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Abstract. The aim of this paper is to evaluate the ap-

plication of the wavelet packet transform (WP) and sup-

port vector machines (SVM) to transient evoked otoacous-

tic emissions (TEOAE) in order to achieve a detection of

frequency-specific hearing loss. We introduce a system to

determine detection rates between groups of persons with

normal hearing, high frequency hearing loss, and pantonal

hearing loss. The validity and use of our approach is verified

on a different patient group.

1. INTRODUCTION

Transient evoked otoacoustic emissions (TEOAE)

are used as a clinical standard procedure to detect

cochlear hearing loss [1], and measurement equip-

ment [2] is widely available in hospitals. The analysis of

TEOAE is usually performed by an human expert. Re-

cently, signal processing detection systems aiming at an

automated detection of cochlear hearing loss have been

motivated to assist or replace the human expert. These

studies aiming at detection of TEOAE apply discrete

wavelet transform and neural networks [3],[4]. Here, we

introduce a system applying a WP for feature extrac-

tion, a signal-to-noise (SNR)-like criterion for feature

selection and support vector machines for classification.

Fig. 1 gives an overview of our system. For the fea-

ture extraction, a WP is applied. To select the fea-

tures of the data, an SNR-like criterion is applied to

the transformed data resulting in a reduction of co-

efficients to be used for classification and aiming at

a reduction of noisy coefficients. This approach will

be outlined in more detail in Sec. 3, following a de-

TF coefficients for training
TF coefficients for test

Training data Feature selection:
Selection of coefficients 

Classification: Trained SVM classifier
Detection rates for test dataTest data

Feature extraction:
Support vector machinesby SNR−like criterionWavelet Packet transform

Fig. 1. Overview of the detection system for cochlear hearing loss.

scription of TEOAE data in Sec. 2. The classification

of the data is conducted by a support vector machine

(SVM) classifier explained in Sec. 4 more explicitly. In

Sec. 5, based on the training data, a support vector

classification network is found and applied to the test

data group yielding detection rates which describe the

performance of the system and can be compared with

other studies. Finally, Sec. 6 draws the conclusions.

2. TEOAE AND WAVELET PACKET

TRANSFORM

The patient data consists of two sets measured at

the Universities of Homburg and Heidelberg, with each

consisting of an evaluation of more than 200 ears. The

Homburg data represents the training data, the Heidel-

berg data is addressed as test data. Both sets are classi-

fied to one of the three groups of normal hearing (NH),

pantonal (PT), or high frequency (HF) hearing loss, as

defined in Fig. 2. For each ear, the TEOAE equipment

measured a total of 520 responses, each for a period of

20.48 ms, and calculated two partial averages (labelled

A and B) alternatingly over 260 responses each.

Due to the transient nature of the signals, previ-

ous work on the qualitative analysis of TEOAE has

focused on time-frequency (TF) methods, such as fil-

ter banks [5], matching pursuit [6], or discrete wavelet

transforms (DWT) [3], whereby a quantitative study

w.r.t. the achievable distinction of frequency-specific

hearing loss has been performed in [3], based on the

DWT.

The wavelet packet transform (WP) can be seen as a

more general transform compared to the DWT. There-

fore, we briefly describe the DWT here. The DWT is
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Fig. 2. Characterisation of hearing loss for (left) normal hearing, (middle) pantonal HL, and (right) high

frequency HL.

a fixed transform based on a “mother wavelet” from

which the transformation coefficients are derived by

scaling, translation and sampling. Here, we have cho-

sen the Mallat wavelet for which good results have been

reported in similar studies [3]. The transform coeffi-

cients approximately cover TF tiles as illustrated in

Fig. 3 a).

The WP transform is an adaptive transformation sim-

ilar to the DWT but with a flexible partitioning of the

TF plane. The advantage of this approach compared

to the DWT is that the entropy of the transformed

data shall be minimised through variable levels of de-

composition such that the energy is concentrated in

as few coefficients as possible. That minimisation is

achieved by the reduction of the concentration accord-

ing to Shannon’s entropy [7]. Fig. 3 b) shows a sample

WP decomposition.

Based on a parameterisation of the data by the WP,

representing the feature extraction of the data, the ap-

plication of an SNR-like criterion for the feature selec-

tion is conducted which will be described next.

3. FEATURE SELECTION

To quantify and exploit differences in the TEOAE

WP coefficients of the three groups of hearing abil-

ity within the Homburg data, a signal-to-noise-ratio

(SNR) based criterion is invoked. First, the SNR is es-

timated for each of the 512 parameters in the TF-plane

based on the WPs of the two partial averages, WPA(n)

and WPB(n), n = 1, . . . , 512. The SNR of the nth co-

efficient is (coarsely) estimated by comparing the sum

and the difference obtained from the partial averages

A and B:

SNR(n) = 20 log10

|WPA(n) + WPB(n)|

|WPA(n) − WPB(n)| + ε
. (1)

This SNR is calculated for all measurements, and for

each of the 512 WP coefficients within each of the three

hearing ability groups, the distribution is recorded.

The SNR value of a WP coefficient is used to evaluate

the separability of any two groups with different hear-

ing status. The separability can be assessed indepen-

dent of the selection of a specific threshold by means

of a socalled receiver operating characteristic (ROC)

curve. The area underneath the ROC is a measure for

the separability of both groups, and independent of the

definition of SNR-thresholds [8].

As single WP coefficients yield a poor separability

between any two groups, we pick the coefficient that

gives the best separable SNR according to (1) as a

starting value and iteratively grow a coefficient set G to

improve separability. Further coefficients are added to

G from the neighbourhood of surrounding coefficients.

Adjacency is defined by edge and corner connections in

the TF plane. The iteration is stopped when the ROC

does not further improve for the SNR of the coefficients

contained in G.

4. SVM CLASSIFICATION

In the following, we briefly explain SVM, [9],[10].

We consider a three class classification problem for the

classes defined by the groups NH, HF and PT, starting

with an explanation for a two class classification. The

training data originates from the Homburg data, while

the test data comprises the Heidelberg measurements.

The training data is described as a set of training

vectors {pi}i=1 ... M with corresponding binary labels

Si = 1 for the one class, e.g. NH, and Si = −1 for

the second class, e.g. HF. The SVM conducts a clas-

sification of a test vector t by assigning a label Ŝ by

calculating

Ŝ = sign(f(t)) with f(t) =
∑

i

αiSiK(t,pi) + b.

(2)

The αi are called weights and b is the bias, which are

SVM parameters and adopted during training by max-
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Fig. 3. TF tiling comparison between a) a DWT

and b) a sample WP decomposition.

imising

LD =
∑

i

αi −
1

2

∑

i,j

αiαjSiSjK(pi,pj) (3)

under the constraints

0 ≤ αi ≤ C and
∑

i

αiSi = 0 (4)

with C being a positive constant which weighs the in-

fluence of training errors. K(·, ·) is called kernel of

the SVM. If there is a solution for αi, a value for b

is determined. Usually αi = 0 for the majority of i

and thus the summation in (2) is limited to a sub-

net of the pi, which therefore is called the set of sup-

port vectors. There are several commonly used kernels

for SVM, which give some flexibility for the underly-

ing application. Many implementations of kernels can

be found in literature, whereby two popular ones are

Gaussian and polynomial kernels. If K(·, ·) is positive

definite, (3) and (4) is a convex quadratic optimisation

problem, which converges towards the global optimum

assuringly. This optimisation can be quite demanding

in terms of computation time for real-world problems,

and therefore, sophisticated algorithms like sequential

minimal optimisation (SMO) [9] are used for the solu-

tion.

To find a significant value for the training error C,

a leave-one-out (l-o-o) estimation of the error rate is

applied as follows: From the training samples, remove

the first example. Train the SVM on the remaining

samples. Then test the removed example. If the ex-

ample is classified incorrectly, it is said to produce a

leave-one-out error. In [9], an approach to estimate

the maximum l-o-o error is shown avoiding training

the SVM more than once, which is also used for our

study. By changing the value for C stepwise, the mini-

mum for the l-o-o error is found determining the SVM

classification network. For our application, a Gaussian

kernel was used.

So far, we have described the SVM for only two

classes. As we aim at distinguishing 3, we need to

define a multi-class method. In [11] a decision directed

acyclic graph (DAG) for multi-class SVM is introduced.

It is based on an 1-vs-1 classification where the train-

ing is conducted for all possible combinations of the

classes. Based on a trained SVM classifier for each pos-

sible class combination, a binary acyclic graph is used

for testing. Fig. 4 shows the decision DAGSVM for

our application to the the three classes with different

hearing ability.

NH vs HF

Not NH

NH vs PT

HF vs PT

Not PT

HF PTNH

Fig. 4. DAGSVM for TEOAE.

5. RESULTS AND DISCUSSION

Having described the detection methods and the

data used for our system, we present the results in

the following. Fig. 5 illustrates the average WP coeffi-

cient energy for the training data showing the typical

TEOAE properties of high frequencies occurring early

and low frequencies appearing late [6]. In Figure 6 the

isolated coefficients for each distinction case are shown.

They were found by the search procedure based on the

SNR criterion explained in Sec. 3 and appear to be rea-

sonably located when compared to the average energies

in Fig. 5.

Based on the coefficient sets, a SVM classification is

conducted for each distinction case using the training

data. The test data is analysed by the determined clas-

sifiers according to the decision DAG in Fig. 4 yielding

the detection rates in Tab. 1 for each class.

The table shows that the HF can be detected more

significantly than the NH group with the explained sys-

tem. The PT group is the most difficult to determine,

just above half of the patients can be allocated cor-

rectly. These results may not seem to be encouraging.

However, when only considering the the case NH vs PT,

89.9% of the NH group and 84.6% of the PT group are
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group detection rate

for test data

NH 68.1%

HF 74.7%

PT 56.4%

Tab. 1. Detection rates yielded by DAGSVM.

allocated correctly by the system which is well in the

range of other studies.

E.g in [12], a group of normal hearing is defined by

no hearing loss up to 30 dB and a hearing impaired

group with a hearing loss over 30 dB. A separation

method based on wavelet transforms, ensemble corre-

lation, time window design and mean cross-correlation

is introduced. The study concludes that by standard

analysis 90% of the normal hearing persons and 65%

of the hearing impaired patients can be allocated cor-

rectly. By applying the various methods, the value for

the hearing impaired group is increased by approxi-

mately 17% to 83% in that study. Compared to our

study we achieve slightly better results when only con-

sidering the case NH vs PT, which can be seen as equiv-

alent to the case shown in [12]. One could also argue,

that our methods lead to a better separation of hearing

loss as our threshold for defining the difference between

NH and PT was 20 dB, and the worse the hearing loss

gets, the weaker the TEOAE appear and therefore the

easier it should be to separate them. On the other

hand, we achieve the lowest value of 56% for the PT

group, which shows that it is easier to separate when

clear TEOAE are present, which is more likely the case

for a threshold of hearing loss of 20 dB than for 30 dB.

Recapitulating it can be said that our approach yields

separation results than can well compete with other

studies so far.

6. CONCLUSIONS

We have presented a WP analysis of TEOAE that

aims at the detection of frequency specific hearing loss.

We have motivated the use of TF methods, and pro-

posed a method to optimise a set of distinctive WP

coefficients. This maximisation represents the input to

a SVM classifier for the detection. We used two data

sets for training and testing. The validity of the results

was verified by a test group. Moreover, the obtained

results proved to be competitive when they were com-

pared to similar study which also aims at the detection

of TEOAE. Therefore, the results appear reasonably

robust and encourage frequency specific hearing loss

detection via signal processing of TEOAE.
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Fig. 5. Average WP coefficient energy for the dif-

ferent hearing ability groups for the training data.
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Fig. 6. Selected feature coefficients for the three

distinction cases.
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