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Abstract-- This paper describes the application of cluster 

analysis and classification techniques for the diagnosis of partial 

discharge defects present in electrical power transformers. The 

subsequent implementation of an agent-based, decision support 

system (DSS) incorporating these intelligent techniques is also 

discussed. Successful defect classification of empirical partial 

discharge data, using neural networks and rule induction, 

affirms the application of these techniques as a suitable means 

of providing reliable decision support for partial discharge 

defect diagnosis, particularly where expert diagnostic 

knowledge may be scarce or ambiguous. Through the 

interaction of intelligent agents the DSS considers the 

effectiveness and diagnostic contribution of each agent 

(intelligent technique) before presenting a consolidated 

diagnosis. 

 
Index Terms-- Cluster Analysis, Classification Techniques, 

Partial Discharges, Transformers, Decision Support, Neural 

Networks, Rule Induction, Intelligent Agents. 

I.  INTRODUCTION 

n increasingly competitive marketplace, stringent 

regulatory demands and ageing electrical plant are some 

of the issues which have established asset management and 

condition monitoring as key business objectives among asset 

owners within the electricity supply industry [1]. 

Effective condition monitoring plays a significant role in 

improving the performance, reliability and longevity of 

electrical plant, having a positive economic and regulatory 

impact on an organisation’s asset management and 

maintenance strategies. 

 Condition monitoring equipment provides valuable data 

and diagnostic information through automatic processing of 

raw sensor data, or via on/off-line data analysis conducted by 

technical experts. The application of established intelligent 

techniques [2] used for data classification are presented 
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within this paper as a practical means of providing reliable 

decision support for the classification of partial discharge 

defect types detected in electrical power transformers. 

The paper discusses the approach taken to the analysis and 

classification of empirical data derived from various 

laboratory experiments designed to simulate different sources 

of partial discharge activity occurring in oil and air insulated 

transformers, under various operational conditions [3]. 

Knowledge of the defect type (i.e. source) responsible for 

the initiation of partial discharge activity within a power 

transformer provides a useful indication of the possible 

location and severity of this activity. This paper proposes the 

classification of these defect types through the application of 

the following intelligent techniques: 

• C5 Rule Induction [4]; 

• Feed-forward Backpropagation Networks [5]. 

• K-Means Clustering [5]; 

Software implementation of a prototype decision support 

system (DSS), incorporating these techniques as separate 

intelligent software agents [6], allows cross-corroboration of 

the individual agent outputs. The diagnostic output of the 

system is subsequently formed by the consensus of agent 

opinion. The implementation issues associated with the 

prototype development are also discussed later in this paper. 

II.  TRANSFORMER CONDITION MONITORING OF PARTIAL 

DISCHARGE ACTIVITY 

Electrical discharges, which do not completely bridge the 

distance between two electrodes, are known as partial 

discharges [7]. Partial discharge activity exists where an 

electric field surrounding a conductor exceeds the dielectric 

strength of the conductor insulation. In practical terms, 

partial discharges can occur in items of electrical plant as a 

result of temporary over-voltage, or an incipient weakness in 

the insulation introduced during manufacturing or as a result 

of degradation over the plant lifetime [1]. Insulation 

weaknesses (or defects) manifest themselves in a number of 

ways. Different classes of defect type resulting in partial 

discharge activity in oil filled power transformers are 

described below [3]: 

• Bad Contact (BC) – caused by sparking, e.g. sparking 

occurring between the threads of loose nuts and bolts. 
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• Floating Component (FL) – caused by the presence of 

large, usually motionless objects, e.g. due to winding 

vibrations causing metallic constructional parts to 

become detached from the earthed tank base and 

acquiring a floating potential. 

• Suspended Particle (SP) – caused by small objects 

residing, and often moving, within the insulating oil. 

• Protrusion (PRO) – caused by fixed, sharp metallic 

protrusions existing on windings, e.g. due to poor 

manufacture or as a result of winding vibrations over 

a substantial period of time. 

• Rolling Particle (RP) – caused by a stray metallic 

object moving across the surface of the insulation. 

• Surface Discharge (SD) – caused by moisture 

contamination, e.g. introduced at commissioning stage 

or as a result of interactions between cellulose 

material and the insulating oil. 

Partial discharges may cause serious damage to 

transformers, significantly limiting the plant’s performance 

and lifetime. Undetected and untreated partial discharge 

activity can have far reaching, and in some cases catastrophic 

implications regarding public and employee safety, 

unplanned outages, and damage to plant, often culminating in 

severe financial and legal penalties for the asset owner. 

III.  DATA ACQUISITION AND PRE-PROCESSING 

The application of classification and clustering techniques, 

mentioned previously, required extensive pre-processing of 

the data acquired from the laboratory experiments (Fig. 1). 

Under laboratory conditions, Ultra High Frequency (UHF) 

sensors were used to detect electromagnetic energy signals 

radiated by localised electrical discharges, caused by the 

induced dielectric breakdown of insulating material. A phase-

resolved pattern (shown in Fig. 1), representative of the 

partial discharge activity monitored [3], was generated from 

the raw sensor data. A phase-resolved pattern can be 

decomposed into four distinct distributions: 

• Pulse Summation against Phase (Hqs). 

• Pulse Count against Phase (Hn). 

• Mean Pulse Height against Phase (Hqn). 

• Max Pulse Height against Phase (Hqm). 

A feature vector is constructed from various basic, deduced 

and statistical parameters derived from these distributions. 

Many parameters may be used to successfully characterise 

partial discharges [7]. Basic, deduced and statistical 

parameters are used to form the feature vector, providing 

some indication of the shape (cross-correlation), symmetry 

(skew) and ‘peakedness’ (kurtosis) of the phase resolved 

pattern, effectively producing a ‘snapshot’ or ‘fingerprint’ of 

the partial discharge activity. The feature vector consists of 

parameters (or features), capable of discriminating between 

different types of partial discharge defect. 

Prior to the analysis of the data, it is necessary to 

normalise and then separate the entire data set into balanced 

and representative training and test data sets. The training 

data set is used to train the neural network or derive induction 

rules while the test data set, consisting of previously unseen 

data (i.e. data not used in training), is used to assess the 

performance of the technique under consideration. 

 

 
Fig. 1. Data pre-processing 

IV.  DATA VISUALISATION 

Sammon's mapping is a method of mapping points 

originally plotted in n-dimensional space to a lower, more 

comprehensible, dimensional representation (usually into two 

dimensions) [5]. The inherent structure of the original data 

set represented in n-dimensional space is retained during this 

transformation, providing a clear visual indication of any 

‘cluster’ relationships present within the data set. 

 

 
Fig. 2. Sammon Map 
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This technique was used to assess the feasibility of the 

clustering techniques under investigation. If no clusters can 

be visualised from the Sammon Map, it is unlikely that any 

intelligent clustering technique will effectively classify the 

data. However, from the Sammon Map shown in Fig. 2, it is 

evident that, in most cases each defect type forms at least one 

distinct cluster, implying cluster analysis may indeed offer a 

practical solution to this particular classification problem. 

V.  C5.0 RULE INDUCTION 

C5.0 rule induction attempts to derive If-Then rules from 

the training data set, which can subsequently be used to 

classify ‘unseen’ data [4]. Rule-sets and decision trees are 

induced by segmenting plotted data (feature vectors) using 

partitioning lines. The following is an example of a rule 

derived for the classification of the ‘Bad Contact’ partial 

discharge defect type.  
 

Rule for Bad Contact (BC): 

        if   Neg. Skew1  > 0.462 

        and  Pos. Phase Incp <= 1 

        and   Q <= 0.365 

        then -> BC (115, 0.991) 
 

The general observations of partial discharge activity 

associated with ‘Bad Contact’ defect types interpreted from 

the above rule, include: 

• +’ve value of skew infers the phase resolved 

distribution is asymmetric to the left of the zero 

crossing (i.e. Neg. Skew1  > 0.462); 

• Positive phase inception occurs at less than or equal to 

a value of 1 (i.e. Pos. Phase Incp <= 1); 

• Q<1 infers the discharge is asymmetric over the 

complete voltage cycle, i.e. discharge distribution over 

positive half cycle differs from that over negative half 

cycle (i.e. Q <= 0.365). 

Note that a confidence figure is also provided (i.e. 115, 

0.991), indicating 115 test cases have been classified as ‘Bad 

Contact’ defect types by this particular rule, with a confidence 

level of 99.1%. 

The confusion matrix shown in Fig.3, provides 

information on how effectively the C5.0 rules classify the 

different defect types represented in the test cases [8]. 

 

 
Fig. 3. Confusion matrix for C5.0 Induction Rules 

 

The confusion matrix compares the predicted defect types 

derived from the induced rule sets, with the actual defect 

types associated with the (previously unseen) test cases. The 

confusion matrix shows defect type ‘Bad Contact’ correctly 

classified in 256 instances, while incorrectly classified in 25 

separate instances, as either defect type ‘Floating Component’ 

(FL), ‘Rolling Particle’ (RP) or ‘Surface Discharge’ (SD). 

The strong leading diagonal indicates these rules generally 

perform very well in the classification of all partial discharge 

defect types. 

C5.0 rules were also derived to successfully classify the 

insulation type (Oil or Air) and the electrode type (Earth or 

HV) associated with the partial discharge source. 

VI.  BACKPROPAGATION NEURAL NETWORK 

Backpropagation (BP) neural networks employ supervised 

learning in the training of a neural network [2]-[5]. The input 

data vector is presented to the network input layer while the 

output layer is presented with the “target” output (i.e. defect 

type). The network is refined through a process of error 

backpropagation, where the resultant error between the actual 

and target output is minimised. 

The confusion matrix shown in Fig. 4, resulting from the 

BP network analysis, exhibits a strong leading diagonal 

among those test cases classified successfully, indicating that 

(from the data classified) most of it was classified correctly. 

However, a number of test cases remain unclassified by the 

network. Further investigation may identify other techniques 

as a more effective means of classifying these particular test 

cases. 

 

 
Fig. 4. Confusion matrix for Backpropagation matrix 

VII.  K-MEANS 

The K-means algorithm is an iterative procedure in which 

the cluster centres are continually recalculated, resulting in 

data points (feature vectors) changing membership between 

clusters and the subsequent redefinition of these clusters in n-

dimensional space [2]-[5]. 

Following the K-Means training phase, each network node 

is associated with a cluster of feature vectors plotted in n-

dimensional space. Each node is then assigned to represent 

the defect type most prevalent in the cases clustered around 

the node. The K-Means network’s classification performance 

can be assessed by measuring, for each defect type - 

• the proportion of correctly classified cases clustered 

around specifically assigned nodes (true positives); 

• the proportion of incorrectly classified cases clustered 



 4

around specifically assigned nodes (false positives); 

• the proportion of incorrectly classified cases 

associated with a particular defect type (false 

negatives).  

Comparing the true positives, false positives and false 

negatives associated with each defect type classified by K-

Means networks of varying size provides a clear indication of 

which network offers the best classification results. The graph 

shown in Fig. 5 illustrates how the network performance 

varies with the number of predefined K-Means nodes (i.e. 

clusters), while classifying the defect type ‘Bad Contact’. 
  

  
Fig. 5. K-Means network performance in the classification of ‘Bad Contact’ 

defect types, varying with network size 

 

The network providing the most comprehensive 

classification of this particular defect type, (i.e. highest 

proportion of true positives and lowest proportion of false 

positives and negatives) is clearly that consisting of forty pre-

defined K-Means nodes (i.e. K = 40). 

 

 
Fig. 6. Confusion matrix for K-Means 

 

The confusion matrix of the forty-node K-Means network 

(shown in Fig.6) illustrates the difficulty experienced by the 

network in distinguishing between ‘Floating Component’ 

(FL) and ‘Surface Discharge’ (SD) defects, and between 

‘Protrusion’ (PRO) and ‘Suspended Particle’ (SP) defects. 

This observation is consistent with the relative positions of 

the ‘PRO’ and ‘SP’ clusters shown Fig. 7, where overlap 

exists between FL and SD defect types and also between PRO 

and SP defects. 
 

 
Fig. 7.  Overlapping clusters in Sammon Map 

 

The lack of symmetry evident in the matrix also provides a 

useful insight into how the network performs. It is evident 

that while there are 84 instances of ‘PRO’ defects being mis-

classified as ‘SP’ defects, only 10 instances of ‘SD’ defects 

being mis-classified as ‘PRO’ defects exist. Therefore, while 

the network may experience difficulty in classifying ‘PRO’ 

defects it experiences no such problems in classifying ‘SP’ 

defects. 

VIII.  IMPLEMENTATION 

The techniques presented above represent a number of 

ways in which data mining and intelligent techniques can be 

used in order to achieve an initial interpretation of activities 

within a transformer based on partial discharge fingerprints.  

It has also been shown that no one technique is perfectly 

suited to interpreting UHF feature vector fingerprints, and 

that for more reliable results, a hybrid system is required. 

The integration method piloted for an overall condition 

monitoring system in gas insulated substation and gas turbine 

monitoring projects was to use agents to split both 

computational load and diagnosis tasks into small 

manageable chunks [6]-[9].  This also has the advantage of 

removing proprietary data types at the system’s external 

interfaces thus overcoming problems related to building a 

condition monitoring system that can deal with equipment 

from multiple manufacturers.  The need for a hybrid system is 

further highlighted by the large number of heterogeneous 

devices installed on the typical power network and the 

challenge associated with extending the transformer 

monitoring system to other devices like dissolved gas 

analysers.  This extension will include not only the addition 

of new devices and data types but is also likely to feature 

additional analysis techniques as they become available. 

A key concern in achieving the multi-agent system is the 

correct and appropriate ontology [10].  The ontology is the 

system vocabulary, and it is within the ontology that concepts 

and their relationships are defined.  As an example, the 

ontology for the transformer monitoring system contains 

concepts like “transformer”, “substation” and “transformer 

feature vector” and relates them by insisting that a valid  

“transformer” be part of a “transformer feature vector” 

reflecting the fact that there can be no feature vector without 

a corresponding transformer.  Similarly, a transformer will 

typically require a “substation” fact be associated with it, but 

in this instance that may be optional to account for pole-

mounted transformers not located within substations. 
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The design and implementation of the ontology is a crucial 

component of building the overall system and requires 

extensive thought to ensure all data can be accommodated 

within the final system. This requires that the ontology 

include key elements from the ontologies of other systems 

with which it is likely to interact and where this is not 

possible, for example where the same term represents 

different concepts in two different existing systems, 

translations between those ontologies must be provided. 

Fig. 8 shows the various modules in the intelligent 

interpretation process and the data flow paths through the 

system with the data paths labelled according to the 

corresponding entry in the system ontology. 

 

Fig. 8. Decision Support System Architecture 

 

The intelligent techniques applied in this system are 

primarily concerned with using the data to gain an initial 

impression of what may be happening within, in this case, the 

transformer.  This means that in order to apply each 

technique, a single agent is needed which can request 

relevant data from other agents, for example those at the 

systems external interfaces, and perform the analysis as 

required. 

This process results in a single proposed conclusion from 

each analysis agent that requires rationalisation into a single 

conclusion.  In traditional terms, this is similar to requesting 

the input of several experts on the subject, but requiring only 

a single prognosis.  This idea of thinking of the overall agent 

system in terms of how a company would function is oft 

touted as useful [11] and the organisational metaphor 

suggests two possible courses of action; the first is for all 

parties to negotiate and refine conclusions until there is 

sufficient agreement.  The second method is to pass each 

party’s idea to an authority that can make an executive 

decision.  In communicative terms, the first of these can be 

shown to require at least n×(n-1) messages (where n is the 

number of parties negotiating) being exchanged whereas the 

second requires only n messages being passed to the 

executive authority.  Negotiation for this particular task 

would also require all agents checking their results with 

others and waiting for agreement, possibly leading to delays 

in the initial conclusion.  It may also introduce race 

conditions where the first agent to return a result may be 

weighted more favourably as it can notify more agents of its 

idea sooner.  This is clearly undesirable and would likely 

prove difficult to explain to the end user exactly how the 

conclusion was reached.  For these reasons, and because 

allowing other agents to influence their decision would break 

the important agent concept of autonomy, it has been decided 

that a single executive authority is the best technique to use 

for this application.  This should result in the information 

that is both timely and automatically updated through time.  

This could prove most useful when an additional analysis 

technique is added to troublesome plant at a later date, where 

only the new agent would require processing its data and 

submitting its ideas to the corroboration agent for inclusion in 

its executive process. 

Corroboration within this system will take place across 

sensors (to ensure all sensors are working correctly), between 

techniques (using expert knowledge on the success rate of 

each technique at identifying fault types) and between 

external and internal data to ensure external equipment, like 

mobile phones, aren’t causing false readings on the 

transformer UHF detectors. 

It is hoped that these steps to introduce corroboration and 

explainability into the system at design time will help 

alleviate a common weakness in intelligent systems – that of 

explaining the results that the system yields [12].  Agent 

based systems integrating intelligent systems are in no way 

immune to this requirement and validation through robust 

explanations of the individual steps taken to come to a 

conclusion is very important. 

The final part of the decision support system is the 

knowledge-based analysis.  This component receives data on 

the time differences between partial discharge signals 

arriving at the multiple UHF sensors mounted on the 

transformer, as well as the feature vector information.  By 

using this data as well as knowledge in the form of 

transformer models, it can calculate approximate positions in 

which discharges occurred.  This knowledge can then be used 

in tandem with the feature vector information to ascertain the 

types of fault that might be expected in that region.   

Following the intelligent corroboration step, the 

conclusion information is passed to an interactive 3D-viewer 

interface within the information agent so the engineer can 

take the correct action.  Using the agent architecture, it is 
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relatively easy to develop additional interfaces for other 

systems users, for example the asset manager.  Agent 

techniques also allow additional analysis techniques to be 

quickly integrated into the system.   

IX.  COMMUNICATION BETWEEN AGENTS 

In order to build an extensible system, standard agent 

conventions have been used.  This means that all inter-agent 

communications are handled using just a few types of 

message – namely “subscribe”, “query-ref” and “inform”. 

Of these, “subscribe” and “query-ref” allow agents to 

request information updates automatically and to ask for 

answers to specific queries respectively.  The “inform” 

message type is used in response to both query types. 

This part of the overall system has been designed to 

mainly use the “subscribe” mechanism for passing 

information between agents.  When agents come on line, they 

will find everyone capable of providing them with required 

information and send the appropriate subscription request.  In 

order to ensure the system has missed nothing during the 

offline period, or in the period during which the subscriptions 

were set up, the system will also issue a query and check the 

resulting information with its own knowledge.  A similar 

technique is adopted whenever it is detected that 

communications between agents has failed and been re-

established. 

It can be seen that data is initially passed from the data 

monitor to the analysis systems.  From here, the proposed 

conclusions of each method-implementing technique are 

passed to the corroboration agent.  It is then up to this agent 

to use its own knowledge of the analyses to figure out the 

overall conclusion using all of the available information. 

The addition of this extra reasoning layer allows new 

techniques to be rapidly added to the system simply by adding 

the agent to the community and reconfiguring the 

corroboration agent.  Depending on the type of data this agent 

is dealing with, it will use either manually set rules or 

weights, or adaptive algorithms in order to generate a single 

conclusion with probabilities for each proposed outcome. 

X.  DISCUSSION 

The paper has illustrated the approach adopted in the 

assessment of a number of intelligent techniques applied 

specifically to the classification of partial discharge defect 

types. In addition, the implementation of these techniques, 

forming a practical decision support system for partial 

discharge defect diagnosis and location, is also described. 

Assessment of the intelligent techniques considered within 

this paper, shows the techniques implemented offer varying 

degrees of reliable partial discharge defect classification. 

Using the agent interaction described previously, the 

constraints and limitations associated with each technique are 

considered within the corroboration agent, as part of the 

complete diagnostic process performed by the system. 

At present, the explainability of the system is restricted to 

providing an explanation of which agents contribute to the 

overall diagnosis and providing some indication of the 

confidence and reliability of each contribution. However, a 

clear justification of the defect diagnosis presented by the 

system can be expressed in terms of the partial discharge 

activity observed, through the application of expert 

knowledge represented as rules in a knowledge-base. To this 

end, future work will consider the implementation of a 

knowledge-based agent, offering further corroboration of the 

system diagnosis and improved explainability of the system 

output. 
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