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Department of Mechanical Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK 

 

Abstract 

The extended version of the latest Linear Matching Method (LMM) has the capability to evaluate the stable cyclic 

response, which produces cyclic stresses, residual stresses and plastic strain ranges for the low cycle fatigue assessment 

with cyclic load history. The objective of this study is to calculate ΔJ through the LMM and suggest future development 

directions. The derivation of the ΔJ based on the potential energy expression for a single edge cracked plate subjected to 

cyclic uniaxial loading condition using LMM is presented. To extend the analysis so that it can be incorporated to other 

plasticity models, material Ramberg-Osgood hardening constants are also adopted. The results of the proposed model 

have been compared to the ones obtained from Reference Stress Method (RSM) for a single edge cracked plate and they 

indicate that the estimates provide a relatively easy method for estimating ΔJ for describing the crack growth rate 

behaviour by considering the complete accumulated cycle effects. 

 
Keywords: cyclic J integral; Linear Matching Method; single edge cracked plate 

1. Introduction 

The ability to predict crack growth continues to be an important component of research for several 

structural materials. Crack growth predictions can aid the understanding of the useful life of a structural 

component and the determination of inspection intervals and criteria. Therefore, more accurate and reliable 

numerical approaches for estimating crack propagation behaviour due to fatigue damage during a specified 

operation period are needed. 

Fracture mechanics is a well known approach for predicting the crack propagation and the analysis can be 

based on linear-elastic or more complex elastic plastic (nonlinear) models. The cyclic J-integral based on the 

fracture mechanics was first proposed and implemented by Dowling and Begley [1] as a parameter which 

correlates with the crack growth rate, da/dN,. values of ΔJ plotted vs. corresponding crack growth rates 

da/dN, on a double logarithmic scale, exhibited power law behaviour similar to the Paris equation [2] so that it 

is possible to write  

(1) 

Where A and m are constants found from the least-square regression of data.  

GE/EPRI and Reference Stress Method (RSM) are the simplified methods to calculate ΔJ. It was assumed 

that the ΔJ is the summation of elastic and fully plastic solutions. The ΔJ based on these two methods 

required the Ramberg-Osgood coefficient and strain hardening index as basic input to represent material 

tensile data. The disadvantage here is that Ramberg-Osgood fitting of the stress-strain curve can be seriously 

inaccurate, leading to inaccuracy in the estimated J [3, 4]. Additionally, while applying the GE/EPRI schemes 

for wide variety of test data of different crack geometries with wide range of material properties, it has been 

observed that GE/EPRI schemes highly over predict plastic ΔJ in the elastic to fully plastic transition region 
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with respect to the incremental plasticity finite element solutions [5, 6]. In this study, the proposed ΔJ results 

will be compared with the one produced by the RSM. The estimate of ΔJ by the RSM in [7] is given by: 

 

 (2) 

where  

(3) 

(4) 

Here PL is the limit load for the cracked geometry, and Δεref is the strain range corresponding to Δσref on the 

material cyclic stress-strain curve, which is given by the description of Ramberg-Osgood equation.  

Another simplified ΔJ method was introduced by Dowling and Begley [8] on A533B steels, using an 

approximation of the J-integral based on the area under load–displacement curves—a simplified model 

proposed by Rice et al. [9]. ΔJ values calculated from load-displacement data were used [10] to correlate 

fatigue crack growth data in steels. ΔJ can be expressed by the potential energy change with crack growth as 

[11], 

(5) 

where ΔU is the potential energy, B is the specimen thickness, and a is the crack length; ΔU is given by,  

(6) 

where ΔP is the loading amplitude and δ is the displacement. Thus, ΔU is an important factor in controlling 

the fatigue crack propagation [12].  

Sumpter and Turner [13] expanded Equation (5) and rewrote it in the following form: 

(7) 

Je and Jp are the elastic and plastic components, respectively, of the total J value from monotonic case, and 

can be expressed by the following equations: 

 (8) 

 (9) 

where Ue, and Up are the elastic and plastic components, respectively, of the total energy, ŋe, and ŋp are their 

corresponding elastic and plastic work factors, (W- a) is the ligament length and W is the specimen width. 

This unconventional approach to the J-integral, based on the potential energy approach was call ASTM 

standard method. Equation (8, 9) shows that Je and Jp are a linear function of Ue
 
and Up. 

[14-16] are the studies that investigated the behaviour of ΔJ with fatigue crack propagation for steels using 

load-displacement curves methods. It is important to notice that in all the studies mentioned above, ΔJ was 

calculated for each individual cycle. By adding the plastic contributions to the elastic terms and the plastic 

contributions are calculated using the areas under load–displacement curves. To date, the accumulated effects 

over the entire cycle have not been considered numerically.  One of the purposes of this paper is to use a 

direct method to include these effects for calculating ΔJ. 

The load–displacement curves approach (5) and ASTM standard methods (7-9) are selected in this study for 

the cyclic loading case, since the theoretical basis appears to be the best and permits easier processing of 

empirical data. Thus, the elastic–plastic cyclic J-integral is expressed as the summation of elastic and fully 

plastic solutions for various crack geometries and loading conditions which yield the following formula for 

estimating the total ΔJ value [17]: 
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 (10) 

Equation (5) and the form of ASTM show that ΔJe and ΔJp are a function of ΔUe
 
and ΔUp, respectively. ie. 

(11) 

where ΔJe and ΔJp are the elastic and plastic portion of ΔJ. And ΔUe
 
and ΔUp are elastic and plastic strain 

energy respectively, as shown in the hysteresis loop of Fig.1, and their values will be calculated from Linear 

Matching Method (LMM) by accounting for the cumulative cycle effect. 

 

  

 

 

 

 

Fig.1 Hysteresis loop under cyclic loading case 

The LMM is recognized as one of the most powerful methods among the direct methods [18, 19]. The LMM 

is distinguished from the other simplified methods by ensuring that equilibrium and compatibility are satisfied 

at each stage [18, 19]. The aim of this paper is to calculate the ΔJ through the extended version of LMM, 

which has a new capability to evaluate the stable cyclic response: the cyclic stresses, residual stresses, elastic 

& plastic strain energy and plastic strain ranges for the low cycle fatigue assessment with cyclic load history. 

By the use of this link, the cumulative cyclic effect of ΔJ can be solved. 

In order to provide the energy form of ΔJ predictions, this work has been carried out on a single edge cracked 

plate subjected to cyclic tensile loading. This work has resulted in the formulation of a ΔJ estimation scheme 

using LMM which is the subject of coming sections of this paper. The scope of the study was: 

(a) to obtain ΔJe vs ΔUe and ΔJp vs ΔUp relationships, using finite element computations, for a single edge 

cracked plate under cyclic tensile loading; the crack depth to plate depth ratios (a/W) used are 0.05, 0.075 and 

0.1; the material models used are elastic perfectly plastic and Ramberg-Osgood model with the material work 

hardening exponent, n, with 5, 8 and 20; 

(b) to formulate a ΔJ estimation scheme in energy form, based on the finite element results obtained in (a); 

(c) to compare and validate the ΔJ estimation with the RSM result.  

 

2. Numerical Procedures for Defining Elastic and Plastic Energy (ΔUE
 
and ΔUP) Through LMM 

2.1 Cyclic load history 

Considering the following problem, a structure is subjected to a cyclic history of varying surface loads 

P(xk,t) acting over part of the structure’s surface ST. The variation is considered over a typical cycle tt 0 in 

a cyclic state. The remainder of the surface S, is denoted by Su, and the displacement uk=0. 

Corresponding to these loading histories there is a linear elastic solution history; 

 (12) 

where 

ij̂ denotes the varying elastic stresses due to ),( txP k

. 

2.2 Asymptotic cyclic solution 
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For the cyclic problem defined above, the stresses and strain rates will become asymptotic to a cyclic state 

where;  

  (13) 

The cyclic stress solution may be expressed in terms of two components, the varying elastic stress solution, 

and the associated changing residual stress field. The linear elastic solution (i.e. 0p

ij ) is denoted by 

),(ˆ txkij . The general form of the stress solution for the cyclic problems involving changing residual stress 

fields is given by; 

(14)  

The r

ij is the changing residual stress during the cycle and it satisfies; 

(15) 

where )( kij x is the constant element of r
ij . 

2.3 Numerical procedure for the varying residual stress field and plastic strain range 

The Linear Matching Method procedure for the assessment of residual stress history and the associated 

plastic strain range due to the cyclic component of the load history is described below in terms of N discrete 

time points. Following the same procedure as [20], for a strictly convex yield condition, the only instants 

when plastic strains can occur are at the vertices of the stress history )(ˆ
nij t , n=1 to N, where N represents the 

total number of time instants, 1t , Ntt ......2 , of the load extremes where plastic strain occurs and nt  

corresponds to a sequence of time points in the load history. Then the plastic strain accumulated during the 

cycle 

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P
ij t is the increment of plastic strain that occurs at time nt . The entire 

iterative procedure includes a number of cycles, where each cycle contains N iterations associated with N load 

instances. The first iteration is performed to evaluate the changing residual stress 
1
ij  associated with the 

elastic solution )(ˆ
1tij

 at the first load instance.
n

mij  is defined as the evaluated changing residual stress for 

nth load instance at mth cycle of iterations, where n 1,2,...N and m 1,2,...M.  At each iteration, the 

above changing residual stress 
n

mij  for nth load instance at mth cycle of iteration is calculated. When the 

convergence occurs at the mth cycle of iterations, the summation of changing residual stresses at N time 

points must approach to zero ( 


N

n

n

Mij
1

 0) due to the stable cyclic response. Hence the constant element of 

the residual stress for the cyclic loading history is 

(16) 

and determined by  

(17) 

The corresponding converged increment of plastic strain occurring at time nt  is calculated by  

(18) 

where n is the iterative shear modulus and notation ( ' ) refers to the deviator component of 

ij  and ij . 
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)( nij t  is the converged accumulated residual stress at the time instant nt , i.e. 

(19) 

The detailed iterative procedure for the evaluation of the residual stress history and associated plastic strain 

range has been implemented into ABAQUS through user subroutines UMAT and given in [20]. 

2.4 Numerical procedure for the elastic and plastic energy range 

The total internal energy range under cyclic loading is given as:  

(20) 

where ΔUe represents the linear elastic energy range as: 

(21) 

where V corresponds to the total volume of the plate, and ΔUp represents the plastic energy range as: 

(22) 

Where Vp is corresponding to the plastic volume of the plate and the value of Δε
p 

is obtained from equation 

(18) 

3. Numerical Example 

3.1 Geometry and material model 

The material properties of the single edge cracked plate are yield stress, ζy=700 MPa, Poisson’s ratio, 

ѵ=0.3, Young’s modulus, E= 200 GPa and its geometrical shape is shown in Fig.2a. For non-linear analysis, 

the elastic perfectly plastic and Ramberg-Osgood types of material model are adopted in this study. The 

following Ramberg-Osgood type stress-strain relationship for the form of monotonic loading is [22]:  

 (23) 

where ε is the total strain, ζ is the applied stress, E is the elastic modulus, ζ0 is reference stress usually taken 

as 0.2% yield stress (ζy), and α and n are the Ramberg-Osgood plastic hardening constants. This can be 

converted to fatigue loading using stress and strain ranges as: 

 (24) 

where Δζ is the true stress range, Δε is the true strain range. At the lower limit, n=1, the above equation 

represents linear-elastic behaviour, and at the upper limit, n=∞, it may be represented as an elastic-perfectly 

plastic behaviour. The first term on the right-hand side of the above equation presents the elastic part and the 

second term presents the plastic part. 

Then the plastic strain amplitude from equation (24) can be written as: 

 

(25) 

and 

 

(26) 

  

In this study the reference stress (ζ0) is taken as 0.2% yield stress (ζy), where ζy is defined as half the stress 
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range that results from a strain range of 0.2% in the steady state as: 

 (27) 

From equations (25, 26), α can be evaluated with given yield stress (ζy) as: 

 (28) 

From equation (28) it is important to note that when ζ0=ζy, α is independent of the Ramberg-osgood plastic 

hardening constant n.     

The elastic perfectly plastic and the Ramberg-Osgood material model with power hardening exponents in 

equation (24) n=5, 8, 20, and the crack length ratio a/W=0.05, 0.075, 0.1 are used to develop the ΔJ 

estimation scheme and to illustrate the features of the ΔJ vs. potential energy curves. All models have an 

aspect ratio L/W=4. Fig.2c shows the curves of the above mentioned material constitutive relations.  

 

 

 

 

 

 

 

 

                          a                                    b                                                                 c                                                         d 

Fig.2 (a) Single edge cracked plate subjected to cyclic tensile loading (b) Global FEM and relative sub model (c) The curve of 

constitutive relation for elastic perfectly plastic and Ramberg-Osgood material model with different hardening n (d) The cyclic tensile 

loading history with tension range Δζp 

3.2 Loading 

The single edge cracked plate is subjected to cyclic tension loading under plane strain condition. The 

detailed cyclic loading histories are given in Fig.2d, which shows a cyclic loading history with two load 

extremes during each load cycle. The two extremes of loading history (Fig.2d) can be formulated as 

ζp(t1)=Δζp/2 and ζp(t2)=-Δζp/2 , respectively, where Δζp
 
 represents the tension range. The reference tensile 

loading range with loading magnitude equal to 100MPa is used in cyclic tension cases.  

3.3 The global finite element model 

Half-model is required for the cyclic tensile loading condition, as shown in Fig.2b. The boundary 

condition is imposed in the FEM and rigid body motion for the cracked plate is prevented by restraining the 

two degrees of freedom of the corner node opposite the cracked face. Because the ΔJ includes energy type 

terms within a relatively remote boundary encompassing the crack tip, it is not necessary to use special 

elements to account for the stress singularity at the crack tip. Thus, the analysis is performed using ABAQUS 

type CPE8R 8 node quadratic quadrilateral elements with reduced integration scheme. 
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3.4 The submodeling 

Recently, the submodeling technique has often been used in the FE numerical analysis to study in detail an 

area of interest in a model. Herein, the area of interest is the region of high stress caused by the individual 

crack as shown in Fig.2b. The main idea of the submodeling technique is to perform a global-local transition. 

This approach gives an opportunity to make a local mesh refinement, since as the submodel region has a finer 

mesh, a submodel can provide an accurate, detailed solution. Besides better accuracy, another advantage is 

that one can avoid the other high stress fields caused by other stress risers, i.e., boundary conditions. In order 

to investigate the dependence of the cyclic J-integral results on the submodel size, five different submodel 

size ratios are considered in this study, which are Asub1/AGlobal=0.015, 0.05, 0.13, 0.24, 1.0. 

4. An Analysis of Energy Form Expressions for ΔJ 

This section presents the derivation of a ΔJ expression from FEA simulations. The J value from ABAQUS 

is composed of elastic, Je, and plastic, Jp, parts. However, these values provided by ABAQUS are only valid 

for the monotonic case, and there is no ΔJ value account for the cyclic loading case from ABAQUS. A 

reasonable approximation to obtain the values of ΔJ can be achieved by performing a monotonic loading 

calculation, but with ζy replaced by 2ζy [23, 24]. This conclusion was also examined by Chen at el. [25] that 

discovered that in an un-cracked body subjected to variable loading conditions, the variations between such a 

monotonic loading solution with an equivalent cyclic solution, measured after a reasonable number of loading 

cycles, is relatively small. The above assumption could be explained by Fig.3, which shows the maximum 

principle strain range for cyclic tensile loading with a/W=0.075 and submodel size Asub4.  

Both monotonic and cyclic loading cases have similar maximum principal plastic strain range at the crack 

tip, as observed in Fig.3. Then using such an assumption, ΔJ values for two-dimensional elastic-plastic finite 

element analyses under fatigue loading are then identified or replaced by the J-integral values for the 

monotonic loading by employing the finite element package ABAQUS.  

  

 
 

                                             a                                                          b                                                   c  

Fig.3   Maximum principal plastic strain for a single edge cracked plate subjected to cyclic tensile loading with a/W = 0.075 (a)ABAQUS 

result from monotonic case (b)ABAQUS result from step-by-step cyclic loading case (c)LMM result for cyclic loading case 

From Figs.3b-3c, it is observed that the LMM solution gives better results than the step-by-step cases 

provided from ABAQUS comparing to the monotonic one. The reason for the poorer results of the step-by-

step inelastic analysis may be since while conducting the analysis, the cyclic response values do not reach the 

steady cyclic state. Past investigations have revealed that the conduction of such solutions requires relatively 

long analysis times. In order to simplify the calculations, the cyclic solutions (i.e. ΔUe and ΔUp) from LMM 

are adopted for the coming sections. In the following sections, the relationship between ΔJe, ΔUe and  ΔJp, 

ΔUp will be introduced. 

a a a 
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4.1 Formulation of ΔJe using submodeling  

The elastic portion, ΔJe, can be calculated from the relationship between ΔJ
*
 and ΔU

*
/Asub, where ΔJ

*
 and 

ΔU
*
/Asub, represent the cyclic J-integral and potential energy rate from the linear elastic material model, 

respectively.  

4.1.1 The relationship between ΔJ
*
 and ΔU

*
/Asub: As observed from Fig.4a, ΔJ

*
 is a linear function of 

ΔU
*
/Asub for the linear elastic material model, which is independent of the submodel sizes. This relationship 

can be formulated as: 

(29) 

vhere, C is the rate at which ΔJ
*
 increases with the elastic energy rate ΔU

*
/Asub. 

4.1.2 The relationship of ΔU
*
/Asub and ΔUe /Asub using submodeling: In order to calculate ΔJe for inelastic 

material model by applying the same form as ΔJ
*
. The value of ΔU

*
/Asub and ΔUe/Asub are being compared 

with elastic perfectly plastic and Ramberg Osgood material model where ΔUe/Asub , is the elastic potential 

energy rate from those inelastic material models. Fig.4b shows the variations of the difference in ΔU
*
/Asub and 

ΔUe/Asub with the increasing submodel size from Asub1 to Asub5. It is observed from Fig.4b that the values of 

ΔU
*
/Asub and  ΔUe/Asub are the same and not affected by the types of material model with the same submodel 

size and with all load levels up to the limit load. As it may be observed from Figs.4a-4b, the results of elastic 

portion of cyclic J and the potential energy rate obtained by the submodel size equal to Asub1 deviate 

significantly compared to the others. This phenomenon could be explained by Fig.5a.     

Fig.5a shows the equivalent plastic strain range with different submodel sizes and with applied cyclic 

loading P=1000Mpa. 

In Fig.4b, it is observed that the results of elastic strain energy rate from the submodel sizes Asub1 and Asub2 

have different values than the other submodel sizes. These differences become larger with increasing applied 

loading by comparing to the other submodel sizes. As observed from Fig.5a, for the load levels equal to 85% 

of limit load, the submodel sizes equal to Asub1 and Asub2 are not sufficiently large to cover the plastic strains 

zone occuring on the global model. The values of ΔU
*
/Asub and ΔUe/Asub are stabilized for the submodel size 

equal to Asub3-Asub5 (Fig.4b) for the load levels up to the limit load, since these sizes cover the plastic strains 

zone caused by the individual crack (Fig.5a). Figs.4b-5a also show that the elastic potential rate is stabilized 

for the range of submodel size ratio (Asub /AGlobal ) from 0.13 to 1.  

 

 

 

 

 

 

 

 

 

 

                                                          a                                                                              b  

Fig.4 (a) The relationship between elastic cyclic J and elastic energy rate with different types of material model and submodeling size 

ratio (b) The relationship between elastic energy rate and submodelling size ratio for different types of material model with all loads up to 

limit load 
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4.1.3  The submodeling boundary: From the above results it can be concluded that for the single edge cracked 

plate under cyclic tensile loading case, the submodel boundaries should be taken far from the crack tip, so that 

the stress field in the boundary is completely unaffected by the crack. This means that the selected boundary 

should be able to surround the plastic zone completely, i.e., including the total plastic energy ΔUp caused by 

the individual crack only. 

4.1.4 The relationship between ΔJe and ΔUe /Asub: From the relationship between ΔU
*
/Asub and ΔUe/Asub, the 

elastic portion, ΔJe from the inelastic material model can be calculated using the linear solution C, and the 

elastic energy ΔUe from elastic-plastic solution as: 

(30) 

Equation (30) is established on the assumptions that ΔJe is a linear function of ΔUe /Asub (Fig.4a), and C is 

the slope of the lines calculated from linear elastic material. This equation is independent of the material 

model that is considered in this study.  
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Fig.5 (a) The equivalent plastic strain range with different submodelling sizes for elastic perfectly plastic material model at P=1100 MPa 

(b) The relationship between plastic cyclic J and plastic energy for different types of material model 

 

 

 

 

 

 

 

 

 

 

Fig.6 The relationship between plastic cyclic J and plastic energy for different types of material model (a) with β=3/4 (b) with β=1  
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variation of ΔJp with ΔUp , for elastic perfectly plastic and Ramberg Osgood material model with the applied 

loading up to limit load is shown in Fig.5b. Fig.5b also shows that the increase in ΔJp values for Ramberg 

Osgood and elastic perfectly plastic material model seem to have a linear variation with increasing ΔUp. By 

plotting ΔJp against the power formulation of ΔUp
β
 for a/W=0.075 (Fig.6), an approximate linear relationship 

is established which can be expressed as: 

(32) 

where D, the slope of the lines in Fig.6, is a function of geometric, material model and has to be determined. 

The power index β is included to form the linear relationship of ΔJp. In Fig.6a β is chosen as 3/4 for all 

inelastic material models that are considered in this study. As well known, if the plastic zone size is less than 

about 10% of the crack length, small-scale yielding conditions exist around the crack tip. Fig.6b shows 

variation of ΔJp with ΔUp
β
 (with β=1) for different inelastic material model with the plastic zone size up to 

50% of the crack length. It is observed from Fig.6b that ΔJp is a linear function of ΔUp
β
 (with β=1) for cyclic 

tensile loading case with different inelastic material model. Therefore, within the region of the plastic zone 

size, up to 50% of the crack length, equation (32) can be rewritten as, 

(33) 

Equation (33) has the same formulation as the ASTM ones (9), which is established on the assumptions 

that ΔJp is a linear function of ΔUp.  

 

4.3 Formulation of ΔJ 

 It can be concluded from the above discussion that for the single edge cracked plate under cyclic tensile 

loading, the cyclic J integral, ΔJ, can be expressed as, 

 (34)  

β=1, for plastic zone size up to 50% of the crack length.  

 

5. Proposed ΔJ Estimation for Single Edge Cracked Plate 

5.1 Determination of C 

 

  

 

 

 

 

 

 

Fig.7 (a) The relationship between ΔJe and ΔUe/Asub for elastic perfectly plastic material model with different crack size ratio (b) The 

relationship between ΔJe and ΔUe/Asub for different material constitutive model with a/W=0.075 (c) The relationship between plastic 

cyclic J and plastic energy, for different crack length ratio with β=3/4 (d) with β=1  
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a/W=0.075 are examined by plotting ΔJe against ΔUe/Asub respectively as shown in Fig.7a and Fig.7b. In 

Fig.7a and Fig.7b the size of the submodel is equal to Asub4. It is observed from Fig.7a and Fig.7b that the 

dimensionless parameter C is independent of the inelastic material model, and is a function of a/W ratio only.  

Therefore, slope C is a function of f(a/W) and is formulated as, 

(35) 

where f(a/W) is the influence function for the crack ratio range. 

In order to find this influence function, the slope of ΔJe is replotted in graphs of function f(a/W)  against a/W, 

as shown in Fig.8a. Trend lines are fitted to the data obtained from the ΔJe result of different crack ratios to 

show the influence function. Equation (36) is the obtained from the influence f Keywords: cyclic J integral, 

Linear Matching Method, single edge cracked plate 

unction for the slope C. 

(36) 

 

 

 

 

 

 

 

 

 

 

Fig.8 (a) Influence function f(a/W) for slope C against crack length ratio (b) Influence function g(a/W) for slope D against 

crack length ratio for β=3/4 (c) for β=1 (d) Influence function h(n) for slope D against Ramberg-Osgood 

material hardening n with β=3/4 (e) with β=1 

5.2 Determination of D 

In order to determine the formulation of function D from the ΔJp values, the variation of ΔJp with ΔUp
β

 for 

three a/W ratios with elastic perfectly plastic material model is examined by plotting ΔJp against ΔUp
β
  for 

β=3/4 and β=1 as shown respectively in Fig.7c and Fig.7d. 

It is observed from Fig.6 and Figs.7c-7d that the slope D is a function of a/W ratio and inelastic material 

model for different β values.  

In order to simplify the formulation, slope D is assumed to be the product of two independent functions g(a/W) 

and h(n). Therefore, parameter D is formulated as, 

(37) 

Where a is the crack length, B is the thickness of the plate, and g(a/W), h(n) are the influence functions for the 

crack length ratio range and the inelastic material model. 

In order to find these influence functions, the results of ΔJp are replotted in graphs of functions g and h 

against a/W and n respectively as shown in Figs.8b-8e for β=3/4 and β=1. Trend lines are fitted to the data 

obtained from the results of ΔJp vs ΔUp
β

 for different crack length ratios and inelastic material model with 

β=3/4 and β=1, to show the influence function. 

Equations (38) and (39) are the obtained influence functions for the crack length ratios ranging from β=3/4 
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material model range for β=3/4 and β=1, respectively. 

 Once C and D are defined, the cyclic J integral value is calculated for the single edge cracked plate under 

cyclic tensile loading mentioned in this study. 

 

For β=3/4 

(38) 

For β=1 

    (39) 

 

For β=3/4  

With Ramberg Osgood parameter material n ranging from 5-20 

(40) 

with elastic perfectly plastic material model 

(41) 

For β=1  

With Ramberg Osgood parameter material n ranging from 5-2 

(42) 

with elastic perfectly plastic material model 

 (43) 

 

6. Validation and Discussion of the Estimation Scheme 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 Comparison of the RSM and proposed ΔJ: (a) with different types of material model (b) with different crack length ratio 
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In this section we will consider first the constitutive relation of a cracked plate with different Ramberg-

Osgood material. The ΔJ equation is obtained in section 5, for single edge cracked plate loaded in cyclic 

tension. The results obtained from the ΔJ equation are compared graphically with Reference Stress Method, 

with different Ramberg-Osgood parameter n. Fig.18a shows that the variation of ΔJ with Ramberg-Osgood 

material, against load ratio ΔP/ΔPL, where ΔPL is the limit load range for the cyclic tensile loading, with 

a/W=0.075. Good agreement is obtained between the proposed ΔJ equation and RSM results when the load 

ratio is smaller than 1.0. As the load ratio is greater or equal to 1.0 the difference of ΔJ between the proposed 

method and RSM becomes very significant, and this difference gets larger with the increasing number of 

Ramberg-Osgood parameter n. Fig.9a also shows that for the load ratio smaller than 1.0, the values of ΔJ drop 

with the increasing number of n, and for the load ratio greater or equal to 1.0, the values of ΔJ rise with 

increasing number of n for both proposed ΔJ method and RSM. This phenomenon can be explained by the 

curves of the material constitutive relations shown in Fig.2c. For the stress range less than twice of yield 

stress, the product of total stress-strain range is decreasing with increasing of n. And, for the stress range 

greater than twice of yield stress, the product of total stress-strain range is increasing with increasing of n. 

Fig.9b shows the variation of ΔJ against load ratio ΔP/ΔPL for different crack depth with Ramberg-

Osgood material n=8. Good agreement of the proposed ΔJ equation and RSM solutions is exhibited when the 

load ratio smaller than 1.0. For load ratio greater or equal to 1.0, the results deviate significantly. 

 

7. Conclusions 

In this study, a general ΔJ calculation method based on the LMM is proposed. The estimation scheme for 

single edge cracked plate under cyclic tensile loading is developed. The following conclusions can be drawn 

from this study: 

1. The proposed ΔJ estimation, primarily derived from fracture mechanics concepts, is now considered 

from direct method though LMM, which includes the cumulative effects over the cycle. The calculated values 

of ΔJ with the applied loading up to limit load are shown to correlate well with RSM under cyclic tensile 

loading.    

2. ΔJe is a linear function of ΔUe /Asub , and this relation is independent of the material models that are 

considered in this study. 

3. ΔJp is a linear function of ΔUp
β
. When β=1, this relation reduced to small scale yielding condition with 

the region of the plastic zone size up to 50% of the crack length. 

4. The hardening constant n for Ramberg-Osgood model has little effect on the values of ΔJ when the 

cyclic loading ratio (ΔP/ΔPL) is less than 1.0 

5. A rapid procedure for predicting the values of ΔJ is provided for single edge cracked plate under cyclic 

tensile loading case. 
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