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Abstract--Unique and varied power system conditions are 

already being experienced as a result of the deployment of novel 

control strategies and new generation and distribution related 

technologies driven by the smart grid. A particular challenge is 

related to ensuring the correct and reliable operation of 

protection schemes. Implementing smarter protection in the form 

of adaptive setting selection is one way of tackling some of the 

protection performance issues. However, introducing such new 

approaches especially to safety critical systems such as protection 

carries an element of risk. Furthermore, integrating new 

secondary systems into the substation is a complex and costly 

procedure. To this end, this paper proposes an adaptive 

protection architecture that facilitates the integration of such 

schemes into modern digital substations which are a staple of 

smart grids. Functional features of the architecture also offer 

powerful means of de-risking schemes and flexible 

implementation through self-contained modules that are suitable 

for reuse. An example adaptive distance protection scheme is 

presented and tested to demonstrate how the architecture can be 

implemented and to highlight the architecture�s novel features. 

 
Index Terms--Adaptive relaying, smart grids, scheme 

architecture and real-time digital simulation 

I.  INTRODUCTION 

HORTFALLS in power system protection performance 

are being experienced at both transmission and distribution 

networks. These are due to a number of factors including 

increased penetration of distributed generation, varied 

operational conditions and severe wide area disturbances [1-

3]. Maintaining acceptable protection performance is essential 

for a functional smart grid as these schemes ensure the reliable 

and safe operation of the primary system. Adaptive protection 

(whether using settings groups or more advanced setting 

calculation techniques) has been proposed as a solution to 

enhancing the performance of protection schemes in response 

to many of these factors [4]. However, a body of work 

tackling adaptive protection schemes from an architectural 

point of view and ultimately the verification and validation 

(V&V) of such schemes is virtually non-existent. 

This paper proposes a unique requirements-driven adaptive 

protection architecture. Devising such an architecture not only 

defines the constituents of an effective adaptive protection 
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scheme, but it is instrumental in delivering straightforward 

substation integration and effective scheme V&V. This 

architecture and its constituent functions aim to contribute to 

the set of tools and approaches that form a �toolbox of proven 

technical solutions� for the smart grid [5], [6]. As 

communications system become more widespread and a 

cornerstone of delivering smart grid functions [7], emerging 

protection technologies (including adaptive protection) must 

effectively make use of these communications systems while 

maintaining reliable operation and interoperability between 

different vendor solutions. 

The fact that adaptive protection essentially relies on 

modifying its behavior based on the prevailing power system 

conditions [8] raises a number of concerns related to the 

validity of adaptive behavior, the nature and amount of 

information required to infer the system state and the 

appropriate scheme performance at any given time. These 

issues compared to conventional protection philosophies, 

present a challenge in terms of devising suitable scheme 

implementations and V&V procedures. The work in [9] 

highlights the importance of dedicated �testing environments� 

as an effective means of tackling this issue which requires 

considering the impact of varied primary system operational 

conditions dictated by smart grid controls. 

This paper first of all discusses the different life-cycle 

stages of a protection scheme or platform from the point of 

view of utilities and manufacturers respectively. This is 

critical to understanding the requirements necessary to 

develop an adaptive protection solution that meets the utilities� 

expectations while not leading to a costly and impractical 

overhaul of secondary substation infrastructure. In light of 

these requirements, the paper then develops the proposed 

architecture with its distinct functional layers. Detailed 

architecture functionality is also discussed. Challenges of 

integrating adaptive protection schemes into modern 

substations are identified and the role of the architecture in 

overcoming these is discussed. 

Finally the V&V of adaptive protection schemes, although 

not the focus of this paper, is an important issue that needs to 

be addressed. Some of the challenges associated with this are 

discussed and the inherent architectural features that facilitate 

scheme verification and validation are explained. Furthermore, 

an example adaptive distance protection scheme is presented 

to illustrate the validation process and demonstrate how the 

architecture can be physically implemented. 
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B.  Adaptive Scheme Functional Requirements 

Figure 2 shows a simplified functional flow of a generic 

adaptive protection scheme in order to achieve a suitable 

setting in response to a system event. Four main functions 

have been identified in order to deliver this at acceptable 

performance levels. These are: power system event detection 

and qualification, post-event evaluation of protection 

performance and post-event setting calculation and 

application. 

 

 
Figure 2 Generic adaptive protection scheme operation 

 

Events that have a potentially negative impact on the 

performance of a protection scheme must be detected through 

means of local or remote measurements or both. It is also 

necessary to qualify the extent of the event which is necessary 

to conduct the performance evaluation. Evaluating the 

performance of the protection scheme post-event is essential 

to ascertain the suitability of the applied settings. This 

function does not need to be conducted in real-time. It may be 

deemed sufficient to qualify the performance of the protection 

scheme under various operational events during the design 

stage which is then hardwired into the adaptive scheme. 

Should post-event scheme performance prove unsatisfactory 

after the evaluation process, a new setting is selected or 

calculated and then made active such that the scheme 

performance is brought to levels as specified by the original 

requirements outlined in the utility protection policy. 

C.  Adaptive Scheme User Requirements 

Detailed functional requirements are highly dependent on 

the scheme in question and the application network. However, 

these serve to deliver on user requirements. The following is a 

brief list of the main user requirements that an adaptive 

protection scheme must adhere to. These should be 

measureable in such a way that they can be verified at 

different stage of scheme development: 

̇ Utilization of existing protection functions: the essence 

of adaptive protection functionality is altering the 

configuration of existing schemes (setting or scheme 

logic) in order to enhance their performance. For 

instance, a distance scheme can be complemented with 

overarching adaptive functions that improve its 

sensitivity to in-zone faults through reach alteration. 

̇ Primary system conditions that sanction adaptive 

behavior: as adaptive protection scheme do not offer a fit 

for all solution, it is necessary to define the events that 

instigate adaptive functionality and the nature of the 

required response. For instance, changing the topology of 

a distribution network may require the regarding of 

overcurrent protection. Information about the new 

topology and its onset is therefore required. 

̇ Ease of integration with existing substation 

infrastructure: practical constraints posed by brown field 

sites and established protection practices require that 

adaptive schemes make most use of existing IEDs, 

computing and communications equipment. This 

manages risk of new technology as systems are 

decoupled and new technology introduced is limited to 

the adaptive functions as opposed to additional 

supporting infrastructure. 

̇ Minimum performance levels met by adaptive schemes: 

since these schemes are meant to alleviate performance 

shortfalls of existing schemes, they must satisfy 

minimum performance levels set by utility policy. 

Furthermore, any single failure mode of the adaptive 

scheme must not cause the any further deterioration of 

existing protection functions. 

̇  Standard interfaces for scheme configuration and 

diagnostics: adaptive protection schemes should remain 

faithful to the staple protection settings and scheme logic 

used for configuring expected scheme behavior. 

Furthermore signals that reflect adaptive behavior should 

be logged alongside disturbance records used to for post-

event diagnostics. Information models adopted by the 

scheme should also adhere to common substation 

standards (e.g. IEC 61850). 

All of the requirements developed above are fed in to the 

design process of the adaptive protection architecture 

proposed in following section. This aims to tackle some of the 

integration challenges of such new technologies and reduce 

their associated risks of their adoption. 

III.  ADAPTIVE PROTECTION ARCHITECTURE 

One of the first and most critical steps in realizing an 

adaptive protection scheme is the design of a representative 

and functional architecture which reflects the developed 

requirements. This is an effective means of managing smart 

grid complexity through structural rigor [10]. The architecture 

will be referred to hereafter as the Adaptive Protection 

Architecture (APA). The APA serves the purpose of defining 

scheme elements� connectivity, their interface and the scope of 

their operation. Furthermore, there are functions that the 

architecture delivers that are thought to be important to any 

adaptive scheme implementation. This greatly enhances 

technology maturity (de-risking) through components reuse. 

The proposed APA features three distinct functional layers 

(execution, coordination and management), as shown in 

Figure 3. This architecture assumes a functionally abstract 

form which de-emphasizes physical implementation. This 

allows flexibility in mapping any of the functions to suitable 

physical devices and platforms without sacrificing 

functionality which is an important feature when tackling 

substation integration challenges. 



 

Figure 3 Adaptive protection architect
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Figure 4 Detailed functional interactions at the coordination layer 

 

There are three main functions that reside at the 

management layer, all of which operate with system wide 

protection and primary system performance in mind. These 

are: contextual system evaluation, protection action and 

protection diagnostics. Information provided by phasor 

measurement units (PMU), for instance, can be used by the 

contextual system evaluation function to determine the onset 

of system instability, cascade trips or major changes in power 

flows due to intermittent energy resources. This information is 

then utilized by the protection action function. For example, in 

response to the onset of cascade trips, low frequency demand 

disconnection can be targeted to operate more optimally in the 

network area(s) closer to the frequency deviations. This can 

only be achieved with wider system visibility offered at the 

management layer level. Another example is related to system 

restoration conditions where protection schemes can act 

against the operator [14]. Protection action functions can 

disable adaptive behavior or set limits for the underlying 

schemes such that they are desensitized to non-fault 

phenomena during the restoration process. Finally the 

diagnostics function operates in a similar manner to that of the 

performance evaluation function but without direct 

intervention. Alarms are raised for system operator action. 

Global logs of the adaptive behavior can also be kept for post-

event analysis. Communications between the substation and 

regional/national control rooms plays an important role 

enabling these functions. 

The gateway serves the purpose of providing standard 

communications interfaces so that different scheme elements 

can be integrated more easily within the substation. Plant 

status information and setting change requests normally pass 

through the gateway. Physically this can be existing substation 

gateways or protocol converters. 

C.  Centralized vs. Distributed Functionality 

Since the APA is functionally abstract, implementing a 

physical scheme layout is a straightforward process of 

mapping functions onto physical devices. However, there are 

some unique physical implementation challenges from the 

view point of centralized and distributed layouts. Distributed 

functions pose a challenge since functions may need to be split 

over physical devices. Duplicating functions over several 

devices can be one way of tackling this challenge. However, 

there needs to be a coordinating authority through which a 

final adaptive setting selection decision is sanctioned. 

To this end there are some functions that are suited to a 

certain physical layout as opposed to others. For instance, 

coordination functions that determine the system state and 

gather active setting indications from different relays are more 

suited to a centralized physical implementation. Conversely, 

active setting verification can be a distributed function, such 

that IEDs can verify whether they comply with the setting 

selection command and can raise a setting violation alarm if 

not. 

IV.  SUBSTATION INTEGRATION CONSIDERATIONS 

Considerations must be made for the communications 

system integration of adaptive protection schemes which 

constitutes several functional elements that can be from 

different vendors and can use different communication 

protocols. This challenge is being addressed by the 

development of substation communication gateways which 

can handle most of the commercial communication standards, 

including IEC 61850. The adaptive protection scheme can be 

implemented to use existing substation communication 

infrastructure. For example, coordination layer functions can 

monitor the system and change the protection settings through 

the communication gateway. To activate different settings 

groups using IEC 61850 requires writing to the SGCB control 

block over the LAN [15]. 

The proposed APA allows avoiding a major overhaul in 

existing substation secondary systems and infrastructure 

because of its flexibility, extensibility and role in de-risking 

novel protection functionality. These are features that are 

important in achieving delivering demanding performance 

constraints driven by smart grids [16]. Flexibility is 

manifested by the functional abstraction. Lack of physical 

constraints makes adaptive scheme implementation flexible in 

terms of solution offered by functions vendors and the 

enabling of function interoperability. Furthermore, flexibility 

is also a feature of smart grids which means that any adaptive 

protection architecture for smart grid applications must exhibit 

a level of flexibility. The architecture is also extensible such 

that additional functionality can be added without affecting the 

core performance of the scheme due to standalone modules. 

Finally, the APA play an important role of de-risking the 

adaptive protection functions by promoting reuse which is 

enabled, once again, through the functional abstraction. 
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anagement layer functions 

0 substation gateway [20] 
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a HIL testing configuration 



 

B.  Primary System Model 

A section of the 400kV UK National

modeled using RTDS as shown in Figure

system parameters and substation designatio

the appendix (section VIII.  ) and [23]. A 2

installed on the line between HIGM and R

manually controlled during the simulatio

protection instrument transformers are on 

WBUR and HIGM at WBUR substation. 

 

Figure 6 Simulated primary system

C.  Testing Results 

Evaluation of conventional protection di

performance has already been carried out in

problem lies in zone under-reach when the Q

the circuit. Figure 7 shows an example unde

for a single phase fault applied on the RATS

the QB is in bucking mode. An exhaust

scenarios covering the full reach of the 

conducted to test the adaptive protection p

results shown here illustrate a sample of the 

of the adaptive scheme. 

The performance evaluation function in

change from setting group 1 (SG1 signal) t

(SG2 signal) when the QB is engaged (QB 

shown in Figure 8. SG2 expands the zone 

cover the worst case scenario. The figure

correct operation of the relay when the 

applied single phase fault is introduced to 

line. 

 

Figure 7 Non-adaptive distance protection under-reac

engaged for a single phase fault 
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reach to 20% to 
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Figure 8 Correct adaptive distance protect

engaged and a new setting g

VII.  CONCLUS

This paper presented a flexi

architecture fit for smart grid applic

requirements-driven such that it 

manufacturer user and functional 

life-cycle stages of a scheme. 

The architecture features function

supporting functions which facilitate

digital substations as well as the de

by enabling their reuse. 

Physical mapping of the archite

has been demonstrated in a pro

scheme targeting transmission c

boosters. The correct performance 

demonstrated in a hardware-in-th

procedure on a transmission system

has been enabled through the imple

quadrature booster control. 

VIII.  APPENDIX - RTDS MODEL D

SETUP 

Primary system information inclu

fault levels data is available in the 

statement [23]. The source impedan

a 12 X/R ratio [24]. A 1000:1 and 4

ratios were used respectively. 

protection settings were used for th

(i.e. 80% zone 1, 150% zone 2, 

200ms and 600ms were used for zon

Power swing blocking was enable

functions were disabled. 
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