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Abstract 
 
A Generalized Minimum Variance control law is derived for 
the control of nonlinear, possibly time-varying multivariable 
systems.  The solution for the control law is original and was 
obtained in the time-domain using a simple operator 
representation of the process.  The quadratic cost index 
involves both error and control signal costing terms.  The 
controller obtained is simple to implement and includes an 
internal model of the process.  In one form might be 
considered a nonlinear version of the Smith Predictor.  
However, unlike the Smith Predictor a stabilizing control law 
can be obtained even for some open-loop unstable processes. 
 
1 Introduction 
 
The control law introduced below for nonlinear multivariable 
systems is based on a rich heritage.  Åström introduced the 
Minimum Variance (MV) controller assuming the linear plant 
was minimum phase and later derived the MV controller for 
processes that could be nonminimum phase Åström [1].  The 
latter was guaranteed to be stable on nonminimum phase 
processes, whereas the former was unstable.   
 
Hastings [9] and later Clarke and Hastings [2], modified the 
first of these control laws by adding a control costing term.  
This was termed a Generalized Minimum Variance (GMV) 
control law and enabled nonminimum phase processes to be 
stabilized, although when the control weighting tended to 
zero the control law reverted to the initial algorithm of 
Åström, which was unstable.  However, the control law had 
similar characteristics to LQG design in some cases and was 
much simpler to implement.  This simplicity was exploited 
very successfully in the so-called generalized MV self-tuning 
controller introduced by Clarke and Gawthrop [3]. 
 
The control of nonlinear non-minimum phase linear systems 
using a GMV type algorithm was considered by Grimble [4].  
The use of GMV control laws for linear systems designs was 
reviewed in Grimble [5].  The use of dynamic cost 
weightings in the GMV cost index Grimble [6] provided 
additional flexibility and the dynamic costing solution was 
exploited to obtain a Generalized H∞ controller Grimble [7].  
 

 All of these results were applicable to linear discrete-time 
stochastic processes. 
 
The aim in the following is to introduce a GMV controller for 
nonlinear multivariable, possibly time-varying, processes.  
The structure of the system was defined so that a simple 
controller structure and solution are obtained.  When the 
system is linear the results revert to those for the GMV 
controller referred to above Grimble [8].  There is some loss 
of generality in assuming the reference and disturbance 
models are represented by linear subsystems.  However, the 
plant model can be in a very general nonlinear operator form, 
which might involve state-space, transfer operators or even 
nonlinear function look up tables.   
 
For linear systems stability is ensured when the combination 
of a control weighting function and an error weighted plant 
model is strictly minimum phase.  For nonlinear systems a 
related operator equation must have a stable inverse.  It is 
shown that if there exists say a PID controller that will 
stabilize the nonlinear system, without transport delay 
elements, then a set of cost weightings can easily be defined 
to guarantee the existence of this inverse and thereby ensure 
the stability of the closed loop. 
 
If the plant is open-loop stable the solution can be realized in 
a particularly simple form which relates to the well known 
Smith Predictor for systems with significant transport delays.  
This has the advantage of providing some confidence in the 
practical utility of the solution and also introduces what 
might be termed an extension of these Smith controllers for 
nonlinear plants.  A so-called Nonlinear Smith Predictor will 
therefore be introduced. 
 
2 System Description 
 
The system description is of restricted generality and is 
carefully chosen so that simple results are obtained.  The 
plant itself is nonlinear and may be time-varying and have 
quite a general form.  However, the reference and disturbance 
signals are assumed to have linear time-invariant model 
representations.  This is not very restrictive, since in many 
applications the models for the disturbance and reference 
signals are only LTI approximations. 
 
The system is shown in Figure 1 and includes the nonlinear 
plant model and the linear reference/disturbance models.  
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There is no loss of generality in assuming that the zero mean 
white noise sources { ( )}tω  and { ( )}tξ have identity 
covariance matrices.  There is also no requirement to specify 
the distribution of the noise sources, since it will be shown 
that the special structure of the system leads to a prediction 
equation, which is dependent upon the linear disturbance and 
reference models.  
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Figure 1:  Single Degree of Freedom Closed Loop Feedback Control System for the 
  Nonlinear Plant 
  (inferred output 0φ  is dependent on the weightings shown dotted) 
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3 System Models 
 
The polynomial matrix system models, for the system shown 
in Figure 1, may be listed as follows: 
 
Disturbance model: (assumed linear) 
 1 1 1 1( )  ( ) ( )fd dW z A z C z− − − −=   (1) 
Reference model: (assumed linear) 
 1 1 1 1( )  ( ) ( )fr rW z A z E z− − − −=  (2) 
where without loss of generality these models have the 
common denominator matrix 1( ).fA z−  Note that the 
arguments of the polynomial matrices are often omitted for 
simplicity. 
 
Nonlinear time-varying plant model: 
 ( )( ) ( ) ( )-k

ku t z u t=W W   (3) 
where k denotes the magnitude of the common delay 
elements in the output signal paths.  Most of the initial results 
do not need a more detailed breakdown of the plant model 
structure.  However, in the later sections it will be assumed 
that any unstable modes of the plant are included in a 
stable/unstable linear time in variant block of  
polynomial matrix form: -1

2 2 2 ,k kA B=W  where 

( )( ) ( )( )2 1 k k ku t W u t=W W .  Thence, the total plant model: 

 ( )( ) ( ) 
2 1 ( )k

k ku t z W u t−=W W  (4) 

and 2 2 .k
kB z B−=  

 
3.1 Signals 
 
The signals shown in Figure 1 may be listed as follows: 
 

Error signal:  ( ) ( ) ( )e t r t y t= −  (5) 

Plant output:  ( ) ( ) ( )( )y t d t u t= + W  (6) 

Reference:  ( ) ( )rr t W tω=  (7) 

Disturbance signal:  ( ) ( )dd t W tξ=  (8) 

Combined signal:  ( ) ( ) ( )f t r t d t= −  (9) 
The power spectrum for the combined reference and 
disturbance model can be computed, noting these are linear 
subsystems, using: 
 * *

ff rr dd r r d dФ Ф Ф W W W W= + = +  (10) 
and the generalized spectral-factor Yf  may be computed 
using: 
 *

f f ffY Y Ф=  (11) 
where the system models ensure Yf  is strictly minimum phase.  
Note that a measurement noise model has not been included 
to simplify the equations.  This is appropriate so long as the 
control cost-function weighting, introduced in the next 
section, ensures controller roll-off at high frequencies. 

 
4 Optimal Nonlinear Generalized Minimum 
Variance (NGMV) Problem and Solution 
 
The optimal NGMV control problem involves the 
minimisation of the variance of the signal ( ){ }0 tφ  in Figure 
1.  This signal involves an error signal dynamic cost 
weighting matrix: 1( )cP z− , represented by a linear 

polynomial matrix: 1
c cd cnP P P−=  and a possibly nonlinear 

dynamic control costing operator term: ( )( )c .u tF   The 
choice of dynamic weightings is critical to the design and 
typically cP  is low-pass and cF  is a high-pass transfer.  The 
signal:  
 ( ) ( )( )0{ ( )} c ct P e t u tφ = + F  (12) 
is to be minimized in a variance sense, so that the cost index 
to be minimised:  
 ( ) ( ){ } ( ) ( ){ }{ }0 0 0 0

T TJ E t t E trace t tφ φ φ φ= =  (13) 

where {}E ⋅ denotes the expectation operator.  Note that in 

some applications the signal ( )0 tφ may represent an inferred 
output.  That is, this signal represents the output from a 
subsystem that cannot be measured directly. 
 
If the smallest delay in each output channel of the plant is of 
magnitude k  steps this implies the control at time t affects 
the output at least k  steps later.  For this reason the control 
costing can be defined to have the form: 
 ( ) ( ) ( )( )c c

k
ku t z u t−=F F  (14) 

Typically this will be a linear operator but it may also be 
chosen to be nonlinear to cancel the plant input nonlinearities 
in appropriate cases.  The control weighting operator ckF  is 
assumed to be full rank and invertible. 
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Theorem:  NGMV Optimal Controller 
 
The NGMV optimal controller to minimize the variance of 
the weighted error and control signals may be computed from 
the following equations.  The assumption is made that the 
nonlinear possibly time-varying operator ( )c k ckP −W F has a 
stable causal inverse, due to the choice of weighting 
operators cP  and cF . 
Diophantine equation: The smallest degree solution (G0,F0), 
with respect to F0, must be computed from the polynomial 
matrix equation: 
 0 0

k
pf cd cf fA P F z G P D−+ =    (15) 

where the left coprime polynomial matrices pfA  and cfP  
satisfy: 
 1 1

pf cf cn fA P P A− −=   (16) 

and the spectral factor fY  is written in the polynomial matrix 

form: 1 .f f fY A D−=  
Optimal control: The optimal control may be computed as: 

 
( ) ( )

( )( )( )
11

0

1 1
0          

f k ck

pf cd f

u t F Y

A P G Y e t

−−

− −

= −W F
 (17) 

 
5 Concluding Remarks 
 
A relatively simple controller shown in Figure 2 for nonlinear 
multivariable and possibly time-varying systems was 
introduced.  The closed loop stability of the system was 
shown to depend upon the existence of a stable inverse for a 
particular loop operator.  This operator depended upon the 
cost weighting definitions.  It was shown that a possible 
starting point for weighting selection was through the 
relationship to a PID controller.  That is, if it is assumed that 
PID controller exists, to stabilize the delay free plant model 

kW , then this guarantees that existence of at least one set of 
control weightings that will ensure closed-loop stability. 
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Figure 2:  Control Signal Generation and Controller Modules 
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The assumptions made in the definition of the system 
reference and disturbance models and the specification of the 
cost index, were all aimed at leading to a simple controller 
solution.  However, note that the plant description can be 
very general.  The structure of the system was chosen so that 

the main polynomial matrix equations to be solved are all 
linear.  The controller is therefore simple to compute and 
implement. 
 
A major advantage of the NGMV solution is that the only 
knowledge of the nonlinear plant model kW that is required 

is the ability to compute an output km ( ) ( )( )kt u t= W  for a 
given control input sequence { }( )u t .  Such a model could be 
in Fortran or C code, or might even be a neural network.  The 
remaining computations concern the linear disturbance and 
reference signal models and knowledge of the transport delay 
element of length k.  These are representative linear 
approximations and experience suggests they will be 
adequate so long as they capture the dominant frequency 
response behaviour.  It follows that such a controller can be 
calculated without the usual model information required in 
traditional model base control law design. 
 
The relationship to the Smith Predictor was discussed for two 
reasons.  Firstly the extension of Smith’s ideas to the 
nonlinear problem is interesting and provides a practical 
method of implementing these controllers, when the plant is 
open-loop stable.  Secondly the physical structure is useful to 
provide an intuitive understanding of the operation and 
properties of the proposed Nonlinear GMV controller.  The 
Nonlinear Smith Predictor, is particularly valuable, since it 
relates to a well known technique and thereby provides some 
confidence in the nonlinear version. 
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