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Abstract
We present a numerical model for 3D time resolved

wake calculations from marine current turbines. Since
the wakes are characterised by the shedding of a vor-
tex sheet from the rotor blades, we have constructed the
model based around the vorticity transport equations. A
vortex sheet may be considered a jump contact discon-
tinuity in tangential velocity with, in inviscid hydrody-
namic terms, certain kinematic and dynamic conditions
across the sheet. The kinematic condition is that the
sheet is a stream surface with zero normal fluid veloc-
ity; the dynamic condition is that the pressure is equal on
either side of the sheet. The kinematic condition is sat-
isfied at the trailing edge only, via an approximation of
the Kutta condition. The shed vorticity is the span-wise
derivative of bound circulation, and the trailed vorticity
is the time derivative of bound circulation, and is con-
vected downstream from the rotors using a finite volume
solution of vorticity transport equations.

Keywords: Marine Current Turbine, Wake, Unsteady Mod-
elling, Vorticity Transport

Nomenclature
Re = Reynolds number
p,Cp = Pressure, pressure coefficient
ei = ith Cartesian basis vector
u,U = Eulerian velocity field, velocity vector
ω = Vorticity vector
Φ = Velocity potential
K[...] = Biot-Savart kernel function in [. . .]
R,R = Displacement, distance
δ = Kernel smoothing parameter
x[...] = Position of point [. . .] in Cartesian space
a[...] = [. . .]th Taylor (multipole) coefficient tensor
b[...] = [. . .]th recurrence coefficient
m[...] = [. . .]th cluster moment (vorticity) tensor
β = Flux limiter parameter
ψ = Flux limiter; yaw angle
Ψ = Azimuth angle - zero along z-axis
Γ = Circulation
ν = Kinematic viscosity

c© Proceedings of the 8th European Wave and Tidal Energy
Conference, Uppsala, Sweden, 2009

Subscripts

k = 3D multi-index (k1,k2,k3)
c = Value at cluster centre
∞ = Free-stream
t = time
C = Cell centred value C
Str = Associated with vortex stretching/tilting
Prod = Associated with vorticity production

Superscripts
− = mean value
n = time step

1 Introduction
The performance of a marine current turbine is con-

tingent on the inflow at the rotor, and the inflow itself is
primarily determined by wake induced effects [1]. The
wake induced flow velocities are themselves determined
by the hydrodynamics of the rotor leading to the state-
ment that a fundamental treatment of the wake physics
is essential if the performance of a rotor is to be deter-
mined correctly. This is especially important in situa-
tions where there is a strong spatio-temporal variation in
rotor inflow (with similarly coupled wake effects) such
as a turbine operating in yaw or in the wake of another
turbine – indeed these off-design conditions often pose a
problem when modelling these devices.

The inflow at the rotor is strongly coupled to the wake
vorticity induced velocity. A vortex sheet is shed from
the blades at the root and tip due to leakage to the suc-
tion side, and along the span due to complex boundary
layer phenomena. Considering a vortex sheet as a step
discontinuity in tangential velocity in a parallel shear
flow, at the smallest scale parcels of fluid must be ro-
tating and, due to viscosity, inducing a velocity in their
neighbours - figure 1. This is dynamically unstable and
rapidly breaks down with the sheet curling up into famil-
iar vortex wake shapes, with the velocity at a point on or
near the sheet dependant on the shape and strength of the
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Figure 1: Considered as a delta-function in velocity, a vortex
sheet curls up into familiar wake shapes as instabilities propa-
gate

whole sheet. Blade element/momentum theory (BEMT)
relies on modelling the rotor as a set of isolated two-
dimensional blade elements to which we can then ap-
ply 2-dimensional aerodynamic theory individually and
then perform an integration to find thrust and torque. The
ramification is that we must assume uniform inflow over
the annular elements in addition to the fact that there
must be zero flow normal to stream-tube boundaries.
Of course, a number of post-fixes exist in order to ap-
pend to and correct for the additional physics, however,
these are purely in terms of free-parameters of empiri-
cal derivation. The dependency of the quality of BEMTs
prediction on the empirical input was highlighted during
the blind comparison of wind turbine predictive codes
against the U.S. National Renewable Energy Labs’ Un-
steady Aerodynamic Experiment [2] (NREL-UAE) , es-
pecially with regard to the treatment of 2D section char-
acteristics [3] which are found to predict poorly 3D rota-
tional effects, especially at the root, and the inclusion of
unsteady effects via often physically parsimonious com-
putational post-fixes.

The second treatment, computational fluid dynamics
(CFD), is able to fundamentally treat the vast majority
of the pertinent flow physics. Practical CFD involves a
solution to the Reynolds Averaged Navier-Stokes equa-
tions (RANS) discretised onto a computational mesh,
with suitable boundary conditions, however, the meshed
basis poses a number of issues that currently limit the ef-
fectiveness of CFD in treating the rotor fluid dynamics.
The first of these issues is the requirement to solve the
fundamental transport equations in all elements of the
mesh, even if these elements contain nothing of imme-
diate interest. This requires the existence of a large do-
main, which must extend and be represented sufficiently
far from points of interest that far-field boundary condi-
tions may be applied.

The second issue is that solid surfaces (e.g. blades)
must be represented with sufficient detail to accom-
modate small-scale fluid phenomena, for example the
near-field effects associated with the development of the
boundary layer (BL). When developing a mesh at the ro-
tor blades the first requirement is that the surface is ac-
curately rendered within the mesh – this is imperative
since, once in the solver, although the number of grid
points representing the surface can be increased, their
position would be an interpolation between the points
already in existence. The second requirement is that the
boundary layer is resolved sufficiently that local instabil-
ities are not lost in the mesh – this tends to increase the
required number of surface cells yet further. Generally,
in order to achieve the first requirement one would use
[Sugoi Gomez-Iradi & George Barakos, personal com-
munication], say, X-Foil [4] to determine the number
of chord-wise points required to achieve a certain tol-
erance to foil shape representation with an inviscid solu-
tion, then use a viscous solution to determine the addi-
tional number of points to capture BL growth plus gain
an idea of BL thickness to use when generating and “ex-
truding” a surface mesh. For the Reynolds numbers as-
sociated with turbine blades we are looking at around
200 non-uniformly distributed chord-wise points to com-
fortably capture the geometry and BL, plus normal-to-
surface spacing which is (initially) of the same order.

At the other end of the scale, we must allow sufficient
evolution of the wake to capture pertinent physics. It has
been suggested that in order to fully resolve a tip vortex,
at least 15 points are required across the core [5], and
since the wake notionally persists many chord-lengths
downstream this poses a dichotomy: for a given finite
computational overhead we can either cluster points to
capture the rotor flow-field (the inner problem) or the
wake (the outer problem), and it transpires that for a rea-
sonable computational outlay (total CPU time of under,
say, a couple of months) these are mutually exclusive
and the tendency in current research is to focus on the ro-
tor near-field giving rise to very aggressive mesh sizing
functions in order to capture a sufficient fluid domain.

Figure 2: The vorticity field aft of a rotor is quickly smeared
across the mesh when using traditional CFD approaches, and
within a few turns is destroyed due to artificial dissipation.
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The third and most important issue is concerned with
artificial diffusion of the wake, and is a manifestation of
the grid-based solution itself. The diffusions slip in via
the coupled facts that 1) the grid must be a reasonable
shape, preferably hexahedral to avoid too much interpo-
lation, and the surfaces of the elements are not necessar-
ily aligned with the local velocities and 2) the discretised
governing equations themselves must be of sufficient ac-
curacy to make the computation worthwhile. The prob-
lems associated with the first are intuitive and most sig-
nificant – the transported variables are smeared spatially
over the mesh due to non-physical, local truncation er-
ror (LTE) related diffusion – and give rise to the second
which is a result of the fact that in order to obviate this
a higher order discretisation scheme must be used, en-
tailing oscillations in the solution around discontinuities
which must be damped via an additional artificial vis-
cosity. Properly implemented, and in smooth regions,
the artificial viscosity should be negligible as they are
designed to operate below the LTE; however, the wake
vorticity from a turbine occupies a relatively compact
and coherent region, the edges of which are discontinu-
ous over adjoining computational cells, and if these cells
are, due to cell clustering, relatively large so too is the
LTE and thus the additional effect of the damping. Even
with specifically designed, and (apparently) well posed
and implemented problems, wake breakdown cannot be
properly prevented, see for example figure 2

2 Introduction to the Current Method
In an effort to move away from the limitations of

these standard approaches, wake modelling methods
have evolved in which the wake vorticity is treated di-
rectly, and not as a by-product of the velocity field as
in traditional CFD, or an extension/post-fix as in BEMT.
These methods fall broadly into two camps: the first is a
panel based potential flow solver, where bound and shed
vorticity is represented using panels composed of combi-
nations of filaments of vorticity, sources and sinks as so-
lutions of the Laplace equation – see for example [6]; the
second is a specific treatment of a vorticity conservative
formulation of the Navier-Stokes (NS) equations. The
current method falls (mainly) into the latter and is de-
scribed fully below. The former method has found use in
rotor-craft aeromechanics and wind turbine simulations
with varying success – a limitation being that the time-
evolution of the wake is subject to accumulating compu-
tationally induced errors leading to (Kelvin-Helmhotz)
instabilities after a finite time. In order to get round this,
a number of approaches use a prescribed wake geometry
via either a prescribed screw-surface (e.g. the newly im-
plemented code in AeroDyn [7]) of by correlation with
experiment (e.g. [8]), or truncate a free wake after a cer-
tain age as in [6] and [9]. Further advances in this ap-
proach use vortex particles to satisfy the vorticity trans-
port equation , e.g. [10], and this method appears to be
the logical progression of these boundary element meth-
ods. The NREL-UAE experiments blind comparison

demonstrated the shortcomings of these methods, how-
ever, the truncated-wake approach remains useful in cur-
rent rotor-craft analysis, and the screw-surface method
still provides a quick and valuable insight within certain
design scenarios.

2.1 Method

An exciting and highly promising alternative to
primitive-variable CFD lies in the vorticity-velocity for-
mulation of the NS equations, and forms the core of the
current model, which is based on that of Brown and co-
workers e.g. [11], [12]. The governing equations are de-
rived from the incompressible, pressure-velocity (primi-
tive variable) NS equations:

∇ ·u = 0
∂u
∂ t

+u ·∇u = − 1
ρ

+υ∇2u (1)

by taking the curl to yield the vorticity transport equa-
tion:

∂ω
∂ t

+u ·∇ω = ω ·∇u+υ4ω +S (2)

for the vorticity field defined by

ω = ∇×u (3)

The appended compound source term S comes into play
in introducing vorticity to the flow, as well as during
application of flux-limiters and other terms (discussed
later). The computational domain is divided into cubic
cells through which the vorticity is free to move accord-
ing to the governing equations. As the transport variable
is vorticity, we require some method of recovering the
velocity field from the vorticity distribution during the
calculation. This is done via the Biot-Savart law relating
the velocity induced by a vortex with the range of inter-
action and vortex strength. The Biot-Savart law may be
written in integral form so as to accommodate all the dis-
tributed vorticity throughout the computational domain,
thus the influence of the jth vorticity containing cell on
a point at some displacement R j is:

u =− 1
4π

n

∑
j=0

R j∣∣R j
∣∣3 ×ω j (4)

Since we require the velocity at all cells containing vor-
ticity, we now have in effect an n-body problem requir-
ing O(n2) effort calculations to gain the required veloc-
ities, and it would seem sensible to use one of the ac-
celerated, so called fast multipole methods (FMM) , al-
gorithms to perform the calculation. In order to solve
the finite-volume version of the vorticity-velocity form
of the Navier-Stokes equations, it is necessary to calcu-
late the fluxes through the cell faces of the mesh. This
requires the velocities at the cell face centres be known,
and this can be accomplished by a combination of a di-
rect summation of equation 4 and through use of a fast
multipole expansion.
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Figure 3: The smoothed and Biot-Savart kernels.

The approach adopted, and roughly as applied in [12],
follows the mathematical formulation for the multipole
expansion presented in [13] and is structured loosely ac-
cording to the methodology proposed by [14] for fast
particle interactions via the Laplace equations. The prin-
ciple is to render local vorticity fields into a differen-
tiable form whereby the velocity field at some remote
point can be evaluated by means of Taylor type series
expansions. In practice this entails representation of the
vorticity field within a source cluster as local expansion
about the cluster centre, and an additional expansion rep-
resenting the velocity field at some distant target cluster
whose components are a result of the source cluster ex-
pansion.

In order to perform the expansions, the Biot-Savart
kernel is modified by addition of a smoothing parame-
ter (δ ), which destroys the singularity and results in the
Rosenhead-Moore kernel Kδ (see figure 3). Fortunately
it transpires that the Rosenhead-Moore kernel is the gra-
dient of a form of the regularised solution to Laplace’s
equation in 3D (the Plummer potential):

u = ∑
j

Kδ ×ω j

Kδ = − 1
4π

R j
(∣∣R j

∣∣2 +δ 2
) 3

2
(5)

2.2 Methodology

Using multi-index notation it is proven in [13] that for
the velocity induced at the ith distant point xi by a cluster
of n vorticity containing cells at points y j centred at yc:

n

∑
j=0

Kδ (xi,y j) × ω j =
n

∑
j=0

Kδ (xi,y j +(y j−yc))×ω j

= ∑
k

1
k!

Dk
y Kδ (xi,yc)×

n

∑
j=0

(y j−yc)
k ω j

= ∑
k

ak (xi,yc)×mk (c) (6)

Here the terms ak and mk are respectively the kth Taylor
term of the derivative D about y of Kδ at the source clus-
ter centre, and the clusters moment of vorticity, again
evaluated at the cluster centre and, in practice, the ex-
pansion is limited to a finite k. The gradients of this

potential (and in fact any function which satisfies a lin-
ear differential equation with polynomial characteristic
equations) can be found efficiently via recursion. In this
case the solution is of the form:

‖k‖R2bk− (2‖k‖−1)
3

∑
i=1

(xi− yi)bk−ei (7)

+(‖k‖−1)
3

∑
i=1

(xi− yi)bk−2ei = 0

for all positive k, where ei is the ith Cartesian basis vector
and the a (Taylor) matrix may be reconstructed via:

ak =
3

∑
i=1

(ki +1)bk−eiei (8)

The velocity field is computed at the target cluster centre
by performing the cross product of the vector elements
of the a and b tensors, and the velocity at a point nearby
may be attained by translation of the centre of the ex-
pansion (similar to a phase shift) before collapsing the
derivatives to recover a velocity. The process is sum-
marised in figure 6 . The finite volume method (FVM)
requires that the domain is divided into volumetric cells,
and this can be linked with the structural requirements
for an effective fast multipole application. Therefore a
sensible data-structure based around octrees seems to be
the prime candidate, and the approach in [15] has been
used (although certain other methodologies, such as B,
R or K-d trees and non-uniform adaptive trees were con-
sidered). The idea is that at the finest level the domain
is tessellated into cells, but only cells containing vortic-
ity and their neighbours are retained. Nearby cells are
linked into groups of up to eight based on their proxim-
ity to what will become their cluster-centre. The pro-
cess is repeated recursively with the newly created clus-
ters until the entire vorticity field is contained in a single
super-cluster. The principle advantages of this approach
are the geometric similarities (figure 5a ) between dif-
ferent levels of the octree which allows for the fact that,
per level, the number of calculations actually required
for the a terms in the FMM can be kept to a minimum.
Once the tree is constructed, the cell/cluster neighbours
at each level are determined, another advantage of oc-
trees being that this may be done relatively efficiently.
The cluster moments are calculated at the centre of each
cluster, then there is a sweep from the super-cluster down
to the cells where at each level the velocity field at the
cluster’s centre is inherited by translation from its par-
ent. Induced velocity fields are calculated at the centre
of each target cluster based on the effects of the vortic-
ity moments of source clusters which are the children of
the target cluster’s parent’s neighbours. When the cell
centred velocity and vorticity are known throughout the
domain, FVM may be used.

2.3 Finite Volume Method

Applying divergence theorem to the computational
cells, over a time-step ∆t the vorticity transport equa-
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Figure 4: Octrees provide a suitable recursive geometric struc-
ture.

Figure 5: Octree data structures applied generating an adaptive
Lagrangian mesh in the vicinity of the blades

tion may be written as follows for the ith component of
vorticity:
∫

∆t

∫

V

∂ωi

∂ t
dV dt +

∫

∆t

∫

A
ωi(u ·dA)dt =

∫

∆t

∫

V
SdV dt

(9)
Here, in order, the terms represent the rate of change in
i vorticity in time, due to convection and a source term
accounting for axis tilting/stretching, diffusion and vor-
ticity creation. The terms A, V are face areas and vol-
umes of the computational cell. The stretching/tilting
term merits some minor discussion: it is responsible for
the change in axis orientation (tilting) and magnitude
(by stretching of the vorticity). Physically the tilting is
most intuitive, but both are the result that given a ve-
locity differential, a vortex filament will have its ends
either pushed together or apart. If the differential acts
as a shear over the filament the axis will rotate orthogo-
nally; otherwise it will be either stretched or compressed,
whereby conservation of angular momentum (thus cir-
culation) will change the vorticity appropriately. Re-
garding the viscous term, since we are dealing with high
Reynolds number flow, an assumption that we operate in
the limit of zero viscosity for regions away from surfaces
has be adopted, with the knowledge that there will be

Multipole

Parents Children

ak ×mk

mk

u

u

u

uu

ω

ω

ω

ωω

Target

Source

Velocity Field

Vorticity Field

Figure 6: Relation between expansions used in velocity calcu-
lation.

some diffusive losses associated with the grid, and only
a very basic finite-difference to the Laplacian is calcu-
lated (if desired). Future work will seek to address this
term more fully, and determine the appropriateness of

One of the tenets of the finite-volume approach is
that the quantity being evaluated by the general trans-
port equation is assumed to be integral averaged over
the volume of the cell with the cell integrated value
concentrated at the centre of the cell. As such an ap-
proximation to the cell face value for the vorticity must
be found given that the vorticity field is represented by
piece-wise constant vorticity strengths over adjacent fi-
nite volumes, separated by a discontinuity. The flux be-
tween these cells must be carefully represented numer-
ically if the relatively compact vorticity region is to be
preserved – especially at the advancing interface of vor-
ticity containing and “empty” domains. Here the lo-
cal gradients would be very steep but highly localised,
and when represented on a mesh would either be missed
completely, or be smeared far more globally than was re-
alistic with additional non-physical oscillations. A flux
limiter detects such local extrema, and preserves them
while, most importantly, retaining the small scale nature
of the disturbance. In addition it is desirable that there
are no under or overshoots in the solution at these dis-
continuities - that is, we want the approximation to be
as close to matching the discontinuity shape as possible
without generating any spurious oscillations in the solu-
tion (which, when notionally stable, also serve damp out
sharp fronts).

There are a number of options available here for
the evaluation of vorticities at the cell faces: we have
adopted a second-order centrally weighted essentially
non-oscillatory (CWENO) scheme. The gradients used
by the CWENO scheme are calculated via a parame-
terised MINMOD flux limiter is used in which monotonic-
ity in the solution and wiggles (Gibbs phenomena - run-
ning waves in the numerical solution due to amplifica-
tion of the odd-order derivatives of the LTE) are respec-
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tively enforced and suppressed. The flux limiter essen-
tially limits the effective spatial gradients to physically
realistic values when a sharp front or discontinuity is
present. So at each cell face f the flux limiter chooses
some weighted average between suitable high and a low
resolution schemes for the derivatives at the cell face:

ωi, f = ωi,C +
1
2

ψMINMOD (∇ωi,β ) ·dA (10)

The finite volume formulation of the governing equa-
tions may be written

∫

∆t

∫

V

∂
∂ t

ωidV dt =
∫

∆t
(bPωi,P + ∑

f aces
a jωi, f (11)

+SStr +SProd)dt

where the terms a and b are derived from cell face flux
expressions, with the source (S) terms accounting for the
tilting/stretching effects due to the velocity differential
over the cell as discussed previously, and the flux contri-
butions from the flux limiters.

The current evolution of the model uses a second or-
der semi-discrete formulation for the cell face fluxes,
namely a MUSCL type reconstruction via a Riemann-
solver free technique [16] which uses an approximation
to the eigenvalues of the flux Jacobians to arrive at es-
timates for characteristic (wave propagation) speeds and
thus provide the limiters with the information they re-
quire to ”de-clutch” the higher order method. Once the
value of ∂ω

∂ t has been evaluated we advance the solution
using Heun’s second order predictor-corrector method.

3 Rotor Representation
The vorticity transport equation contains a source

term through which vorticity generation may occur. In
the case of the current method, this source term can be
broken down into a tilting/stretching component, a diffu-
sion component if required and the vorticity source due
to rotor modelling.

The rotor is represented using traditional boundary-
element methods: either a lifting line or surface repre-
sentation of the blades can be used, or a full 3D panel
code. The panel code representation involves discretis-
ing the surface of the rotor blades, hub and any other
bodies into a number of quadrilateral panels and is ca-
pable of therefore modelling bodies with thickness. A
linear or constant strength source of strength σ and/or
doublet (strength µ) is distributed over each panel, and
wake is shed from trailing edges in the form of vortex
loop panels.

The formalism of this model is well known (see Katz
and Plotkin for example) and only the core constituents
are described herein. Given a velocity field that may
be described by Helmholtz decomposition as having a
solenoidal and an irrotational part:

u =
3

∑
i=1

U∞ei +∇Φ (12)

where Φ is the perturbation potential associated with
fluid boundaries, at a solid boundary we expect that the
flow of fluid will be equal to the boundary motion in or-
der to satisfy the condition that fluid does not penetrate
the boundary (given that this is an inviscid method we
do not expect to apply a no-slip condition). This being
so, for all panels making up a body we solve for Φ that
satisfies this condition accounting for the interaction be-
tween all panels making up the body and also the shed
wake induced velocity. This is accomplished via solu-
tion of a system of i linear equations

∂Φi

∂ni
=− [u ·n]i (13)

which is made unique via an appropriate Kutta condition.
Vortex ring elements are shed from a proto-wake el-

ement attached to user specified points in accordance
Helmholtz and Kutta conditions, and it is these which are
used as the production source in equation 12. The pan-
els are shed and form a growing patch which is allowed
to convect downstream from the blade over a number of
sub-steps over the global time-step. Once sufficient pan-
els have been shed, and given that vorticity can only exist
in the wake (as we have inviscid surface boundary con-
ditions), we generate a number of computational cells to
contain fully the patches which have been created. From
here there are a several options for coupling with the
vorticity transport equation, since the wake patches are
specified in terms of vortex filaments. These include:

1. Using Stokes theorem to convert the circulation
around the planes of a cell (see figure 7a) to the vor-
ticity in the cell, so for example in the x− y plane
we have:

(ωz)i, j =
1
A

Γi, j =
1
A

∮

l(X ,Y )
(U,V ) ·dl ≈ Γi, j

4∆X∆Y
(14)

2. Via the definition of vorticity (equation 3) using fi-
nite difference approximations to the curl of the ve-
locity field (figure 7b);

3. An engineering approximation whereby the vortex
filaments are segmented and represented by a num-
ber of ”blobs” which are dissolved onto the mesh
(see figure 8).

a b

∆x

∆y

x

y

i

j

i + 1

j + 1

i− 1

j − 1

Figure 7: The vorticity can be calculated using 12 additional
velocity calculations around the cell and using Stokes theorem
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Figure 8: Panel to blob to volumetric mesh interpolation for
the vorticity field aft of a turbine rotor. The turbine is coloured
by doublet strength µ

The first method mirrors the techniques used in ex-
perimental work in attaining vorticity fields from PIV
data, however shares the disadvantages of the second
method in that not only must multiple additional veloci-
ties be calculated but finite differencing errors can yield
over/underestimation of vorticity strength. In actuality,
there are instabilities introduced during each method,
however the second method can be used to ensure a di-
vergence free velocity, and in practice we use this as a
discrete approximation to the tilting/stretching contribu-
tion.

Once the vorticity has been transferred into the oc-
tree the wake panels are destroyed and the process be-
gins again. The number of sub time intervals in which
the panel wake representation is advanced is dependant
on both the Courant number type condition in the FVM,
the desired reporting resolution and device mechanics.
Given that the model does not represent truly coupled
fluid structure interaction in its current incarnation, we
limit the age of the wake patches to that which is suffi-
cient to interpolate the vorticity. The unsteady Bernoulli
equation is used to recover the pressures on submerged
body surfaces

Cp = 1−
∣∣ubody

∣∣2

|U∞|2
− 2

|U∞|2
∂Φ
∂ t

(15)

with ubody being evaluated as the vector sum of kine-
matic, wake panel, fast-multipole and free-stream veloc-
ity contributions (and is tangential to the body surface as
per the slip condition, equation 13).

4 Preliminary Results
Since the FMM is an approximation to the cell face

velocities, it is important to be able to quantify the error
due to truncation of the infinite series. This can be done

a number of ways, but essentially involves summing the
largest order terms which have been discarded during the
construction of the various multipole expansion compo-
nents.

Figure 9: Accuracy of FMM calculation for the ratio of range
of interaction to cluster radius. There are 35 retained Taylor
terms.

Figure 10: 3D evolution of a circular vortex sheet using
MINMOD (left) and SUPERBEE (right) limiters (β = 1 and 2 re-
spectively)

4.1 3D Results

The code is then used to simulate the cases as used
by [13], that is the evolution of a vortex sheet parame-
terised as follows:

x =
(
1−Γ2) 1

2 cosθ

y =
(
1−Γ2) 1

2 sinθ
z = 0 (16)

(0≤ Γ≤ 1)(0≤ θ ≤ 2π) (17)

The dropoff in circulation Γ at the edge of the sheet will
induce the rolling up of the sheet, into a 3D ring - this
is a familiar occurrence as it is the process that gener-
ates smoke rings, and the results should be intuitive. The
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Figure 11: Isosurface of vorticity showing tip vortices and
starting vortex remnant as seen looking down x-axis.

Figure 12: All active computational cells within the time-step.

results shown give the evolution after approximately 15
seconds of two cases, the left using the MINMOD flux lim-
iter with parameter β set to 1 which is the most diffusive,
and the right using a β = 2, equivalent to a SUPERBEE
limiter, the most compressive. The difference is severe -
the position and shape of the resulting flow features are
significantly different, with the diffusive limiter spread-
ing the vorticity over about double (254,000 compared
to 125,000) the number of cells of the compressive case
indicating that not only is the process more “lossy” but
that it will also take longer to compute. However, it is
likely that a real world case would be somewhere in be-
tween, therefore final choice of the flux limiter parameter
should be based on the results of validation.

4.2 Preliminary Turbine Results

Further to the model proving results above, and sub-
sequent to the previous work [17] we have moved from
lifting line solutions to a 3D panel code. Figures 11 and
12 show results obtained using a model of a three bladed
tidal turbine, operating at a tip speed ratio of 6 with a

positive uniform initial inflow along the x-direction.
As can be seen from figure 11, the wake is preserved

for some considerable distance downstream, until it ap-
proaches the (artificially - for test purposes) imposed
limits of the domain. A principle advantage of the La-
grangian mesh formulation is that the domain is essen-
tially limited only by memory constraints of the com-
puter the code is run on, and can be arbitrarily large as
long as vorticity is sparsely distributed. Figure 12 shows
the distribution of vorticity containing cells within the
domain, this time looking along the x-axis towards the
origin past the still preserved starting vortex. Here the
total number of cells is around 75,000 for this case and
the model clearly preserves the starting and tip vortices.

In order to get an idea of code predictive performance,
the model has been used to simulate the NREL-UAE.
The Phase 5 UAE were a series of experiments con-
ducted using the NASA Ames large wind tunnel and
a full size (5m radius) NREL wind turbine, and these
have provided a very high quality data-set for use verify-
ing code performance. The turbine in this instance was
equipped with two blades, with a NREL S809 section,
linear thickness and cubic twist distributions. In these
simulations no hub is present, however this was simply
to ensure adequate resolution of inboard tip vortices. As
part of the quality assurance on their data, NREL prove
repeatable pressure distributions at azimuths of 0 and
180◦ with an inflow velocity of 13ms−1 at ψ = 30◦ yaw;
these are presented in figures 14 and 15 below along with
predictions from the current model. While it is noted
that a wind turbine is not an ideal test-case for a code
designed for marine current turbines, the volume of data
available from the NREL tests make them a valuable re-
source if one is prepared to overlook the slight changes
in physics.

There is clearly some discrepancy between the Cp re-
sults, and this will manifest itself as errors in load calcu-
lations. At both azimuthal stations the pressure side of
the blade can be seen to match fairly well, especially for
the low incidence, advancing (Ψ = 180◦) case. On the
retreating blade, the disparity between the measured re-
sults is due to shedding a dynamic stall vortex - a purely
viscous event which cannot be captured by the model in
it’s current form. Some work has been done by, for ex-
ample [18], where a vortex sheet is shed from the blade
leading edge when certain dynamic stall onset criteria
are met enabling essentially inviscid codes to model this.
In this situation the case was chosen as a test case, and
it is noted that this represents a significantly off design
condition. Furthermore, the blade sees an inflow at an
incidence of around 35◦ - well above static stall (and
therefore inviscid) conditions.

The advancing blade local angle of attack reaches a
maximum at around 15◦ and therefore operates just in-
side the envelope where out-with the limiting assump-
tions of the model begin to break down. Current work
seeks to identify the root of the massive over-prediction
on the suction side and although immediate suspects are
the inability to predict separation, it is not obvious if
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Figure 13: Axial induction factors (a≡ U∞−U
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) computed for NREL UAE turbine. U∞ = 13ms−1, Upper: ψ = 30◦; Lower: ψ = 0.
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Figure 14: Pressure coefficient at r/R = 0.47 and Ψ = 180◦.

there is not some other process (or error) at work as
investigations using simple wings occasionally indicate
Kutta condition related errors.

Figures 13 show the computed axial induction factors
just upstream of the rotor plane for the turbine operat-
ing in yawed and un-yawed conditions. It is interesting
(from the perspective of, say, coaxial devices) to notice
here how far the momentum deficit (a > 0) of a turbine
extends in an upstream direction, and in both cases the
root and tip vorticity is carried far downstream. In the
yawed case at a position 0.5m downstream of the rotor,
the strong influence of the outboard tip vortex can be
seen - a feature which would not be captured using stan-
dard blade element models and a strong contender for
the over-prediction seen in figure 15. The tip vortices
are obvious on all but the top right section - this is due to
them being carried “upwards” by the yawed flow, and the
inboard vortices are marked with ∧, the outboard with ∗.

◦ = code, — = experiment

Figure 15: Pressure coefficient at r/R = 0.47 and Ψ = 0◦.

They can be seen to circulate in the region half-a-radius
above the axis.

5 Future Work and Perspectives
The code developed here has been designed to over-

come perceived shortcomings in standard “off the shelf”
turbine analysis methodologies. Array modelling is
likely to become more and more important as developers
move from the prototype to deployment mode, so we re-
quire a fairly quick and appropriately physical method to
analyse the device interactions. Extension of this model
to multi-body problems has been included from incep-
tion via object-orientated programming, but at the mo-
ment the cost of computing influence coefficients at each
time-step is a bottleneck. Future development entails
high resolution validation campaigns agains known data
to ascertain code behaviour, followed by reduced reso-
lution modelling of increasingly large arrays of devices
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under more realistic inflow boundary conditions.

6 Conclusions
We present a numerical model for unsteady wake

modelling for marine current turbines based on a finite
volume solution of the Navier-Stokes equations in vor-
ticity conserving form. We obtain results indicating the
importance for turbines of wake induced velocities and
demonstrate that an appropriately limited high resolution
finite volume method aids in retaining wake longevity.
While there is not currently a sub-grid-scale turbulence
model, artificial diffusive mixing still acts as a kind of
viscocity even though great pains were taken to keep it
to a minimum.

Current predictions over-estimate the suction on the
upper surface of the blades, however the wake modelling
aspect of the code works as intended. The model’s in-
ability to accurately model high yaw related effects is
primarily due to the inviscid nature of the boundary rep-
resentation. It is envisaged that future work will seek
to adopt an appropriate three-dimensional Cartesian cut-
cell approach to the vorticity boundary condition, how-
ever it is noted that the predictability of marine currents
suggests that severe yaw events will be unlikely, and this
plus the relative speed of the boundary element method
aid in justifying the approach adopted.

Early results indicate that the modelling methodology
is sound, and providing a rigourous validation campaign
is adopted, a valuable open source tool will be the by-
product of this work.

Obtaining the Code
The code is available under the GNU General Public

License and can be obtained either by contacting the au-
thors, or via svn:
https://peta-esru.mecheng.strath.ac.uk/repos/vort-transp
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