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Abstract: It is important to be able to calculate the ratchet limit of a component when performing 

integrity assessments of plant components. This paper details the addition of a lower bound ratchet 

limit calculation to the Linear Matching Method. The extension of Melan's theorem into the 

alternating plasticity region is explained, followed by its implementation into the Linear Matching 

Method calculation procedure. Finally, the convergence properties of this method are analysed by 

the analysis of a plate with a central hole subject to cyclic thermal and mechanical loading 
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1. Introduction 

The ability to accurately calculate the shakedown and ratchet limits of plant components subject to 

cyclic loading is of ever increasing importance in many industries. Increasingly accurate shakedown 

and ratchet limit solutions are of particular importance to life extension in the nuclear industry; 

where comprehensive justification is required to prove that components are safe to operate beyond 

their initial design life. 

Shakedown, where the component exhibits entirely elastic behaviour after initial plastic straining, is 

a well established phenomenon and is included in all pressure vessel design codes. The need for 

more accurate shakedown assessment has meant that many numerical methods have been 

developed in recent years which can directly predict the shakedown limit. These methods avoid the 

trial and error nature of traditional cyclic finite element analysis by making use of the bounding 

theorems of Koiter (1960) and Melan (1936). Such methods include nonlinear superposition 

(Hamilton et al, 2002), the GLOSS r-node method (Seshadri, 1995), the Elastic Compensation method 

(Mackenzie et al, 2000) and mathematical programming methods (Liu et al, 1997; Bocciarelli et al, 

2004). In recent years mathematical programming methods have been extensively developed by 

numerous research groups, for example the extension by Simon and Weichart (2011) to include 

multiple load extremes in the load cycle. Mathematical programming methods have also been used 

by the LISA project (Staat and Heitzer, 2003). The numerous European research groups involved with 

the LISA project studied extensions to traditional shakedown analysis including kinematic hardening, 

damaged materials and large deformations.  

In prominent structural assessment procedures, such as the UK nuclear industry's R5 (Ainsworth, 

2003), components are allowed to operate beyond their traditional shakedown limits as long as 

"global shakedown" is satisfied. This is where the plastic strains in some regions of the structure 

form either an alternating plasticity mechanism or an elastic shakedown mechanism. If further 

assessment can prove that the plastic straining caused by the alternating plasticity will not cause 

failure by low cycle fatigue, then it is safe for the component to operate in this state.  



The Linear Matching Method is relatively unique among the direct methods mentioned as it has the 

capability to assess the ratchet limit, and so can determine whether a component is within global 

shakedown or not. In addition to including the effects of temperature dependent material 

properties, this method has recently been extended to include any number of extremes in the load 

cycle (Chen and Ponter, 2010). The LMM ratchet assessment procedure also calculates the plastic 

strain range, which can then be used to perform a low cycle fatigue assessment.  

In terms of the UK nuclear industry, conservatism is a key issue and lower bound shakedown and 

ratchet limits are preferable in any analysis undertaken. For a shakedown assessment this means 

using Melan's theorem to ensure all stresses satisfy yield and thus ensure conservatism in the 

solution. The drawback with lower bound methods, based on Melan’s theorem, is that the high 

stress at discontinuities and concentrations can create convergence problems as the redistribution 

of these localised stresses defines the final limit. These convergence issues arise because the 

solution depends on every integration point in the finite element model satisfying the yield 

condition at all points in the load cycle. The finite element method calculates displacements fields, 

and then the stresses which arise due to this are a secondary calculation, leading to slight 

inaccuracies which can affect lower bounds. If even a single integration point does not satisfy yield 

then the lower bound solution will be dictated by this point. Other reasons for lower bound 

convergence problems include poor meshing around stress concentrations or accumulation of 

numerical error. In contrast to this the upper bound methods such as the Linear Matching Method 

(Ponter and Chen, 2001a, 2001b), based on Koiter's kinematic theorem, use energy integrals over 

the whole volume as a convergence criterion. Because the whole model is considered, the localised 

effects of concentrations become diluted meaning that in general convergence is much quicker and 

more stable. However, upper bounds do not guarantee conservatism because they will predict 

shakedown and ratchet loads which are equal to or greater than the least upper bound associated 

with the class of displacement fields defined by the finite element mesh. Furthermore, recent work 

by O. Barrera, et al (2009) concerning limit loads calculated by the Linear Matching Method has 

shown that the convergence of upper bounds calculated by modulus adjustment procedures can 

appear to have predicted a sub-optimal failure mechanism. Continued solution of the upper bound 

procedure towards the least upper bound then selects the optimal failure mechanism for the applied 

loads and boundary conditions. Whist this phenomenon is uncommon in the majority of solutions 

and does not affect the final converged upper bound limit, the presence of a convergent lower 

bound can be compared to the upper bound and add confidence to the final converged value. 

In order to satisfy the need for conservatism within the nuclear industry, the addition of lower 

bound calculations to the Linear Matching Method has become an area of interest in recent years. 

By having shakedown and ratchet assessment procedures which are able to produce both lower and 

upper bounds simultaneously serves as both a self verification of the implementation and also an 

indicator of the level of convergence attained. Both lower and upper bounds tending towards a 

common solution gives confidence in the implementation of the respective bounding theorems, and 

also mitigates against the “sub-optimal” mechanisms which may be produced by an upper bound 

solution acting alone. The difference between the two final answers gives clues to the user about 

how well solutions have converged. Therefore, the Linear Matching Method framework now has 

shakedown and ratchet assessment procedures which are able to produce both lower and upper 

bound solutions. 



The initial lower bound shakedown assessment procedure was added to the Linear Matching 

Method framework by Chen (2010a). This lower bound calculation was performed alongside the 

upper bound and demonstrated that the lower and upper bounds can produce shakedown limit 

loads which are within 1% of each other. Further verification of both lower and upper bounds was 

provided by application to pipe bends (Chen et al, 2011), welded pipes (Chen et al, 2011a) and 

composite cylinders (Chen et al, 2011b) where the shakedown bounds were confirmed by full step 

by step analysis.  

More recently, a lower bound to the ratchet calculation was proposed by Ure et al (2011) which 

used a similar methodology to that of the shakedown procedure. This method has been applied to 

the analysis of composite materials by Chen (2010b). The upper bound ratchet calculation applies a 

multiplier to only the constant component of the loading, meaning that the level of the cyclic 

component of loading is fixed, where the entire cyclic load history is decomposed into a cyclic 

component and a constant component. However, in the existing lower bound ratchet method (Ure 

et al, 2011; Chen, 2010b), a scalar multiplier is applied to the entire load history rather than the 

constant component of the loading. This means that the level of cyclic loading is also scaled. The 

scaling of the cyclic loading means that the lower bound ratchet limit is effectively being calculated 

for a different load case, and so cannot be compared to the upper bound in a single calculation. To 

compare the lower and upper bounds the entire interaction diagram must be created. This is 

adequate for research purposes, where it is very likely that the entire interaction diagram would be 

created anyway. In industrial applications to assess the integrity of plant components, however, the 

level of cyclic loading is fixed and a single calculation is all that is required to determine if the 

component has sufficient margin against ratcheting.  

The purpose of this paper is to propose, explain and demonstrate the addition of a revised lower 

bound calculation to the Linear Matching Method ratchet analysis procedure. This procedure differs 

from that proposed in (Ure et al, 2011) in that the multipliers produced in the current paper only 

apply to the constant component of loading in the same way as the upper bound calculation does, 

allowing it to be directly compared with the upper bound.  In this paper the established upper bound 

linear matching method is briefly explained, highlighting the details necessary to implement the 

extended lower bound theorem. Melan's static shakedown theorem is then extended to allow the 

calculation of the lower bound ratchet limit. The equations used to calculate the lower bound 

multiplier are derived by making use of the von Mises yield criterion and their numerical 

implementation is then explained. Finally, the convergence of the method is demonstrated by a 

benchmark example of a holed plate. The further application and verification of this new lower 

bound LMM to a practical problem is provided in an accompanying paper (Ure et al, 2012), where a 

pipe intersection with a dissimilar material weld is subjected to cyclic thermal and mechanical 

loading. 

2. The Linear Matching Method 

The LMM has been described at great length in other works (Ponter and Chen, 2001a, 2001b) and it 

would be impractical to fully report the entire method here. Instead a brief explanation will be given 

highlighting the details necessary to explain the lower bound method, which is the main subject of 

this paper.  



The linear matching method is an iterative procedure based entirely on linear solutions with spatially 

varying moduli. At points where the stress is above the yield stress, the modulus is reduced. The 

next solution in the iterative procedure uses this modified value of modulus, and the stresses 

redistribute in the same way as they would with an elastic-plastic material.  

Consider a body of volume V and surface area S. A cyclic temperature history θ(xi, t) acts within the 

volume and varying mechanical loads P(xi, t) and constant mechanical loads, F  (xi), act on part of the 

surface ST. The remainder of the surface is constrained to have zero displacement rate. These loads 

act over a time cycle of 0 ≤ t ≤ ∆t, and can be decomposed into their constant and cyclic 

components: 

i i i iF(x ,t) λF(x ) θ(x ,t) P(x ,t)           (1) 

where λ is a load parameter. The linear elastic stress history associated with these loads is: 

ˆ ˆ ˆ( , ) ( ) ( , )F
ij ij ijk k kx t x x t      where ˆ ˆ ˆ( , ) ( , ) ( , )P

ij ij ijk k kx t x t x t      (2) 

where F
iĵ , P

iĵ  and  ij
ˆ  represent the stresses due to F (xi), P(xi,t) and θ(xi,t) respectively. The load 

parameter λ allows a range of loading histories to be considered. For this cyclic problem definition, 

the stresses and strain rates will asymptotically approach a steady cyclic state where 

( ) ( ),ij ijt t t    ( ) ( )ij ijt t t          (3) 

This stress state can be decomposed into four components as shown below in equation (4): the two 

elastic stresses, ˆ ˆF
ij ij   , a constant residual stress accumulated up to the beginning of the cycle, 

ij , and a residual solution which represents the changes during the cycle, r

ij , 

( , ) ( , ) ( )ˆ ˆ( , ) ( )r
ij ij ijk k k

F
ij ijk kx t x t xx t x            (4) 

The constant residual stress ij is the self equilibrating state of stress at the start and end of the 

cycle caused by with the presence of an additional constant load. For a stable cyclic solution there is 

no accumulation of stress from one cycle to the next, and therefore: 

 0( ,0) ( , ) ij k

r r
ij ijk k xx x t             (5) 

Where  0

ij k
x is the constant element of ( , )

r

ij k
x t 

 
associated with the cyclic loading. Based on 

this stable cyclic formulation, the evaluation of the ratchet limit becomes possible if the applied 

loading can be decomposed into constant and varying components. Because the structure is 

subjected to stable cyclic load conditions, the changing residual stress r

ij  is caused directly by this 

cyclic load. When stable cyclic loading conditions are established the applied cyclic loading is 

augmented by the varying residual stress field. The application of a constant load to the component 

in this stable cyclic state causes the formation of a constant residual stress field ij .  



With this in mind, the linear matching method is divided into two stages, which are shown in figure 

1. The first stage considers only the cyclic loading to evaluate the varying residual stress r

ij  and the 

associated plastic strain range. A fixed level of cyclic loading is applied in this stage. The modulus 

adjustment procedure allows the stresses to redistribute and the varying residual stress field is 

developed at each point in the load cycle. The second stage then calculates the maximum level of 

additional constant loading which will not cause the component to ratchet. Stage two is essentially a 

traditional shakedown assessment to calculate the constant residual stress field where the initial 

elastic cyclic stress field is augmented by the varying residual stress calculated in stage 1. This stage 

calculates the maximum level of additional constant loading (and its associated constant residual 

stress field) which can be applied to the component subject to this predefined cyclic loading  before 

ratcheting will begin The convergence of stage two is based on Koiter's theorem which states that if 

1) any kinematically admissible strain rate can be found such that the strain rate is compatible with 

the applied displacement and 2) the plastic dissipation within the structure is less than or equal to 

the applied work, then shakedown does not occur.  

At the end of each iteration, the upper bound multiplier λUB is calculated, which is the level by which 

the constant loading will be scaled in the next increment. This, combined with the modulus 

adjustment procedure, produces a series of monotonically reducing upper bounds. A detailed 

explanation of the implementation of this procedure is given in (Chen and Ponter, 2010). 

3. Extension of Melan's Theorem 

Melan's theorem states that for a given load set the structure will shakedown if a constant residual 

stress field can be found such that the yield condition is not violated for any combination of cyclic 

elastic and residual stresses.  

 ˆ ( , ) ( ) 0ij k ij kf x t x            (6) 

If the applied cyclic stresses are in excess of strict shakedown then an additional varying residual 

stress field, ( , )r
ij kx t , will form and so the total stress at any point in the structure will be given 

by: 

( , ) ( ) ( , )ˆ ( , ) r
ij ij ijk k kij kx t x x tx t           (7) 

With this additional varying residual stress field it is no longer possible to directly use Melan's 

theorem as given in equation (6). The primary reason for this is that the stress state of equation (7) 

may still satisfy the yield condition, but this condition alone does not ensure that ratcheting is not 

occurring and at present no theorem exists in the literature which extends Melan's theorem to the 

ratchet limit.  

However it is possible to extend Melan's shakedown theorem of equation (6) by careful 

consideration of the cyclic loading and the nature of the residual stress fields established by these 

loads. Considering the stress state of equation (7), we use the assumption of Chen and Ponter (2010) 

that the loading can be decomposed into cyclic and constant components. Therefore for a 

component subject to predescribed cyclic load conditions we may be able to assess the ratchet limit 



associated with the addition of a further constant load. In doing this the evaluation of the varying 

residual stress associated with the cyclic loading can be evaluated independently of the constant 

residual stress field associated with the constant loading.  

ˆ ˆ ˆ( , ) ( , ) ( )F
ij ij ijk k kx t x t x           (8) 

Where ˆ ( , )ij kx t 
 is the predefined level of time varying applied cyclic stress and ˆ ( )F

ij kx  is 

the additional time invariant constant applied stress, where λ is a scalar multiplier.  

Initially the steady state response of the structure to the cyclic loading,
 
ˆ ( , )ij kx t 

, is evaluated 

which is assumed to be within the ratchet limit. Hence, the application of this loading causes the 

varying residual stress field to satisfy: 

 ( , ) 0ˆ ( , ) r

ij kij kf x tx t                (9) 

Where ( , )r

ij kx t  satisfies equation (5), and an associated alternating plasticity mechanism where 

there is no net accumulation of total strain during the cycle: 

( ,0) ( , )T T

ij k ij kx x t            (10) 

With the stabilised response of the structure to the cyclic loads and the alternating plasticity 

mechanism determined, a second stage may be constructed to evaluate the ratchet limit of the 

structure subject to an additional constant load using an extended version of Melan's theorem. In 

this extended version of the theorem, the applied cyclic stress, ˆ ( , )ij kx t in equation (6), is 

augmented by the varying residual stress, ( , )r

ij kx t  from equation (9): 

( , )ˆ( , ) ( , ) r

ij k

V
ij ijk k x tx t x t               (11) 

With this augmented cyclic loading the ratchet limit of the component subject to an additional 

constant load can be assessed if a constant residual stress field can be found such that the yield 

condition is satisfied everywhere in the structure at all load instances: 

 ( ) 0ˆ( , ) ( ) ij k

V F
ij ijk kf xx t x            (12) 

With the loading described here, which is in excess of strict shakedown, this extension to Melan's 

theorem is capable of finding the lower bound ratchet limit if the level of cyclic loading is assumed to 

be predefined. 

4. Calculation of the Lower Bound Ratchet Limit 

The upper bound procedure calculates the maximum level of constant loading that will not cause the 

component to ratchet. The extended version of Melan's theorem derived in section 3 allows a lower 

bound calculation to accompany this. The lower bound method presented here only scales the 



additional constant loading (which differs from that presented in (Ure et al, 2011) where the entire 

load history is scaled) by using equation (13) below:  

  0( , ) ( )ˆ ( )LBV
ij ijk k

F
ij kf x t xx            (13) 

Where f() is the yield function, which in this case is the von-Mises criterion. Since we are interested 

in determining the level of additional constant loading which will not cause ratcheting, λLB is used as 

the scalar multiplier to determine this. If the component is not ratcheting then it should be possible 

to scale the elastic constant load in order to satisfy the yield condition for all points in the load cycle 

and at all locations in the structure.  

This lower bound process can be implemented in the linear matching method as an additional 

calculation to complement the separate upper bound method. The linear matching method is 

fundamentally an upper bound method and so the convergence of calculations performed will still 

be based on the kinematic theorem of Chen and Ponter (2010). During each increment in the 

solution, the residual stress fields calculated by the upper bound method can be used in equation 

(13) to evaluate λLB, and so gives the level by which the additional constant loading must be scaled in 

order to make the total effective stress equal to the yield stress. When the modulus adjustment 

procedure has allowed the stresses to redistribute, the lower and upper bound multipliers calculated 

in each increment should converge towards the same solution.  

In a three dimensional stress state each of the three stresses at that point in the load cycle 

(additional constant, constant residual and total varying stresses) has six components, which makes 

the stress state at any point in the model a function of eighteen stress components. These eighteen 

stress components and the yield stress are all known from the upper bound calculation, which leaves 

the multiplier, λLB, as the only unknown. Equation (13) can be re-arranged to find this value. The 

algebra involved in the re-arrangement for λLB is cumbersome and so is detailed in the appendix, but 

results in a quadratic equation: 

 
2

0 LB LBA B C             (14) 

where A, B and C are coefficients containing all 18 stress coefficients and the yield stress. Solution of 

this quadratic is easily performed using the quadratic formula: 

2 4

2

LB B B AC

A


  
          (15) 

This gives the lower bound multiplier for that point in the structure and at one extreme in the load 

cycle. This equation can be used for all extremes in the load cycle to give the lower bound multipliers 

which would satisfy yield at those load conditions. The lowest value of λLB out of all the load 

extremes is taken as the value for that point. Performing this procedure over the entire structure 

results in every point in the structure having an associated value of λLB which will satisfy yield at all 

points in the load cycle. Using the minimum λLB value from every point in the structure gives the 

lower bound multiplier for the entire structure – the scalar value which if used to scale the 



additional constant loading will mean that all points in the structure will have stresses which satisfy 

the yield condition at all points in the load cycle. 

5. Numerical Implementation 

The Linear Matching Method is implemented in Abaqus finite element analysis software (Abaqus, 

2009) by using a UMAT subroutine. As described in Chen and Ponter (2010), the first stage of the 

calculation process considers the cyclic loading and establishes the stabilised cycle (namely 

( , )ˆ ( , ) r
ij kij k x tx t     in equation 11). During stage 1, the stresses at each point in the load cycle 

are evaluated based on the input elastic stresses and the varying residual stress field is established. 

When stage 1 has completed, stage 2 then uses this varying residual stress field to calculate the 

upper bound ratchet limit by scaling the additional constant loading. During this upper bound 

calculation procedure, the constant residual stress field ( )ij kx is calculated as part of the 

procedure. 

Numerically, all of these calculations occur at integration point level during both stage 1 and 2. The 

subroutine considers each integration point individually: the modulus is modified, and the new levels 

of stress and plastic strain are calculated along with the energies required for the upper bound 

solution. The upper bound multiplier, λUB, is calculated at the end of the increment by integrating the 

energies calculated over the volume of the structure. 

The lower bound calculation procedure described in section 4 is performed alongside the upper 

bound calculations during stage 2 of the solution process. The upper bound calculation adjusts the 

modulus of the integration point and then uses this to calculate updated values for the constant 

residual stress field. Along with the elastic stresses from the applied constant loading and the total 

varying stress from stage 1, the upper bound calculation has then defined all the stresses that define 

the stress state at the point. At this stage, the lower bound extracts the 18 stress components 

needed to calculate the coefficients A, B and C of the quadratic of equation (14). This quadratic can 

then be solved to find λLB for that point and load instance. That is the multiplier, which if applied to 

the constant part of the applied stress at that point, would make the effective stress at that point 

and load instance equal to or less than the yield stress.  

In reality, the numerical nature of the solution procedure means that the solution to the quadratic 

has three possible outcomes which are shown graphically in Fig. 2. The horizontal λLB axis crosses the 

stress axis at the yield stress. Any values below this are therefore below the yield stress, and values 

above are above yield.  

The response in Fig. 2a) is the most common, where there are two real and distinct roots. In terms of 

the stresses, this means that any value of λLB which was between these two roots would bring the 

total effective stress at that point below yield. For the solution for the ratchet limit, the maximum 

positive root is taken, as this is the maximum level of additional constant loading which will not 

cause ratcheting.  

The second possible response is that there is only one root (Fig. 2b). Physically this means that only 

multiplying the additional constant stress by that number will bring the stress down to equal the 

yield stress. Being a numerical simulation, it is rare that an integration point will only have one root. 



The third possibility is that the integration point has no roots at all, meaning that it is impossible to 

bring the stress to below yield by scaling only the additional constant load (Fig. 2c). Theoretically, if 

the component is not ratcheting, this scenario should not occur. This situation arises due the 

accumulation of numerical errors and slight inaccuracies during the solution process. In reality the 

stress may only be fractions of a percent above yield (and so to the user is effectively equal to yield) 

but in terms of the quadratic equation this is enough to prevent solution. When this situation arises, 

the stress components at the point are stored for later validation of λLB. 

To obtain the lower bound multiplier for the entire model the following procedure is used: 

1. Use equation (15) to calculate λLB at each integration point and at each load instance.  

2. Take the average of these values over each element for each load instance. That is, for each 

load instance, the values of λLB at the integration points are averaged within the element. 

3. The minimum of all of the element averages for all load instances is taken as the lower 

bound multiplier for the model.  

Elemental averages of λLB are taken to mitigate against the convergence problems which can occur 

due to stress concentrations and discontinuities. It is possible, by accumulation of numerical error, 

that some integration points in critical regions may produce disproportionately low λLB values 

compared to the other points around it. If the minimum value in the model was taken to be the 

overall multiplier then this single integration point would be preventing convergence simply because 

of numerical errors. Averaging all the λLB values over the element is a safeguard against this by 

diluting the effect of any single integration point. 

When the lower bound multiplier for the model is known, the points which had no roots to the 

quadratic are re-evaluated. The effective stress at these points is re-calculated using the lower 

bound multiplier of the model, and if it is found to be above a threshold (5% above yield, for 

example) then a warning is given to the user. The number of points above this threshold is a useful 

indicator of the level of stress redistribution achieved by the modulus adjustment procedure, and so 

gives the user a useful measure of the level of convergence. 

6. Numerical Verification - Plate with Central Hole 

The method described has been applied to simple numerical example of a plate with a central hole 

in order to demonstrate the solution and convergence properties. 

6.1 Problem Description 

Fig. 3 shows the geometry and finite element mesh used for the holed plate. The ratio between the 

diameter of the hole D and the length of the plate L is 0.2. The ratio between the thickness T and L is 

0.05. Due to the symmetry of the geometry and loading, a quarter model is used with the 

appropriate boundary conditions. In addition, the free edges of the plate are constrained to expand 

in-plane to simulate the expansion of a large plate. The geometry is meshed with 642 elements of 

type C3D20R, a quadratic brick element with reduced integration.   

The plate is subject to a cyclic temperature gradient between the bore of the hole and the outer 

edges. The temperature distribution as a function of radius is given in equation (16), which gives a 



temperature difference between the bore of the hole and the edge of the plate of Δθ. This 

distribution approximates to a temperature of   t    at the bore of the hole and θ0 at the edge 

of the plate. 

     0 0
5( , ) ( ) ln / ln 5ar t t

r
             (16) 

Fig 3c shows the temperature history around the edge of the hole resulting in the two load extremes 

used in the analysis. In addition to this cyclic thermal loading, a constant uniaxial tension, P, is 

applied along one edge of the plate. The plate material is assumed to be elastic-perfectly plastic with 

a yield stress of 360MPa and a thermal expansion coefficient of 5x10-5 oC-1.  

6.2 Results 

The ratchet interaction diagram for the plate is shown in Fig. 4 where the applied temperature 

difference Δθ is normalised against the reference temperature difference of Δθ0=100oC and the 

uniaxial tension P is normalised against the yield stress of the material σy=360MPa.  

The alternating plasticity limit, calculated by the linear matching method shakedown procedure, is 

also shown in the figure and thus shows the capability of the linear matching method to calculate 

lower and upper bound shakedown and ratchet limits.  

The interaction diagram follows the classic bree-like shape, with lower and upper bound converging 

very closely. The convergence of the lower and upper bounds at points A and B is shown in figure 5.  

It is thought that the overall convergence is good in both cases with lower and upper bounds 

converging to a common solution within around 70 increments.  The speedy convergence of the 

lower bound is owed in part to the fact that the lower bound is calculated at an elemental level. It is 

thought that this smoothing process is a necessary and important addition to the lower bound 

calculation procedure. Whilst this approximation reduces the accuracy of the model, the user must 

bear in mind that the lower and upper bounds are there to complement and validate each other. 

Without this averaging, the user would need to run the model for many more increments (in some 

cases three or four times as many) for a lower bound solution taken at integration point level to 

obtain the same multiplier. It is thought that this version of the lower bound gives a better speed of 

solution, which is still accurate enough if the user has a sufficient element density in regions of 

interest. 

In both cases the upper bound converges more quickly than the lower bound. This is due to the fact 

that the upper bound integrates energies over the volume, diluting the effect of the stress 

concentration at the hole. The lower bound requires a greater number of iterations for the modulus 

adjustment procedure to redistribute the stress and therefore satisfy the extended Melan's 

theorem. The convergence plot also shows that the lower bound at point B (within strict shakedown) 

converges more quickly than point A (which is global shakedown). This is due to the fact that point B 

has no varying residual stress and thus a simpler stress state. Stage 1 of the calculation is still 

performed but converges almost instantly and moves onto stage 2. Point A, however, will have a 

significant level of varying residual stress and so will require more stage 1 increments to allow the 

stress to redistribute. The build up of numerical error with these additional increments and the fact 

that the stress fields are more complex in the first place means that the lower bound requires longer 



to satisfy yield at all points in the model. The plateaus seen in the convergence of point A are a result 

of the subroutine using the "best" value of lower bound calculated up to that increment. When the 

stress redistribution is taking place it is possible for the stress distributions to produce a worse lower 

bound than in the previous increment (especially within the first few increments when the rates of 

change of modulus and stress are high). As a result, the subroutines are programmed to use the best 

value of lower bound calculated up to that point.  

 

7. Conclusion 

In this paper an extension to Melan's lower bound shakedown theorem has been proposed for 

structures subject to cyclic loading which is greater than the shakedown limit. This allows the 

calculation of the ratchet limit, which is of use to the nuclear industry where components are 

allowed to be in global shakedown. This extended theorem has been implemented into the Linear 

matching method ratchet limit calculation procedure. Using a re-arrangement of the von-Mises yield 

equation, a multiplier is calculated which scales the additional constant loading so that, for a given 

level of cyclic loading, the component will not ratchet. This method has been applied to the case of a 

plate with a central hole so that convergence properties may be explored, and it can be seen that 

accurate lower bounds are obtained.  
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Appendix 

Equation A.1 defines the total effective stress at any point in the finite element model.  

( , ) ( , ) ( )ˆ ( )LBV
ij ij ijk k k

F
ij kx t x t xx      (A.1) 

And in order to satisfy the extended Melan's theorem, this stress state must satisfy the yield 

condition, according to equation A.2. 

  0( , ) ( )ˆ ( )LBV
ij ijk k

F
ij kf x t xx      (A.2) 

In the context of the linear matching method, we consider an elastic-perfectly plastic material which 

satisfies the von-Mises yield criterion. This then means: 

 ( , ) ( )ˆ ( )LB

y

V
ij ijk k

F
ij kf x t xx      (A.3) 

Where y  is the yield stress. During the incremental solution procedure the eighteen stress 

components and the yield stress are known values for each point in the load cycle. Therefore, to 

calculate the lower bound multiplier for an integration point at one point in the load cycle, the 

equation for the von-Mises yield stress can be expanded and re-arranged: 
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 (A.4) 

Where 
     ˆ ˆ ˆ

3

V V V

x y z

LB F LB F LB F

x x y y z z                  
is the hydrostatic stress.  

Re-arranging this for λLB gives a quadratic: 

 
2

0 LB LBA B C     (A.5) 

With coefficients A, B and C being: 
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