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Abstract

The climate belongs to the class of non-equilibrium forced and dissipative systems, for
which most results of quasi-equilibrium statistical mechanics, including the fluctuation-
dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle
linear response theory, developed for studying rigorously the impact of perturbations on
general observables of non-equilibrium statistical mechanical systems, can be applied
with great success to analyze the climatic response to general forcings. The crucial
value of the Ruelle theory lies in the fact that it allows to compute the response of the
system in terms of expectation values of explicit and computable functions of the phase
space averaged over the invariant measure of the unperturbed state. We choose as test
bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a
well-recognized prototypical value as it is a spatially extended one-dimensional model
and presents the basic ingredients, such as dissipation, advection and the presence of an
external forcing, of the actual atmosphere. We recapitulate the main aspects of the general
response theory and propose some new general results. We then analyze the frequency
dependence of the response of both local and global observables to perturbations having
localized as well as global spatial patterns. We derive analytically several properties of the
corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig
relations, and sum rules, whose main ingredient is the causality principle. We show that all
the coefficients of the leading asymptotic expansions as well as the integral constraints can
be written as linear function of parameters that describe the unperturbed properties of the
system, such as its average energy. Some newly obtained empirical closure equations for
such parameters allow to define such properties as an explicit function of the unperturbed
forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify
the theoretical predictions from the outputs of the simulations up to a high degree of
precision. The theory is used to explain differences in the response of local and global
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observables, in defining the intensive properties of the system, which do not depend on
the spatial resolution of the Lorenz 96 model, and in generalizing the concept of climate
sensitivity to all time scales. We also show how to reconstruct the linear Green function,
which maps perturbations of general time patterns into changes in the expectation value
of the considered observable for finite as well as infinite time. Finally, we propose a
simple yet general methodology to study general Climate Change problems on virtually
any time scale by resorting to only well selected simulations, and by taking full advantage
of ensemble methods. The specific case of globally averaged surface temperature response
to a general pattern of change of the CO2 concentration is discussed. We believe that
the proposed approach may constitute a mathematically rigorous and practically very
effective way to approach the problem of climate sensitivity, climate prediction, and
climate change from a radically new perspective.
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1 Introduction

A crucial goal in the study of general dynamical and statistical mechanical systems is to
understand how their statistical properties are altered when we introduce a perturbation
related to changes in the external forcing or in the value of some internal parameters. The
ability to compute the response of the system is of great relevance for purely mathematical
reasons as well as in many fields of science and technology.

The climate system is an outstanding example of a non-equilibrium, forced and dissipative
complex system, forced in first instance by spatial differences and temporal variability in the
net energy flux at the top of the atmosphere. On a macroscopic level, as a result of being
far from equilibrium, the climate system behaves as an engine, driven by the temperature
difference between a warm and a cold thermal pool, so that the atmospheric and oceanic
motions are at the same time the result of the mechanical work (then dissipated in a turbulent
cascade) produced by the engine, and are processes which re-equilibrate the energy balance
of the climate system [1, 2, 3, 4].

A primary goal of climate science is to understand how the statistical properties - mean
values, fluctuations, and higher order moments - of the climate system change as a result
of modulations to some crucial external (e.g. solar irradiance) or internal (e.g. atmospheric
composition) parameters of the system occurring on various time scales. A large class of
problems - those involving climate sensitivity, climate variability, climate change, climate
tipping points - fall into this category. In a system as complex and as extended as the climate,
where lots of feedbacks are active on a variety of spatial and temporal scales, this is in general
a very difficult task. The need for scientific advance in this direction is outstanding as one
considers that even after several decades of intense scientific efforts, the accurate evaluation
of the climate sensitivity par excellence, i.e., the change of the globally averaged surface
temperature for doubling of CO2 concentration with respect to pre-industrial levels (280
ppm to 560 ppm circa), is a tantalizing endeavor, and large uncertainties are still present [5].

Such efforts have significant relevance also in the context of the ever-increasing attention
paid by the scientific community to the quest for reliable metrics to be used for the validation
of climate models of various degrees of complexity and for the definition of strategies aimed
at the radical improvement of their performance [6, 7]. The pursuit of a quantum leap
in climate modelling - which definitely requires new scientific ideas rather than just faster
supercomputers - is becoming more and more of a key issue in the climate community [8].

A serious, fundamental difficulty in the analysis of the non equilibrium systems is that
the fluctuation-dissipation relation [9], cannot be applied [10]. This greatly limits the ability
of understanding the response of the systems to external perturbations by looking at its vari-
ability. In the specific case of climate, this can be rephrased by saying that climate change
signals need not project on the natural modes of climate variability. The non-equivalence
between free and forced climate fluctuations had been suggested by Lorenz [11]. The basic
reason for this behavior is that, since the dynamics is forced and dissipative, with the asymp-
totic dynamics taking place in a strange attractor, natural fluctuations and forced motions
cannot be equivalent. Whereas natural fluctuations of the system are restricted to the un-
stable manifold, because, by definition, asymptotically there is no dynamics along the stable
manifold, external forcings will induce motions - of exponentially decaying amplitude - out

4



of the attractor with probability one. The fluctuation-dissipation relation can be recovered
only if we consider perturbations with the somewhat artificial property of being everywhere
tangent to the unstable manifold or, in a more fundamental way, if we add a stochastic forc-
ing, which has the crucial effect of smoothing the invariant measure [12, 13]. Potential links
to these issues can be found in recent papers proposing new algorithms for three [14] and
four [15] dimensional variational data assimilation, where it is shown that the quality of the
procedure improves if the increment of the variables due to the assimilation is performed only
along the unstable manifold.

Recently, Ruelle [10, 16] introduced a rigorous mathematical theory allowing for comput-
ing analytically, ab initio, the response of a large class of non-equilibrium systems to general
external perturbations featuring arbitrary time modulation. The crucial result is that the
changes in the expectation value of a physical observable can be expressed as a perturbative
series in increasing powers of the intensity of the external perturbation, where each term of
the series can be written as the expectation value of some well-defined observable over the
unperturbed state. In a previous paper [17] we showed that the Ruelle theory is, thanks
to this property, formally analogous to usual Kubo response theory [18], which applies for
quasi-equilibrium system. The crucial difference lies on the mathematical properties of the
invariant measure, which is absolutely continuous in the quasi-equilibrium case and singular
in the non-equilibrium case.

Ruelle’s analysis applies for non-equilibrium steady state systems [19] possessing a Sinai-
Ruelle-Bowen (SRB) invariant measure, often referred to as Axiom A system [20, 21]. This
class of systems, even if mathematically non-generic, includes on the other hand excellent
models for general physical systems, as made clear by the chaotic hypothesis [22, 23], which
can be interpreted as an extension of the ergodic hypothesis to non-equilibrium systems [19].
We also remind that any time in an numerical integration we assume that the time average
of a given observable, after discarding an initial transient, basically coincides with its average
over the invariant measure giving the attractor of the system, we are actually assuming Axiom
A-like hypothesis. See [24] for an original geophysical perspective.

The Ruelle response theory, with the support of chaotic hypothesis, has interesting con-
ceptual implications for climate studies. In fact, the possibility of defining a response function
basically poses the problem of climate response to forcings and of climate change in a well-
defined context, and, when considering the procedures aimed at improving climate models,
justifies rigorously the procedures of tuning and adjusting the free parameters. Moreover,
the response theory allows to compute the climate sensitivity, in the special case when static
perturbations to the system parameters are considered.

Previously, a response formula was proposed by Cacuci for evaluating the linearized change
of the solution of a time-independent generic system of nonlinear equations as a result of a
change in the system’s parameters [26, 27]. This can be interpreted as a special case of
Ruelle’s theory, where the unperturbed attractor is constituted by a fixed point and a static
perturbation to the system evolution equation is considered. Cacuci proposed to study this
problem using the adjoint operator to the original system, which provided an efficient way
to determine the impact of small perturbations. Interestingly, early prominent applications
of the so-called adjoint method and its extension to time-dependent problems, which allowed
for evaluating all possible linear sensitivities of an evolving model in just one simulation,
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were been proposed for climate related problems. In particular, it was used to evaluate the
sensitivities of a simple radiative-convective model possessing an attractor constituted by just
one fixed point [28, 29], and later, in an inherently heuristic way, for studying the response
of a (chaotic) simplified general circulation model to doubling of the CO2 concentration [30].
Whereas the adjoint method did not find much space in further climatic studies, mostly due
to early discouragement for the computational burden of constructing the suitable operators
for evaluating the sensitivities, it subsequently reached great success in data assimilation
problems for geophysical fluid dynamics [31, 32], to the point that a tangent and adjoint
model compiler able to automatically generate adjoint model code was has been introduced
[33]. More recently, a link between advanced adjoint techniques and the Ruelle theory has
been proposed [34].

Majda and collaborators [35, 36] have taken a different approach for analysing the re-
sponse of a system to external perturbation. Using the formalism of the Fokker-Planck
equation, they have developed a response theory which is analogous to Ruelle’s. These au-
thors have especially emphasized the possibility of splitting the response into the components
relative to the projection of the perturbation vector flow onto the stable, unstable and neutral
components of the unperturbed flow, as already discussed in by Ruelle [10], and have intro-
duced algorithms to compute efficiently all of these components. Their approach has very
recently been extended to take into account stochastic and time-periodic perturbations [36].
Somewhat confusingly, they mostly refer to the rather interesting applications of their theory
and algorithms to specific dynamical systems as resulting from the use of the fluctuation-
dissipation theorem in a non-equilibrium context. As discussed above, this just cannot be
rigorously the case. Since they use, albeit in a convolute way, the forcing term to compute
(or at least to parameterise) the response of the system, what they do is actually to compute
(or at least estimate) the linear response. Whereas it is in the very nature of a perturbation
theory the possibility of computing the response starting only from the statistical proper-
ties of the unperturbed state (as done also in [35, 36], the specific property of the systems
where the fluctuation-dissipation theorem can be applied is that the linear Green function
can be written in the specific form of a correlation of two observables of the system. See the
discussion in [10, 16].

It is also important to note that, following the pioneering study by Leith [37], several
recent studies [38, 39, 40, 41] have attempted with a certain (and sometimes good) degree
of success to reconstruct the climate response to external perturbations starting from the
internal fluctuations of the system by using a severely simplified version of the fluctuation
dissipation theorem, based upon the assumption of a quasi-gaussian probability distribution
for the system (see discussion in [35]. The overall good results seem to suggest that, at least
for the considered models, observables (typically very large scale ones) and baseline climate
conditions, the fractal nature of the invariant measure of the system and the role of the stable
direction of the flow seem not to be exceedingly relevant. This may be related to the specific
choice of the observable or to the fact that internally generated numerical noise mimics the
effect of stochastic perturbations, but further studies are surely necessary.

In the last decade on one side a great effort has been directed at extending the Ruelle
response theory for more general classes of dynamical systems (see, e.g., [42, 43]), and recent
studies [17] have shown that, thanks only to the causal nature of the response, it is possible to
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apply all the machinery of the theory of Kramers-Kronig (KK) relations [44, 45, 46, 47] for lin-
ear and nonlinear processes to study accurately and rigorously the susceptibilities describing
in the frequency domain the response of a general observable to a general perturbation.

Moreover, the actual applicability of the theory has been successfully tested in a number
of simple dynamical systems case for the linear [48, 49] and nonlinear [50] response. Such
numerical investigations have clarified that even in systems which are not Axiom A, like the
Lorenz 63 system [51], it is possible to successfully use the response theory to construct linear
[48] and nonlinear susceptibilities [50] which obey all of the constraints imposed by the KK
theory up to a high degree of precision.

These investigations definitely motivate further studies aimed at understanding to what
extent the response theory is an efficient tool for analyzing complex and complicated sys-
tems. In this paper, we take up such a challenge and consider the Lorenz 96 (L96) system
[52, 53, 54], which provides an excellent and celebrated prototypical model of a one dimen-
sional atmosphere. The variables of the L96 model can be thought as generic meteorological
quantities extending around a latitudinal circle and sampled at a regular interval. In spite of
not being realistic in the usual sense, the L96 model presents the basic ingredients, such as
dissipation, advection and the presence of an external forcing, of the actual atmosphere. For
this reason, L96 has quickly become the standard model to be used for predictability studies
[55, 56, 57], when testing data assimilation techniques [14, 15, 58], and new parameterizations
[59]. The L96 model had already been taken as test-bed for studying the linear response (the
applicability of the fluctuation dissipation theorem, in their language) in [35].

Although we are unable to prove that the unperturbed L96 is an Axiom A system, in gen-
eral and for the specific choice of parameters used in our numerical simulations in particular,
we adopt the chaotic hypothesis and present the first thorough investigation of a spatially
extended system by using the rigorous statistical mechanical methodologies presented in
[10, 16, 17, 50]. Moreover, since L96 is a spatially extended system, we also explore the ap-
plicability of the response theory in all possible combinations of global/local observables and
global/local perturbations. We compute rigorously the corresponding linear susceptibilities,
verify the KK relations and the related sum rules, and find an empirical power law. This, as
in the case of discussed in [60], supports the validity of the chaotic hypothesis, allowing to
extend the results obtained for our specific choice of model’s parameters to a rather general
class of L96 systems. We also show how to go from the frequency back to the time domain,
thus deriving from the susceptibility the Green function, which acts as time propagator of the
considered perturbation for the considered observable. The Green function allows to predict,
in an ensemble mean sense, the change in the observable at any time horizon as a result
of a perturbation with the same spatial patter as that considered in the calculation of the
susceptibility but featuring a general time modulation.

Finally, building upon the results presented here, we propose a simple yet general method-
ology to study general Climate Change problems on virtually any time scale by resorting to
only well selected simulations, and by taking full advantage of ensemble methods. The spe-
cific case of globally averaged surface temperature response to a general pattern of change of
the CO2 concentration is discussed.

Whereas the paper aims at proposing new methods for tackling classical problems of
climate science, most of the results and of the methodologies proposed are of more general
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interest. In this paper we limit our attention to the linear response. We refer to [17, 50] for
a theoretical and numerical studies of higher-order effects of perturbations.

The paper is organized as follows. In Sec. 2 we briefly analyze the general theoretical
background of the linear response theory and of the properties of the frequency dependent
susceptibility and present some new useful results. In Sec. 3 we present the main features
of the L96 system, introduce the considered perturbations to the forcing, derive some basic
properties of the response of various observables, and present the theoretical predictions. In
Sec. 4 we present the results of our numerical investigations and describe how they can be
generalized to the entire family of L96 models. In Sec. 5 we provide a relevant example to
illustrate how the results presented in this paper can be used to devise simple yet rigorous
methods to study the climate response at all time scales on models of any degree of complexity.
In Sec. 6 we discuss the conclusions and present perspectives for future work.

2 Theoretical Background: Ruelle Theory and Dispersion Re-
lations

2.1 Definition of the Linear Susceptibility

We consider an Axiom A dynamical system described by the evolution equation ẋ = F (x),
so that the invariant probability measure ρ0 of the associated flow is of the SRB type [10].
Let ⟨Φ⟩0 be the expectation value of the general observable Φ defined as

∫
ρ0(dx)Φ(x). We

perturb the flow of the system by adding a on the right hand side of the evolution equation
a vector field X(x)f(t), where X(x) defines the pattern of the perturbation, and f(t) is
its time modulation. The resulting evolution equation results to be ẋ = F (x) + X(x)f(t).
Following Ruelle [10], we express the expectation value of Φ(x) in the perturbed system using
a perturbative expansions as:

⟨Φ⟩ (t) = ⟨Φ⟩0 +
∞∑
n=1

⟨Φ⟩(n) (t). (1)

Each term of the perturbative series can be expressed as an n-convolution integral of the nth

order causal Green function with n delayed time perturbation functions [25, 17]. Limiting
our attention at the linear case we have:

⟨Φ⟩(1) (t) =
∫ +∞

−∞
dσ1G

(1)
Φ (σ1)f(t− σ1) (2)

The first order Green function can be expressed as follows:

G
(1)
Φ (σ1) =

∫
ρ0(dx)Θ(σ1)ΛΠ0(σ1)Φ(x), (3)

where Λ(•) = X(x)∇(•) takes into account the effects of the perturbative vector field, Θ
is the usual Heaviside distribution and Π0 the unperturbed time evolution operator so that
Π0F (x) = F (x(t)) for any function F , with x(t) following the unperturbed flow. Note that
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it is possible to express the Green function as the expectation value of a non-trivial but
computable observable over the unperturbed SRB measure ρ0. Therefore the knowledge
of the unperturbed features of the flow is sufficient to define the effects of any external
perturbation over any observable of our system. In the frequency domain we find that the
first term of the perturbative series can be written as:

⟨Φ⟩(1) (ω) =
∫ +∞

−∞
dω1χ

(1)
Φ (ω1)f(ω1)× δ(ω − ω1) = χ

(1)
Φ (ω)f(ω), (4)

where the Dirac delta implies that we are analyzing the impact of perturbations in the
frequency-domain at the frequency ω. The linear susceptibility is defined as:

χ
(1)
Φ (ω) =

∫ +∞

−∞
dtG

(1)
Φ (t) exp[iωt]. (5)

It is important to underline with a thought experiment the computational relevance of the
last equations and the importance of the susceptibility function.

Let’s suppose we introduce a time dependent perturbation fα(t) to a given pattern of
forcing X(x), simulate the system and observe the time response of an arbitrary observable
⟨Φα⟩(1)(t). We now compute the Fourier transform of the observed signal and of the forcing

modulation. Inverting Eq.(4), we can find the linear susceptibility χ
(1)
Φ (ω). Let’s now con-

sider a different time-modulating function of the forcing fβ(t) and its corresponding Fourier
transform fβ(ω). Taking into account Eq. (4), if we multiply fβ(ω) times the previously

computed function χ
(1)

Φ̄
(ω) we directly obtain ⟨Φβ⟩(1)(ω), the frequency-dependent response

of the observable Φ to the forcing X(x) modulated by the new function. By applying the
inverse Fourier transform we obtain the time-dependent response ⟨Φβ⟩(1)(t) without needing
any additional simulation.

Moreover, the knowledge of the susceptibility function allows us to reconstruct the G
(1)
Φ (t)

by inverting Eq. (5). Otherwise, the Green function can be obtained directly from observing
the response signal by performing a simulation where f(t) = δ(t): in this case (see Eq. (2))

we simply have ⟨Φ⟩(1) (t) = G
(1)
Φ (t).

2.2 Kramers-Kronig relations and sum rules

As we see from Eq. (3), for an arbitrary choice of the observable and of the perturbation the
corresponding linear Green function is causal. Assuming, on heuristic physical basis, that

G
(1)
Φ (t) ∈ L2, we can apply the Titchmarsh theorem [44, 45, 46, 47] and deduce that the

linear susceptibility χ
(1)
Φ (ω) is a holomorphic function in the upper complex ω-plane and the

real and the imaginary part of χ(ω) are connected to each other by Hilbert transform.
According to a general property of Fourier transform we know that the short term be-

havior of G
(1)
Φ (t) determines the asymptotic properties of χ

(1)
Φ (ω). We shall obtain a more
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quantitative result by exploiting that:∫ +∞

−∞
dtΘ(t)tk exp[iωt] = (−i)k dk

dωk

(
P

i

ω
+ πδ(ω)

)
≈ k!

i(k+1)

ω(k+1)
(6)

where in the second equality we have neglected the fact that the solution is a distribution
and considered ω ̸= 0. Therefore, if the Taylor expansion of the Green function in the limit
t→ 0+ is of the form:

G
(1)
Φ (t) ≈ ᾱΘ(t) tβ + o(tβ) (7)

the high frequency behavior of the linear susceptibility, i.e. the limit ω → ∞, is:

χ
(1)
Φ (ω) ≈ αω−β−1 + o(ω−β−1) (8)

where α = ᾱi(β+1)β!. The parameters β (which is an integer number) and ᾱ depend on
the observable Φ, on the specific features of the unperturbed system, and on the forcing
under consideration. Taking into account (5) and assuming that ω is real, we obtain that

χ
(1)
Φ (ω) = [χ

(1)
Φ (−ω)]∗, so that Re[χ] is an even function while Im[χ] is odd function of ω.

Thus α = αR is real if β is odd, whereas α = iαI is imaginary if β is even.

Taking into account the Titchmarsch theorem, using that χ
(1)
Φ (ω) = [χ

(1)
Φ (−ω)]∗, and

considering the asymptotic behavior of the susceptibility, it is possible to show that the real
and imaginary part of the linear susceptibility obey the following set of general KK dispersion
relations[47]:

−π
2
ω2p−1Im[χ

(1)
Φ (ω)] = P

∫ ∞

0
dν
ν2pRe[χ

(1)
Φ (ν)]

ν2 − ω2
(9)

π

2
ω2pRe[χ

(1)
Φ (ω)] = P

∫ ∞

0
dν
ν2p+1Im[χ

(1)
Φ (ν)]

ν2 − ω2
(10)

with P indicating integration in principal part and p = 0, . . . , (β − 1)/2 if β is odd and
p = 0, . . . , β/2 if β is even. Note that the faster the asymptotic decrease of the susceptibility,
the higher the number of independent constraints due to KK relations it has to unavoid-
ably obeys. As thoroughly discussed in [9], in the case of quasi-equilibrium system, the
fluctuation-dissipation theorem ensures that the imaginary part of the susceptibility describ-
ing the response of a given observable to a perturbation is proportional to a suitably defined
power spectrum in the unperturbed system. Therefore, observing the unperturbed system
and using Eq.(10) it is possible to reconstruct the entire linear susceptibility, and so know
everything about the response properties of the system. In the case of a non-equilibrium
system, as discussed in the Introduction, this procedure is not possible.

It is possible to use the KK relations to define specific self-consistency properties of the
real and imaginary part of the susceptibility. We first consider the following application: we
set p = 0 in Eq. (10) and take the limit ω → 0. We obtain that for any observable:

Re[χ(1)(0)] =
2

π
P

∫
dν

Im[χ(1)(ν)]

ν
, (11)
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which says that the static susceptibility (i.e., in a more common language, the linear sensi-
tivity of the system) is related to the out-of-phase response of the system at all frequencies.
In other terms, Eq. (11) is an exact formula for the linear susceptibility of the system. Note
that the static susceptibility is a real number because, thanks to the symmetry properties
discussed above, Im[χ(1)(0)] = 0. Moreover, we know that Re[χ(1)(0)] is finite because the
susceptibility function is analytic (and so in particular non singular). This is consistent with
the fact that as ω → 0, the imaginary part of the susceptibility goes to zero at least as fast as
a linear function, as only odd positive integer exponents can appear in its Taylor expansion
around ω = 0), so that the integrand in Eq. (11) is not singular. Similarly, we obtain that
for ω ∼ 0 the real part of the susceptibility is in general of the form c1+ c2ω.

2+ o(ω3), where
c1 and c2 are two constants and c1 is exactly given by Eq. (11).

By exploring the ω → ∞ limit in Eqs. (9)-(10) we obtain further integral constraints.
By applying the superconvergence theorem [61], we obtain the following set of vanishing sum
rules (see [46]):∫ ∞

0
dνν2p+1Im[χ

(1)
Φ (ν)] = 0

0 ≤ p ≤ β/2− 1, β even
0 ≤ p ≤ (β − 3)/2, β odd

. (12)

∫ ∞

0
ν2pRe[χ

(1)
Φ (ν)] dν = 0

0 ≤ p ≤ β/2− 1, β even
0 ≤ p ≤ (β − 1)/2, β odd

. (13)

Note that if β = 0 no vanishing sum rules can be written for the susceptibility, whereas
if β = 1 only Eq. (13) provides a zero-sum constraint. For each set of KK relations, an
additional, non-vanishing sum rule can be obtained. If β is odd, the non-vanishing sum rule
is: ∫ ∞

0
νβIm[χ

(1)
Φ (ν)] dν = −π

2
αR, (14)

while if β is even, we have: ∫ ∞

0
νβRe[χ

(1)
Φ (ν)] dν =

π

2
αI , (15)

where the α constants are defined in Eq. (8). These sum rules provide additional general
constraints that must be obeyed by any system and can be used to test the quality of the
output of any model wishing to describe it. If we are not in the perfect model scenario (e.g.,
we use a simplified representation of some degrees of freedom) the sum rules can in principle
be used to provide a fit for the parametrization.

We underline that it is possible to generalize the KK theory for specific classes of non-
linear susceptibilities for both quasi-equilibrium and non-equilibrium systems. Such results,
which are particularly suited for studying the fundamental properties of harmonic generation
processes, are thoroughly discussed in [17] and will not be reported here.

2.3 A practical formula for the linear susceptibility and consistency rela-
tions between susceptibilities of different observables

As discussed above, the definition of the linear susceptibility does not depend on the function
f(t) modulating the additional forcing, so that it is possible to draw general conclusions on
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its properties even by choosing a specific function f(t).
Let’s consider f(t) = 2ϵ cos(ωt). The impact of the perturbation on the evolution of a

general observable Φ(x) is defined as:

δΦϵ(t, t0, x0) = Φϵ(t, t0, x0)− Φ0(t, t0, x0) (16)

where x0 and t0 are the initial condition and the initial time, and we associate the lower index ϵ
to the strength of the forcing. The Ruelle’s response theory ensures that δΦϵ(t, t0, x0) = O(ϵ).
Following [48, 50] the linear susceptibility results to be:

χ
(1)
Φ (ω) ≡ lim

ϵ→0
lim
T→∞

χ
(1)
ϕ (ω, x0, ϵ, T ) (17)

where:

χ
(1)
Φ (ω, x0, ϵ, T ) =

1

T

1

ϵ

∫ T

0
dtδΦϵ(t, x0) exp(iωt) (18)

is the total susceptibility, affected by the finite time and finite size response of the system.
This quantity depends on the initial condition and in principle contains information about
the response of the system at all order of nonlinearity.

Since d(δΦϵ(t, x0))/dt = δ(dΦϵ(t, x0))/dt, thanks to the linearity of the time derivative,
by considering Eqs. (17)-(18) and performing an integration by parts, we obtain that [48]:

χ
(1)

Φ̇
(ω) = −iωχ

(1)
Φ (ω). (19)

Let’s now find a different expression for χ
(1)

Φ̇
(ω). The time derivative of Φ in the unperturbed

system is
Φ̇(x) = Γ(x), (20)

where Γ = F · ∇Φ. Similarly, the time derivative for Φ in the case of the perturbed motion
described by ẋ = F (x) +X(x)f(t) = F (x) + 2ϵ cos(ωt)X(x) is:

Φ̇(x) = Γ(x) + 2ϵ cos(ωt)Ξ(x), (21)

where Ξ = X · ∇Φ. From Eqs. (20)-(21) we obtain that

δΦ̇ϵ(t, x0) = δΓϵ(t, x0) + 2ϵ cos(ωt)Ξ(t, x0), (22)

where all terms are of O(ϵ). Furthermore, we integrate each term in Eq. (22) as in Eq. (18),
take the limits ϵ→ 0 and T → ∞, and obtain:

lim
ϵ→0

lim
T→∞

1

T

1

ϵ

∫ T

0
dtδΦ̇ϵ(t, x0) exp(iωt) = lim

ϵ→0
lim
T→∞

1

T

1

ϵ

∫ T

0
dtδΓϵ(t, x0) exp(iωt)+

+ lim
ϵ→0

lim
T→∞

1

T

1

ϵ

∫ T

0
dtϵΞϵ(t, x0) [exp(iωt) + exp(−iωt)] exp(iωt). (23)
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Using the definition in Eq. (17) and the identity given in Eq. (19), we derive:

−iωχ
(1)
Φ (ω) = χ

(1)
Γ (ω)) + lim

ϵ→0
lim
T→∞

1

T

∫ T

0
dtΞϵ(t, x0)+

+ lim
ϵ→0

lim
T→∞

1

T

1

ϵ

∫ T

0
dtϵΞϵ(t, x0) exp(2iωt). (24)

The first limit in Eq. (24) gives, by definition, ⟨Ξ⟩0, whereas the second limit vanishes as
the expression under integral is O(ϵ2), since it is related to second order harmonic generation
nonlinear process [50]. Concluding, we obtain the following general consistency relation for
the linear susceptibility:

χ
(1)
Φ (ω) =

i

ω
χ
(1)
Γ (ω) +

i

ω
⟨Ξ⟩0. (25)

Such an identity related the susceptibility of an observable Φ to the susceptibility of the
projection of its gradient along the unperturbed flow Γ and to the average value in the
unperturbed state of the projection of its gradient along the perturbation flow. Note that
the two terms on the right hand side are radically different. Whereas the first term is related
to the projection of the dynamics along the unstable manifold, the second term depends on
the structure of the forcing X(x), which may be entirely unrelated to that of the unstable
manifold. This is the fundamental reason why the fluctuation-dissipation theorem does not
apply in the non-equilibrium case.

Moreover, since, as shown in Eq. (7)-(8), the susceptibility of a generic observable de-

creases to zero at least as fast as ω−1, for large values of ω we have that χ
(1)
Φ (ω) ≈ i/ω⟨Ξ⟩0

unless ω⟨Ξ⟩0 = 0. If ω⟨Ξ⟩0 ̸= 0, we also have that the leading order of the short-time
expansion of the Green function is of the form:

G
(1)
Φ (t) = Θ(t)⟨Ξ⟩0 + o(t0), (26)

in agreement with what can be found by direct inspection of Eq. (3).

3 Application of the Response Theory to the Lorenz 96 Model

3.1 Statistical properties of the unperturbed Lorenz 96 Model

The Lorenz 96 model [52, 53, 54] describes the evolution of a generic atmospheric variable
defined in N equally spaced grid points along a latitudinal circle and provides a simple,
unrealistic but conceptually satisfying representation of some basic atmospheric processes,
even if such one-dimensional model it cannot be derived ab-initio from any dynamic equation
via subsequent approximations. The evolution equations can be written in a scaled form as
follows:

dxi
d t

= xi−1(xi+1 − xi−2)− xi + F (27)

where i = 1, 2, ....., N , and the index i is cyclic so that xi+N = xi−N = xi. The quadratic
term in the equations simulates advection, the linear one represents thermal or mechanical
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damping and the constant one is an external forcing. The evolution equations are invariant
under i → i + 1, so that the dynamics is the same for all variable. The time scale of the
system is given by the damping time, which corresponds to five days. The L96 system
shows different features, as different choices of F and N may strongly alter the topology of
the attractor, alternating periodic, quasi-periodic and chaotic behavior in a non trivial way.
However with a suitable choice of the parameters N and F , the system is markedly chaotic.
In particular, as F controls the energy input into the system, we expect that for relatively
high values of this parameter the system should simulate a turbulent behavior and live on
a strange attractor. As an example, setting N = 40 and F = 8 the system possesses 13
positive Lyapunov exponents, the largest corresponding to a doubling time of 2.1 days, while
the fractal dimension of the attractor [21] is about 27.1 [53].

When computing the time derivative of the total energy of the system, defined as E =
1/2

∑
i x

2
i , the advection terms cancel. The evolution equation for E results to be:

Ė = −2E + F
∑
i

xi. (28)

As the dynamics takes place inside a compact set, Ψ(xi, . . . , xN ) is bounded for any choice
of the function Ψ. Therefore the ensemble mean with respect the ρ0 (or time average) of the
temporal derivative Ψ̇ vanishes. Therefore, defining M =

∑
i xi as the total momentum of

the system, we obtain the following identity:

2 ⟨E⟩0 =
∑
i

⟨
x2i

⟩
0
= F

∑
i

⟨xi⟩0 = F ⟨M⟩0 . (29)

Similarly, we can deduce an additional consistency relation by investigating the expression of
the time derivative of M:

⟨M⟩0 = NF + ⟨C2⟩0 − ⟨C3⟩0 (30)

where ⟨C2⟩0 =
∑

i ⟨xixi−2⟩ and ⟨C3⟩0 =
∑

i ⟨xixi−3⟩0. Higher order consistence relations can
be obtain in a similar fashion.

The equivalence of all the variables implies that over the unperturbed flow each observable
O of the whole system satisfies

∑
i ⟨O(xi)⟩0 = N ⟨O(xj)⟩0 ∀j. Therefore, we define the average

energy per grid point e(N,F ) and the average momentum per grid point m(N,F ) as:

e =

⟨
x2i

⟩
0

2
=

⟨E⟩0
N

, (31)

m = ⟨xi⟩0 =
⟨M⟩0
N

, (32)

where the choice of i is arbitrary and the N and F -dependence is dropped for shortness.
Defining ci = ⟨Ci⟩0 /N , c0 = 2e, we can rewrite Eqs. (29)-(30) as follows:

2 e = F m, (33)

m = F + c2 − c3. (34)
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Expressing either the average energy e or the average momentum m per grid point as a
function of the two free parameters N and F would allow to get a closure equation for the
statistical properties of the unperturbed Lorenz 96 system. We have computed e(N,F ) and
m(N,F ) by performing long integrations for values of F ranging from 6 to 50 with step
1 and for values of N ranging from 10 to 200 with step 10. In all of these cases, chaotic
motions are observed. We have consistently found that, within 0.5%, e(N,F ) = e(F ) and
m(N,F ) = m(F ), so that they can be considered intensive quantities. Therefore, we can
interpret Eqs. (33)-(34) as equations providing a definition of the thermodynamics of this
simple one-dimensional model of atmosphere.

The F -dependence of e and m can be closely approximated in terms of simple power laws.
We obtain, within a precision of about 1% in the considered domain, that

m(F ) = λF γ , (35)

and, consistently with Eq.(33),

e(F ) =
λ

2
F 1+γ , (36)

with λ ≈ 1.15 and γ ≈ 0.35. Such a smooth dependence of the intensive energy and momen-
tum with respect to the forcing parameter F is indeed in agreement with the hypothesis that
the invariant measure is deformed in a very regular fashion not only locally, but over a large
range of the parameter’s space.

Note that, at the fixed point of the system corresponding to a purely zonally symmetric
dynamics (xi = F , ∀i) we have m = F and e = F 2/2. These formulas give much higher
values for both m and e than what found with our empirical power laws for the attractor
in the chaotic regime. In fact, at such an equilibrium, which is unstable in the parametric
range explored here, the energy dissipation is much weaker than in the co-existing chaotic
attractor, which corresponds to the case where breaking nonlinear waves and turbulent mo-
tions are present. Interestingly, the presence of well-defined scaling laws with respect to the
forcing parameters for the energy and momentum of the system with different characteristic
exponents in the chaotic regime and in the co-existing unstable equilibrium is in agreement
with previous finding recently obtained in a simple baroclinic quasi-geostrophic model [60].

3.2 Asymptotic properties of the linear susceptibility

We perturb the L96 model by adding a small perturbation modulated by f(t) = 2ϵ cos(ωt).
The resulting evolution equation is:

dxi
d t

= xi−1(xi+1 − xi+2)− xi + F + 2ϵ cos(ωt)Xi (37)

where Xi = Xi(x1, . . . , xN ) is a generic function of variables xi. We adopt the chaotic
hypothesis [23, 22] and we follow the theory proposed by Ruelle [10] and discussed in Sect.
2 in order to study the linear response of suitably defined observables to the perturbation.
We first propose to study the high-frequency, response by analyzing in detail the asymptotic
properties of the resulting susceptibilities. As discussed in section 2, this constitutes a crucial
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step for constructing the set of applicable KK relations and for computing the value of the
sum rules.

We consider two different forcing patters Xi. In the first case, we apply the perturbation
over all the grid points and we choose Xi = 1 ∀ i. Given an observable Φ, we refer to the

linear Green function and linear susceptibility resulting from this choice of Xi as G
(1)
Φ,N and

χ
(1)
Φ,N , respectively, where the lower index N indicates that the perturbation acts over all

the variables xi. We refer to this pattern of forcing as global perturbation. In the second
case, we apply the perturbation only on the variable xj of the L96 model, and we choose
X1 = 0∀i ̸= j, Xj = 1, . Since all the points are equivalent in the unperturbed case, the
choice of j is arbitrary. In this case, when referring to the linear Green function and the
linear susceptibility, the lower index 1 substitutes the N , indicating that the perturbation is
localized to one point. We refer to this pattern of forcing as local perturbation.

3.2.1 Global perturbation

We consider perturbations with spatial pattern given by Xi = 1 ∀ i and analyze the response

of the observable E. Following Eq. (3), the linear Green function G
(1)
E,a(t) can be explicitly

written as:

G
(1)
E,N (t) =

∫
ρ0(dx)Θ(t)ΛΠ0(t)E(x⃗)

=

∫
ρ0(dx)Θ(t) 1⃗ · ∇⃗E(x⃗(t))

=

∫
ρ0(dx)Θ(t)

∑
i

∂i(E(x⃗(t))) (38)

where x⃗(t) satisfies the unperturbed evolution Equation (27). Taking into account Eq. (7)
and Dq. (8), in order to obtain the asymptotic behavior of the susceptibility, we need to
study the short time behavior of the Green function. Therefore, we express E(x⃗(t)) as a
Taylor series about t = 0 considering the unperturbed flow, compute the integral of each
coefficient of the t-expansion over ρ0, and seek the lowest order non-vanishing term [50]. The
first two terms of the Taylor expansion of E in Eq. (38) give:

G
(1)
E,N (t) =

∫
ρ0(dx)Θ(t)

∑
i

∂i

(
E|t=0 + tĖ|t=0 + o(t)

)
=

∫
ρ0(dx)Θ(t)

[∑
i

xi −
(∑

i

2xi −NF
)
t+ o(t)

]
. (39)
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Using Eqs. (7)-(8), the leading terms of the asymptotic behavior of linear susceptibility can
be written as:

χ
(1)
E,N (ω) = i

(∑
i

⟨xi⟩0
)
/ω +

(∑
i

⟨2xi⟩0 −NF
)
/ω2 + o(ω−2)

= iN
m

ω
−N

F − 2m

ω2
+ o(ω−2) (40)

Since the symmetry with respect the index i is valid also in the perturbed case, given our
choice of the forcing pattern, the linear susceptibility of the total energy is given the sum of N
identical contributions, each corresponding to the susceptibility of the observable ε = 1/2x2i
for each of the N variables xi of the system. Therefore, it is possible to define an intensive

linear susceptibility χ
(1)
ε,N = 1/Nχ

(1)
E,N , where χ

(1)
ε,N describes the response of the local energy

to the external perturbation. In particular in the limit ω → ∞ we have:

χ
(1)
ε,N (ω) = i

m

ω
− F − 2m

ω2
+ o(ω−2). (41)

Equations (40) and (41) imply that the imaginary part dominates the asymptotic behavior of
the susceptibility, so that at high frequency the response is shifted by about π/2 with respect
the forcing. Observing that the leading term of asymptotic χ is of order ω−1 just one sum
rules apply for either susceptibilities. Limiting our attention to the intensive quantity e, by
applying Eq. (15) we obtain: ∫ ∞

0
Re[χ

(1)
ε,N (ω)] dω =

π

2
m. (42)

Along similar lines, if we select as observable the total momentum M , we derive that the
asymptotic behavior of its linear susceptibility is:

χ
(1)
M,N (ω) = N χ

(1)
µ,N (ω) = i

N

ω
+
N

ω2
+ o(ω−2), (43)

where we have defined the intensive susceptibility χ
(1)
µ,N (ω), where µ is the intensive momen-

tum of the system. As in Eq. (41), the asymptotic behavior is determined by the imaginary
part of χ, and the real part of the susceptibility provides the following sum rule:∫ ∞

0
Re[χ

(1)
µ,N (ω)] dω =

π

2
. (44)

We now wish to go back to the general consistency equation for linear susceptibilities given
in Eq. (46). Considering that in the perturbed system the time derivative of the total energy
of the system can be written as:

Ė = −2E + FM + 2ϵ cos(ωt)M (45)
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the general result given in Eq. (25) can be written as follows:

χ
(1)
E,N (ω) =

F

2− iω
χ
(1)
M,N (ω) +

1

2− iω
⟨M⟩0, (46)

since in this case Γ = −2E + FM and Ξ = M . It is easy to check that the asymptotic
behavior for the susceptibilities given in Eqs. (40)-(43) is in agreement with Eq. (46), which
is valid at all frequencies.

3.2.2 Local perturbation

We now perturb the system in a single grid point. The symmetry of the unperturbed system
implies the equivalence of every point of the latitude circle. Indicating with xj the grid
point where forcing is exerted, the pattern of the perturbation vector field is X1 = 0∀i ̸= j,
Xj = 1. We consider the same modulating monochromatic function f(t) = 2ϵ cos(ωt) as in
the previous case. We analyze the asymptotic behavior of the linear susceptibility of the total
energy of the system E, of the total momentum of the system M , which are global variables,
and of the local variables constituted by the energy Ej = 1/2x2j and momentum Mj = xj of
the perturbed grid point and of its immediate neighbors.

Since we are looking at the linear response and the global perturbation is given by N spa-
tially shifted copies of the local perturbation, for any observable Φ of the form Φ(x1, . . . , xn) =∑N

i=1 ϕ(xi) we must have χ
(1)
Φ,1 = χ

(1)
Φ/N,N = χ

(1)
ϕ,N .

In the case of the observable E, it is straightforward to verify the previous identity at least
in the asymptotic regimes. In fact, the short time behavior of the Green function describing
the response of the E to the local perturbation results to be:

G
(1)
E,1(t) =

∫
ρ0(dx)Θ(t)∂j

(
E|t=0 + tĖ|t=0 + o(t)

)
=

∫
ρ0(dx)Θ(t)∂j

[1
2

∑
x2i −

(∑
2x2i − xiF

)
t
]

= Θ(t)
(
⟨2xj⟩0 − ⟨2xj − F ⟩0 t+ o(t)

)
, (47)

so that the asymptotic behavior of the corresponding linear susceptibility susceptibility is:

χ
(1)
E,1 = i

m

ω
− F − 2m

ω2
+ o(ω−2), (48)

which agrees with what found for the intensive energy response when the global perturbation
is applied (see Eq. (41)). The sum rule for the real part of the susceptibility is exactly the
same as in what given in (42): ∫ ∞

0
Re[χ

(1)
E,1(ω)] dω =

π

2
. (49)
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Analogously, we obtain that the asymptotic behavior of χ
(1)
M,ϵ,1 can be written as:

χ
(1)
M,1(ω) = i

1

ω
+

1

ω2
, (50)

with the corresponding sum rule:∫ ∞

0
Re[χ

(1)
M,1(ω)] dω =

π

2
, (51)

in perfect agreement with Eqs. (43) and (44), respectively.
It is rather interesting to look into local energy observables. Considering the energy Ej

of the perturbed grid point xj we have that its short term Green function can be written as:

G
(1)
Ej ,1

(t) =

∫
ρ0(dx)Θ(t)∂j

[1
2
x21 +

(
xj(xj−1xj+1 − xj−1xj−2 − xj + F )

)
t+ o(t)

]
= Θ(t)

[
⟨xj⟩0 − ⟨xj−1xj+1 − xj−1xj−2 − xj + F ⟩0 t+ o(t)

]
. (52)

Since
0 = ⟨ẋj⟩0 = ⟨xj−1xj+1 − xj−1xj−2 − xj + F ⟩0 (53)

because the ρ0-average of the temporal derivative of any observable vanishes, thanks to the
compactness of the attractor, we obtain the following asymptotic behavior for the linear
susceptibility

χ
(1)
Ej ,1

= i
m

ω
+
m

ω2
+ o(ω−2). (54)

Since, by linearity, χ
(1)
E,1 =

∑
k χ

(1)
Ek,1

, comparing this result with what obtained in Eq. (48),
we note that the susceptibility of the energy at the position of the forcing Ej provides the
leading asymptotic term to the susceptibility of the total energy E. Consequently, in the

high-frequency range χ
(1)
Ej ,1

≈ χ
(1)
E,1, and the two susceptibilities obey the same non-vanishing

sum rule, so that: ∫ ∞

0
Re[χ

(1)
Ej ,1

(ω)] dω =
π

2
m (55)

Nevertheless, by comparing Eqs. (48)-(54), we discover that contributions to the second
leading order (∝ ω−2) in the high frequency range of the susceptibility of the total energy
do not come just from the response of the energy at the perturbed grid point. perturbed
grid point but some other point give a contribution of order ω−2. Therefore, the asymptotic

behavior of the real part of χ
(1)
E,1 is not captured by χ

(1)
Ej ,1

. The locality of the interaction
suggests to look at the energy of the closest neighbors of xj . Because of the asymmetry of the
nonlinear terms in the L96 evolution equations, we consider the observable ψ = 1/2(Ej+1 +
Ej+2 + Ej−1). It is possible to prove that:

χ
(1)
ψ,1(ω) = −

⟨xj−1(xj+1 − xj−2)⟩0
ω2

= −(F −m)

ω2
+ o(ω−2). (56)
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It is easy to observe that the sum of χ
(1)
ψ,1 and χ

(1)
Ej ,1

provides the correct leading order to

the asymptotic behavior of both the real and imaginary parts of χ
(1)
E,1. We shall provide an

argument why this strongly supports the close resemblance of the two functions χ
(1)
E,1 and

χ
(1)
Eloc,1

, where Eloc = Ej + ψ = 1/2x2j + 1/2x2j+1 + 1/2x2j+2 + 1/2x2j−1 is the energy of the
cluster of points centered in xj .

The analysis of the asymptotic behavior of the susceptibilities related to the local momen-
tum of the system provides additional insights. It is possible to prove that for large frequency
the linear susceptibility of the momentum of the perturbed grid point is:

χ
(1)
xj ,1

(ω) = i
1

ω
+

1

ω2
+ o(ω−2), (57)

which suggests that the response of the local momentum captures the correct asymptotic
behavior of both the real and the imaginary part of the total momentum M . Concluding, we
obtain that the following sum rule can be stablished:∫ ∞

0
Re[χ

(1)
xj ,1

(ω)] dω =
π

2
. (58)

Therefore, such a constraint is exactly the same whether we analyze the the response of the
momentum of a single variable when the perturbation acts over all the grid points, or of the
total momentum in the case of a local perturbation, or, in this latter case, of the momentum
of the grid point where the local perturbation is applied.

As we have seen in this section, the coefficients of the leading asymptotic terms and the
sum rules are given by simple linear functions of m (or equivalently, thanks to Eq. (33), by
e) and by F . As we have proposed an efficient parameterization of m and e as functions of F
alone in subsection 3.1, our results can be easily applied and numerically verified for a very
large class of L96 models.

4 Results

4.1 Simulations and Data Processing

The accurate calculation of the linear susceptibility of the general observable Φ is not as easy
task, since the definition given in Eq. (17) requires the evaluation of two limits, whereas we
can actually compute only the quantity given in Eq. (18). Averaging the response over a long
time T allows for improving the signal-to-noise ratio. Noise is present because, due to the
chaotic nature of the flow, we have a continuous spectral background. Instead, considering
small values for the perturbation strength ϵ degrades the signal-to-noise ration, but, on the
other hand, it is crucial to select a small ϵ in order to keep the perturbations as close as possible
to the linear regime. As discussed in [50], we can improve the signal-to-noise ratio without
needing to perform very long integrations and to consider large values for ϵ by performing

an ergodic averaging of the quantity averaging the quantity χ
(1)
Φ (ω, xi, ϵ, T ). Therefore, we
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choose the best estimator of the true susceptibility χ
(1)
ϕ as:

χ
(1)
Φ (ω) ∼= lim

K→∞

1

K

K∑
i=1

χ
(1)
Φ (ω, xi, ϵ, T ), (59)

where the xi are randomly selected initial conditions chosen on the attractor of the unper-
turbed system.

The numerical integrations of the Lorenz 96 system have been performed using the stan-
dard configuration where N , the number of degrees of freedom, is set to 40, and F , the
intensity of the unperturbed forcing, is set to 8 [54, 52]. Equations (27) and (37) are solved
using the standard fourth order Runge-Kutta numerical scheme.

For a given observable Φ, the susceptibility at angular frequency ω is computed by apply-
ing Eq. (59) to K outputs of Eq. (37), each starting with a different initial condition, where
the perturbation has the same angular frequency ω. The angular frequency ω ranges from
ωl = 0.2π to ωh = 20π with steps of 0.01π. Each simulation performed with a perturbation
of angular frequency ω runs from t = 0 up to t = T = 400π/ω, which corresponds to 200 full
periods of the forcing. The length of the simulations depends on the corresponding period
of the forcing because we are interested in obtaining a frequency-independent quality for the
signal. We have observed that the linear response approximation is obeyed to a good degree
of approximation for up to ϵ ≈ 1, which implies that the third order nonlinear effects are
relatively small. See [17, 50] for further clarifications on this latter point.

When considering the susceptibilities describing the response to the global perturbation,
we present results obtained using ϵ = 0.25 and averaging over K = 100 random initial
conditions. When assessing the linear response to the local perturbation, a reasonably clear
signal is obtained using ϵ = 1 and averaging over K = 300 initial conditions.

Note that, since we are interested in the linear response, it is could have been possible
to compute the susceptibility using a generic modulating function f(t) (see Eq. (4)) rather
than having to resort to multiple monochromatic perturbations. Nevertheless, for reasons
of clarity, and for emphasizing that chaotic dynamical systems can be analyzed using tools
typical of spectroscopy, we have used a more cumbersome but probably more convincing
approach.

We underline that the numerical results have been obtained using a commercial laptop
rather than resorting to HPC. This comes from the motivation of showing that the method-
ology presented is robust enough that relatively low-end means allow us to see the physical
and mathematical properties of our interest. We emphasize that, using HPC, it is rather easy
to greatly increase the quality of the signal by increasing K and/or T by a one or two orders
of magnitude.

4.2 Global Perturbation

We first consider χ
(1)
ε,N = 1/Nχ

(1)
E,N , where ε = E/N , and follow up from the discussion in

subsection 3.2.1. The measured real and imaginary parts of the susceptibility are depicted
with the black lines in Fig. (1)a,b. The imaginary part has a broad spectral feature (with
two distinct peaks) spanning from ω ≈ 2 to ω ≈ 4, which corresponds to about twice the
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time scale (=1) of the system and to four times (see Eq. (28)) the relaxation time of the
energy. This hints at the fact that it is not obvious to constrain the spectral features of
the response an observable just by performing a scale analysis of its evolution equation. For
higher values of ω, the imaginary part decreases in a very regular way, so that in the upper
range a very good agreement with the asymptotic behavior ∼ m/ω presented in Eq. (8)
is obtained. For low frequencies, the imaginary part appears to decrease towards zero, as
expected from symmetry reasons. Instead, the real part presents a dispersive structure in
correspondence with the broad maximum of the imaginary part, and changes sign for ω ≈ 6,
so that it is negative for high values of the frequency range. The asymptotic decrease to
zero in this range is also in excellent agreement with the estimate ∼ −(F − 2m)/ω2 given in
Eq. (8), whereas for low frequencies the real susceptibility tends to a very high value, this
suggesting that the strongest response is obtained for static perturbations.

The measured real and imaginary parts of χ
(1)
µ,N = 1/Nχ

(1)
M,N , where µ = M/N , are

depicted in black in Fig. (2)a,b. Interestingly, the spectral feature of the imaginary part
is shifted to higher frequencies than in the case of the energy susceptibility, so that a well-
distinct peak centered on value of ω ≈ 6, which approximately corresponds to the natural
time scale of the system. For low frequencies, the susceptibility has almost exclusively a real
component. As opposed to the previous case, the largest value for the in-phase response is
not obtained for ultralow frequencies, but rather for ω ≈ 4. The asymptotic behavior of both
the real and imaginary parts is in perfect agreement with the theoretical result given in Eq.
(32), so that they are found to decrease asymptotically for high frequencies as 1/ω2 and 1/ω,
respectively.

We apply the truncated KK relations to the measured data to test the quality of the
data inversion process. The estimates of the imaginary part (starting from the measured
data of the real part) and of the real part (starting from the measured data of the imaginary

part) obtained by applying Eqs. (9)-(10) are shown for χ
(1)
ε,N in blue in Fig. (1)a,b and

for χ
(1)
µ,N in Fig. (2)a,b. We observe that whereas agreement is very good for the real part

for both susceptibilities, only a qualitative match is obtained for the imaginary part, with
large discrepancies for ω . 2. In this latter case, moreover, the well-known problem of KK
divergence at the boundaries of integration [46, 47] is very serious for ω = ωl.

It is crucial to test whether the discrepancies are due to the finiteness of the spectral range
or are, instead, due to basic problems in the applicability of the Ruelle response theory, related
to the fact that the invariant probability measure of the unperturbed system actually features
large deviations from an SRB measure.

We proceed testing the first case. In order to widen the spectral range over which the
susceptibility is defined, we will exploit the asymptotic properties obtained in section 3.2 as
well as the low frequency behavior of the susceptibility discussed in section 2. We redefine

the the imaginary part of the susceptibility of χ
(1)
ε,N as follows

Im[χ
(1)
ε,N (ω)] =


ω
ωl
Im[χ

(1)
ε,N (ωl)], 0 ≤ ω ≤ ωl,

Im[χ
(1)
ε,N (ω)], ωl ≤ ω ≤ ωh,

m
ω , ω ≥ ωh,

(60)
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where the measured data are sandwiched between the low and high frequency limit. Whereas
we have a rigorous result for the high frequency limit, the low frequency limit is computed
by making the reasonable assumption that the leading order of the ω → 0 limit is linear (see

discussion after Eq. (11)). Similarly, the real part of the susceptibility χ
(1)
ε,N can be redefined

as follows:

Re[χ
(1)
ε,N (ω)] =


Re[χ

(1)
ε,N (ωl)], 0 ≤ ω ≤ ωl,

Re[χ
(1)
ε,N (ω)], ωl ≤ ω ≤ ωh,

−F−2m
ω2 , ω ≥ ωh,

(61)

where we have used the fact that at low frequencies the real part of the susceptibility is con-
stant in ω up to a quadratic term. A corresponding procedure is used to extend the spectral

range of the χ
(1)
µ,N (ω), where the suitable asymptotic behaviors described in subsection 3.2.1

are adopted. The red lines in Figs. (1)a,b-(2a,b) present the results of such extrapolations,
and the magenta lines show the outcome of the data inversion of these functions performed
via KK relations. We observe that the agreement is outstanding, with almost perfect overlap
inside the region where measurement is performed and remarkable agreement also in the low
and high frequency range. This is a very convincing evidence that the Ruelle response theory
can be successfully applied for this system. Since the KK relations provide, first and fore-
most, consistency tests, the agreement the original and the KK-transformed susceptibility
automatically confirms that the extrapolation procedure we have adopted is correct. A still
better agreement would be found had we taken into account value of ω larger than what
considered in the extrapolation used here (up to 100 π).

Furthermore, let’s consider the results presented in subsection 3.1. The slopes of the
functions e(F ) and m(F ) are given by

dm(F )

dF
= λγF γ−1, (62)

d e(F )

dF
= λ

(1 + γ)

2
F γ = m(F )

(1 + γ)

2
. (63)

They correspond, by definition, to the static susceptibility of the observables e and m,
respectively, for the global perturbation with Xi = 1 considered here. When evaluat-
ing the derivatives of e(F ) and m(F ) for F = 8 we obtain (d e(F )/dF )F=8 ≈ 1.6 and
(dm(F )/dF )F=8 ≈ 0.11. These values are in good agreement with what found by extrap-
olating the corresponding real part of the susceptibilities for ω → 0 via KK relations and
shown in Figs. (1a) and (2a).

Apart from the verification of the validity of KK relations, we want to provide further
support for the quality of the linear susceptibilities considered.

First, we test the sum rules given in Eq. (42) and (44) for the real part of the extrapolated

susceptibilities χ
(1)
ε,N (ω) and χ

(1)
µ,N (ω), respectively. Our findings are presented in Fig. (3,

where it is shown that an excellent agreement (within 1%) is found between the theoretical

values and the numerical results. Since Re[χ
(1)
e,ϵ,a](ω) is negative in the high-frequency range,

the convergence of the integral to the theoretical value of the sum rule is from above, whereas

the opposite occurs for Re[χ
(1)
m,ϵ,a(ω)]. Extending the integral for even larger values of ω would
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bring the numerical results to an almost perfect agreement with the theory.

Following the definition given in Eq. (3), the Green function G
(1)
Φ (τ) computed for an

observable Φ and a given pattern of perturbation flow Xi(x) (in this case Xi = 1∀i) can
be used to compute the time-dependent linearized impact of all perturbations with the same
spatial pattern Xi(x) but with arbitrary time modulation. Whereas the direct estimate of the
Green function from the time dependent dynamics can be obtained by performing an ensemble
of simulations where the time modulation of the perturbation is given by a δ(t) pattern (see
discussion in section 2, we take the indirect route by considering Eq. (5). By applying

the inverse Fourier Transform, we derive the Green functions corresponding to χ
(1)
ε,a(ω) and

χ
(1)
µ,a(ω). The results are presented in Fig. (4): for both observables the Green functions are

clearly causal, and their short-time behavior agrees remarkably well with what be deduced
by looking at the asymptotic properties of the corresponding susceptibilities (compare Eqs.
((41) and (43)).

4.3 Local Perturbation

The data obtained for the numerical simulations of the response to the local perturbation
are, given the much weaker overall strength of the forcing, much noisier that those presented
in the previous section. Nevertheless, we shall see that all the theoretical predictions are
verified to a surprisingly good degree of approximation.

The global observables E and M are of the form Φ(x1, . . . , xn) =
∑N

i=1Φ(xi), where

ϕ(x) = x2/2 and Φ(x) = x, respectively. We have consistently verified that the identity χ
(1)
Φ,1 =

χ
(1)
Φ/N,N = χ

(1)
ϕ,N discussed in the previous section applies in the whole spectral range explored

by our simulations, compatibly with the (slightly) different signal-to-noise ratios in the two

sets of simulations. See, e.g., Fig. 5 for the comparison between the two susceptibilities χ
(1)
E,1

and χ
(1)
ε,N .

We then proceed to analyze more in detail the linear susceptibilities related to local
observables. In Fig. (6) we present our results concerning the real and imaginary part of

χ
(1)
Ej ,1

(ω). Analogously to what observed in the previous subsection, we have that once the
measured susceptibility is extrapolated using the theoretical results obtained via response
theory and KK relations, we have an excellent agreement between the original real and
imaginary parts and those obtained using the KK inversion. The KK algorithm, instead,
provides only a partially satisfying outcome when only data from the measured range are
considered. Relatively discrepancies are found near the boundaries of the data range, with
an especially serious bias near ωl for the imaginary part of the susceptibility.

When comparing χ
(1)
Ej ,1

(ω) and χ
(1)
E,1(ω) (see Fig. 5), we observe that for low frequency the

response of the energy at the grid point where the perturbation is applied accounts for about
half of the response of the total energy, thus implying that the remaining half is redistributed
among the remainingN−1 grid points. The relevance of the response of grid points other than

the directly perturbed one also explains why the peak of Imχ
(1)
E,1(ω) (and so of Imχ

(1)
ε,N (ω))

than that of Imχ
(1)
Ej ,1

(ω) - see the frequency range 2 . ω . 4. Slower perturbations allow
other grid points xk ̸= xj to respond effectively.
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Instead, since the leading asymptotic order of χ
(1)
Ej ,1

(ω) and χ
(1)
E,1(ω) is the same, at high

frequencies the local energy response accounts for most of the energy response of the whole
system. In this case, the incoming perturbation is so fast that the internal time scales of the
system as bypassed, and mainly a local effect is observed. Nevertheless, the second leading
order of the asymptotic expansion of the two susceptibilities has opposite sign (see Eqs. (41)
and (54)), which suggests that at any large but finite frequency the local energy response is
only a good approximation to the response of the total energy. The changeover between the

two regimes occurs around the frequency of the peak of Imχ
(1)
Ej ,1

(ω), which corresponds to a
perturbation with period close to 1.

Thanks to the asymptotic equivalence between χ
(1)
Ej ,1

(ω) and χ
(1)
E,1(ω) (and χ

(1)
ε,N (ω)), they

must obey the same sum for the real part of the susceptibility (see Eqs. (42)-(55)), even if the
two real parts, as discussed above, are rather different in value in the low frequency range and
even in sign in the high frequency range. Figure 8 confirms that this rather counter-intuitive
behavior is actually observed. Note also that sum rules, resulting from an integration, are
less sensitive to noise in the data, but this occurs if and only if the underlying signal is

correct. Therefore, we understand that in χ
(1)
E,1(ω) and χ

(1)
ε,N (ω) the strong static and quasi-

static response and the (rather odd) negative sign for high frequencies of the real part of the
linear susceptibility, which are crucially related to the behavior for the grid points different
from the perturbed one) compensate each other to guarantee agreement with the sum rule

obtained from the real part of χ
(1)
Ej ,1

(ω), which instead has a smaller range and more regular

(monotonic) behavior with frequency.
A formally similar - and analogously spectacular - spectral compensation has been ob-

served in a physical process as different from what we are analyzing here as the electro-
magnetically induced transparency [62]. The result obtained here supports previous findings
obtained on quasi-equilibrium systems suggesting that sum rules do not depend on many-
particle interactions [46, 47].

The investigation of the linear susceptibility of the variable xj is not as insightful as that

of Ej . We find that linear susceptibility χ
(1)
xj ,1

(ω) is quite similar to χ
(1)
M,1(ω) (and χ

(1)
µ,N (ω), see

Fig. 2) in both the real and imaginary parts at all frequency. The only notable differences
are that the static response xj is slightly larger than than of M , and that the imaginary
features a secondary peak at slightly larger frequencies than the main spectral feature. We
have verified,as in the previous cases, the results of the numerical simulations accurately agree
with the theoretical results regarding the asymptotic behavior of both the real and imaginary
part and that KK relations map to high degree of precision the real and the imaginary parts
into each other. See Fig. 7 for details.

We present as main finding of the analysis of the observable xj that, as predicted by the

theory, the real part of χ
(1)
xj ,1

(ω) obeys the same sum rule as the real part of χ
(1)
M,1(ω) or of

χ
(1)
µ,N (ω), because the corresponding imaginary parts feature the same asymptotic behavior.

Figure 8 shows that in the case of the momentum variables the cumulative integral is rather
similar for the susceptibility of the local and of the global variable, with small discrepancies
in the region around the peak of the response.
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4.4 Further implications of Kramers-Kronig relations and sum rules

We now show how the knowledge of the asymptotic behavior of the real and imaginary part
and the knowledge of the validity of the KK relations and related sum rules allow to draw
general conclusions on the similarities and differences between two given linear susceptibility
functions. Let’s consider the case that these two susceptibilities feature the same first order
asymptotic expansion in the high frequency limit. Let’s assume that it is an odd power of ω,
so that the real part is negligible for high frequencies. Therefore, the two susceptibilities will
obey the same sum rule for, e.g. the 0th moment of the real part.

If they agree also in the asymptotic behavior of the real part, they cannot feature large
discrepancies in the low frequency range of the real part of the susceptibility either, or oth-
erwise the agreement of the sum rules would be broken. Therefore, the real part of the two
susceptibilities are similar, and, as a consequence of the KK relations, the two imaginary
parts will also be similar.

If, instead, there is a discrepancy in the asymptotic behavior of the real part of the two
susceptibilities, the two real parts will necessarily be rather different in the low frequency
range, again in order to comply with the sum rule constraint. As the two real parts are
different, the imaginary part of the two susceptibility will also be rather different, except,
from hypothesis, in the high-frequency range.

The first scenario envisioned here pertains to the pair of linear susceptibilities χ
(1)
xj ,1

(ω) and

χ
(1)
M,1(ω), whereas the second scenario is related to the pair of linear susceptibilities χ

(1)
Ej ,1

(ω)

and χ
(1)
E,1(ω). Note that, taking into account the asymptotic properties of the susceptibility of

the observable Eloc = 1/2x2j +1/2x2j+1+1/2x2j+2+1/2x2j−1, discussed in the previous section

we conclude that χ
(1)
Eloc,1

and χ
(1)
E,1 should be similar for all values of ω.

Obviously, a similar argument applies if the leading order is real. This discussion further
clarifies that the higher the number of independent KK relations and related sum rules verified
by a susceptibility functions, the more stringent are the constraints on its properties.

4.5 Additional Properties of the Linear Susceptibility

The special mathematical properties of the linear susceptibilities allow to investigate further

properties of the response. In particular, we note that for m ≥ 1 the function [χ
(1)
Φ ]m is

analytic in the upper complex ω-plane just as as χ
(1)
Φ . This allows, as discussed in [47] to

derive, in principle, an infinite set of integral relations (KK and sum rules) deriving just
from the holomorphic proprieties of the susceptibility. As an example, we have considered

the square of the linear susceptibility [χ
(1)
ε,N (ω)]

2. From Eq. (41), it is easy to prove that the
following asymptotic expansion holds for large values of ω:

[χ
(1)
ε,N (ω)]

2 = −m
2

ω2
+
m(F − 2m)

ω3
+ o(ω−4). (64)

As shown in the first panel of Fig. 9, KK relations are found to connect up to a high degree of

approximation the real and imaginary part of [χ
(1)
ε,N (ω)]

2. Moreover, thanks to the asymptotic
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behavior given in Eq. (64), it is possible to establish, thanks to Eqs. (13)-(14), the following
sum rules: ∫ ∞

0
dνRe[χ

(1)
ε,N (ν)]

2 = 0, (65)∫ ∞

0
dννIm[χ

(1)
ε,N (ν)]

2 =
π

2
m2, (66)

The second panel of Fig. 9 shows that the obtained numerical results are in excellent agree-
ment with the theoretical predictions. Note that these results do not have an obvious physical

interpretation, as the inverse Fourier Transform of [χ
(1)
ε,N (ω)]

2 is given by the convolution prod-

uct of the Green function G
(1)
ε,N (t) with itself, while they depend only on the formal properties

of the linear susceptibility.

5 Practical Implications for Climate Change Studies

In this paper we have constructed and verified to a high degree of accuracy the linear response
theory for a simple yet prototypical climate model by computing the frequency-dependent
susceptibilities of several relevant observables related to localized and global patterns of
forcings. These results pave the way for devising a rigorous methodology to be used by
climate models of any degree of complexity for studying climate change at, in principle, all
time scales using only a very limited set of experiments, and for exploiting effectively the
currently adopted ensemble runs methods.

Let’s consider, for sake of simplicity, that the observable Φ is the time-dependent globally
averaged surface temperature of the planet TS , that F (x) represents the whole set of climate
equations in a baseline scenario (e.g., with pre-industrial CO2 concentration), and that the
perturbation field X(x) is nothing but a constant field of CO2 concentration, which directly
impacts only the radiative part of the code. The perturbation is modulated by a time-
dependent function f(t) to be specified below. We assume, for simplicity, that the model does
not feature daily or seasonal variations in the radiative input at the top of the atmosphere.

From Eq. (2), we have that

⟨TS⟩(1) (t) =
∫ +∞

−∞
dσ1G

(1)
TS

(σ1)f(t− σ1). (67)

In practical terms, the left hand side of this equation is nothing but the ensemble average of
the time series of the change between the globally averaged surface temperature of the planet

at a time t after the perturbation has started. Note that the direct estimate of G
(1)
TS

(σ) is
likely to be overwhelmingly difficult. Using Eq. (4), we have that:

⟨TS⟩(1) (ω) = χ
(1)
TS

(ω)f(ω), (68)

which implies that once we compute the Fourier Transform of the time series mentioned
above and we know the modulating function f(t) (and so its Fourier Transform f(ω)), we

can reconstruct χ
(1)
TS

(ω). Let’s select a particularly simple example of modulating function
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f(t) = ϵ(Θ(t) − Θ(t − τ)). This is just a rectangular function of width τ , of height ϵ, and
shifted from the origin by a forward time translation τ/2. In practical terms, this corresponds
to changing abruptly the field CO2 concentration by ϵ at time t = 0 and taking it back to its
original value at t = τ . we then obtain:

χ
(1)
TS

(ω) =
⟨TS⟩(1) (ω)
f(ω)

= ω
⟨TS⟩(1) (ω)

ϵ(sin(ωτ) + i(1− cos(ωτ)))
. (69)

Once we know χ
(1)
TS

(ω), as widely discussed in this paper, we can compute G
(1)
TS

(t), and we
know everything about the response of the system at all time scales, including the static
response. Note that any choice of f(t) is equally valid to set up this procedure as long as f(t)
is square integrable. This implies that, in a very profound way, the kind of forcing scenarios
used in the various assessment Reports of IPCC, where the CO2 concentration typically
stabilizes at a different value from the preindustrial one (so that f(t) does not tend to 0 as
t → ∞) are not necessarily the only nor the best ones, in spite of what could be intuitively
guessed, to study even the steady state response of the system.

Obviously, a similar set of experiments could be devised for studying rather thoroughly
the response of the climate system to a variety of forcings, such as changes in the O3 concen-
tration, aerosols, solar radiance, as well as to changes in the parameterizations. In the case
of uncoupled models of one subdomain of the climate system (e.g. atmospheric and oceanic
GCMs, land-surface models), this strategy could be used to study the impact of perturbations
to the boundary conditions provided by the other subdomains of the climate system.

6 Summary, Discussion and Conclusions

The climate can be seen as a complex, non-equilibrium system, which generates entropy by
irreversible processes, transforms moist static energy into mechanical energy [1, 2] as if it
were a heat engine [3, 4], and, when the external and internal parameters have fixed values,
achieves a steady state by balancing the input and output of energy and entropy with the
surrounding environment [63, 4]. For such basic reasons, the tool of equilibrium and quasi-
equilibrium statistical mechanics cannot provide suitable tools for studying the fundamental
properties of the climate system. In particular, the fluctuation-dissipation theorem, which
allows for deriving the properties of the response of the system to external perturbations from
the observations of its internal variability cannot be applied.

It is reasonable to ask whether is possible to evaluate how far from equilibrium the climate
system actually is. It is possible to evaluate such distance in a mathematically sound way by
assessing the ratio of the dimensionality of the attractor of the system over the total number
of degrees of freedom. Whereas a ratio close to one indicates that only small deviations
from equilibrium are present, a small ratio suggests that strongly non-equilibrium conditions
are established. See [64] for a detailed treatment of this problem in the classical case of
heat conduction. In the case of a quasi-geostrophic atmospheric model forced by Earth-like
boundary conditions, the dimensionality of the attractor of the model is about one order of
magnitude smaller than the total number of degrees of freedom [65]. While not conclusive,
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this seems to suggest that the best framework to interpret the climate is that of a far from
equilibrium system.

Following either explicitly or implicitly the programme of the Catastrophe theory [66],
many authors have approached the problem of understanding the fundamental properties of
the climate system by looking at the detailed structure of the bifurcations of the deterministic
dynamical system constructed heuristically in order to represent the dynamics of the main
climate modes using as few degrees of freedom as possible. Such an approach often hardly
allows to efficiently represent the fluctuations and the statistical properties of the system. The
introduction of stochastic forcing provides a relatively simple but conceptually rich partial
solution to some of these draw-backs, even if the Hasselmann programme [67] suffers from
the need for a - usually beyond reach - closure theory for the properties of noise. Therefore,
the stochastic component is usually introduced ad hoc, with the ensuing lack of universality
and/or robustness when various levels of truncations are considered. These strategies have
anyway brought to outstanding scientific results and has been suggested the existence of
generic mathematical structures present in hierarchies of CMs [68]. Recently, the unified
treatment of chaotic and stochastic dynamics using the results of the mathematical theory
of random dynamical systems is emerging as new, promising paradigm for the investigation
of the structural properties of the climate system [69].

We have proposed a different perspective. In agreement with the view given above, we
have taken as mathematical framework for the analysis of the climate system that of non-
equilibrium statistical mechanics, and have focused on the steady state properties of ergodic
dynamical systems [20] possessing the special property of having an invariant measure of the
SRB type [21]. As proposed by the chaotic hypothesis [23, 22], this mathematical framework
is well suited for analyzing general non-equilibrium physical systems.

In this context, the impact on the system of general perturbation can be treated using
the response theory recently introduced by Ruelle [10, 25, 16], which allows to compute the
change in the expectation value of a generic observable as a perturbative series where each
term is given by the average over the unperturbed invariant measure of a function of the
phase space which depends on the considered observable and on the applied perturbation.
In other terms, even if the internal dynamics of the system is nonlinear and chaotic, the
leading order of the response is in general linear with the strength of the added perturbation.
This approach overcomes the difficulties related to the singularity of the invariant measure
discussed in [70].

At each order, the propagator of the perturbation, i.e. the Green function, is causal. This
allows for applying dispersion theory and establish general integral constraints - KK relations
- connecting the real and imaginary parts of the susceptibility, i.e. the Fourier Transform of
the Green function [17, 50]

In this paper we have first recapitulated the main aspects of the general response theory
and have propose some new general results, which boil down to consistency relations between
the linear susceptibilities of different observables. The obtained equation provides the basic
idea of why the fluctuation-dissipation theorem does not apply in non-equilibrium cases.

We have showed for the first time that the Ruelle linear response theory can be applied
with great success to analyze the climatic response to general forcings. We have chosen as
test bed the L96 model [52, 53, 54], which, in spite of its simplicity, has a well-recognized

29



prototypical value as it is a spatially extended one-dimensional model and presents the basic
ingredients, such as dissipation, advection and the presence of an external forcing, of the
actual atmosphere. Such a model features a different level of complexity with respect to
those adopted in previous numerical investigations of Ruelle’s theory [48, 49, 50], and has
been already tested in terms of linear response (albeit with a different methodology and in a
different theoretical context) in [35].

We have analyzed the frequency dependence of the response of the local and global en-
ergy and momentum of the system to perturbations having a global spatial pattern and to
perturbations acting only on one grid point. We have derived analytically several properties
of the corresponding susceptibilities, such as asymptotic behavior, validity of KK relations,
and sum rules. We have shown that all the coefficients of the leading asymptotic expansions
as well as the integral constraints can be written as linear functions of parameters that de-
scribe unperturbed properties of the system, and in particular its average energy and average
momentum. The theory has been used to explain differences in the response of local and
global observables, in defining the intensive properties of the system and in generalizing the
concept of climate sensitivity to all time scales.

We have then verified the theoretical predictions from the outputs of the simulations up
to a high degree of precision, even if we have used rather modest computational resources
(a total of about 30 cpu days of a mid-range commercial laptop). We have verified that the
linear response theory holds for perturbations of intensity accounting to up to about 10%
of the unperturbed forcing terms. Even when local perturbation and local observables are
considered it is possible to achieve a signal-to-noise ratio which permits rather satisfactory
comparisons with the theory. We have proved that the combined use of KK relations and
the knowledge of the asymptotic behavior of the susceptibilities allows for extrapolating in
a rigorous way the observed data. We also have shown how to reconstruct the linear Green
function, which can be used to map perturbations of general time modulation into changes
in the expectation value of the considered observable for finite as well as infinite time.

Our numerical experiments have been performed using one of the standard settings of
the L96 model, namely the version identified by having N = 40 degrees of freedom and
forcing F = 8. Nevertheless, some newly obtained empirical closure equations expressing the
average energy and the average momentum of the unperturbed system as simple power laws
of F (with no dependence on N) have allowed to extend our results to the entire class of
chaotic L96 models. The regular scaling of the properties of the system and of its response
with F agrees with what observed in [35].

In this paper we have only used the KK relations in the most simplistic framework,
i.e., computing the KK transforms and evaluating their agreement with the original data.
Actually, several more sophisticated analysis techniques are available, such as recursive self-
consistent algorithms, where the measured data are taken as first guess, exploiting the fact
that multiple applications of KK relations, combined with sum rules, automatically filter our
the noise and remove most of the spurious signal [47].

We believe that the proposed approach, which we may dub as spectroscopy of the climate
system, may constitute a mathematically rigorous and practically very effective way to ap-
proach the problem of evaluating climate sensitivity and climate change from a radically new
perspective. In this regard, we have proposed a rigorous way to compute, e.g., the surface
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temperature response to changes in the the CO2 concentration at all time scales using only
a specific set of simulations, and taking advantage of the theoretical results presented here.
Given the ever-increasing interest towards decadal and multidecadal climate prediction, these
tools could be of relevant practical interest and their applicability could benefit from techno-
logical platform aimed at creating ensemble simulations comprising of many members. We
underline that our approach takes into account all the (linear and nonlinear) feedbacks of the
system, as they are included in the definition of the Green function. This, at a very practical
level, is the great advantage of using Ruelle’s formulas.

At a more basic level, whereas considering more complex models requires heavier compu-
tational resources, the modest cost of the present set of simulations suggests that, at least
for global or regional climatic observables, it is feasible to test the theory discussed here for
simplified yet Earth-like climate models without resorting to top-notch computing facilities.
Moreover, while in this paper we have computed the susceptibilities using, on purpose, a very
cumbersome method, more efficient strategies can be devised, at least when the linear regime
of the response is considered. Apart from the practical example given for the case of the
impact of the CO2 concentration, these include studying the response of the system to δ(t)
like perturbations, which gives directly the Green function of the system, and including in
the forcing various monochromatic signals. Of course, in all cases, a Monte Carlo approach
is needed in order to sample effectively the attractor of the unperturbed system in terms of
the initial conditions of the simulations.

These results pave the way for future investigations aimed at improving and extending the
theoretical framework presented here, at finding results of general applicability in the context
of the modelling of geophysical fluid dynamics, and, finally at answering specific questions of
relevance for climate dynamics. In this paper we have analyzed the simple case of the linear
response, but, as discussed in [25, 17, 50], we have the algorithm to compute higher order
terms, so that the treatment of the nonlinear response in entirely feasible.

In the first direction, we foresee the possibility of writing out explicitly the linear sus-
ceptibility of a general observable by projecting the perturbation onto the unstable, neutral
and stable manifolds and analyzing separately the contributions to the total response. This
will probably require the adoption of adjoint techniques, and will benefit from the recent
algorithms proposed in [35, 36]. Moreover, we will be testing the radius of convergence of the
Ruelle response theory in some specific examples.

Along the second direction, we propose to study the impact of stochastic forcing to deter-
ministic chaotic models by treating the (additive or multiplicative) noise as a perturbation
to be analyzed using the linear and nonlinear Ruelle response theory and related spectral
methods. We will try to complement the results recently obtained in [36] from an entirely
different approach, i.e. bypassing the Fokker-Planck equation formalism and using directly
the first and higher order terms of the Ruelle response formula. Moreover, we shall look into
the spectral peaks of the susceptibilities and try to understand how the amplification of the
response is related to resonances of the system and to the activation of positive feedbacks.

Along the third direction, we envision the analysis of the impact of topography on the
statistical properties of the circulation in a quasi-geostrophic setting, thus extending in a
climatic perspective what presented in [71]. Moreover, we will tackle in an idealized setting the
problem of computing the response of the storm track to changes in the surface temperature
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[72]. Positive results in this direction, albeit using a different formalism, have been shown in
[41]. Moreover, we will try to compute along the way discussed here the climate response to
changes in CO2 and solar irradiance using simplified but rather valuable climate models like
PLASIM [73].

The results of the linear response theory should be compared to those obtained from a
simplified application of the fluctuation-dissipation theorem. The difference between the two
results would inform us on the relevance of the effect of the external perturbation along the
stable direction of the unperturbed flow, which cannot be precisely captured by the internal
fluctuations of the system and, thus, cannot be rigorously described in the context of the
fluctuation-dissipation theorem. Moreover, this could also suggest ways to improve the em-
pirical evaluation and parameterisation of the corresponding contribution to the response.
This would also be of relevance to understand why, in spite of all the involved approxima-
tions and the theoretically unjustifiable assumptions, previous applications of the equilibrium
fluctuation-dissipation theorem (often in a hyper-simplified quasi-gaussian setting) have been
relatively successful in predicting the climate response to external forcings.

Finally, we would like to remark that the theory and the practical recipes proposed here
could be of direct interest for all projects aimed at auditing climate models’ performances
and at studying practical problems connected to climate change, such as PCMDI/CMIP3
(http://www-pcmdi.llnl.gov/), distributed computing initiatives such as climateprediction.net,
and the new project PCMDI/CMIP5 (http://cmip-
pcmdi.llnl.gov/cmip5/), which will provide a crucial input for the Fifth Assessment Report
of the IPCC.
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Figure 1: Linear susceptibility of intensive energy of the system E/N with respect to the
global perturbation with Xi = 1 ∀i. The real and the imaginary parts are depicted in Panels
a) and b), respectively. The measured and extrapolated values are shown in red and black
lines, respectively. The result of the Kramers-Kronig inversion done with the measured and
with with the extrapolated data are shown in blue and magenta lines, respectively.
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Figure 2: Linear susceptibility of intensive momentum of the system M/N with respect to
the global perturbation with Xi = 1 ∀i. The real and the imaginary parts are depicted in
Panels a) and b), respectively. The measured and extrapolated values are shown in red and
black lines, respectively. The result of the Kramers-Kronig inversion done with the measured
and with with the extrapolated data are shown in blue and magenta lines, respectively.
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Figure 3: Sum Rules for the real part of the linear susceptibility of intensive energy E/N
(black line) and momentum M/N (blue line) of the system with respect to the global per-
turbation with Xi = 1 ∀i. The theoretical values are indicated in the figure.
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function estimated from the asymptotic behavior of the corresponding susceptibility is shown
in figure.
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Figure 5: Comparison between the linear susceptibility of the intensive energy for the global
perturbation and of the total energy for the local perturbation. The signals are the same
except for the different level of noise.
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Figure 6: Linear susceptibility of the energy at the grid point where the local perturbation is
applied. The real and the imaginary parts are depicted in Panels a) and b), respectively. The
measured and extrapolated values are shown in red and black lines, respectively. The result
of the Kramers-Kronig inversion done with the measured and with with the extrapolated
data are shown in blue and magenta lines, respectively.
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Figure 7: Linear susceptibility of the momentum at the grid point where the local per-
turbation is applied. The real and the imaginary parts are depicted in Panels a) and b),
respectively. The measured and extrapolated values are shown in red and black lines, respec-
tively. The result of the Kramers-Kronig inversion done with the measured and with with
the extrapolated data are shown in blue and magenta lines, respectively.
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Figure 8: Sum rules of the real part of the linear susceptibilities indicated in the legend. The
theoretical values are indicated in the figure.
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Figure 9: Properties of the square of the linear susceptibility χ
(1)
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2 with their KK transforms are depicted in the first panel, the vanishing sum
rule for the real part and the non-vanishing sum rule for the imaginary part are depicted in
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