theorem for cyclic steady state solution and the same Linear Matching 

condition as described in [10] for each iteration. Comparing with [10], the iterative procedure has been 

improved to converge more efficiently. Assuming that plastic or creep strains occur at N instants, 1t , t2...... tN , 

where nt  corresponds to a sequence of points in the cyclic history. Hence the accumulation of inelastic strain 

over the cycle is 
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Define the shear modulus by linear matching 

 

(5) 

where σ0
 
is the von Mises yield stress or creep flow stress and n is the iterative shear modulus. The von Mises 

yield stress σ0 will be replaced by creep flow stress if only creep relaxation occurs at the load instance. 

     The Linear Matching Method procedure for the assessment of residual stress history and the associated 

plastic or creep strain range due to the cyclic load history is described below in terms of N discrete time points. 

The detailed iteration process for calculating the changing residual stress is described in [10], which shows how 

the cyclic loading is applied though the LMM. For a strictly convex yield condition, the only instants when 

plastic or creep strains can occur are at the vertices of the stress history )(ˆ n
e
ij t , n=1 to N, of the load extremes 

where plastic or creep strain occurs and nt  corresponds to a sequence of time points in the load history. The 

entire iterative procedure includes a number of cycles, where each cycle contains N iterations associated with N 

load instances. The first iteration is to evaluate the changing residual stress 1
ij  associated with the elastic 

solution )(ˆ 1t
e
ij at the first load instance. n

mij  is defined as the evaluated changing residual stress for nth load 

instance at mth cycle of iterations, where n 1,2,...N and m 1,2,...M. At each iteration, the above changing 

residual stress n
mij  for nth load instance at mth cycle of iteration is calculated. When the convergence occurs at 

the mth cycle of iterations, the summation of changing residual stresses at N time points must approach to zero 
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Mij ) due to the stable cyclic response. Hence the constant element of the residual stress for the cyclic 

loading history is determined by 

(6) 

 

The corresponding increment of plastic strain occurring at time nt  is calculated by  

 (7) 

 

where notation ( ' ) refers to the deviator component of e
ij  and ij . )( nij t  is the converged accumulated 

residual stress at the time instant nt , i.e. 

(8) 

For the calculation of creep strain and stress relaxation during a creep dwell period, a more efficient and 

accurate numerical scheme with new theoretical equations has been derived and presented in the coming section.  

2.3 Numerical procedure for the creep strain and flow stress 

Calculating the accumulated creep strain during the dwell period, 0 in equation (5) equals to creep flow 

stress c 0 , which is an implicit function of creep strain c and residual stress c during the creep dwell 

period. 

We assume a time hardening creep constitutive relation: 

                                                                                            (9) 

where c is the effective creep strain rate,  is the effective von Mises stress, t is the dwell time, and B, m and n 

are the creep constants of the material. When m=0, the time hardening constitutive equation becomes the  

Norton’s law.    

      During the relaxation process we assume, at each point in space that an elastic follow up factor Z exists: 
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Combining (9) and (10) and integrating over the dwell time, we obtain 

 

 (11) 

where 0 is the effective value of the start of dwell stress, c  is the effective value of the creep flow stress, and 

0( )c ij Cij     . Integrating (10) gives the effective creep strain during the dwell period t  as, 

 (12) 

Combining (11) and (12) and eliminating EZ /  gives 

 

 (13) 

 

For the pure creep where 0 c  , the creep strain becomes: 

                                (14) 

The creep strain rate F at the end of dwell time t is calculated by Eq.(11) and (13): 

  

(15) 

For the pure creep where 0 c  , the creep strain rate 
F becomes:  

   (16) 

 

Hence in the iterative process, we begin with current estimated i
c , 0

i  and use equations (13), (15) or (16) to 

compute a new value of the creep stress 
f

cc    from Eq. (17) to replace 0  
in the linear matching condition 

(5). 

                                                                                       (17) 
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3 BREE PROBLEM 

The Bree problem [2, 3] has been re-established in this section and is used to verify the results of the iterative 

process described above.  

3.1 Problem description  

The problem to be considered is that of a cylindrical tube of mean radius R and wall thickness h that is closed 

at the ends [2]. The tube is subjected to an internal pressure p (Fig.1a) and a cyclic temperature gradient across 

its wall. The detailed temperature history of a cylindrical tube is given in Fig.1a, where θ(t) varies between θ0 

and θ0+Δθ. The ambient temperature θ0 remains at 0C. The temperature distribution across the wall is assumed 

to be linear, during the first half of each cycle (the so-called start-up) and zero during the second half of each 

cycle (the so-called shut down). Bree [2] made the additional assumption that, since the hoop stress is the 

greater of the two stresses acting, the axial stress would be ignored. Thus the problem is reduced to that of a 

slab with a overall stress σp+ σt  acting in hoop direction only (Fig.1b), where the constant σp and cyclic σt is the 

hoop stress produced by the internal pressure and cyclic temperature distribution across the thickness, 

respectively.   

The cylindrical tube is made of 304 stainless steel with the following material properties: yield stress σy=205 

MPa, Poisson’s ratio, ѵ=0.3, Young’s modulus, E= 200 GPa, coefficient of thermal expansion, α=1.0x10-5. For 

the creep material data in equation (9) we adopt B= 5.86e-15 and n=5. 

3.2 Results and discussions   

Fig.2 is the Bree [2] diagram, which illustrates the responses for the case of a pressurised cylinder subject to 

cyclic through-wall thermal stress. The ordinate and absicca give normalised values of pressure and thermal 

stress respectively, where the stresses have been normalised against the yield stress of the material. There are 

four main regions of interest. Region E is elastic, where pressure plus thermal stress is always less than the yield 

stress. Bree stated that creep ratcheting occurs if any combination of applied loading exceeds region E, with the 

assumption that the stress is fully relaxed [2]. Region S is shakedown. Region P is reversed plasticity, where 

yielding occurs on every cycle, but no incremental or ratcheting strain occurs. Region R indicates ratcheting, 

where finite strain growth occurs on every cycle. 

For the verification of the Bree boundary, the cyclic load cases 1, 2, and 3, 4, which are just below and above 

the calculated elastic limit boundary (Fig.2), respectively, are chosen. The calculated steady state stress strain 

path for the cyclic loadings 2 and 3, are shown in Fig.3a and Fig.3b, respectively, where the dwell time is long 



enough to produce a full relaxation of creep stress . From Fig.3 it is observed that the calculated steady-state of 

stress and strain follows the path A1B1C1A2B2C2A3B3C3, etc. and reaches the point An at the end of the nth start-

up, the point Bn at the end of the nth dwell time and the point Cn at the end of the nth shutdown. Load case 2 

(Fig.3a) exhibits a non creep ratcheting mechanism as the creep strain accumulation occurs only due to the 

primary stress, with no stress relaxation taking place. Load case 3 (Fig.3b), however, exhibits a creep ratcheting 

mechanism as an additional creep strain is accumulated due to stress relaxation in every cycle. Similar results 

are obtained from the analyses at load points 1 and 4 which confirm that the LMM can reproduce the analytical 

solutions of Bree [2]. 

Two cyclic load points 5 and 6, which are located in region S2 and P, respectively, are chosen for 

investigating the other cyclic response with creep effect beyond the creep ratcheting boundary. The steady state 

stress strain path for the cyclic loading points 5 and 6 with one hour and 50 hour dwell time period are shown in 

Fig.4 and Fig.5 respectively.  

It is observed from Fig.4 that the steady-state stress and strain curve repeats the hysteresis loop ABC every 

subsequent cycle, reaching the point A at the end of each start-up, the point B at the end of each dwell time and 

the point C at the end of each shut down. Due to the relaxation process the component material yields during 

unloading. Thus, the phenomenon of a closed hysteresis loop is generated at the cyclic load point 5 (Fig.4a) and 

at the cyclic load point 6 (Fig.4b) with one hour dwell time. It is observed form Fig.4b that there is plasticity 

during both the loading and unloading process for cyclic load point 6. Additional reverse plastic strains, which 

recover the inelastic strain due to start-up and creep dwell processes, develop due to the interaction of plasticity 

and creep, thus enlarging the closed hysteresis loop. 

Fig.5 shows that the steady state responses of the structure at load points 5 and 6 no longer form a closed 

cycle when the creep dwell time is increased from 1 hour to 50 hours. The non-closed cycle follows the path 

A1B1C1A2B2C2A3B3C3 showing a net accumulation of inelastic strain per cycle.  

This phenomenon can be explained by the increase in dwell time causing a continuous increase in permanent 

creep strain. However, the reverse plastic strain, which can not increase unlimitedly due to the limited 

magnitude of residual stress, is not able to recover the creep strain (Fig.5a) or the combination of creep strain 

and plastic strain during start-up (Fig.5b). Therefore, an open hysteresis loop is formed when the dwell time is 

increased. 

An important parameter that is used to assess the significance of creep behaviour is the elastic follow up 

factor, defined as  

(18) 
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Where EE  and )]1(2/[3  EE  denotes the effective elastic modulus with uniaxial and multiaxial case, 

respectively. c is the change in effective creep stress, and c is the effective creep strain during the dwell 

period. Z=1 corresponds to relaxation with zero change in total strain, and Z=∞ corresponds to steady state 

creep with no stress relaxation. With the estimated elastic follow-up factor, the creep strain can  be evaluated 

approximately using (18) if a stress change during the dwell period can be measured [12]. Table.1 shows the 

values of elastic follow up factor obtained from the loading cases of 5, 6 and 7 (Fig.2) at the location with the 

highest creep strain. It can be seen that the values are sensitive to loading type. For cyclic loading case 6, which 

has low levels of primary loading, the increase in dwell time causes small changes in Z because the majority of 

the creep strain comes from stress relaxation. An increase in dwell time at load point 7 however, with larger 

levels of primary loading, results in a dramatic increase in Z. Although stress relaxation occurs in this situation, 

the primary loading results in creep strains with little relaxation, which becomes dominant at large dwell times.  

   

4 HOLED PLATE  

4.1 Problem description 

A more practical example, a plate with a central hole and subjected to varying thermal loads and constant 

mechanical load is analysed using the proposed new LMM. 

The geometry of the structure and its finite element mesh are shown in Fig.6. The 20-node solid 

isoparametric element with reduced integration is adopted. The ratio between the diameter D of the hole and the 

length L of the plate is 0.2 and the ratio of the depth of the plate to the length L of the plate is 0.05. The plate is 

subjected to a temperature difference Δθ between the edge of the hole and the edge of the plate and uniaxial 

tension P acts along one side (Fig.6). The same material and creep properties are adopted as the Bree example 

in the previous section.   

The detailed temperature history at the inner bore of the hole is given in Fig.7, where θ(t) varies between θ0 

and θ0+Δθ. When the ambient temperature θ0 remains at 0C, the magnitudes of the maximum thermo elastic 

stresses for the above thermal loading extremes can be determined by the maximum temperature difference Δθ 

between the bore of the hole and the edge of the plate. Hence the cyclic thermal load and constant mechanical 

load can be characterized by the maximum temperature difference Δθ and the uniaxial tension σp, respectively. 

The reference constant elastic mechanical stress can be calculated by the axial tension   σp=σp0=100MPa while 



the reference temperature difference Δθ=Δθ0=500C determines the reference cyclic elastic thermal stress. Two 

thermal stress extremes with three load instances are adopted for this cyclic load history: 

---Load instance (1):  The temperature distribution and axial tension are applied. 

---Load instance (2):  Both loads are sustained during a creep dwell.   

---Load instance (3): The temperature load is removed (thus indicating the end of creep dwell), and the constant  

axial tension remains applied. 

4.2 Results and discussions 

Fig.8 shows the shakedown and ratchet boundaries for the problem without the effects of creep, using the 

methods described in [8, 9]. In Fig.8 the applied uniaxial tension in the X-axis is normalized with respect to the 

reference uniaxial tension while the thermal load in the Y-axis is normalized by using the reference temperature 

difference Δθ=Δθ0=500C. Three cyclic load cases 1 (Δθ=0.4Δθ0, σp=0.5σp0 ), 2 (Δθ=0.7Δθ0) and 3 (Δθ=0.7Δθ0, 

σp=0.5σp0), which are located in the elastic shakedown and reverse plasticity region of the calculated boundary 

(Fig.8), are chosen to demonstrate the influence of different cyclic loading and dwell times on the cyclic 

response of a holed plate. 

The locations of maximum creep strain correspond to different dwell period and cyclic load cases are shown 

in Fig.9 and Fig.10, respectively. It is observed from Figs.9-10 that the location of maximum creep stain 

changes with changing dwell period and types of cyclic load cases. 

The locations of maximum plastic strain range correspond to different dwell period and cyclic load cases are 

shown in Fig.11 and Fig.12, respectively. It is observed from Figs.11-12 that the location of maximum plastic 

strain range changes with different types of cyclic load cases only, but it does not change with different dwell 

period.  

4.2.1 Cyclic responses within elastic shakedown region: The stress strain response for load case 1 

at location of maximum reverse plastic strain (Fig.11b) and maximum creep stain (Fig.9b) with dwell period of 

10 hours is shown in Fig.13. 

From Fig.13 it is observed that the calculated steady-state of stress and strain follows the path 

A1B1C1A2B2C2A3B3C3, etc. and reaches the point An at the end of the nth loading, the point Bn at the end of the 

nth dwell time and the point Cn at the end of the nth unloading. Both locations exhibit creep ratcheting as 

additional creep strain forms due to stress relaxation in every cycle.    

It is observed form Fig.13a that the material yields during unloading due to the stress relaxation process in 

the structure. In Fig.13b the material is elastic during unloading. During loading the stress is reset to a higher 



value due to the formation of residual stresses in neighbouring regions. When considering possible failure 

mechanisms of the structure, both of these critical locations would need to be checked against different failure 

criteria (e.g. Location at Fig.11b for incremental plastic collapse and Location at Fig.9b for creep rupture).  

 

4.2.2 The behaviour of cyclic response with changing dwell period: The steady state stress strain 

paths for the cyclic loading case 3 (Fig.14) at the location of maximum reverse plastic strain with 1 and 10 hour 

dwell period are shown in Fig.14a and Fig.14b respectively. Fig.14a shows that the temperature gradient causes 

material to yield in compression on loading since the applied load is dominated by the compressive thermal 

stress. Then creep causes the inelastic strain increase in compression as the stresses relax. Removal of the 

temperature gradient causes the material to yield in tension during unloading and the reverse plastic strain 

recovers all the inelastic strain induced during loading and dwell time process. Therefore, the steady-state stress 

and strain curve (Fig.14a) repeats the hysteresis loop ABC with every subsequent cycle, reaching the point A at 

the end of each loading, the point B at the end of each dwell time and the point C at the end of each unloading. 

As the dwell period increases to 10 hours (Fig.14b), the stress relaxes further which causes the creep strain 

increase in compression. However, the small magnitude of creep stress causes a limited increase in creep strain. 

A larger reverse plastic strain is formed in tension during unloading due to the larger stress relaxation level. 

Thus, an opened hysteresis loop is generated and follows the stress strain path of A1B1C1A2B2C2A3B3C3. 

4.2.3 The cyclic response with different applied loading: The steady state stress strain path for the 

cyclic loading points 2 and 3 (Fig.8) at the location of maximum reverse plastic strain with 10 hours dwell 

period are shown in Fig.15a and Fig.15b respectively. It is observed from Fig.15a that the steady-state stress 

and strain curve forms a closed hysteresis loop (ABC) when only cyclic thermal loading is applied. With an 

additional constant mechanical load (Fig.15b) applied in the tensile direction the value of stress drop becomes 

larger, and thus enlarges the reverse plastic strain upon unloading. Therefore, an opened hysteresis loop is 

created and follows the stress strain path of A1B1C1A2B2C2A3B3C3. 

The steady state stress strain paths for the cyclic loading points 1 and 3 (Fig.8) at the location of maximum 

reverse plastic strain with 10 hours dwell period are also compared in Fig. 16. It shows that with the increasing 

cyclic thermal loads (Fig. 16b), the higher temperature gradient causes material to yield in compression on 

loading. Larger creep strain is induced during stress relaxation process than that at load point 1 (Fig. 16a). 

Removal of this higher temperature gradient causes a larger reverse plastic strain compared with Fig.16a. 

Table.2 shows the values of elastic follow up factor obtained from the loading cases of 1, 2 and 3 at the 

location with the highest creep strain. It can be seen from Table 2 that for cyclic loading cases 1 and 3, which 



has primary loading involved, the increase in dwell time causes larger changes in Z comparing to the load case 

without primary load (load case 2). The reason is that with the increased dwell time for the case with primary 

load higher creep strain occurs due to the higher stress level than the load case which has no primary load. For 

cyclic loading case 1, smaller elastic follow-up factor with 10 hours dwell period is obtained comparing to the 

same case with 1 hour dwell period. This phenomenon can be explained by the change of the location of 

maximum creep strain due to the significant stress redistribution. 

CONCLUSION 

In the present study, the structural response under cyclic loading including the effect of creep has been 

investigated using the proposed new LMM and the following observations have arisen: 

1. The new LMM has been derived and verified by the Bree problem, by being able to replicate the analytical 

creep ratchet limit. This method is able to evaluate the stable cyclic response (including creep and plastic 

strains) and elastic follow up factor. The new method has also been applied to a holed plate, and demonstrated 

its ability to determine the cyclic response and elastic follow up factor of more complex 3D structures. 

2. Various cyclic responses for different loading conditions and dwell time periods have been investigated by 

the proposed method, which is able to address creep fatigue damage and creep ratcheting issues. 

3. It is possible for a closed cycle to form when a creep dwell occurs during the cycle where the reverse plastic 

strains completely recover the inelastic strain created during loading and creep dwell. However, the cycle may 

become non-closed if the creep strains become too large for the reverse plastic strains to recover.  

4. The open hysteresis loops are either caused by the accumulation of plastic strain (ratcheting) during each load 

cycle (Fig.13a and Fig.14b), or determined by the accumulation of creep strain due to the cyclically enhanced 

creep (Fig.3b) or steady state creep (Fig.3a).    
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Table Captions 

Table 1 Values of the elastic follow-up factor Z at the location with the maximum creep strain  
 
Table 2 Values of the elastic follow-up factor Z at the location with the maximum creep strain 



Table 1. Values of the elastic follow-up factor Z at the location with the maximum creep strain (Fig.2) 
  
 

Loading Type (Fig.2) Z dwell time 1h Z dwell time 50h Z dwell time 100h 

Case 5 

Case 6 

Case 7 

1.59 

1.24 

3.32 

            2.73 

            1.84 

           11.55 

3.19 

1.94 

20.96 

     

 

 
Table 2. Values of the elastic follow-up factor Z at the location with the maximum creep strain (Fig.8) 

 
 

 

Loading Type (Fig.8) Z dwell time 1h Z dwell time 10h Z dwell time 100h 

Case 1 

Case 2 

Case 3 

3.39 

1.52 

1.48 

            2.04 

            1.81 

            1.77 

8.56 

1.91 

4.23 

     



 

Figure Captions 

Fig.1 (a) Load history for constant internal pressure and cyclic temperature gradient (b) cross section in 

direction of applied stress 

Fig.2  Bree diagram, showing regions of different cyclic behaviour. Axes show stress normalized by yield  

stress. 

Fig. 3   Response of the stress-strain path corresponding to the cyclic loading cases (a) 2 (b) 3 

Fig.4   Response of the stress-strain path corresponding to the cyclic loading cases with 1 hour dwell time (a) 

case 5 (b) case 6 

Fig.5    Response of the stress-strain path corresponding to the cyclic loading cases with 50 hour dwell time (a)        

case 5 (b) case 6 

Fig.6   (a) Geometry of the holed plate subjected to varying thermal loads and its finite element mesh (D/L=0.2) 

(b) FEM 

Fig.7   Load history with two distinct extremes (three load instances) to the elastic solution. 

Fig.8   Elastic shakedown, reverse plasticity and ratchet region for the holed plate with constant mechanical and 

varying thermal load 

Fig.9    Location of maximum creep strain corresponding to the cyclic load case 1 with dwell period (a) 1 hour 

(b) 10 hour (c)100 hour 

 

Fig.10 Location of maximum creep strain with 1 hour dwell period corresponding to the cyclic load (a) case 1 

(b) case 2  (c) case 3 

 

Fig.11 Location of maximum plastic strain range corresponding to the cyclic load case 1 with dwell period (a) 1 

hour (b) 10 hour (c)100 hour 

 

Fig.12 Location of maximum plastic strain range with 1 hour dwell period corresponding to the cyclic load (a) 

case 1 (b) case 2  (c) case 3 

 



Fig.13 Response of the steady state stress-strain path corresponding to the cyclic load point 1(dwell period 10 

hours) at the region with maximum (a) reverses plastic strain  (b) creep strain 

 

Fig.14 Response of the steady state stress-strain path corresponding to the cyclic load point 3 at the location 

with maximum reverse plastic strain with dwell period (a) one hour (b) 10 hour 

Fig.15 Response of the steady state stress-strain path with dwell period  10 hours at the location with maximum 

reverse plastic strain corresponding to the cyclic load points (a) 2 (b) 3 

Fig.16 Response of the steady state stress-strain path with dwell period  10 hours at the location with maximum 

reverse plastic strain corresponding to the cyclic load points (a) 1 (b) 3 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

                                                                      

                                                                             (a)                                            (b) 

Fig. 1 (a) Load history for constant internal pressure and cyclic temperature gradient 

(b) cross section in direction of applied stress 
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Fig.2 Bree diagram, showing regions of different cyclic behaviour. Axes show stress normalized by yield stress. 
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                                                  (a)                                                                             (b) 

Fig.3 Response of the stress-strain path corresponding to the cyclic loading cases (a) 2 

(b) 3 
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                                             (a)                                                                                   (b) 

Fig.4 Response of the stress-strain path corresponding to the cyclic loading cases with 1 hour dwell time (a) 

case 5 (b) case 6 

 

 

 

 

 

 

 

 

 

-210 

-150 

-90 

-30 

30 

90 

150 

210 

-0.001 -0.0005 0 0.0005 0.001





A 

B

C

Δεc=0.0289% 
Z=1.1

Δεp=0.0289

-210 

-150 

-90 

-30 

30

90

150 

210

-0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015

  



A

B

C

Δεp=0.0238% 
Δεc=0.0436%

Δεp=0.0674% 

Z=1.08 



 

 

 

 

 

 

 

 

 

 

 

                                      (a)                                                                               (b) 

Fig.5 Response of the stress-strain path corresponding to the cyclic loading cases with 50 hour dwell time (a) 

case 5 (b) case 6 
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                                                                 (a)                                         (b) 

Fig.6 (a) Geometry of the holed plate subjected to varying thermal loads and its finite element mesh (D/L=0.2) 

(b) FEM 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 Load history with two distinct extremes (three load instances) to the elastic solution. 
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Fig.8 Elastic shakedown, reverse plasticity and ratchet region for the holed plate with constant mechanical and 

varying thermal load 
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                               (a)                                          (b)                                               (c) 

Fig.9 Location of maximum creep strain corresponding to the cyclic load case 1 with dwell period 

(a) 1 hour (b) 10 hour (c)100 hour 

 
 
 
 
 

 

                                (a)                                           (b)                                                 (c) 

Fig.10 Location of maximum creep strain with 1 hour dwell period corresponding to the cyclic load 

(a) case 1 (b) case 2  (c) case 3 
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                                   (a)                                            (b)                                         (c) 

Fig.11 Location of maximum plastic strain range corresponding to the cyclic load case 1 with dwell 

period (a) 1 hour (b) 10 hour (c)100 hour 

 

 

 

                                 (a)                                           (b)                                            (c) 

Fig.12 Location of maximum plastic strain range with 1 hour dwell period corresponding to the 

cyclic load (a) case 1 (b) case 2  (c) case 3 
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                                          (a)                                                                              (b) 

Fig.13 Response of the steady state stress-strain path corresponding to the cyclic load point 1(dwell 

period 10 hours) at the region with maximum (a) reverses plastic strain  (b) creep strain 
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                                         (a)                                                                              (b) 

Fig.14 Response of the steady state stress-strain path corresponding to the cyclic load point 3 at the 

location with maximum reverse plastic strain with dwell period (a) one hour (b) 10 hour 
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                                              (a)                                                               (b) 

Fig.15 Response of the steady state stress-strain path with dwell period  10 hours at the location 

with maximum reverse plastic strain corresponding to the cyclic load points (a) 2 (b) 3 
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                                       (a)                                                                              (b) 

Fig.16 Response of the steady state stress-strain path with dwell period  10 hours at the location 

with maximum reverse plastic strain corresponding to the cyclic load points (a) 1 (b) 3 
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